gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "ada-varobj.h"
37 #include "ada-lang.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
50 /* Non-zero if we want to see trace of varobj level stuff. */
51
52 int varobjdebug = 0;
53 static void
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56 {
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58 }
59
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
63
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
66
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
69
70 void
71 varobj_enable_pretty_printing (void)
72 {
73 pretty_printing = 1;
74 }
75
76 /* Data structures */
77
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
80 struct varobj_root
81 {
82
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
85
86 /* Block for which this expression is valid. */
87 struct block *valid_block;
88
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
91 struct frame_id frame;
92
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
103 int floating;
104
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
111
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
114
115 /* Next root variable */
116 struct varobj_root *next;
117 };
118
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
122 struct varobj
123 {
124
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
129 char *name;
130
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
137 char *obj_name;
138
139 /* Index of this variable in its parent or -1. */
140 int index;
141
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
145 struct type *type;
146
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
151 struct value *value;
152
153 /* The number of (immediate) children this variable has. */
154 int num_children;
155
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
158
159 /* Children of this object. */
160 VEC (varobj_p) *children;
161
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
168 /* Description of the root variable. Points to root variable for
169 children. */
170 struct varobj_root *root;
171
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
174
175 /* Was this variable updated via a varobj_set_value operation. */
176 int updated;
177
178 /* Last print value. */
179 char *print_value;
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
190
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
216 };
217
218 struct cpstack
219 {
220 char *name;
221 struct cpstack *next;
222 };
223
224 /* A list of varobjs */
225
226 struct vlist
227 {
228 struct varobj *var;
229 struct vlist *next;
230 };
231
232 /* Private function prototypes */
233
234 /* Helper functions for the above subcommands. */
235
236 static int delete_variable (struct cpstack **, struct varobj *, int);
237
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
240
241 static int install_variable (struct varobj *);
242
243 static void uninstall_variable (struct varobj *);
244
245 static struct varobj *create_child (struct varobj *, int, char *);
246
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
251 /* Utility routines */
252
253 static struct varobj *new_variable (void);
254
255 static struct varobj *new_root_variable (void);
256
257 static void free_variable (struct varobj *var);
258
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
261 static struct type *get_type (struct varobj *var);
262
263 static struct type *get_value_type (struct varobj *var);
264
265 static struct type *get_target_type (struct type *);
266
267 static enum varobj_display_formats variable_default_display (struct varobj *);
268
269 static void cppush (struct cpstack **pstack, char *name);
270
271 static char *cppop (struct cpstack **pstack);
272
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
276 static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
279 /* Language-specific routines. */
280
281 static enum varobj_languages variable_language (struct varobj *var);
282
283 static int number_of_children (struct varobj *);
284
285 static char *name_of_variable (struct varobj *);
286
287 static char *name_of_child (struct varobj *, int);
288
289 static struct value *value_of_root (struct varobj **var_handle, int *);
290
291 static struct value *value_of_child (struct varobj *parent, int index);
292
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
295
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
298 struct varobj *var);
299
300 static int varobj_value_is_changeable_p (struct varobj *var);
301
302 static int is_root_p (struct varobj *var);
303
304 #if HAVE_PYTHON
305
306 static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
309
310 #endif /* HAVE_PYTHON */
311
312 static int default_value_is_changeable_p (struct varobj *var);
313
314 /* C implementation */
315
316 static int c_number_of_children (struct varobj *var);
317
318 static char *c_name_of_variable (struct varobj *parent);
319
320 static char *c_name_of_child (struct varobj *parent, int index);
321
322 static char *c_path_expr_of_child (struct varobj *child);
323
324 static struct value *c_value_of_root (struct varobj **var_handle);
325
326 static struct value *c_value_of_child (struct varobj *parent, int index);
327
328 static struct type *c_type_of_child (struct varobj *parent, int index);
329
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
332
333 /* C++ implementation */
334
335 static int cplus_number_of_children (struct varobj *var);
336
337 static void cplus_class_num_children (struct type *type, int children[3]);
338
339 static char *cplus_name_of_variable (struct varobj *parent);
340
341 static char *cplus_name_of_child (struct varobj *parent, int index);
342
343 static char *cplus_path_expr_of_child (struct varobj *child);
344
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
346
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
348
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
350
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
353
354 /* Java implementation */
355
356 static int java_number_of_children (struct varobj *var);
357
358 static char *java_name_of_variable (struct varobj *parent);
359
360 static char *java_name_of_child (struct varobj *parent, int index);
361
362 static char *java_path_expr_of_child (struct varobj *child);
363
364 static struct value *java_value_of_root (struct varobj **var_handle);
365
366 static struct value *java_value_of_child (struct varobj *parent, int index);
367
368 static struct type *java_type_of_child (struct varobj *parent, int index);
369
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
372
373 /* Ada implementation */
374
375 static int ada_number_of_children (struct varobj *var);
376
377 static char *ada_name_of_variable (struct varobj *parent);
378
379 static char *ada_name_of_child (struct varobj *parent, int index);
380
381 static char *ada_path_expr_of_child (struct varobj *child);
382
383 static struct value *ada_value_of_root (struct varobj **var_handle);
384
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
392 static int ada_value_is_changeable_p (struct varobj *var);
393
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
397 /* The language specific vector */
398
399 struct language_specific
400 {
401
402 /* The language of this variable. */
403 enum varobj_languages language;
404
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
407
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
410
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
413
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
420
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
423
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
426
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
430
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
455 };
456
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
460 {
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
465 c_path_expr_of_child,
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
469 c_value_of_variable,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
472 ,
473 /* C */
474 {
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
479 c_path_expr_of_child,
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
483 c_value_of_variable,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
486 ,
487 /* C++ */
488 {
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
493 cplus_path_expr_of_child,
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
500 ,
501 /* Java */
502 {
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
507 java_path_expr_of_child,
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
527 };
528
529 /* A little convenience enum for dealing with C++/Java. */
530 enum vsections
531 {
532 v_public = 0, v_private, v_protected
533 };
534
535 /* Private data */
536
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
539
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
542
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
546
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
549
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553 \f
554
555 /* API Implementation */
556 static int
557 is_root_p (struct varobj *var)
558 {
559 return (var->root->rootvar == var);
560 }
561
562 #ifdef HAVE_PYTHON
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
567 {
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570 }
571 #endif
572
573 /* Creates a varobj (not its children). */
574
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580 {
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
589 {
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
596
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
601 return frame;
602 }
603
604 return NULL;
605 }
606
607 struct varobj *
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
610 {
611 struct varobj *var;
612 struct cleanup *old_chain;
613
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
617
618 if (expression != NULL)
619 {
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
622 struct block *block;
623 char *p;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
627 CORE_ADDR pc;
628
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
631
632 if (has_stack_frames ())
633 {
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
637 else
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
644 function. */
645 fi = find_frame_addr_in_frame_chain (frame);
646 }
647 else
648 fi = NULL;
649
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
653
654 pc = 0;
655 block = NULL;
656 if (fi != NULL)
657 {
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
660 }
661
662 p = expression;
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
667 {
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
669 }
670
671 if (except.reason < 0)
672 {
673 do_cleanups (old_chain);
674 return NULL;
675 }
676
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE)
679 {
680 do_cleanups (old_chain);
681 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
682 " as an expression.\n");
683 return NULL;
684 }
685
686 var->format = variable_default_display (var);
687 var->root->valid_block = innermost_block;
688 var->name = xstrdup (expression);
689 /* For a root var, the name and the expr are the same. */
690 var->path_expr = xstrdup (expression);
691
692 /* When the frame is different from the current frame,
693 we must select the appropriate frame before parsing
694 the expression, otherwise the value will not be current.
695 Since select_frame is so benign, just call it for all cases. */
696 if (innermost_block)
697 {
698 /* User could specify explicit FRAME-ADDR which was not found but
699 EXPRESSION is frame specific and we would not be able to evaluate
700 it correctly next time. With VALID_BLOCK set we must also set
701 FRAME and THREAD_ID. */
702 if (fi == NULL)
703 error (_("Failed to find the specified frame"));
704
705 var->root->frame = get_frame_id (fi);
706 var->root->thread_id = pid_to_thread_id (inferior_ptid);
707 old_id = get_frame_id (get_selected_frame (NULL));
708 select_frame (fi);
709 }
710
711 /* We definitely need to catch errors here.
712 If evaluate_expression succeeds we got the value we wanted.
713 But if it fails, we still go on with a call to evaluate_type(). */
714 TRY_CATCH (except, RETURN_MASK_ERROR)
715 {
716 value = evaluate_expression (var->root->exp);
717 }
718
719 if (except.reason < 0)
720 {
721 /* Error getting the value. Try to at least get the
722 right type. */
723 struct value *type_only_value = evaluate_type (var->root->exp);
724
725 var->type = value_type (type_only_value);
726 }
727 else
728 {
729 int real_type_found = 0;
730
731 var->type = value_actual_type (value, 0, &real_type_found);
732 if (real_type_found)
733 value = value_cast (var->type, value);
734 }
735
736 /* Set language info */
737 lang = variable_language (var);
738 var->root->lang = &languages[lang];
739
740 install_new_value (var, value, 1 /* Initial assignment */);
741
742 /* Set ourselves as our root. */
743 var->root->rootvar = var;
744
745 /* Reset the selected frame. */
746 if (frame_id_p (old_id))
747 select_frame (frame_find_by_id (old_id));
748 }
749
750 /* If the variable object name is null, that means this
751 is a temporary variable, so don't install it. */
752
753 if ((var != NULL) && (objname != NULL))
754 {
755 var->obj_name = xstrdup (objname);
756
757 /* If a varobj name is duplicated, the install will fail so
758 we must cleanup. */
759 if (!install_variable (var))
760 {
761 do_cleanups (old_chain);
762 return NULL;
763 }
764 }
765
766 discard_cleanups (old_chain);
767 return var;
768 }
769
770 /* Generates an unique name that can be used for a varobj. */
771
772 char *
773 varobj_gen_name (void)
774 {
775 static int id = 0;
776 char *obj_name;
777
778 /* Generate a name for this object. */
779 id++;
780 obj_name = xstrprintf ("var%d", id);
781
782 return obj_name;
783 }
784
785 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
786 error if OBJNAME cannot be found. */
787
788 struct varobj *
789 varobj_get_handle (char *objname)
790 {
791 struct vlist *cv;
792 const char *chp;
793 unsigned int index = 0;
794 unsigned int i = 1;
795
796 for (chp = objname; *chp; chp++)
797 {
798 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
799 }
800
801 cv = *(varobj_table + index);
802 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
803 cv = cv->next;
804
805 if (cv == NULL)
806 error (_("Variable object not found"));
807
808 return cv->var;
809 }
810
811 /* Given the handle, return the name of the object. */
812
813 char *
814 varobj_get_objname (struct varobj *var)
815 {
816 return var->obj_name;
817 }
818
819 /* Given the handle, return the expression represented by the object. */
820
821 char *
822 varobj_get_expression (struct varobj *var)
823 {
824 return name_of_variable (var);
825 }
826
827 /* Deletes a varobj and all its children if only_children == 0,
828 otherwise deletes only the children; returns a malloc'ed list of
829 all the (malloc'ed) names of the variables that have been deleted
830 (NULL terminated). */
831
832 int
833 varobj_delete (struct varobj *var, char ***dellist, int only_children)
834 {
835 int delcount;
836 int mycount;
837 struct cpstack *result = NULL;
838 char **cp;
839
840 /* Initialize a stack for temporary results. */
841 cppush (&result, NULL);
842
843 if (only_children)
844 /* Delete only the variable children. */
845 delcount = delete_variable (&result, var, 1 /* only the children */ );
846 else
847 /* Delete the variable and all its children. */
848 delcount = delete_variable (&result, var, 0 /* parent+children */ );
849
850 /* We may have been asked to return a list of what has been deleted. */
851 if (dellist != NULL)
852 {
853 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
854
855 cp = *dellist;
856 mycount = delcount;
857 *cp = cppop (&result);
858 while ((*cp != NULL) && (mycount > 0))
859 {
860 mycount--;
861 cp++;
862 *cp = cppop (&result);
863 }
864
865 if (mycount || (*cp != NULL))
866 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
867 mycount);
868 }
869
870 return delcount;
871 }
872
873 #if HAVE_PYTHON
874
875 /* Convenience function for varobj_set_visualizer. Instantiate a
876 pretty-printer for a given value. */
877 static PyObject *
878 instantiate_pretty_printer (PyObject *constructor, struct value *value)
879 {
880 PyObject *val_obj = NULL;
881 PyObject *printer;
882
883 val_obj = value_to_value_object (value);
884 if (! val_obj)
885 return NULL;
886
887 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
888 Py_DECREF (val_obj);
889 return printer;
890 }
891
892 #endif
893
894 /* Set/Get variable object display format. */
895
896 enum varobj_display_formats
897 varobj_set_display_format (struct varobj *var,
898 enum varobj_display_formats format)
899 {
900 switch (format)
901 {
902 case FORMAT_NATURAL:
903 case FORMAT_BINARY:
904 case FORMAT_DECIMAL:
905 case FORMAT_HEXADECIMAL:
906 case FORMAT_OCTAL:
907 var->format = format;
908 break;
909
910 default:
911 var->format = variable_default_display (var);
912 }
913
914 if (varobj_value_is_changeable_p (var)
915 && var->value && !value_lazy (var->value))
916 {
917 xfree (var->print_value);
918 var->print_value = value_get_print_value (var->value, var->format, var);
919 }
920
921 return var->format;
922 }
923
924 enum varobj_display_formats
925 varobj_get_display_format (struct varobj *var)
926 {
927 return var->format;
928 }
929
930 char *
931 varobj_get_display_hint (struct varobj *var)
932 {
933 char *result = NULL;
934
935 #if HAVE_PYTHON
936 struct cleanup *back_to = varobj_ensure_python_env (var);
937
938 if (var->pretty_printer)
939 result = gdbpy_get_display_hint (var->pretty_printer);
940
941 do_cleanups (back_to);
942 #endif
943
944 return result;
945 }
946
947 /* Return true if the varobj has items after TO, false otherwise. */
948
949 int
950 varobj_has_more (struct varobj *var, int to)
951 {
952 if (VEC_length (varobj_p, var->children) > to)
953 return 1;
954 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
955 && var->saved_item != NULL);
956 }
957
958 /* If the variable object is bound to a specific thread, that
959 is its evaluation can always be done in context of a frame
960 inside that thread, returns GDB id of the thread -- which
961 is always positive. Otherwise, returns -1. */
962 int
963 varobj_get_thread_id (struct varobj *var)
964 {
965 if (var->root->valid_block && var->root->thread_id > 0)
966 return var->root->thread_id;
967 else
968 return -1;
969 }
970
971 void
972 varobj_set_frozen (struct varobj *var, int frozen)
973 {
974 /* When a variable is unfrozen, we don't fetch its value.
975 The 'not_fetched' flag remains set, so next -var-update
976 won't complain.
977
978 We don't fetch the value, because for structures the client
979 should do -var-update anyway. It would be bad to have different
980 client-size logic for structure and other types. */
981 var->frozen = frozen;
982 }
983
984 int
985 varobj_get_frozen (struct varobj *var)
986 {
987 return var->frozen;
988 }
989
990 /* A helper function that restricts a range to what is actually
991 available in a VEC. This follows the usual rules for the meaning
992 of FROM and TO -- if either is negative, the entire range is
993 used. */
994
995 static void
996 restrict_range (VEC (varobj_p) *children, int *from, int *to)
997 {
998 if (*from < 0 || *to < 0)
999 {
1000 *from = 0;
1001 *to = VEC_length (varobj_p, children);
1002 }
1003 else
1004 {
1005 if (*from > VEC_length (varobj_p, children))
1006 *from = VEC_length (varobj_p, children);
1007 if (*to > VEC_length (varobj_p, children))
1008 *to = VEC_length (varobj_p, children);
1009 if (*from > *to)
1010 *from = *to;
1011 }
1012 }
1013
1014 #if HAVE_PYTHON
1015
1016 /* A helper for update_dynamic_varobj_children that installs a new
1017 child when needed. */
1018
1019 static void
1020 install_dynamic_child (struct varobj *var,
1021 VEC (varobj_p) **changed,
1022 VEC (varobj_p) **type_changed,
1023 VEC (varobj_p) **new,
1024 VEC (varobj_p) **unchanged,
1025 int *cchanged,
1026 int index,
1027 const char *name,
1028 struct value *value)
1029 {
1030 if (VEC_length (varobj_p, var->children) < index + 1)
1031 {
1032 /* There's no child yet. */
1033 struct varobj *child = varobj_add_child (var, name, value);
1034
1035 if (new)
1036 {
1037 VEC_safe_push (varobj_p, *new, child);
1038 *cchanged = 1;
1039 }
1040 }
1041 else
1042 {
1043 varobj_p existing = VEC_index (varobj_p, var->children, index);
1044
1045 int type_updated = update_type_if_necessary (existing, value);
1046 if (type_updated)
1047 {
1048 if (type_changed)
1049 VEC_safe_push (varobj_p, *type_changed, existing);
1050 }
1051 if (install_new_value (existing, value, 0))
1052 {
1053 if (!type_updated && changed)
1054 VEC_safe_push (varobj_p, *changed, existing);
1055 }
1056 else if (!type_updated && unchanged)
1057 VEC_safe_push (varobj_p, *unchanged, existing);
1058 }
1059 }
1060
1061 static int
1062 dynamic_varobj_has_child_method (struct varobj *var)
1063 {
1064 struct cleanup *back_to;
1065 PyObject *printer = var->pretty_printer;
1066 int result;
1067
1068 back_to = varobj_ensure_python_env (var);
1069 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1070 do_cleanups (back_to);
1071 return result;
1072 }
1073
1074 #endif
1075
1076 static int
1077 update_dynamic_varobj_children (struct varobj *var,
1078 VEC (varobj_p) **changed,
1079 VEC (varobj_p) **type_changed,
1080 VEC (varobj_p) **new,
1081 VEC (varobj_p) **unchanged,
1082 int *cchanged,
1083 int update_children,
1084 int from,
1085 int to)
1086 {
1087 #if HAVE_PYTHON
1088 struct cleanup *back_to;
1089 PyObject *children;
1090 int i;
1091 PyObject *printer = var->pretty_printer;
1092
1093 back_to = varobj_ensure_python_env (var);
1094
1095 *cchanged = 0;
1096 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1097 {
1098 do_cleanups (back_to);
1099 return 0;
1100 }
1101
1102 if (update_children || !var->child_iter)
1103 {
1104 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1105 NULL);
1106
1107 if (!children)
1108 {
1109 gdbpy_print_stack ();
1110 error (_("Null value returned for children"));
1111 }
1112
1113 make_cleanup_py_decref (children);
1114
1115 if (!PyIter_Check (children))
1116 error (_("Returned value is not iterable"));
1117
1118 Py_XDECREF (var->child_iter);
1119 var->child_iter = PyObject_GetIter (children);
1120 if (!var->child_iter)
1121 {
1122 gdbpy_print_stack ();
1123 error (_("Could not get children iterator"));
1124 }
1125
1126 Py_XDECREF (var->saved_item);
1127 var->saved_item = NULL;
1128
1129 i = 0;
1130 }
1131 else
1132 i = VEC_length (varobj_p, var->children);
1133
1134 /* We ask for one extra child, so that MI can report whether there
1135 are more children. */
1136 for (; to < 0 || i < to + 1; ++i)
1137 {
1138 PyObject *item;
1139 int force_done = 0;
1140
1141 /* See if there was a leftover from last time. */
1142 if (var->saved_item)
1143 {
1144 item = var->saved_item;
1145 var->saved_item = NULL;
1146 }
1147 else
1148 item = PyIter_Next (var->child_iter);
1149
1150 if (!item)
1151 {
1152 /* Normal end of iteration. */
1153 if (!PyErr_Occurred ())
1154 break;
1155
1156 /* If we got a memory error, just use the text as the
1157 item. */
1158 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1159 {
1160 PyObject *type, *value, *trace;
1161 char *name_str, *value_str;
1162
1163 PyErr_Fetch (&type, &value, &trace);
1164 value_str = gdbpy_exception_to_string (type, value);
1165 Py_XDECREF (type);
1166 Py_XDECREF (value);
1167 Py_XDECREF (trace);
1168 if (!value_str)
1169 {
1170 gdbpy_print_stack ();
1171 break;
1172 }
1173
1174 name_str = xstrprintf ("<error at %d>", i);
1175 item = Py_BuildValue ("(ss)", name_str, value_str);
1176 xfree (name_str);
1177 xfree (value_str);
1178 if (!item)
1179 {
1180 gdbpy_print_stack ();
1181 break;
1182 }
1183
1184 force_done = 1;
1185 }
1186 else
1187 {
1188 /* Any other kind of error. */
1189 gdbpy_print_stack ();
1190 break;
1191 }
1192 }
1193
1194 /* We don't want to push the extra child on any report list. */
1195 if (to < 0 || i < to)
1196 {
1197 PyObject *py_v;
1198 const char *name;
1199 struct value *v;
1200 struct cleanup *inner;
1201 int can_mention = from < 0 || i >= from;
1202
1203 inner = make_cleanup_py_decref (item);
1204
1205 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1206 {
1207 gdbpy_print_stack ();
1208 error (_("Invalid item from the child list"));
1209 }
1210
1211 v = convert_value_from_python (py_v);
1212 if (v == NULL)
1213 gdbpy_print_stack ();
1214 install_dynamic_child (var, can_mention ? changed : NULL,
1215 can_mention ? type_changed : NULL,
1216 can_mention ? new : NULL,
1217 can_mention ? unchanged : NULL,
1218 can_mention ? cchanged : NULL, i, name, v);
1219 do_cleanups (inner);
1220 }
1221 else
1222 {
1223 Py_XDECREF (var->saved_item);
1224 var->saved_item = item;
1225
1226 /* We want to truncate the child list just before this
1227 element. */
1228 break;
1229 }
1230
1231 if (force_done)
1232 break;
1233 }
1234
1235 if (i < VEC_length (varobj_p, var->children))
1236 {
1237 int j;
1238
1239 *cchanged = 1;
1240 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1241 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1242 VEC_truncate (varobj_p, var->children, i);
1243 }
1244
1245 /* If there are fewer children than requested, note that the list of
1246 children changed. */
1247 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1248 *cchanged = 1;
1249
1250 var->num_children = VEC_length (varobj_p, var->children);
1251
1252 do_cleanups (back_to);
1253
1254 return 1;
1255 #else
1256 gdb_assert (0 && "should never be called if Python is not enabled");
1257 #endif
1258 }
1259
1260 int
1261 varobj_get_num_children (struct varobj *var)
1262 {
1263 if (var->num_children == -1)
1264 {
1265 if (var->pretty_printer)
1266 {
1267 int dummy;
1268
1269 /* If we have a dynamic varobj, don't report -1 children.
1270 So, try to fetch some children first. */
1271 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1272 0, 0, 0);
1273 }
1274 else
1275 var->num_children = number_of_children (var);
1276 }
1277
1278 return var->num_children >= 0 ? var->num_children : 0;
1279 }
1280
1281 /* Creates a list of the immediate children of a variable object;
1282 the return code is the number of such children or -1 on error. */
1283
1284 VEC (varobj_p)*
1285 varobj_list_children (struct varobj *var, int *from, int *to)
1286 {
1287 char *name;
1288 int i, children_changed;
1289
1290 var->children_requested = 1;
1291
1292 if (var->pretty_printer)
1293 {
1294 /* This, in theory, can result in the number of children changing without
1295 frontend noticing. But well, calling -var-list-children on the same
1296 varobj twice is not something a sane frontend would do. */
1297 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1298 &children_changed, 0, 0, *to);
1299 restrict_range (var->children, from, to);
1300 return var->children;
1301 }
1302
1303 if (var->num_children == -1)
1304 var->num_children = number_of_children (var);
1305
1306 /* If that failed, give up. */
1307 if (var->num_children == -1)
1308 return var->children;
1309
1310 /* If we're called when the list of children is not yet initialized,
1311 allocate enough elements in it. */
1312 while (VEC_length (varobj_p, var->children) < var->num_children)
1313 VEC_safe_push (varobj_p, var->children, NULL);
1314
1315 for (i = 0; i < var->num_children; i++)
1316 {
1317 varobj_p existing = VEC_index (varobj_p, var->children, i);
1318
1319 if (existing == NULL)
1320 {
1321 /* Either it's the first call to varobj_list_children for
1322 this variable object, and the child was never created,
1323 or it was explicitly deleted by the client. */
1324 name = name_of_child (var, i);
1325 existing = create_child (var, i, name);
1326 VEC_replace (varobj_p, var->children, i, existing);
1327 }
1328 }
1329
1330 restrict_range (var->children, from, to);
1331 return var->children;
1332 }
1333
1334 #if HAVE_PYTHON
1335
1336 static struct varobj *
1337 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1338 {
1339 varobj_p v = create_child_with_value (var,
1340 VEC_length (varobj_p, var->children),
1341 name, value);
1342
1343 VEC_safe_push (varobj_p, var->children, v);
1344 return v;
1345 }
1346
1347 #endif /* HAVE_PYTHON */
1348
1349 /* Obtain the type of an object Variable as a string similar to the one gdb
1350 prints on the console. */
1351
1352 char *
1353 varobj_get_type (struct varobj *var)
1354 {
1355 /* For the "fake" variables, do not return a type. (It's type is
1356 NULL, too.)
1357 Do not return a type for invalid variables as well. */
1358 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1359 return NULL;
1360
1361 return type_to_string (var->type);
1362 }
1363
1364 /* Obtain the type of an object variable. */
1365
1366 struct type *
1367 varobj_get_gdb_type (struct varobj *var)
1368 {
1369 return var->type;
1370 }
1371
1372 /* Is VAR a path expression parent, i.e., can it be used to construct
1373 a valid path expression? */
1374
1375 static int
1376 is_path_expr_parent (struct varobj *var)
1377 {
1378 struct type *type;
1379
1380 /* "Fake" children are not path_expr parents. */
1381 if (CPLUS_FAKE_CHILD (var))
1382 return 0;
1383
1384 type = get_value_type (var);
1385
1386 /* Anonymous unions and structs are also not path_expr parents. */
1387 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1388 || TYPE_CODE (type) == TYPE_CODE_UNION)
1389 && TYPE_NAME (type) == NULL);
1390 }
1391
1392 /* Return the path expression parent for VAR. */
1393
1394 static struct varobj *
1395 get_path_expr_parent (struct varobj *var)
1396 {
1397 struct varobj *parent = var;
1398
1399 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1400 parent = parent->parent;
1401
1402 return parent;
1403 }
1404
1405 /* Return a pointer to the full rooted expression of varobj VAR.
1406 If it has not been computed yet, compute it. */
1407 char *
1408 varobj_get_path_expr (struct varobj *var)
1409 {
1410 if (var->path_expr != NULL)
1411 return var->path_expr;
1412 else
1413 {
1414 /* For root varobjs, we initialize path_expr
1415 when creating varobj, so here it should be
1416 child varobj. */
1417 gdb_assert (!is_root_p (var));
1418 return (*var->root->lang->path_expr_of_child) (var);
1419 }
1420 }
1421
1422 enum varobj_languages
1423 varobj_get_language (struct varobj *var)
1424 {
1425 return variable_language (var);
1426 }
1427
1428 int
1429 varobj_get_attributes (struct varobj *var)
1430 {
1431 int attributes = 0;
1432
1433 if (varobj_editable_p (var))
1434 /* FIXME: define masks for attributes. */
1435 attributes |= 0x00000001; /* Editable */
1436
1437 return attributes;
1438 }
1439
1440 int
1441 varobj_pretty_printed_p (struct varobj *var)
1442 {
1443 return var->pretty_printer != NULL;
1444 }
1445
1446 char *
1447 varobj_get_formatted_value (struct varobj *var,
1448 enum varobj_display_formats format)
1449 {
1450 return my_value_of_variable (var, format);
1451 }
1452
1453 char *
1454 varobj_get_value (struct varobj *var)
1455 {
1456 return my_value_of_variable (var, var->format);
1457 }
1458
1459 /* Set the value of an object variable (if it is editable) to the
1460 value of the given expression. */
1461 /* Note: Invokes functions that can call error(). */
1462
1463 int
1464 varobj_set_value (struct varobj *var, char *expression)
1465 {
1466 struct value *val = NULL; /* Initialize to keep gcc happy. */
1467 /* The argument "expression" contains the variable's new value.
1468 We need to first construct a legal expression for this -- ugh! */
1469 /* Does this cover all the bases? */
1470 struct expression *exp;
1471 struct value *value = NULL; /* Initialize to keep gcc happy. */
1472 int saved_input_radix = input_radix;
1473 char *s = expression;
1474 volatile struct gdb_exception except;
1475
1476 gdb_assert (varobj_editable_p (var));
1477
1478 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1479 exp = parse_exp_1 (&s, 0, 0, 0);
1480 TRY_CATCH (except, RETURN_MASK_ERROR)
1481 {
1482 value = evaluate_expression (exp);
1483 }
1484
1485 if (except.reason < 0)
1486 {
1487 /* We cannot proceed without a valid expression. */
1488 xfree (exp);
1489 return 0;
1490 }
1491
1492 /* All types that are editable must also be changeable. */
1493 gdb_assert (varobj_value_is_changeable_p (var));
1494
1495 /* The value of a changeable variable object must not be lazy. */
1496 gdb_assert (!value_lazy (var->value));
1497
1498 /* Need to coerce the input. We want to check if the
1499 value of the variable object will be different
1500 after assignment, and the first thing value_assign
1501 does is coerce the input.
1502 For example, if we are assigning an array to a pointer variable we
1503 should compare the pointer with the array's address, not with the
1504 array's content. */
1505 value = coerce_array (value);
1506
1507 /* The new value may be lazy. value_assign, or
1508 rather value_contents, will take care of this. */
1509 TRY_CATCH (except, RETURN_MASK_ERROR)
1510 {
1511 val = value_assign (var->value, value);
1512 }
1513
1514 if (except.reason < 0)
1515 return 0;
1516
1517 /* If the value has changed, record it, so that next -var-update can
1518 report this change. If a variable had a value of '1', we've set it
1519 to '333' and then set again to '1', when -var-update will report this
1520 variable as changed -- because the first assignment has set the
1521 'updated' flag. There's no need to optimize that, because return value
1522 of -var-update should be considered an approximation. */
1523 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1524 input_radix = saved_input_radix;
1525 return 1;
1526 }
1527
1528 #if HAVE_PYTHON
1529
1530 /* A helper function to install a constructor function and visualizer
1531 in a varobj. */
1532
1533 static void
1534 install_visualizer (struct varobj *var, PyObject *constructor,
1535 PyObject *visualizer)
1536 {
1537 Py_XDECREF (var->constructor);
1538 var->constructor = constructor;
1539
1540 Py_XDECREF (var->pretty_printer);
1541 var->pretty_printer = visualizer;
1542
1543 Py_XDECREF (var->child_iter);
1544 var->child_iter = NULL;
1545 }
1546
1547 /* Install the default visualizer for VAR. */
1548
1549 static void
1550 install_default_visualizer (struct varobj *var)
1551 {
1552 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1553 if (CPLUS_FAKE_CHILD (var))
1554 return;
1555
1556 if (pretty_printing)
1557 {
1558 PyObject *pretty_printer = NULL;
1559
1560 if (var->value)
1561 {
1562 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1563 if (! pretty_printer)
1564 {
1565 gdbpy_print_stack ();
1566 error (_("Cannot instantiate printer for default visualizer"));
1567 }
1568 }
1569
1570 if (pretty_printer == Py_None)
1571 {
1572 Py_DECREF (pretty_printer);
1573 pretty_printer = NULL;
1574 }
1575
1576 install_visualizer (var, NULL, pretty_printer);
1577 }
1578 }
1579
1580 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1581 make a new object. */
1582
1583 static void
1584 construct_visualizer (struct varobj *var, PyObject *constructor)
1585 {
1586 PyObject *pretty_printer;
1587
1588 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1589 if (CPLUS_FAKE_CHILD (var))
1590 return;
1591
1592 Py_INCREF (constructor);
1593 if (constructor == Py_None)
1594 pretty_printer = NULL;
1595 else
1596 {
1597 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1598 if (! pretty_printer)
1599 {
1600 gdbpy_print_stack ();
1601 Py_DECREF (constructor);
1602 constructor = Py_None;
1603 Py_INCREF (constructor);
1604 }
1605
1606 if (pretty_printer == Py_None)
1607 {
1608 Py_DECREF (pretty_printer);
1609 pretty_printer = NULL;
1610 }
1611 }
1612
1613 install_visualizer (var, constructor, pretty_printer);
1614 }
1615
1616 #endif /* HAVE_PYTHON */
1617
1618 /* A helper function for install_new_value. This creates and installs
1619 a visualizer for VAR, if appropriate. */
1620
1621 static void
1622 install_new_value_visualizer (struct varobj *var)
1623 {
1624 #if HAVE_PYTHON
1625 /* If the constructor is None, then we want the raw value. If VAR
1626 does not have a value, just skip this. */
1627 if (var->constructor != Py_None && var->value)
1628 {
1629 struct cleanup *cleanup;
1630
1631 cleanup = varobj_ensure_python_env (var);
1632
1633 if (!var->constructor)
1634 install_default_visualizer (var);
1635 else
1636 construct_visualizer (var, var->constructor);
1637
1638 do_cleanups (cleanup);
1639 }
1640 #else
1641 /* Do nothing. */
1642 #endif
1643 }
1644
1645 /* When using RTTI to determine variable type it may be changed in runtime when
1646 the variable value is changed. This function checks whether type of varobj
1647 VAR will change when a new value NEW_VALUE is assigned and if it is so
1648 updates the type of VAR. */
1649
1650 static int
1651 update_type_if_necessary (struct varobj *var, struct value *new_value)
1652 {
1653 if (new_value)
1654 {
1655 struct value_print_options opts;
1656
1657 get_user_print_options (&opts);
1658 if (opts.objectprint)
1659 {
1660 struct type *new_type;
1661 char *curr_type_str, *new_type_str;
1662
1663 new_type = value_actual_type (new_value, 0, 0);
1664 new_type_str = type_to_string (new_type);
1665 curr_type_str = varobj_get_type (var);
1666 if (strcmp (curr_type_str, new_type_str) != 0)
1667 {
1668 var->type = new_type;
1669
1670 /* This information may be not valid for a new type. */
1671 varobj_delete (var, NULL, 1);
1672 VEC_free (varobj_p, var->children);
1673 var->num_children = -1;
1674 return 1;
1675 }
1676 }
1677 }
1678
1679 return 0;
1680 }
1681
1682 /* Assign a new value to a variable object. If INITIAL is non-zero,
1683 this is the first assignement after the variable object was just
1684 created, or changed type. In that case, just assign the value
1685 and return 0.
1686 Otherwise, assign the new value, and return 1 if the value is
1687 different from the current one, 0 otherwise. The comparison is
1688 done on textual representation of value. Therefore, some types
1689 need not be compared. E.g. for structures the reported value is
1690 always "{...}", so no comparison is necessary here. If the old
1691 value was NULL and new one is not, or vice versa, we always return 1.
1692
1693 The VALUE parameter should not be released -- the function will
1694 take care of releasing it when needed. */
1695 static int
1696 install_new_value (struct varobj *var, struct value *value, int initial)
1697 {
1698 int changeable;
1699 int need_to_fetch;
1700 int changed = 0;
1701 int intentionally_not_fetched = 0;
1702 char *print_value = NULL;
1703
1704 /* We need to know the varobj's type to decide if the value should
1705 be fetched or not. C++ fake children (public/protected/private)
1706 don't have a type. */
1707 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1708 changeable = varobj_value_is_changeable_p (var);
1709
1710 /* If the type has custom visualizer, we consider it to be always
1711 changeable. FIXME: need to make sure this behaviour will not
1712 mess up read-sensitive values. */
1713 if (var->pretty_printer)
1714 changeable = 1;
1715
1716 need_to_fetch = changeable;
1717
1718 /* We are not interested in the address of references, and given
1719 that in C++ a reference is not rebindable, it cannot
1720 meaningfully change. So, get hold of the real value. */
1721 if (value)
1722 value = coerce_ref (value);
1723
1724 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1725 /* For unions, we need to fetch the value implicitly because
1726 of implementation of union member fetch. When gdb
1727 creates a value for a field and the value of the enclosing
1728 structure is not lazy, it immediately copies the necessary
1729 bytes from the enclosing values. If the enclosing value is
1730 lazy, the call to value_fetch_lazy on the field will read
1731 the data from memory. For unions, that means we'll read the
1732 same memory more than once, which is not desirable. So
1733 fetch now. */
1734 need_to_fetch = 1;
1735
1736 /* The new value might be lazy. If the type is changeable,
1737 that is we'll be comparing values of this type, fetch the
1738 value now. Otherwise, on the next update the old value
1739 will be lazy, which means we've lost that old value. */
1740 if (need_to_fetch && value && value_lazy (value))
1741 {
1742 struct varobj *parent = var->parent;
1743 int frozen = var->frozen;
1744
1745 for (; !frozen && parent; parent = parent->parent)
1746 frozen |= parent->frozen;
1747
1748 if (frozen && initial)
1749 {
1750 /* For variables that are frozen, or are children of frozen
1751 variables, we don't do fetch on initial assignment.
1752 For non-initial assignemnt we do the fetch, since it means we're
1753 explicitly asked to compare the new value with the old one. */
1754 intentionally_not_fetched = 1;
1755 }
1756 else
1757 {
1758 volatile struct gdb_exception except;
1759
1760 TRY_CATCH (except, RETURN_MASK_ERROR)
1761 {
1762 value_fetch_lazy (value);
1763 }
1764
1765 if (except.reason < 0)
1766 {
1767 /* Set the value to NULL, so that for the next -var-update,
1768 we don't try to compare the new value with this value,
1769 that we couldn't even read. */
1770 value = NULL;
1771 }
1772 }
1773 }
1774
1775 /* Get a reference now, before possibly passing it to any Python
1776 code that might release it. */
1777 if (value != NULL)
1778 value_incref (value);
1779
1780 /* Below, we'll be comparing string rendering of old and new
1781 values. Don't get string rendering if the value is
1782 lazy -- if it is, the code above has decided that the value
1783 should not be fetched. */
1784 if (value && !value_lazy (value) && !var->pretty_printer)
1785 print_value = value_get_print_value (value, var->format, var);
1786
1787 /* If the type is changeable, compare the old and the new values.
1788 If this is the initial assignment, we don't have any old value
1789 to compare with. */
1790 if (!initial && changeable)
1791 {
1792 /* If the value of the varobj was changed by -var-set-value,
1793 then the value in the varobj and in the target is the same.
1794 However, that value is different from the value that the
1795 varobj had after the previous -var-update. So need to the
1796 varobj as changed. */
1797 if (var->updated)
1798 {
1799 changed = 1;
1800 }
1801 else if (! var->pretty_printer)
1802 {
1803 /* Try to compare the values. That requires that both
1804 values are non-lazy. */
1805 if (var->not_fetched && value_lazy (var->value))
1806 {
1807 /* This is a frozen varobj and the value was never read.
1808 Presumably, UI shows some "never read" indicator.
1809 Now that we've fetched the real value, we need to report
1810 this varobj as changed so that UI can show the real
1811 value. */
1812 changed = 1;
1813 }
1814 else if (var->value == NULL && value == NULL)
1815 /* Equal. */
1816 ;
1817 else if (var->value == NULL || value == NULL)
1818 {
1819 changed = 1;
1820 }
1821 else
1822 {
1823 gdb_assert (!value_lazy (var->value));
1824 gdb_assert (!value_lazy (value));
1825
1826 gdb_assert (var->print_value != NULL && print_value != NULL);
1827 if (strcmp (var->print_value, print_value) != 0)
1828 changed = 1;
1829 }
1830 }
1831 }
1832
1833 if (!initial && !changeable)
1834 {
1835 /* For values that are not changeable, we don't compare the values.
1836 However, we want to notice if a value was not NULL and now is NULL,
1837 or vise versa, so that we report when top-level varobjs come in scope
1838 and leave the scope. */
1839 changed = (var->value != NULL) != (value != NULL);
1840 }
1841
1842 /* We must always keep the new value, since children depend on it. */
1843 if (var->value != NULL && var->value != value)
1844 value_free (var->value);
1845 var->value = value;
1846 if (value && value_lazy (value) && intentionally_not_fetched)
1847 var->not_fetched = 1;
1848 else
1849 var->not_fetched = 0;
1850 var->updated = 0;
1851
1852 install_new_value_visualizer (var);
1853
1854 /* If we installed a pretty-printer, re-compare the printed version
1855 to see if the variable changed. */
1856 if (var->pretty_printer)
1857 {
1858 xfree (print_value);
1859 print_value = value_get_print_value (var->value, var->format, var);
1860 if ((var->print_value == NULL && print_value != NULL)
1861 || (var->print_value != NULL && print_value == NULL)
1862 || (var->print_value != NULL && print_value != NULL
1863 && strcmp (var->print_value, print_value) != 0))
1864 changed = 1;
1865 }
1866 if (var->print_value)
1867 xfree (var->print_value);
1868 var->print_value = print_value;
1869
1870 gdb_assert (!var->value || value_type (var->value));
1871
1872 return changed;
1873 }
1874
1875 /* Return the requested range for a varobj. VAR is the varobj. FROM
1876 and TO are out parameters; *FROM and *TO will be set to the
1877 selected sub-range of VAR. If no range was selected using
1878 -var-set-update-range, then both will be -1. */
1879 void
1880 varobj_get_child_range (struct varobj *var, int *from, int *to)
1881 {
1882 *from = var->from;
1883 *to = var->to;
1884 }
1885
1886 /* Set the selected sub-range of children of VAR to start at index
1887 FROM and end at index TO. If either FROM or TO is less than zero,
1888 this is interpreted as a request for all children. */
1889 void
1890 varobj_set_child_range (struct varobj *var, int from, int to)
1891 {
1892 var->from = from;
1893 var->to = to;
1894 }
1895
1896 void
1897 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1898 {
1899 #if HAVE_PYTHON
1900 PyObject *mainmod, *globals, *constructor;
1901 struct cleanup *back_to;
1902
1903 back_to = varobj_ensure_python_env (var);
1904
1905 mainmod = PyImport_AddModule ("__main__");
1906 globals = PyModule_GetDict (mainmod);
1907 Py_INCREF (globals);
1908 make_cleanup_py_decref (globals);
1909
1910 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1911
1912 if (! constructor)
1913 {
1914 gdbpy_print_stack ();
1915 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1916 }
1917
1918 construct_visualizer (var, constructor);
1919 Py_XDECREF (constructor);
1920
1921 /* If there are any children now, wipe them. */
1922 varobj_delete (var, NULL, 1 /* children only */);
1923 var->num_children = -1;
1924
1925 do_cleanups (back_to);
1926 #else
1927 error (_("Python support required"));
1928 #endif
1929 }
1930
1931 /* If NEW_VALUE is the new value of the given varobj (var), return
1932 non-zero if var has mutated. In other words, if the type of
1933 the new value is different from the type of the varobj's old
1934 value.
1935
1936 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1937
1938 static int
1939 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1940 struct type *new_type)
1941 {
1942 /* If we haven't previously computed the number of children in var,
1943 it does not matter from the front-end's perspective whether
1944 the type has mutated or not. For all intents and purposes,
1945 it has not mutated. */
1946 if (var->num_children < 0)
1947 return 0;
1948
1949 if (var->root->lang->value_has_mutated)
1950 return var->root->lang->value_has_mutated (var, new_value, new_type);
1951 else
1952 return 0;
1953 }
1954
1955 /* Update the values for a variable and its children. This is a
1956 two-pronged attack. First, re-parse the value for the root's
1957 expression to see if it's changed. Then go all the way
1958 through its children, reconstructing them and noting if they've
1959 changed.
1960
1961 The EXPLICIT parameter specifies if this call is result
1962 of MI request to update this specific variable, or
1963 result of implicit -var-update *. For implicit request, we don't
1964 update frozen variables.
1965
1966 NOTE: This function may delete the caller's varobj. If it
1967 returns TYPE_CHANGED, then it has done this and VARP will be modified
1968 to point to the new varobj. */
1969
1970 VEC(varobj_update_result) *
1971 varobj_update (struct varobj **varp, int explicit)
1972 {
1973 int changed = 0;
1974 int type_changed = 0;
1975 int i;
1976 struct value *new;
1977 VEC (varobj_update_result) *stack = NULL;
1978 VEC (varobj_update_result) *result = NULL;
1979
1980 /* Frozen means frozen -- we don't check for any change in
1981 this varobj, including its going out of scope, or
1982 changing type. One use case for frozen varobjs is
1983 retaining previously evaluated expressions, and we don't
1984 want them to be reevaluated at all. */
1985 if (!explicit && (*varp)->frozen)
1986 return result;
1987
1988 if (!(*varp)->root->is_valid)
1989 {
1990 varobj_update_result r = {0};
1991
1992 r.varobj = *varp;
1993 r.status = VAROBJ_INVALID;
1994 VEC_safe_push (varobj_update_result, result, &r);
1995 return result;
1996 }
1997
1998 if ((*varp)->root->rootvar == *varp)
1999 {
2000 varobj_update_result r = {0};
2001
2002 r.varobj = *varp;
2003 r.status = VAROBJ_IN_SCOPE;
2004
2005 /* Update the root variable. value_of_root can return NULL
2006 if the variable is no longer around, i.e. we stepped out of
2007 the frame in which a local existed. We are letting the
2008 value_of_root variable dispose of the varobj if the type
2009 has changed. */
2010 new = value_of_root (varp, &type_changed);
2011 if (update_type_if_necessary(*varp, new))
2012 type_changed = 1;
2013 r.varobj = *varp;
2014 r.type_changed = type_changed;
2015 if (install_new_value ((*varp), new, type_changed))
2016 r.changed = 1;
2017
2018 if (new == NULL)
2019 r.status = VAROBJ_NOT_IN_SCOPE;
2020 r.value_installed = 1;
2021
2022 if (r.status == VAROBJ_NOT_IN_SCOPE)
2023 {
2024 if (r.type_changed || r.changed)
2025 VEC_safe_push (varobj_update_result, result, &r);
2026 return result;
2027 }
2028
2029 VEC_safe_push (varobj_update_result, stack, &r);
2030 }
2031 else
2032 {
2033 varobj_update_result r = {0};
2034
2035 r.varobj = *varp;
2036 VEC_safe_push (varobj_update_result, stack, &r);
2037 }
2038
2039 /* Walk through the children, reconstructing them all. */
2040 while (!VEC_empty (varobj_update_result, stack))
2041 {
2042 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2043 struct varobj *v = r.varobj;
2044
2045 VEC_pop (varobj_update_result, stack);
2046
2047 /* Update this variable, unless it's a root, which is already
2048 updated. */
2049 if (!r.value_installed)
2050 {
2051 struct type *new_type;
2052
2053 new = value_of_child (v->parent, v->index);
2054 if (update_type_if_necessary(v, new))
2055 r.type_changed = 1;
2056 if (new)
2057 new_type = value_type (new);
2058 else
2059 new_type = v->root->lang->type_of_child (v->parent, v->index);
2060
2061 if (varobj_value_has_mutated (v, new, new_type))
2062 {
2063 /* The children are no longer valid; delete them now.
2064 Report the fact that its type changed as well. */
2065 varobj_delete (v, NULL, 1 /* only_children */);
2066 v->num_children = -1;
2067 v->to = -1;
2068 v->from = -1;
2069 v->type = new_type;
2070 r.type_changed = 1;
2071 }
2072
2073 if (install_new_value (v, new, r.type_changed))
2074 {
2075 r.changed = 1;
2076 v->updated = 0;
2077 }
2078 }
2079
2080 /* We probably should not get children of a varobj that has a
2081 pretty-printer, but for which -var-list-children was never
2082 invoked. */
2083 if (v->pretty_printer)
2084 {
2085 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2086 VEC (varobj_p) *new = 0;
2087 int i, children_changed = 0;
2088
2089 if (v->frozen)
2090 continue;
2091
2092 if (!v->children_requested)
2093 {
2094 int dummy;
2095
2096 /* If we initially did not have potential children, but
2097 now we do, consider the varobj as changed.
2098 Otherwise, if children were never requested, consider
2099 it as unchanged -- presumably, such varobj is not yet
2100 expanded in the UI, so we need not bother getting
2101 it. */
2102 if (!varobj_has_more (v, 0))
2103 {
2104 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2105 &dummy, 0, 0, 0);
2106 if (varobj_has_more (v, 0))
2107 r.changed = 1;
2108 }
2109
2110 if (r.changed)
2111 VEC_safe_push (varobj_update_result, result, &r);
2112
2113 continue;
2114 }
2115
2116 /* If update_dynamic_varobj_children returns 0, then we have
2117 a non-conforming pretty-printer, so we skip it. */
2118 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2119 &unchanged, &children_changed, 1,
2120 v->from, v->to))
2121 {
2122 if (children_changed || new)
2123 {
2124 r.children_changed = 1;
2125 r.new = new;
2126 }
2127 /* Push in reverse order so that the first child is
2128 popped from the work stack first, and so will be
2129 added to result first. This does not affect
2130 correctness, just "nicer". */
2131 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2132 {
2133 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2134 varobj_update_result r = {0};
2135
2136 /* Type may change only if value was changed. */
2137 r.varobj = tmp;
2138 r.changed = 1;
2139 r.type_changed = 1;
2140 r.value_installed = 1;
2141 VEC_safe_push (varobj_update_result, stack, &r);
2142 }
2143 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2144 {
2145 varobj_p tmp = VEC_index (varobj_p, changed, i);
2146 varobj_update_result r = {0};
2147
2148 r.varobj = tmp;
2149 r.changed = 1;
2150 r.value_installed = 1;
2151 VEC_safe_push (varobj_update_result, stack, &r);
2152 }
2153 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2154 {
2155 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2156
2157 if (!tmp->frozen)
2158 {
2159 varobj_update_result r = {0};
2160
2161 r.varobj = tmp;
2162 r.value_installed = 1;
2163 VEC_safe_push (varobj_update_result, stack, &r);
2164 }
2165 }
2166 if (r.changed || r.children_changed)
2167 VEC_safe_push (varobj_update_result, result, &r);
2168
2169 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2170 because NEW has been put into the result vector. */
2171 VEC_free (varobj_p, changed);
2172 VEC_free (varobj_p, type_changed);
2173 VEC_free (varobj_p, unchanged);
2174
2175 continue;
2176 }
2177 }
2178
2179 /* Push any children. Use reverse order so that the first
2180 child is popped from the work stack first, and so
2181 will be added to result first. This does not
2182 affect correctness, just "nicer". */
2183 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2184 {
2185 varobj_p c = VEC_index (varobj_p, v->children, i);
2186
2187 /* Child may be NULL if explicitly deleted by -var-delete. */
2188 if (c != NULL && !c->frozen)
2189 {
2190 varobj_update_result r = {0};
2191
2192 r.varobj = c;
2193 VEC_safe_push (varobj_update_result, stack, &r);
2194 }
2195 }
2196
2197 if (r.changed || r.type_changed)
2198 VEC_safe_push (varobj_update_result, result, &r);
2199 }
2200
2201 VEC_free (varobj_update_result, stack);
2202
2203 return result;
2204 }
2205 \f
2206
2207 /* Helper functions */
2208
2209 /*
2210 * Variable object construction/destruction
2211 */
2212
2213 static int
2214 delete_variable (struct cpstack **resultp, struct varobj *var,
2215 int only_children_p)
2216 {
2217 int delcount = 0;
2218
2219 delete_variable_1 (resultp, &delcount, var,
2220 only_children_p, 1 /* remove_from_parent_p */ );
2221
2222 return delcount;
2223 }
2224
2225 /* Delete the variable object VAR and its children. */
2226 /* IMPORTANT NOTE: If we delete a variable which is a child
2227 and the parent is not removed we dump core. It must be always
2228 initially called with remove_from_parent_p set. */
2229 static void
2230 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2231 struct varobj *var, int only_children_p,
2232 int remove_from_parent_p)
2233 {
2234 int i;
2235
2236 /* Delete any children of this variable, too. */
2237 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2238 {
2239 varobj_p child = VEC_index (varobj_p, var->children, i);
2240
2241 if (!child)
2242 continue;
2243 if (!remove_from_parent_p)
2244 child->parent = NULL;
2245 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2246 }
2247 VEC_free (varobj_p, var->children);
2248
2249 /* if we were called to delete only the children we are done here. */
2250 if (only_children_p)
2251 return;
2252
2253 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2254 /* If the name is null, this is a temporary variable, that has not
2255 yet been installed, don't report it, it belongs to the caller... */
2256 if (var->obj_name != NULL)
2257 {
2258 cppush (resultp, xstrdup (var->obj_name));
2259 *delcountp = *delcountp + 1;
2260 }
2261
2262 /* If this variable has a parent, remove it from its parent's list. */
2263 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2264 (as indicated by remove_from_parent_p) we don't bother doing an
2265 expensive list search to find the element to remove when we are
2266 discarding the list afterwards. */
2267 if ((remove_from_parent_p) && (var->parent != NULL))
2268 {
2269 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2270 }
2271
2272 if (var->obj_name != NULL)
2273 uninstall_variable (var);
2274
2275 /* Free memory associated with this variable. */
2276 free_variable (var);
2277 }
2278
2279 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2280 static int
2281 install_variable (struct varobj *var)
2282 {
2283 struct vlist *cv;
2284 struct vlist *newvl;
2285 const char *chp;
2286 unsigned int index = 0;
2287 unsigned int i = 1;
2288
2289 for (chp = var->obj_name; *chp; chp++)
2290 {
2291 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2292 }
2293
2294 cv = *(varobj_table + index);
2295 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2296 cv = cv->next;
2297
2298 if (cv != NULL)
2299 error (_("Duplicate variable object name"));
2300
2301 /* Add varobj to hash table. */
2302 newvl = xmalloc (sizeof (struct vlist));
2303 newvl->next = *(varobj_table + index);
2304 newvl->var = var;
2305 *(varobj_table + index) = newvl;
2306
2307 /* If root, add varobj to root list. */
2308 if (is_root_p (var))
2309 {
2310 /* Add to list of root variables. */
2311 if (rootlist == NULL)
2312 var->root->next = NULL;
2313 else
2314 var->root->next = rootlist;
2315 rootlist = var->root;
2316 }
2317
2318 return 1; /* OK */
2319 }
2320
2321 /* Unistall the object VAR. */
2322 static void
2323 uninstall_variable (struct varobj *var)
2324 {
2325 struct vlist *cv;
2326 struct vlist *prev;
2327 struct varobj_root *cr;
2328 struct varobj_root *prer;
2329 const char *chp;
2330 unsigned int index = 0;
2331 unsigned int i = 1;
2332
2333 /* Remove varobj from hash table. */
2334 for (chp = var->obj_name; *chp; chp++)
2335 {
2336 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2337 }
2338
2339 cv = *(varobj_table + index);
2340 prev = NULL;
2341 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2342 {
2343 prev = cv;
2344 cv = cv->next;
2345 }
2346
2347 if (varobjdebug)
2348 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2349
2350 if (cv == NULL)
2351 {
2352 warning
2353 ("Assertion failed: Could not find variable object \"%s\" to delete",
2354 var->obj_name);
2355 return;
2356 }
2357
2358 if (prev == NULL)
2359 *(varobj_table + index) = cv->next;
2360 else
2361 prev->next = cv->next;
2362
2363 xfree (cv);
2364
2365 /* If root, remove varobj from root list. */
2366 if (is_root_p (var))
2367 {
2368 /* Remove from list of root variables. */
2369 if (rootlist == var->root)
2370 rootlist = var->root->next;
2371 else
2372 {
2373 prer = NULL;
2374 cr = rootlist;
2375 while ((cr != NULL) && (cr->rootvar != var))
2376 {
2377 prer = cr;
2378 cr = cr->next;
2379 }
2380 if (cr == NULL)
2381 {
2382 warning (_("Assertion failed: Could not find "
2383 "varobj \"%s\" in root list"),
2384 var->obj_name);
2385 return;
2386 }
2387 if (prer == NULL)
2388 rootlist = NULL;
2389 else
2390 prer->next = cr->next;
2391 }
2392 }
2393
2394 }
2395
2396 /* Create and install a child of the parent of the given name. */
2397 static struct varobj *
2398 create_child (struct varobj *parent, int index, char *name)
2399 {
2400 return create_child_with_value (parent, index, name,
2401 value_of_child (parent, index));
2402 }
2403
2404 /* Does CHILD represent a child with no name? This happens when
2405 the child is an anonmous struct or union and it has no field name
2406 in its parent variable.
2407
2408 This has already been determined by *_describe_child. The easiest
2409 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2410
2411 static int
2412 is_anonymous_child (struct varobj *child)
2413 {
2414 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2415 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2416 }
2417
2418 static struct varobj *
2419 create_child_with_value (struct varobj *parent, int index, const char *name,
2420 struct value *value)
2421 {
2422 struct varobj *child;
2423 char *childs_name;
2424
2425 child = new_variable ();
2426
2427 /* Name is allocated by name_of_child. */
2428 /* FIXME: xstrdup should not be here. */
2429 child->name = xstrdup (name);
2430 child->index = index;
2431 child->parent = parent;
2432 child->root = parent->root;
2433
2434 if (is_anonymous_child (child))
2435 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2436 else
2437 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2438 child->obj_name = childs_name;
2439
2440 install_variable (child);
2441
2442 /* Compute the type of the child. Must do this before
2443 calling install_new_value. */
2444 if (value != NULL)
2445 /* If the child had no evaluation errors, var->value
2446 will be non-NULL and contain a valid type. */
2447 child->type = value_actual_type (value, 0, NULL);
2448 else
2449 /* Otherwise, we must compute the type. */
2450 child->type = (*child->root->lang->type_of_child) (child->parent,
2451 child->index);
2452 install_new_value (child, value, 1);
2453
2454 return child;
2455 }
2456 \f
2457
2458 /*
2459 * Miscellaneous utility functions.
2460 */
2461
2462 /* Allocate memory and initialize a new variable. */
2463 static struct varobj *
2464 new_variable (void)
2465 {
2466 struct varobj *var;
2467
2468 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2469 var->name = NULL;
2470 var->path_expr = NULL;
2471 var->obj_name = NULL;
2472 var->index = -1;
2473 var->type = NULL;
2474 var->value = NULL;
2475 var->num_children = -1;
2476 var->parent = NULL;
2477 var->children = NULL;
2478 var->format = 0;
2479 var->root = NULL;
2480 var->updated = 0;
2481 var->print_value = NULL;
2482 var->frozen = 0;
2483 var->not_fetched = 0;
2484 var->children_requested = 0;
2485 var->from = -1;
2486 var->to = -1;
2487 var->constructor = 0;
2488 var->pretty_printer = 0;
2489 var->child_iter = 0;
2490 var->saved_item = 0;
2491
2492 return var;
2493 }
2494
2495 /* Allocate memory and initialize a new root variable. */
2496 static struct varobj *
2497 new_root_variable (void)
2498 {
2499 struct varobj *var = new_variable ();
2500
2501 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2502 var->root->lang = NULL;
2503 var->root->exp = NULL;
2504 var->root->valid_block = NULL;
2505 var->root->frame = null_frame_id;
2506 var->root->floating = 0;
2507 var->root->rootvar = NULL;
2508 var->root->is_valid = 1;
2509
2510 return var;
2511 }
2512
2513 /* Free any allocated memory associated with VAR. */
2514 static void
2515 free_variable (struct varobj *var)
2516 {
2517 #if HAVE_PYTHON
2518 if (var->pretty_printer)
2519 {
2520 struct cleanup *cleanup = varobj_ensure_python_env (var);
2521 Py_XDECREF (var->constructor);
2522 Py_XDECREF (var->pretty_printer);
2523 Py_XDECREF (var->child_iter);
2524 Py_XDECREF (var->saved_item);
2525 do_cleanups (cleanup);
2526 }
2527 #endif
2528
2529 value_free (var->value);
2530
2531 /* Free the expression if this is a root variable. */
2532 if (is_root_p (var))
2533 {
2534 xfree (var->root->exp);
2535 xfree (var->root);
2536 }
2537
2538 xfree (var->name);
2539 xfree (var->obj_name);
2540 xfree (var->print_value);
2541 xfree (var->path_expr);
2542 xfree (var);
2543 }
2544
2545 static void
2546 do_free_variable_cleanup (void *var)
2547 {
2548 free_variable (var);
2549 }
2550
2551 static struct cleanup *
2552 make_cleanup_free_variable (struct varobj *var)
2553 {
2554 return make_cleanup (do_free_variable_cleanup, var);
2555 }
2556
2557 /* This returns the type of the variable. It also skips past typedefs
2558 to return the real type of the variable.
2559
2560 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2561 except within get_target_type and get_type. */
2562 static struct type *
2563 get_type (struct varobj *var)
2564 {
2565 struct type *type;
2566
2567 type = var->type;
2568 if (type != NULL)
2569 type = check_typedef (type);
2570
2571 return type;
2572 }
2573
2574 /* Return the type of the value that's stored in VAR,
2575 or that would have being stored there if the
2576 value were accessible.
2577
2578 This differs from VAR->type in that VAR->type is always
2579 the true type of the expession in the source language.
2580 The return value of this function is the type we're
2581 actually storing in varobj, and using for displaying
2582 the values and for comparing previous and new values.
2583
2584 For example, top-level references are always stripped. */
2585 static struct type *
2586 get_value_type (struct varobj *var)
2587 {
2588 struct type *type;
2589
2590 if (var->value)
2591 type = value_type (var->value);
2592 else
2593 type = var->type;
2594
2595 type = check_typedef (type);
2596
2597 if (TYPE_CODE (type) == TYPE_CODE_REF)
2598 type = get_target_type (type);
2599
2600 type = check_typedef (type);
2601
2602 return type;
2603 }
2604
2605 /* This returns the target type (or NULL) of TYPE, also skipping
2606 past typedefs, just like get_type ().
2607
2608 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2609 except within get_target_type and get_type. */
2610 static struct type *
2611 get_target_type (struct type *type)
2612 {
2613 if (type != NULL)
2614 {
2615 type = TYPE_TARGET_TYPE (type);
2616 if (type != NULL)
2617 type = check_typedef (type);
2618 }
2619
2620 return type;
2621 }
2622
2623 /* What is the default display for this variable? We assume that
2624 everything is "natural". Any exceptions? */
2625 static enum varobj_display_formats
2626 variable_default_display (struct varobj *var)
2627 {
2628 return FORMAT_NATURAL;
2629 }
2630
2631 /* FIXME: The following should be generic for any pointer. */
2632 static void
2633 cppush (struct cpstack **pstack, char *name)
2634 {
2635 struct cpstack *s;
2636
2637 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2638 s->name = name;
2639 s->next = *pstack;
2640 *pstack = s;
2641 }
2642
2643 /* FIXME: The following should be generic for any pointer. */
2644 static char *
2645 cppop (struct cpstack **pstack)
2646 {
2647 struct cpstack *s;
2648 char *v;
2649
2650 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2651 return NULL;
2652
2653 s = *pstack;
2654 v = s->name;
2655 *pstack = (*pstack)->next;
2656 xfree (s);
2657
2658 return v;
2659 }
2660 \f
2661 /*
2662 * Language-dependencies
2663 */
2664
2665 /* Common entry points */
2666
2667 /* Get the language of variable VAR. */
2668 static enum varobj_languages
2669 variable_language (struct varobj *var)
2670 {
2671 enum varobj_languages lang;
2672
2673 switch (var->root->exp->language_defn->la_language)
2674 {
2675 default:
2676 case language_c:
2677 lang = vlang_c;
2678 break;
2679 case language_cplus:
2680 lang = vlang_cplus;
2681 break;
2682 case language_java:
2683 lang = vlang_java;
2684 break;
2685 case language_ada:
2686 lang = vlang_ada;
2687 break;
2688 }
2689
2690 return lang;
2691 }
2692
2693 /* Return the number of children for a given variable.
2694 The result of this function is defined by the language
2695 implementation. The number of children returned by this function
2696 is the number of children that the user will see in the variable
2697 display. */
2698 static int
2699 number_of_children (struct varobj *var)
2700 {
2701 return (*var->root->lang->number_of_children) (var);
2702 }
2703
2704 /* What is the expression for the root varobj VAR? Returns a malloc'd
2705 string. */
2706 static char *
2707 name_of_variable (struct varobj *var)
2708 {
2709 return (*var->root->lang->name_of_variable) (var);
2710 }
2711
2712 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2713 string. */
2714 static char *
2715 name_of_child (struct varobj *var, int index)
2716 {
2717 return (*var->root->lang->name_of_child) (var, index);
2718 }
2719
2720 /* What is the ``struct value *'' of the root variable VAR?
2721 For floating variable object, evaluation can get us a value
2722 of different type from what is stored in varobj already. In
2723 that case:
2724 - *type_changed will be set to 1
2725 - old varobj will be freed, and new one will be
2726 created, with the same name.
2727 - *var_handle will be set to the new varobj
2728 Otherwise, *type_changed will be set to 0. */
2729 static struct value *
2730 value_of_root (struct varobj **var_handle, int *type_changed)
2731 {
2732 struct varobj *var;
2733
2734 if (var_handle == NULL)
2735 return NULL;
2736
2737 var = *var_handle;
2738
2739 /* This should really be an exception, since this should
2740 only get called with a root variable. */
2741
2742 if (!is_root_p (var))
2743 return NULL;
2744
2745 if (var->root->floating)
2746 {
2747 struct varobj *tmp_var;
2748 char *old_type, *new_type;
2749
2750 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2751 USE_SELECTED_FRAME);
2752 if (tmp_var == NULL)
2753 {
2754 return NULL;
2755 }
2756 old_type = varobj_get_type (var);
2757 new_type = varobj_get_type (tmp_var);
2758 if (strcmp (old_type, new_type) == 0)
2759 {
2760 /* The expression presently stored inside var->root->exp
2761 remembers the locations of local variables relatively to
2762 the frame where the expression was created (in DWARF location
2763 button, for example). Naturally, those locations are not
2764 correct in other frames, so update the expression. */
2765
2766 struct expression *tmp_exp = var->root->exp;
2767
2768 var->root->exp = tmp_var->root->exp;
2769 tmp_var->root->exp = tmp_exp;
2770
2771 varobj_delete (tmp_var, NULL, 0);
2772 *type_changed = 0;
2773 }
2774 else
2775 {
2776 tmp_var->obj_name = xstrdup (var->obj_name);
2777 tmp_var->from = var->from;
2778 tmp_var->to = var->to;
2779 varobj_delete (var, NULL, 0);
2780
2781 install_variable (tmp_var);
2782 *var_handle = tmp_var;
2783 var = *var_handle;
2784 *type_changed = 1;
2785 }
2786 xfree (old_type);
2787 xfree (new_type);
2788 }
2789 else
2790 {
2791 *type_changed = 0;
2792 }
2793
2794 {
2795 struct value *value;
2796
2797 value = (*var->root->lang->value_of_root) (var_handle);
2798 if (var->value == NULL || value == NULL)
2799 {
2800 /* For root varobj-s, a NULL value indicates a scoping issue.
2801 So, nothing to do in terms of checking for mutations. */
2802 }
2803 else if (varobj_value_has_mutated (var, value, value_type (value)))
2804 {
2805 /* The type has mutated, so the children are no longer valid.
2806 Just delete them, and tell our caller that the type has
2807 changed. */
2808 varobj_delete (var, NULL, 1 /* only_children */);
2809 var->num_children = -1;
2810 var->to = -1;
2811 var->from = -1;
2812 *type_changed = 1;
2813 }
2814 return value;
2815 }
2816 }
2817
2818 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2819 static struct value *
2820 value_of_child (struct varobj *parent, int index)
2821 {
2822 struct value *value;
2823
2824 value = (*parent->root->lang->value_of_child) (parent, index);
2825
2826 return value;
2827 }
2828
2829 /* GDB already has a command called "value_of_variable". Sigh. */
2830 static char *
2831 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2832 {
2833 if (var->root->is_valid)
2834 {
2835 if (var->pretty_printer)
2836 return value_get_print_value (var->value, var->format, var);
2837 return (*var->root->lang->value_of_variable) (var, format);
2838 }
2839 else
2840 return NULL;
2841 }
2842
2843 static char *
2844 value_get_print_value (struct value *value, enum varobj_display_formats format,
2845 struct varobj *var)
2846 {
2847 struct ui_file *stb;
2848 struct cleanup *old_chain;
2849 gdb_byte *thevalue = NULL;
2850 struct value_print_options opts;
2851 struct type *type = NULL;
2852 long len = 0;
2853 char *encoding = NULL;
2854 struct gdbarch *gdbarch = NULL;
2855 /* Initialize it just to avoid a GCC false warning. */
2856 CORE_ADDR str_addr = 0;
2857 int string_print = 0;
2858
2859 if (value == NULL)
2860 return NULL;
2861
2862 stb = mem_fileopen ();
2863 old_chain = make_cleanup_ui_file_delete (stb);
2864
2865 gdbarch = get_type_arch (value_type (value));
2866 #if HAVE_PYTHON
2867 {
2868 PyObject *value_formatter = var->pretty_printer;
2869
2870 varobj_ensure_python_env (var);
2871
2872 if (value_formatter)
2873 {
2874 /* First check to see if we have any children at all. If so,
2875 we simply return {...}. */
2876 if (dynamic_varobj_has_child_method (var))
2877 {
2878 do_cleanups (old_chain);
2879 return xstrdup ("{...}");
2880 }
2881
2882 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2883 {
2884 struct value *replacement;
2885 PyObject *output = NULL;
2886
2887 output = apply_varobj_pretty_printer (value_formatter,
2888 &replacement,
2889 stb);
2890
2891 /* If we have string like output ... */
2892 if (output)
2893 {
2894 make_cleanup_py_decref (output);
2895
2896 /* If this is a lazy string, extract it. For lazy
2897 strings we always print as a string, so set
2898 string_print. */
2899 if (gdbpy_is_lazy_string (output))
2900 {
2901 gdbpy_extract_lazy_string (output, &str_addr, &type,
2902 &len, &encoding);
2903 make_cleanup (free_current_contents, &encoding);
2904 string_print = 1;
2905 }
2906 else
2907 {
2908 /* If it is a regular (non-lazy) string, extract
2909 it and copy the contents into THEVALUE. If the
2910 hint says to print it as a string, set
2911 string_print. Otherwise just return the extracted
2912 string as a value. */
2913
2914 PyObject *py_str
2915 = python_string_to_target_python_string (output);
2916
2917 if (py_str)
2918 {
2919 char *s = PyString_AsString (py_str);
2920 char *hint;
2921
2922 hint = gdbpy_get_display_hint (value_formatter);
2923 if (hint)
2924 {
2925 if (!strcmp (hint, "string"))
2926 string_print = 1;
2927 xfree (hint);
2928 }
2929
2930 len = PyString_Size (py_str);
2931 thevalue = xmemdup (s, len + 1, len + 1);
2932 type = builtin_type (gdbarch)->builtin_char;
2933 Py_DECREF (py_str);
2934
2935 if (!string_print)
2936 {
2937 do_cleanups (old_chain);
2938 return thevalue;
2939 }
2940
2941 make_cleanup (xfree, thevalue);
2942 }
2943 else
2944 gdbpy_print_stack ();
2945 }
2946 }
2947 /* If the printer returned a replacement value, set VALUE
2948 to REPLACEMENT. If there is not a replacement value,
2949 just use the value passed to this function. */
2950 if (replacement)
2951 value = replacement;
2952 }
2953 }
2954 }
2955 #endif
2956
2957 get_formatted_print_options (&opts, format_code[(int) format]);
2958 opts.deref_ref = 0;
2959 opts.raw = 1;
2960
2961 /* If the THEVALUE has contents, it is a regular string. */
2962 if (thevalue)
2963 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2964 else if (string_print)
2965 /* Otherwise, if string_print is set, and it is not a regular
2966 string, it is a lazy string. */
2967 val_print_string (type, encoding, str_addr, len, stb, &opts);
2968 else
2969 /* All other cases. */
2970 common_val_print (value, stb, 0, &opts, current_language);
2971
2972 thevalue = ui_file_xstrdup (stb, NULL);
2973
2974 do_cleanups (old_chain);
2975 return thevalue;
2976 }
2977
2978 int
2979 varobj_editable_p (struct varobj *var)
2980 {
2981 struct type *type;
2982
2983 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2984 return 0;
2985
2986 type = get_value_type (var);
2987
2988 switch (TYPE_CODE (type))
2989 {
2990 case TYPE_CODE_STRUCT:
2991 case TYPE_CODE_UNION:
2992 case TYPE_CODE_ARRAY:
2993 case TYPE_CODE_FUNC:
2994 case TYPE_CODE_METHOD:
2995 return 0;
2996 break;
2997
2998 default:
2999 return 1;
3000 break;
3001 }
3002 }
3003
3004 /* Call VAR's value_is_changeable_p language-specific callback. */
3005
3006 static int
3007 varobj_value_is_changeable_p (struct varobj *var)
3008 {
3009 return var->root->lang->value_is_changeable_p (var);
3010 }
3011
3012 /* Return 1 if that varobj is floating, that is is always evaluated in the
3013 selected frame, and not bound to thread/frame. Such variable objects
3014 are created using '@' as frame specifier to -var-create. */
3015 int
3016 varobj_floating_p (struct varobj *var)
3017 {
3018 return var->root->floating;
3019 }
3020
3021 /* Given the value and the type of a variable object,
3022 adjust the value and type to those necessary
3023 for getting children of the variable object.
3024 This includes dereferencing top-level references
3025 to all types and dereferencing pointers to
3026 structures.
3027
3028 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3029 value will be fetched and if it differs from static type
3030 the value will be casted to it.
3031
3032 Both TYPE and *TYPE should be non-null. VALUE
3033 can be null if we want to only translate type.
3034 *VALUE can be null as well -- if the parent
3035 value is not known.
3036
3037 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3038 depending on whether pointer was dereferenced
3039 in this function. */
3040 static void
3041 adjust_value_for_child_access (struct value **value,
3042 struct type **type,
3043 int *was_ptr,
3044 int lookup_actual_type)
3045 {
3046 gdb_assert (type && *type);
3047
3048 if (was_ptr)
3049 *was_ptr = 0;
3050
3051 *type = check_typedef (*type);
3052
3053 /* The type of value stored in varobj, that is passed
3054 to us, is already supposed to be
3055 reference-stripped. */
3056
3057 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3058
3059 /* Pointers to structures are treated just like
3060 structures when accessing children. Don't
3061 dererences pointers to other types. */
3062 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3063 {
3064 struct type *target_type = get_target_type (*type);
3065 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3066 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3067 {
3068 if (value && *value)
3069 {
3070 volatile struct gdb_exception except;
3071
3072 TRY_CATCH (except, RETURN_MASK_ERROR)
3073 {
3074 *value = value_ind (*value);
3075 }
3076
3077 if (except.reason < 0)
3078 *value = NULL;
3079 }
3080 *type = target_type;
3081 if (was_ptr)
3082 *was_ptr = 1;
3083 }
3084 }
3085
3086 /* The 'get_target_type' function calls check_typedef on
3087 result, so we can immediately check type code. No
3088 need to call check_typedef here. */
3089
3090 /* Access a real type of the value (if necessary and possible). */
3091 if (value && *value && lookup_actual_type)
3092 {
3093 struct type *enclosing_type;
3094 int real_type_found = 0;
3095
3096 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3097 if (real_type_found)
3098 {
3099 *type = enclosing_type;
3100 *value = value_cast (enclosing_type, *value);
3101 }
3102 }
3103 }
3104
3105 /* Implement the "value_is_changeable_p" varobj callback for most
3106 languages. */
3107
3108 static int
3109 default_value_is_changeable_p (struct varobj *var)
3110 {
3111 int r;
3112 struct type *type;
3113
3114 if (CPLUS_FAKE_CHILD (var))
3115 return 0;
3116
3117 type = get_value_type (var);
3118
3119 switch (TYPE_CODE (type))
3120 {
3121 case TYPE_CODE_STRUCT:
3122 case TYPE_CODE_UNION:
3123 case TYPE_CODE_ARRAY:
3124 r = 0;
3125 break;
3126
3127 default:
3128 r = 1;
3129 }
3130
3131 return r;
3132 }
3133
3134 /* C */
3135
3136 static int
3137 c_number_of_children (struct varobj *var)
3138 {
3139 struct type *type = get_value_type (var);
3140 int children = 0;
3141 struct type *target;
3142
3143 adjust_value_for_child_access (NULL, &type, NULL, 0);
3144 target = get_target_type (type);
3145
3146 switch (TYPE_CODE (type))
3147 {
3148 case TYPE_CODE_ARRAY:
3149 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3150 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3151 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3152 else
3153 /* If we don't know how many elements there are, don't display
3154 any. */
3155 children = 0;
3156 break;
3157
3158 case TYPE_CODE_STRUCT:
3159 case TYPE_CODE_UNION:
3160 children = TYPE_NFIELDS (type);
3161 break;
3162
3163 case TYPE_CODE_PTR:
3164 /* The type here is a pointer to non-struct. Typically, pointers
3165 have one child, except for function ptrs, which have no children,
3166 and except for void*, as we don't know what to show.
3167
3168 We can show char* so we allow it to be dereferenced. If you decide
3169 to test for it, please mind that a little magic is necessary to
3170 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3171 TYPE_NAME == "char". */
3172 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3173 || TYPE_CODE (target) == TYPE_CODE_VOID)
3174 children = 0;
3175 else
3176 children = 1;
3177 break;
3178
3179 default:
3180 /* Other types have no children. */
3181 break;
3182 }
3183
3184 return children;
3185 }
3186
3187 static char *
3188 c_name_of_variable (struct varobj *parent)
3189 {
3190 return xstrdup (parent->name);
3191 }
3192
3193 /* Return the value of element TYPE_INDEX of a structure
3194 value VALUE. VALUE's type should be a structure,
3195 or union, or a typedef to struct/union.
3196
3197 Returns NULL if getting the value fails. Never throws. */
3198 static struct value *
3199 value_struct_element_index (struct value *value, int type_index)
3200 {
3201 struct value *result = NULL;
3202 volatile struct gdb_exception e;
3203 struct type *type = value_type (value);
3204
3205 type = check_typedef (type);
3206
3207 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3208 || TYPE_CODE (type) == TYPE_CODE_UNION);
3209
3210 TRY_CATCH (e, RETURN_MASK_ERROR)
3211 {
3212 if (field_is_static (&TYPE_FIELD (type, type_index)))
3213 result = value_static_field (type, type_index);
3214 else
3215 result = value_primitive_field (value, 0, type_index, type);
3216 }
3217 if (e.reason < 0)
3218 {
3219 return NULL;
3220 }
3221 else
3222 {
3223 return result;
3224 }
3225 }
3226
3227 /* Obtain the information about child INDEX of the variable
3228 object PARENT.
3229 If CNAME is not null, sets *CNAME to the name of the child relative
3230 to the parent.
3231 If CVALUE is not null, sets *CVALUE to the value of the child.
3232 If CTYPE is not null, sets *CTYPE to the type of the child.
3233
3234 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3235 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3236 to NULL. */
3237 static void
3238 c_describe_child (struct varobj *parent, int index,
3239 char **cname, struct value **cvalue, struct type **ctype,
3240 char **cfull_expression)
3241 {
3242 struct value *value = parent->value;
3243 struct type *type = get_value_type (parent);
3244 char *parent_expression = NULL;
3245 int was_ptr;
3246 volatile struct gdb_exception except;
3247
3248 if (cname)
3249 *cname = NULL;
3250 if (cvalue)
3251 *cvalue = NULL;
3252 if (ctype)
3253 *ctype = NULL;
3254 if (cfull_expression)
3255 {
3256 *cfull_expression = NULL;
3257 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3258 }
3259 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3260
3261 switch (TYPE_CODE (type))
3262 {
3263 case TYPE_CODE_ARRAY:
3264 if (cname)
3265 *cname
3266 = xstrdup (int_string (index
3267 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3268 10, 1, 0, 0));
3269
3270 if (cvalue && value)
3271 {
3272 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3273
3274 TRY_CATCH (except, RETURN_MASK_ERROR)
3275 {
3276 *cvalue = value_subscript (value, real_index);
3277 }
3278 }
3279
3280 if (ctype)
3281 *ctype = get_target_type (type);
3282
3283 if (cfull_expression)
3284 *cfull_expression =
3285 xstrprintf ("(%s)[%s]", parent_expression,
3286 int_string (index
3287 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3288 10, 1, 0, 0));
3289
3290
3291 break;
3292
3293 case TYPE_CODE_STRUCT:
3294 case TYPE_CODE_UNION:
3295 {
3296 const char *field_name;
3297
3298 /* If the type is anonymous and the field has no name,
3299 set an appropriate name. */
3300 field_name = TYPE_FIELD_NAME (type, index);
3301 if (field_name == NULL || *field_name == '\0')
3302 {
3303 if (cname)
3304 {
3305 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3306 == TYPE_CODE_STRUCT)
3307 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3308 else
3309 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3310 }
3311
3312 if (cfull_expression)
3313 *cfull_expression = xstrdup ("");
3314 }
3315 else
3316 {
3317 if (cname)
3318 *cname = xstrdup (field_name);
3319
3320 if (cfull_expression)
3321 {
3322 char *join = was_ptr ? "->" : ".";
3323
3324 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3325 join, field_name);
3326 }
3327 }
3328
3329 if (cvalue && value)
3330 {
3331 /* For C, varobj index is the same as type index. */
3332 *cvalue = value_struct_element_index (value, index);
3333 }
3334
3335 if (ctype)
3336 *ctype = TYPE_FIELD_TYPE (type, index);
3337 }
3338 break;
3339
3340 case TYPE_CODE_PTR:
3341 if (cname)
3342 *cname = xstrprintf ("*%s", parent->name);
3343
3344 if (cvalue && value)
3345 {
3346 TRY_CATCH (except, RETURN_MASK_ERROR)
3347 {
3348 *cvalue = value_ind (value);
3349 }
3350
3351 if (except.reason < 0)
3352 *cvalue = NULL;
3353 }
3354
3355 /* Don't use get_target_type because it calls
3356 check_typedef and here, we want to show the true
3357 declared type of the variable. */
3358 if (ctype)
3359 *ctype = TYPE_TARGET_TYPE (type);
3360
3361 if (cfull_expression)
3362 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3363
3364 break;
3365
3366 default:
3367 /* This should not happen. */
3368 if (cname)
3369 *cname = xstrdup ("???");
3370 if (cfull_expression)
3371 *cfull_expression = xstrdup ("???");
3372 /* Don't set value and type, we don't know then. */
3373 }
3374 }
3375
3376 static char *
3377 c_name_of_child (struct varobj *parent, int index)
3378 {
3379 char *name;
3380
3381 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3382 return name;
3383 }
3384
3385 static char *
3386 c_path_expr_of_child (struct varobj *child)
3387 {
3388 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3389 &child->path_expr);
3390 return child->path_expr;
3391 }
3392
3393 /* If frame associated with VAR can be found, switch
3394 to it and return 1. Otherwise, return 0. */
3395 static int
3396 check_scope (struct varobj *var)
3397 {
3398 struct frame_info *fi;
3399 int scope;
3400
3401 fi = frame_find_by_id (var->root->frame);
3402 scope = fi != NULL;
3403
3404 if (fi)
3405 {
3406 CORE_ADDR pc = get_frame_pc (fi);
3407
3408 if (pc < BLOCK_START (var->root->valid_block) ||
3409 pc >= BLOCK_END (var->root->valid_block))
3410 scope = 0;
3411 else
3412 select_frame (fi);
3413 }
3414 return scope;
3415 }
3416
3417 static struct value *
3418 c_value_of_root (struct varobj **var_handle)
3419 {
3420 struct value *new_val = NULL;
3421 struct varobj *var = *var_handle;
3422 int within_scope = 0;
3423 struct cleanup *back_to;
3424
3425 /* Only root variables can be updated... */
3426 if (!is_root_p (var))
3427 /* Not a root var. */
3428 return NULL;
3429
3430 back_to = make_cleanup_restore_current_thread ();
3431
3432 /* Determine whether the variable is still around. */
3433 if (var->root->valid_block == NULL || var->root->floating)
3434 within_scope = 1;
3435 else if (var->root->thread_id == 0)
3436 {
3437 /* The program was single-threaded when the variable object was
3438 created. Technically, it's possible that the program became
3439 multi-threaded since then, but we don't support such
3440 scenario yet. */
3441 within_scope = check_scope (var);
3442 }
3443 else
3444 {
3445 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3446 if (in_thread_list (ptid))
3447 {
3448 switch_to_thread (ptid);
3449 within_scope = check_scope (var);
3450 }
3451 }
3452
3453 if (within_scope)
3454 {
3455 volatile struct gdb_exception except;
3456
3457 /* We need to catch errors here, because if evaluate
3458 expression fails we want to just return NULL. */
3459 TRY_CATCH (except, RETURN_MASK_ERROR)
3460 {
3461 new_val = evaluate_expression (var->root->exp);
3462 }
3463
3464 return new_val;
3465 }
3466
3467 do_cleanups (back_to);
3468
3469 return NULL;
3470 }
3471
3472 static struct value *
3473 c_value_of_child (struct varobj *parent, int index)
3474 {
3475 struct value *value = NULL;
3476
3477 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3478 return value;
3479 }
3480
3481 static struct type *
3482 c_type_of_child (struct varobj *parent, int index)
3483 {
3484 struct type *type = NULL;
3485
3486 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3487 return type;
3488 }
3489
3490 static char *
3491 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3492 {
3493 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3494 it will print out its children instead of "{...}". So we need to
3495 catch that case explicitly. */
3496 struct type *type = get_type (var);
3497
3498 /* Strip top-level references. */
3499 while (TYPE_CODE (type) == TYPE_CODE_REF)
3500 type = check_typedef (TYPE_TARGET_TYPE (type));
3501
3502 switch (TYPE_CODE (type))
3503 {
3504 case TYPE_CODE_STRUCT:
3505 case TYPE_CODE_UNION:
3506 return xstrdup ("{...}");
3507 /* break; */
3508
3509 case TYPE_CODE_ARRAY:
3510 {
3511 char *number;
3512
3513 number = xstrprintf ("[%d]", var->num_children);
3514 return (number);
3515 }
3516 /* break; */
3517
3518 default:
3519 {
3520 if (var->value == NULL)
3521 {
3522 /* This can happen if we attempt to get the value of a struct
3523 member when the parent is an invalid pointer. This is an
3524 error condition, so we should tell the caller. */
3525 return NULL;
3526 }
3527 else
3528 {
3529 if (var->not_fetched && value_lazy (var->value))
3530 /* Frozen variable and no value yet. We don't
3531 implicitly fetch the value. MI response will
3532 use empty string for the value, which is OK. */
3533 return NULL;
3534
3535 gdb_assert (varobj_value_is_changeable_p (var));
3536 gdb_assert (!value_lazy (var->value));
3537
3538 /* If the specified format is the current one,
3539 we can reuse print_value. */
3540 if (format == var->format)
3541 return xstrdup (var->print_value);
3542 else
3543 return value_get_print_value (var->value, format, var);
3544 }
3545 }
3546 }
3547 }
3548 \f
3549
3550 /* C++ */
3551
3552 static int
3553 cplus_number_of_children (struct varobj *var)
3554 {
3555 struct value *value = NULL;
3556 struct type *type;
3557 int children, dont_know;
3558 int lookup_actual_type = 0;
3559 struct value_print_options opts;
3560
3561 dont_know = 1;
3562 children = 0;
3563
3564 get_user_print_options (&opts);
3565
3566 if (!CPLUS_FAKE_CHILD (var))
3567 {
3568 type = get_value_type (var);
3569
3570 /* It is necessary to access a real type (via RTTI). */
3571 if (opts.objectprint)
3572 {
3573 value = var->value;
3574 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3575 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3576 }
3577 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3578
3579 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3580 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3581 {
3582 int kids[3];
3583
3584 cplus_class_num_children (type, kids);
3585 if (kids[v_public] != 0)
3586 children++;
3587 if (kids[v_private] != 0)
3588 children++;
3589 if (kids[v_protected] != 0)
3590 children++;
3591
3592 /* Add any baseclasses. */
3593 children += TYPE_N_BASECLASSES (type);
3594 dont_know = 0;
3595
3596 /* FIXME: save children in var. */
3597 }
3598 }
3599 else
3600 {
3601 int kids[3];
3602
3603 type = get_value_type (var->parent);
3604
3605 /* It is necessary to access a real type (via RTTI). */
3606 if (opts.objectprint)
3607 {
3608 struct varobj *parent = var->parent;
3609
3610 value = parent->value;
3611 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3612 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3613 }
3614 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3615
3616 cplus_class_num_children (type, kids);
3617 if (strcmp (var->name, "public") == 0)
3618 children = kids[v_public];
3619 else if (strcmp (var->name, "private") == 0)
3620 children = kids[v_private];
3621 else
3622 children = kids[v_protected];
3623 dont_know = 0;
3624 }
3625
3626 if (dont_know)
3627 children = c_number_of_children (var);
3628
3629 return children;
3630 }
3631
3632 /* Compute # of public, private, and protected variables in this class.
3633 That means we need to descend into all baseclasses and find out
3634 how many are there, too. */
3635 static void
3636 cplus_class_num_children (struct type *type, int children[3])
3637 {
3638 int i, vptr_fieldno;
3639 struct type *basetype = NULL;
3640
3641 children[v_public] = 0;
3642 children[v_private] = 0;
3643 children[v_protected] = 0;
3644
3645 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3646 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3647 {
3648 /* If we have a virtual table pointer, omit it. Even if virtual
3649 table pointers are not specifically marked in the debug info,
3650 they should be artificial. */
3651 if ((type == basetype && i == vptr_fieldno)
3652 || TYPE_FIELD_ARTIFICIAL (type, i))
3653 continue;
3654
3655 if (TYPE_FIELD_PROTECTED (type, i))
3656 children[v_protected]++;
3657 else if (TYPE_FIELD_PRIVATE (type, i))
3658 children[v_private]++;
3659 else
3660 children[v_public]++;
3661 }
3662 }
3663
3664 static char *
3665 cplus_name_of_variable (struct varobj *parent)
3666 {
3667 return c_name_of_variable (parent);
3668 }
3669
3670 enum accessibility { private_field, protected_field, public_field };
3671
3672 /* Check if field INDEX of TYPE has the specified accessibility.
3673 Return 0 if so and 1 otherwise. */
3674 static int
3675 match_accessibility (struct type *type, int index, enum accessibility acc)
3676 {
3677 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3678 return 1;
3679 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3680 return 1;
3681 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3682 && !TYPE_FIELD_PROTECTED (type, index))
3683 return 1;
3684 else
3685 return 0;
3686 }
3687
3688 static void
3689 cplus_describe_child (struct varobj *parent, int index,
3690 char **cname, struct value **cvalue, struct type **ctype,
3691 char **cfull_expression)
3692 {
3693 struct value *value;
3694 struct type *type;
3695 int was_ptr;
3696 int lookup_actual_type = 0;
3697 char *parent_expression = NULL;
3698 struct varobj *var;
3699 struct value_print_options opts;
3700
3701 if (cname)
3702 *cname = NULL;
3703 if (cvalue)
3704 *cvalue = NULL;
3705 if (ctype)
3706 *ctype = NULL;
3707 if (cfull_expression)
3708 *cfull_expression = NULL;
3709
3710 get_user_print_options (&opts);
3711
3712 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3713 if (opts.objectprint)
3714 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3715 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3716 value = var->value;
3717 type = get_value_type (var);
3718 if (cfull_expression)
3719 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3720
3721 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3722
3723 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3724 || TYPE_CODE (type) == TYPE_CODE_UNION)
3725 {
3726 char *join = was_ptr ? "->" : ".";
3727
3728 if (CPLUS_FAKE_CHILD (parent))
3729 {
3730 /* The fields of the class type are ordered as they
3731 appear in the class. We are given an index for a
3732 particular access control type ("public","protected",
3733 or "private"). We must skip over fields that don't
3734 have the access control we are looking for to properly
3735 find the indexed field. */
3736 int type_index = TYPE_N_BASECLASSES (type);
3737 enum accessibility acc = public_field;
3738 int vptr_fieldno;
3739 struct type *basetype = NULL;
3740 const char *field_name;
3741
3742 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3743 if (strcmp (parent->name, "private") == 0)
3744 acc = private_field;
3745 else if (strcmp (parent->name, "protected") == 0)
3746 acc = protected_field;
3747
3748 while (index >= 0)
3749 {
3750 if ((type == basetype && type_index == vptr_fieldno)
3751 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3752 ; /* ignore vptr */
3753 else if (match_accessibility (type, type_index, acc))
3754 --index;
3755 ++type_index;
3756 }
3757 --type_index;
3758
3759 /* If the type is anonymous and the field has no name,
3760 set an appopriate name. */
3761 field_name = TYPE_FIELD_NAME (type, type_index);
3762 if (field_name == NULL || *field_name == '\0')
3763 {
3764 if (cname)
3765 {
3766 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3767 == TYPE_CODE_STRUCT)
3768 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3769 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3770 == TYPE_CODE_UNION)
3771 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3772 }
3773
3774 if (cfull_expression)
3775 *cfull_expression = xstrdup ("");
3776 }
3777 else
3778 {
3779 if (cname)
3780 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3781
3782 if (cfull_expression)
3783 *cfull_expression
3784 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3785 field_name);
3786 }
3787
3788 if (cvalue && value)
3789 *cvalue = value_struct_element_index (value, type_index);
3790
3791 if (ctype)
3792 *ctype = TYPE_FIELD_TYPE (type, type_index);
3793 }
3794 else if (index < TYPE_N_BASECLASSES (type))
3795 {
3796 /* This is a baseclass. */
3797 if (cname)
3798 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3799
3800 if (cvalue && value)
3801 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3802
3803 if (ctype)
3804 {
3805 *ctype = TYPE_FIELD_TYPE (type, index);
3806 }
3807
3808 if (cfull_expression)
3809 {
3810 char *ptr = was_ptr ? "*" : "";
3811
3812 /* Cast the parent to the base' type. Note that in gdb,
3813 expression like
3814 (Base1)d
3815 will create an lvalue, for all appearences, so we don't
3816 need to use more fancy:
3817 *(Base1*)(&d)
3818 construct.
3819
3820 When we are in the scope of the base class or of one
3821 of its children, the type field name will be interpreted
3822 as a constructor, if it exists. Therefore, we must
3823 indicate that the name is a class name by using the
3824 'class' keyword. See PR mi/11912 */
3825 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3826 ptr,
3827 TYPE_FIELD_NAME (type, index),
3828 ptr,
3829 parent_expression);
3830 }
3831 }
3832 else
3833 {
3834 char *access = NULL;
3835 int children[3];
3836
3837 cplus_class_num_children (type, children);
3838
3839 /* Everything beyond the baseclasses can
3840 only be "public", "private", or "protected"
3841
3842 The special "fake" children are always output by varobj in
3843 this order. So if INDEX == 2, it MUST be "protected". */
3844 index -= TYPE_N_BASECLASSES (type);
3845 switch (index)
3846 {
3847 case 0:
3848 if (children[v_public] > 0)
3849 access = "public";
3850 else if (children[v_private] > 0)
3851 access = "private";
3852 else
3853 access = "protected";
3854 break;
3855 case 1:
3856 if (children[v_public] > 0)
3857 {
3858 if (children[v_private] > 0)
3859 access = "private";
3860 else
3861 access = "protected";
3862 }
3863 else if (children[v_private] > 0)
3864 access = "protected";
3865 break;
3866 case 2:
3867 /* Must be protected. */
3868 access = "protected";
3869 break;
3870 default:
3871 /* error! */
3872 break;
3873 }
3874
3875 gdb_assert (access);
3876 if (cname)
3877 *cname = xstrdup (access);
3878
3879 /* Value and type and full expression are null here. */
3880 }
3881 }
3882 else
3883 {
3884 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3885 }
3886 }
3887
3888 static char *
3889 cplus_name_of_child (struct varobj *parent, int index)
3890 {
3891 char *name = NULL;
3892
3893 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3894 return name;
3895 }
3896
3897 static char *
3898 cplus_path_expr_of_child (struct varobj *child)
3899 {
3900 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3901 &child->path_expr);
3902 return child->path_expr;
3903 }
3904
3905 static struct value *
3906 cplus_value_of_root (struct varobj **var_handle)
3907 {
3908 return c_value_of_root (var_handle);
3909 }
3910
3911 static struct value *
3912 cplus_value_of_child (struct varobj *parent, int index)
3913 {
3914 struct value *value = NULL;
3915
3916 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3917 return value;
3918 }
3919
3920 static struct type *
3921 cplus_type_of_child (struct varobj *parent, int index)
3922 {
3923 struct type *type = NULL;
3924
3925 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3926 return type;
3927 }
3928
3929 static char *
3930 cplus_value_of_variable (struct varobj *var,
3931 enum varobj_display_formats format)
3932 {
3933
3934 /* If we have one of our special types, don't print out
3935 any value. */
3936 if (CPLUS_FAKE_CHILD (var))
3937 return xstrdup ("");
3938
3939 return c_value_of_variable (var, format);
3940 }
3941 \f
3942 /* Java */
3943
3944 static int
3945 java_number_of_children (struct varobj *var)
3946 {
3947 return cplus_number_of_children (var);
3948 }
3949
3950 static char *
3951 java_name_of_variable (struct varobj *parent)
3952 {
3953 char *p, *name;
3954
3955 name = cplus_name_of_variable (parent);
3956 /* If the name has "-" in it, it is because we
3957 needed to escape periods in the name... */
3958 p = name;
3959
3960 while (*p != '\000')
3961 {
3962 if (*p == '-')
3963 *p = '.';
3964 p++;
3965 }
3966
3967 return name;
3968 }
3969
3970 static char *
3971 java_name_of_child (struct varobj *parent, int index)
3972 {
3973 char *name, *p;
3974
3975 name = cplus_name_of_child (parent, index);
3976 /* Escape any periods in the name... */
3977 p = name;
3978
3979 while (*p != '\000')
3980 {
3981 if (*p == '.')
3982 *p = '-';
3983 p++;
3984 }
3985
3986 return name;
3987 }
3988
3989 static char *
3990 java_path_expr_of_child (struct varobj *child)
3991 {
3992 return NULL;
3993 }
3994
3995 static struct value *
3996 java_value_of_root (struct varobj **var_handle)
3997 {
3998 return cplus_value_of_root (var_handle);
3999 }
4000
4001 static struct value *
4002 java_value_of_child (struct varobj *parent, int index)
4003 {
4004 return cplus_value_of_child (parent, index);
4005 }
4006
4007 static struct type *
4008 java_type_of_child (struct varobj *parent, int index)
4009 {
4010 return cplus_type_of_child (parent, index);
4011 }
4012
4013 static char *
4014 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4015 {
4016 return cplus_value_of_variable (var, format);
4017 }
4018
4019 /* Ada specific callbacks for VAROBJs. */
4020
4021 static int
4022 ada_number_of_children (struct varobj *var)
4023 {
4024 return ada_varobj_get_number_of_children (var->value, var->type);
4025 }
4026
4027 static char *
4028 ada_name_of_variable (struct varobj *parent)
4029 {
4030 return c_name_of_variable (parent);
4031 }
4032
4033 static char *
4034 ada_name_of_child (struct varobj *parent, int index)
4035 {
4036 return ada_varobj_get_name_of_child (parent->value, parent->type,
4037 parent->name, index);
4038 }
4039
4040 static char*
4041 ada_path_expr_of_child (struct varobj *child)
4042 {
4043 struct varobj *parent = child->parent;
4044 const char *parent_path_expr = varobj_get_path_expr (parent);
4045
4046 return ada_varobj_get_path_expr_of_child (parent->value,
4047 parent->type,
4048 parent->name,
4049 parent_path_expr,
4050 child->index);
4051 }
4052
4053 static struct value *
4054 ada_value_of_root (struct varobj **var_handle)
4055 {
4056 return c_value_of_root (var_handle);
4057 }
4058
4059 static struct value *
4060 ada_value_of_child (struct varobj *parent, int index)
4061 {
4062 return ada_varobj_get_value_of_child (parent->value, parent->type,
4063 parent->name, index);
4064 }
4065
4066 static struct type *
4067 ada_type_of_child (struct varobj *parent, int index)
4068 {
4069 return ada_varobj_get_type_of_child (parent->value, parent->type,
4070 index);
4071 }
4072
4073 static char *
4074 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4075 {
4076 struct value_print_options opts;
4077
4078 get_formatted_print_options (&opts, format_code[(int) format]);
4079 opts.deref_ref = 0;
4080 opts.raw = 1;
4081
4082 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4083 }
4084
4085 /* Implement the "value_is_changeable_p" routine for Ada. */
4086
4087 static int
4088 ada_value_is_changeable_p (struct varobj *var)
4089 {
4090 struct type *type = var->value ? value_type (var->value) : var->type;
4091
4092 if (ada_is_array_descriptor_type (type)
4093 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4094 {
4095 /* This is in reality a pointer to an unconstrained array.
4096 its value is changeable. */
4097 return 1;
4098 }
4099
4100 if (ada_is_string_type (type))
4101 {
4102 /* We display the contents of the string in the array's
4103 "value" field. The contents can change, so consider
4104 that the array is changeable. */
4105 return 1;
4106 }
4107
4108 return default_value_is_changeable_p (var);
4109 }
4110
4111 /* Implement the "value_has_mutated" routine for Ada. */
4112
4113 static int
4114 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4115 struct type *new_type)
4116 {
4117 int i;
4118 int from = -1;
4119 int to = -1;
4120
4121 /* If the number of fields have changed, then for sure the type
4122 has mutated. */
4123 if (ada_varobj_get_number_of_children (new_val, new_type)
4124 != var->num_children)
4125 return 1;
4126
4127 /* If the number of fields have remained the same, then we need
4128 to check the name of each field. If they remain the same,
4129 then chances are the type hasn't mutated. This is technically
4130 an incomplete test, as the child's type might have changed
4131 despite the fact that the name remains the same. But we'll
4132 handle this situation by saying that the child has mutated,
4133 not this value.
4134
4135 If only part (or none!) of the children have been fetched,
4136 then only check the ones we fetched. It does not matter
4137 to the frontend whether a child that it has not fetched yet
4138 has mutated or not. So just assume it hasn't. */
4139
4140 restrict_range (var->children, &from, &to);
4141 for (i = from; i < to; i++)
4142 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4143 var->name, i),
4144 VEC_index (varobj_p, var->children, i)->name) != 0)
4145 return 1;
4146
4147 return 0;
4148 }
4149
4150 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4151 with an arbitrary caller supplied DATA pointer. */
4152
4153 void
4154 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4155 {
4156 struct varobj_root *var_root, *var_root_next;
4157
4158 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4159
4160 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4161 {
4162 var_root_next = var_root->next;
4163
4164 (*func) (var_root->rootvar, data);
4165 }
4166 }
4167 \f
4168 extern void _initialize_varobj (void);
4169 void
4170 _initialize_varobj (void)
4171 {
4172 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4173
4174 varobj_table = xmalloc (sizeof_table);
4175 memset (varobj_table, 0, sizeof_table);
4176
4177 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
4178 &varobjdebug,
4179 _("Set varobj debugging."),
4180 _("Show varobj debugging."),
4181 _("When non-zero, varobj debugging is enabled."),
4182 NULL, show_varobjdebug,
4183 &setlist, &showlist);
4184 }
4185
4186 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4187 defined on globals. It is a helper for varobj_invalidate. */
4188
4189 static void
4190 varobj_invalidate_iter (struct varobj *var, void *unused)
4191 {
4192 /* Floating varobjs are reparsed on each stop, so we don't care if the
4193 presently parsed expression refers to something that's gone. */
4194 if (var->root->floating)
4195 return;
4196
4197 /* global var must be re-evaluated. */
4198 if (var->root->valid_block == NULL)
4199 {
4200 struct varobj *tmp_var;
4201
4202 /* Try to create a varobj with same expression. If we succeed
4203 replace the old varobj, otherwise invalidate it. */
4204 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4205 USE_CURRENT_FRAME);
4206 if (tmp_var != NULL)
4207 {
4208 tmp_var->obj_name = xstrdup (var->obj_name);
4209 varobj_delete (var, NULL, 0);
4210 install_variable (tmp_var);
4211 }
4212 else
4213 var->root->is_valid = 0;
4214 }
4215 else /* locals must be invalidated. */
4216 var->root->is_valid = 0;
4217 }
4218
4219 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4220 are defined on globals.
4221 Invalidated varobjs will be always printed in_scope="invalid". */
4222
4223 void
4224 varobj_invalidate (void)
4225 {
4226 all_root_varobjs (varobj_invalidate_iter, NULL);
4227 }
This page took 0.117925 seconds and 4 git commands to generate.