Basic c++ification of varobj
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #include "python/py-ref.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static int pretty_printing = 0;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = 1;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. */
69 struct varobj_root
70 {
71 /* The expression for this parent. */
72 expression_up exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block = NULL;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame = null_frame_id;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id = 0;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating = 0;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid = 1;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops = NULL;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar = NULL;
103
104 /* Next root variable */
105 struct varobj_root *next = NULL;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested = 0;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor = NULL;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer = NULL;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter = NULL;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item = NULL;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, int);
152
153 static void delete_variable_1 (int *, struct varobj *, int, int);
154
155 static int install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168
169 static int update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
172 static int install_new_value (struct varobj *var, struct value *value,
173 int initial);
174
175 /* Language-specific routines. */
176
177 static int number_of_children (const struct varobj *);
178
179 static std::string name_of_variable (const struct varobj *);
180
181 static std::string name_of_child (struct varobj *, int);
182
183 static struct value *value_of_root (struct varobj **var_handle, int *);
184
185 static struct value *value_of_child (const struct varobj *parent, int index);
186
187 static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
189
190 static int is_root_p (const struct varobj *var);
191
192 static struct varobj *varobj_add_child (struct varobj *var,
193 struct varobj_item *item);
194
195 /* Private data */
196
197 /* Mappings of varobj_display_formats enums to gdb's format codes. */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199
200 /* Header of the list of root variable objects. */
201 static struct varobj_root *rootlist;
202
203 /* Prime number indicating the number of buckets in the hash table. */
204 /* A prime large enough to avoid too many collisions. */
205 #define VAROBJ_TABLE_SIZE 227
206
207 /* Pointer to the varobj hash table (built at run time). */
208 static struct vlist **varobj_table;
209
210 \f
211
212 /* API Implementation */
213 static int
214 is_root_p (const struct varobj *var)
215 {
216 return (var->root->rootvar == var);
217 }
218
219 #ifdef HAVE_PYTHON
220
221 /* See python-internal.h. */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224 {
225 }
226
227 #endif
228
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234 {
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
243 {
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
250
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
255 return frame;
256 }
257
258 return NULL;
259 }
260
261 /* Creates a varobj (not its children). */
262
263 struct varobj *
264 varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
266 {
267 /* Fill out a varobj structure for the (root) variable being constructed. */
268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
269
270 if (expression != NULL)
271 {
272 struct frame_info *fi;
273 struct frame_id old_id = null_frame_id;
274 const struct block *block;
275 const char *p;
276 struct value *value = NULL;
277 CORE_ADDR pc;
278
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
284 /* Allow creator to specify context of variable. */
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
297 else
298 fi = NULL;
299
300 /* frame = -2 means always use selected frame. */
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = 1;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block = NULL;
314 /* Wrap the call to parse expression, so we can
315 return a sensible error. */
316 TRY
317 {
318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
319 }
320
321 CATCH (except, RETURN_MASK_ERROR)
322 {
323 return NULL;
324 }
325 END_CATCH
326
327 /* Don't allow variables to be created for types. */
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
331 {
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
334 return NULL;
335 }
336
337 var->format = variable_default_display (var.get ());
338 var->root->valid_block = innermost_block;
339 var->name = expression;
340 /* For a root var, the name and the expr are the same. */
341 var->path_expr = expression;
342
343 /* When the frame is different from the current frame,
344 we must select the appropriate frame before parsing
345 the expression, otherwise the value will not be current.
346 Since select_frame is so benign, just call it for all cases. */
347 if (innermost_block)
348 {
349 /* User could specify explicit FRAME-ADDR which was not found but
350 EXPRESSION is frame specific and we would not be able to evaluate
351 it correctly next time. With VALID_BLOCK set we must also set
352 FRAME and THREAD_ID. */
353 if (fi == NULL)
354 error (_("Failed to find the specified frame"));
355
356 var->root->frame = get_frame_id (fi);
357 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
358 old_id = get_frame_id (get_selected_frame (NULL));
359 select_frame (fi);
360 }
361
362 /* We definitely need to catch errors here.
363 If evaluate_expression succeeds we got the value we wanted.
364 But if it fails, we still go on with a call to evaluate_type(). */
365 TRY
366 {
367 value = evaluate_expression (var->root->exp.get ());
368 }
369 CATCH (except, RETURN_MASK_ERROR)
370 {
371 /* Error getting the value. Try to at least get the
372 right type. */
373 struct value *type_only_value = evaluate_type (var->root->exp.get ());
374
375 var->type = value_type (type_only_value);
376 }
377 END_CATCH
378
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
387
388 /* Set language info */
389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
390
391 install_new_value (var.get (), value, 1 /* Initial assignment */);
392
393 /* Set ourselves as our root. */
394 var->root->rootvar = var.get ();
395
396 /* Reset the selected frame. */
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
399 }
400
401 /* If the variable object name is null, that means this
402 is a temporary variable, so don't install it. */
403
404 if ((var != NULL) && (objname != NULL))
405 {
406 var->obj_name = objname;
407
408 /* If a varobj name is duplicated, the install will fail so
409 we must cleanup. */
410 if (!install_variable (var.get ()))
411 return NULL;
412 }
413
414 return var.release ();
415 }
416
417 /* Generates an unique name that can be used for a varobj. */
418
419 std::string
420 varobj_gen_name (void)
421 {
422 static int id = 0;
423
424 /* Generate a name for this object. */
425 id++;
426 return string_printf ("var%d", id);
427 }
428
429 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
431
432 struct varobj *
433 varobj_get_handle (const char *objname)
434 {
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
446 while (cv != NULL && cv->var->obj_name != objname)
447 cv = cv->next;
448
449 if (cv == NULL)
450 error (_("Variable object not found"));
451
452 return cv->var;
453 }
454
455 /* Given the handle, return the name of the object. */
456
457 const char *
458 varobj_get_objname (const struct varobj *var)
459 {
460 return var->obj_name.c_str ();
461 }
462
463 /* Given the handle, return the expression represented by the
464 object. */
465
466 std::string
467 varobj_get_expression (const struct varobj *var)
468 {
469 return name_of_variable (var);
470 }
471
472 /* See varobj.h. */
473
474 int
475 varobj_delete (struct varobj *var, int only_children)
476 {
477 return delete_variable (var, only_children);
478 }
479
480 #if HAVE_PYTHON
481
482 /* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484 static PyObject *
485 instantiate_pretty_printer (PyObject *constructor, struct value *value)
486 {
487 PyObject *val_obj = NULL;
488 PyObject *printer;
489
490 val_obj = value_to_value_object (value);
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
497 }
498
499 #endif
500
501 /* Set/Get variable object display format. */
502
503 enum varobj_display_formats
504 varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506 {
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
514 case FORMAT_ZHEXADECIMAL:
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
522 if (varobj_value_is_changeable_p (var)
523 && var->value && !value_lazy (var->value))
524 {
525 var->print_value = varobj_value_get_print_value (var->value,
526 var->format, var);
527 }
528
529 return var->format;
530 }
531
532 enum varobj_display_formats
533 varobj_get_display_format (const struct varobj *var)
534 {
535 return var->format;
536 }
537
538 gdb::unique_xmalloc_ptr<char>
539 varobj_get_display_hint (const struct varobj *var)
540 {
541 gdb::unique_xmalloc_ptr<char> result;
542
543 #if HAVE_PYTHON
544 if (!gdb_python_initialized)
545 return NULL;
546
547 gdbpy_enter_varobj enter_py (var);
548
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
551 #endif
552
553 return result;
554 }
555
556 /* Return true if the varobj has items after TO, false otherwise. */
557
558 int
559 varobj_has_more (const struct varobj *var, int to)
560 {
561 if (VEC_length (varobj_p, var->children) > to)
562 return 1;
563 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
564 && (var->dynamic->saved_item != NULL));
565 }
566
567 /* If the variable object is bound to a specific thread, that
568 is its evaluation can always be done in context of a frame
569 inside that thread, returns GDB id of the thread -- which
570 is always positive. Otherwise, returns -1. */
571 int
572 varobj_get_thread_id (const struct varobj *var)
573 {
574 if (var->root->valid_block && var->root->thread_id > 0)
575 return var->root->thread_id;
576 else
577 return -1;
578 }
579
580 void
581 varobj_set_frozen (struct varobj *var, int frozen)
582 {
583 /* When a variable is unfrozen, we don't fetch its value.
584 The 'not_fetched' flag remains set, so next -var-update
585 won't complain.
586
587 We don't fetch the value, because for structures the client
588 should do -var-update anyway. It would be bad to have different
589 client-size logic for structure and other types. */
590 var->frozen = frozen;
591 }
592
593 int
594 varobj_get_frozen (const struct varobj *var)
595 {
596 return var->frozen;
597 }
598
599 /* A helper function that restricts a range to what is actually
600 available in a VEC. This follows the usual rules for the meaning
601 of FROM and TO -- if either is negative, the entire range is
602 used. */
603
604 void
605 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
606 {
607 if (*from < 0 || *to < 0)
608 {
609 *from = 0;
610 *to = VEC_length (varobj_p, children);
611 }
612 else
613 {
614 if (*from > VEC_length (varobj_p, children))
615 *from = VEC_length (varobj_p, children);
616 if (*to > VEC_length (varobj_p, children))
617 *to = VEC_length (varobj_p, children);
618 if (*from > *to)
619 *from = *to;
620 }
621 }
622
623 /* A helper for update_dynamic_varobj_children that installs a new
624 child when needed. */
625
626 static void
627 install_dynamic_child (struct varobj *var,
628 VEC (varobj_p) **changed,
629 VEC (varobj_p) **type_changed,
630 VEC (varobj_p) **newobj,
631 VEC (varobj_p) **unchanged,
632 int *cchanged,
633 int index,
634 struct varobj_item *item)
635 {
636 if (VEC_length (varobj_p, var->children) < index + 1)
637 {
638 /* There's no child yet. */
639 struct varobj *child = varobj_add_child (var, item);
640
641 if (newobj)
642 {
643 VEC_safe_push (varobj_p, *newobj, child);
644 *cchanged = 1;
645 }
646 }
647 else
648 {
649 varobj_p existing = VEC_index (varobj_p, var->children, index);
650 int type_updated = update_type_if_necessary (existing, item->value);
651
652 if (type_updated)
653 {
654 if (type_changed)
655 VEC_safe_push (varobj_p, *type_changed, existing);
656 }
657 if (install_new_value (existing, item->value, 0))
658 {
659 if (!type_updated && changed)
660 VEC_safe_push (varobj_p, *changed, existing);
661 }
662 else if (!type_updated && unchanged)
663 VEC_safe_push (varobj_p, *unchanged, existing);
664 }
665 }
666
667 #if HAVE_PYTHON
668
669 static int
670 dynamic_varobj_has_child_method (const struct varobj *var)
671 {
672 PyObject *printer = var->dynamic->pretty_printer;
673
674 if (!gdb_python_initialized)
675 return 0;
676
677 gdbpy_enter_varobj enter_py (var);
678 return PyObject_HasAttr (printer, gdbpy_children_cst);
679 }
680 #endif
681
682 /* A factory for creating dynamic varobj's iterators. Returns an
683 iterator object suitable for iterating over VAR's children. */
684
685 static struct varobj_iter *
686 varobj_get_iterator (struct varobj *var)
687 {
688 #if HAVE_PYTHON
689 if (var->dynamic->pretty_printer)
690 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
691 #endif
692
693 gdb_assert_not_reached (_("\
694 requested an iterator from a non-dynamic varobj"));
695 }
696
697 /* Release and clear VAR's saved item, if any. */
698
699 static void
700 varobj_clear_saved_item (struct varobj_dynamic *var)
701 {
702 if (var->saved_item != NULL)
703 {
704 value_free (var->saved_item->value);
705 delete var->saved_item;
706 var->saved_item = NULL;
707 }
708 }
709
710 static int
711 update_dynamic_varobj_children (struct varobj *var,
712 VEC (varobj_p) **changed,
713 VEC (varobj_p) **type_changed,
714 VEC (varobj_p) **newobj,
715 VEC (varobj_p) **unchanged,
716 int *cchanged,
717 int update_children,
718 int from,
719 int to)
720 {
721 int i;
722
723 *cchanged = 0;
724
725 if (update_children || var->dynamic->child_iter == NULL)
726 {
727 varobj_iter_delete (var->dynamic->child_iter);
728 var->dynamic->child_iter = varobj_get_iterator (var);
729
730 varobj_clear_saved_item (var->dynamic);
731
732 i = 0;
733
734 if (var->dynamic->child_iter == NULL)
735 return 0;
736 }
737 else
738 i = VEC_length (varobj_p, var->children);
739
740 /* We ask for one extra child, so that MI can report whether there
741 are more children. */
742 for (; to < 0 || i < to + 1; ++i)
743 {
744 varobj_item *item;
745
746 /* See if there was a leftover from last time. */
747 if (var->dynamic->saved_item != NULL)
748 {
749 item = var->dynamic->saved_item;
750 var->dynamic->saved_item = NULL;
751 }
752 else
753 {
754 item = varobj_iter_next (var->dynamic->child_iter);
755 /* Release vitem->value so its lifetime is not bound to the
756 execution of a command. */
757 if (item != NULL && item->value != NULL)
758 release_value_or_incref (item->value);
759 }
760
761 if (item == NULL)
762 {
763 /* Iteration is done. Remove iterator from VAR. */
764 varobj_iter_delete (var->dynamic->child_iter);
765 var->dynamic->child_iter = NULL;
766 break;
767 }
768 /* We don't want to push the extra child on any report list. */
769 if (to < 0 || i < to)
770 {
771 int can_mention = from < 0 || i >= from;
772
773 install_dynamic_child (var, can_mention ? changed : NULL,
774 can_mention ? type_changed : NULL,
775 can_mention ? newobj : NULL,
776 can_mention ? unchanged : NULL,
777 can_mention ? cchanged : NULL, i,
778 item);
779
780 delete item;
781 }
782 else
783 {
784 var->dynamic->saved_item = item;
785
786 /* We want to truncate the child list just before this
787 element. */
788 break;
789 }
790 }
791
792 if (i < VEC_length (varobj_p, var->children))
793 {
794 int j;
795
796 *cchanged = 1;
797 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
798 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
799 VEC_truncate (varobj_p, var->children, i);
800 }
801
802 /* If there are fewer children than requested, note that the list of
803 children changed. */
804 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
805 *cchanged = 1;
806
807 var->num_children = VEC_length (varobj_p, var->children);
808
809 return 1;
810 }
811
812 int
813 varobj_get_num_children (struct varobj *var)
814 {
815 if (var->num_children == -1)
816 {
817 if (varobj_is_dynamic_p (var))
818 {
819 int dummy;
820
821 /* If we have a dynamic varobj, don't report -1 children.
822 So, try to fetch some children first. */
823 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
824 0, 0, 0);
825 }
826 else
827 var->num_children = number_of_children (var);
828 }
829
830 return var->num_children >= 0 ? var->num_children : 0;
831 }
832
833 /* Creates a list of the immediate children of a variable object;
834 the return code is the number of such children or -1 on error. */
835
836 VEC (varobj_p)*
837 varobj_list_children (struct varobj *var, int *from, int *to)
838 {
839 int i, children_changed;
840
841 var->dynamic->children_requested = 1;
842
843 if (varobj_is_dynamic_p (var))
844 {
845 /* This, in theory, can result in the number of children changing without
846 frontend noticing. But well, calling -var-list-children on the same
847 varobj twice is not something a sane frontend would do. */
848 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
849 &children_changed, 0, 0, *to);
850 varobj_restrict_range (var->children, from, to);
851 return var->children;
852 }
853
854 if (var->num_children == -1)
855 var->num_children = number_of_children (var);
856
857 /* If that failed, give up. */
858 if (var->num_children == -1)
859 return var->children;
860
861 /* If we're called when the list of children is not yet initialized,
862 allocate enough elements in it. */
863 while (VEC_length (varobj_p, var->children) < var->num_children)
864 VEC_safe_push (varobj_p, var->children, NULL);
865
866 for (i = 0; i < var->num_children; i++)
867 {
868 varobj_p existing = VEC_index (varobj_p, var->children, i);
869
870 if (existing == NULL)
871 {
872 /* Either it's the first call to varobj_list_children for
873 this variable object, and the child was never created,
874 or it was explicitly deleted by the client. */
875 std::string name = name_of_child (var, i);
876 existing = create_child (var, i, name);
877 VEC_replace (varobj_p, var->children, i, existing);
878 }
879 }
880
881 varobj_restrict_range (var->children, from, to);
882 return var->children;
883 }
884
885 static struct varobj *
886 varobj_add_child (struct varobj *var, struct varobj_item *item)
887 {
888 varobj_p v = create_child_with_value (var,
889 VEC_length (varobj_p, var->children),
890 item);
891
892 VEC_safe_push (varobj_p, var->children, v);
893 return v;
894 }
895
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
898 */
899
900 std::string
901 varobj_get_type (struct varobj *var)
902 {
903 /* For the "fake" variables, do not return a type. (Its type is
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
908
909 return type_to_string (var->type);
910 }
911
912 /* Obtain the type of an object variable. */
913
914 struct type *
915 varobj_get_gdb_type (const struct varobj *var)
916 {
917 return var->type;
918 }
919
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
923 static int
924 is_path_expr_parent (const struct varobj *var)
925 {
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928 }
929
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
933
934 int
935 varobj_default_is_path_expr_parent (const struct varobj *var)
936 {
937 return 1;
938 }
939
940 /* Return the path expression parent for VAR. */
941
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
944 {
945 const struct varobj *parent = var;
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 return parent;
951 }
952
953 /* Return a pointer to the full rooted expression of varobj VAR.
954 If it has not been computed yet, compute it. */
955
956 const char *
957 varobj_get_path_expr (const struct varobj *var)
958 {
959 if (var->path_expr.empty ())
960 {
961 /* For root varobjs, we initialize path_expr
962 when creating varobj, so here it should be
963 child varobj. */
964 struct varobj *mutable_var = (struct varobj *) var;
965 gdb_assert (!is_root_p (var));
966
967 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
968 }
969
970 return var->path_expr.c_str ();
971 }
972
973 const struct language_defn *
974 varobj_get_language (const struct varobj *var)
975 {
976 return var->root->exp->language_defn;
977 }
978
979 int
980 varobj_get_attributes (const struct varobj *var)
981 {
982 int attributes = 0;
983
984 if (varobj_editable_p (var))
985 /* FIXME: define masks for attributes. */
986 attributes |= 0x00000001; /* Editable */
987
988 return attributes;
989 }
990
991 /* Return true if VAR is a dynamic varobj. */
992
993 int
994 varobj_is_dynamic_p (const struct varobj *var)
995 {
996 return var->dynamic->pretty_printer != NULL;
997 }
998
999 std::string
1000 varobj_get_formatted_value (struct varobj *var,
1001 enum varobj_display_formats format)
1002 {
1003 return my_value_of_variable (var, format);
1004 }
1005
1006 std::string
1007 varobj_get_value (struct varobj *var)
1008 {
1009 return my_value_of_variable (var, var->format);
1010 }
1011
1012 /* Set the value of an object variable (if it is editable) to the
1013 value of the given expression. */
1014 /* Note: Invokes functions that can call error(). */
1015
1016 int
1017 varobj_set_value (struct varobj *var, const char *expression)
1018 {
1019 struct value *val = NULL; /* Initialize to keep gcc happy. */
1020 /* The argument "expression" contains the variable's new value.
1021 We need to first construct a legal expression for this -- ugh! */
1022 /* Does this cover all the bases? */
1023 struct value *value = NULL; /* Initialize to keep gcc happy. */
1024 int saved_input_radix = input_radix;
1025 const char *s = expression;
1026
1027 gdb_assert (varobj_editable_p (var));
1028
1029 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1030 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1031 TRY
1032 {
1033 value = evaluate_expression (exp.get ());
1034 }
1035
1036 CATCH (except, RETURN_MASK_ERROR)
1037 {
1038 /* We cannot proceed without a valid expression. */
1039 return 0;
1040 }
1041 END_CATCH
1042
1043 /* All types that are editable must also be changeable. */
1044 gdb_assert (varobj_value_is_changeable_p (var));
1045
1046 /* The value of a changeable variable object must not be lazy. */
1047 gdb_assert (!value_lazy (var->value));
1048
1049 /* Need to coerce the input. We want to check if the
1050 value of the variable object will be different
1051 after assignment, and the first thing value_assign
1052 does is coerce the input.
1053 For example, if we are assigning an array to a pointer variable we
1054 should compare the pointer with the array's address, not with the
1055 array's content. */
1056 value = coerce_array (value);
1057
1058 /* The new value may be lazy. value_assign, or
1059 rather value_contents, will take care of this. */
1060 TRY
1061 {
1062 val = value_assign (var->value, value);
1063 }
1064
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
1067 return 0;
1068 }
1069 END_CATCH
1070
1071 /* If the value has changed, record it, so that next -var-update can
1072 report this change. If a variable had a value of '1', we've set it
1073 to '333' and then set again to '1', when -var-update will report this
1074 variable as changed -- because the first assignment has set the
1075 'updated' flag. There's no need to optimize that, because return value
1076 of -var-update should be considered an approximation. */
1077 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1078 input_radix = saved_input_radix;
1079 return 1;
1080 }
1081
1082 #if HAVE_PYTHON
1083
1084 /* A helper function to install a constructor function and visualizer
1085 in a varobj_dynamic. */
1086
1087 static void
1088 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1089 PyObject *visualizer)
1090 {
1091 Py_XDECREF (var->constructor);
1092 var->constructor = constructor;
1093
1094 Py_XDECREF (var->pretty_printer);
1095 var->pretty_printer = visualizer;
1096
1097 varobj_iter_delete (var->child_iter);
1098 var->child_iter = NULL;
1099 }
1100
1101 /* Install the default visualizer for VAR. */
1102
1103 static void
1104 install_default_visualizer (struct varobj *var)
1105 {
1106 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1107 if (CPLUS_FAKE_CHILD (var))
1108 return;
1109
1110 if (pretty_printing)
1111 {
1112 PyObject *pretty_printer = NULL;
1113
1114 if (var->value)
1115 {
1116 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1117 if (! pretty_printer)
1118 {
1119 gdbpy_print_stack ();
1120 error (_("Cannot instantiate printer for default visualizer"));
1121 }
1122 }
1123
1124 if (pretty_printer == Py_None)
1125 {
1126 Py_DECREF (pretty_printer);
1127 pretty_printer = NULL;
1128 }
1129
1130 install_visualizer (var->dynamic, NULL, pretty_printer);
1131 }
1132 }
1133
1134 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137 static void
1138 construct_visualizer (struct varobj *var, PyObject *constructor)
1139 {
1140 PyObject *pretty_printer;
1141
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
1151 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
1167 install_visualizer (var->dynamic, constructor, pretty_printer);
1168 }
1169
1170 #endif /* HAVE_PYTHON */
1171
1172 /* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175 static void
1176 install_new_value_visualizer (struct varobj *var)
1177 {
1178 #if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
1181 if (!gdb_python_initialized)
1182 return;
1183
1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
1185 {
1186 gdbpy_enter_varobj enter_py (var);
1187
1188 if (var->dynamic->constructor == NULL)
1189 install_default_visualizer (var);
1190 else
1191 construct_visualizer (var, var->dynamic->constructor);
1192 }
1193 #else
1194 /* Do nothing. */
1195 #endif
1196 }
1197
1198 /* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
1203 static int
1204 update_type_if_necessary (struct varobj *var, struct value *new_value)
1205 {
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
1216
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
1223 varobj_delete (var, 1);
1224 VEC_free (varobj_p, var->children);
1225 var->num_children = -1;
1226 return 1;
1227 }
1228 }
1229 }
1230
1231 return 0;
1232 }
1233
1234 /* Assign a new value to a variable object. If INITIAL is non-zero,
1235 this is the first assignement after the variable object was just
1236 created, or changed type. In that case, just assign the value
1237 and return 0.
1238 Otherwise, assign the new value, and return 1 if the value is
1239 different from the current one, 0 otherwise. The comparison is
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
1243 value was NULL and new one is not, or vice versa, we always return 1.
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
1247 static int
1248 install_new_value (struct varobj *var, struct value *value, int initial)
1249 {
1250 int changeable;
1251 int need_to_fetch;
1252 int changed = 0;
1253 int intentionally_not_fetched = 0;
1254
1255 /* We need to know the varobj's type to decide if the value should
1256 be fetched or not. C++ fake children (public/protected/private)
1257 don't have a type. */
1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1259 changeable = varobj_value_is_changeable_p (var);
1260
1261 /* If the type has custom visualizer, we consider it to be always
1262 changeable. FIXME: need to make sure this behaviour will not
1263 mess up read-sensitive values. */
1264 if (var->dynamic->pretty_printer != NULL)
1265 changeable = 1;
1266
1267 need_to_fetch = changeable;
1268
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
1273 value = coerce_ref (value);
1274
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
1285 need_to_fetch = 1;
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
1293 const struct varobj *parent = var->parent;
1294 int frozen = var->frozen;
1295
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
1305 intentionally_not_fetched = 1;
1306 }
1307 else
1308 {
1309
1310 TRY
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
1315 CATCH (except, RETURN_MASK_ERROR)
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
1322 END_CATCH
1323 }
1324 }
1325
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 if (value != NULL)
1329 value_incref (value);
1330
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
1335 std::string print_value;
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
1338 print_value = varobj_value_get_print_value (value, var->format, var);
1339
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
1343 if (!initial && changeable)
1344 {
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
1348 varobj had after the previous -var-update. So need to the
1349 varobj as changed. */
1350 if (var->updated)
1351 {
1352 changed = 1;
1353 }
1354 else if (var->dynamic->pretty_printer == NULL)
1355 {
1356 /* Try to compare the values. That requires that both
1357 values are non-lazy. */
1358 if (var->not_fetched && value_lazy (var->value))
1359 {
1360 /* This is a frozen varobj and the value was never read.
1361 Presumably, UI shows some "never read" indicator.
1362 Now that we've fetched the real value, we need to report
1363 this varobj as changed so that UI can show the real
1364 value. */
1365 changed = 1;
1366 }
1367 else if (var->value == NULL && value == NULL)
1368 /* Equal. */
1369 ;
1370 else if (var->value == NULL || value == NULL)
1371 {
1372 changed = 1;
1373 }
1374 else
1375 {
1376 gdb_assert (!value_lazy (var->value));
1377 gdb_assert (!value_lazy (value));
1378
1379 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1380 if (var->print_value != print_value)
1381 changed = 1;
1382 }
1383 }
1384 }
1385
1386 if (!initial && !changeable)
1387 {
1388 /* For values that are not changeable, we don't compare the values.
1389 However, we want to notice if a value was not NULL and now is NULL,
1390 or vise versa, so that we report when top-level varobjs come in scope
1391 and leave the scope. */
1392 changed = (var->value != NULL) != (value != NULL);
1393 }
1394
1395 /* We must always keep the new value, since children depend on it. */
1396 if (var->value != NULL && var->value != value)
1397 value_free (var->value);
1398 var->value = value;
1399 if (value && value_lazy (value) && intentionally_not_fetched)
1400 var->not_fetched = 1;
1401 else
1402 var->not_fetched = 0;
1403 var->updated = 0;
1404
1405 install_new_value_visualizer (var);
1406
1407 /* If we installed a pretty-printer, re-compare the printed version
1408 to see if the variable changed. */
1409 if (var->dynamic->pretty_printer != NULL)
1410 {
1411 print_value = varobj_value_get_print_value (var->value, var->format,
1412 var);
1413 if ((var->print_value.empty () && !print_value.empty ())
1414 || (!var->print_value.empty () && print_value.empty ())
1415 || (!var->print_value.empty () && !print_value.empty ()
1416 && var->print_value != print_value))
1417 changed = 1;
1418 }
1419 var->print_value = print_value;
1420
1421 gdb_assert (!var->value || value_type (var->value));
1422
1423 return changed;
1424 }
1425
1426 /* Return the requested range for a varobj. VAR is the varobj. FROM
1427 and TO are out parameters; *FROM and *TO will be set to the
1428 selected sub-range of VAR. If no range was selected using
1429 -var-set-update-range, then both will be -1. */
1430 void
1431 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1432 {
1433 *from = var->from;
1434 *to = var->to;
1435 }
1436
1437 /* Set the selected sub-range of children of VAR to start at index
1438 FROM and end at index TO. If either FROM or TO is less than zero,
1439 this is interpreted as a request for all children. */
1440 void
1441 varobj_set_child_range (struct varobj *var, int from, int to)
1442 {
1443 var->from = from;
1444 var->to = to;
1445 }
1446
1447 void
1448 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1449 {
1450 #if HAVE_PYTHON
1451 PyObject *mainmod;
1452
1453 if (!gdb_python_initialized)
1454 return;
1455
1456 gdbpy_enter_varobj enter_py (var);
1457
1458 mainmod = PyImport_AddModule ("__main__");
1459 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1460 Py_INCREF (globals.get ());
1461
1462 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1463 globals.get (), globals.get ()));
1464
1465 if (constructor == NULL)
1466 {
1467 gdbpy_print_stack ();
1468 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1469 }
1470
1471 construct_visualizer (var, constructor.get ());
1472
1473 /* If there are any children now, wipe them. */
1474 varobj_delete (var, 1 /* children only */);
1475 var->num_children = -1;
1476 #else
1477 error (_("Python support required"));
1478 #endif
1479 }
1480
1481 /* If NEW_VALUE is the new value of the given varobj (var), return
1482 non-zero if var has mutated. In other words, if the type of
1483 the new value is different from the type of the varobj's old
1484 value.
1485
1486 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1487
1488 static int
1489 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1490 struct type *new_type)
1491 {
1492 /* If we haven't previously computed the number of children in var,
1493 it does not matter from the front-end's perspective whether
1494 the type has mutated or not. For all intents and purposes,
1495 it has not mutated. */
1496 if (var->num_children < 0)
1497 return 0;
1498
1499 if (var->root->lang_ops->value_has_mutated)
1500 {
1501 /* The varobj module, when installing new values, explicitly strips
1502 references, saying that we're not interested in those addresses.
1503 But detection of mutation happens before installing the new
1504 value, so our value may be a reference that we need to strip
1505 in order to remain consistent. */
1506 if (new_value != NULL)
1507 new_value = coerce_ref (new_value);
1508 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1509 }
1510 else
1511 return 0;
1512 }
1513
1514 /* Update the values for a variable and its children. This is a
1515 two-pronged attack. First, re-parse the value for the root's
1516 expression to see if it's changed. Then go all the way
1517 through its children, reconstructing them and noting if they've
1518 changed.
1519
1520 The EXPLICIT parameter specifies if this call is result
1521 of MI request to update this specific variable, or
1522 result of implicit -var-update *. For implicit request, we don't
1523 update frozen variables.
1524
1525 NOTE: This function may delete the caller's varobj. If it
1526 returns TYPE_CHANGED, then it has done this and VARP will be modified
1527 to point to the new varobj. */
1528
1529 VEC(varobj_update_result) *
1530 varobj_update (struct varobj **varp, int is_explicit)
1531 {
1532 int type_changed = 0;
1533 int i;
1534 struct value *newobj;
1535 VEC (varobj_update_result) *stack = NULL;
1536 VEC (varobj_update_result) *result = NULL;
1537
1538 /* Frozen means frozen -- we don't check for any change in
1539 this varobj, including its going out of scope, or
1540 changing type. One use case for frozen varobjs is
1541 retaining previously evaluated expressions, and we don't
1542 want them to be reevaluated at all. */
1543 if (!is_explicit && (*varp)->frozen)
1544 return result;
1545
1546 if (!(*varp)->root->is_valid)
1547 {
1548 varobj_update_result r = {0};
1549
1550 r.varobj = *varp;
1551 r.status = VAROBJ_INVALID;
1552 VEC_safe_push (varobj_update_result, result, &r);
1553 return result;
1554 }
1555
1556 if ((*varp)->root->rootvar == *varp)
1557 {
1558 varobj_update_result r = {0};
1559
1560 r.varobj = *varp;
1561 r.status = VAROBJ_IN_SCOPE;
1562
1563 /* Update the root variable. value_of_root can return NULL
1564 if the variable is no longer around, i.e. we stepped out of
1565 the frame in which a local existed. We are letting the
1566 value_of_root variable dispose of the varobj if the type
1567 has changed. */
1568 newobj = value_of_root (varp, &type_changed);
1569 if (update_type_if_necessary(*varp, newobj))
1570 type_changed = 1;
1571 r.varobj = *varp;
1572 r.type_changed = type_changed;
1573 if (install_new_value ((*varp), newobj, type_changed))
1574 r.changed = 1;
1575
1576 if (newobj == NULL)
1577 r.status = VAROBJ_NOT_IN_SCOPE;
1578 r.value_installed = 1;
1579
1580 if (r.status == VAROBJ_NOT_IN_SCOPE)
1581 {
1582 if (r.type_changed || r.changed)
1583 VEC_safe_push (varobj_update_result, result, &r);
1584 return result;
1585 }
1586
1587 VEC_safe_push (varobj_update_result, stack, &r);
1588 }
1589 else
1590 {
1591 varobj_update_result r = {0};
1592
1593 r.varobj = *varp;
1594 VEC_safe_push (varobj_update_result, stack, &r);
1595 }
1596
1597 /* Walk through the children, reconstructing them all. */
1598 while (!VEC_empty (varobj_update_result, stack))
1599 {
1600 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1601 struct varobj *v = r.varobj;
1602
1603 VEC_pop (varobj_update_result, stack);
1604
1605 /* Update this variable, unless it's a root, which is already
1606 updated. */
1607 if (!r.value_installed)
1608 {
1609 struct type *new_type;
1610
1611 newobj = value_of_child (v->parent, v->index);
1612 if (update_type_if_necessary(v, newobj))
1613 r.type_changed = 1;
1614 if (newobj)
1615 new_type = value_type (newobj);
1616 else
1617 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1618
1619 if (varobj_value_has_mutated (v, newobj, new_type))
1620 {
1621 /* The children are no longer valid; delete them now.
1622 Report the fact that its type changed as well. */
1623 varobj_delete (v, 1 /* only_children */);
1624 v->num_children = -1;
1625 v->to = -1;
1626 v->from = -1;
1627 v->type = new_type;
1628 r.type_changed = 1;
1629 }
1630
1631 if (install_new_value (v, newobj, r.type_changed))
1632 {
1633 r.changed = 1;
1634 v->updated = 0;
1635 }
1636 }
1637
1638 /* We probably should not get children of a dynamic varobj, but
1639 for which -var-list-children was never invoked. */
1640 if (varobj_is_dynamic_p (v))
1641 {
1642 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1643 VEC (varobj_p) *newobj = 0;
1644 int i, children_changed = 0;
1645
1646 if (v->frozen)
1647 continue;
1648
1649 if (!v->dynamic->children_requested)
1650 {
1651 int dummy;
1652
1653 /* If we initially did not have potential children, but
1654 now we do, consider the varobj as changed.
1655 Otherwise, if children were never requested, consider
1656 it as unchanged -- presumably, such varobj is not yet
1657 expanded in the UI, so we need not bother getting
1658 it. */
1659 if (!varobj_has_more (v, 0))
1660 {
1661 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1662 &dummy, 0, 0, 0);
1663 if (varobj_has_more (v, 0))
1664 r.changed = 1;
1665 }
1666
1667 if (r.changed)
1668 VEC_safe_push (varobj_update_result, result, &r);
1669
1670 continue;
1671 }
1672
1673 /* If update_dynamic_varobj_children returns 0, then we have
1674 a non-conforming pretty-printer, so we skip it. */
1675 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1676 &unchanged, &children_changed, 1,
1677 v->from, v->to))
1678 {
1679 if (children_changed || newobj)
1680 {
1681 r.children_changed = 1;
1682 r.newobj = newobj;
1683 }
1684 /* Push in reverse order so that the first child is
1685 popped from the work stack first, and so will be
1686 added to result first. This does not affect
1687 correctness, just "nicer". */
1688 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1689 {
1690 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1691 varobj_update_result r = {0};
1692
1693 /* Type may change only if value was changed. */
1694 r.varobj = tmp;
1695 r.changed = 1;
1696 r.type_changed = 1;
1697 r.value_installed = 1;
1698 VEC_safe_push (varobj_update_result, stack, &r);
1699 }
1700 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1701 {
1702 varobj_p tmp = VEC_index (varobj_p, changed, i);
1703 varobj_update_result r = {0};
1704
1705 r.varobj = tmp;
1706 r.changed = 1;
1707 r.value_installed = 1;
1708 VEC_safe_push (varobj_update_result, stack, &r);
1709 }
1710 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1711 {
1712 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1713
1714 if (!tmp->frozen)
1715 {
1716 varobj_update_result r = {0};
1717
1718 r.varobj = tmp;
1719 r.value_installed = 1;
1720 VEC_safe_push (varobj_update_result, stack, &r);
1721 }
1722 }
1723 if (r.changed || r.children_changed)
1724 VEC_safe_push (varobj_update_result, result, &r);
1725
1726 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1727 because NEW has been put into the result vector. */
1728 VEC_free (varobj_p, changed);
1729 VEC_free (varobj_p, type_changed);
1730 VEC_free (varobj_p, unchanged);
1731
1732 continue;
1733 }
1734 }
1735
1736 /* Push any children. Use reverse order so that the first
1737 child is popped from the work stack first, and so
1738 will be added to result first. This does not
1739 affect correctness, just "nicer". */
1740 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1741 {
1742 varobj_p c = VEC_index (varobj_p, v->children, i);
1743
1744 /* Child may be NULL if explicitly deleted by -var-delete. */
1745 if (c != NULL && !c->frozen)
1746 {
1747 varobj_update_result r = {0};
1748
1749 r.varobj = c;
1750 VEC_safe_push (varobj_update_result, stack, &r);
1751 }
1752 }
1753
1754 if (r.changed || r.type_changed)
1755 VEC_safe_push (varobj_update_result, result, &r);
1756 }
1757
1758 VEC_free (varobj_update_result, stack);
1759
1760 return result;
1761 }
1762 \f
1763
1764 /* Helper functions */
1765
1766 /*
1767 * Variable object construction/destruction
1768 */
1769
1770 static int
1771 delete_variable (struct varobj *var, int only_children_p)
1772 {
1773 int delcount = 0;
1774
1775 delete_variable_1 (&delcount, var, only_children_p,
1776 1 /* remove_from_parent_p */ );
1777
1778 return delcount;
1779 }
1780
1781 /* Delete the variable object VAR and its children. */
1782 /* IMPORTANT NOTE: If we delete a variable which is a child
1783 and the parent is not removed we dump core. It must be always
1784 initially called with remove_from_parent_p set. */
1785 static void
1786 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1787 int remove_from_parent_p)
1788 {
1789 int i;
1790
1791 /* Delete any children of this variable, too. */
1792 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1793 {
1794 varobj_p child = VEC_index (varobj_p, var->children, i);
1795
1796 if (!child)
1797 continue;
1798 if (!remove_from_parent_p)
1799 child->parent = NULL;
1800 delete_variable_1 (delcountp, child, 0, only_children_p);
1801 }
1802 VEC_free (varobj_p, var->children);
1803
1804 /* if we were called to delete only the children we are done here. */
1805 if (only_children_p)
1806 return;
1807
1808 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1809 /* If the name is empty, this is a temporary variable, that has not
1810 yet been installed, don't report it, it belongs to the caller... */
1811 if (!var->obj_name.empty ())
1812 {
1813 *delcountp = *delcountp + 1;
1814 }
1815
1816 /* If this variable has a parent, remove it from its parent's list. */
1817 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1818 (as indicated by remove_from_parent_p) we don't bother doing an
1819 expensive list search to find the element to remove when we are
1820 discarding the list afterwards. */
1821 if ((remove_from_parent_p) && (var->parent != NULL))
1822 {
1823 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1824 }
1825
1826 if (!var->obj_name.empty ())
1827 uninstall_variable (var);
1828
1829 /* Free memory associated with this variable. */
1830 delete var;
1831 }
1832
1833 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1834 static int
1835 install_variable (struct varobj *var)
1836 {
1837 struct vlist *cv;
1838 struct vlist *newvl;
1839 const char *chp;
1840 unsigned int index = 0;
1841 unsigned int i = 1;
1842
1843 for (chp = var->obj_name.c_str (); *chp; chp++)
1844 {
1845 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1846 }
1847
1848 cv = *(varobj_table + index);
1849 while (cv != NULL && cv->var->obj_name != var->obj_name)
1850 cv = cv->next;
1851
1852 if (cv != NULL)
1853 error (_("Duplicate variable object name"));
1854
1855 /* Add varobj to hash table. */
1856 newvl = XNEW (struct vlist);
1857 newvl->next = *(varobj_table + index);
1858 newvl->var = var;
1859 *(varobj_table + index) = newvl;
1860
1861 /* If root, add varobj to root list. */
1862 if (is_root_p (var))
1863 {
1864 /* Add to list of root variables. */
1865 if (rootlist == NULL)
1866 var->root->next = NULL;
1867 else
1868 var->root->next = rootlist;
1869 rootlist = var->root;
1870 }
1871
1872 return 1; /* OK */
1873 }
1874
1875 /* Unistall the object VAR. */
1876 static void
1877 uninstall_variable (struct varobj *var)
1878 {
1879 struct vlist *cv;
1880 struct vlist *prev;
1881 struct varobj_root *cr;
1882 struct varobj_root *prer;
1883 const char *chp;
1884 unsigned int index = 0;
1885 unsigned int i = 1;
1886
1887 /* Remove varobj from hash table. */
1888 for (chp = var->obj_name.c_str (); *chp; chp++)
1889 {
1890 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1891 }
1892
1893 cv = *(varobj_table + index);
1894 prev = NULL;
1895 while (cv != NULL && cv->var->obj_name != var->obj_name)
1896 {
1897 prev = cv;
1898 cv = cv->next;
1899 }
1900
1901 if (varobjdebug)
1902 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1903
1904 if (cv == NULL)
1905 {
1906 warning
1907 ("Assertion failed: Could not find variable object \"%s\" to delete",
1908 var->obj_name.c_str ());
1909 return;
1910 }
1911
1912 if (prev == NULL)
1913 *(varobj_table + index) = cv->next;
1914 else
1915 prev->next = cv->next;
1916
1917 xfree (cv);
1918
1919 /* If root, remove varobj from root list. */
1920 if (is_root_p (var))
1921 {
1922 /* Remove from list of root variables. */
1923 if (rootlist == var->root)
1924 rootlist = var->root->next;
1925 else
1926 {
1927 prer = NULL;
1928 cr = rootlist;
1929 while ((cr != NULL) && (cr->rootvar != var))
1930 {
1931 prer = cr;
1932 cr = cr->next;
1933 }
1934 if (cr == NULL)
1935 {
1936 warning (_("Assertion failed: Could not find "
1937 "varobj \"%s\" in root list"),
1938 var->obj_name.c_str ());
1939 return;
1940 }
1941 if (prer == NULL)
1942 rootlist = NULL;
1943 else
1944 prer->next = cr->next;
1945 }
1946 }
1947
1948 }
1949
1950 /* Create and install a child of the parent of the given name.
1951
1952 The created VAROBJ takes ownership of the allocated NAME. */
1953
1954 static struct varobj *
1955 create_child (struct varobj *parent, int index, std::string &name)
1956 {
1957 struct varobj_item item;
1958
1959 std::swap (item.name, name);
1960 item.value = value_of_child (parent, index);
1961
1962 return create_child_with_value (parent, index, &item);
1963 }
1964
1965 static struct varobj *
1966 create_child_with_value (struct varobj *parent, int index,
1967 struct varobj_item *item)
1968 {
1969 varobj *child = new varobj (parent->root);
1970
1971 /* NAME is allocated by caller. */
1972 std::swap (child->name, item->name);
1973 child->index = index;
1974 child->parent = parent;
1975
1976 if (varobj_is_anonymous_child (child))
1977 child->obj_name = string_printf ("%s.%d_anonymous",
1978 parent->obj_name.c_str (), index);
1979 else
1980 child->obj_name = string_printf ("%s.%s",
1981 parent->obj_name.c_str (),
1982 child->name.c_str ());
1983
1984 install_variable (child);
1985
1986 /* Compute the type of the child. Must do this before
1987 calling install_new_value. */
1988 if (item->value != NULL)
1989 /* If the child had no evaluation errors, var->value
1990 will be non-NULL and contain a valid type. */
1991 child->type = value_actual_type (item->value, 0, NULL);
1992 else
1993 /* Otherwise, we must compute the type. */
1994 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1995 child->index);
1996 install_new_value (child, item->value, 1);
1997
1998 return child;
1999 }
2000 \f
2001
2002 /*
2003 * Miscellaneous utility functions.
2004 */
2005
2006 /* Allocate memory and initialize a new variable. */
2007 varobj::varobj (varobj_root *root_)
2008 : root (root_), dynamic (new varobj_dynamic)
2009 {
2010 }
2011
2012 /* Free any allocated memory associated with VAR. */
2013
2014 varobj::~varobj ()
2015 {
2016 varobj *var = this;
2017
2018 #if HAVE_PYTHON
2019 if (var->dynamic->pretty_printer != NULL)
2020 {
2021 gdbpy_enter_varobj enter_py (var);
2022
2023 Py_XDECREF (var->dynamic->constructor);
2024 Py_XDECREF (var->dynamic->pretty_printer);
2025 }
2026 #endif
2027
2028 varobj_iter_delete (var->dynamic->child_iter);
2029 varobj_clear_saved_item (var->dynamic);
2030 value_free (var->value);
2031
2032 if (is_root_p (var))
2033 delete var->root;
2034
2035 delete var->dynamic;
2036 }
2037
2038 /* Return the type of the value that's stored in VAR,
2039 or that would have being stored there if the
2040 value were accessible.
2041
2042 This differs from VAR->type in that VAR->type is always
2043 the true type of the expession in the source language.
2044 The return value of this function is the type we're
2045 actually storing in varobj, and using for displaying
2046 the values and for comparing previous and new values.
2047
2048 For example, top-level references are always stripped. */
2049 struct type *
2050 varobj_get_value_type (const struct varobj *var)
2051 {
2052 struct type *type;
2053
2054 if (var->value)
2055 type = value_type (var->value);
2056 else
2057 type = var->type;
2058
2059 type = check_typedef (type);
2060
2061 if (TYPE_IS_REFERENCE (type))
2062 type = get_target_type (type);
2063
2064 type = check_typedef (type);
2065
2066 return type;
2067 }
2068
2069 /* What is the default display for this variable? We assume that
2070 everything is "natural". Any exceptions? */
2071 static enum varobj_display_formats
2072 variable_default_display (struct varobj *var)
2073 {
2074 return FORMAT_NATURAL;
2075 }
2076
2077 /*
2078 * Language-dependencies
2079 */
2080
2081 /* Common entry points */
2082
2083 /* Return the number of children for a given variable.
2084 The result of this function is defined by the language
2085 implementation. The number of children returned by this function
2086 is the number of children that the user will see in the variable
2087 display. */
2088 static int
2089 number_of_children (const struct varobj *var)
2090 {
2091 return (*var->root->lang_ops->number_of_children) (var);
2092 }
2093
2094 /* What is the expression for the root varobj VAR? */
2095
2096 static std::string
2097 name_of_variable (const struct varobj *var)
2098 {
2099 return (*var->root->lang_ops->name_of_variable) (var);
2100 }
2101
2102 /* What is the name of the INDEX'th child of VAR? */
2103
2104 static std::string
2105 name_of_child (struct varobj *var, int index)
2106 {
2107 return (*var->root->lang_ops->name_of_child) (var, index);
2108 }
2109
2110 /* If frame associated with VAR can be found, switch
2111 to it and return 1. Otherwise, return 0. */
2112
2113 static int
2114 check_scope (const struct varobj *var)
2115 {
2116 struct frame_info *fi;
2117 int scope;
2118
2119 fi = frame_find_by_id (var->root->frame);
2120 scope = fi != NULL;
2121
2122 if (fi)
2123 {
2124 CORE_ADDR pc = get_frame_pc (fi);
2125
2126 if (pc < BLOCK_START (var->root->valid_block) ||
2127 pc >= BLOCK_END (var->root->valid_block))
2128 scope = 0;
2129 else
2130 select_frame (fi);
2131 }
2132 return scope;
2133 }
2134
2135 /* Helper function to value_of_root. */
2136
2137 static struct value *
2138 value_of_root_1 (struct varobj **var_handle)
2139 {
2140 struct value *new_val = NULL;
2141 struct varobj *var = *var_handle;
2142 int within_scope = 0;
2143
2144 /* Only root variables can be updated... */
2145 if (!is_root_p (var))
2146 /* Not a root var. */
2147 return NULL;
2148
2149 scoped_restore_current_thread restore_thread;
2150
2151 /* Determine whether the variable is still around. */
2152 if (var->root->valid_block == NULL || var->root->floating)
2153 within_scope = 1;
2154 else if (var->root->thread_id == 0)
2155 {
2156 /* The program was single-threaded when the variable object was
2157 created. Technically, it's possible that the program became
2158 multi-threaded since then, but we don't support such
2159 scenario yet. */
2160 within_scope = check_scope (var);
2161 }
2162 else
2163 {
2164 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2165
2166 if (!ptid_equal (minus_one_ptid, ptid))
2167 {
2168 switch_to_thread (ptid);
2169 within_scope = check_scope (var);
2170 }
2171 }
2172
2173 if (within_scope)
2174 {
2175
2176 /* We need to catch errors here, because if evaluate
2177 expression fails we want to just return NULL. */
2178 TRY
2179 {
2180 new_val = evaluate_expression (var->root->exp.get ());
2181 }
2182 CATCH (except, RETURN_MASK_ERROR)
2183 {
2184 }
2185 END_CATCH
2186 }
2187
2188 return new_val;
2189 }
2190
2191 /* What is the ``struct value *'' of the root variable VAR?
2192 For floating variable object, evaluation can get us a value
2193 of different type from what is stored in varobj already. In
2194 that case:
2195 - *type_changed will be set to 1
2196 - old varobj will be freed, and new one will be
2197 created, with the same name.
2198 - *var_handle will be set to the new varobj
2199 Otherwise, *type_changed will be set to 0. */
2200 static struct value *
2201 value_of_root (struct varobj **var_handle, int *type_changed)
2202 {
2203 struct varobj *var;
2204
2205 if (var_handle == NULL)
2206 return NULL;
2207
2208 var = *var_handle;
2209
2210 /* This should really be an exception, since this should
2211 only get called with a root variable. */
2212
2213 if (!is_root_p (var))
2214 return NULL;
2215
2216 if (var->root->floating)
2217 {
2218 struct varobj *tmp_var;
2219
2220 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2221 USE_SELECTED_FRAME);
2222 if (tmp_var == NULL)
2223 {
2224 return NULL;
2225 }
2226 std::string old_type = varobj_get_type (var);
2227 std::string new_type = varobj_get_type (tmp_var);
2228 if (old_type == new_type)
2229 {
2230 /* The expression presently stored inside var->root->exp
2231 remembers the locations of local variables relatively to
2232 the frame where the expression was created (in DWARF location
2233 button, for example). Naturally, those locations are not
2234 correct in other frames, so update the expression. */
2235
2236 std::swap (var->root->exp, tmp_var->root->exp);
2237
2238 varobj_delete (tmp_var, 0);
2239 *type_changed = 0;
2240 }
2241 else
2242 {
2243 tmp_var->obj_name = var->obj_name;
2244 tmp_var->from = var->from;
2245 tmp_var->to = var->to;
2246 varobj_delete (var, 0);
2247
2248 install_variable (tmp_var);
2249 *var_handle = tmp_var;
2250 var = *var_handle;
2251 *type_changed = 1;
2252 }
2253 }
2254 else
2255 {
2256 *type_changed = 0;
2257 }
2258
2259 {
2260 struct value *value;
2261
2262 value = value_of_root_1 (var_handle);
2263 if (var->value == NULL || value == NULL)
2264 {
2265 /* For root varobj-s, a NULL value indicates a scoping issue.
2266 So, nothing to do in terms of checking for mutations. */
2267 }
2268 else if (varobj_value_has_mutated (var, value, value_type (value)))
2269 {
2270 /* The type has mutated, so the children are no longer valid.
2271 Just delete them, and tell our caller that the type has
2272 changed. */
2273 varobj_delete (var, 1 /* only_children */);
2274 var->num_children = -1;
2275 var->to = -1;
2276 var->from = -1;
2277 *type_changed = 1;
2278 }
2279 return value;
2280 }
2281 }
2282
2283 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2284 static struct value *
2285 value_of_child (const struct varobj *parent, int index)
2286 {
2287 struct value *value;
2288
2289 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2290
2291 return value;
2292 }
2293
2294 /* GDB already has a command called "value_of_variable". Sigh. */
2295 static std::string
2296 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2297 {
2298 if (var->root->is_valid)
2299 {
2300 if (var->dynamic->pretty_printer != NULL)
2301 return varobj_value_get_print_value (var->value, var->format, var);
2302 return (*var->root->lang_ops->value_of_variable) (var, format);
2303 }
2304 else
2305 return std::string ();
2306 }
2307
2308 void
2309 varobj_formatted_print_options (struct value_print_options *opts,
2310 enum varobj_display_formats format)
2311 {
2312 get_formatted_print_options (opts, format_code[(int) format]);
2313 opts->deref_ref = 0;
2314 opts->raw = 1;
2315 }
2316
2317 std::string
2318 varobj_value_get_print_value (struct value *value,
2319 enum varobj_display_formats format,
2320 const struct varobj *var)
2321 {
2322 struct value_print_options opts;
2323 struct type *type = NULL;
2324 long len = 0;
2325 gdb::unique_xmalloc_ptr<char> encoding;
2326 /* Initialize it just to avoid a GCC false warning. */
2327 CORE_ADDR str_addr = 0;
2328 int string_print = 0;
2329
2330 if (value == NULL)
2331 return std::string ();
2332
2333 string_file stb;
2334 std::string thevalue;
2335
2336 #if HAVE_PYTHON
2337 if (gdb_python_initialized)
2338 {
2339 PyObject *value_formatter = var->dynamic->pretty_printer;
2340
2341 gdbpy_enter_varobj enter_py (var);
2342
2343 if (value_formatter)
2344 {
2345 /* First check to see if we have any children at all. If so,
2346 we simply return {...}. */
2347 if (dynamic_varobj_has_child_method (var))
2348 return "{...}";
2349
2350 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2351 {
2352 struct value *replacement;
2353
2354 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2355 &replacement,
2356 &stb));
2357
2358 /* If we have string like output ... */
2359 if (output != NULL)
2360 {
2361 /* If this is a lazy string, extract it. For lazy
2362 strings we always print as a string, so set
2363 string_print. */
2364 if (gdbpy_is_lazy_string (output.get ()))
2365 {
2366 gdbpy_extract_lazy_string (output.get (), &str_addr,
2367 &type, &len, &encoding);
2368 string_print = 1;
2369 }
2370 else
2371 {
2372 /* If it is a regular (non-lazy) string, extract
2373 it and copy the contents into THEVALUE. If the
2374 hint says to print it as a string, set
2375 string_print. Otherwise just return the extracted
2376 string as a value. */
2377
2378 gdb::unique_xmalloc_ptr<char> s
2379 = python_string_to_target_string (output.get ());
2380
2381 if (s)
2382 {
2383 struct gdbarch *gdbarch;
2384
2385 gdb::unique_xmalloc_ptr<char> hint
2386 = gdbpy_get_display_hint (value_formatter);
2387 if (hint)
2388 {
2389 if (!strcmp (hint.get (), "string"))
2390 string_print = 1;
2391 }
2392
2393 thevalue = std::string (s.get ());
2394 len = thevalue.size ();
2395 gdbarch = get_type_arch (value_type (value));
2396 type = builtin_type (gdbarch)->builtin_char;
2397
2398 if (!string_print)
2399 return thevalue;
2400 }
2401 else
2402 gdbpy_print_stack ();
2403 }
2404 }
2405 /* If the printer returned a replacement value, set VALUE
2406 to REPLACEMENT. If there is not a replacement value,
2407 just use the value passed to this function. */
2408 if (replacement)
2409 value = replacement;
2410 }
2411 }
2412 }
2413 #endif
2414
2415 varobj_formatted_print_options (&opts, format);
2416
2417 /* If the THEVALUE has contents, it is a regular string. */
2418 if (!thevalue.empty ())
2419 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2420 len, encoding.get (), 0, &opts);
2421 else if (string_print)
2422 /* Otherwise, if string_print is set, and it is not a regular
2423 string, it is a lazy string. */
2424 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2425 else
2426 /* All other cases. */
2427 common_val_print (value, &stb, 0, &opts, current_language);
2428
2429 return std::move (stb.string ());
2430 }
2431
2432 int
2433 varobj_editable_p (const struct varobj *var)
2434 {
2435 struct type *type;
2436
2437 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2438 return 0;
2439
2440 type = varobj_get_value_type (var);
2441
2442 switch (TYPE_CODE (type))
2443 {
2444 case TYPE_CODE_STRUCT:
2445 case TYPE_CODE_UNION:
2446 case TYPE_CODE_ARRAY:
2447 case TYPE_CODE_FUNC:
2448 case TYPE_CODE_METHOD:
2449 return 0;
2450 break;
2451
2452 default:
2453 return 1;
2454 break;
2455 }
2456 }
2457
2458 /* Call VAR's value_is_changeable_p language-specific callback. */
2459
2460 int
2461 varobj_value_is_changeable_p (const struct varobj *var)
2462 {
2463 return var->root->lang_ops->value_is_changeable_p (var);
2464 }
2465
2466 /* Return 1 if that varobj is floating, that is is always evaluated in the
2467 selected frame, and not bound to thread/frame. Such variable objects
2468 are created using '@' as frame specifier to -var-create. */
2469 int
2470 varobj_floating_p (const struct varobj *var)
2471 {
2472 return var->root->floating;
2473 }
2474
2475 /* Implement the "value_is_changeable_p" varobj callback for most
2476 languages. */
2477
2478 int
2479 varobj_default_value_is_changeable_p (const struct varobj *var)
2480 {
2481 int r;
2482 struct type *type;
2483
2484 if (CPLUS_FAKE_CHILD (var))
2485 return 0;
2486
2487 type = varobj_get_value_type (var);
2488
2489 switch (TYPE_CODE (type))
2490 {
2491 case TYPE_CODE_STRUCT:
2492 case TYPE_CODE_UNION:
2493 case TYPE_CODE_ARRAY:
2494 r = 0;
2495 break;
2496
2497 default:
2498 r = 1;
2499 }
2500
2501 return r;
2502 }
2503
2504 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2505 with an arbitrary caller supplied DATA pointer. */
2506
2507 void
2508 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2509 {
2510 struct varobj_root *var_root, *var_root_next;
2511
2512 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2513
2514 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2515 {
2516 var_root_next = var_root->next;
2517
2518 (*func) (var_root->rootvar, data);
2519 }
2520 }
2521
2522 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2523 defined on globals. It is a helper for varobj_invalidate.
2524
2525 This function is called after changing the symbol file, in this case the
2526 pointers to "struct type" stored by the varobj are no longer valid. All
2527 varobj must be either re-evaluated, or marked as invalid here. */
2528
2529 static void
2530 varobj_invalidate_iter (struct varobj *var, void *unused)
2531 {
2532 /* global and floating var must be re-evaluated. */
2533 if (var->root->floating || var->root->valid_block == NULL)
2534 {
2535 struct varobj *tmp_var;
2536
2537 /* Try to create a varobj with same expression. If we succeed
2538 replace the old varobj, otherwise invalidate it. */
2539 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2540 USE_CURRENT_FRAME);
2541 if (tmp_var != NULL)
2542 {
2543 tmp_var->obj_name = var->obj_name;
2544 varobj_delete (var, 0);
2545 install_variable (tmp_var);
2546 }
2547 else
2548 var->root->is_valid = 0;
2549 }
2550 else /* locals must be invalidated. */
2551 var->root->is_valid = 0;
2552 }
2553
2554 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2555 are defined on globals.
2556 Invalidated varobjs will be always printed in_scope="invalid". */
2557
2558 void
2559 varobj_invalidate (void)
2560 {
2561 all_root_varobjs (varobj_invalidate_iter, NULL);
2562 }
2563
2564 void
2565 _initialize_varobj (void)
2566 {
2567 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2568
2569 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2570 &varobjdebug,
2571 _("Set varobj debugging."),
2572 _("Show varobj debugging."),
2573 _("When non-zero, varobj debugging is enabled."),
2574 NULL, show_varobjdebug,
2575 &setdebuglist, &showdebuglist);
2576 }
This page took 0.132453 seconds and 4 git commands to generate.