Move `_initialize_varobj' to the end of varobj.c
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27 #include "gdb_regex.h"
28
29 #include "varobj.h"
30 #include "vec.h"
31 #include "gdbthread.h"
32 #include "inferior.h"
33 #include "varobj-iter.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static int pretty_printing = 0;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = 1;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. Members which must be free'd are noted. */
69 struct varobj_root
70 {
71
72 /* Alloc'd expression for this parent. */
73 struct expression *exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame;
81
82 /* The thread ID that this varobj_root belong to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id;
88
89 /* If 1, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 int floating;
93
94 /* Flag that indicates validity: set to 0 when this varobj_root refers
95 to symbols that do not exist anymore. */
96 int is_valid;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar;
104
105 /* Next root variable */
106 struct varobj_root *next;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 int children_requested;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item;
138 };
139
140 struct cpstack
141 {
142 char *name;
143 struct cpstack *next;
144 };
145
146 /* A list of varobjs */
147
148 struct vlist
149 {
150 struct varobj *var;
151 struct vlist *next;
152 };
153
154 /* Private function prototypes */
155
156 /* Helper functions for the above subcommands. */
157
158 static int delete_variable (struct cpstack **, struct varobj *, int);
159
160 static void delete_variable_1 (struct cpstack **, int *,
161 struct varobj *, int, int);
162
163 static int install_variable (struct varobj *);
164
165 static void uninstall_variable (struct varobj *);
166
167 static struct varobj *create_child (struct varobj *, int, char *);
168
169 static struct varobj *
170 create_child_with_value (struct varobj *parent, int index,
171 struct varobj_item *item);
172
173 /* Utility routines */
174
175 static struct varobj *new_variable (void);
176
177 static struct varobj *new_root_variable (void);
178
179 static void free_variable (struct varobj *var);
180
181 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182
183 static enum varobj_display_formats variable_default_display (struct varobj *);
184
185 static void cppush (struct cpstack **pstack, char *name);
186
187 static char *cppop (struct cpstack **pstack);
188
189 static int update_type_if_necessary (struct varobj *var,
190 struct value *new_value);
191
192 static int install_new_value (struct varobj *var, struct value *value,
193 int initial);
194
195 /* Language-specific routines. */
196
197 static int number_of_children (struct varobj *);
198
199 static char *name_of_variable (struct varobj *);
200
201 static char *name_of_child (struct varobj *, int);
202
203 static struct value *value_of_root (struct varobj **var_handle, int *);
204
205 static struct value *value_of_child (struct varobj *parent, int index);
206
207 static char *my_value_of_variable (struct varobj *var,
208 enum varobj_display_formats format);
209
210 static int is_root_p (struct varobj *var);
211
212 static struct varobj *varobj_add_child (struct varobj *var,
213 struct varobj_item *item);
214
215 /* Private data */
216
217 /* Mappings of varobj_display_formats enums to gdb's format codes. */
218 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
219
220 /* Header of the list of root variable objects. */
221 static struct varobj_root *rootlist;
222
223 /* Prime number indicating the number of buckets in the hash table. */
224 /* A prime large enough to avoid too many colisions. */
225 #define VAROBJ_TABLE_SIZE 227
226
227 /* Pointer to the varobj hash table (built at run time). */
228 static struct vlist **varobj_table;
229
230 \f
231
232 /* API Implementation */
233 static int
234 is_root_p (struct varobj *var)
235 {
236 return (var->root->rootvar == var);
237 }
238
239 #ifdef HAVE_PYTHON
240 /* Helper function to install a Python environment suitable for
241 use during operations on VAR. */
242 struct cleanup *
243 varobj_ensure_python_env (struct varobj *var)
244 {
245 return ensure_python_env (var->root->exp->gdbarch,
246 var->root->exp->language_defn);
247 }
248 #endif
249
250 /* Creates a varobj (not its children). */
251
252 /* Return the full FRAME which corresponds to the given CORE_ADDR
253 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
254
255 static struct frame_info *
256 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
257 {
258 struct frame_info *frame = NULL;
259
260 if (frame_addr == (CORE_ADDR) 0)
261 return NULL;
262
263 for (frame = get_current_frame ();
264 frame != NULL;
265 frame = get_prev_frame (frame))
266 {
267 /* The CORE_ADDR we get as argument was parsed from a string GDB
268 output as $fp. This output got truncated to gdbarch_addr_bit.
269 Truncate the frame base address in the same manner before
270 comparing it against our argument. */
271 CORE_ADDR frame_base = get_frame_base_address (frame);
272 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
273
274 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
275 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
276
277 if (frame_base == frame_addr)
278 return frame;
279 }
280
281 return NULL;
282 }
283
284 struct varobj *
285 varobj_create (char *objname,
286 char *expression, CORE_ADDR frame, enum varobj_type type)
287 {
288 struct varobj *var;
289 struct cleanup *old_chain;
290
291 /* Fill out a varobj structure for the (root) variable being constructed. */
292 var = new_root_variable ();
293 old_chain = make_cleanup_free_variable (var);
294
295 if (expression != NULL)
296 {
297 struct frame_info *fi;
298 struct frame_id old_id = null_frame_id;
299 const struct block *block;
300 const char *p;
301 struct value *value = NULL;
302 volatile struct gdb_exception except;
303 CORE_ADDR pc;
304
305 /* Parse and evaluate the expression, filling in as much of the
306 variable's data as possible. */
307
308 if (has_stack_frames ())
309 {
310 /* Allow creator to specify context of variable. */
311 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
312 fi = get_selected_frame (NULL);
313 else
314 /* FIXME: cagney/2002-11-23: This code should be doing a
315 lookup using the frame ID and not just the frame's
316 ``address''. This, of course, means an interface
317 change. However, with out that interface change ISAs,
318 such as the ia64 with its two stacks, won't work.
319 Similar goes for the case where there is a frameless
320 function. */
321 fi = find_frame_addr_in_frame_chain (frame);
322 }
323 else
324 fi = NULL;
325
326 /* frame = -2 means always use selected frame. */
327 if (type == USE_SELECTED_FRAME)
328 var->root->floating = 1;
329
330 pc = 0;
331 block = NULL;
332 if (fi != NULL)
333 {
334 block = get_frame_block (fi, 0);
335 pc = get_frame_pc (fi);
336 }
337
338 p = expression;
339 innermost_block = NULL;
340 /* Wrap the call to parse expression, so we can
341 return a sensible error. */
342 TRY_CATCH (except, RETURN_MASK_ERROR)
343 {
344 var->root->exp = parse_exp_1 (&p, pc, block, 0);
345 }
346
347 if (except.reason < 0)
348 {
349 do_cleanups (old_chain);
350 return NULL;
351 }
352
353 /* Don't allow variables to be created for types. */
354 if (var->root->exp->elts[0].opcode == OP_TYPE
355 || var->root->exp->elts[0].opcode == OP_TYPEOF
356 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
357 {
358 do_cleanups (old_chain);
359 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
360 " as an expression.\n");
361 return NULL;
362 }
363
364 var->format = variable_default_display (var);
365 var->root->valid_block = innermost_block;
366 var->name = xstrdup (expression);
367 /* For a root var, the name and the expr are the same. */
368 var->path_expr = xstrdup (expression);
369
370 /* When the frame is different from the current frame,
371 we must select the appropriate frame before parsing
372 the expression, otherwise the value will not be current.
373 Since select_frame is so benign, just call it for all cases. */
374 if (innermost_block)
375 {
376 /* User could specify explicit FRAME-ADDR which was not found but
377 EXPRESSION is frame specific and we would not be able to evaluate
378 it correctly next time. With VALID_BLOCK set we must also set
379 FRAME and THREAD_ID. */
380 if (fi == NULL)
381 error (_("Failed to find the specified frame"));
382
383 var->root->frame = get_frame_id (fi);
384 var->root->thread_id = pid_to_thread_id (inferior_ptid);
385 old_id = get_frame_id (get_selected_frame (NULL));
386 select_frame (fi);
387 }
388
389 /* We definitely need to catch errors here.
390 If evaluate_expression succeeds we got the value we wanted.
391 But if it fails, we still go on with a call to evaluate_type(). */
392 TRY_CATCH (except, RETURN_MASK_ERROR)
393 {
394 value = evaluate_expression (var->root->exp);
395 }
396
397 if (except.reason < 0)
398 {
399 /* Error getting the value. Try to at least get the
400 right type. */
401 struct value *type_only_value = evaluate_type (var->root->exp);
402
403 var->type = value_type (type_only_value);
404 }
405 else
406 {
407 int real_type_found = 0;
408
409 var->type = value_actual_type (value, 0, &real_type_found);
410 if (real_type_found)
411 value = value_cast (var->type, value);
412 }
413
414 /* Set language info */
415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
416
417 install_new_value (var, value, 1 /* Initial assignment */);
418
419 /* Set ourselves as our root. */
420 var->root->rootvar = var;
421
422 /* Reset the selected frame. */
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
425 }
426
427 /* If the variable object name is null, that means this
428 is a temporary variable, so don't install it. */
429
430 if ((var != NULL) && (objname != NULL))
431 {
432 var->obj_name = xstrdup (objname);
433
434 /* If a varobj name is duplicated, the install will fail so
435 we must cleanup. */
436 if (!install_variable (var))
437 {
438 do_cleanups (old_chain);
439 return NULL;
440 }
441 }
442
443 discard_cleanups (old_chain);
444 return var;
445 }
446
447 /* Generates an unique name that can be used for a varobj. */
448
449 char *
450 varobj_gen_name (void)
451 {
452 static int id = 0;
453 char *obj_name;
454
455 /* Generate a name for this object. */
456 id++;
457 obj_name = xstrprintf ("var%d", id);
458
459 return obj_name;
460 }
461
462 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
464
465 struct varobj *
466 varobj_get_handle (char *objname)
467 {
468 struct vlist *cv;
469 const char *chp;
470 unsigned int index = 0;
471 unsigned int i = 1;
472
473 for (chp = objname; *chp; chp++)
474 {
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
476 }
477
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
480 cv = cv->next;
481
482 if (cv == NULL)
483 error (_("Variable object not found"));
484
485 return cv->var;
486 }
487
488 /* Given the handle, return the name of the object. */
489
490 char *
491 varobj_get_objname (struct varobj *var)
492 {
493 return var->obj_name;
494 }
495
496 /* Given the handle, return the expression represented by the object. */
497
498 char *
499 varobj_get_expression (struct varobj *var)
500 {
501 return name_of_variable (var);
502 }
503
504 /* Deletes a varobj and all its children if only_children == 0,
505 otherwise deletes only the children; returns a malloc'ed list of
506 all the (malloc'ed) names of the variables that have been deleted
507 (NULL terminated). */
508
509 int
510 varobj_delete (struct varobj *var, char ***dellist, int only_children)
511 {
512 int delcount;
513 int mycount;
514 struct cpstack *result = NULL;
515 char **cp;
516
517 /* Initialize a stack for temporary results. */
518 cppush (&result, NULL);
519
520 if (only_children)
521 /* Delete only the variable children. */
522 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 else
524 /* Delete the variable and all its children. */
525 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526
527 /* We may have been asked to return a list of what has been deleted. */
528 if (dellist != NULL)
529 {
530 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
531
532 cp = *dellist;
533 mycount = delcount;
534 *cp = cppop (&result);
535 while ((*cp != NULL) && (mycount > 0))
536 {
537 mycount--;
538 cp++;
539 *cp = cppop (&result);
540 }
541
542 if (mycount || (*cp != NULL))
543 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
544 mycount);
545 }
546
547 return delcount;
548 }
549
550 #if HAVE_PYTHON
551
552 /* Convenience function for varobj_set_visualizer. Instantiate a
553 pretty-printer for a given value. */
554 static PyObject *
555 instantiate_pretty_printer (PyObject *constructor, struct value *value)
556 {
557 PyObject *val_obj = NULL;
558 PyObject *printer;
559
560 val_obj = value_to_value_object (value);
561 if (! val_obj)
562 return NULL;
563
564 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
565 Py_DECREF (val_obj);
566 return printer;
567 }
568
569 #endif
570
571 /* Set/Get variable object display format. */
572
573 enum varobj_display_formats
574 varobj_set_display_format (struct varobj *var,
575 enum varobj_display_formats format)
576 {
577 switch (format)
578 {
579 case FORMAT_NATURAL:
580 case FORMAT_BINARY:
581 case FORMAT_DECIMAL:
582 case FORMAT_HEXADECIMAL:
583 case FORMAT_OCTAL:
584 var->format = format;
585 break;
586
587 default:
588 var->format = variable_default_display (var);
589 }
590
591 if (varobj_value_is_changeable_p (var)
592 && var->value && !value_lazy (var->value))
593 {
594 xfree (var->print_value);
595 var->print_value = varobj_value_get_print_value (var->value,
596 var->format, var);
597 }
598
599 return var->format;
600 }
601
602 enum varobj_display_formats
603 varobj_get_display_format (struct varobj *var)
604 {
605 return var->format;
606 }
607
608 char *
609 varobj_get_display_hint (struct varobj *var)
610 {
611 char *result = NULL;
612
613 #if HAVE_PYTHON
614 struct cleanup *back_to;
615
616 if (!gdb_python_initialized)
617 return NULL;
618
619 back_to = varobj_ensure_python_env (var);
620
621 if (var->dynamic->pretty_printer != NULL)
622 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
623
624 do_cleanups (back_to);
625 #endif
626
627 return result;
628 }
629
630 /* Return true if the varobj has items after TO, false otherwise. */
631
632 int
633 varobj_has_more (struct varobj *var, int to)
634 {
635 if (VEC_length (varobj_p, var->children) > to)
636 return 1;
637 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
638 && (var->dynamic->saved_item != NULL));
639 }
640
641 /* If the variable object is bound to a specific thread, that
642 is its evaluation can always be done in context of a frame
643 inside that thread, returns GDB id of the thread -- which
644 is always positive. Otherwise, returns -1. */
645 int
646 varobj_get_thread_id (struct varobj *var)
647 {
648 if (var->root->valid_block && var->root->thread_id > 0)
649 return var->root->thread_id;
650 else
651 return -1;
652 }
653
654 void
655 varobj_set_frozen (struct varobj *var, int frozen)
656 {
657 /* When a variable is unfrozen, we don't fetch its value.
658 The 'not_fetched' flag remains set, so next -var-update
659 won't complain.
660
661 We don't fetch the value, because for structures the client
662 should do -var-update anyway. It would be bad to have different
663 client-size logic for structure and other types. */
664 var->frozen = frozen;
665 }
666
667 int
668 varobj_get_frozen (struct varobj *var)
669 {
670 return var->frozen;
671 }
672
673 /* A helper function that restricts a range to what is actually
674 available in a VEC. This follows the usual rules for the meaning
675 of FROM and TO -- if either is negative, the entire range is
676 used. */
677
678 void
679 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
680 {
681 if (*from < 0 || *to < 0)
682 {
683 *from = 0;
684 *to = VEC_length (varobj_p, children);
685 }
686 else
687 {
688 if (*from > VEC_length (varobj_p, children))
689 *from = VEC_length (varobj_p, children);
690 if (*to > VEC_length (varobj_p, children))
691 *to = VEC_length (varobj_p, children);
692 if (*from > *to)
693 *from = *to;
694 }
695 }
696
697 /* A helper for update_dynamic_varobj_children that installs a new
698 child when needed. */
699
700 static void
701 install_dynamic_child (struct varobj *var,
702 VEC (varobj_p) **changed,
703 VEC (varobj_p) **type_changed,
704 VEC (varobj_p) **new,
705 VEC (varobj_p) **unchanged,
706 int *cchanged,
707 int index,
708 struct varobj_item *item)
709 {
710 if (VEC_length (varobj_p, var->children) < index + 1)
711 {
712 /* There's no child yet. */
713 struct varobj *child = varobj_add_child (var, item);
714
715 if (new)
716 {
717 VEC_safe_push (varobj_p, *new, child);
718 *cchanged = 1;
719 }
720 }
721 else
722 {
723 varobj_p existing = VEC_index (varobj_p, var->children, index);
724 int type_updated = update_type_if_necessary (existing, item->value);
725
726 if (type_updated)
727 {
728 if (type_changed)
729 VEC_safe_push (varobj_p, *type_changed, existing);
730 }
731 if (install_new_value (existing, item->value, 0))
732 {
733 if (!type_updated && changed)
734 VEC_safe_push (varobj_p, *changed, existing);
735 }
736 else if (!type_updated && unchanged)
737 VEC_safe_push (varobj_p, *unchanged, existing);
738 }
739 }
740
741 #if HAVE_PYTHON
742
743 static int
744 dynamic_varobj_has_child_method (struct varobj *var)
745 {
746 struct cleanup *back_to;
747 PyObject *printer = var->dynamic->pretty_printer;
748 int result;
749
750 if (!gdb_python_initialized)
751 return 0;
752
753 back_to = varobj_ensure_python_env (var);
754 result = PyObject_HasAttr (printer, gdbpy_children_cst);
755 do_cleanups (back_to);
756 return result;
757 }
758 #endif
759
760 /* A factory for creating dynamic varobj's iterators. Returns an
761 iterator object suitable for iterating over VAR's children. */
762
763 static struct varobj_iter *
764 varobj_get_iterator (struct varobj *var)
765 {
766 #if HAVE_PYTHON
767 if (var->dynamic->pretty_printer)
768 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
769 #endif
770
771 gdb_assert_not_reached (_("\
772 requested an iterator from a non-dynamic varobj"));
773 }
774
775 /* Release and clear VAR's saved item, if any. */
776
777 static void
778 varobj_clear_saved_item (struct varobj_dynamic *var)
779 {
780 if (var->saved_item != NULL)
781 {
782 value_free (var->saved_item->value);
783 xfree (var->saved_item);
784 var->saved_item = NULL;
785 }
786 }
787
788 static int
789 update_dynamic_varobj_children (struct varobj *var,
790 VEC (varobj_p) **changed,
791 VEC (varobj_p) **type_changed,
792 VEC (varobj_p) **new,
793 VEC (varobj_p) **unchanged,
794 int *cchanged,
795 int update_children,
796 int from,
797 int to)
798 {
799 int i;
800
801 *cchanged = 0;
802
803 if (update_children || var->dynamic->child_iter == NULL)
804 {
805 varobj_iter_delete (var->dynamic->child_iter);
806 var->dynamic->child_iter = varobj_get_iterator (var);
807
808 varobj_clear_saved_item (var->dynamic);
809
810 i = 0;
811
812 if (var->dynamic->child_iter == NULL)
813 return 0;
814 }
815 else
816 i = VEC_length (varobj_p, var->children);
817
818 /* We ask for one extra child, so that MI can report whether there
819 are more children. */
820 for (; to < 0 || i < to + 1; ++i)
821 {
822 varobj_item *item;
823
824 /* See if there was a leftover from last time. */
825 if (var->dynamic->saved_item != NULL)
826 {
827 item = var->dynamic->saved_item;
828 var->dynamic->saved_item = NULL;
829 }
830 else
831 {
832 item = varobj_iter_next (var->dynamic->child_iter);
833 /* Release vitem->value so its lifetime is not bound to the
834 execution of a command. */
835 if (item != NULL && item->value != NULL)
836 release_value_or_incref (item->value);
837 }
838
839 if (item == NULL)
840 {
841 /* Iteration is done. Remove iterator from VAR. */
842 varobj_iter_delete (var->dynamic->child_iter);
843 var->dynamic->child_iter = NULL;
844 break;
845 }
846 /* We don't want to push the extra child on any report list. */
847 if (to < 0 || i < to)
848 {
849 int can_mention = from < 0 || i >= from;
850
851 install_dynamic_child (var, can_mention ? changed : NULL,
852 can_mention ? type_changed : NULL,
853 can_mention ? new : NULL,
854 can_mention ? unchanged : NULL,
855 can_mention ? cchanged : NULL, i,
856 item);
857
858 xfree (item);
859 }
860 else
861 {
862 var->dynamic->saved_item = item;
863
864 /* We want to truncate the child list just before this
865 element. */
866 break;
867 }
868 }
869
870 if (i < VEC_length (varobj_p, var->children))
871 {
872 int j;
873
874 *cchanged = 1;
875 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
876 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
877 VEC_truncate (varobj_p, var->children, i);
878 }
879
880 /* If there are fewer children than requested, note that the list of
881 children changed. */
882 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
883 *cchanged = 1;
884
885 var->num_children = VEC_length (varobj_p, var->children);
886
887 return 1;
888 }
889
890 int
891 varobj_get_num_children (struct varobj *var)
892 {
893 if (var->num_children == -1)
894 {
895 if (varobj_is_dynamic_p (var))
896 {
897 int dummy;
898
899 /* If we have a dynamic varobj, don't report -1 children.
900 So, try to fetch some children first. */
901 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
902 0, 0, 0);
903 }
904 else
905 var->num_children = number_of_children (var);
906 }
907
908 return var->num_children >= 0 ? var->num_children : 0;
909 }
910
911 /* Creates a list of the immediate children of a variable object;
912 the return code is the number of such children or -1 on error. */
913
914 VEC (varobj_p)*
915 varobj_list_children (struct varobj *var, int *from, int *to)
916 {
917 char *name;
918 int i, children_changed;
919
920 var->dynamic->children_requested = 1;
921
922 if (varobj_is_dynamic_p (var))
923 {
924 /* This, in theory, can result in the number of children changing without
925 frontend noticing. But well, calling -var-list-children on the same
926 varobj twice is not something a sane frontend would do. */
927 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
928 &children_changed, 0, 0, *to);
929 varobj_restrict_range (var->children, from, to);
930 return var->children;
931 }
932
933 if (var->num_children == -1)
934 var->num_children = number_of_children (var);
935
936 /* If that failed, give up. */
937 if (var->num_children == -1)
938 return var->children;
939
940 /* If we're called when the list of children is not yet initialized,
941 allocate enough elements in it. */
942 while (VEC_length (varobj_p, var->children) < var->num_children)
943 VEC_safe_push (varobj_p, var->children, NULL);
944
945 for (i = 0; i < var->num_children; i++)
946 {
947 varobj_p existing = VEC_index (varobj_p, var->children, i);
948
949 if (existing == NULL)
950 {
951 /* Either it's the first call to varobj_list_children for
952 this variable object, and the child was never created,
953 or it was explicitly deleted by the client. */
954 name = name_of_child (var, i);
955 existing = create_child (var, i, name);
956 VEC_replace (varobj_p, var->children, i, existing);
957 }
958 }
959
960 varobj_restrict_range (var->children, from, to);
961 return var->children;
962 }
963
964 static struct varobj *
965 varobj_add_child (struct varobj *var, struct varobj_item *item)
966 {
967 varobj_p v = create_child_with_value (var,
968 VEC_length (varobj_p, var->children),
969 item);
970
971 VEC_safe_push (varobj_p, var->children, v);
972 return v;
973 }
974
975 /* Obtain the type of an object Variable as a string similar to the one gdb
976 prints on the console. */
977
978 char *
979 varobj_get_type (struct varobj *var)
980 {
981 /* For the "fake" variables, do not return a type. (Its type is
982 NULL, too.)
983 Do not return a type for invalid variables as well. */
984 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
985 return NULL;
986
987 return type_to_string (var->type);
988 }
989
990 /* Obtain the type of an object variable. */
991
992 struct type *
993 varobj_get_gdb_type (struct varobj *var)
994 {
995 return var->type;
996 }
997
998 /* Is VAR a path expression parent, i.e., can it be used to construct
999 a valid path expression? */
1000
1001 static int
1002 is_path_expr_parent (struct varobj *var)
1003 {
1004 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1005 return var->root->lang_ops->is_path_expr_parent (var);
1006 }
1007
1008 /* Is VAR a path expression parent, i.e., can it be used to construct
1009 a valid path expression? By default we assume any VAR can be a path
1010 parent. */
1011
1012 int
1013 varobj_default_is_path_expr_parent (struct varobj *var)
1014 {
1015 return 1;
1016 }
1017
1018 /* Return the path expression parent for VAR. */
1019
1020 struct varobj *
1021 varobj_get_path_expr_parent (struct varobj *var)
1022 {
1023 struct varobj *parent = var;
1024
1025 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1026 parent = parent->parent;
1027
1028 return parent;
1029 }
1030
1031 /* Return a pointer to the full rooted expression of varobj VAR.
1032 If it has not been computed yet, compute it. */
1033 char *
1034 varobj_get_path_expr (struct varobj *var)
1035 {
1036 if (var->path_expr != NULL)
1037 return var->path_expr;
1038 else
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
1043 gdb_assert (!is_root_p (var));
1044 return (*var->root->lang_ops->path_expr_of_child) (var);
1045 }
1046 }
1047
1048 const struct language_defn *
1049 varobj_get_language (struct varobj *var)
1050 {
1051 return var->root->exp->language_defn;
1052 }
1053
1054 int
1055 varobj_get_attributes (struct varobj *var)
1056 {
1057 int attributes = 0;
1058
1059 if (varobj_editable_p (var))
1060 /* FIXME: define masks for attributes. */
1061 attributes |= 0x00000001; /* Editable */
1062
1063 return attributes;
1064 }
1065
1066 /* Return true if VAR is a dynamic varobj. */
1067
1068 int
1069 varobj_is_dynamic_p (struct varobj *var)
1070 {
1071 return var->dynamic->pretty_printer != NULL;
1072 }
1073
1074 char *
1075 varobj_get_formatted_value (struct varobj *var,
1076 enum varobj_display_formats format)
1077 {
1078 return my_value_of_variable (var, format);
1079 }
1080
1081 char *
1082 varobj_get_value (struct varobj *var)
1083 {
1084 return my_value_of_variable (var, var->format);
1085 }
1086
1087 /* Set the value of an object variable (if it is editable) to the
1088 value of the given expression. */
1089 /* Note: Invokes functions that can call error(). */
1090
1091 int
1092 varobj_set_value (struct varobj *var, char *expression)
1093 {
1094 struct value *val = NULL; /* Initialize to keep gcc happy. */
1095 /* The argument "expression" contains the variable's new value.
1096 We need to first construct a legal expression for this -- ugh! */
1097 /* Does this cover all the bases? */
1098 struct expression *exp;
1099 struct value *value = NULL; /* Initialize to keep gcc happy. */
1100 int saved_input_radix = input_radix;
1101 const char *s = expression;
1102 volatile struct gdb_exception except;
1103
1104 gdb_assert (varobj_editable_p (var));
1105
1106 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1107 exp = parse_exp_1 (&s, 0, 0, 0);
1108 TRY_CATCH (except, RETURN_MASK_ERROR)
1109 {
1110 value = evaluate_expression (exp);
1111 }
1112
1113 if (except.reason < 0)
1114 {
1115 /* We cannot proceed without a valid expression. */
1116 xfree (exp);
1117 return 0;
1118 }
1119
1120 /* All types that are editable must also be changeable. */
1121 gdb_assert (varobj_value_is_changeable_p (var));
1122
1123 /* The value of a changeable variable object must not be lazy. */
1124 gdb_assert (!value_lazy (var->value));
1125
1126 /* Need to coerce the input. We want to check if the
1127 value of the variable object will be different
1128 after assignment, and the first thing value_assign
1129 does is coerce the input.
1130 For example, if we are assigning an array to a pointer variable we
1131 should compare the pointer with the array's address, not with the
1132 array's content. */
1133 value = coerce_array (value);
1134
1135 /* The new value may be lazy. value_assign, or
1136 rather value_contents, will take care of this. */
1137 TRY_CATCH (except, RETURN_MASK_ERROR)
1138 {
1139 val = value_assign (var->value, value);
1140 }
1141
1142 if (except.reason < 0)
1143 return 0;
1144
1145 /* If the value has changed, record it, so that next -var-update can
1146 report this change. If a variable had a value of '1', we've set it
1147 to '333' and then set again to '1', when -var-update will report this
1148 variable as changed -- because the first assignment has set the
1149 'updated' flag. There's no need to optimize that, because return value
1150 of -var-update should be considered an approximation. */
1151 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1152 input_radix = saved_input_radix;
1153 return 1;
1154 }
1155
1156 #if HAVE_PYTHON
1157
1158 /* A helper function to install a constructor function and visualizer
1159 in a varobj_dynamic. */
1160
1161 static void
1162 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1163 PyObject *visualizer)
1164 {
1165 Py_XDECREF (var->constructor);
1166 var->constructor = constructor;
1167
1168 Py_XDECREF (var->pretty_printer);
1169 var->pretty_printer = visualizer;
1170
1171 varobj_iter_delete (var->child_iter);
1172 var->child_iter = NULL;
1173 }
1174
1175 /* Install the default visualizer for VAR. */
1176
1177 static void
1178 install_default_visualizer (struct varobj *var)
1179 {
1180 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1181 if (CPLUS_FAKE_CHILD (var))
1182 return;
1183
1184 if (pretty_printing)
1185 {
1186 PyObject *pretty_printer = NULL;
1187
1188 if (var->value)
1189 {
1190 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1191 if (! pretty_printer)
1192 {
1193 gdbpy_print_stack ();
1194 error (_("Cannot instantiate printer for default visualizer"));
1195 }
1196 }
1197
1198 if (pretty_printer == Py_None)
1199 {
1200 Py_DECREF (pretty_printer);
1201 pretty_printer = NULL;
1202 }
1203
1204 install_visualizer (var->dynamic, NULL, pretty_printer);
1205 }
1206 }
1207
1208 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1209 make a new object. */
1210
1211 static void
1212 construct_visualizer (struct varobj *var, PyObject *constructor)
1213 {
1214 PyObject *pretty_printer;
1215
1216 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1217 if (CPLUS_FAKE_CHILD (var))
1218 return;
1219
1220 Py_INCREF (constructor);
1221 if (constructor == Py_None)
1222 pretty_printer = NULL;
1223 else
1224 {
1225 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1226 if (! pretty_printer)
1227 {
1228 gdbpy_print_stack ();
1229 Py_DECREF (constructor);
1230 constructor = Py_None;
1231 Py_INCREF (constructor);
1232 }
1233
1234 if (pretty_printer == Py_None)
1235 {
1236 Py_DECREF (pretty_printer);
1237 pretty_printer = NULL;
1238 }
1239 }
1240
1241 install_visualizer (var->dynamic, constructor, pretty_printer);
1242 }
1243
1244 #endif /* HAVE_PYTHON */
1245
1246 /* A helper function for install_new_value. This creates and installs
1247 a visualizer for VAR, if appropriate. */
1248
1249 static void
1250 install_new_value_visualizer (struct varobj *var)
1251 {
1252 #if HAVE_PYTHON
1253 /* If the constructor is None, then we want the raw value. If VAR
1254 does not have a value, just skip this. */
1255 if (!gdb_python_initialized)
1256 return;
1257
1258 if (var->dynamic->constructor != Py_None && var->value != NULL)
1259 {
1260 struct cleanup *cleanup;
1261
1262 cleanup = varobj_ensure_python_env (var);
1263
1264 if (var->dynamic->constructor == NULL)
1265 install_default_visualizer (var);
1266 else
1267 construct_visualizer (var, var->dynamic->constructor);
1268
1269 do_cleanups (cleanup);
1270 }
1271 #else
1272 /* Do nothing. */
1273 #endif
1274 }
1275
1276 /* When using RTTI to determine variable type it may be changed in runtime when
1277 the variable value is changed. This function checks whether type of varobj
1278 VAR will change when a new value NEW_VALUE is assigned and if it is so
1279 updates the type of VAR. */
1280
1281 static int
1282 update_type_if_necessary (struct varobj *var, struct value *new_value)
1283 {
1284 if (new_value)
1285 {
1286 struct value_print_options opts;
1287
1288 get_user_print_options (&opts);
1289 if (opts.objectprint)
1290 {
1291 struct type *new_type;
1292 char *curr_type_str, *new_type_str;
1293
1294 new_type = value_actual_type (new_value, 0, 0);
1295 new_type_str = type_to_string (new_type);
1296 curr_type_str = varobj_get_type (var);
1297 if (strcmp (curr_type_str, new_type_str) != 0)
1298 {
1299 var->type = new_type;
1300
1301 /* This information may be not valid for a new type. */
1302 varobj_delete (var, NULL, 1);
1303 VEC_free (varobj_p, var->children);
1304 var->num_children = -1;
1305 return 1;
1306 }
1307 }
1308 }
1309
1310 return 0;
1311 }
1312
1313 /* Assign a new value to a variable object. If INITIAL is non-zero,
1314 this is the first assignement after the variable object was just
1315 created, or changed type. In that case, just assign the value
1316 and return 0.
1317 Otherwise, assign the new value, and return 1 if the value is
1318 different from the current one, 0 otherwise. The comparison is
1319 done on textual representation of value. Therefore, some types
1320 need not be compared. E.g. for structures the reported value is
1321 always "{...}", so no comparison is necessary here. If the old
1322 value was NULL and new one is not, or vice versa, we always return 1.
1323
1324 The VALUE parameter should not be released -- the function will
1325 take care of releasing it when needed. */
1326 static int
1327 install_new_value (struct varobj *var, struct value *value, int initial)
1328 {
1329 int changeable;
1330 int need_to_fetch;
1331 int changed = 0;
1332 int intentionally_not_fetched = 0;
1333 char *print_value = NULL;
1334
1335 /* We need to know the varobj's type to decide if the value should
1336 be fetched or not. C++ fake children (public/protected/private)
1337 don't have a type. */
1338 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1339 changeable = varobj_value_is_changeable_p (var);
1340
1341 /* If the type has custom visualizer, we consider it to be always
1342 changeable. FIXME: need to make sure this behaviour will not
1343 mess up read-sensitive values. */
1344 if (var->dynamic->pretty_printer != NULL)
1345 changeable = 1;
1346
1347 need_to_fetch = changeable;
1348
1349 /* We are not interested in the address of references, and given
1350 that in C++ a reference is not rebindable, it cannot
1351 meaningfully change. So, get hold of the real value. */
1352 if (value)
1353 value = coerce_ref (value);
1354
1355 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1356 /* For unions, we need to fetch the value implicitly because
1357 of implementation of union member fetch. When gdb
1358 creates a value for a field and the value of the enclosing
1359 structure is not lazy, it immediately copies the necessary
1360 bytes from the enclosing values. If the enclosing value is
1361 lazy, the call to value_fetch_lazy on the field will read
1362 the data from memory. For unions, that means we'll read the
1363 same memory more than once, which is not desirable. So
1364 fetch now. */
1365 need_to_fetch = 1;
1366
1367 /* The new value might be lazy. If the type is changeable,
1368 that is we'll be comparing values of this type, fetch the
1369 value now. Otherwise, on the next update the old value
1370 will be lazy, which means we've lost that old value. */
1371 if (need_to_fetch && value && value_lazy (value))
1372 {
1373 struct varobj *parent = var->parent;
1374 int frozen = var->frozen;
1375
1376 for (; !frozen && parent; parent = parent->parent)
1377 frozen |= parent->frozen;
1378
1379 if (frozen && initial)
1380 {
1381 /* For variables that are frozen, or are children of frozen
1382 variables, we don't do fetch on initial assignment.
1383 For non-initial assignemnt we do the fetch, since it means we're
1384 explicitly asked to compare the new value with the old one. */
1385 intentionally_not_fetched = 1;
1386 }
1387 else
1388 {
1389 volatile struct gdb_exception except;
1390
1391 TRY_CATCH (except, RETURN_MASK_ERROR)
1392 {
1393 value_fetch_lazy (value);
1394 }
1395
1396 if (except.reason < 0)
1397 {
1398 /* Set the value to NULL, so that for the next -var-update,
1399 we don't try to compare the new value with this value,
1400 that we couldn't even read. */
1401 value = NULL;
1402 }
1403 }
1404 }
1405
1406 /* Get a reference now, before possibly passing it to any Python
1407 code that might release it. */
1408 if (value != NULL)
1409 value_incref (value);
1410
1411 /* Below, we'll be comparing string rendering of old and new
1412 values. Don't get string rendering if the value is
1413 lazy -- if it is, the code above has decided that the value
1414 should not be fetched. */
1415 if (value != NULL && !value_lazy (value)
1416 && var->dynamic->pretty_printer == NULL)
1417 print_value = varobj_value_get_print_value (value, var->format, var);
1418
1419 /* If the type is changeable, compare the old and the new values.
1420 If this is the initial assignment, we don't have any old value
1421 to compare with. */
1422 if (!initial && changeable)
1423 {
1424 /* If the value of the varobj was changed by -var-set-value,
1425 then the value in the varobj and in the target is the same.
1426 However, that value is different from the value that the
1427 varobj had after the previous -var-update. So need to the
1428 varobj as changed. */
1429 if (var->updated)
1430 {
1431 changed = 1;
1432 }
1433 else if (var->dynamic->pretty_printer == NULL)
1434 {
1435 /* Try to compare the values. That requires that both
1436 values are non-lazy. */
1437 if (var->not_fetched && value_lazy (var->value))
1438 {
1439 /* This is a frozen varobj and the value was never read.
1440 Presumably, UI shows some "never read" indicator.
1441 Now that we've fetched the real value, we need to report
1442 this varobj as changed so that UI can show the real
1443 value. */
1444 changed = 1;
1445 }
1446 else if (var->value == NULL && value == NULL)
1447 /* Equal. */
1448 ;
1449 else if (var->value == NULL || value == NULL)
1450 {
1451 changed = 1;
1452 }
1453 else
1454 {
1455 gdb_assert (!value_lazy (var->value));
1456 gdb_assert (!value_lazy (value));
1457
1458 gdb_assert (var->print_value != NULL && print_value != NULL);
1459 if (strcmp (var->print_value, print_value) != 0)
1460 changed = 1;
1461 }
1462 }
1463 }
1464
1465 if (!initial && !changeable)
1466 {
1467 /* For values that are not changeable, we don't compare the values.
1468 However, we want to notice if a value was not NULL and now is NULL,
1469 or vise versa, so that we report when top-level varobjs come in scope
1470 and leave the scope. */
1471 changed = (var->value != NULL) != (value != NULL);
1472 }
1473
1474 /* We must always keep the new value, since children depend on it. */
1475 if (var->value != NULL && var->value != value)
1476 value_free (var->value);
1477 var->value = value;
1478 if (value && value_lazy (value) && intentionally_not_fetched)
1479 var->not_fetched = 1;
1480 else
1481 var->not_fetched = 0;
1482 var->updated = 0;
1483
1484 install_new_value_visualizer (var);
1485
1486 /* If we installed a pretty-printer, re-compare the printed version
1487 to see if the variable changed. */
1488 if (var->dynamic->pretty_printer != NULL)
1489 {
1490 xfree (print_value);
1491 print_value = varobj_value_get_print_value (var->value, var->format,
1492 var);
1493 if ((var->print_value == NULL && print_value != NULL)
1494 || (var->print_value != NULL && print_value == NULL)
1495 || (var->print_value != NULL && print_value != NULL
1496 && strcmp (var->print_value, print_value) != 0))
1497 changed = 1;
1498 }
1499 if (var->print_value)
1500 xfree (var->print_value);
1501 var->print_value = print_value;
1502
1503 gdb_assert (!var->value || value_type (var->value));
1504
1505 return changed;
1506 }
1507
1508 /* Return the requested range for a varobj. VAR is the varobj. FROM
1509 and TO are out parameters; *FROM and *TO will be set to the
1510 selected sub-range of VAR. If no range was selected using
1511 -var-set-update-range, then both will be -1. */
1512 void
1513 varobj_get_child_range (struct varobj *var, int *from, int *to)
1514 {
1515 *from = var->from;
1516 *to = var->to;
1517 }
1518
1519 /* Set the selected sub-range of children of VAR to start at index
1520 FROM and end at index TO. If either FROM or TO is less than zero,
1521 this is interpreted as a request for all children. */
1522 void
1523 varobj_set_child_range (struct varobj *var, int from, int to)
1524 {
1525 var->from = from;
1526 var->to = to;
1527 }
1528
1529 void
1530 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1531 {
1532 #if HAVE_PYTHON
1533 PyObject *mainmod, *globals, *constructor;
1534 struct cleanup *back_to;
1535
1536 if (!gdb_python_initialized)
1537 return;
1538
1539 back_to = varobj_ensure_python_env (var);
1540
1541 mainmod = PyImport_AddModule ("__main__");
1542 globals = PyModule_GetDict (mainmod);
1543 Py_INCREF (globals);
1544 make_cleanup_py_decref (globals);
1545
1546 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1547
1548 if (! constructor)
1549 {
1550 gdbpy_print_stack ();
1551 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1552 }
1553
1554 construct_visualizer (var, constructor);
1555 Py_XDECREF (constructor);
1556
1557 /* If there are any children now, wipe them. */
1558 varobj_delete (var, NULL, 1 /* children only */);
1559 var->num_children = -1;
1560
1561 do_cleanups (back_to);
1562 #else
1563 error (_("Python support required"));
1564 #endif
1565 }
1566
1567 /* If NEW_VALUE is the new value of the given varobj (var), return
1568 non-zero if var has mutated. In other words, if the type of
1569 the new value is different from the type of the varobj's old
1570 value.
1571
1572 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1573
1574 static int
1575 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1576 struct type *new_type)
1577 {
1578 /* If we haven't previously computed the number of children in var,
1579 it does not matter from the front-end's perspective whether
1580 the type has mutated or not. For all intents and purposes,
1581 it has not mutated. */
1582 if (var->num_children < 0)
1583 return 0;
1584
1585 if (var->root->lang_ops->value_has_mutated)
1586 {
1587 /* The varobj module, when installing new values, explicitly strips
1588 references, saying that we're not interested in those addresses.
1589 But detection of mutation happens before installing the new
1590 value, so our value may be a reference that we need to strip
1591 in order to remain consistent. */
1592 if (new_value != NULL)
1593 new_value = coerce_ref (new_value);
1594 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1595 }
1596 else
1597 return 0;
1598 }
1599
1600 /* Update the values for a variable and its children. This is a
1601 two-pronged attack. First, re-parse the value for the root's
1602 expression to see if it's changed. Then go all the way
1603 through its children, reconstructing them and noting if they've
1604 changed.
1605
1606 The EXPLICIT parameter specifies if this call is result
1607 of MI request to update this specific variable, or
1608 result of implicit -var-update *. For implicit request, we don't
1609 update frozen variables.
1610
1611 NOTE: This function may delete the caller's varobj. If it
1612 returns TYPE_CHANGED, then it has done this and VARP will be modified
1613 to point to the new varobj. */
1614
1615 VEC(varobj_update_result) *
1616 varobj_update (struct varobj **varp, int explicit)
1617 {
1618 int type_changed = 0;
1619 int i;
1620 struct value *new;
1621 VEC (varobj_update_result) *stack = NULL;
1622 VEC (varobj_update_result) *result = NULL;
1623
1624 /* Frozen means frozen -- we don't check for any change in
1625 this varobj, including its going out of scope, or
1626 changing type. One use case for frozen varobjs is
1627 retaining previously evaluated expressions, and we don't
1628 want them to be reevaluated at all. */
1629 if (!explicit && (*varp)->frozen)
1630 return result;
1631
1632 if (!(*varp)->root->is_valid)
1633 {
1634 varobj_update_result r = {0};
1635
1636 r.varobj = *varp;
1637 r.status = VAROBJ_INVALID;
1638 VEC_safe_push (varobj_update_result, result, &r);
1639 return result;
1640 }
1641
1642 if ((*varp)->root->rootvar == *varp)
1643 {
1644 varobj_update_result r = {0};
1645
1646 r.varobj = *varp;
1647 r.status = VAROBJ_IN_SCOPE;
1648
1649 /* Update the root variable. value_of_root can return NULL
1650 if the variable is no longer around, i.e. we stepped out of
1651 the frame in which a local existed. We are letting the
1652 value_of_root variable dispose of the varobj if the type
1653 has changed. */
1654 new = value_of_root (varp, &type_changed);
1655 if (update_type_if_necessary(*varp, new))
1656 type_changed = 1;
1657 r.varobj = *varp;
1658 r.type_changed = type_changed;
1659 if (install_new_value ((*varp), new, type_changed))
1660 r.changed = 1;
1661
1662 if (new == NULL)
1663 r.status = VAROBJ_NOT_IN_SCOPE;
1664 r.value_installed = 1;
1665
1666 if (r.status == VAROBJ_NOT_IN_SCOPE)
1667 {
1668 if (r.type_changed || r.changed)
1669 VEC_safe_push (varobj_update_result, result, &r);
1670 return result;
1671 }
1672
1673 VEC_safe_push (varobj_update_result, stack, &r);
1674 }
1675 else
1676 {
1677 varobj_update_result r = {0};
1678
1679 r.varobj = *varp;
1680 VEC_safe_push (varobj_update_result, stack, &r);
1681 }
1682
1683 /* Walk through the children, reconstructing them all. */
1684 while (!VEC_empty (varobj_update_result, stack))
1685 {
1686 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1687 struct varobj *v = r.varobj;
1688
1689 VEC_pop (varobj_update_result, stack);
1690
1691 /* Update this variable, unless it's a root, which is already
1692 updated. */
1693 if (!r.value_installed)
1694 {
1695 struct type *new_type;
1696
1697 new = value_of_child (v->parent, v->index);
1698 if (update_type_if_necessary(v, new))
1699 r.type_changed = 1;
1700 if (new)
1701 new_type = value_type (new);
1702 else
1703 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1704
1705 if (varobj_value_has_mutated (v, new, new_type))
1706 {
1707 /* The children are no longer valid; delete them now.
1708 Report the fact that its type changed as well. */
1709 varobj_delete (v, NULL, 1 /* only_children */);
1710 v->num_children = -1;
1711 v->to = -1;
1712 v->from = -1;
1713 v->type = new_type;
1714 r.type_changed = 1;
1715 }
1716
1717 if (install_new_value (v, new, r.type_changed))
1718 {
1719 r.changed = 1;
1720 v->updated = 0;
1721 }
1722 }
1723
1724 /* We probably should not get children of a dynamic varobj, but
1725 for which -var-list-children was never invoked. */
1726 if (varobj_is_dynamic_p (v))
1727 {
1728 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1729 VEC (varobj_p) *new = 0;
1730 int i, children_changed = 0;
1731
1732 if (v->frozen)
1733 continue;
1734
1735 if (!v->dynamic->children_requested)
1736 {
1737 int dummy;
1738
1739 /* If we initially did not have potential children, but
1740 now we do, consider the varobj as changed.
1741 Otherwise, if children were never requested, consider
1742 it as unchanged -- presumably, such varobj is not yet
1743 expanded in the UI, so we need not bother getting
1744 it. */
1745 if (!varobj_has_more (v, 0))
1746 {
1747 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1748 &dummy, 0, 0, 0);
1749 if (varobj_has_more (v, 0))
1750 r.changed = 1;
1751 }
1752
1753 if (r.changed)
1754 VEC_safe_push (varobj_update_result, result, &r);
1755
1756 continue;
1757 }
1758
1759 /* If update_dynamic_varobj_children returns 0, then we have
1760 a non-conforming pretty-printer, so we skip it. */
1761 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1762 &unchanged, &children_changed, 1,
1763 v->from, v->to))
1764 {
1765 if (children_changed || new)
1766 {
1767 r.children_changed = 1;
1768 r.new = new;
1769 }
1770 /* Push in reverse order so that the first child is
1771 popped from the work stack first, and so will be
1772 added to result first. This does not affect
1773 correctness, just "nicer". */
1774 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1775 {
1776 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1777 varobj_update_result r = {0};
1778
1779 /* Type may change only if value was changed. */
1780 r.varobj = tmp;
1781 r.changed = 1;
1782 r.type_changed = 1;
1783 r.value_installed = 1;
1784 VEC_safe_push (varobj_update_result, stack, &r);
1785 }
1786 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1787 {
1788 varobj_p tmp = VEC_index (varobj_p, changed, i);
1789 varobj_update_result r = {0};
1790
1791 r.varobj = tmp;
1792 r.changed = 1;
1793 r.value_installed = 1;
1794 VEC_safe_push (varobj_update_result, stack, &r);
1795 }
1796 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1797 {
1798 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1799
1800 if (!tmp->frozen)
1801 {
1802 varobj_update_result r = {0};
1803
1804 r.varobj = tmp;
1805 r.value_installed = 1;
1806 VEC_safe_push (varobj_update_result, stack, &r);
1807 }
1808 }
1809 if (r.changed || r.children_changed)
1810 VEC_safe_push (varobj_update_result, result, &r);
1811
1812 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1813 because NEW has been put into the result vector. */
1814 VEC_free (varobj_p, changed);
1815 VEC_free (varobj_p, type_changed);
1816 VEC_free (varobj_p, unchanged);
1817
1818 continue;
1819 }
1820 }
1821
1822 /* Push any children. Use reverse order so that the first
1823 child is popped from the work stack first, and so
1824 will be added to result first. This does not
1825 affect correctness, just "nicer". */
1826 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1827 {
1828 varobj_p c = VEC_index (varobj_p, v->children, i);
1829
1830 /* Child may be NULL if explicitly deleted by -var-delete. */
1831 if (c != NULL && !c->frozen)
1832 {
1833 varobj_update_result r = {0};
1834
1835 r.varobj = c;
1836 VEC_safe_push (varobj_update_result, stack, &r);
1837 }
1838 }
1839
1840 if (r.changed || r.type_changed)
1841 VEC_safe_push (varobj_update_result, result, &r);
1842 }
1843
1844 VEC_free (varobj_update_result, stack);
1845
1846 return result;
1847 }
1848 \f
1849
1850 /* Helper functions */
1851
1852 /*
1853 * Variable object construction/destruction
1854 */
1855
1856 static int
1857 delete_variable (struct cpstack **resultp, struct varobj *var,
1858 int only_children_p)
1859 {
1860 int delcount = 0;
1861
1862 delete_variable_1 (resultp, &delcount, var,
1863 only_children_p, 1 /* remove_from_parent_p */ );
1864
1865 return delcount;
1866 }
1867
1868 /* Delete the variable object VAR and its children. */
1869 /* IMPORTANT NOTE: If we delete a variable which is a child
1870 and the parent is not removed we dump core. It must be always
1871 initially called with remove_from_parent_p set. */
1872 static void
1873 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1874 struct varobj *var, int only_children_p,
1875 int remove_from_parent_p)
1876 {
1877 int i;
1878
1879 /* Delete any children of this variable, too. */
1880 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1881 {
1882 varobj_p child = VEC_index (varobj_p, var->children, i);
1883
1884 if (!child)
1885 continue;
1886 if (!remove_from_parent_p)
1887 child->parent = NULL;
1888 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1889 }
1890 VEC_free (varobj_p, var->children);
1891
1892 /* if we were called to delete only the children we are done here. */
1893 if (only_children_p)
1894 return;
1895
1896 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1897 /* If the name is null, this is a temporary variable, that has not
1898 yet been installed, don't report it, it belongs to the caller... */
1899 if (var->obj_name != NULL)
1900 {
1901 cppush (resultp, xstrdup (var->obj_name));
1902 *delcountp = *delcountp + 1;
1903 }
1904
1905 /* If this variable has a parent, remove it from its parent's list. */
1906 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1907 (as indicated by remove_from_parent_p) we don't bother doing an
1908 expensive list search to find the element to remove when we are
1909 discarding the list afterwards. */
1910 if ((remove_from_parent_p) && (var->parent != NULL))
1911 {
1912 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1913 }
1914
1915 if (var->obj_name != NULL)
1916 uninstall_variable (var);
1917
1918 /* Free memory associated with this variable. */
1919 free_variable (var);
1920 }
1921
1922 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1923 static int
1924 install_variable (struct varobj *var)
1925 {
1926 struct vlist *cv;
1927 struct vlist *newvl;
1928 const char *chp;
1929 unsigned int index = 0;
1930 unsigned int i = 1;
1931
1932 for (chp = var->obj_name; *chp; chp++)
1933 {
1934 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1935 }
1936
1937 cv = *(varobj_table + index);
1938 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1939 cv = cv->next;
1940
1941 if (cv != NULL)
1942 error (_("Duplicate variable object name"));
1943
1944 /* Add varobj to hash table. */
1945 newvl = xmalloc (sizeof (struct vlist));
1946 newvl->next = *(varobj_table + index);
1947 newvl->var = var;
1948 *(varobj_table + index) = newvl;
1949
1950 /* If root, add varobj to root list. */
1951 if (is_root_p (var))
1952 {
1953 /* Add to list of root variables. */
1954 if (rootlist == NULL)
1955 var->root->next = NULL;
1956 else
1957 var->root->next = rootlist;
1958 rootlist = var->root;
1959 }
1960
1961 return 1; /* OK */
1962 }
1963
1964 /* Unistall the object VAR. */
1965 static void
1966 uninstall_variable (struct varobj *var)
1967 {
1968 struct vlist *cv;
1969 struct vlist *prev;
1970 struct varobj_root *cr;
1971 struct varobj_root *prer;
1972 const char *chp;
1973 unsigned int index = 0;
1974 unsigned int i = 1;
1975
1976 /* Remove varobj from hash table. */
1977 for (chp = var->obj_name; *chp; chp++)
1978 {
1979 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1980 }
1981
1982 cv = *(varobj_table + index);
1983 prev = NULL;
1984 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1985 {
1986 prev = cv;
1987 cv = cv->next;
1988 }
1989
1990 if (varobjdebug)
1991 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1992
1993 if (cv == NULL)
1994 {
1995 warning
1996 ("Assertion failed: Could not find variable object \"%s\" to delete",
1997 var->obj_name);
1998 return;
1999 }
2000
2001 if (prev == NULL)
2002 *(varobj_table + index) = cv->next;
2003 else
2004 prev->next = cv->next;
2005
2006 xfree (cv);
2007
2008 /* If root, remove varobj from root list. */
2009 if (is_root_p (var))
2010 {
2011 /* Remove from list of root variables. */
2012 if (rootlist == var->root)
2013 rootlist = var->root->next;
2014 else
2015 {
2016 prer = NULL;
2017 cr = rootlist;
2018 while ((cr != NULL) && (cr->rootvar != var))
2019 {
2020 prer = cr;
2021 cr = cr->next;
2022 }
2023 if (cr == NULL)
2024 {
2025 warning (_("Assertion failed: Could not find "
2026 "varobj \"%s\" in root list"),
2027 var->obj_name);
2028 return;
2029 }
2030 if (prer == NULL)
2031 rootlist = NULL;
2032 else
2033 prer->next = cr->next;
2034 }
2035 }
2036
2037 }
2038
2039 /* Create and install a child of the parent of the given name. */
2040 static struct varobj *
2041 create_child (struct varobj *parent, int index, char *name)
2042 {
2043 struct varobj_item item;
2044
2045 item.name = name;
2046 item.value = value_of_child (parent, index);
2047
2048 return create_child_with_value (parent, index, &item);
2049 }
2050
2051 static struct varobj *
2052 create_child_with_value (struct varobj *parent, int index,
2053 struct varobj_item *item)
2054 {
2055 struct varobj *child;
2056 char *childs_name;
2057
2058 child = new_variable ();
2059
2060 /* NAME is allocated by caller. */
2061 child->name = item->name;
2062 child->index = index;
2063 child->parent = parent;
2064 child->root = parent->root;
2065
2066 if (varobj_is_anonymous_child (child))
2067 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2068 else
2069 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2070 child->obj_name = childs_name;
2071
2072 install_variable (child);
2073
2074 /* Compute the type of the child. Must do this before
2075 calling install_new_value. */
2076 if (item->value != NULL)
2077 /* If the child had no evaluation errors, var->value
2078 will be non-NULL and contain a valid type. */
2079 child->type = value_actual_type (item->value, 0, NULL);
2080 else
2081 /* Otherwise, we must compute the type. */
2082 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2083 child->index);
2084 install_new_value (child, item->value, 1);
2085
2086 return child;
2087 }
2088 \f
2089
2090 /*
2091 * Miscellaneous utility functions.
2092 */
2093
2094 /* Allocate memory and initialize a new variable. */
2095 static struct varobj *
2096 new_variable (void)
2097 {
2098 struct varobj *var;
2099
2100 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2101 var->name = NULL;
2102 var->path_expr = NULL;
2103 var->obj_name = NULL;
2104 var->index = -1;
2105 var->type = NULL;
2106 var->value = NULL;
2107 var->num_children = -1;
2108 var->parent = NULL;
2109 var->children = NULL;
2110 var->format = 0;
2111 var->root = NULL;
2112 var->updated = 0;
2113 var->print_value = NULL;
2114 var->frozen = 0;
2115 var->not_fetched = 0;
2116 var->dynamic
2117 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2118 var->dynamic->children_requested = 0;
2119 var->from = -1;
2120 var->to = -1;
2121 var->dynamic->constructor = 0;
2122 var->dynamic->pretty_printer = 0;
2123 var->dynamic->child_iter = 0;
2124 var->dynamic->saved_item = 0;
2125
2126 return var;
2127 }
2128
2129 /* Allocate memory and initialize a new root variable. */
2130 static struct varobj *
2131 new_root_variable (void)
2132 {
2133 struct varobj *var = new_variable ();
2134
2135 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2136 var->root->lang_ops = NULL;
2137 var->root->exp = NULL;
2138 var->root->valid_block = NULL;
2139 var->root->frame = null_frame_id;
2140 var->root->floating = 0;
2141 var->root->rootvar = NULL;
2142 var->root->is_valid = 1;
2143
2144 return var;
2145 }
2146
2147 /* Free any allocated memory associated with VAR. */
2148 static void
2149 free_variable (struct varobj *var)
2150 {
2151 #if HAVE_PYTHON
2152 if (var->dynamic->pretty_printer != NULL)
2153 {
2154 struct cleanup *cleanup = varobj_ensure_python_env (var);
2155
2156 Py_XDECREF (var->dynamic->constructor);
2157 Py_XDECREF (var->dynamic->pretty_printer);
2158 do_cleanups (cleanup);
2159 }
2160 #endif
2161
2162 varobj_iter_delete (var->dynamic->child_iter);
2163 varobj_clear_saved_item (var->dynamic);
2164 value_free (var->value);
2165
2166 /* Free the expression if this is a root variable. */
2167 if (is_root_p (var))
2168 {
2169 xfree (var->root->exp);
2170 xfree (var->root);
2171 }
2172
2173 xfree (var->name);
2174 xfree (var->obj_name);
2175 xfree (var->print_value);
2176 xfree (var->path_expr);
2177 xfree (var->dynamic);
2178 xfree (var);
2179 }
2180
2181 static void
2182 do_free_variable_cleanup (void *var)
2183 {
2184 free_variable (var);
2185 }
2186
2187 static struct cleanup *
2188 make_cleanup_free_variable (struct varobj *var)
2189 {
2190 return make_cleanup (do_free_variable_cleanup, var);
2191 }
2192
2193 /* Return the type of the value that's stored in VAR,
2194 or that would have being stored there if the
2195 value were accessible.
2196
2197 This differs from VAR->type in that VAR->type is always
2198 the true type of the expession in the source language.
2199 The return value of this function is the type we're
2200 actually storing in varobj, and using for displaying
2201 the values and for comparing previous and new values.
2202
2203 For example, top-level references are always stripped. */
2204 struct type *
2205 varobj_get_value_type (struct varobj *var)
2206 {
2207 struct type *type;
2208
2209 if (var->value)
2210 type = value_type (var->value);
2211 else
2212 type = var->type;
2213
2214 type = check_typedef (type);
2215
2216 if (TYPE_CODE (type) == TYPE_CODE_REF)
2217 type = get_target_type (type);
2218
2219 type = check_typedef (type);
2220
2221 return type;
2222 }
2223
2224 /* What is the default display for this variable? We assume that
2225 everything is "natural". Any exceptions? */
2226 static enum varobj_display_formats
2227 variable_default_display (struct varobj *var)
2228 {
2229 return FORMAT_NATURAL;
2230 }
2231
2232 /* FIXME: The following should be generic for any pointer. */
2233 static void
2234 cppush (struct cpstack **pstack, char *name)
2235 {
2236 struct cpstack *s;
2237
2238 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2239 s->name = name;
2240 s->next = *pstack;
2241 *pstack = s;
2242 }
2243
2244 /* FIXME: The following should be generic for any pointer. */
2245 static char *
2246 cppop (struct cpstack **pstack)
2247 {
2248 struct cpstack *s;
2249 char *v;
2250
2251 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2252 return NULL;
2253
2254 s = *pstack;
2255 v = s->name;
2256 *pstack = (*pstack)->next;
2257 xfree (s);
2258
2259 return v;
2260 }
2261 \f
2262 /*
2263 * Language-dependencies
2264 */
2265
2266 /* Common entry points */
2267
2268 /* Return the number of children for a given variable.
2269 The result of this function is defined by the language
2270 implementation. The number of children returned by this function
2271 is the number of children that the user will see in the variable
2272 display. */
2273 static int
2274 number_of_children (struct varobj *var)
2275 {
2276 return (*var->root->lang_ops->number_of_children) (var);
2277 }
2278
2279 /* What is the expression for the root varobj VAR? Returns a malloc'd
2280 string. */
2281 static char *
2282 name_of_variable (struct varobj *var)
2283 {
2284 return (*var->root->lang_ops->name_of_variable) (var);
2285 }
2286
2287 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2288 string. */
2289 static char *
2290 name_of_child (struct varobj *var, int index)
2291 {
2292 return (*var->root->lang_ops->name_of_child) (var, index);
2293 }
2294
2295 /* If frame associated with VAR can be found, switch
2296 to it and return 1. Otherwise, return 0. */
2297
2298 static int
2299 check_scope (struct varobj *var)
2300 {
2301 struct frame_info *fi;
2302 int scope;
2303
2304 fi = frame_find_by_id (var->root->frame);
2305 scope = fi != NULL;
2306
2307 if (fi)
2308 {
2309 CORE_ADDR pc = get_frame_pc (fi);
2310
2311 if (pc < BLOCK_START (var->root->valid_block) ||
2312 pc >= BLOCK_END (var->root->valid_block))
2313 scope = 0;
2314 else
2315 select_frame (fi);
2316 }
2317 return scope;
2318 }
2319
2320 /* Helper function to value_of_root. */
2321
2322 static struct value *
2323 value_of_root_1 (struct varobj **var_handle)
2324 {
2325 struct value *new_val = NULL;
2326 struct varobj *var = *var_handle;
2327 int within_scope = 0;
2328 struct cleanup *back_to;
2329
2330 /* Only root variables can be updated... */
2331 if (!is_root_p (var))
2332 /* Not a root var. */
2333 return NULL;
2334
2335 back_to = make_cleanup_restore_current_thread ();
2336
2337 /* Determine whether the variable is still around. */
2338 if (var->root->valid_block == NULL || var->root->floating)
2339 within_scope = 1;
2340 else if (var->root->thread_id == 0)
2341 {
2342 /* The program was single-threaded when the variable object was
2343 created. Technically, it's possible that the program became
2344 multi-threaded since then, but we don't support such
2345 scenario yet. */
2346 within_scope = check_scope (var);
2347 }
2348 else
2349 {
2350 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2351 if (in_thread_list (ptid))
2352 {
2353 switch_to_thread (ptid);
2354 within_scope = check_scope (var);
2355 }
2356 }
2357
2358 if (within_scope)
2359 {
2360 volatile struct gdb_exception except;
2361
2362 /* We need to catch errors here, because if evaluate
2363 expression fails we want to just return NULL. */
2364 TRY_CATCH (except, RETURN_MASK_ERROR)
2365 {
2366 new_val = evaluate_expression (var->root->exp);
2367 }
2368 }
2369
2370 do_cleanups (back_to);
2371
2372 return new_val;
2373 }
2374
2375 /* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2378 that case:
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
2384 static struct value *
2385 value_of_root (struct varobj **var_handle, int *type_changed)
2386 {
2387 struct varobj *var;
2388
2389 if (var_handle == NULL)
2390 return NULL;
2391
2392 var = *var_handle;
2393
2394 /* This should really be an exception, since this should
2395 only get called with a root variable. */
2396
2397 if (!is_root_p (var))
2398 return NULL;
2399
2400 if (var->root->floating)
2401 {
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
2404
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2408 {
2409 return NULL;
2410 }
2411 old_type = varobj_get_type (var);
2412 new_type = varobj_get_type (tmp_var);
2413 if (strcmp (old_type, new_type) == 0)
2414 {
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2420
2421 struct expression *tmp_exp = var->root->exp;
2422
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2425
2426 varobj_delete (tmp_var, NULL, 0);
2427 *type_changed = 0;
2428 }
2429 else
2430 {
2431 tmp_var->obj_name = xstrdup (var->obj_name);
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
2434 varobj_delete (var, NULL, 0);
2435
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
2438 var = *var_handle;
2439 *type_changed = 1;
2440 }
2441 xfree (old_type);
2442 xfree (new_type);
2443 }
2444 else
2445 {
2446 *type_changed = 0;
2447 }
2448
2449 {
2450 struct value *value;
2451
2452 value = value_of_root_1 (var_handle);
2453 if (var->value == NULL || value == NULL)
2454 {
2455 /* For root varobj-s, a NULL value indicates a scoping issue.
2456 So, nothing to do in terms of checking for mutations. */
2457 }
2458 else if (varobj_value_has_mutated (var, value, value_type (value)))
2459 {
2460 /* The type has mutated, so the children are no longer valid.
2461 Just delete them, and tell our caller that the type has
2462 changed. */
2463 varobj_delete (var, NULL, 1 /* only_children */);
2464 var->num_children = -1;
2465 var->to = -1;
2466 var->from = -1;
2467 *type_changed = 1;
2468 }
2469 return value;
2470 }
2471 }
2472
2473 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2474 static struct value *
2475 value_of_child (struct varobj *parent, int index)
2476 {
2477 struct value *value;
2478
2479 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2480
2481 return value;
2482 }
2483
2484 /* GDB already has a command called "value_of_variable". Sigh. */
2485 static char *
2486 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2487 {
2488 if (var->root->is_valid)
2489 {
2490 if (var->dynamic->pretty_printer != NULL)
2491 return varobj_value_get_print_value (var->value, var->format, var);
2492 return (*var->root->lang_ops->value_of_variable) (var, format);
2493 }
2494 else
2495 return NULL;
2496 }
2497
2498 void
2499 varobj_formatted_print_options (struct value_print_options *opts,
2500 enum varobj_display_formats format)
2501 {
2502 get_formatted_print_options (opts, format_code[(int) format]);
2503 opts->deref_ref = 0;
2504 opts->raw = 1;
2505 }
2506
2507 char *
2508 varobj_value_get_print_value (struct value *value,
2509 enum varobj_display_formats format,
2510 struct varobj *var)
2511 {
2512 struct ui_file *stb;
2513 struct cleanup *old_chain;
2514 char *thevalue = NULL;
2515 struct value_print_options opts;
2516 struct type *type = NULL;
2517 long len = 0;
2518 char *encoding = NULL;
2519 struct gdbarch *gdbarch = NULL;
2520 /* Initialize it just to avoid a GCC false warning. */
2521 CORE_ADDR str_addr = 0;
2522 int string_print = 0;
2523
2524 if (value == NULL)
2525 return NULL;
2526
2527 stb = mem_fileopen ();
2528 old_chain = make_cleanup_ui_file_delete (stb);
2529
2530 gdbarch = get_type_arch (value_type (value));
2531 #if HAVE_PYTHON
2532 if (gdb_python_initialized)
2533 {
2534 PyObject *value_formatter = var->dynamic->pretty_printer;
2535
2536 varobj_ensure_python_env (var);
2537
2538 if (value_formatter)
2539 {
2540 /* First check to see if we have any children at all. If so,
2541 we simply return {...}. */
2542 if (dynamic_varobj_has_child_method (var))
2543 {
2544 do_cleanups (old_chain);
2545 return xstrdup ("{...}");
2546 }
2547
2548 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2549 {
2550 struct value *replacement;
2551 PyObject *output = NULL;
2552
2553 output = apply_varobj_pretty_printer (value_formatter,
2554 &replacement,
2555 stb);
2556
2557 /* If we have string like output ... */
2558 if (output)
2559 {
2560 make_cleanup_py_decref (output);
2561
2562 /* If this is a lazy string, extract it. For lazy
2563 strings we always print as a string, so set
2564 string_print. */
2565 if (gdbpy_is_lazy_string (output))
2566 {
2567 gdbpy_extract_lazy_string (output, &str_addr, &type,
2568 &len, &encoding);
2569 make_cleanup (free_current_contents, &encoding);
2570 string_print = 1;
2571 }
2572 else
2573 {
2574 /* If it is a regular (non-lazy) string, extract
2575 it and copy the contents into THEVALUE. If the
2576 hint says to print it as a string, set
2577 string_print. Otherwise just return the extracted
2578 string as a value. */
2579
2580 char *s = python_string_to_target_string (output);
2581
2582 if (s)
2583 {
2584 char *hint;
2585
2586 hint = gdbpy_get_display_hint (value_formatter);
2587 if (hint)
2588 {
2589 if (!strcmp (hint, "string"))
2590 string_print = 1;
2591 xfree (hint);
2592 }
2593
2594 len = strlen (s);
2595 thevalue = xmemdup (s, len + 1, len + 1);
2596 type = builtin_type (gdbarch)->builtin_char;
2597 xfree (s);
2598
2599 if (!string_print)
2600 {
2601 do_cleanups (old_chain);
2602 return thevalue;
2603 }
2604
2605 make_cleanup (xfree, thevalue);
2606 }
2607 else
2608 gdbpy_print_stack ();
2609 }
2610 }
2611 /* If the printer returned a replacement value, set VALUE
2612 to REPLACEMENT. If there is not a replacement value,
2613 just use the value passed to this function. */
2614 if (replacement)
2615 value = replacement;
2616 }
2617 }
2618 }
2619 #endif
2620
2621 varobj_formatted_print_options (&opts, format);
2622
2623 /* If the THEVALUE has contents, it is a regular string. */
2624 if (thevalue)
2625 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2626 else if (string_print)
2627 /* Otherwise, if string_print is set, and it is not a regular
2628 string, it is a lazy string. */
2629 val_print_string (type, encoding, str_addr, len, stb, &opts);
2630 else
2631 /* All other cases. */
2632 common_val_print (value, stb, 0, &opts, current_language);
2633
2634 thevalue = ui_file_xstrdup (stb, NULL);
2635
2636 do_cleanups (old_chain);
2637 return thevalue;
2638 }
2639
2640 int
2641 varobj_editable_p (struct varobj *var)
2642 {
2643 struct type *type;
2644
2645 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2646 return 0;
2647
2648 type = varobj_get_value_type (var);
2649
2650 switch (TYPE_CODE (type))
2651 {
2652 case TYPE_CODE_STRUCT:
2653 case TYPE_CODE_UNION:
2654 case TYPE_CODE_ARRAY:
2655 case TYPE_CODE_FUNC:
2656 case TYPE_CODE_METHOD:
2657 return 0;
2658 break;
2659
2660 default:
2661 return 1;
2662 break;
2663 }
2664 }
2665
2666 /* Call VAR's value_is_changeable_p language-specific callback. */
2667
2668 int
2669 varobj_value_is_changeable_p (struct varobj *var)
2670 {
2671 return var->root->lang_ops->value_is_changeable_p (var);
2672 }
2673
2674 /* Return 1 if that varobj is floating, that is is always evaluated in the
2675 selected frame, and not bound to thread/frame. Such variable objects
2676 are created using '@' as frame specifier to -var-create. */
2677 int
2678 varobj_floating_p (struct varobj *var)
2679 {
2680 return var->root->floating;
2681 }
2682
2683 /* Implement the "value_is_changeable_p" varobj callback for most
2684 languages. */
2685
2686 int
2687 varobj_default_value_is_changeable_p (struct varobj *var)
2688 {
2689 int r;
2690 struct type *type;
2691
2692 if (CPLUS_FAKE_CHILD (var))
2693 return 0;
2694
2695 type = varobj_get_value_type (var);
2696
2697 switch (TYPE_CODE (type))
2698 {
2699 case TYPE_CODE_STRUCT:
2700 case TYPE_CODE_UNION:
2701 case TYPE_CODE_ARRAY:
2702 r = 0;
2703 break;
2704
2705 default:
2706 r = 1;
2707 }
2708
2709 return r;
2710 }
2711
2712 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2713 with an arbitrary caller supplied DATA pointer. */
2714
2715 void
2716 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2717 {
2718 struct varobj_root *var_root, *var_root_next;
2719
2720 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2721
2722 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2723 {
2724 var_root_next = var_root->next;
2725
2726 (*func) (var_root->rootvar, data);
2727 }
2728 }
2729
2730 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2731 defined on globals. It is a helper for varobj_invalidate.
2732
2733 This function is called after changing the symbol file, in this case the
2734 pointers to "struct type" stored by the varobj are no longer valid. All
2735 varobj must be either re-evaluated, or marked as invalid here. */
2736
2737 static void
2738 varobj_invalidate_iter (struct varobj *var, void *unused)
2739 {
2740 /* global and floating var must be re-evaluated. */
2741 if (var->root->floating || var->root->valid_block == NULL)
2742 {
2743 struct varobj *tmp_var;
2744
2745 /* Try to create a varobj with same expression. If we succeed
2746 replace the old varobj, otherwise invalidate it. */
2747 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2748 USE_CURRENT_FRAME);
2749 if (tmp_var != NULL)
2750 {
2751 tmp_var->obj_name = xstrdup (var->obj_name);
2752 varobj_delete (var, NULL, 0);
2753 install_variable (tmp_var);
2754 }
2755 else
2756 var->root->is_valid = 0;
2757 }
2758 else /* locals must be invalidated. */
2759 var->root->is_valid = 0;
2760 }
2761
2762 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2763 are defined on globals.
2764 Invalidated varobjs will be always printed in_scope="invalid". */
2765
2766 void
2767 varobj_invalidate (void)
2768 {
2769 all_root_varobjs (varobj_invalidate_iter, NULL);
2770 }
2771 \f
2772 extern void _initialize_varobj (void);
2773 void
2774 _initialize_varobj (void)
2775 {
2776 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2777
2778 varobj_table = xmalloc (sizeof_table);
2779 memset (varobj_table, 0, sizeof_table);
2780
2781 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2782 &varobjdebug,
2783 _("Set varobj debugging."),
2784 _("Show varobj debugging."),
2785 _("When non-zero, varobj debugging is enabled."),
2786 NULL, show_varobjdebug,
2787 &setdebuglist, &showdebuglist);
2788 }
This page took 0.150517 seconds and 4 git commands to generate.