Fix -Wpointer-sign around strings/encoding conversions.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "ada-varobj.h"
37 #include "ada-lang.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
50 /* Non-zero if we want to see trace of varobj level stuff. */
51
52 unsigned int varobjdebug = 0;
53 static void
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56 {
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58 }
59
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
63
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
66
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
69
70 void
71 varobj_enable_pretty_printing (void)
72 {
73 pretty_printing = 1;
74 }
75
76 /* Data structures */
77
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
80 struct varobj_root
81 {
82
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
85
86 /* Block for which this expression is valid. */
87 const struct block *valid_block;
88
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
91 struct frame_id frame;
92
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
103 int floating;
104
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
111
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
114
115 /* Next root variable */
116 struct varobj_root *next;
117 };
118
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
122 struct varobj
123 {
124
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
129 char *name;
130
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
137 char *obj_name;
138
139 /* Index of this variable in its parent or -1. */
140 int index;
141
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
145 struct type *type;
146
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
151 struct value *value;
152
153 /* The number of (immediate) children this variable has. */
154 int num_children;
155
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
158
159 /* Children of this object. */
160 VEC (varobj_p) *children;
161
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
168 /* Description of the root variable. Points to root variable for
169 children. */
170 struct varobj_root *root;
171
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
174
175 /* Was this variable updated via a varobj_set_value operation. */
176 int updated;
177
178 /* Last print value. */
179 char *print_value;
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
190
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
216 };
217
218 struct cpstack
219 {
220 char *name;
221 struct cpstack *next;
222 };
223
224 /* A list of varobjs */
225
226 struct vlist
227 {
228 struct varobj *var;
229 struct vlist *next;
230 };
231
232 /* Private function prototypes */
233
234 /* Helper functions for the above subcommands. */
235
236 static int delete_variable (struct cpstack **, struct varobj *, int);
237
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
240
241 static int install_variable (struct varobj *);
242
243 static void uninstall_variable (struct varobj *);
244
245 static struct varobj *create_child (struct varobj *, int, char *);
246
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
251 /* Utility routines */
252
253 static struct varobj *new_variable (void);
254
255 static struct varobj *new_root_variable (void);
256
257 static void free_variable (struct varobj *var);
258
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
261 static struct type *get_type (struct varobj *var);
262
263 static struct type *get_value_type (struct varobj *var);
264
265 static struct type *get_target_type (struct type *);
266
267 static enum varobj_display_formats variable_default_display (struct varobj *);
268
269 static void cppush (struct cpstack **pstack, char *name);
270
271 static char *cppop (struct cpstack **pstack);
272
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
276 static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
279 /* Language-specific routines. */
280
281 static enum varobj_languages variable_language (struct varobj *var);
282
283 static int number_of_children (struct varobj *);
284
285 static char *name_of_variable (struct varobj *);
286
287 static char *name_of_child (struct varobj *, int);
288
289 static struct value *value_of_root (struct varobj **var_handle, int *);
290
291 static struct value *value_of_child (struct varobj *parent, int index);
292
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
295
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
298 struct varobj *var);
299
300 static int varobj_value_is_changeable_p (struct varobj *var);
301
302 static int is_root_p (struct varobj *var);
303
304 #if HAVE_PYTHON
305
306 static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
309
310 #endif /* HAVE_PYTHON */
311
312 static int default_value_is_changeable_p (struct varobj *var);
313
314 /* C implementation */
315
316 static int c_number_of_children (struct varobj *var);
317
318 static char *c_name_of_variable (struct varobj *parent);
319
320 static char *c_name_of_child (struct varobj *parent, int index);
321
322 static char *c_path_expr_of_child (struct varobj *child);
323
324 static struct value *c_value_of_root (struct varobj **var_handle);
325
326 static struct value *c_value_of_child (struct varobj *parent, int index);
327
328 static struct type *c_type_of_child (struct varobj *parent, int index);
329
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
332
333 /* C++ implementation */
334
335 static int cplus_number_of_children (struct varobj *var);
336
337 static void cplus_class_num_children (struct type *type, int children[3]);
338
339 static char *cplus_name_of_variable (struct varobj *parent);
340
341 static char *cplus_name_of_child (struct varobj *parent, int index);
342
343 static char *cplus_path_expr_of_child (struct varobj *child);
344
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
346
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
348
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
350
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
353
354 /* Java implementation */
355
356 static int java_number_of_children (struct varobj *var);
357
358 static char *java_name_of_variable (struct varobj *parent);
359
360 static char *java_name_of_child (struct varobj *parent, int index);
361
362 static char *java_path_expr_of_child (struct varobj *child);
363
364 static struct value *java_value_of_root (struct varobj **var_handle);
365
366 static struct value *java_value_of_child (struct varobj *parent, int index);
367
368 static struct type *java_type_of_child (struct varobj *parent, int index);
369
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
372
373 /* Ada implementation */
374
375 static int ada_number_of_children (struct varobj *var);
376
377 static char *ada_name_of_variable (struct varobj *parent);
378
379 static char *ada_name_of_child (struct varobj *parent, int index);
380
381 static char *ada_path_expr_of_child (struct varobj *child);
382
383 static struct value *ada_value_of_root (struct varobj **var_handle);
384
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
392 static int ada_value_is_changeable_p (struct varobj *var);
393
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
397 /* The language specific vector */
398
399 struct language_specific
400 {
401
402 /* The language of this variable. */
403 enum varobj_languages language;
404
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
407
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
410
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
413
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
420
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
423
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
426
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
430
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
455 };
456
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
460 {
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
465 c_path_expr_of_child,
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
469 c_value_of_variable,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
472 ,
473 /* C */
474 {
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
479 c_path_expr_of_child,
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
483 c_value_of_variable,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
486 ,
487 /* C++ */
488 {
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
493 cplus_path_expr_of_child,
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
500 ,
501 /* Java */
502 {
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
507 java_path_expr_of_child,
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
527 };
528
529 /* A little convenience enum for dealing with C++/Java. */
530 enum vsections
531 {
532 v_public = 0, v_private, v_protected
533 };
534
535 /* Private data */
536
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
539
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
542
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
546
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
549
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553 \f
554
555 /* API Implementation */
556 static int
557 is_root_p (struct varobj *var)
558 {
559 return (var->root->rootvar == var);
560 }
561
562 #ifdef HAVE_PYTHON
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
567 {
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570 }
571 #endif
572
573 /* Creates a varobj (not its children). */
574
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580 {
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
589 {
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
596
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
601 return frame;
602 }
603
604 return NULL;
605 }
606
607 struct varobj *
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
610 {
611 struct varobj *var;
612 struct cleanup *old_chain;
613
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
617
618 if (expression != NULL)
619 {
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
622 struct block *block;
623 char *p;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
627 CORE_ADDR pc;
628
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
631
632 if (has_stack_frames ())
633 {
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
637 else
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
644 function. */
645 fi = find_frame_addr_in_frame_chain (frame);
646 }
647 else
648 fi = NULL;
649
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
653
654 pc = 0;
655 block = NULL;
656 if (fi != NULL)
657 {
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
660 }
661
662 p = expression;
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
667 {
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
669 }
670
671 if (except.reason < 0)
672 {
673 do_cleanups (old_chain);
674 return NULL;
675 }
676
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
681 {
682 do_cleanups (old_chain);
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
685 return NULL;
686 }
687
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
690 var->name = xstrdup (expression);
691 /* For a root var, the name and the expr are the same. */
692 var->path_expr = xstrdup (expression);
693
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
697 Since select_frame is so benign, just call it for all cases. */
698 if (innermost_block)
699 {
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
704 if (fi == NULL)
705 error (_("Failed to find the specified frame"));
706
707 var->root->frame = get_frame_id (fi);
708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
709 old_id = get_frame_id (get_selected_frame (NULL));
710 select_frame (fi);
711 }
712
713 /* We definitely need to catch errors here.
714 If evaluate_expression succeeds we got the value we wanted.
715 But if it fails, we still go on with a call to evaluate_type(). */
716 TRY_CATCH (except, RETURN_MASK_ERROR)
717 {
718 value = evaluate_expression (var->root->exp);
719 }
720
721 if (except.reason < 0)
722 {
723 /* Error getting the value. Try to at least get the
724 right type. */
725 struct value *type_only_value = evaluate_type (var->root->exp);
726
727 var->type = value_type (type_only_value);
728 }
729 else
730 {
731 int real_type_found = 0;
732
733 var->type = value_actual_type (value, 0, &real_type_found);
734 if (real_type_found)
735 value = value_cast (var->type, value);
736 }
737
738 /* Set language info */
739 lang = variable_language (var);
740 var->root->lang = &languages[lang];
741
742 install_new_value (var, value, 1 /* Initial assignment */);
743
744 /* Set ourselves as our root. */
745 var->root->rootvar = var;
746
747 /* Reset the selected frame. */
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
750 }
751
752 /* If the variable object name is null, that means this
753 is a temporary variable, so don't install it. */
754
755 if ((var != NULL) && (objname != NULL))
756 {
757 var->obj_name = xstrdup (objname);
758
759 /* If a varobj name is duplicated, the install will fail so
760 we must cleanup. */
761 if (!install_variable (var))
762 {
763 do_cleanups (old_chain);
764 return NULL;
765 }
766 }
767
768 discard_cleanups (old_chain);
769 return var;
770 }
771
772 /* Generates an unique name that can be used for a varobj. */
773
774 char *
775 varobj_gen_name (void)
776 {
777 static int id = 0;
778 char *obj_name;
779
780 /* Generate a name for this object. */
781 id++;
782 obj_name = xstrprintf ("var%d", id);
783
784 return obj_name;
785 }
786
787 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
789
790 struct varobj *
791 varobj_get_handle (char *objname)
792 {
793 struct vlist *cv;
794 const char *chp;
795 unsigned int index = 0;
796 unsigned int i = 1;
797
798 for (chp = objname; *chp; chp++)
799 {
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
801 }
802
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
805 cv = cv->next;
806
807 if (cv == NULL)
808 error (_("Variable object not found"));
809
810 return cv->var;
811 }
812
813 /* Given the handle, return the name of the object. */
814
815 char *
816 varobj_get_objname (struct varobj *var)
817 {
818 return var->obj_name;
819 }
820
821 /* Given the handle, return the expression represented by the object. */
822
823 char *
824 varobj_get_expression (struct varobj *var)
825 {
826 return name_of_variable (var);
827 }
828
829 /* Deletes a varobj and all its children if only_children == 0,
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
832 (NULL terminated). */
833
834 int
835 varobj_delete (struct varobj *var, char ***dellist, int only_children)
836 {
837 int delcount;
838 int mycount;
839 struct cpstack *result = NULL;
840 char **cp;
841
842 /* Initialize a stack for temporary results. */
843 cppush (&result, NULL);
844
845 if (only_children)
846 /* Delete only the variable children. */
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
848 else
849 /* Delete the variable and all its children. */
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
851
852 /* We may have been asked to return a list of what has been deleted. */
853 if (dellist != NULL)
854 {
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
856
857 cp = *dellist;
858 mycount = delcount;
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
861 {
862 mycount--;
863 cp++;
864 *cp = cppop (&result);
865 }
866
867 if (mycount || (*cp != NULL))
868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
869 mycount);
870 }
871
872 return delcount;
873 }
874
875 #if HAVE_PYTHON
876
877 /* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
879 static PyObject *
880 instantiate_pretty_printer (PyObject *constructor, struct value *value)
881 {
882 PyObject *val_obj = NULL;
883 PyObject *printer;
884
885 val_obj = value_to_value_object (value);
886 if (! val_obj)
887 return NULL;
888
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
890 Py_DECREF (val_obj);
891 return printer;
892 }
893
894 #endif
895
896 /* Set/Get variable object display format. */
897
898 enum varobj_display_formats
899 varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
901 {
902 switch (format)
903 {
904 case FORMAT_NATURAL:
905 case FORMAT_BINARY:
906 case FORMAT_DECIMAL:
907 case FORMAT_HEXADECIMAL:
908 case FORMAT_OCTAL:
909 var->format = format;
910 break;
911
912 default:
913 var->format = variable_default_display (var);
914 }
915
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
918 {
919 xfree (var->print_value);
920 var->print_value = value_get_print_value (var->value, var->format, var);
921 }
922
923 return var->format;
924 }
925
926 enum varobj_display_formats
927 varobj_get_display_format (struct varobj *var)
928 {
929 return var->format;
930 }
931
932 char *
933 varobj_get_display_hint (struct varobj *var)
934 {
935 char *result = NULL;
936
937 #if HAVE_PYTHON
938 struct cleanup *back_to = varobj_ensure_python_env (var);
939
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
942
943 do_cleanups (back_to);
944 #endif
945
946 return result;
947 }
948
949 /* Return true if the varobj has items after TO, false otherwise. */
950
951 int
952 varobj_has_more (struct varobj *var, int to)
953 {
954 if (VEC_length (varobj_p, var->children) > to)
955 return 1;
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
958 }
959
960 /* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
963 is always positive. Otherwise, returns -1. */
964 int
965 varobj_get_thread_id (struct varobj *var)
966 {
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
969 else
970 return -1;
971 }
972
973 void
974 varobj_set_frozen (struct varobj *var, int frozen)
975 {
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
978 won't complain.
979
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
984 }
985
986 int
987 varobj_get_frozen (struct varobj *var)
988 {
989 return var->frozen;
990 }
991
992 /* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
995 used. */
996
997 static void
998 restrict_range (VEC (varobj_p) *children, int *from, int *to)
999 {
1000 if (*from < 0 || *to < 0)
1001 {
1002 *from = 0;
1003 *to = VEC_length (varobj_p, children);
1004 }
1005 else
1006 {
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1011 if (*from > *to)
1012 *from = *to;
1013 }
1014 }
1015
1016 #if HAVE_PYTHON
1017
1018 /* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1020
1021 static void
1022 install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
1024 VEC (varobj_p) **type_changed,
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1027 int *cchanged,
1028 int index,
1029 const char *name,
1030 struct value *value)
1031 {
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1033 {
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
1036
1037 if (new)
1038 {
1039 VEC_safe_push (varobj_p, *new, child);
1040 *cchanged = 1;
1041 }
1042 }
1043 else
1044 {
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
1046
1047 int type_updated = update_type_if_necessary (existing, value);
1048 if (type_updated)
1049 {
1050 if (type_changed)
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1052 }
1053 if (install_new_value (existing, value, 0))
1054 {
1055 if (!type_updated && changed)
1056 VEC_safe_push (varobj_p, *changed, existing);
1057 }
1058 else if (!type_updated && unchanged)
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1060 }
1061 }
1062
1063 static int
1064 dynamic_varobj_has_child_method (struct varobj *var)
1065 {
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1068 int result;
1069
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1073 return result;
1074 }
1075
1076 #endif
1077
1078 static int
1079 update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
1081 VEC (varobj_p) **type_changed,
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1084 int *cchanged,
1085 int update_children,
1086 int from,
1087 int to)
1088 {
1089 #if HAVE_PYTHON
1090 struct cleanup *back_to;
1091 PyObject *children;
1092 int i;
1093 PyObject *printer = var->pretty_printer;
1094
1095 back_to = varobj_ensure_python_env (var);
1096
1097 *cchanged = 0;
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1099 {
1100 do_cleanups (back_to);
1101 return 0;
1102 }
1103
1104 if (update_children || !var->child_iter)
1105 {
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1107 NULL);
1108
1109 if (!children)
1110 {
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1113 }
1114
1115 make_cleanup_py_decref (children);
1116
1117 Py_XDECREF (var->child_iter);
1118 var->child_iter = PyObject_GetIter (children);
1119 if (!var->child_iter)
1120 {
1121 gdbpy_print_stack ();
1122 error (_("Could not get children iterator"));
1123 }
1124
1125 Py_XDECREF (var->saved_item);
1126 var->saved_item = NULL;
1127
1128 i = 0;
1129 }
1130 else
1131 i = VEC_length (varobj_p, var->children);
1132
1133 /* We ask for one extra child, so that MI can report whether there
1134 are more children. */
1135 for (; to < 0 || i < to + 1; ++i)
1136 {
1137 PyObject *item;
1138 int force_done = 0;
1139
1140 /* See if there was a leftover from last time. */
1141 if (var->saved_item)
1142 {
1143 item = var->saved_item;
1144 var->saved_item = NULL;
1145 }
1146 else
1147 item = PyIter_Next (var->child_iter);
1148
1149 if (!item)
1150 {
1151 /* Normal end of iteration. */
1152 if (!PyErr_Occurred ())
1153 break;
1154
1155 /* If we got a memory error, just use the text as the
1156 item. */
1157 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1158 {
1159 PyObject *type, *value, *trace;
1160 char *name_str, *value_str;
1161
1162 PyErr_Fetch (&type, &value, &trace);
1163 value_str = gdbpy_exception_to_string (type, value);
1164 Py_XDECREF (type);
1165 Py_XDECREF (value);
1166 Py_XDECREF (trace);
1167 if (!value_str)
1168 {
1169 gdbpy_print_stack ();
1170 break;
1171 }
1172
1173 name_str = xstrprintf ("<error at %d>", i);
1174 item = Py_BuildValue ("(ss)", name_str, value_str);
1175 xfree (name_str);
1176 xfree (value_str);
1177 if (!item)
1178 {
1179 gdbpy_print_stack ();
1180 break;
1181 }
1182
1183 force_done = 1;
1184 }
1185 else
1186 {
1187 /* Any other kind of error. */
1188 gdbpy_print_stack ();
1189 break;
1190 }
1191 }
1192
1193 /* We don't want to push the extra child on any report list. */
1194 if (to < 0 || i < to)
1195 {
1196 PyObject *py_v;
1197 const char *name;
1198 struct value *v;
1199 struct cleanup *inner;
1200 int can_mention = from < 0 || i >= from;
1201
1202 inner = make_cleanup_py_decref (item);
1203
1204 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1205 {
1206 gdbpy_print_stack ();
1207 error (_("Invalid item from the child list"));
1208 }
1209
1210 v = convert_value_from_python (py_v);
1211 if (v == NULL)
1212 gdbpy_print_stack ();
1213 install_dynamic_child (var, can_mention ? changed : NULL,
1214 can_mention ? type_changed : NULL,
1215 can_mention ? new : NULL,
1216 can_mention ? unchanged : NULL,
1217 can_mention ? cchanged : NULL, i, name, v);
1218 do_cleanups (inner);
1219 }
1220 else
1221 {
1222 Py_XDECREF (var->saved_item);
1223 var->saved_item = item;
1224
1225 /* We want to truncate the child list just before this
1226 element. */
1227 break;
1228 }
1229
1230 if (force_done)
1231 break;
1232 }
1233
1234 if (i < VEC_length (varobj_p, var->children))
1235 {
1236 int j;
1237
1238 *cchanged = 1;
1239 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1240 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1241 VEC_truncate (varobj_p, var->children, i);
1242 }
1243
1244 /* If there are fewer children than requested, note that the list of
1245 children changed. */
1246 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1247 *cchanged = 1;
1248
1249 var->num_children = VEC_length (varobj_p, var->children);
1250
1251 do_cleanups (back_to);
1252
1253 return 1;
1254 #else
1255 gdb_assert (0 && "should never be called if Python is not enabled");
1256 #endif
1257 }
1258
1259 int
1260 varobj_get_num_children (struct varobj *var)
1261 {
1262 if (var->num_children == -1)
1263 {
1264 if (var->pretty_printer)
1265 {
1266 int dummy;
1267
1268 /* If we have a dynamic varobj, don't report -1 children.
1269 So, try to fetch some children first. */
1270 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1271 0, 0, 0);
1272 }
1273 else
1274 var->num_children = number_of_children (var);
1275 }
1276
1277 return var->num_children >= 0 ? var->num_children : 0;
1278 }
1279
1280 /* Creates a list of the immediate children of a variable object;
1281 the return code is the number of such children or -1 on error. */
1282
1283 VEC (varobj_p)*
1284 varobj_list_children (struct varobj *var, int *from, int *to)
1285 {
1286 char *name;
1287 int i, children_changed;
1288
1289 var->children_requested = 1;
1290
1291 if (var->pretty_printer)
1292 {
1293 /* This, in theory, can result in the number of children changing without
1294 frontend noticing. But well, calling -var-list-children on the same
1295 varobj twice is not something a sane frontend would do. */
1296 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1297 &children_changed, 0, 0, *to);
1298 restrict_range (var->children, from, to);
1299 return var->children;
1300 }
1301
1302 if (var->num_children == -1)
1303 var->num_children = number_of_children (var);
1304
1305 /* If that failed, give up. */
1306 if (var->num_children == -1)
1307 return var->children;
1308
1309 /* If we're called when the list of children is not yet initialized,
1310 allocate enough elements in it. */
1311 while (VEC_length (varobj_p, var->children) < var->num_children)
1312 VEC_safe_push (varobj_p, var->children, NULL);
1313
1314 for (i = 0; i < var->num_children; i++)
1315 {
1316 varobj_p existing = VEC_index (varobj_p, var->children, i);
1317
1318 if (existing == NULL)
1319 {
1320 /* Either it's the first call to varobj_list_children for
1321 this variable object, and the child was never created,
1322 or it was explicitly deleted by the client. */
1323 name = name_of_child (var, i);
1324 existing = create_child (var, i, name);
1325 VEC_replace (varobj_p, var->children, i, existing);
1326 }
1327 }
1328
1329 restrict_range (var->children, from, to);
1330 return var->children;
1331 }
1332
1333 #if HAVE_PYTHON
1334
1335 static struct varobj *
1336 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1337 {
1338 varobj_p v = create_child_with_value (var,
1339 VEC_length (varobj_p, var->children),
1340 name, value);
1341
1342 VEC_safe_push (varobj_p, var->children, v);
1343 return v;
1344 }
1345
1346 #endif /* HAVE_PYTHON */
1347
1348 /* Obtain the type of an object Variable as a string similar to the one gdb
1349 prints on the console. */
1350
1351 char *
1352 varobj_get_type (struct varobj *var)
1353 {
1354 /* For the "fake" variables, do not return a type. (It's type is
1355 NULL, too.)
1356 Do not return a type for invalid variables as well. */
1357 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1358 return NULL;
1359
1360 return type_to_string (var->type);
1361 }
1362
1363 /* Obtain the type of an object variable. */
1364
1365 struct type *
1366 varobj_get_gdb_type (struct varobj *var)
1367 {
1368 return var->type;
1369 }
1370
1371 /* Is VAR a path expression parent, i.e., can it be used to construct
1372 a valid path expression? */
1373
1374 static int
1375 is_path_expr_parent (struct varobj *var)
1376 {
1377 struct type *type;
1378
1379 /* "Fake" children are not path_expr parents. */
1380 if (CPLUS_FAKE_CHILD (var))
1381 return 0;
1382
1383 type = get_value_type (var);
1384
1385 /* Anonymous unions and structs are also not path_expr parents. */
1386 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1387 || TYPE_CODE (type) == TYPE_CODE_UNION)
1388 && TYPE_NAME (type) == NULL);
1389 }
1390
1391 /* Return the path expression parent for VAR. */
1392
1393 static struct varobj *
1394 get_path_expr_parent (struct varobj *var)
1395 {
1396 struct varobj *parent = var;
1397
1398 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1399 parent = parent->parent;
1400
1401 return parent;
1402 }
1403
1404 /* Return a pointer to the full rooted expression of varobj VAR.
1405 If it has not been computed yet, compute it. */
1406 char *
1407 varobj_get_path_expr (struct varobj *var)
1408 {
1409 if (var->path_expr != NULL)
1410 return var->path_expr;
1411 else
1412 {
1413 /* For root varobjs, we initialize path_expr
1414 when creating varobj, so here it should be
1415 child varobj. */
1416 gdb_assert (!is_root_p (var));
1417 return (*var->root->lang->path_expr_of_child) (var);
1418 }
1419 }
1420
1421 enum varobj_languages
1422 varobj_get_language (struct varobj *var)
1423 {
1424 return variable_language (var);
1425 }
1426
1427 int
1428 varobj_get_attributes (struct varobj *var)
1429 {
1430 int attributes = 0;
1431
1432 if (varobj_editable_p (var))
1433 /* FIXME: define masks for attributes. */
1434 attributes |= 0x00000001; /* Editable */
1435
1436 return attributes;
1437 }
1438
1439 int
1440 varobj_pretty_printed_p (struct varobj *var)
1441 {
1442 return var->pretty_printer != NULL;
1443 }
1444
1445 char *
1446 varobj_get_formatted_value (struct varobj *var,
1447 enum varobj_display_formats format)
1448 {
1449 return my_value_of_variable (var, format);
1450 }
1451
1452 char *
1453 varobj_get_value (struct varobj *var)
1454 {
1455 return my_value_of_variable (var, var->format);
1456 }
1457
1458 /* Set the value of an object variable (if it is editable) to the
1459 value of the given expression. */
1460 /* Note: Invokes functions that can call error(). */
1461
1462 int
1463 varobj_set_value (struct varobj *var, char *expression)
1464 {
1465 struct value *val = NULL; /* Initialize to keep gcc happy. */
1466 /* The argument "expression" contains the variable's new value.
1467 We need to first construct a legal expression for this -- ugh! */
1468 /* Does this cover all the bases? */
1469 struct expression *exp;
1470 struct value *value = NULL; /* Initialize to keep gcc happy. */
1471 int saved_input_radix = input_radix;
1472 char *s = expression;
1473 volatile struct gdb_exception except;
1474
1475 gdb_assert (varobj_editable_p (var));
1476
1477 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1478 exp = parse_exp_1 (&s, 0, 0, 0);
1479 TRY_CATCH (except, RETURN_MASK_ERROR)
1480 {
1481 value = evaluate_expression (exp);
1482 }
1483
1484 if (except.reason < 0)
1485 {
1486 /* We cannot proceed without a valid expression. */
1487 xfree (exp);
1488 return 0;
1489 }
1490
1491 /* All types that are editable must also be changeable. */
1492 gdb_assert (varobj_value_is_changeable_p (var));
1493
1494 /* The value of a changeable variable object must not be lazy. */
1495 gdb_assert (!value_lazy (var->value));
1496
1497 /* Need to coerce the input. We want to check if the
1498 value of the variable object will be different
1499 after assignment, and the first thing value_assign
1500 does is coerce the input.
1501 For example, if we are assigning an array to a pointer variable we
1502 should compare the pointer with the array's address, not with the
1503 array's content. */
1504 value = coerce_array (value);
1505
1506 /* The new value may be lazy. value_assign, or
1507 rather value_contents, will take care of this. */
1508 TRY_CATCH (except, RETURN_MASK_ERROR)
1509 {
1510 val = value_assign (var->value, value);
1511 }
1512
1513 if (except.reason < 0)
1514 return 0;
1515
1516 /* If the value has changed, record it, so that next -var-update can
1517 report this change. If a variable had a value of '1', we've set it
1518 to '333' and then set again to '1', when -var-update will report this
1519 variable as changed -- because the first assignment has set the
1520 'updated' flag. There's no need to optimize that, because return value
1521 of -var-update should be considered an approximation. */
1522 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1523 input_radix = saved_input_radix;
1524 return 1;
1525 }
1526
1527 #if HAVE_PYTHON
1528
1529 /* A helper function to install a constructor function and visualizer
1530 in a varobj. */
1531
1532 static void
1533 install_visualizer (struct varobj *var, PyObject *constructor,
1534 PyObject *visualizer)
1535 {
1536 Py_XDECREF (var->constructor);
1537 var->constructor = constructor;
1538
1539 Py_XDECREF (var->pretty_printer);
1540 var->pretty_printer = visualizer;
1541
1542 Py_XDECREF (var->child_iter);
1543 var->child_iter = NULL;
1544 }
1545
1546 /* Install the default visualizer for VAR. */
1547
1548 static void
1549 install_default_visualizer (struct varobj *var)
1550 {
1551 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1552 if (CPLUS_FAKE_CHILD (var))
1553 return;
1554
1555 if (pretty_printing)
1556 {
1557 PyObject *pretty_printer = NULL;
1558
1559 if (var->value)
1560 {
1561 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1562 if (! pretty_printer)
1563 {
1564 gdbpy_print_stack ();
1565 error (_("Cannot instantiate printer for default visualizer"));
1566 }
1567 }
1568
1569 if (pretty_printer == Py_None)
1570 {
1571 Py_DECREF (pretty_printer);
1572 pretty_printer = NULL;
1573 }
1574
1575 install_visualizer (var, NULL, pretty_printer);
1576 }
1577 }
1578
1579 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1580 make a new object. */
1581
1582 static void
1583 construct_visualizer (struct varobj *var, PyObject *constructor)
1584 {
1585 PyObject *pretty_printer;
1586
1587 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1588 if (CPLUS_FAKE_CHILD (var))
1589 return;
1590
1591 Py_INCREF (constructor);
1592 if (constructor == Py_None)
1593 pretty_printer = NULL;
1594 else
1595 {
1596 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1597 if (! pretty_printer)
1598 {
1599 gdbpy_print_stack ();
1600 Py_DECREF (constructor);
1601 constructor = Py_None;
1602 Py_INCREF (constructor);
1603 }
1604
1605 if (pretty_printer == Py_None)
1606 {
1607 Py_DECREF (pretty_printer);
1608 pretty_printer = NULL;
1609 }
1610 }
1611
1612 install_visualizer (var, constructor, pretty_printer);
1613 }
1614
1615 #endif /* HAVE_PYTHON */
1616
1617 /* A helper function for install_new_value. This creates and installs
1618 a visualizer for VAR, if appropriate. */
1619
1620 static void
1621 install_new_value_visualizer (struct varobj *var)
1622 {
1623 #if HAVE_PYTHON
1624 /* If the constructor is None, then we want the raw value. If VAR
1625 does not have a value, just skip this. */
1626 if (var->constructor != Py_None && var->value)
1627 {
1628 struct cleanup *cleanup;
1629
1630 cleanup = varobj_ensure_python_env (var);
1631
1632 if (!var->constructor)
1633 install_default_visualizer (var);
1634 else
1635 construct_visualizer (var, var->constructor);
1636
1637 do_cleanups (cleanup);
1638 }
1639 #else
1640 /* Do nothing. */
1641 #endif
1642 }
1643
1644 /* When using RTTI to determine variable type it may be changed in runtime when
1645 the variable value is changed. This function checks whether type of varobj
1646 VAR will change when a new value NEW_VALUE is assigned and if it is so
1647 updates the type of VAR. */
1648
1649 static int
1650 update_type_if_necessary (struct varobj *var, struct value *new_value)
1651 {
1652 if (new_value)
1653 {
1654 struct value_print_options opts;
1655
1656 get_user_print_options (&opts);
1657 if (opts.objectprint)
1658 {
1659 struct type *new_type;
1660 char *curr_type_str, *new_type_str;
1661
1662 new_type = value_actual_type (new_value, 0, 0);
1663 new_type_str = type_to_string (new_type);
1664 curr_type_str = varobj_get_type (var);
1665 if (strcmp (curr_type_str, new_type_str) != 0)
1666 {
1667 var->type = new_type;
1668
1669 /* This information may be not valid for a new type. */
1670 varobj_delete (var, NULL, 1);
1671 VEC_free (varobj_p, var->children);
1672 var->num_children = -1;
1673 return 1;
1674 }
1675 }
1676 }
1677
1678 return 0;
1679 }
1680
1681 /* Assign a new value to a variable object. If INITIAL is non-zero,
1682 this is the first assignement after the variable object was just
1683 created, or changed type. In that case, just assign the value
1684 and return 0.
1685 Otherwise, assign the new value, and return 1 if the value is
1686 different from the current one, 0 otherwise. The comparison is
1687 done on textual representation of value. Therefore, some types
1688 need not be compared. E.g. for structures the reported value is
1689 always "{...}", so no comparison is necessary here. If the old
1690 value was NULL and new one is not, or vice versa, we always return 1.
1691
1692 The VALUE parameter should not be released -- the function will
1693 take care of releasing it when needed. */
1694 static int
1695 install_new_value (struct varobj *var, struct value *value, int initial)
1696 {
1697 int changeable;
1698 int need_to_fetch;
1699 int changed = 0;
1700 int intentionally_not_fetched = 0;
1701 char *print_value = NULL;
1702
1703 /* We need to know the varobj's type to decide if the value should
1704 be fetched or not. C++ fake children (public/protected/private)
1705 don't have a type. */
1706 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1707 changeable = varobj_value_is_changeable_p (var);
1708
1709 /* If the type has custom visualizer, we consider it to be always
1710 changeable. FIXME: need to make sure this behaviour will not
1711 mess up read-sensitive values. */
1712 if (var->pretty_printer)
1713 changeable = 1;
1714
1715 need_to_fetch = changeable;
1716
1717 /* We are not interested in the address of references, and given
1718 that in C++ a reference is not rebindable, it cannot
1719 meaningfully change. So, get hold of the real value. */
1720 if (value)
1721 value = coerce_ref (value);
1722
1723 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1724 /* For unions, we need to fetch the value implicitly because
1725 of implementation of union member fetch. When gdb
1726 creates a value for a field and the value of the enclosing
1727 structure is not lazy, it immediately copies the necessary
1728 bytes from the enclosing values. If the enclosing value is
1729 lazy, the call to value_fetch_lazy on the field will read
1730 the data from memory. For unions, that means we'll read the
1731 same memory more than once, which is not desirable. So
1732 fetch now. */
1733 need_to_fetch = 1;
1734
1735 /* The new value might be lazy. If the type is changeable,
1736 that is we'll be comparing values of this type, fetch the
1737 value now. Otherwise, on the next update the old value
1738 will be lazy, which means we've lost that old value. */
1739 if (need_to_fetch && value && value_lazy (value))
1740 {
1741 struct varobj *parent = var->parent;
1742 int frozen = var->frozen;
1743
1744 for (; !frozen && parent; parent = parent->parent)
1745 frozen |= parent->frozen;
1746
1747 if (frozen && initial)
1748 {
1749 /* For variables that are frozen, or are children of frozen
1750 variables, we don't do fetch on initial assignment.
1751 For non-initial assignemnt we do the fetch, since it means we're
1752 explicitly asked to compare the new value with the old one. */
1753 intentionally_not_fetched = 1;
1754 }
1755 else
1756 {
1757 volatile struct gdb_exception except;
1758
1759 TRY_CATCH (except, RETURN_MASK_ERROR)
1760 {
1761 value_fetch_lazy (value);
1762 }
1763
1764 if (except.reason < 0)
1765 {
1766 /* Set the value to NULL, so that for the next -var-update,
1767 we don't try to compare the new value with this value,
1768 that we couldn't even read. */
1769 value = NULL;
1770 }
1771 }
1772 }
1773
1774 /* Get a reference now, before possibly passing it to any Python
1775 code that might release it. */
1776 if (value != NULL)
1777 value_incref (value);
1778
1779 /* Below, we'll be comparing string rendering of old and new
1780 values. Don't get string rendering if the value is
1781 lazy -- if it is, the code above has decided that the value
1782 should not be fetched. */
1783 if (value && !value_lazy (value) && !var->pretty_printer)
1784 print_value = value_get_print_value (value, var->format, var);
1785
1786 /* If the type is changeable, compare the old and the new values.
1787 If this is the initial assignment, we don't have any old value
1788 to compare with. */
1789 if (!initial && changeable)
1790 {
1791 /* If the value of the varobj was changed by -var-set-value,
1792 then the value in the varobj and in the target is the same.
1793 However, that value is different from the value that the
1794 varobj had after the previous -var-update. So need to the
1795 varobj as changed. */
1796 if (var->updated)
1797 {
1798 changed = 1;
1799 }
1800 else if (! var->pretty_printer)
1801 {
1802 /* Try to compare the values. That requires that both
1803 values are non-lazy. */
1804 if (var->not_fetched && value_lazy (var->value))
1805 {
1806 /* This is a frozen varobj and the value was never read.
1807 Presumably, UI shows some "never read" indicator.
1808 Now that we've fetched the real value, we need to report
1809 this varobj as changed so that UI can show the real
1810 value. */
1811 changed = 1;
1812 }
1813 else if (var->value == NULL && value == NULL)
1814 /* Equal. */
1815 ;
1816 else if (var->value == NULL || value == NULL)
1817 {
1818 changed = 1;
1819 }
1820 else
1821 {
1822 gdb_assert (!value_lazy (var->value));
1823 gdb_assert (!value_lazy (value));
1824
1825 gdb_assert (var->print_value != NULL && print_value != NULL);
1826 if (strcmp (var->print_value, print_value) != 0)
1827 changed = 1;
1828 }
1829 }
1830 }
1831
1832 if (!initial && !changeable)
1833 {
1834 /* For values that are not changeable, we don't compare the values.
1835 However, we want to notice if a value was not NULL and now is NULL,
1836 or vise versa, so that we report when top-level varobjs come in scope
1837 and leave the scope. */
1838 changed = (var->value != NULL) != (value != NULL);
1839 }
1840
1841 /* We must always keep the new value, since children depend on it. */
1842 if (var->value != NULL && var->value != value)
1843 value_free (var->value);
1844 var->value = value;
1845 if (value && value_lazy (value) && intentionally_not_fetched)
1846 var->not_fetched = 1;
1847 else
1848 var->not_fetched = 0;
1849 var->updated = 0;
1850
1851 install_new_value_visualizer (var);
1852
1853 /* If we installed a pretty-printer, re-compare the printed version
1854 to see if the variable changed. */
1855 if (var->pretty_printer)
1856 {
1857 xfree (print_value);
1858 print_value = value_get_print_value (var->value, var->format, var);
1859 if ((var->print_value == NULL && print_value != NULL)
1860 || (var->print_value != NULL && print_value == NULL)
1861 || (var->print_value != NULL && print_value != NULL
1862 && strcmp (var->print_value, print_value) != 0))
1863 changed = 1;
1864 }
1865 if (var->print_value)
1866 xfree (var->print_value);
1867 var->print_value = print_value;
1868
1869 gdb_assert (!var->value || value_type (var->value));
1870
1871 return changed;
1872 }
1873
1874 /* Return the requested range for a varobj. VAR is the varobj. FROM
1875 and TO are out parameters; *FROM and *TO will be set to the
1876 selected sub-range of VAR. If no range was selected using
1877 -var-set-update-range, then both will be -1. */
1878 void
1879 varobj_get_child_range (struct varobj *var, int *from, int *to)
1880 {
1881 *from = var->from;
1882 *to = var->to;
1883 }
1884
1885 /* Set the selected sub-range of children of VAR to start at index
1886 FROM and end at index TO. If either FROM or TO is less than zero,
1887 this is interpreted as a request for all children. */
1888 void
1889 varobj_set_child_range (struct varobj *var, int from, int to)
1890 {
1891 var->from = from;
1892 var->to = to;
1893 }
1894
1895 void
1896 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1897 {
1898 #if HAVE_PYTHON
1899 PyObject *mainmod, *globals, *constructor;
1900 struct cleanup *back_to;
1901
1902 back_to = varobj_ensure_python_env (var);
1903
1904 mainmod = PyImport_AddModule ("__main__");
1905 globals = PyModule_GetDict (mainmod);
1906 Py_INCREF (globals);
1907 make_cleanup_py_decref (globals);
1908
1909 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1910
1911 if (! constructor)
1912 {
1913 gdbpy_print_stack ();
1914 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1915 }
1916
1917 construct_visualizer (var, constructor);
1918 Py_XDECREF (constructor);
1919
1920 /* If there are any children now, wipe them. */
1921 varobj_delete (var, NULL, 1 /* children only */);
1922 var->num_children = -1;
1923
1924 do_cleanups (back_to);
1925 #else
1926 error (_("Python support required"));
1927 #endif
1928 }
1929
1930 /* If NEW_VALUE is the new value of the given varobj (var), return
1931 non-zero if var has mutated. In other words, if the type of
1932 the new value is different from the type of the varobj's old
1933 value.
1934
1935 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1936
1937 static int
1938 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1939 struct type *new_type)
1940 {
1941 /* If we haven't previously computed the number of children in var,
1942 it does not matter from the front-end's perspective whether
1943 the type has mutated or not. For all intents and purposes,
1944 it has not mutated. */
1945 if (var->num_children < 0)
1946 return 0;
1947
1948 if (var->root->lang->value_has_mutated)
1949 return var->root->lang->value_has_mutated (var, new_value, new_type);
1950 else
1951 return 0;
1952 }
1953
1954 /* Update the values for a variable and its children. This is a
1955 two-pronged attack. First, re-parse the value for the root's
1956 expression to see if it's changed. Then go all the way
1957 through its children, reconstructing them and noting if they've
1958 changed.
1959
1960 The EXPLICIT parameter specifies if this call is result
1961 of MI request to update this specific variable, or
1962 result of implicit -var-update *. For implicit request, we don't
1963 update frozen variables.
1964
1965 NOTE: This function may delete the caller's varobj. If it
1966 returns TYPE_CHANGED, then it has done this and VARP will be modified
1967 to point to the new varobj. */
1968
1969 VEC(varobj_update_result) *
1970 varobj_update (struct varobj **varp, int explicit)
1971 {
1972 int type_changed = 0;
1973 int i;
1974 struct value *new;
1975 VEC (varobj_update_result) *stack = NULL;
1976 VEC (varobj_update_result) *result = NULL;
1977
1978 /* Frozen means frozen -- we don't check for any change in
1979 this varobj, including its going out of scope, or
1980 changing type. One use case for frozen varobjs is
1981 retaining previously evaluated expressions, and we don't
1982 want them to be reevaluated at all. */
1983 if (!explicit && (*varp)->frozen)
1984 return result;
1985
1986 if (!(*varp)->root->is_valid)
1987 {
1988 varobj_update_result r = {0};
1989
1990 r.varobj = *varp;
1991 r.status = VAROBJ_INVALID;
1992 VEC_safe_push (varobj_update_result, result, &r);
1993 return result;
1994 }
1995
1996 if ((*varp)->root->rootvar == *varp)
1997 {
1998 varobj_update_result r = {0};
1999
2000 r.varobj = *varp;
2001 r.status = VAROBJ_IN_SCOPE;
2002
2003 /* Update the root variable. value_of_root can return NULL
2004 if the variable is no longer around, i.e. we stepped out of
2005 the frame in which a local existed. We are letting the
2006 value_of_root variable dispose of the varobj if the type
2007 has changed. */
2008 new = value_of_root (varp, &type_changed);
2009 if (update_type_if_necessary(*varp, new))
2010 type_changed = 1;
2011 r.varobj = *varp;
2012 r.type_changed = type_changed;
2013 if (install_new_value ((*varp), new, type_changed))
2014 r.changed = 1;
2015
2016 if (new == NULL)
2017 r.status = VAROBJ_NOT_IN_SCOPE;
2018 r.value_installed = 1;
2019
2020 if (r.status == VAROBJ_NOT_IN_SCOPE)
2021 {
2022 if (r.type_changed || r.changed)
2023 VEC_safe_push (varobj_update_result, result, &r);
2024 return result;
2025 }
2026
2027 VEC_safe_push (varobj_update_result, stack, &r);
2028 }
2029 else
2030 {
2031 varobj_update_result r = {0};
2032
2033 r.varobj = *varp;
2034 VEC_safe_push (varobj_update_result, stack, &r);
2035 }
2036
2037 /* Walk through the children, reconstructing them all. */
2038 while (!VEC_empty (varobj_update_result, stack))
2039 {
2040 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2041 struct varobj *v = r.varobj;
2042
2043 VEC_pop (varobj_update_result, stack);
2044
2045 /* Update this variable, unless it's a root, which is already
2046 updated. */
2047 if (!r.value_installed)
2048 {
2049 struct type *new_type;
2050
2051 new = value_of_child (v->parent, v->index);
2052 if (update_type_if_necessary(v, new))
2053 r.type_changed = 1;
2054 if (new)
2055 new_type = value_type (new);
2056 else
2057 new_type = v->root->lang->type_of_child (v->parent, v->index);
2058
2059 if (varobj_value_has_mutated (v, new, new_type))
2060 {
2061 /* The children are no longer valid; delete them now.
2062 Report the fact that its type changed as well. */
2063 varobj_delete (v, NULL, 1 /* only_children */);
2064 v->num_children = -1;
2065 v->to = -1;
2066 v->from = -1;
2067 v->type = new_type;
2068 r.type_changed = 1;
2069 }
2070
2071 if (install_new_value (v, new, r.type_changed))
2072 {
2073 r.changed = 1;
2074 v->updated = 0;
2075 }
2076 }
2077
2078 /* We probably should not get children of a varobj that has a
2079 pretty-printer, but for which -var-list-children was never
2080 invoked. */
2081 if (v->pretty_printer)
2082 {
2083 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2084 VEC (varobj_p) *new = 0;
2085 int i, children_changed = 0;
2086
2087 if (v->frozen)
2088 continue;
2089
2090 if (!v->children_requested)
2091 {
2092 int dummy;
2093
2094 /* If we initially did not have potential children, but
2095 now we do, consider the varobj as changed.
2096 Otherwise, if children were never requested, consider
2097 it as unchanged -- presumably, such varobj is not yet
2098 expanded in the UI, so we need not bother getting
2099 it. */
2100 if (!varobj_has_more (v, 0))
2101 {
2102 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2103 &dummy, 0, 0, 0);
2104 if (varobj_has_more (v, 0))
2105 r.changed = 1;
2106 }
2107
2108 if (r.changed)
2109 VEC_safe_push (varobj_update_result, result, &r);
2110
2111 continue;
2112 }
2113
2114 /* If update_dynamic_varobj_children returns 0, then we have
2115 a non-conforming pretty-printer, so we skip it. */
2116 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2117 &unchanged, &children_changed, 1,
2118 v->from, v->to))
2119 {
2120 if (children_changed || new)
2121 {
2122 r.children_changed = 1;
2123 r.new = new;
2124 }
2125 /* Push in reverse order so that the first child is
2126 popped from the work stack first, and so will be
2127 added to result first. This does not affect
2128 correctness, just "nicer". */
2129 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2130 {
2131 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2132 varobj_update_result r = {0};
2133
2134 /* Type may change only if value was changed. */
2135 r.varobj = tmp;
2136 r.changed = 1;
2137 r.type_changed = 1;
2138 r.value_installed = 1;
2139 VEC_safe_push (varobj_update_result, stack, &r);
2140 }
2141 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2142 {
2143 varobj_p tmp = VEC_index (varobj_p, changed, i);
2144 varobj_update_result r = {0};
2145
2146 r.varobj = tmp;
2147 r.changed = 1;
2148 r.value_installed = 1;
2149 VEC_safe_push (varobj_update_result, stack, &r);
2150 }
2151 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2152 {
2153 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2154
2155 if (!tmp->frozen)
2156 {
2157 varobj_update_result r = {0};
2158
2159 r.varobj = tmp;
2160 r.value_installed = 1;
2161 VEC_safe_push (varobj_update_result, stack, &r);
2162 }
2163 }
2164 if (r.changed || r.children_changed)
2165 VEC_safe_push (varobj_update_result, result, &r);
2166
2167 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2168 because NEW has been put into the result vector. */
2169 VEC_free (varobj_p, changed);
2170 VEC_free (varobj_p, type_changed);
2171 VEC_free (varobj_p, unchanged);
2172
2173 continue;
2174 }
2175 }
2176
2177 /* Push any children. Use reverse order so that the first
2178 child is popped from the work stack first, and so
2179 will be added to result first. This does not
2180 affect correctness, just "nicer". */
2181 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2182 {
2183 varobj_p c = VEC_index (varobj_p, v->children, i);
2184
2185 /* Child may be NULL if explicitly deleted by -var-delete. */
2186 if (c != NULL && !c->frozen)
2187 {
2188 varobj_update_result r = {0};
2189
2190 r.varobj = c;
2191 VEC_safe_push (varobj_update_result, stack, &r);
2192 }
2193 }
2194
2195 if (r.changed || r.type_changed)
2196 VEC_safe_push (varobj_update_result, result, &r);
2197 }
2198
2199 VEC_free (varobj_update_result, stack);
2200
2201 return result;
2202 }
2203 \f
2204
2205 /* Helper functions */
2206
2207 /*
2208 * Variable object construction/destruction
2209 */
2210
2211 static int
2212 delete_variable (struct cpstack **resultp, struct varobj *var,
2213 int only_children_p)
2214 {
2215 int delcount = 0;
2216
2217 delete_variable_1 (resultp, &delcount, var,
2218 only_children_p, 1 /* remove_from_parent_p */ );
2219
2220 return delcount;
2221 }
2222
2223 /* Delete the variable object VAR and its children. */
2224 /* IMPORTANT NOTE: If we delete a variable which is a child
2225 and the parent is not removed we dump core. It must be always
2226 initially called with remove_from_parent_p set. */
2227 static void
2228 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2229 struct varobj *var, int only_children_p,
2230 int remove_from_parent_p)
2231 {
2232 int i;
2233
2234 /* Delete any children of this variable, too. */
2235 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2236 {
2237 varobj_p child = VEC_index (varobj_p, var->children, i);
2238
2239 if (!child)
2240 continue;
2241 if (!remove_from_parent_p)
2242 child->parent = NULL;
2243 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2244 }
2245 VEC_free (varobj_p, var->children);
2246
2247 /* if we were called to delete only the children we are done here. */
2248 if (only_children_p)
2249 return;
2250
2251 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2252 /* If the name is null, this is a temporary variable, that has not
2253 yet been installed, don't report it, it belongs to the caller... */
2254 if (var->obj_name != NULL)
2255 {
2256 cppush (resultp, xstrdup (var->obj_name));
2257 *delcountp = *delcountp + 1;
2258 }
2259
2260 /* If this variable has a parent, remove it from its parent's list. */
2261 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2262 (as indicated by remove_from_parent_p) we don't bother doing an
2263 expensive list search to find the element to remove when we are
2264 discarding the list afterwards. */
2265 if ((remove_from_parent_p) && (var->parent != NULL))
2266 {
2267 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2268 }
2269
2270 if (var->obj_name != NULL)
2271 uninstall_variable (var);
2272
2273 /* Free memory associated with this variable. */
2274 free_variable (var);
2275 }
2276
2277 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2278 static int
2279 install_variable (struct varobj *var)
2280 {
2281 struct vlist *cv;
2282 struct vlist *newvl;
2283 const char *chp;
2284 unsigned int index = 0;
2285 unsigned int i = 1;
2286
2287 for (chp = var->obj_name; *chp; chp++)
2288 {
2289 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2290 }
2291
2292 cv = *(varobj_table + index);
2293 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2294 cv = cv->next;
2295
2296 if (cv != NULL)
2297 error (_("Duplicate variable object name"));
2298
2299 /* Add varobj to hash table. */
2300 newvl = xmalloc (sizeof (struct vlist));
2301 newvl->next = *(varobj_table + index);
2302 newvl->var = var;
2303 *(varobj_table + index) = newvl;
2304
2305 /* If root, add varobj to root list. */
2306 if (is_root_p (var))
2307 {
2308 /* Add to list of root variables. */
2309 if (rootlist == NULL)
2310 var->root->next = NULL;
2311 else
2312 var->root->next = rootlist;
2313 rootlist = var->root;
2314 }
2315
2316 return 1; /* OK */
2317 }
2318
2319 /* Unistall the object VAR. */
2320 static void
2321 uninstall_variable (struct varobj *var)
2322 {
2323 struct vlist *cv;
2324 struct vlist *prev;
2325 struct varobj_root *cr;
2326 struct varobj_root *prer;
2327 const char *chp;
2328 unsigned int index = 0;
2329 unsigned int i = 1;
2330
2331 /* Remove varobj from hash table. */
2332 for (chp = var->obj_name; *chp; chp++)
2333 {
2334 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2335 }
2336
2337 cv = *(varobj_table + index);
2338 prev = NULL;
2339 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2340 {
2341 prev = cv;
2342 cv = cv->next;
2343 }
2344
2345 if (varobjdebug)
2346 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2347
2348 if (cv == NULL)
2349 {
2350 warning
2351 ("Assertion failed: Could not find variable object \"%s\" to delete",
2352 var->obj_name);
2353 return;
2354 }
2355
2356 if (prev == NULL)
2357 *(varobj_table + index) = cv->next;
2358 else
2359 prev->next = cv->next;
2360
2361 xfree (cv);
2362
2363 /* If root, remove varobj from root list. */
2364 if (is_root_p (var))
2365 {
2366 /* Remove from list of root variables. */
2367 if (rootlist == var->root)
2368 rootlist = var->root->next;
2369 else
2370 {
2371 prer = NULL;
2372 cr = rootlist;
2373 while ((cr != NULL) && (cr->rootvar != var))
2374 {
2375 prer = cr;
2376 cr = cr->next;
2377 }
2378 if (cr == NULL)
2379 {
2380 warning (_("Assertion failed: Could not find "
2381 "varobj \"%s\" in root list"),
2382 var->obj_name);
2383 return;
2384 }
2385 if (prer == NULL)
2386 rootlist = NULL;
2387 else
2388 prer->next = cr->next;
2389 }
2390 }
2391
2392 }
2393
2394 /* Create and install a child of the parent of the given name. */
2395 static struct varobj *
2396 create_child (struct varobj *parent, int index, char *name)
2397 {
2398 return create_child_with_value (parent, index, name,
2399 value_of_child (parent, index));
2400 }
2401
2402 /* Does CHILD represent a child with no name? This happens when
2403 the child is an anonmous struct or union and it has no field name
2404 in its parent variable.
2405
2406 This has already been determined by *_describe_child. The easiest
2407 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2408
2409 static int
2410 is_anonymous_child (struct varobj *child)
2411 {
2412 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2413 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2414 }
2415
2416 static struct varobj *
2417 create_child_with_value (struct varobj *parent, int index, const char *name,
2418 struct value *value)
2419 {
2420 struct varobj *child;
2421 char *childs_name;
2422
2423 child = new_variable ();
2424
2425 /* Name is allocated by name_of_child. */
2426 /* FIXME: xstrdup should not be here. */
2427 child->name = xstrdup (name);
2428 child->index = index;
2429 child->parent = parent;
2430 child->root = parent->root;
2431
2432 if (is_anonymous_child (child))
2433 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2434 else
2435 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2436 child->obj_name = childs_name;
2437
2438 install_variable (child);
2439
2440 /* Compute the type of the child. Must do this before
2441 calling install_new_value. */
2442 if (value != NULL)
2443 /* If the child had no evaluation errors, var->value
2444 will be non-NULL and contain a valid type. */
2445 child->type = value_actual_type (value, 0, NULL);
2446 else
2447 /* Otherwise, we must compute the type. */
2448 child->type = (*child->root->lang->type_of_child) (child->parent,
2449 child->index);
2450 install_new_value (child, value, 1);
2451
2452 return child;
2453 }
2454 \f
2455
2456 /*
2457 * Miscellaneous utility functions.
2458 */
2459
2460 /* Allocate memory and initialize a new variable. */
2461 static struct varobj *
2462 new_variable (void)
2463 {
2464 struct varobj *var;
2465
2466 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2467 var->name = NULL;
2468 var->path_expr = NULL;
2469 var->obj_name = NULL;
2470 var->index = -1;
2471 var->type = NULL;
2472 var->value = NULL;
2473 var->num_children = -1;
2474 var->parent = NULL;
2475 var->children = NULL;
2476 var->format = 0;
2477 var->root = NULL;
2478 var->updated = 0;
2479 var->print_value = NULL;
2480 var->frozen = 0;
2481 var->not_fetched = 0;
2482 var->children_requested = 0;
2483 var->from = -1;
2484 var->to = -1;
2485 var->constructor = 0;
2486 var->pretty_printer = 0;
2487 var->child_iter = 0;
2488 var->saved_item = 0;
2489
2490 return var;
2491 }
2492
2493 /* Allocate memory and initialize a new root variable. */
2494 static struct varobj *
2495 new_root_variable (void)
2496 {
2497 struct varobj *var = new_variable ();
2498
2499 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2500 var->root->lang = NULL;
2501 var->root->exp = NULL;
2502 var->root->valid_block = NULL;
2503 var->root->frame = null_frame_id;
2504 var->root->floating = 0;
2505 var->root->rootvar = NULL;
2506 var->root->is_valid = 1;
2507
2508 return var;
2509 }
2510
2511 /* Free any allocated memory associated with VAR. */
2512 static void
2513 free_variable (struct varobj *var)
2514 {
2515 #if HAVE_PYTHON
2516 if (var->pretty_printer)
2517 {
2518 struct cleanup *cleanup = varobj_ensure_python_env (var);
2519 Py_XDECREF (var->constructor);
2520 Py_XDECREF (var->pretty_printer);
2521 Py_XDECREF (var->child_iter);
2522 Py_XDECREF (var->saved_item);
2523 do_cleanups (cleanup);
2524 }
2525 #endif
2526
2527 value_free (var->value);
2528
2529 /* Free the expression if this is a root variable. */
2530 if (is_root_p (var))
2531 {
2532 xfree (var->root->exp);
2533 xfree (var->root);
2534 }
2535
2536 xfree (var->name);
2537 xfree (var->obj_name);
2538 xfree (var->print_value);
2539 xfree (var->path_expr);
2540 xfree (var);
2541 }
2542
2543 static void
2544 do_free_variable_cleanup (void *var)
2545 {
2546 free_variable (var);
2547 }
2548
2549 static struct cleanup *
2550 make_cleanup_free_variable (struct varobj *var)
2551 {
2552 return make_cleanup (do_free_variable_cleanup, var);
2553 }
2554
2555 /* This returns the type of the variable. It also skips past typedefs
2556 to return the real type of the variable.
2557
2558 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2559 except within get_target_type and get_type. */
2560 static struct type *
2561 get_type (struct varobj *var)
2562 {
2563 struct type *type;
2564
2565 type = var->type;
2566 if (type != NULL)
2567 type = check_typedef (type);
2568
2569 return type;
2570 }
2571
2572 /* Return the type of the value that's stored in VAR,
2573 or that would have being stored there if the
2574 value were accessible.
2575
2576 This differs from VAR->type in that VAR->type is always
2577 the true type of the expession in the source language.
2578 The return value of this function is the type we're
2579 actually storing in varobj, and using for displaying
2580 the values and for comparing previous and new values.
2581
2582 For example, top-level references are always stripped. */
2583 static struct type *
2584 get_value_type (struct varobj *var)
2585 {
2586 struct type *type;
2587
2588 if (var->value)
2589 type = value_type (var->value);
2590 else
2591 type = var->type;
2592
2593 type = check_typedef (type);
2594
2595 if (TYPE_CODE (type) == TYPE_CODE_REF)
2596 type = get_target_type (type);
2597
2598 type = check_typedef (type);
2599
2600 return type;
2601 }
2602
2603 /* This returns the target type (or NULL) of TYPE, also skipping
2604 past typedefs, just like get_type ().
2605
2606 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2607 except within get_target_type and get_type. */
2608 static struct type *
2609 get_target_type (struct type *type)
2610 {
2611 if (type != NULL)
2612 {
2613 type = TYPE_TARGET_TYPE (type);
2614 if (type != NULL)
2615 type = check_typedef (type);
2616 }
2617
2618 return type;
2619 }
2620
2621 /* What is the default display for this variable? We assume that
2622 everything is "natural". Any exceptions? */
2623 static enum varobj_display_formats
2624 variable_default_display (struct varobj *var)
2625 {
2626 return FORMAT_NATURAL;
2627 }
2628
2629 /* FIXME: The following should be generic for any pointer. */
2630 static void
2631 cppush (struct cpstack **pstack, char *name)
2632 {
2633 struct cpstack *s;
2634
2635 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2636 s->name = name;
2637 s->next = *pstack;
2638 *pstack = s;
2639 }
2640
2641 /* FIXME: The following should be generic for any pointer. */
2642 static char *
2643 cppop (struct cpstack **pstack)
2644 {
2645 struct cpstack *s;
2646 char *v;
2647
2648 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2649 return NULL;
2650
2651 s = *pstack;
2652 v = s->name;
2653 *pstack = (*pstack)->next;
2654 xfree (s);
2655
2656 return v;
2657 }
2658 \f
2659 /*
2660 * Language-dependencies
2661 */
2662
2663 /* Common entry points */
2664
2665 /* Get the language of variable VAR. */
2666 static enum varobj_languages
2667 variable_language (struct varobj *var)
2668 {
2669 enum varobj_languages lang;
2670
2671 switch (var->root->exp->language_defn->la_language)
2672 {
2673 default:
2674 case language_c:
2675 lang = vlang_c;
2676 break;
2677 case language_cplus:
2678 lang = vlang_cplus;
2679 break;
2680 case language_java:
2681 lang = vlang_java;
2682 break;
2683 case language_ada:
2684 lang = vlang_ada;
2685 break;
2686 }
2687
2688 return lang;
2689 }
2690
2691 /* Return the number of children for a given variable.
2692 The result of this function is defined by the language
2693 implementation. The number of children returned by this function
2694 is the number of children that the user will see in the variable
2695 display. */
2696 static int
2697 number_of_children (struct varobj *var)
2698 {
2699 return (*var->root->lang->number_of_children) (var);
2700 }
2701
2702 /* What is the expression for the root varobj VAR? Returns a malloc'd
2703 string. */
2704 static char *
2705 name_of_variable (struct varobj *var)
2706 {
2707 return (*var->root->lang->name_of_variable) (var);
2708 }
2709
2710 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2711 string. */
2712 static char *
2713 name_of_child (struct varobj *var, int index)
2714 {
2715 return (*var->root->lang->name_of_child) (var, index);
2716 }
2717
2718 /* What is the ``struct value *'' of the root variable VAR?
2719 For floating variable object, evaluation can get us a value
2720 of different type from what is stored in varobj already. In
2721 that case:
2722 - *type_changed will be set to 1
2723 - old varobj will be freed, and new one will be
2724 created, with the same name.
2725 - *var_handle will be set to the new varobj
2726 Otherwise, *type_changed will be set to 0. */
2727 static struct value *
2728 value_of_root (struct varobj **var_handle, int *type_changed)
2729 {
2730 struct varobj *var;
2731
2732 if (var_handle == NULL)
2733 return NULL;
2734
2735 var = *var_handle;
2736
2737 /* This should really be an exception, since this should
2738 only get called with a root variable. */
2739
2740 if (!is_root_p (var))
2741 return NULL;
2742
2743 if (var->root->floating)
2744 {
2745 struct varobj *tmp_var;
2746 char *old_type, *new_type;
2747
2748 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2749 USE_SELECTED_FRAME);
2750 if (tmp_var == NULL)
2751 {
2752 return NULL;
2753 }
2754 old_type = varobj_get_type (var);
2755 new_type = varobj_get_type (tmp_var);
2756 if (strcmp (old_type, new_type) == 0)
2757 {
2758 /* The expression presently stored inside var->root->exp
2759 remembers the locations of local variables relatively to
2760 the frame where the expression was created (in DWARF location
2761 button, for example). Naturally, those locations are not
2762 correct in other frames, so update the expression. */
2763
2764 struct expression *tmp_exp = var->root->exp;
2765
2766 var->root->exp = tmp_var->root->exp;
2767 tmp_var->root->exp = tmp_exp;
2768
2769 varobj_delete (tmp_var, NULL, 0);
2770 *type_changed = 0;
2771 }
2772 else
2773 {
2774 tmp_var->obj_name = xstrdup (var->obj_name);
2775 tmp_var->from = var->from;
2776 tmp_var->to = var->to;
2777 varobj_delete (var, NULL, 0);
2778
2779 install_variable (tmp_var);
2780 *var_handle = tmp_var;
2781 var = *var_handle;
2782 *type_changed = 1;
2783 }
2784 xfree (old_type);
2785 xfree (new_type);
2786 }
2787 else
2788 {
2789 *type_changed = 0;
2790 }
2791
2792 {
2793 struct value *value;
2794
2795 value = (*var->root->lang->value_of_root) (var_handle);
2796 if (var->value == NULL || value == NULL)
2797 {
2798 /* For root varobj-s, a NULL value indicates a scoping issue.
2799 So, nothing to do in terms of checking for mutations. */
2800 }
2801 else if (varobj_value_has_mutated (var, value, value_type (value)))
2802 {
2803 /* The type has mutated, so the children are no longer valid.
2804 Just delete them, and tell our caller that the type has
2805 changed. */
2806 varobj_delete (var, NULL, 1 /* only_children */);
2807 var->num_children = -1;
2808 var->to = -1;
2809 var->from = -1;
2810 *type_changed = 1;
2811 }
2812 return value;
2813 }
2814 }
2815
2816 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2817 static struct value *
2818 value_of_child (struct varobj *parent, int index)
2819 {
2820 struct value *value;
2821
2822 value = (*parent->root->lang->value_of_child) (parent, index);
2823
2824 return value;
2825 }
2826
2827 /* GDB already has a command called "value_of_variable". Sigh. */
2828 static char *
2829 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2830 {
2831 if (var->root->is_valid)
2832 {
2833 if (var->pretty_printer)
2834 return value_get_print_value (var->value, var->format, var);
2835 return (*var->root->lang->value_of_variable) (var, format);
2836 }
2837 else
2838 return NULL;
2839 }
2840
2841 static char *
2842 value_get_print_value (struct value *value, enum varobj_display_formats format,
2843 struct varobj *var)
2844 {
2845 struct ui_file *stb;
2846 struct cleanup *old_chain;
2847 char *thevalue = NULL;
2848 struct value_print_options opts;
2849 struct type *type = NULL;
2850 long len = 0;
2851 char *encoding = NULL;
2852 struct gdbarch *gdbarch = NULL;
2853 /* Initialize it just to avoid a GCC false warning. */
2854 CORE_ADDR str_addr = 0;
2855 int string_print = 0;
2856
2857 if (value == NULL)
2858 return NULL;
2859
2860 stb = mem_fileopen ();
2861 old_chain = make_cleanup_ui_file_delete (stb);
2862
2863 gdbarch = get_type_arch (value_type (value));
2864 #if HAVE_PYTHON
2865 {
2866 PyObject *value_formatter = var->pretty_printer;
2867
2868 varobj_ensure_python_env (var);
2869
2870 if (value_formatter)
2871 {
2872 /* First check to see if we have any children at all. If so,
2873 we simply return {...}. */
2874 if (dynamic_varobj_has_child_method (var))
2875 {
2876 do_cleanups (old_chain);
2877 return xstrdup ("{...}");
2878 }
2879
2880 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2881 {
2882 struct value *replacement;
2883 PyObject *output = NULL;
2884
2885 output = apply_varobj_pretty_printer (value_formatter,
2886 &replacement,
2887 stb);
2888
2889 /* If we have string like output ... */
2890 if (output)
2891 {
2892 make_cleanup_py_decref (output);
2893
2894 /* If this is a lazy string, extract it. For lazy
2895 strings we always print as a string, so set
2896 string_print. */
2897 if (gdbpy_is_lazy_string (output))
2898 {
2899 gdbpy_extract_lazy_string (output, &str_addr, &type,
2900 &len, &encoding);
2901 make_cleanup (free_current_contents, &encoding);
2902 string_print = 1;
2903 }
2904 else
2905 {
2906 /* If it is a regular (non-lazy) string, extract
2907 it and copy the contents into THEVALUE. If the
2908 hint says to print it as a string, set
2909 string_print. Otherwise just return the extracted
2910 string as a value. */
2911
2912 char *s = python_string_to_target_string (output);
2913
2914 if (s)
2915 {
2916 char *hint;
2917
2918 hint = gdbpy_get_display_hint (value_formatter);
2919 if (hint)
2920 {
2921 if (!strcmp (hint, "string"))
2922 string_print = 1;
2923 xfree (hint);
2924 }
2925
2926 len = strlen (s);
2927 thevalue = xmemdup (s, len + 1, len + 1);
2928 type = builtin_type (gdbarch)->builtin_char;
2929 xfree (s);
2930
2931 if (!string_print)
2932 {
2933 do_cleanups (old_chain);
2934 return thevalue;
2935 }
2936
2937 make_cleanup (xfree, thevalue);
2938 }
2939 else
2940 gdbpy_print_stack ();
2941 }
2942 }
2943 /* If the printer returned a replacement value, set VALUE
2944 to REPLACEMENT. If there is not a replacement value,
2945 just use the value passed to this function. */
2946 if (replacement)
2947 value = replacement;
2948 }
2949 }
2950 }
2951 #endif
2952
2953 get_formatted_print_options (&opts, format_code[(int) format]);
2954 opts.deref_ref = 0;
2955 opts.raw = 1;
2956
2957 /* If the THEVALUE has contents, it is a regular string. */
2958 if (thevalue)
2959 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2960 else if (string_print)
2961 /* Otherwise, if string_print is set, and it is not a regular
2962 string, it is a lazy string. */
2963 val_print_string (type, encoding, str_addr, len, stb, &opts);
2964 else
2965 /* All other cases. */
2966 common_val_print (value, stb, 0, &opts, current_language);
2967
2968 thevalue = ui_file_xstrdup (stb, NULL);
2969
2970 do_cleanups (old_chain);
2971 return thevalue;
2972 }
2973
2974 int
2975 varobj_editable_p (struct varobj *var)
2976 {
2977 struct type *type;
2978
2979 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2980 return 0;
2981
2982 type = get_value_type (var);
2983
2984 switch (TYPE_CODE (type))
2985 {
2986 case TYPE_CODE_STRUCT:
2987 case TYPE_CODE_UNION:
2988 case TYPE_CODE_ARRAY:
2989 case TYPE_CODE_FUNC:
2990 case TYPE_CODE_METHOD:
2991 return 0;
2992 break;
2993
2994 default:
2995 return 1;
2996 break;
2997 }
2998 }
2999
3000 /* Call VAR's value_is_changeable_p language-specific callback. */
3001
3002 static int
3003 varobj_value_is_changeable_p (struct varobj *var)
3004 {
3005 return var->root->lang->value_is_changeable_p (var);
3006 }
3007
3008 /* Return 1 if that varobj is floating, that is is always evaluated in the
3009 selected frame, and not bound to thread/frame. Such variable objects
3010 are created using '@' as frame specifier to -var-create. */
3011 int
3012 varobj_floating_p (struct varobj *var)
3013 {
3014 return var->root->floating;
3015 }
3016
3017 /* Given the value and the type of a variable object,
3018 adjust the value and type to those necessary
3019 for getting children of the variable object.
3020 This includes dereferencing top-level references
3021 to all types and dereferencing pointers to
3022 structures.
3023
3024 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3025 value will be fetched and if it differs from static type
3026 the value will be casted to it.
3027
3028 Both TYPE and *TYPE should be non-null. VALUE
3029 can be null if we want to only translate type.
3030 *VALUE can be null as well -- if the parent
3031 value is not known.
3032
3033 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3034 depending on whether pointer was dereferenced
3035 in this function. */
3036 static void
3037 adjust_value_for_child_access (struct value **value,
3038 struct type **type,
3039 int *was_ptr,
3040 int lookup_actual_type)
3041 {
3042 gdb_assert (type && *type);
3043
3044 if (was_ptr)
3045 *was_ptr = 0;
3046
3047 *type = check_typedef (*type);
3048
3049 /* The type of value stored in varobj, that is passed
3050 to us, is already supposed to be
3051 reference-stripped. */
3052
3053 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3054
3055 /* Pointers to structures are treated just like
3056 structures when accessing children. Don't
3057 dererences pointers to other types. */
3058 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3059 {
3060 struct type *target_type = get_target_type (*type);
3061 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3062 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3063 {
3064 if (value && *value)
3065 {
3066 volatile struct gdb_exception except;
3067
3068 TRY_CATCH (except, RETURN_MASK_ERROR)
3069 {
3070 *value = value_ind (*value);
3071 }
3072
3073 if (except.reason < 0)
3074 *value = NULL;
3075 }
3076 *type = target_type;
3077 if (was_ptr)
3078 *was_ptr = 1;
3079 }
3080 }
3081
3082 /* The 'get_target_type' function calls check_typedef on
3083 result, so we can immediately check type code. No
3084 need to call check_typedef here. */
3085
3086 /* Access a real type of the value (if necessary and possible). */
3087 if (value && *value && lookup_actual_type)
3088 {
3089 struct type *enclosing_type;
3090 int real_type_found = 0;
3091
3092 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3093 if (real_type_found)
3094 {
3095 *type = enclosing_type;
3096 *value = value_cast (enclosing_type, *value);
3097 }
3098 }
3099 }
3100
3101 /* Implement the "value_is_changeable_p" varobj callback for most
3102 languages. */
3103
3104 static int
3105 default_value_is_changeable_p (struct varobj *var)
3106 {
3107 int r;
3108 struct type *type;
3109
3110 if (CPLUS_FAKE_CHILD (var))
3111 return 0;
3112
3113 type = get_value_type (var);
3114
3115 switch (TYPE_CODE (type))
3116 {
3117 case TYPE_CODE_STRUCT:
3118 case TYPE_CODE_UNION:
3119 case TYPE_CODE_ARRAY:
3120 r = 0;
3121 break;
3122
3123 default:
3124 r = 1;
3125 }
3126
3127 return r;
3128 }
3129
3130 /* C */
3131
3132 static int
3133 c_number_of_children (struct varobj *var)
3134 {
3135 struct type *type = get_value_type (var);
3136 int children = 0;
3137 struct type *target;
3138
3139 adjust_value_for_child_access (NULL, &type, NULL, 0);
3140 target = get_target_type (type);
3141
3142 switch (TYPE_CODE (type))
3143 {
3144 case TYPE_CODE_ARRAY:
3145 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3146 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3147 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3148 else
3149 /* If we don't know how many elements there are, don't display
3150 any. */
3151 children = 0;
3152 break;
3153
3154 case TYPE_CODE_STRUCT:
3155 case TYPE_CODE_UNION:
3156 children = TYPE_NFIELDS (type);
3157 break;
3158
3159 case TYPE_CODE_PTR:
3160 /* The type here is a pointer to non-struct. Typically, pointers
3161 have one child, except for function ptrs, which have no children,
3162 and except for void*, as we don't know what to show.
3163
3164 We can show char* so we allow it to be dereferenced. If you decide
3165 to test for it, please mind that a little magic is necessary to
3166 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3167 TYPE_NAME == "char". */
3168 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3169 || TYPE_CODE (target) == TYPE_CODE_VOID)
3170 children = 0;
3171 else
3172 children = 1;
3173 break;
3174
3175 default:
3176 /* Other types have no children. */
3177 break;
3178 }
3179
3180 return children;
3181 }
3182
3183 static char *
3184 c_name_of_variable (struct varobj *parent)
3185 {
3186 return xstrdup (parent->name);
3187 }
3188
3189 /* Return the value of element TYPE_INDEX of a structure
3190 value VALUE. VALUE's type should be a structure,
3191 or union, or a typedef to struct/union.
3192
3193 Returns NULL if getting the value fails. Never throws. */
3194 static struct value *
3195 value_struct_element_index (struct value *value, int type_index)
3196 {
3197 struct value *result = NULL;
3198 volatile struct gdb_exception e;
3199 struct type *type = value_type (value);
3200
3201 type = check_typedef (type);
3202
3203 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3204 || TYPE_CODE (type) == TYPE_CODE_UNION);
3205
3206 TRY_CATCH (e, RETURN_MASK_ERROR)
3207 {
3208 if (field_is_static (&TYPE_FIELD (type, type_index)))
3209 result = value_static_field (type, type_index);
3210 else
3211 result = value_primitive_field (value, 0, type_index, type);
3212 }
3213 if (e.reason < 0)
3214 {
3215 return NULL;
3216 }
3217 else
3218 {
3219 return result;
3220 }
3221 }
3222
3223 /* Obtain the information about child INDEX of the variable
3224 object PARENT.
3225 If CNAME is not null, sets *CNAME to the name of the child relative
3226 to the parent.
3227 If CVALUE is not null, sets *CVALUE to the value of the child.
3228 If CTYPE is not null, sets *CTYPE to the type of the child.
3229
3230 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3231 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3232 to NULL. */
3233 static void
3234 c_describe_child (struct varobj *parent, int index,
3235 char **cname, struct value **cvalue, struct type **ctype,
3236 char **cfull_expression)
3237 {
3238 struct value *value = parent->value;
3239 struct type *type = get_value_type (parent);
3240 char *parent_expression = NULL;
3241 int was_ptr;
3242 volatile struct gdb_exception except;
3243
3244 if (cname)
3245 *cname = NULL;
3246 if (cvalue)
3247 *cvalue = NULL;
3248 if (ctype)
3249 *ctype = NULL;
3250 if (cfull_expression)
3251 {
3252 *cfull_expression = NULL;
3253 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3254 }
3255 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3256
3257 switch (TYPE_CODE (type))
3258 {
3259 case TYPE_CODE_ARRAY:
3260 if (cname)
3261 *cname
3262 = xstrdup (int_string (index
3263 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3264 10, 1, 0, 0));
3265
3266 if (cvalue && value)
3267 {
3268 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3269
3270 TRY_CATCH (except, RETURN_MASK_ERROR)
3271 {
3272 *cvalue = value_subscript (value, real_index);
3273 }
3274 }
3275
3276 if (ctype)
3277 *ctype = get_target_type (type);
3278
3279 if (cfull_expression)
3280 *cfull_expression =
3281 xstrprintf ("(%s)[%s]", parent_expression,
3282 int_string (index
3283 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3284 10, 1, 0, 0));
3285
3286
3287 break;
3288
3289 case TYPE_CODE_STRUCT:
3290 case TYPE_CODE_UNION:
3291 {
3292 const char *field_name;
3293
3294 /* If the type is anonymous and the field has no name,
3295 set an appropriate name. */
3296 field_name = TYPE_FIELD_NAME (type, index);
3297 if (field_name == NULL || *field_name == '\0')
3298 {
3299 if (cname)
3300 {
3301 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3302 == TYPE_CODE_STRUCT)
3303 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3304 else
3305 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3306 }
3307
3308 if (cfull_expression)
3309 *cfull_expression = xstrdup ("");
3310 }
3311 else
3312 {
3313 if (cname)
3314 *cname = xstrdup (field_name);
3315
3316 if (cfull_expression)
3317 {
3318 char *join = was_ptr ? "->" : ".";
3319
3320 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3321 join, field_name);
3322 }
3323 }
3324
3325 if (cvalue && value)
3326 {
3327 /* For C, varobj index is the same as type index. */
3328 *cvalue = value_struct_element_index (value, index);
3329 }
3330
3331 if (ctype)
3332 *ctype = TYPE_FIELD_TYPE (type, index);
3333 }
3334 break;
3335
3336 case TYPE_CODE_PTR:
3337 if (cname)
3338 *cname = xstrprintf ("*%s", parent->name);
3339
3340 if (cvalue && value)
3341 {
3342 TRY_CATCH (except, RETURN_MASK_ERROR)
3343 {
3344 *cvalue = value_ind (value);
3345 }
3346
3347 if (except.reason < 0)
3348 *cvalue = NULL;
3349 }
3350
3351 /* Don't use get_target_type because it calls
3352 check_typedef and here, we want to show the true
3353 declared type of the variable. */
3354 if (ctype)
3355 *ctype = TYPE_TARGET_TYPE (type);
3356
3357 if (cfull_expression)
3358 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3359
3360 break;
3361
3362 default:
3363 /* This should not happen. */
3364 if (cname)
3365 *cname = xstrdup ("???");
3366 if (cfull_expression)
3367 *cfull_expression = xstrdup ("???");
3368 /* Don't set value and type, we don't know then. */
3369 }
3370 }
3371
3372 static char *
3373 c_name_of_child (struct varobj *parent, int index)
3374 {
3375 char *name;
3376
3377 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3378 return name;
3379 }
3380
3381 static char *
3382 c_path_expr_of_child (struct varobj *child)
3383 {
3384 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3385 &child->path_expr);
3386 return child->path_expr;
3387 }
3388
3389 /* If frame associated with VAR can be found, switch
3390 to it and return 1. Otherwise, return 0. */
3391 static int
3392 check_scope (struct varobj *var)
3393 {
3394 struct frame_info *fi;
3395 int scope;
3396
3397 fi = frame_find_by_id (var->root->frame);
3398 scope = fi != NULL;
3399
3400 if (fi)
3401 {
3402 CORE_ADDR pc = get_frame_pc (fi);
3403
3404 if (pc < BLOCK_START (var->root->valid_block) ||
3405 pc >= BLOCK_END (var->root->valid_block))
3406 scope = 0;
3407 else
3408 select_frame (fi);
3409 }
3410 return scope;
3411 }
3412
3413 static struct value *
3414 c_value_of_root (struct varobj **var_handle)
3415 {
3416 struct value *new_val = NULL;
3417 struct varobj *var = *var_handle;
3418 int within_scope = 0;
3419 struct cleanup *back_to;
3420
3421 /* Only root variables can be updated... */
3422 if (!is_root_p (var))
3423 /* Not a root var. */
3424 return NULL;
3425
3426 back_to = make_cleanup_restore_current_thread ();
3427
3428 /* Determine whether the variable is still around. */
3429 if (var->root->valid_block == NULL || var->root->floating)
3430 within_scope = 1;
3431 else if (var->root->thread_id == 0)
3432 {
3433 /* The program was single-threaded when the variable object was
3434 created. Technically, it's possible that the program became
3435 multi-threaded since then, but we don't support such
3436 scenario yet. */
3437 within_scope = check_scope (var);
3438 }
3439 else
3440 {
3441 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3442 if (in_thread_list (ptid))
3443 {
3444 switch_to_thread (ptid);
3445 within_scope = check_scope (var);
3446 }
3447 }
3448
3449 if (within_scope)
3450 {
3451 volatile struct gdb_exception except;
3452
3453 /* We need to catch errors here, because if evaluate
3454 expression fails we want to just return NULL. */
3455 TRY_CATCH (except, RETURN_MASK_ERROR)
3456 {
3457 new_val = evaluate_expression (var->root->exp);
3458 }
3459
3460 return new_val;
3461 }
3462
3463 do_cleanups (back_to);
3464
3465 return NULL;
3466 }
3467
3468 static struct value *
3469 c_value_of_child (struct varobj *parent, int index)
3470 {
3471 struct value *value = NULL;
3472
3473 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3474 return value;
3475 }
3476
3477 static struct type *
3478 c_type_of_child (struct varobj *parent, int index)
3479 {
3480 struct type *type = NULL;
3481
3482 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3483 return type;
3484 }
3485
3486 static char *
3487 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3488 {
3489 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3490 it will print out its children instead of "{...}". So we need to
3491 catch that case explicitly. */
3492 struct type *type = get_type (var);
3493
3494 /* Strip top-level references. */
3495 while (TYPE_CODE (type) == TYPE_CODE_REF)
3496 type = check_typedef (TYPE_TARGET_TYPE (type));
3497
3498 switch (TYPE_CODE (type))
3499 {
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3502 return xstrdup ("{...}");
3503 /* break; */
3504
3505 case TYPE_CODE_ARRAY:
3506 {
3507 char *number;
3508
3509 number = xstrprintf ("[%d]", var->num_children);
3510 return (number);
3511 }
3512 /* break; */
3513
3514 default:
3515 {
3516 if (var->value == NULL)
3517 {
3518 /* This can happen if we attempt to get the value of a struct
3519 member when the parent is an invalid pointer. This is an
3520 error condition, so we should tell the caller. */
3521 return NULL;
3522 }
3523 else
3524 {
3525 if (var->not_fetched && value_lazy (var->value))
3526 /* Frozen variable and no value yet. We don't
3527 implicitly fetch the value. MI response will
3528 use empty string for the value, which is OK. */
3529 return NULL;
3530
3531 gdb_assert (varobj_value_is_changeable_p (var));
3532 gdb_assert (!value_lazy (var->value));
3533
3534 /* If the specified format is the current one,
3535 we can reuse print_value. */
3536 if (format == var->format)
3537 return xstrdup (var->print_value);
3538 else
3539 return value_get_print_value (var->value, format, var);
3540 }
3541 }
3542 }
3543 }
3544 \f
3545
3546 /* C++ */
3547
3548 static int
3549 cplus_number_of_children (struct varobj *var)
3550 {
3551 struct value *value = NULL;
3552 struct type *type;
3553 int children, dont_know;
3554 int lookup_actual_type = 0;
3555 struct value_print_options opts;
3556
3557 dont_know = 1;
3558 children = 0;
3559
3560 get_user_print_options (&opts);
3561
3562 if (!CPLUS_FAKE_CHILD (var))
3563 {
3564 type = get_value_type (var);
3565
3566 /* It is necessary to access a real type (via RTTI). */
3567 if (opts.objectprint)
3568 {
3569 value = var->value;
3570 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3571 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3572 }
3573 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3574
3575 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3576 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3577 {
3578 int kids[3];
3579
3580 cplus_class_num_children (type, kids);
3581 if (kids[v_public] != 0)
3582 children++;
3583 if (kids[v_private] != 0)
3584 children++;
3585 if (kids[v_protected] != 0)
3586 children++;
3587
3588 /* Add any baseclasses. */
3589 children += TYPE_N_BASECLASSES (type);
3590 dont_know = 0;
3591
3592 /* FIXME: save children in var. */
3593 }
3594 }
3595 else
3596 {
3597 int kids[3];
3598
3599 type = get_value_type (var->parent);
3600
3601 /* It is necessary to access a real type (via RTTI). */
3602 if (opts.objectprint)
3603 {
3604 struct varobj *parent = var->parent;
3605
3606 value = parent->value;
3607 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3608 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3609 }
3610 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3611
3612 cplus_class_num_children (type, kids);
3613 if (strcmp (var->name, "public") == 0)
3614 children = kids[v_public];
3615 else if (strcmp (var->name, "private") == 0)
3616 children = kids[v_private];
3617 else
3618 children = kids[v_protected];
3619 dont_know = 0;
3620 }
3621
3622 if (dont_know)
3623 children = c_number_of_children (var);
3624
3625 return children;
3626 }
3627
3628 /* Compute # of public, private, and protected variables in this class.
3629 That means we need to descend into all baseclasses and find out
3630 how many are there, too. */
3631 static void
3632 cplus_class_num_children (struct type *type, int children[3])
3633 {
3634 int i, vptr_fieldno;
3635 struct type *basetype = NULL;
3636
3637 children[v_public] = 0;
3638 children[v_private] = 0;
3639 children[v_protected] = 0;
3640
3641 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3642 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3643 {
3644 /* If we have a virtual table pointer, omit it. Even if virtual
3645 table pointers are not specifically marked in the debug info,
3646 they should be artificial. */
3647 if ((type == basetype && i == vptr_fieldno)
3648 || TYPE_FIELD_ARTIFICIAL (type, i))
3649 continue;
3650
3651 if (TYPE_FIELD_PROTECTED (type, i))
3652 children[v_protected]++;
3653 else if (TYPE_FIELD_PRIVATE (type, i))
3654 children[v_private]++;
3655 else
3656 children[v_public]++;
3657 }
3658 }
3659
3660 static char *
3661 cplus_name_of_variable (struct varobj *parent)
3662 {
3663 return c_name_of_variable (parent);
3664 }
3665
3666 enum accessibility { private_field, protected_field, public_field };
3667
3668 /* Check if field INDEX of TYPE has the specified accessibility.
3669 Return 0 if so and 1 otherwise. */
3670 static int
3671 match_accessibility (struct type *type, int index, enum accessibility acc)
3672 {
3673 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3674 return 1;
3675 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3676 return 1;
3677 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3678 && !TYPE_FIELD_PROTECTED (type, index))
3679 return 1;
3680 else
3681 return 0;
3682 }
3683
3684 static void
3685 cplus_describe_child (struct varobj *parent, int index,
3686 char **cname, struct value **cvalue, struct type **ctype,
3687 char **cfull_expression)
3688 {
3689 struct value *value;
3690 struct type *type;
3691 int was_ptr;
3692 int lookup_actual_type = 0;
3693 char *parent_expression = NULL;
3694 struct varobj *var;
3695 struct value_print_options opts;
3696
3697 if (cname)
3698 *cname = NULL;
3699 if (cvalue)
3700 *cvalue = NULL;
3701 if (ctype)
3702 *ctype = NULL;
3703 if (cfull_expression)
3704 *cfull_expression = NULL;
3705
3706 get_user_print_options (&opts);
3707
3708 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3709 if (opts.objectprint)
3710 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3711 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3712 value = var->value;
3713 type = get_value_type (var);
3714 if (cfull_expression)
3715 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3716
3717 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3718
3719 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3720 || TYPE_CODE (type) == TYPE_CODE_UNION)
3721 {
3722 char *join = was_ptr ? "->" : ".";
3723
3724 if (CPLUS_FAKE_CHILD (parent))
3725 {
3726 /* The fields of the class type are ordered as they
3727 appear in the class. We are given an index for a
3728 particular access control type ("public","protected",
3729 or "private"). We must skip over fields that don't
3730 have the access control we are looking for to properly
3731 find the indexed field. */
3732 int type_index = TYPE_N_BASECLASSES (type);
3733 enum accessibility acc = public_field;
3734 int vptr_fieldno;
3735 struct type *basetype = NULL;
3736 const char *field_name;
3737
3738 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3739 if (strcmp (parent->name, "private") == 0)
3740 acc = private_field;
3741 else if (strcmp (parent->name, "protected") == 0)
3742 acc = protected_field;
3743
3744 while (index >= 0)
3745 {
3746 if ((type == basetype && type_index == vptr_fieldno)
3747 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3748 ; /* ignore vptr */
3749 else if (match_accessibility (type, type_index, acc))
3750 --index;
3751 ++type_index;
3752 }
3753 --type_index;
3754
3755 /* If the type is anonymous and the field has no name,
3756 set an appopriate name. */
3757 field_name = TYPE_FIELD_NAME (type, type_index);
3758 if (field_name == NULL || *field_name == '\0')
3759 {
3760 if (cname)
3761 {
3762 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3763 == TYPE_CODE_STRUCT)
3764 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3765 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3766 == TYPE_CODE_UNION)
3767 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3768 }
3769
3770 if (cfull_expression)
3771 *cfull_expression = xstrdup ("");
3772 }
3773 else
3774 {
3775 if (cname)
3776 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3777
3778 if (cfull_expression)
3779 *cfull_expression
3780 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3781 field_name);
3782 }
3783
3784 if (cvalue && value)
3785 *cvalue = value_struct_element_index (value, type_index);
3786
3787 if (ctype)
3788 *ctype = TYPE_FIELD_TYPE (type, type_index);
3789 }
3790 else if (index < TYPE_N_BASECLASSES (type))
3791 {
3792 /* This is a baseclass. */
3793 if (cname)
3794 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3795
3796 if (cvalue && value)
3797 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3798
3799 if (ctype)
3800 {
3801 *ctype = TYPE_FIELD_TYPE (type, index);
3802 }
3803
3804 if (cfull_expression)
3805 {
3806 char *ptr = was_ptr ? "*" : "";
3807
3808 /* Cast the parent to the base' type. Note that in gdb,
3809 expression like
3810 (Base1)d
3811 will create an lvalue, for all appearences, so we don't
3812 need to use more fancy:
3813 *(Base1*)(&d)
3814 construct.
3815
3816 When we are in the scope of the base class or of one
3817 of its children, the type field name will be interpreted
3818 as a constructor, if it exists. Therefore, we must
3819 indicate that the name is a class name by using the
3820 'class' keyword. See PR mi/11912 */
3821 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3822 ptr,
3823 TYPE_FIELD_NAME (type, index),
3824 ptr,
3825 parent_expression);
3826 }
3827 }
3828 else
3829 {
3830 char *access = NULL;
3831 int children[3];
3832
3833 cplus_class_num_children (type, children);
3834
3835 /* Everything beyond the baseclasses can
3836 only be "public", "private", or "protected"
3837
3838 The special "fake" children are always output by varobj in
3839 this order. So if INDEX == 2, it MUST be "protected". */
3840 index -= TYPE_N_BASECLASSES (type);
3841 switch (index)
3842 {
3843 case 0:
3844 if (children[v_public] > 0)
3845 access = "public";
3846 else if (children[v_private] > 0)
3847 access = "private";
3848 else
3849 access = "protected";
3850 break;
3851 case 1:
3852 if (children[v_public] > 0)
3853 {
3854 if (children[v_private] > 0)
3855 access = "private";
3856 else
3857 access = "protected";
3858 }
3859 else if (children[v_private] > 0)
3860 access = "protected";
3861 break;
3862 case 2:
3863 /* Must be protected. */
3864 access = "protected";
3865 break;
3866 default:
3867 /* error! */
3868 break;
3869 }
3870
3871 gdb_assert (access);
3872 if (cname)
3873 *cname = xstrdup (access);
3874
3875 /* Value and type and full expression are null here. */
3876 }
3877 }
3878 else
3879 {
3880 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3881 }
3882 }
3883
3884 static char *
3885 cplus_name_of_child (struct varobj *parent, int index)
3886 {
3887 char *name = NULL;
3888
3889 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3890 return name;
3891 }
3892
3893 static char *
3894 cplus_path_expr_of_child (struct varobj *child)
3895 {
3896 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3897 &child->path_expr);
3898 return child->path_expr;
3899 }
3900
3901 static struct value *
3902 cplus_value_of_root (struct varobj **var_handle)
3903 {
3904 return c_value_of_root (var_handle);
3905 }
3906
3907 static struct value *
3908 cplus_value_of_child (struct varobj *parent, int index)
3909 {
3910 struct value *value = NULL;
3911
3912 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3913 return value;
3914 }
3915
3916 static struct type *
3917 cplus_type_of_child (struct varobj *parent, int index)
3918 {
3919 struct type *type = NULL;
3920
3921 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3922 return type;
3923 }
3924
3925 static char *
3926 cplus_value_of_variable (struct varobj *var,
3927 enum varobj_display_formats format)
3928 {
3929
3930 /* If we have one of our special types, don't print out
3931 any value. */
3932 if (CPLUS_FAKE_CHILD (var))
3933 return xstrdup ("");
3934
3935 return c_value_of_variable (var, format);
3936 }
3937 \f
3938 /* Java */
3939
3940 static int
3941 java_number_of_children (struct varobj *var)
3942 {
3943 return cplus_number_of_children (var);
3944 }
3945
3946 static char *
3947 java_name_of_variable (struct varobj *parent)
3948 {
3949 char *p, *name;
3950
3951 name = cplus_name_of_variable (parent);
3952 /* If the name has "-" in it, it is because we
3953 needed to escape periods in the name... */
3954 p = name;
3955
3956 while (*p != '\000')
3957 {
3958 if (*p == '-')
3959 *p = '.';
3960 p++;
3961 }
3962
3963 return name;
3964 }
3965
3966 static char *
3967 java_name_of_child (struct varobj *parent, int index)
3968 {
3969 char *name, *p;
3970
3971 name = cplus_name_of_child (parent, index);
3972 /* Escape any periods in the name... */
3973 p = name;
3974
3975 while (*p != '\000')
3976 {
3977 if (*p == '.')
3978 *p = '-';
3979 p++;
3980 }
3981
3982 return name;
3983 }
3984
3985 static char *
3986 java_path_expr_of_child (struct varobj *child)
3987 {
3988 return NULL;
3989 }
3990
3991 static struct value *
3992 java_value_of_root (struct varobj **var_handle)
3993 {
3994 return cplus_value_of_root (var_handle);
3995 }
3996
3997 static struct value *
3998 java_value_of_child (struct varobj *parent, int index)
3999 {
4000 return cplus_value_of_child (parent, index);
4001 }
4002
4003 static struct type *
4004 java_type_of_child (struct varobj *parent, int index)
4005 {
4006 return cplus_type_of_child (parent, index);
4007 }
4008
4009 static char *
4010 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4011 {
4012 return cplus_value_of_variable (var, format);
4013 }
4014
4015 /* Ada specific callbacks for VAROBJs. */
4016
4017 static int
4018 ada_number_of_children (struct varobj *var)
4019 {
4020 return ada_varobj_get_number_of_children (var->value, var->type);
4021 }
4022
4023 static char *
4024 ada_name_of_variable (struct varobj *parent)
4025 {
4026 return c_name_of_variable (parent);
4027 }
4028
4029 static char *
4030 ada_name_of_child (struct varobj *parent, int index)
4031 {
4032 return ada_varobj_get_name_of_child (parent->value, parent->type,
4033 parent->name, index);
4034 }
4035
4036 static char*
4037 ada_path_expr_of_child (struct varobj *child)
4038 {
4039 struct varobj *parent = child->parent;
4040 const char *parent_path_expr = varobj_get_path_expr (parent);
4041
4042 return ada_varobj_get_path_expr_of_child (parent->value,
4043 parent->type,
4044 parent->name,
4045 parent_path_expr,
4046 child->index);
4047 }
4048
4049 static struct value *
4050 ada_value_of_root (struct varobj **var_handle)
4051 {
4052 return c_value_of_root (var_handle);
4053 }
4054
4055 static struct value *
4056 ada_value_of_child (struct varobj *parent, int index)
4057 {
4058 return ada_varobj_get_value_of_child (parent->value, parent->type,
4059 parent->name, index);
4060 }
4061
4062 static struct type *
4063 ada_type_of_child (struct varobj *parent, int index)
4064 {
4065 return ada_varobj_get_type_of_child (parent->value, parent->type,
4066 index);
4067 }
4068
4069 static char *
4070 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4071 {
4072 struct value_print_options opts;
4073
4074 get_formatted_print_options (&opts, format_code[(int) format]);
4075 opts.deref_ref = 0;
4076 opts.raw = 1;
4077
4078 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4079 }
4080
4081 /* Implement the "value_is_changeable_p" routine for Ada. */
4082
4083 static int
4084 ada_value_is_changeable_p (struct varobj *var)
4085 {
4086 struct type *type = var->value ? value_type (var->value) : var->type;
4087
4088 if (ada_is_array_descriptor_type (type)
4089 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4090 {
4091 /* This is in reality a pointer to an unconstrained array.
4092 its value is changeable. */
4093 return 1;
4094 }
4095
4096 if (ada_is_string_type (type))
4097 {
4098 /* We display the contents of the string in the array's
4099 "value" field. The contents can change, so consider
4100 that the array is changeable. */
4101 return 1;
4102 }
4103
4104 return default_value_is_changeable_p (var);
4105 }
4106
4107 /* Implement the "value_has_mutated" routine for Ada. */
4108
4109 static int
4110 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4111 struct type *new_type)
4112 {
4113 int i;
4114 int from = -1;
4115 int to = -1;
4116
4117 /* If the number of fields have changed, then for sure the type
4118 has mutated. */
4119 if (ada_varobj_get_number_of_children (new_val, new_type)
4120 != var->num_children)
4121 return 1;
4122
4123 /* If the number of fields have remained the same, then we need
4124 to check the name of each field. If they remain the same,
4125 then chances are the type hasn't mutated. This is technically
4126 an incomplete test, as the child's type might have changed
4127 despite the fact that the name remains the same. But we'll
4128 handle this situation by saying that the child has mutated,
4129 not this value.
4130
4131 If only part (or none!) of the children have been fetched,
4132 then only check the ones we fetched. It does not matter
4133 to the frontend whether a child that it has not fetched yet
4134 has mutated or not. So just assume it hasn't. */
4135
4136 restrict_range (var->children, &from, &to);
4137 for (i = from; i < to; i++)
4138 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4139 var->name, i),
4140 VEC_index (varobj_p, var->children, i)->name) != 0)
4141 return 1;
4142
4143 return 0;
4144 }
4145
4146 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4147 with an arbitrary caller supplied DATA pointer. */
4148
4149 void
4150 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4151 {
4152 struct varobj_root *var_root, *var_root_next;
4153
4154 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4155
4156 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4157 {
4158 var_root_next = var_root->next;
4159
4160 (*func) (var_root->rootvar, data);
4161 }
4162 }
4163 \f
4164 extern void _initialize_varobj (void);
4165 void
4166 _initialize_varobj (void)
4167 {
4168 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4169
4170 varobj_table = xmalloc (sizeof_table);
4171 memset (varobj_table, 0, sizeof_table);
4172
4173 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
4174 &varobjdebug,
4175 _("Set varobj debugging."),
4176 _("Show varobj debugging."),
4177 _("When non-zero, varobj debugging is enabled."),
4178 NULL, show_varobjdebug,
4179 &setlist, &showlist);
4180 }
4181
4182 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4183 defined on globals. It is a helper for varobj_invalidate.
4184
4185 This function is called after changing the symbol file, in this case the
4186 pointers to "struct type" stored by the varobj are no longer valid. All
4187 varobj must be either re-evaluated, or marked as invalid here. */
4188
4189 static void
4190 varobj_invalidate_iter (struct varobj *var, void *unused)
4191 {
4192 /* global and floating var must be re-evaluated. */
4193 if (var->root->floating || var->root->valid_block == NULL)
4194 {
4195 struct varobj *tmp_var;
4196
4197 /* Try to create a varobj with same expression. If we succeed
4198 replace the old varobj, otherwise invalidate it. */
4199 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4200 USE_CURRENT_FRAME);
4201 if (tmp_var != NULL)
4202 {
4203 tmp_var->obj_name = xstrdup (var->obj_name);
4204 varobj_delete (var, NULL, 0);
4205 install_variable (tmp_var);
4206 }
4207 else
4208 var->root->is_valid = 0;
4209 }
4210 else /* locals must be invalidated. */
4211 var->root->is_valid = 0;
4212 }
4213
4214 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4215 are defined on globals.
4216 Invalidated varobjs will be always printed in_scope="invalid". */
4217
4218 void
4219 varobj_invalidate (void)
4220 {
4221 all_root_varobjs (varobj_invalidate_iter, NULL);
4222 }
This page took 0.211315 seconds and 4 git commands to generate.