Add tiny memory model GD test cases.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (const struct varobj *);
197
198 static char *name_of_variable (const struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (const struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (const struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (const struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (const struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 volatile struct gdb_exception except;
302 CORE_ADDR pc;
303
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
309 /* Allow creator to specify context of variable. */
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
322 else
323 fi = NULL;
324
325 /* frame = -2 means always use selected frame. */
326 if (type == USE_SELECTED_FRAME)
327 var->root->floating = 1;
328
329 pc = 0;
330 block = NULL;
331 if (fi != NULL)
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
336
337 p = expression;
338 innermost_block = NULL;
339 /* Wrap the call to parse expression, so we can
340 return a sensible error. */
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
344 }
345
346 if (except.reason < 0)
347 {
348 do_cleanups (old_chain);
349 return NULL;
350 }
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
401
402 var->type = value_type (type_only_value);
403 }
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
412
413 /* Set language info */
414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
415
416 install_new_value (var, value, 1 /* Initial assignment */);
417
418 /* Set ourselves as our root. */
419 var->root->rootvar = var;
420
421 /* Reset the selected frame. */
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
424 }
425
426 /* If the variable object name is null, that means this
427 is a temporary variable, so don't install it. */
428
429 if ((var != NULL) && (objname != NULL))
430 {
431 var->obj_name = xstrdup (objname);
432
433 /* If a varobj name is duplicated, the install will fail so
434 we must cleanup. */
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444 }
445
446 /* Generates an unique name that can be used for a varobj. */
447
448 char *
449 varobj_gen_name (void)
450 {
451 static int id = 0;
452 char *obj_name;
453
454 /* Generate a name for this object. */
455 id++;
456 obj_name = xstrprintf ("var%d", id);
457
458 return obj_name;
459 }
460
461 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
463
464 struct varobj *
465 varobj_get_handle (char *objname)
466 {
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
482 error (_("Variable object not found"));
483
484 return cv->var;
485 }
486
487 /* Given the handle, return the name of the object. */
488
489 char *
490 varobj_get_objname (const struct varobj *var)
491 {
492 return var->obj_name;
493 }
494
495 /* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
497
498 char *
499 varobj_get_expression (const struct varobj *var)
500 {
501 return name_of_variable (var);
502 }
503
504 /* Deletes a varobj and all its children if only_children == 0,
505 otherwise deletes only the children. If DELLIST is non-NULL, it is
506 assigned a malloc'ed list of all the (malloc'ed) names of the variables
507 that have been deleted (NULL terminated). Returns the number of deleted
508 variables. */
509
510 int
511 varobj_delete (struct varobj *var, char ***dellist, int only_children)
512 {
513 int delcount;
514 int mycount;
515 struct cpstack *result = NULL;
516 char **cp;
517
518 /* Initialize a stack for temporary results. */
519 cppush (&result, NULL);
520
521 if (only_children)
522 /* Delete only the variable children. */
523 delcount = delete_variable (&result, var, 1 /* only the children */ );
524 else
525 /* Delete the variable and all its children. */
526 delcount = delete_variable (&result, var, 0 /* parent+children */ );
527
528 /* We may have been asked to return a list of what has been deleted. */
529 if (dellist != NULL)
530 {
531 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
532
533 cp = *dellist;
534 mycount = delcount;
535 *cp = cppop (&result);
536 while ((*cp != NULL) && (mycount > 0))
537 {
538 mycount--;
539 cp++;
540 *cp = cppop (&result);
541 }
542
543 if (mycount || (*cp != NULL))
544 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
545 mycount);
546 }
547
548 return delcount;
549 }
550
551 #if HAVE_PYTHON
552
553 /* Convenience function for varobj_set_visualizer. Instantiate a
554 pretty-printer for a given value. */
555 static PyObject *
556 instantiate_pretty_printer (PyObject *constructor, struct value *value)
557 {
558 PyObject *val_obj = NULL;
559 PyObject *printer;
560
561 val_obj = value_to_value_object (value);
562 if (! val_obj)
563 return NULL;
564
565 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
566 Py_DECREF (val_obj);
567 return printer;
568 }
569
570 #endif
571
572 /* Set/Get variable object display format. */
573
574 enum varobj_display_formats
575 varobj_set_display_format (struct varobj *var,
576 enum varobj_display_formats format)
577 {
578 switch (format)
579 {
580 case FORMAT_NATURAL:
581 case FORMAT_BINARY:
582 case FORMAT_DECIMAL:
583 case FORMAT_HEXADECIMAL:
584 case FORMAT_OCTAL:
585 var->format = format;
586 break;
587
588 default:
589 var->format = variable_default_display (var);
590 }
591
592 if (varobj_value_is_changeable_p (var)
593 && var->value && !value_lazy (var->value))
594 {
595 xfree (var->print_value);
596 var->print_value = varobj_value_get_print_value (var->value,
597 var->format, var);
598 }
599
600 return var->format;
601 }
602
603 enum varobj_display_formats
604 varobj_get_display_format (const struct varobj *var)
605 {
606 return var->format;
607 }
608
609 char *
610 varobj_get_display_hint (const struct varobj *var)
611 {
612 char *result = NULL;
613
614 #if HAVE_PYTHON
615 struct cleanup *back_to;
616
617 if (!gdb_python_initialized)
618 return NULL;
619
620 back_to = varobj_ensure_python_env (var);
621
622 if (var->dynamic->pretty_printer != NULL)
623 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
624
625 do_cleanups (back_to);
626 #endif
627
628 return result;
629 }
630
631 /* Return true if the varobj has items after TO, false otherwise. */
632
633 int
634 varobj_has_more (const struct varobj *var, int to)
635 {
636 if (VEC_length (varobj_p, var->children) > to)
637 return 1;
638 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
639 && (var->dynamic->saved_item != NULL));
640 }
641
642 /* If the variable object is bound to a specific thread, that
643 is its evaluation can always be done in context of a frame
644 inside that thread, returns GDB id of the thread -- which
645 is always positive. Otherwise, returns -1. */
646 int
647 varobj_get_thread_id (const struct varobj *var)
648 {
649 if (var->root->valid_block && var->root->thread_id > 0)
650 return var->root->thread_id;
651 else
652 return -1;
653 }
654
655 void
656 varobj_set_frozen (struct varobj *var, int frozen)
657 {
658 /* When a variable is unfrozen, we don't fetch its value.
659 The 'not_fetched' flag remains set, so next -var-update
660 won't complain.
661
662 We don't fetch the value, because for structures the client
663 should do -var-update anyway. It would be bad to have different
664 client-size logic for structure and other types. */
665 var->frozen = frozen;
666 }
667
668 int
669 varobj_get_frozen (const struct varobj *var)
670 {
671 return var->frozen;
672 }
673
674 /* A helper function that restricts a range to what is actually
675 available in a VEC. This follows the usual rules for the meaning
676 of FROM and TO -- if either is negative, the entire range is
677 used. */
678
679 void
680 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
681 {
682 if (*from < 0 || *to < 0)
683 {
684 *from = 0;
685 *to = VEC_length (varobj_p, children);
686 }
687 else
688 {
689 if (*from > VEC_length (varobj_p, children))
690 *from = VEC_length (varobj_p, children);
691 if (*to > VEC_length (varobj_p, children))
692 *to = VEC_length (varobj_p, children);
693 if (*from > *to)
694 *from = *to;
695 }
696 }
697
698 /* A helper for update_dynamic_varobj_children that installs a new
699 child when needed. */
700
701 static void
702 install_dynamic_child (struct varobj *var,
703 VEC (varobj_p) **changed,
704 VEC (varobj_p) **type_changed,
705 VEC (varobj_p) **new,
706 VEC (varobj_p) **unchanged,
707 int *cchanged,
708 int index,
709 struct varobj_item *item)
710 {
711 if (VEC_length (varobj_p, var->children) < index + 1)
712 {
713 /* There's no child yet. */
714 struct varobj *child = varobj_add_child (var, item);
715
716 if (new)
717 {
718 VEC_safe_push (varobj_p, *new, child);
719 *cchanged = 1;
720 }
721 }
722 else
723 {
724 varobj_p existing = VEC_index (varobj_p, var->children, index);
725 int type_updated = update_type_if_necessary (existing, item->value);
726
727 if (type_updated)
728 {
729 if (type_changed)
730 VEC_safe_push (varobj_p, *type_changed, existing);
731 }
732 if (install_new_value (existing, item->value, 0))
733 {
734 if (!type_updated && changed)
735 VEC_safe_push (varobj_p, *changed, existing);
736 }
737 else if (!type_updated && unchanged)
738 VEC_safe_push (varobj_p, *unchanged, existing);
739 }
740 }
741
742 #if HAVE_PYTHON
743
744 static int
745 dynamic_varobj_has_child_method (const struct varobj *var)
746 {
747 struct cleanup *back_to;
748 PyObject *printer = var->dynamic->pretty_printer;
749 int result;
750
751 if (!gdb_python_initialized)
752 return 0;
753
754 back_to = varobj_ensure_python_env (var);
755 result = PyObject_HasAttr (printer, gdbpy_children_cst);
756 do_cleanups (back_to);
757 return result;
758 }
759 #endif
760
761 /* A factory for creating dynamic varobj's iterators. Returns an
762 iterator object suitable for iterating over VAR's children. */
763
764 static struct varobj_iter *
765 varobj_get_iterator (struct varobj *var)
766 {
767 #if HAVE_PYTHON
768 if (var->dynamic->pretty_printer)
769 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
770 #endif
771
772 gdb_assert_not_reached (_("\
773 requested an iterator from a non-dynamic varobj"));
774 }
775
776 /* Release and clear VAR's saved item, if any. */
777
778 static void
779 varobj_clear_saved_item (struct varobj_dynamic *var)
780 {
781 if (var->saved_item != NULL)
782 {
783 value_free (var->saved_item->value);
784 xfree (var->saved_item);
785 var->saved_item = NULL;
786 }
787 }
788
789 static int
790 update_dynamic_varobj_children (struct varobj *var,
791 VEC (varobj_p) **changed,
792 VEC (varobj_p) **type_changed,
793 VEC (varobj_p) **new,
794 VEC (varobj_p) **unchanged,
795 int *cchanged,
796 int update_children,
797 int from,
798 int to)
799 {
800 int i;
801
802 *cchanged = 0;
803
804 if (update_children || var->dynamic->child_iter == NULL)
805 {
806 varobj_iter_delete (var->dynamic->child_iter);
807 var->dynamic->child_iter = varobj_get_iterator (var);
808
809 varobj_clear_saved_item (var->dynamic);
810
811 i = 0;
812
813 if (var->dynamic->child_iter == NULL)
814 return 0;
815 }
816 else
817 i = VEC_length (varobj_p, var->children);
818
819 /* We ask for one extra child, so that MI can report whether there
820 are more children. */
821 for (; to < 0 || i < to + 1; ++i)
822 {
823 varobj_item *item;
824
825 /* See if there was a leftover from last time. */
826 if (var->dynamic->saved_item != NULL)
827 {
828 item = var->dynamic->saved_item;
829 var->dynamic->saved_item = NULL;
830 }
831 else
832 {
833 item = varobj_iter_next (var->dynamic->child_iter);
834 /* Release vitem->value so its lifetime is not bound to the
835 execution of a command. */
836 if (item != NULL && item->value != NULL)
837 release_value_or_incref (item->value);
838 }
839
840 if (item == NULL)
841 {
842 /* Iteration is done. Remove iterator from VAR. */
843 varobj_iter_delete (var->dynamic->child_iter);
844 var->dynamic->child_iter = NULL;
845 break;
846 }
847 /* We don't want to push the extra child on any report list. */
848 if (to < 0 || i < to)
849 {
850 int can_mention = from < 0 || i >= from;
851
852 install_dynamic_child (var, can_mention ? changed : NULL,
853 can_mention ? type_changed : NULL,
854 can_mention ? new : NULL,
855 can_mention ? unchanged : NULL,
856 can_mention ? cchanged : NULL, i,
857 item);
858
859 xfree (item);
860 }
861 else
862 {
863 var->dynamic->saved_item = item;
864
865 /* We want to truncate the child list just before this
866 element. */
867 break;
868 }
869 }
870
871 if (i < VEC_length (varobj_p, var->children))
872 {
873 int j;
874
875 *cchanged = 1;
876 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
877 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
878 VEC_truncate (varobj_p, var->children, i);
879 }
880
881 /* If there are fewer children than requested, note that the list of
882 children changed. */
883 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
884 *cchanged = 1;
885
886 var->num_children = VEC_length (varobj_p, var->children);
887
888 return 1;
889 }
890
891 int
892 varobj_get_num_children (struct varobj *var)
893 {
894 if (var->num_children == -1)
895 {
896 if (varobj_is_dynamic_p (var))
897 {
898 int dummy;
899
900 /* If we have a dynamic varobj, don't report -1 children.
901 So, try to fetch some children first. */
902 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
903 0, 0, 0);
904 }
905 else
906 var->num_children = number_of_children (var);
907 }
908
909 return var->num_children >= 0 ? var->num_children : 0;
910 }
911
912 /* Creates a list of the immediate children of a variable object;
913 the return code is the number of such children or -1 on error. */
914
915 VEC (varobj_p)*
916 varobj_list_children (struct varobj *var, int *from, int *to)
917 {
918 char *name;
919 int i, children_changed;
920
921 var->dynamic->children_requested = 1;
922
923 if (varobj_is_dynamic_p (var))
924 {
925 /* This, in theory, can result in the number of children changing without
926 frontend noticing. But well, calling -var-list-children on the same
927 varobj twice is not something a sane frontend would do. */
928 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
929 &children_changed, 0, 0, *to);
930 varobj_restrict_range (var->children, from, to);
931 return var->children;
932 }
933
934 if (var->num_children == -1)
935 var->num_children = number_of_children (var);
936
937 /* If that failed, give up. */
938 if (var->num_children == -1)
939 return var->children;
940
941 /* If we're called when the list of children is not yet initialized,
942 allocate enough elements in it. */
943 while (VEC_length (varobj_p, var->children) < var->num_children)
944 VEC_safe_push (varobj_p, var->children, NULL);
945
946 for (i = 0; i < var->num_children; i++)
947 {
948 varobj_p existing = VEC_index (varobj_p, var->children, i);
949
950 if (existing == NULL)
951 {
952 /* Either it's the first call to varobj_list_children for
953 this variable object, and the child was never created,
954 or it was explicitly deleted by the client. */
955 name = name_of_child (var, i);
956 existing = create_child (var, i, name);
957 VEC_replace (varobj_p, var->children, i, existing);
958 }
959 }
960
961 varobj_restrict_range (var->children, from, to);
962 return var->children;
963 }
964
965 static struct varobj *
966 varobj_add_child (struct varobj *var, struct varobj_item *item)
967 {
968 varobj_p v = create_child_with_value (var,
969 VEC_length (varobj_p, var->children),
970 item);
971
972 VEC_safe_push (varobj_p, var->children, v);
973 return v;
974 }
975
976 /* Obtain the type of an object Variable as a string similar to the one gdb
977 prints on the console. The caller is responsible for freeing the string.
978 */
979
980 char *
981 varobj_get_type (struct varobj *var)
982 {
983 /* For the "fake" variables, do not return a type. (Its type is
984 NULL, too.)
985 Do not return a type for invalid variables as well. */
986 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
987 return NULL;
988
989 return type_to_string (var->type);
990 }
991
992 /* Obtain the type of an object variable. */
993
994 struct type *
995 varobj_get_gdb_type (const struct varobj *var)
996 {
997 return var->type;
998 }
999
1000 /* Is VAR a path expression parent, i.e., can it be used to construct
1001 a valid path expression? */
1002
1003 static int
1004 is_path_expr_parent (const struct varobj *var)
1005 {
1006 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1007 return var->root->lang_ops->is_path_expr_parent (var);
1008 }
1009
1010 /* Is VAR a path expression parent, i.e., can it be used to construct
1011 a valid path expression? By default we assume any VAR can be a path
1012 parent. */
1013
1014 int
1015 varobj_default_is_path_expr_parent (const struct varobj *var)
1016 {
1017 return 1;
1018 }
1019
1020 /* Return the path expression parent for VAR. */
1021
1022 const struct varobj *
1023 varobj_get_path_expr_parent (const struct varobj *var)
1024 {
1025 const struct varobj *parent = var;
1026
1027 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1028 parent = parent->parent;
1029
1030 return parent;
1031 }
1032
1033 /* Return a pointer to the full rooted expression of varobj VAR.
1034 If it has not been computed yet, compute it. */
1035 char *
1036 varobj_get_path_expr (const struct varobj *var)
1037 {
1038 if (var->path_expr == NULL)
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
1043 struct varobj *mutable_var = (struct varobj *) var;
1044 gdb_assert (!is_root_p (var));
1045
1046 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1047 }
1048
1049 return var->path_expr;
1050 }
1051
1052 const struct language_defn *
1053 varobj_get_language (const struct varobj *var)
1054 {
1055 return var->root->exp->language_defn;
1056 }
1057
1058 int
1059 varobj_get_attributes (const struct varobj *var)
1060 {
1061 int attributes = 0;
1062
1063 if (varobj_editable_p (var))
1064 /* FIXME: define masks for attributes. */
1065 attributes |= 0x00000001; /* Editable */
1066
1067 return attributes;
1068 }
1069
1070 /* Return true if VAR is a dynamic varobj. */
1071
1072 int
1073 varobj_is_dynamic_p (const struct varobj *var)
1074 {
1075 return var->dynamic->pretty_printer != NULL;
1076 }
1077
1078 char *
1079 varobj_get_formatted_value (struct varobj *var,
1080 enum varobj_display_formats format)
1081 {
1082 return my_value_of_variable (var, format);
1083 }
1084
1085 char *
1086 varobj_get_value (struct varobj *var)
1087 {
1088 return my_value_of_variable (var, var->format);
1089 }
1090
1091 /* Set the value of an object variable (if it is editable) to the
1092 value of the given expression. */
1093 /* Note: Invokes functions that can call error(). */
1094
1095 int
1096 varobj_set_value (struct varobj *var, char *expression)
1097 {
1098 struct value *val = NULL; /* Initialize to keep gcc happy. */
1099 /* The argument "expression" contains the variable's new value.
1100 We need to first construct a legal expression for this -- ugh! */
1101 /* Does this cover all the bases? */
1102 struct expression *exp;
1103 struct value *value = NULL; /* Initialize to keep gcc happy. */
1104 int saved_input_radix = input_radix;
1105 const char *s = expression;
1106 volatile struct gdb_exception except;
1107
1108 gdb_assert (varobj_editable_p (var));
1109
1110 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1111 exp = parse_exp_1 (&s, 0, 0, 0);
1112 TRY_CATCH (except, RETURN_MASK_ERROR)
1113 {
1114 value = evaluate_expression (exp);
1115 }
1116
1117 if (except.reason < 0)
1118 {
1119 /* We cannot proceed without a valid expression. */
1120 xfree (exp);
1121 return 0;
1122 }
1123
1124 /* All types that are editable must also be changeable. */
1125 gdb_assert (varobj_value_is_changeable_p (var));
1126
1127 /* The value of a changeable variable object must not be lazy. */
1128 gdb_assert (!value_lazy (var->value));
1129
1130 /* Need to coerce the input. We want to check if the
1131 value of the variable object will be different
1132 after assignment, and the first thing value_assign
1133 does is coerce the input.
1134 For example, if we are assigning an array to a pointer variable we
1135 should compare the pointer with the array's address, not with the
1136 array's content. */
1137 value = coerce_array (value);
1138
1139 /* The new value may be lazy. value_assign, or
1140 rather value_contents, will take care of this. */
1141 TRY_CATCH (except, RETURN_MASK_ERROR)
1142 {
1143 val = value_assign (var->value, value);
1144 }
1145
1146 if (except.reason < 0)
1147 return 0;
1148
1149 /* If the value has changed, record it, so that next -var-update can
1150 report this change. If a variable had a value of '1', we've set it
1151 to '333' and then set again to '1', when -var-update will report this
1152 variable as changed -- because the first assignment has set the
1153 'updated' flag. There's no need to optimize that, because return value
1154 of -var-update should be considered an approximation. */
1155 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1156 input_radix = saved_input_radix;
1157 return 1;
1158 }
1159
1160 #if HAVE_PYTHON
1161
1162 /* A helper function to install a constructor function and visualizer
1163 in a varobj_dynamic. */
1164
1165 static void
1166 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1167 PyObject *visualizer)
1168 {
1169 Py_XDECREF (var->constructor);
1170 var->constructor = constructor;
1171
1172 Py_XDECREF (var->pretty_printer);
1173 var->pretty_printer = visualizer;
1174
1175 varobj_iter_delete (var->child_iter);
1176 var->child_iter = NULL;
1177 }
1178
1179 /* Install the default visualizer for VAR. */
1180
1181 static void
1182 install_default_visualizer (struct varobj *var)
1183 {
1184 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1185 if (CPLUS_FAKE_CHILD (var))
1186 return;
1187
1188 if (pretty_printing)
1189 {
1190 PyObject *pretty_printer = NULL;
1191
1192 if (var->value)
1193 {
1194 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1195 if (! pretty_printer)
1196 {
1197 gdbpy_print_stack ();
1198 error (_("Cannot instantiate printer for default visualizer"));
1199 }
1200 }
1201
1202 if (pretty_printer == Py_None)
1203 {
1204 Py_DECREF (pretty_printer);
1205 pretty_printer = NULL;
1206 }
1207
1208 install_visualizer (var->dynamic, NULL, pretty_printer);
1209 }
1210 }
1211
1212 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1213 make a new object. */
1214
1215 static void
1216 construct_visualizer (struct varobj *var, PyObject *constructor)
1217 {
1218 PyObject *pretty_printer;
1219
1220 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1221 if (CPLUS_FAKE_CHILD (var))
1222 return;
1223
1224 Py_INCREF (constructor);
1225 if (constructor == Py_None)
1226 pretty_printer = NULL;
1227 else
1228 {
1229 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1230 if (! pretty_printer)
1231 {
1232 gdbpy_print_stack ();
1233 Py_DECREF (constructor);
1234 constructor = Py_None;
1235 Py_INCREF (constructor);
1236 }
1237
1238 if (pretty_printer == Py_None)
1239 {
1240 Py_DECREF (pretty_printer);
1241 pretty_printer = NULL;
1242 }
1243 }
1244
1245 install_visualizer (var->dynamic, constructor, pretty_printer);
1246 }
1247
1248 #endif /* HAVE_PYTHON */
1249
1250 /* A helper function for install_new_value. This creates and installs
1251 a visualizer for VAR, if appropriate. */
1252
1253 static void
1254 install_new_value_visualizer (struct varobj *var)
1255 {
1256 #if HAVE_PYTHON
1257 /* If the constructor is None, then we want the raw value. If VAR
1258 does not have a value, just skip this. */
1259 if (!gdb_python_initialized)
1260 return;
1261
1262 if (var->dynamic->constructor != Py_None && var->value != NULL)
1263 {
1264 struct cleanup *cleanup;
1265
1266 cleanup = varobj_ensure_python_env (var);
1267
1268 if (var->dynamic->constructor == NULL)
1269 install_default_visualizer (var);
1270 else
1271 construct_visualizer (var, var->dynamic->constructor);
1272
1273 do_cleanups (cleanup);
1274 }
1275 #else
1276 /* Do nothing. */
1277 #endif
1278 }
1279
1280 /* When using RTTI to determine variable type it may be changed in runtime when
1281 the variable value is changed. This function checks whether type of varobj
1282 VAR will change when a new value NEW_VALUE is assigned and if it is so
1283 updates the type of VAR. */
1284
1285 static int
1286 update_type_if_necessary (struct varobj *var, struct value *new_value)
1287 {
1288 if (new_value)
1289 {
1290 struct value_print_options opts;
1291
1292 get_user_print_options (&opts);
1293 if (opts.objectprint)
1294 {
1295 struct type *new_type;
1296 char *curr_type_str, *new_type_str;
1297 int type_name_changed;
1298
1299 new_type = value_actual_type (new_value, 0, 0);
1300 new_type_str = type_to_string (new_type);
1301 curr_type_str = varobj_get_type (var);
1302 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1303 xfree (curr_type_str);
1304 xfree (new_type_str);
1305
1306 if (type_name_changed)
1307 {
1308 var->type = new_type;
1309
1310 /* This information may be not valid for a new type. */
1311 varobj_delete (var, NULL, 1);
1312 VEC_free (varobj_p, var->children);
1313 var->num_children = -1;
1314 return 1;
1315 }
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 /* Assign a new value to a variable object. If INITIAL is non-zero,
1323 this is the first assignement after the variable object was just
1324 created, or changed type. In that case, just assign the value
1325 and return 0.
1326 Otherwise, assign the new value, and return 1 if the value is
1327 different from the current one, 0 otherwise. The comparison is
1328 done on textual representation of value. Therefore, some types
1329 need not be compared. E.g. for structures the reported value is
1330 always "{...}", so no comparison is necessary here. If the old
1331 value was NULL and new one is not, or vice versa, we always return 1.
1332
1333 The VALUE parameter should not be released -- the function will
1334 take care of releasing it when needed. */
1335 static int
1336 install_new_value (struct varobj *var, struct value *value, int initial)
1337 {
1338 int changeable;
1339 int need_to_fetch;
1340 int changed = 0;
1341 int intentionally_not_fetched = 0;
1342 char *print_value = NULL;
1343
1344 /* We need to know the varobj's type to decide if the value should
1345 be fetched or not. C++ fake children (public/protected/private)
1346 don't have a type. */
1347 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1348 changeable = varobj_value_is_changeable_p (var);
1349
1350 /* If the type has custom visualizer, we consider it to be always
1351 changeable. FIXME: need to make sure this behaviour will not
1352 mess up read-sensitive values. */
1353 if (var->dynamic->pretty_printer != NULL)
1354 changeable = 1;
1355
1356 need_to_fetch = changeable;
1357
1358 /* We are not interested in the address of references, and given
1359 that in C++ a reference is not rebindable, it cannot
1360 meaningfully change. So, get hold of the real value. */
1361 if (value)
1362 value = coerce_ref (value);
1363
1364 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1365 /* For unions, we need to fetch the value implicitly because
1366 of implementation of union member fetch. When gdb
1367 creates a value for a field and the value of the enclosing
1368 structure is not lazy, it immediately copies the necessary
1369 bytes from the enclosing values. If the enclosing value is
1370 lazy, the call to value_fetch_lazy on the field will read
1371 the data from memory. For unions, that means we'll read the
1372 same memory more than once, which is not desirable. So
1373 fetch now. */
1374 need_to_fetch = 1;
1375
1376 /* The new value might be lazy. If the type is changeable,
1377 that is we'll be comparing values of this type, fetch the
1378 value now. Otherwise, on the next update the old value
1379 will be lazy, which means we've lost that old value. */
1380 if (need_to_fetch && value && value_lazy (value))
1381 {
1382 const struct varobj *parent = var->parent;
1383 int frozen = var->frozen;
1384
1385 for (; !frozen && parent; parent = parent->parent)
1386 frozen |= parent->frozen;
1387
1388 if (frozen && initial)
1389 {
1390 /* For variables that are frozen, or are children of frozen
1391 variables, we don't do fetch on initial assignment.
1392 For non-initial assignemnt we do the fetch, since it means we're
1393 explicitly asked to compare the new value with the old one. */
1394 intentionally_not_fetched = 1;
1395 }
1396 else
1397 {
1398 volatile struct gdb_exception except;
1399
1400 TRY_CATCH (except, RETURN_MASK_ERROR)
1401 {
1402 value_fetch_lazy (value);
1403 }
1404
1405 if (except.reason < 0)
1406 {
1407 /* Set the value to NULL, so that for the next -var-update,
1408 we don't try to compare the new value with this value,
1409 that we couldn't even read. */
1410 value = NULL;
1411 }
1412 }
1413 }
1414
1415 /* Get a reference now, before possibly passing it to any Python
1416 code that might release it. */
1417 if (value != NULL)
1418 value_incref (value);
1419
1420 /* Below, we'll be comparing string rendering of old and new
1421 values. Don't get string rendering if the value is
1422 lazy -- if it is, the code above has decided that the value
1423 should not be fetched. */
1424 if (value != NULL && !value_lazy (value)
1425 && var->dynamic->pretty_printer == NULL)
1426 print_value = varobj_value_get_print_value (value, var->format, var);
1427
1428 /* If the type is changeable, compare the old and the new values.
1429 If this is the initial assignment, we don't have any old value
1430 to compare with. */
1431 if (!initial && changeable)
1432 {
1433 /* If the value of the varobj was changed by -var-set-value,
1434 then the value in the varobj and in the target is the same.
1435 However, that value is different from the value that the
1436 varobj had after the previous -var-update. So need to the
1437 varobj as changed. */
1438 if (var->updated)
1439 {
1440 changed = 1;
1441 }
1442 else if (var->dynamic->pretty_printer == NULL)
1443 {
1444 /* Try to compare the values. That requires that both
1445 values are non-lazy. */
1446 if (var->not_fetched && value_lazy (var->value))
1447 {
1448 /* This is a frozen varobj and the value was never read.
1449 Presumably, UI shows some "never read" indicator.
1450 Now that we've fetched the real value, we need to report
1451 this varobj as changed so that UI can show the real
1452 value. */
1453 changed = 1;
1454 }
1455 else if (var->value == NULL && value == NULL)
1456 /* Equal. */
1457 ;
1458 else if (var->value == NULL || value == NULL)
1459 {
1460 changed = 1;
1461 }
1462 else
1463 {
1464 gdb_assert (!value_lazy (var->value));
1465 gdb_assert (!value_lazy (value));
1466
1467 gdb_assert (var->print_value != NULL && print_value != NULL);
1468 if (strcmp (var->print_value, print_value) != 0)
1469 changed = 1;
1470 }
1471 }
1472 }
1473
1474 if (!initial && !changeable)
1475 {
1476 /* For values that are not changeable, we don't compare the values.
1477 However, we want to notice if a value was not NULL and now is NULL,
1478 or vise versa, so that we report when top-level varobjs come in scope
1479 and leave the scope. */
1480 changed = (var->value != NULL) != (value != NULL);
1481 }
1482
1483 /* We must always keep the new value, since children depend on it. */
1484 if (var->value != NULL && var->value != value)
1485 value_free (var->value);
1486 var->value = value;
1487 if (value && value_lazy (value) && intentionally_not_fetched)
1488 var->not_fetched = 1;
1489 else
1490 var->not_fetched = 0;
1491 var->updated = 0;
1492
1493 install_new_value_visualizer (var);
1494
1495 /* If we installed a pretty-printer, re-compare the printed version
1496 to see if the variable changed. */
1497 if (var->dynamic->pretty_printer != NULL)
1498 {
1499 xfree (print_value);
1500 print_value = varobj_value_get_print_value (var->value, var->format,
1501 var);
1502 if ((var->print_value == NULL && print_value != NULL)
1503 || (var->print_value != NULL && print_value == NULL)
1504 || (var->print_value != NULL && print_value != NULL
1505 && strcmp (var->print_value, print_value) != 0))
1506 changed = 1;
1507 }
1508 if (var->print_value)
1509 xfree (var->print_value);
1510 var->print_value = print_value;
1511
1512 gdb_assert (!var->value || value_type (var->value));
1513
1514 return changed;
1515 }
1516
1517 /* Return the requested range for a varobj. VAR is the varobj. FROM
1518 and TO are out parameters; *FROM and *TO will be set to the
1519 selected sub-range of VAR. If no range was selected using
1520 -var-set-update-range, then both will be -1. */
1521 void
1522 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1523 {
1524 *from = var->from;
1525 *to = var->to;
1526 }
1527
1528 /* Set the selected sub-range of children of VAR to start at index
1529 FROM and end at index TO. If either FROM or TO is less than zero,
1530 this is interpreted as a request for all children. */
1531 void
1532 varobj_set_child_range (struct varobj *var, int from, int to)
1533 {
1534 var->from = from;
1535 var->to = to;
1536 }
1537
1538 void
1539 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1540 {
1541 #if HAVE_PYTHON
1542 PyObject *mainmod, *globals, *constructor;
1543 struct cleanup *back_to;
1544
1545 if (!gdb_python_initialized)
1546 return;
1547
1548 back_to = varobj_ensure_python_env (var);
1549
1550 mainmod = PyImport_AddModule ("__main__");
1551 globals = PyModule_GetDict (mainmod);
1552 Py_INCREF (globals);
1553 make_cleanup_py_decref (globals);
1554
1555 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1556
1557 if (! constructor)
1558 {
1559 gdbpy_print_stack ();
1560 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1561 }
1562
1563 construct_visualizer (var, constructor);
1564 Py_XDECREF (constructor);
1565
1566 /* If there are any children now, wipe them. */
1567 varobj_delete (var, NULL, 1 /* children only */);
1568 var->num_children = -1;
1569
1570 do_cleanups (back_to);
1571 #else
1572 error (_("Python support required"));
1573 #endif
1574 }
1575
1576 /* If NEW_VALUE is the new value of the given varobj (var), return
1577 non-zero if var has mutated. In other words, if the type of
1578 the new value is different from the type of the varobj's old
1579 value.
1580
1581 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1582
1583 static int
1584 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1585 struct type *new_type)
1586 {
1587 /* If we haven't previously computed the number of children in var,
1588 it does not matter from the front-end's perspective whether
1589 the type has mutated or not. For all intents and purposes,
1590 it has not mutated. */
1591 if (var->num_children < 0)
1592 return 0;
1593
1594 if (var->root->lang_ops->value_has_mutated)
1595 {
1596 /* The varobj module, when installing new values, explicitly strips
1597 references, saying that we're not interested in those addresses.
1598 But detection of mutation happens before installing the new
1599 value, so our value may be a reference that we need to strip
1600 in order to remain consistent. */
1601 if (new_value != NULL)
1602 new_value = coerce_ref (new_value);
1603 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1604 }
1605 else
1606 return 0;
1607 }
1608
1609 /* Update the values for a variable and its children. This is a
1610 two-pronged attack. First, re-parse the value for the root's
1611 expression to see if it's changed. Then go all the way
1612 through its children, reconstructing them and noting if they've
1613 changed.
1614
1615 The EXPLICIT parameter specifies if this call is result
1616 of MI request to update this specific variable, or
1617 result of implicit -var-update *. For implicit request, we don't
1618 update frozen variables.
1619
1620 NOTE: This function may delete the caller's varobj. If it
1621 returns TYPE_CHANGED, then it has done this and VARP will be modified
1622 to point to the new varobj. */
1623
1624 VEC(varobj_update_result) *
1625 varobj_update (struct varobj **varp, int explicit)
1626 {
1627 int type_changed = 0;
1628 int i;
1629 struct value *new;
1630 VEC (varobj_update_result) *stack = NULL;
1631 VEC (varobj_update_result) *result = NULL;
1632
1633 /* Frozen means frozen -- we don't check for any change in
1634 this varobj, including its going out of scope, or
1635 changing type. One use case for frozen varobjs is
1636 retaining previously evaluated expressions, and we don't
1637 want them to be reevaluated at all. */
1638 if (!explicit && (*varp)->frozen)
1639 return result;
1640
1641 if (!(*varp)->root->is_valid)
1642 {
1643 varobj_update_result r = {0};
1644
1645 r.varobj = *varp;
1646 r.status = VAROBJ_INVALID;
1647 VEC_safe_push (varobj_update_result, result, &r);
1648 return result;
1649 }
1650
1651 if ((*varp)->root->rootvar == *varp)
1652 {
1653 varobj_update_result r = {0};
1654
1655 r.varobj = *varp;
1656 r.status = VAROBJ_IN_SCOPE;
1657
1658 /* Update the root variable. value_of_root can return NULL
1659 if the variable is no longer around, i.e. we stepped out of
1660 the frame in which a local existed. We are letting the
1661 value_of_root variable dispose of the varobj if the type
1662 has changed. */
1663 new = value_of_root (varp, &type_changed);
1664 if (update_type_if_necessary(*varp, new))
1665 type_changed = 1;
1666 r.varobj = *varp;
1667 r.type_changed = type_changed;
1668 if (install_new_value ((*varp), new, type_changed))
1669 r.changed = 1;
1670
1671 if (new == NULL)
1672 r.status = VAROBJ_NOT_IN_SCOPE;
1673 r.value_installed = 1;
1674
1675 if (r.status == VAROBJ_NOT_IN_SCOPE)
1676 {
1677 if (r.type_changed || r.changed)
1678 VEC_safe_push (varobj_update_result, result, &r);
1679 return result;
1680 }
1681
1682 VEC_safe_push (varobj_update_result, stack, &r);
1683 }
1684 else
1685 {
1686 varobj_update_result r = {0};
1687
1688 r.varobj = *varp;
1689 VEC_safe_push (varobj_update_result, stack, &r);
1690 }
1691
1692 /* Walk through the children, reconstructing them all. */
1693 while (!VEC_empty (varobj_update_result, stack))
1694 {
1695 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1696 struct varobj *v = r.varobj;
1697
1698 VEC_pop (varobj_update_result, stack);
1699
1700 /* Update this variable, unless it's a root, which is already
1701 updated. */
1702 if (!r.value_installed)
1703 {
1704 struct type *new_type;
1705
1706 new = value_of_child (v->parent, v->index);
1707 if (update_type_if_necessary(v, new))
1708 r.type_changed = 1;
1709 if (new)
1710 new_type = value_type (new);
1711 else
1712 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1713
1714 if (varobj_value_has_mutated (v, new, new_type))
1715 {
1716 /* The children are no longer valid; delete them now.
1717 Report the fact that its type changed as well. */
1718 varobj_delete (v, NULL, 1 /* only_children */);
1719 v->num_children = -1;
1720 v->to = -1;
1721 v->from = -1;
1722 v->type = new_type;
1723 r.type_changed = 1;
1724 }
1725
1726 if (install_new_value (v, new, r.type_changed))
1727 {
1728 r.changed = 1;
1729 v->updated = 0;
1730 }
1731 }
1732
1733 /* We probably should not get children of a dynamic varobj, but
1734 for which -var-list-children was never invoked. */
1735 if (varobj_is_dynamic_p (v))
1736 {
1737 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1738 VEC (varobj_p) *new = 0;
1739 int i, children_changed = 0;
1740
1741 if (v->frozen)
1742 continue;
1743
1744 if (!v->dynamic->children_requested)
1745 {
1746 int dummy;
1747
1748 /* If we initially did not have potential children, but
1749 now we do, consider the varobj as changed.
1750 Otherwise, if children were never requested, consider
1751 it as unchanged -- presumably, such varobj is not yet
1752 expanded in the UI, so we need not bother getting
1753 it. */
1754 if (!varobj_has_more (v, 0))
1755 {
1756 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1757 &dummy, 0, 0, 0);
1758 if (varobj_has_more (v, 0))
1759 r.changed = 1;
1760 }
1761
1762 if (r.changed)
1763 VEC_safe_push (varobj_update_result, result, &r);
1764
1765 continue;
1766 }
1767
1768 /* If update_dynamic_varobj_children returns 0, then we have
1769 a non-conforming pretty-printer, so we skip it. */
1770 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1771 &unchanged, &children_changed, 1,
1772 v->from, v->to))
1773 {
1774 if (children_changed || new)
1775 {
1776 r.children_changed = 1;
1777 r.new = new;
1778 }
1779 /* Push in reverse order so that the first child is
1780 popped from the work stack first, and so will be
1781 added to result first. This does not affect
1782 correctness, just "nicer". */
1783 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1784 {
1785 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1786 varobj_update_result r = {0};
1787
1788 /* Type may change only if value was changed. */
1789 r.varobj = tmp;
1790 r.changed = 1;
1791 r.type_changed = 1;
1792 r.value_installed = 1;
1793 VEC_safe_push (varobj_update_result, stack, &r);
1794 }
1795 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1796 {
1797 varobj_p tmp = VEC_index (varobj_p, changed, i);
1798 varobj_update_result r = {0};
1799
1800 r.varobj = tmp;
1801 r.changed = 1;
1802 r.value_installed = 1;
1803 VEC_safe_push (varobj_update_result, stack, &r);
1804 }
1805 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1806 {
1807 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1808
1809 if (!tmp->frozen)
1810 {
1811 varobj_update_result r = {0};
1812
1813 r.varobj = tmp;
1814 r.value_installed = 1;
1815 VEC_safe_push (varobj_update_result, stack, &r);
1816 }
1817 }
1818 if (r.changed || r.children_changed)
1819 VEC_safe_push (varobj_update_result, result, &r);
1820
1821 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1822 because NEW has been put into the result vector. */
1823 VEC_free (varobj_p, changed);
1824 VEC_free (varobj_p, type_changed);
1825 VEC_free (varobj_p, unchanged);
1826
1827 continue;
1828 }
1829 }
1830
1831 /* Push any children. Use reverse order so that the first
1832 child is popped from the work stack first, and so
1833 will be added to result first. This does not
1834 affect correctness, just "nicer". */
1835 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1836 {
1837 varobj_p c = VEC_index (varobj_p, v->children, i);
1838
1839 /* Child may be NULL if explicitly deleted by -var-delete. */
1840 if (c != NULL && !c->frozen)
1841 {
1842 varobj_update_result r = {0};
1843
1844 r.varobj = c;
1845 VEC_safe_push (varobj_update_result, stack, &r);
1846 }
1847 }
1848
1849 if (r.changed || r.type_changed)
1850 VEC_safe_push (varobj_update_result, result, &r);
1851 }
1852
1853 VEC_free (varobj_update_result, stack);
1854
1855 return result;
1856 }
1857 \f
1858
1859 /* Helper functions */
1860
1861 /*
1862 * Variable object construction/destruction
1863 */
1864
1865 static int
1866 delete_variable (struct cpstack **resultp, struct varobj *var,
1867 int only_children_p)
1868 {
1869 int delcount = 0;
1870
1871 delete_variable_1 (resultp, &delcount, var,
1872 only_children_p, 1 /* remove_from_parent_p */ );
1873
1874 return delcount;
1875 }
1876
1877 /* Delete the variable object VAR and its children. */
1878 /* IMPORTANT NOTE: If we delete a variable which is a child
1879 and the parent is not removed we dump core. It must be always
1880 initially called with remove_from_parent_p set. */
1881 static void
1882 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1883 struct varobj *var, int only_children_p,
1884 int remove_from_parent_p)
1885 {
1886 int i;
1887
1888 /* Delete any children of this variable, too. */
1889 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1890 {
1891 varobj_p child = VEC_index (varobj_p, var->children, i);
1892
1893 if (!child)
1894 continue;
1895 if (!remove_from_parent_p)
1896 child->parent = NULL;
1897 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1898 }
1899 VEC_free (varobj_p, var->children);
1900
1901 /* if we were called to delete only the children we are done here. */
1902 if (only_children_p)
1903 return;
1904
1905 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1906 /* If the name is null, this is a temporary variable, that has not
1907 yet been installed, don't report it, it belongs to the caller... */
1908 if (var->obj_name != NULL)
1909 {
1910 cppush (resultp, xstrdup (var->obj_name));
1911 *delcountp = *delcountp + 1;
1912 }
1913
1914 /* If this variable has a parent, remove it from its parent's list. */
1915 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1916 (as indicated by remove_from_parent_p) we don't bother doing an
1917 expensive list search to find the element to remove when we are
1918 discarding the list afterwards. */
1919 if ((remove_from_parent_p) && (var->parent != NULL))
1920 {
1921 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1922 }
1923
1924 if (var->obj_name != NULL)
1925 uninstall_variable (var);
1926
1927 /* Free memory associated with this variable. */
1928 free_variable (var);
1929 }
1930
1931 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1932 static int
1933 install_variable (struct varobj *var)
1934 {
1935 struct vlist *cv;
1936 struct vlist *newvl;
1937 const char *chp;
1938 unsigned int index = 0;
1939 unsigned int i = 1;
1940
1941 for (chp = var->obj_name; *chp; chp++)
1942 {
1943 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1944 }
1945
1946 cv = *(varobj_table + index);
1947 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1948 cv = cv->next;
1949
1950 if (cv != NULL)
1951 error (_("Duplicate variable object name"));
1952
1953 /* Add varobj to hash table. */
1954 newvl = xmalloc (sizeof (struct vlist));
1955 newvl->next = *(varobj_table + index);
1956 newvl->var = var;
1957 *(varobj_table + index) = newvl;
1958
1959 /* If root, add varobj to root list. */
1960 if (is_root_p (var))
1961 {
1962 /* Add to list of root variables. */
1963 if (rootlist == NULL)
1964 var->root->next = NULL;
1965 else
1966 var->root->next = rootlist;
1967 rootlist = var->root;
1968 }
1969
1970 return 1; /* OK */
1971 }
1972
1973 /* Unistall the object VAR. */
1974 static void
1975 uninstall_variable (struct varobj *var)
1976 {
1977 struct vlist *cv;
1978 struct vlist *prev;
1979 struct varobj_root *cr;
1980 struct varobj_root *prer;
1981 const char *chp;
1982 unsigned int index = 0;
1983 unsigned int i = 1;
1984
1985 /* Remove varobj from hash table. */
1986 for (chp = var->obj_name; *chp; chp++)
1987 {
1988 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1989 }
1990
1991 cv = *(varobj_table + index);
1992 prev = NULL;
1993 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1994 {
1995 prev = cv;
1996 cv = cv->next;
1997 }
1998
1999 if (varobjdebug)
2000 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2001
2002 if (cv == NULL)
2003 {
2004 warning
2005 ("Assertion failed: Could not find variable object \"%s\" to delete",
2006 var->obj_name);
2007 return;
2008 }
2009
2010 if (prev == NULL)
2011 *(varobj_table + index) = cv->next;
2012 else
2013 prev->next = cv->next;
2014
2015 xfree (cv);
2016
2017 /* If root, remove varobj from root list. */
2018 if (is_root_p (var))
2019 {
2020 /* Remove from list of root variables. */
2021 if (rootlist == var->root)
2022 rootlist = var->root->next;
2023 else
2024 {
2025 prer = NULL;
2026 cr = rootlist;
2027 while ((cr != NULL) && (cr->rootvar != var))
2028 {
2029 prer = cr;
2030 cr = cr->next;
2031 }
2032 if (cr == NULL)
2033 {
2034 warning (_("Assertion failed: Could not find "
2035 "varobj \"%s\" in root list"),
2036 var->obj_name);
2037 return;
2038 }
2039 if (prer == NULL)
2040 rootlist = NULL;
2041 else
2042 prer->next = cr->next;
2043 }
2044 }
2045
2046 }
2047
2048 /* Create and install a child of the parent of the given name.
2049
2050 The created VAROBJ takes ownership of the allocated NAME. */
2051
2052 static struct varobj *
2053 create_child (struct varobj *parent, int index, char *name)
2054 {
2055 struct varobj_item item;
2056
2057 item.name = name;
2058 item.value = value_of_child (parent, index);
2059
2060 return create_child_with_value (parent, index, &item);
2061 }
2062
2063 static struct varobj *
2064 create_child_with_value (struct varobj *parent, int index,
2065 struct varobj_item *item)
2066 {
2067 struct varobj *child;
2068 char *childs_name;
2069
2070 child = new_variable ();
2071
2072 /* NAME is allocated by caller. */
2073 child->name = item->name;
2074 child->index = index;
2075 child->parent = parent;
2076 child->root = parent->root;
2077
2078 if (varobj_is_anonymous_child (child))
2079 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2080 else
2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2082 child->obj_name = childs_name;
2083
2084 install_variable (child);
2085
2086 /* Compute the type of the child. Must do this before
2087 calling install_new_value. */
2088 if (item->value != NULL)
2089 /* If the child had no evaluation errors, var->value
2090 will be non-NULL and contain a valid type. */
2091 child->type = value_actual_type (item->value, 0, NULL);
2092 else
2093 /* Otherwise, we must compute the type. */
2094 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2095 child->index);
2096 install_new_value (child, item->value, 1);
2097
2098 return child;
2099 }
2100 \f
2101
2102 /*
2103 * Miscellaneous utility functions.
2104 */
2105
2106 /* Allocate memory and initialize a new variable. */
2107 static struct varobj *
2108 new_variable (void)
2109 {
2110 struct varobj *var;
2111
2112 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2113 var->name = NULL;
2114 var->path_expr = NULL;
2115 var->obj_name = NULL;
2116 var->index = -1;
2117 var->type = NULL;
2118 var->value = NULL;
2119 var->num_children = -1;
2120 var->parent = NULL;
2121 var->children = NULL;
2122 var->format = 0;
2123 var->root = NULL;
2124 var->updated = 0;
2125 var->print_value = NULL;
2126 var->frozen = 0;
2127 var->not_fetched = 0;
2128 var->dynamic
2129 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2130 var->dynamic->children_requested = 0;
2131 var->from = -1;
2132 var->to = -1;
2133 var->dynamic->constructor = 0;
2134 var->dynamic->pretty_printer = 0;
2135 var->dynamic->child_iter = 0;
2136 var->dynamic->saved_item = 0;
2137
2138 return var;
2139 }
2140
2141 /* Allocate memory and initialize a new root variable. */
2142 static struct varobj *
2143 new_root_variable (void)
2144 {
2145 struct varobj *var = new_variable ();
2146
2147 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2148 var->root->lang_ops = NULL;
2149 var->root->exp = NULL;
2150 var->root->valid_block = NULL;
2151 var->root->frame = null_frame_id;
2152 var->root->floating = 0;
2153 var->root->rootvar = NULL;
2154 var->root->is_valid = 1;
2155
2156 return var;
2157 }
2158
2159 /* Free any allocated memory associated with VAR. */
2160 static void
2161 free_variable (struct varobj *var)
2162 {
2163 #if HAVE_PYTHON
2164 if (var->dynamic->pretty_printer != NULL)
2165 {
2166 struct cleanup *cleanup = varobj_ensure_python_env (var);
2167
2168 Py_XDECREF (var->dynamic->constructor);
2169 Py_XDECREF (var->dynamic->pretty_printer);
2170 do_cleanups (cleanup);
2171 }
2172 #endif
2173
2174 varobj_iter_delete (var->dynamic->child_iter);
2175 varobj_clear_saved_item (var->dynamic);
2176 value_free (var->value);
2177
2178 /* Free the expression if this is a root variable. */
2179 if (is_root_p (var))
2180 {
2181 xfree (var->root->exp);
2182 xfree (var->root);
2183 }
2184
2185 xfree (var->name);
2186 xfree (var->obj_name);
2187 xfree (var->print_value);
2188 xfree (var->path_expr);
2189 xfree (var->dynamic);
2190 xfree (var);
2191 }
2192
2193 static void
2194 do_free_variable_cleanup (void *var)
2195 {
2196 free_variable (var);
2197 }
2198
2199 static struct cleanup *
2200 make_cleanup_free_variable (struct varobj *var)
2201 {
2202 return make_cleanup (do_free_variable_cleanup, var);
2203 }
2204
2205 /* Return the type of the value that's stored in VAR,
2206 or that would have being stored there if the
2207 value were accessible.
2208
2209 This differs from VAR->type in that VAR->type is always
2210 the true type of the expession in the source language.
2211 The return value of this function is the type we're
2212 actually storing in varobj, and using for displaying
2213 the values and for comparing previous and new values.
2214
2215 For example, top-level references are always stripped. */
2216 struct type *
2217 varobj_get_value_type (const struct varobj *var)
2218 {
2219 struct type *type;
2220
2221 if (var->value)
2222 type = value_type (var->value);
2223 else
2224 type = var->type;
2225
2226 type = check_typedef (type);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_REF)
2229 type = get_target_type (type);
2230
2231 type = check_typedef (type);
2232
2233 return type;
2234 }
2235
2236 /* What is the default display for this variable? We assume that
2237 everything is "natural". Any exceptions? */
2238 static enum varobj_display_formats
2239 variable_default_display (struct varobj *var)
2240 {
2241 return FORMAT_NATURAL;
2242 }
2243
2244 /* FIXME: The following should be generic for any pointer. */
2245 static void
2246 cppush (struct cpstack **pstack, char *name)
2247 {
2248 struct cpstack *s;
2249
2250 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2251 s->name = name;
2252 s->next = *pstack;
2253 *pstack = s;
2254 }
2255
2256 /* FIXME: The following should be generic for any pointer. */
2257 static char *
2258 cppop (struct cpstack **pstack)
2259 {
2260 struct cpstack *s;
2261 char *v;
2262
2263 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2264 return NULL;
2265
2266 s = *pstack;
2267 v = s->name;
2268 *pstack = (*pstack)->next;
2269 xfree (s);
2270
2271 return v;
2272 }
2273 \f
2274 /*
2275 * Language-dependencies
2276 */
2277
2278 /* Common entry points */
2279
2280 /* Return the number of children for a given variable.
2281 The result of this function is defined by the language
2282 implementation. The number of children returned by this function
2283 is the number of children that the user will see in the variable
2284 display. */
2285 static int
2286 number_of_children (const struct varobj *var)
2287 {
2288 return (*var->root->lang_ops->number_of_children) (var);
2289 }
2290
2291 /* What is the expression for the root varobj VAR? Returns a malloc'd
2292 string. */
2293 static char *
2294 name_of_variable (const struct varobj *var)
2295 {
2296 return (*var->root->lang_ops->name_of_variable) (var);
2297 }
2298
2299 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2300 string. */
2301 static char *
2302 name_of_child (struct varobj *var, int index)
2303 {
2304 return (*var->root->lang_ops->name_of_child) (var, index);
2305 }
2306
2307 /* If frame associated with VAR can be found, switch
2308 to it and return 1. Otherwise, return 0. */
2309
2310 static int
2311 check_scope (const struct varobj *var)
2312 {
2313 struct frame_info *fi;
2314 int scope;
2315
2316 fi = frame_find_by_id (var->root->frame);
2317 scope = fi != NULL;
2318
2319 if (fi)
2320 {
2321 CORE_ADDR pc = get_frame_pc (fi);
2322
2323 if (pc < BLOCK_START (var->root->valid_block) ||
2324 pc >= BLOCK_END (var->root->valid_block))
2325 scope = 0;
2326 else
2327 select_frame (fi);
2328 }
2329 return scope;
2330 }
2331
2332 /* Helper function to value_of_root. */
2333
2334 static struct value *
2335 value_of_root_1 (struct varobj **var_handle)
2336 {
2337 struct value *new_val = NULL;
2338 struct varobj *var = *var_handle;
2339 int within_scope = 0;
2340 struct cleanup *back_to;
2341
2342 /* Only root variables can be updated... */
2343 if (!is_root_p (var))
2344 /* Not a root var. */
2345 return NULL;
2346
2347 back_to = make_cleanup_restore_current_thread ();
2348
2349 /* Determine whether the variable is still around. */
2350 if (var->root->valid_block == NULL || var->root->floating)
2351 within_scope = 1;
2352 else if (var->root->thread_id == 0)
2353 {
2354 /* The program was single-threaded when the variable object was
2355 created. Technically, it's possible that the program became
2356 multi-threaded since then, but we don't support such
2357 scenario yet. */
2358 within_scope = check_scope (var);
2359 }
2360 else
2361 {
2362 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2363 if (in_thread_list (ptid))
2364 {
2365 switch_to_thread (ptid);
2366 within_scope = check_scope (var);
2367 }
2368 }
2369
2370 if (within_scope)
2371 {
2372 volatile struct gdb_exception except;
2373
2374 /* We need to catch errors here, because if evaluate
2375 expression fails we want to just return NULL. */
2376 TRY_CATCH (except, RETURN_MASK_ERROR)
2377 {
2378 new_val = evaluate_expression (var->root->exp);
2379 }
2380 }
2381
2382 do_cleanups (back_to);
2383
2384 return new_val;
2385 }
2386
2387 /* What is the ``struct value *'' of the root variable VAR?
2388 For floating variable object, evaluation can get us a value
2389 of different type from what is stored in varobj already. In
2390 that case:
2391 - *type_changed will be set to 1
2392 - old varobj will be freed, and new one will be
2393 created, with the same name.
2394 - *var_handle will be set to the new varobj
2395 Otherwise, *type_changed will be set to 0. */
2396 static struct value *
2397 value_of_root (struct varobj **var_handle, int *type_changed)
2398 {
2399 struct varobj *var;
2400
2401 if (var_handle == NULL)
2402 return NULL;
2403
2404 var = *var_handle;
2405
2406 /* This should really be an exception, since this should
2407 only get called with a root variable. */
2408
2409 if (!is_root_p (var))
2410 return NULL;
2411
2412 if (var->root->floating)
2413 {
2414 struct varobj *tmp_var;
2415 char *old_type, *new_type;
2416
2417 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2418 USE_SELECTED_FRAME);
2419 if (tmp_var == NULL)
2420 {
2421 return NULL;
2422 }
2423 old_type = varobj_get_type (var);
2424 new_type = varobj_get_type (tmp_var);
2425 if (strcmp (old_type, new_type) == 0)
2426 {
2427 /* The expression presently stored inside var->root->exp
2428 remembers the locations of local variables relatively to
2429 the frame where the expression was created (in DWARF location
2430 button, for example). Naturally, those locations are not
2431 correct in other frames, so update the expression. */
2432
2433 struct expression *tmp_exp = var->root->exp;
2434
2435 var->root->exp = tmp_var->root->exp;
2436 tmp_var->root->exp = tmp_exp;
2437
2438 varobj_delete (tmp_var, NULL, 0);
2439 *type_changed = 0;
2440 }
2441 else
2442 {
2443 tmp_var->obj_name = xstrdup (var->obj_name);
2444 tmp_var->from = var->from;
2445 tmp_var->to = var->to;
2446 varobj_delete (var, NULL, 0);
2447
2448 install_variable (tmp_var);
2449 *var_handle = tmp_var;
2450 var = *var_handle;
2451 *type_changed = 1;
2452 }
2453 xfree (old_type);
2454 xfree (new_type);
2455 }
2456 else
2457 {
2458 *type_changed = 0;
2459 }
2460
2461 {
2462 struct value *value;
2463
2464 value = value_of_root_1 (var_handle);
2465 if (var->value == NULL || value == NULL)
2466 {
2467 /* For root varobj-s, a NULL value indicates a scoping issue.
2468 So, nothing to do in terms of checking for mutations. */
2469 }
2470 else if (varobj_value_has_mutated (var, value, value_type (value)))
2471 {
2472 /* The type has mutated, so the children are no longer valid.
2473 Just delete them, and tell our caller that the type has
2474 changed. */
2475 varobj_delete (var, NULL, 1 /* only_children */);
2476 var->num_children = -1;
2477 var->to = -1;
2478 var->from = -1;
2479 *type_changed = 1;
2480 }
2481 return value;
2482 }
2483 }
2484
2485 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2486 static struct value *
2487 value_of_child (const struct varobj *parent, int index)
2488 {
2489 struct value *value;
2490
2491 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2492
2493 return value;
2494 }
2495
2496 /* GDB already has a command called "value_of_variable". Sigh. */
2497 static char *
2498 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2499 {
2500 if (var->root->is_valid)
2501 {
2502 if (var->dynamic->pretty_printer != NULL)
2503 return varobj_value_get_print_value (var->value, var->format, var);
2504 return (*var->root->lang_ops->value_of_variable) (var, format);
2505 }
2506 else
2507 return NULL;
2508 }
2509
2510 void
2511 varobj_formatted_print_options (struct value_print_options *opts,
2512 enum varobj_display_formats format)
2513 {
2514 get_formatted_print_options (opts, format_code[(int) format]);
2515 opts->deref_ref = 0;
2516 opts->raw = 1;
2517 }
2518
2519 char *
2520 varobj_value_get_print_value (struct value *value,
2521 enum varobj_display_formats format,
2522 const struct varobj *var)
2523 {
2524 struct ui_file *stb;
2525 struct cleanup *old_chain;
2526 char *thevalue = NULL;
2527 struct value_print_options opts;
2528 struct type *type = NULL;
2529 long len = 0;
2530 char *encoding = NULL;
2531 struct gdbarch *gdbarch = NULL;
2532 /* Initialize it just to avoid a GCC false warning. */
2533 CORE_ADDR str_addr = 0;
2534 int string_print = 0;
2535
2536 if (value == NULL)
2537 return NULL;
2538
2539 stb = mem_fileopen ();
2540 old_chain = make_cleanup_ui_file_delete (stb);
2541
2542 gdbarch = get_type_arch (value_type (value));
2543 #if HAVE_PYTHON
2544 if (gdb_python_initialized)
2545 {
2546 PyObject *value_formatter = var->dynamic->pretty_printer;
2547
2548 varobj_ensure_python_env (var);
2549
2550 if (value_formatter)
2551 {
2552 /* First check to see if we have any children at all. If so,
2553 we simply return {...}. */
2554 if (dynamic_varobj_has_child_method (var))
2555 {
2556 do_cleanups (old_chain);
2557 return xstrdup ("{...}");
2558 }
2559
2560 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2561 {
2562 struct value *replacement;
2563 PyObject *output = NULL;
2564
2565 output = apply_varobj_pretty_printer (value_formatter,
2566 &replacement,
2567 stb);
2568
2569 /* If we have string like output ... */
2570 if (output)
2571 {
2572 make_cleanup_py_decref (output);
2573
2574 /* If this is a lazy string, extract it. For lazy
2575 strings we always print as a string, so set
2576 string_print. */
2577 if (gdbpy_is_lazy_string (output))
2578 {
2579 gdbpy_extract_lazy_string (output, &str_addr, &type,
2580 &len, &encoding);
2581 make_cleanup (free_current_contents, &encoding);
2582 string_print = 1;
2583 }
2584 else
2585 {
2586 /* If it is a regular (non-lazy) string, extract
2587 it and copy the contents into THEVALUE. If the
2588 hint says to print it as a string, set
2589 string_print. Otherwise just return the extracted
2590 string as a value. */
2591
2592 char *s = python_string_to_target_string (output);
2593
2594 if (s)
2595 {
2596 char *hint;
2597
2598 hint = gdbpy_get_display_hint (value_formatter);
2599 if (hint)
2600 {
2601 if (!strcmp (hint, "string"))
2602 string_print = 1;
2603 xfree (hint);
2604 }
2605
2606 len = strlen (s);
2607 thevalue = xmemdup (s, len + 1, len + 1);
2608 type = builtin_type (gdbarch)->builtin_char;
2609 xfree (s);
2610
2611 if (!string_print)
2612 {
2613 do_cleanups (old_chain);
2614 return thevalue;
2615 }
2616
2617 make_cleanup (xfree, thevalue);
2618 }
2619 else
2620 gdbpy_print_stack ();
2621 }
2622 }
2623 /* If the printer returned a replacement value, set VALUE
2624 to REPLACEMENT. If there is not a replacement value,
2625 just use the value passed to this function. */
2626 if (replacement)
2627 value = replacement;
2628 }
2629 }
2630 }
2631 #endif
2632
2633 varobj_formatted_print_options (&opts, format);
2634
2635 /* If the THEVALUE has contents, it is a regular string. */
2636 if (thevalue)
2637 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2638 else if (string_print)
2639 /* Otherwise, if string_print is set, and it is not a regular
2640 string, it is a lazy string. */
2641 val_print_string (type, encoding, str_addr, len, stb, &opts);
2642 else
2643 /* All other cases. */
2644 common_val_print (value, stb, 0, &opts, current_language);
2645
2646 thevalue = ui_file_xstrdup (stb, NULL);
2647
2648 do_cleanups (old_chain);
2649 return thevalue;
2650 }
2651
2652 int
2653 varobj_editable_p (const struct varobj *var)
2654 {
2655 struct type *type;
2656
2657 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2658 return 0;
2659
2660 type = varobj_get_value_type (var);
2661
2662 switch (TYPE_CODE (type))
2663 {
2664 case TYPE_CODE_STRUCT:
2665 case TYPE_CODE_UNION:
2666 case TYPE_CODE_ARRAY:
2667 case TYPE_CODE_FUNC:
2668 case TYPE_CODE_METHOD:
2669 return 0;
2670 break;
2671
2672 default:
2673 return 1;
2674 break;
2675 }
2676 }
2677
2678 /* Call VAR's value_is_changeable_p language-specific callback. */
2679
2680 int
2681 varobj_value_is_changeable_p (const struct varobj *var)
2682 {
2683 return var->root->lang_ops->value_is_changeable_p (var);
2684 }
2685
2686 /* Return 1 if that varobj is floating, that is is always evaluated in the
2687 selected frame, and not bound to thread/frame. Such variable objects
2688 are created using '@' as frame specifier to -var-create. */
2689 int
2690 varobj_floating_p (const struct varobj *var)
2691 {
2692 return var->root->floating;
2693 }
2694
2695 /* Implement the "value_is_changeable_p" varobj callback for most
2696 languages. */
2697
2698 int
2699 varobj_default_value_is_changeable_p (const struct varobj *var)
2700 {
2701 int r;
2702 struct type *type;
2703
2704 if (CPLUS_FAKE_CHILD (var))
2705 return 0;
2706
2707 type = varobj_get_value_type (var);
2708
2709 switch (TYPE_CODE (type))
2710 {
2711 case TYPE_CODE_STRUCT:
2712 case TYPE_CODE_UNION:
2713 case TYPE_CODE_ARRAY:
2714 r = 0;
2715 break;
2716
2717 default:
2718 r = 1;
2719 }
2720
2721 return r;
2722 }
2723
2724 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2725 with an arbitrary caller supplied DATA pointer. */
2726
2727 void
2728 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2729 {
2730 struct varobj_root *var_root, *var_root_next;
2731
2732 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2733
2734 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2735 {
2736 var_root_next = var_root->next;
2737
2738 (*func) (var_root->rootvar, data);
2739 }
2740 }
2741
2742 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2743 defined on globals. It is a helper for varobj_invalidate.
2744
2745 This function is called after changing the symbol file, in this case the
2746 pointers to "struct type" stored by the varobj are no longer valid. All
2747 varobj must be either re-evaluated, or marked as invalid here. */
2748
2749 static void
2750 varobj_invalidate_iter (struct varobj *var, void *unused)
2751 {
2752 /* global and floating var must be re-evaluated. */
2753 if (var->root->floating || var->root->valid_block == NULL)
2754 {
2755 struct varobj *tmp_var;
2756
2757 /* Try to create a varobj with same expression. If we succeed
2758 replace the old varobj, otherwise invalidate it. */
2759 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2760 USE_CURRENT_FRAME);
2761 if (tmp_var != NULL)
2762 {
2763 tmp_var->obj_name = xstrdup (var->obj_name);
2764 varobj_delete (var, NULL, 0);
2765 install_variable (tmp_var);
2766 }
2767 else
2768 var->root->is_valid = 0;
2769 }
2770 else /* locals must be invalidated. */
2771 var->root->is_valid = 0;
2772 }
2773
2774 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2775 are defined on globals.
2776 Invalidated varobjs will be always printed in_scope="invalid". */
2777
2778 void
2779 varobj_invalidate (void)
2780 {
2781 all_root_varobjs (varobj_invalidate_iter, NULL);
2782 }
2783 \f
2784 extern void _initialize_varobj (void);
2785 void
2786 _initialize_varobj (void)
2787 {
2788 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2789
2790 varobj_table = xmalloc (sizeof_table);
2791 memset (varobj_table, 0, sizeof_table);
2792
2793 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2794 &varobjdebug,
2795 _("Set varobj debugging."),
2796 _("Show varobj debugging."),
2797 _("When non-zero, varobj debugging is enabled."),
2798 NULL, show_varobjdebug,
2799 &setdebuglist, &showdebuglist);
2800 }
This page took 0.104775 seconds and 4 git commands to generate.