daily update
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes. */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages. */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1. */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has. */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for
165 children. */
166 struct varobj_root *root;
167
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
170
171 /* Was this variable updated via a varobj_set_value operation. */
172 int updated;
173
174 /* Last print value. */
175 char *print_value;
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
186
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
212 };
213
214 struct cpstack
215 {
216 char *name;
217 struct cpstack *next;
218 };
219
220 /* A list of varobjs */
221
222 struct vlist
223 {
224 struct varobj *var;
225 struct vlist *next;
226 };
227
228 /* Private function prototypes */
229
230 /* Helper functions for the above subcommands. */
231
232 static int delete_variable (struct cpstack **, struct varobj *, int);
233
234 static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
236
237 static int install_variable (struct varobj *);
238
239 static void uninstall_variable (struct varobj *);
240
241 static struct varobj *create_child (struct varobj *, int, char *);
242
243 static struct varobj *
244 create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
247 /* Utility routines */
248
249 static struct varobj *new_variable (void);
250
251 static struct varobj *new_root_variable (void);
252
253 static void free_variable (struct varobj *var);
254
255 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
257 static struct type *get_type (struct varobj *var);
258
259 static struct type *get_value_type (struct varobj *var);
260
261 static struct type *get_target_type (struct type *);
262
263 static enum varobj_display_formats variable_default_display (struct varobj *);
264
265 static void cppush (struct cpstack **pstack, char *name);
266
267 static char *cppop (struct cpstack **pstack);
268
269 static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
272 /* Language-specific routines. */
273
274 static enum varobj_languages variable_language (struct varobj *var);
275
276 static int number_of_children (struct varobj *);
277
278 static char *name_of_variable (struct varobj *);
279
280 static char *name_of_child (struct varobj *, int);
281
282 static struct value *value_of_root (struct varobj **var_handle, int *);
283
284 static struct value *value_of_child (struct varobj *parent, int index);
285
286 static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
288
289 static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
291 struct varobj *var);
292
293 static int varobj_value_is_changeable_p (struct varobj *var);
294
295 static int is_root_p (struct varobj *var);
296
297 #if HAVE_PYTHON
298
299 static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
302
303 #endif /* HAVE_PYTHON */
304
305 /* C implementation */
306
307 static int c_number_of_children (struct varobj *var);
308
309 static char *c_name_of_variable (struct varobj *parent);
310
311 static char *c_name_of_child (struct varobj *parent, int index);
312
313 static char *c_path_expr_of_child (struct varobj *child);
314
315 static struct value *c_value_of_root (struct varobj **var_handle);
316
317 static struct value *c_value_of_child (struct varobj *parent, int index);
318
319 static struct type *c_type_of_child (struct varobj *parent, int index);
320
321 static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
323
324 /* C++ implementation */
325
326 static int cplus_number_of_children (struct varobj *var);
327
328 static void cplus_class_num_children (struct type *type, int children[3]);
329
330 static char *cplus_name_of_variable (struct varobj *parent);
331
332 static char *cplus_name_of_child (struct varobj *parent, int index);
333
334 static char *cplus_path_expr_of_child (struct varobj *child);
335
336 static struct value *cplus_value_of_root (struct varobj **var_handle);
337
338 static struct value *cplus_value_of_child (struct varobj *parent, int index);
339
340 static struct type *cplus_type_of_child (struct varobj *parent, int index);
341
342 static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
344
345 /* Java implementation */
346
347 static int java_number_of_children (struct varobj *var);
348
349 static char *java_name_of_variable (struct varobj *parent);
350
351 static char *java_name_of_child (struct varobj *parent, int index);
352
353 static char *java_path_expr_of_child (struct varobj *child);
354
355 static struct value *java_value_of_root (struct varobj **var_handle);
356
357 static struct value *java_value_of_child (struct varobj *parent, int index);
358
359 static struct type *java_type_of_child (struct varobj *parent, int index);
360
361 static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
363
364 /* The language specific vector */
365
366 struct language_specific
367 {
368
369 /* The language of this variable. */
370 enum varobj_languages language;
371
372 /* The number of children of PARENT. */
373 int (*number_of_children) (struct varobj * parent);
374
375 /* The name (expression) of a root varobj. */
376 char *(*name_of_variable) (struct varobj * parent);
377
378 /* The name of the INDEX'th child of PARENT. */
379 char *(*name_of_child) (struct varobj * parent, int index);
380
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
384
385 /* The ``struct value *'' of the root variable ROOT. */
386 struct value *(*value_of_root) (struct varobj ** root_handle);
387
388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
389 struct value *(*value_of_child) (struct varobj * parent, int index);
390
391 /* The type of the INDEX'th child of PARENT. */
392 struct type *(*type_of_child) (struct varobj * parent, int index);
393
394 /* The current value of VAR. */
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
397 };
398
399 /* Array of known source language routines. */
400 static struct language_specific languages[vlang_end] = {
401 /* Unknown (try treating as C). */
402 {
403 vlang_unknown,
404 c_number_of_children,
405 c_name_of_variable,
406 c_name_of_child,
407 c_path_expr_of_child,
408 c_value_of_root,
409 c_value_of_child,
410 c_type_of_child,
411 c_value_of_variable}
412 ,
413 /* C */
414 {
415 vlang_c,
416 c_number_of_children,
417 c_name_of_variable,
418 c_name_of_child,
419 c_path_expr_of_child,
420 c_value_of_root,
421 c_value_of_child,
422 c_type_of_child,
423 c_value_of_variable}
424 ,
425 /* C++ */
426 {
427 vlang_cplus,
428 cplus_number_of_children,
429 cplus_name_of_variable,
430 cplus_name_of_child,
431 cplus_path_expr_of_child,
432 cplus_value_of_root,
433 cplus_value_of_child,
434 cplus_type_of_child,
435 cplus_value_of_variable}
436 ,
437 /* Java */
438 {
439 vlang_java,
440 java_number_of_children,
441 java_name_of_variable,
442 java_name_of_child,
443 java_path_expr_of_child,
444 java_value_of_root,
445 java_value_of_child,
446 java_type_of_child,
447 java_value_of_variable}
448 };
449
450 /* A little convenience enum for dealing with C++/Java. */
451 enum vsections
452 {
453 v_public = 0, v_private, v_protected
454 };
455
456 /* Private data */
457
458 /* Mappings of varobj_display_formats enums to gdb's format codes. */
459 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
460
461 /* Header of the list of root variable objects. */
462 static struct varobj_root *rootlist;
463
464 /* Prime number indicating the number of buckets in the hash table. */
465 /* A prime large enough to avoid too many colisions. */
466 #define VAROBJ_TABLE_SIZE 227
467
468 /* Pointer to the varobj hash table (built at run time). */
469 static struct vlist **varobj_table;
470
471 /* Is the variable X one of our "fake" children? */
472 #define CPLUS_FAKE_CHILD(x) \
473 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474 \f
475
476 /* API Implementation */
477 static int
478 is_root_p (struct varobj *var)
479 {
480 return (var->root->rootvar == var);
481 }
482
483 #ifdef HAVE_PYTHON
484 /* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
486 struct cleanup *
487 varobj_ensure_python_env (struct varobj *var)
488 {
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
491 }
492 #endif
493
494 /* Creates a varobj (not its children). */
495
496 /* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
498
499 static struct frame_info *
500 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
501 {
502 struct frame_info *frame = NULL;
503
504 if (frame_addr == (CORE_ADDR) 0)
505 return NULL;
506
507 for (frame = get_current_frame ();
508 frame != NULL;
509 frame = get_prev_frame (frame))
510 {
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
517
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
520
521 if (frame_base == frame_addr)
522 return frame;
523 }
524
525 return NULL;
526 }
527
528 struct varobj *
529 varobj_create (char *objname,
530 char *expression, CORE_ADDR frame, enum varobj_type type)
531 {
532 struct varobj *var;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 struct frame_info *fi;
542 struct frame_id old_id = null_frame_id;
543 struct block *block;
544 char *p;
545 enum varobj_languages lang;
546 struct value *value = NULL;
547
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
550
551 if (has_stack_frames ())
552 {
553 /* Allow creator to specify context of variable. */
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
556 else
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
563 function. */
564 fi = find_frame_addr_in_frame_chain (frame);
565 }
566 else
567 fi = NULL;
568
569 /* frame = -2 means always use selected frame. */
570 if (type == USE_SELECTED_FRAME)
571 var->root->floating = 1;
572
573 block = NULL;
574 if (fi != NULL)
575 block = get_frame_block (fi, 0);
576
577 p = expression;
578 innermost_block = NULL;
579 /* Wrap the call to parse expression, so we can
580 return a sensible error. */
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
582 {
583 do_cleanups (old_chain);
584 return NULL;
585 }
586
587 /* Don't allow variables to be created for types. */
588 if (var->root->exp->elts[0].opcode == OP_TYPE)
589 {
590 do_cleanups (old_chain);
591 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
592 " as an expression.\n");
593 return NULL;
594 }
595
596 var->format = variable_default_display (var);
597 var->root->valid_block = innermost_block;
598 var->name = xstrdup (expression);
599 /* For a root var, the name and the expr are the same. */
600 var->path_expr = xstrdup (expression);
601
602 /* When the frame is different from the current frame,
603 we must select the appropriate frame before parsing
604 the expression, otherwise the value will not be current.
605 Since select_frame is so benign, just call it for all cases. */
606 if (innermost_block)
607 {
608 /* User could specify explicit FRAME-ADDR which was not found but
609 EXPRESSION is frame specific and we would not be able to evaluate
610 it correctly next time. With VALID_BLOCK set we must also set
611 FRAME and THREAD_ID. */
612 if (fi == NULL)
613 error (_("Failed to find the specified frame"));
614
615 var->root->frame = get_frame_id (fi);
616 var->root->thread_id = pid_to_thread_id (inferior_ptid);
617 old_id = get_frame_id (get_selected_frame (NULL));
618 select_frame (fi);
619 }
620
621 /* We definitely need to catch errors here.
622 If evaluate_expression succeeds we got the value we wanted.
623 But if it fails, we still go on with a call to evaluate_type(). */
624 if (!gdb_evaluate_expression (var->root->exp, &value))
625 {
626 /* Error getting the value. Try to at least get the
627 right type. */
628 struct value *type_only_value = evaluate_type (var->root->exp);
629
630 var->type = value_type (type_only_value);
631 }
632 else
633 var->type = value_type (value);
634
635 install_new_value (var, value, 1 /* Initial assignment */);
636
637 /* Set language info */
638 lang = variable_language (var);
639 var->root->lang = &languages[lang];
640
641 /* Set ourselves as our root. */
642 var->root->rootvar = var;
643
644 /* Reset the selected frame. */
645 if (frame_id_p (old_id))
646 select_frame (frame_find_by_id (old_id));
647 }
648
649 /* If the variable object name is null, that means this
650 is a temporary variable, so don't install it. */
651
652 if ((var != NULL) && (objname != NULL))
653 {
654 var->obj_name = xstrdup (objname);
655
656 /* If a varobj name is duplicated, the install will fail so
657 we must cleanup. */
658 if (!install_variable (var))
659 {
660 do_cleanups (old_chain);
661 return NULL;
662 }
663 }
664
665 discard_cleanups (old_chain);
666 return var;
667 }
668
669 /* Generates an unique name that can be used for a varobj. */
670
671 char *
672 varobj_gen_name (void)
673 {
674 static int id = 0;
675 char *obj_name;
676
677 /* Generate a name for this object. */
678 id++;
679 obj_name = xstrprintf ("var%d", id);
680
681 return obj_name;
682 }
683
684 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
685 error if OBJNAME cannot be found. */
686
687 struct varobj *
688 varobj_get_handle (char *objname)
689 {
690 struct vlist *cv;
691 const char *chp;
692 unsigned int index = 0;
693 unsigned int i = 1;
694
695 for (chp = objname; *chp; chp++)
696 {
697 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
698 }
699
700 cv = *(varobj_table + index);
701 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
702 cv = cv->next;
703
704 if (cv == NULL)
705 error (_("Variable object not found"));
706
707 return cv->var;
708 }
709
710 /* Given the handle, return the name of the object. */
711
712 char *
713 varobj_get_objname (struct varobj *var)
714 {
715 return var->obj_name;
716 }
717
718 /* Given the handle, return the expression represented by the object. */
719
720 char *
721 varobj_get_expression (struct varobj *var)
722 {
723 return name_of_variable (var);
724 }
725
726 /* Deletes a varobj and all its children if only_children == 0,
727 otherwise deletes only the children; returns a malloc'ed list of
728 all the (malloc'ed) names of the variables that have been deleted
729 (NULL terminated). */
730
731 int
732 varobj_delete (struct varobj *var, char ***dellist, int only_children)
733 {
734 int delcount;
735 int mycount;
736 struct cpstack *result = NULL;
737 char **cp;
738
739 /* Initialize a stack for temporary results. */
740 cppush (&result, NULL);
741
742 if (only_children)
743 /* Delete only the variable children. */
744 delcount = delete_variable (&result, var, 1 /* only the children */ );
745 else
746 /* Delete the variable and all its children. */
747 delcount = delete_variable (&result, var, 0 /* parent+children */ );
748
749 /* We may have been asked to return a list of what has been deleted. */
750 if (dellist != NULL)
751 {
752 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
753
754 cp = *dellist;
755 mycount = delcount;
756 *cp = cppop (&result);
757 while ((*cp != NULL) && (mycount > 0))
758 {
759 mycount--;
760 cp++;
761 *cp = cppop (&result);
762 }
763
764 if (mycount || (*cp != NULL))
765 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
766 mycount);
767 }
768
769 return delcount;
770 }
771
772 #if HAVE_PYTHON
773
774 /* Convenience function for varobj_set_visualizer. Instantiate a
775 pretty-printer for a given value. */
776 static PyObject *
777 instantiate_pretty_printer (PyObject *constructor, struct value *value)
778 {
779 PyObject *val_obj = NULL;
780 PyObject *printer;
781
782 val_obj = value_to_value_object (value);
783 if (! val_obj)
784 return NULL;
785
786 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
787 Py_DECREF (val_obj);
788 return printer;
789 }
790
791 #endif
792
793 /* Set/Get variable object display format. */
794
795 enum varobj_display_formats
796 varobj_set_display_format (struct varobj *var,
797 enum varobj_display_formats format)
798 {
799 switch (format)
800 {
801 case FORMAT_NATURAL:
802 case FORMAT_BINARY:
803 case FORMAT_DECIMAL:
804 case FORMAT_HEXADECIMAL:
805 case FORMAT_OCTAL:
806 var->format = format;
807 break;
808
809 default:
810 var->format = variable_default_display (var);
811 }
812
813 if (varobj_value_is_changeable_p (var)
814 && var->value && !value_lazy (var->value))
815 {
816 xfree (var->print_value);
817 var->print_value = value_get_print_value (var->value, var->format, var);
818 }
819
820 return var->format;
821 }
822
823 enum varobj_display_formats
824 varobj_get_display_format (struct varobj *var)
825 {
826 return var->format;
827 }
828
829 char *
830 varobj_get_display_hint (struct varobj *var)
831 {
832 char *result = NULL;
833
834 #if HAVE_PYTHON
835 struct cleanup *back_to = varobj_ensure_python_env (var);
836
837 if (var->pretty_printer)
838 result = gdbpy_get_display_hint (var->pretty_printer);
839
840 do_cleanups (back_to);
841 #endif
842
843 return result;
844 }
845
846 /* Return true if the varobj has items after TO, false otherwise. */
847
848 int
849 varobj_has_more (struct varobj *var, int to)
850 {
851 if (VEC_length (varobj_p, var->children) > to)
852 return 1;
853 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
854 && var->saved_item != NULL);
855 }
856
857 /* If the variable object is bound to a specific thread, that
858 is its evaluation can always be done in context of a frame
859 inside that thread, returns GDB id of the thread -- which
860 is always positive. Otherwise, returns -1. */
861 int
862 varobj_get_thread_id (struct varobj *var)
863 {
864 if (var->root->valid_block && var->root->thread_id > 0)
865 return var->root->thread_id;
866 else
867 return -1;
868 }
869
870 void
871 varobj_set_frozen (struct varobj *var, int frozen)
872 {
873 /* When a variable is unfrozen, we don't fetch its value.
874 The 'not_fetched' flag remains set, so next -var-update
875 won't complain.
876
877 We don't fetch the value, because for structures the client
878 should do -var-update anyway. It would be bad to have different
879 client-size logic for structure and other types. */
880 var->frozen = frozen;
881 }
882
883 int
884 varobj_get_frozen (struct varobj *var)
885 {
886 return var->frozen;
887 }
888
889 /* A helper function that restricts a range to what is actually
890 available in a VEC. This follows the usual rules for the meaning
891 of FROM and TO -- if either is negative, the entire range is
892 used. */
893
894 static void
895 restrict_range (VEC (varobj_p) *children, int *from, int *to)
896 {
897 if (*from < 0 || *to < 0)
898 {
899 *from = 0;
900 *to = VEC_length (varobj_p, children);
901 }
902 else
903 {
904 if (*from > VEC_length (varobj_p, children))
905 *from = VEC_length (varobj_p, children);
906 if (*to > VEC_length (varobj_p, children))
907 *to = VEC_length (varobj_p, children);
908 if (*from > *to)
909 *from = *to;
910 }
911 }
912
913 #if HAVE_PYTHON
914
915 /* A helper for update_dynamic_varobj_children that installs a new
916 child when needed. */
917
918 static void
919 install_dynamic_child (struct varobj *var,
920 VEC (varobj_p) **changed,
921 VEC (varobj_p) **new,
922 VEC (varobj_p) **unchanged,
923 int *cchanged,
924 int index,
925 const char *name,
926 struct value *value)
927 {
928 if (VEC_length (varobj_p, var->children) < index + 1)
929 {
930 /* There's no child yet. */
931 struct varobj *child = varobj_add_child (var, name, value);
932
933 if (new)
934 {
935 VEC_safe_push (varobj_p, *new, child);
936 *cchanged = 1;
937 }
938 }
939 else
940 {
941 varobj_p existing = VEC_index (varobj_p, var->children, index);
942
943 if (install_new_value (existing, value, 0))
944 {
945 if (changed)
946 VEC_safe_push (varobj_p, *changed, existing);
947 }
948 else if (unchanged)
949 VEC_safe_push (varobj_p, *unchanged, existing);
950 }
951 }
952
953 static int
954 dynamic_varobj_has_child_method (struct varobj *var)
955 {
956 struct cleanup *back_to;
957 PyObject *printer = var->pretty_printer;
958 int result;
959
960 back_to = varobj_ensure_python_env (var);
961 result = PyObject_HasAttr (printer, gdbpy_children_cst);
962 do_cleanups (back_to);
963 return result;
964 }
965
966 #endif
967
968 static int
969 update_dynamic_varobj_children (struct varobj *var,
970 VEC (varobj_p) **changed,
971 VEC (varobj_p) **new,
972 VEC (varobj_p) **unchanged,
973 int *cchanged,
974 int update_children,
975 int from,
976 int to)
977 {
978 #if HAVE_PYTHON
979 struct cleanup *back_to;
980 PyObject *children;
981 int i;
982 PyObject *printer = var->pretty_printer;
983
984 back_to = varobj_ensure_python_env (var);
985
986 *cchanged = 0;
987 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
988 {
989 do_cleanups (back_to);
990 return 0;
991 }
992
993 if (update_children || !var->child_iter)
994 {
995 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
996 NULL);
997
998 if (!children)
999 {
1000 gdbpy_print_stack ();
1001 error (_("Null value returned for children"));
1002 }
1003
1004 make_cleanup_py_decref (children);
1005
1006 if (!PyIter_Check (children))
1007 error (_("Returned value is not iterable"));
1008
1009 Py_XDECREF (var->child_iter);
1010 var->child_iter = PyObject_GetIter (children);
1011 if (!var->child_iter)
1012 {
1013 gdbpy_print_stack ();
1014 error (_("Could not get children iterator"));
1015 }
1016
1017 Py_XDECREF (var->saved_item);
1018 var->saved_item = NULL;
1019
1020 i = 0;
1021 }
1022 else
1023 i = VEC_length (varobj_p, var->children);
1024
1025 /* We ask for one extra child, so that MI can report whether there
1026 are more children. */
1027 for (; to < 0 || i < to + 1; ++i)
1028 {
1029 PyObject *item;
1030 int force_done = 0;
1031
1032 /* See if there was a leftover from last time. */
1033 if (var->saved_item)
1034 {
1035 item = var->saved_item;
1036 var->saved_item = NULL;
1037 }
1038 else
1039 item = PyIter_Next (var->child_iter);
1040
1041 if (!item)
1042 {
1043 /* Normal end of iteration. */
1044 if (!PyErr_Occurred ())
1045 break;
1046
1047 /* If we got a memory error, just use the text as the
1048 item. */
1049 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1050 {
1051 PyObject *type, *value, *trace;
1052 char *name_str, *value_str;
1053
1054 PyErr_Fetch (&type, &value, &trace);
1055 value_str = gdbpy_exception_to_string (type, value);
1056 Py_XDECREF (type);
1057 Py_XDECREF (value);
1058 Py_XDECREF (trace);
1059 if (!value_str)
1060 {
1061 gdbpy_print_stack ();
1062 break;
1063 }
1064
1065 name_str = xstrprintf ("<error at %d>", i);
1066 item = Py_BuildValue ("(ss)", name_str, value_str);
1067 xfree (name_str);
1068 xfree (value_str);
1069 if (!item)
1070 {
1071 gdbpy_print_stack ();
1072 break;
1073 }
1074
1075 force_done = 1;
1076 }
1077 else
1078 {
1079 /* Any other kind of error. */
1080 gdbpy_print_stack ();
1081 break;
1082 }
1083 }
1084
1085 /* We don't want to push the extra child on any report list. */
1086 if (to < 0 || i < to)
1087 {
1088 PyObject *py_v;
1089 const char *name;
1090 struct value *v;
1091 struct cleanup *inner;
1092 int can_mention = from < 0 || i >= from;
1093
1094 inner = make_cleanup_py_decref (item);
1095
1096 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1097 {
1098 gdbpy_print_stack ();
1099 error (_("Invalid item from the child list"));
1100 }
1101
1102 v = convert_value_from_python (py_v);
1103 if (v == NULL)
1104 gdbpy_print_stack ();
1105 install_dynamic_child (var, can_mention ? changed : NULL,
1106 can_mention ? new : NULL,
1107 can_mention ? unchanged : NULL,
1108 can_mention ? cchanged : NULL, i, name, v);
1109 do_cleanups (inner);
1110 }
1111 else
1112 {
1113 Py_XDECREF (var->saved_item);
1114 var->saved_item = item;
1115
1116 /* We want to truncate the child list just before this
1117 element. */
1118 break;
1119 }
1120
1121 if (force_done)
1122 break;
1123 }
1124
1125 if (i < VEC_length (varobj_p, var->children))
1126 {
1127 int j;
1128
1129 *cchanged = 1;
1130 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1131 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1132 VEC_truncate (varobj_p, var->children, i);
1133 }
1134
1135 /* If there are fewer children than requested, note that the list of
1136 children changed. */
1137 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1138 *cchanged = 1;
1139
1140 var->num_children = VEC_length (varobj_p, var->children);
1141
1142 do_cleanups (back_to);
1143
1144 return 1;
1145 #else
1146 gdb_assert (0 && "should never be called if Python is not enabled");
1147 #endif
1148 }
1149
1150 int
1151 varobj_get_num_children (struct varobj *var)
1152 {
1153 if (var->num_children == -1)
1154 {
1155 if (var->pretty_printer)
1156 {
1157 int dummy;
1158
1159 /* If we have a dynamic varobj, don't report -1 children.
1160 So, try to fetch some children first. */
1161 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1162 0, 0, 0);
1163 }
1164 else
1165 var->num_children = number_of_children (var);
1166 }
1167
1168 return var->num_children >= 0 ? var->num_children : 0;
1169 }
1170
1171 /* Creates a list of the immediate children of a variable object;
1172 the return code is the number of such children or -1 on error. */
1173
1174 VEC (varobj_p)*
1175 varobj_list_children (struct varobj *var, int *from, int *to)
1176 {
1177 char *name;
1178 int i, children_changed;
1179
1180 var->children_requested = 1;
1181
1182 if (var->pretty_printer)
1183 {
1184 /* This, in theory, can result in the number of children changing without
1185 frontend noticing. But well, calling -var-list-children on the same
1186 varobj twice is not something a sane frontend would do. */
1187 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1188 0, 0, *to);
1189 restrict_range (var->children, from, to);
1190 return var->children;
1191 }
1192
1193 if (var->num_children == -1)
1194 var->num_children = number_of_children (var);
1195
1196 /* If that failed, give up. */
1197 if (var->num_children == -1)
1198 return var->children;
1199
1200 /* If we're called when the list of children is not yet initialized,
1201 allocate enough elements in it. */
1202 while (VEC_length (varobj_p, var->children) < var->num_children)
1203 VEC_safe_push (varobj_p, var->children, NULL);
1204
1205 for (i = 0; i < var->num_children; i++)
1206 {
1207 varobj_p existing = VEC_index (varobj_p, var->children, i);
1208
1209 if (existing == NULL)
1210 {
1211 /* Either it's the first call to varobj_list_children for
1212 this variable object, and the child was never created,
1213 or it was explicitly deleted by the client. */
1214 name = name_of_child (var, i);
1215 existing = create_child (var, i, name);
1216 VEC_replace (varobj_p, var->children, i, existing);
1217 }
1218 }
1219
1220 restrict_range (var->children, from, to);
1221 return var->children;
1222 }
1223
1224 #if HAVE_PYTHON
1225
1226 static struct varobj *
1227 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1228 {
1229 varobj_p v = create_child_with_value (var,
1230 VEC_length (varobj_p, var->children),
1231 name, value);
1232
1233 VEC_safe_push (varobj_p, var->children, v);
1234 return v;
1235 }
1236
1237 #endif /* HAVE_PYTHON */
1238
1239 /* Obtain the type of an object Variable as a string similar to the one gdb
1240 prints on the console. */
1241
1242 char *
1243 varobj_get_type (struct varobj *var)
1244 {
1245 /* For the "fake" variables, do not return a type. (It's type is
1246 NULL, too.)
1247 Do not return a type for invalid variables as well. */
1248 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1249 return NULL;
1250
1251 return type_to_string (var->type);
1252 }
1253
1254 /* Obtain the type of an object variable. */
1255
1256 struct type *
1257 varobj_get_gdb_type (struct varobj *var)
1258 {
1259 return var->type;
1260 }
1261
1262 /* Return a pointer to the full rooted expression of varobj VAR.
1263 If it has not been computed yet, compute it. */
1264 char *
1265 varobj_get_path_expr (struct varobj *var)
1266 {
1267 if (var->path_expr != NULL)
1268 return var->path_expr;
1269 else
1270 {
1271 /* For root varobjs, we initialize path_expr
1272 when creating varobj, so here it should be
1273 child varobj. */
1274 gdb_assert (!is_root_p (var));
1275 return (*var->root->lang->path_expr_of_child) (var);
1276 }
1277 }
1278
1279 enum varobj_languages
1280 varobj_get_language (struct varobj *var)
1281 {
1282 return variable_language (var);
1283 }
1284
1285 int
1286 varobj_get_attributes (struct varobj *var)
1287 {
1288 int attributes = 0;
1289
1290 if (varobj_editable_p (var))
1291 /* FIXME: define masks for attributes. */
1292 attributes |= 0x00000001; /* Editable */
1293
1294 return attributes;
1295 }
1296
1297 int
1298 varobj_pretty_printed_p (struct varobj *var)
1299 {
1300 return var->pretty_printer != NULL;
1301 }
1302
1303 char *
1304 varobj_get_formatted_value (struct varobj *var,
1305 enum varobj_display_formats format)
1306 {
1307 return my_value_of_variable (var, format);
1308 }
1309
1310 char *
1311 varobj_get_value (struct varobj *var)
1312 {
1313 return my_value_of_variable (var, var->format);
1314 }
1315
1316 /* Set the value of an object variable (if it is editable) to the
1317 value of the given expression. */
1318 /* Note: Invokes functions that can call error(). */
1319
1320 int
1321 varobj_set_value (struct varobj *var, char *expression)
1322 {
1323 struct value *val;
1324
1325 /* The argument "expression" contains the variable's new value.
1326 We need to first construct a legal expression for this -- ugh! */
1327 /* Does this cover all the bases? */
1328 struct expression *exp;
1329 struct value *value;
1330 int saved_input_radix = input_radix;
1331 char *s = expression;
1332
1333 gdb_assert (varobj_editable_p (var));
1334
1335 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1336 exp = parse_exp_1 (&s, 0, 0);
1337 if (!gdb_evaluate_expression (exp, &value))
1338 {
1339 /* We cannot proceed without a valid expression. */
1340 xfree (exp);
1341 return 0;
1342 }
1343
1344 /* All types that are editable must also be changeable. */
1345 gdb_assert (varobj_value_is_changeable_p (var));
1346
1347 /* The value of a changeable variable object must not be lazy. */
1348 gdb_assert (!value_lazy (var->value));
1349
1350 /* Need to coerce the input. We want to check if the
1351 value of the variable object will be different
1352 after assignment, and the first thing value_assign
1353 does is coerce the input.
1354 For example, if we are assigning an array to a pointer variable we
1355 should compare the pointer with the array's address, not with the
1356 array's content. */
1357 value = coerce_array (value);
1358
1359 /* The new value may be lazy. gdb_value_assign, or
1360 rather value_contents, will take care of this.
1361 If fetching of the new value will fail, gdb_value_assign
1362 with catch the exception. */
1363 if (!gdb_value_assign (var->value, value, &val))
1364 return 0;
1365
1366 /* If the value has changed, record it, so that next -var-update can
1367 report this change. If a variable had a value of '1', we've set it
1368 to '333' and then set again to '1', when -var-update will report this
1369 variable as changed -- because the first assignment has set the
1370 'updated' flag. There's no need to optimize that, because return value
1371 of -var-update should be considered an approximation. */
1372 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1373 input_radix = saved_input_radix;
1374 return 1;
1375 }
1376
1377 #if HAVE_PYTHON
1378
1379 /* A helper function to install a constructor function and visualizer
1380 in a varobj. */
1381
1382 static void
1383 install_visualizer (struct varobj *var, PyObject *constructor,
1384 PyObject *visualizer)
1385 {
1386 Py_XDECREF (var->constructor);
1387 var->constructor = constructor;
1388
1389 Py_XDECREF (var->pretty_printer);
1390 var->pretty_printer = visualizer;
1391
1392 Py_XDECREF (var->child_iter);
1393 var->child_iter = NULL;
1394 }
1395
1396 /* Install the default visualizer for VAR. */
1397
1398 static void
1399 install_default_visualizer (struct varobj *var)
1400 {
1401 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1402 if (CPLUS_FAKE_CHILD (var))
1403 return;
1404
1405 if (pretty_printing)
1406 {
1407 PyObject *pretty_printer = NULL;
1408
1409 if (var->value)
1410 {
1411 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1412 if (! pretty_printer)
1413 {
1414 gdbpy_print_stack ();
1415 error (_("Cannot instantiate printer for default visualizer"));
1416 }
1417 }
1418
1419 if (pretty_printer == Py_None)
1420 {
1421 Py_DECREF (pretty_printer);
1422 pretty_printer = NULL;
1423 }
1424
1425 install_visualizer (var, NULL, pretty_printer);
1426 }
1427 }
1428
1429 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1430 make a new object. */
1431
1432 static void
1433 construct_visualizer (struct varobj *var, PyObject *constructor)
1434 {
1435 PyObject *pretty_printer;
1436
1437 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1438 if (CPLUS_FAKE_CHILD (var))
1439 return;
1440
1441 Py_INCREF (constructor);
1442 if (constructor == Py_None)
1443 pretty_printer = NULL;
1444 else
1445 {
1446 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1447 if (! pretty_printer)
1448 {
1449 gdbpy_print_stack ();
1450 Py_DECREF (constructor);
1451 constructor = Py_None;
1452 Py_INCREF (constructor);
1453 }
1454
1455 if (pretty_printer == Py_None)
1456 {
1457 Py_DECREF (pretty_printer);
1458 pretty_printer = NULL;
1459 }
1460 }
1461
1462 install_visualizer (var, constructor, pretty_printer);
1463 }
1464
1465 #endif /* HAVE_PYTHON */
1466
1467 /* A helper function for install_new_value. This creates and installs
1468 a visualizer for VAR, if appropriate. */
1469
1470 static void
1471 install_new_value_visualizer (struct varobj *var)
1472 {
1473 #if HAVE_PYTHON
1474 /* If the constructor is None, then we want the raw value. If VAR
1475 does not have a value, just skip this. */
1476 if (var->constructor != Py_None && var->value)
1477 {
1478 struct cleanup *cleanup;
1479
1480 cleanup = varobj_ensure_python_env (var);
1481
1482 if (!var->constructor)
1483 install_default_visualizer (var);
1484 else
1485 construct_visualizer (var, var->constructor);
1486
1487 do_cleanups (cleanup);
1488 }
1489 #else
1490 /* Do nothing. */
1491 #endif
1492 }
1493
1494 /* Assign a new value to a variable object. If INITIAL is non-zero,
1495 this is the first assignement after the variable object was just
1496 created, or changed type. In that case, just assign the value
1497 and return 0.
1498 Otherwise, assign the new value, and return 1 if the value is
1499 different from the current one, 0 otherwise. The comparison is
1500 done on textual representation of value. Therefore, some types
1501 need not be compared. E.g. for structures the reported value is
1502 always "{...}", so no comparison is necessary here. If the old
1503 value was NULL and new one is not, or vice versa, we always return 1.
1504
1505 The VALUE parameter should not be released -- the function will
1506 take care of releasing it when needed. */
1507 static int
1508 install_new_value (struct varobj *var, struct value *value, int initial)
1509 {
1510 int changeable;
1511 int need_to_fetch;
1512 int changed = 0;
1513 int intentionally_not_fetched = 0;
1514 char *print_value = NULL;
1515
1516 /* We need to know the varobj's type to decide if the value should
1517 be fetched or not. C++ fake children (public/protected/private)
1518 don't have a type. */
1519 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1520 changeable = varobj_value_is_changeable_p (var);
1521
1522 /* If the type has custom visualizer, we consider it to be always
1523 changeable. FIXME: need to make sure this behaviour will not
1524 mess up read-sensitive values. */
1525 if (var->pretty_printer)
1526 changeable = 1;
1527
1528 need_to_fetch = changeable;
1529
1530 /* We are not interested in the address of references, and given
1531 that in C++ a reference is not rebindable, it cannot
1532 meaningfully change. So, get hold of the real value. */
1533 if (value)
1534 value = coerce_ref (value);
1535
1536 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1537 /* For unions, we need to fetch the value implicitly because
1538 of implementation of union member fetch. When gdb
1539 creates a value for a field and the value of the enclosing
1540 structure is not lazy, it immediately copies the necessary
1541 bytes from the enclosing values. If the enclosing value is
1542 lazy, the call to value_fetch_lazy on the field will read
1543 the data from memory. For unions, that means we'll read the
1544 same memory more than once, which is not desirable. So
1545 fetch now. */
1546 need_to_fetch = 1;
1547
1548 /* The new value might be lazy. If the type is changeable,
1549 that is we'll be comparing values of this type, fetch the
1550 value now. Otherwise, on the next update the old value
1551 will be lazy, which means we've lost that old value. */
1552 if (need_to_fetch && value && value_lazy (value))
1553 {
1554 struct varobj *parent = var->parent;
1555 int frozen = var->frozen;
1556
1557 for (; !frozen && parent; parent = parent->parent)
1558 frozen |= parent->frozen;
1559
1560 if (frozen && initial)
1561 {
1562 /* For variables that are frozen, or are children of frozen
1563 variables, we don't do fetch on initial assignment.
1564 For non-initial assignemnt we do the fetch, since it means we're
1565 explicitly asked to compare the new value with the old one. */
1566 intentionally_not_fetched = 1;
1567 }
1568 else if (!gdb_value_fetch_lazy (value))
1569 {
1570 /* Set the value to NULL, so that for the next -var-update,
1571 we don't try to compare the new value with this value,
1572 that we couldn't even read. */
1573 value = NULL;
1574 }
1575 }
1576
1577
1578 /* Below, we'll be comparing string rendering of old and new
1579 values. Don't get string rendering if the value is
1580 lazy -- if it is, the code above has decided that the value
1581 should not be fetched. */
1582 if (value && !value_lazy (value) && !var->pretty_printer)
1583 print_value = value_get_print_value (value, var->format, var);
1584
1585 /* If the type is changeable, compare the old and the new values.
1586 If this is the initial assignment, we don't have any old value
1587 to compare with. */
1588 if (!initial && changeable)
1589 {
1590 /* If the value of the varobj was changed by -var-set-value,
1591 then the value in the varobj and in the target is the same.
1592 However, that value is different from the value that the
1593 varobj had after the previous -var-update. So need to the
1594 varobj as changed. */
1595 if (var->updated)
1596 {
1597 changed = 1;
1598 }
1599 else if (! var->pretty_printer)
1600 {
1601 /* Try to compare the values. That requires that both
1602 values are non-lazy. */
1603 if (var->not_fetched && value_lazy (var->value))
1604 {
1605 /* This is a frozen varobj and the value was never read.
1606 Presumably, UI shows some "never read" indicator.
1607 Now that we've fetched the real value, we need to report
1608 this varobj as changed so that UI can show the real
1609 value. */
1610 changed = 1;
1611 }
1612 else if (var->value == NULL && value == NULL)
1613 /* Equal. */
1614 ;
1615 else if (var->value == NULL || value == NULL)
1616 {
1617 changed = 1;
1618 }
1619 else
1620 {
1621 gdb_assert (!value_lazy (var->value));
1622 gdb_assert (!value_lazy (value));
1623
1624 gdb_assert (var->print_value != NULL && print_value != NULL);
1625 if (strcmp (var->print_value, print_value) != 0)
1626 changed = 1;
1627 }
1628 }
1629 }
1630
1631 if (!initial && !changeable)
1632 {
1633 /* For values that are not changeable, we don't compare the values.
1634 However, we want to notice if a value was not NULL and now is NULL,
1635 or vise versa, so that we report when top-level varobjs come in scope
1636 and leave the scope. */
1637 changed = (var->value != NULL) != (value != NULL);
1638 }
1639
1640 /* We must always keep the new value, since children depend on it. */
1641 if (var->value != NULL && var->value != value)
1642 value_free (var->value);
1643 var->value = value;
1644 if (value != NULL)
1645 value_incref (value);
1646 if (value && value_lazy (value) && intentionally_not_fetched)
1647 var->not_fetched = 1;
1648 else
1649 var->not_fetched = 0;
1650 var->updated = 0;
1651
1652 install_new_value_visualizer (var);
1653
1654 /* If we installed a pretty-printer, re-compare the printed version
1655 to see if the variable changed. */
1656 if (var->pretty_printer)
1657 {
1658 xfree (print_value);
1659 print_value = value_get_print_value (var->value, var->format, var);
1660 if ((var->print_value == NULL && print_value != NULL)
1661 || (var->print_value != NULL && print_value == NULL)
1662 || (var->print_value != NULL && print_value != NULL
1663 && strcmp (var->print_value, print_value) != 0))
1664 changed = 1;
1665 }
1666 if (var->print_value)
1667 xfree (var->print_value);
1668 var->print_value = print_value;
1669
1670 gdb_assert (!var->value || value_type (var->value));
1671
1672 return changed;
1673 }
1674
1675 /* Return the requested range for a varobj. VAR is the varobj. FROM
1676 and TO are out parameters; *FROM and *TO will be set to the
1677 selected sub-range of VAR. If no range was selected using
1678 -var-set-update-range, then both will be -1. */
1679 void
1680 varobj_get_child_range (struct varobj *var, int *from, int *to)
1681 {
1682 *from = var->from;
1683 *to = var->to;
1684 }
1685
1686 /* Set the selected sub-range of children of VAR to start at index
1687 FROM and end at index TO. If either FROM or TO is less than zero,
1688 this is interpreted as a request for all children. */
1689 void
1690 varobj_set_child_range (struct varobj *var, int from, int to)
1691 {
1692 var->from = from;
1693 var->to = to;
1694 }
1695
1696 void
1697 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1698 {
1699 #if HAVE_PYTHON
1700 PyObject *mainmod, *globals, *constructor;
1701 struct cleanup *back_to;
1702
1703 back_to = varobj_ensure_python_env (var);
1704
1705 mainmod = PyImport_AddModule ("__main__");
1706 globals = PyModule_GetDict (mainmod);
1707 Py_INCREF (globals);
1708 make_cleanup_py_decref (globals);
1709
1710 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1711
1712 if (! constructor)
1713 {
1714 gdbpy_print_stack ();
1715 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1716 }
1717
1718 construct_visualizer (var, constructor);
1719 Py_XDECREF (constructor);
1720
1721 /* If there are any children now, wipe them. */
1722 varobj_delete (var, NULL, 1 /* children only */);
1723 var->num_children = -1;
1724
1725 do_cleanups (back_to);
1726 #else
1727 error (_("Python support required"));
1728 #endif
1729 }
1730
1731 /* Update the values for a variable and its children. This is a
1732 two-pronged attack. First, re-parse the value for the root's
1733 expression to see if it's changed. Then go all the way
1734 through its children, reconstructing them and noting if they've
1735 changed.
1736
1737 The EXPLICIT parameter specifies if this call is result
1738 of MI request to update this specific variable, or
1739 result of implicit -var-update *. For implicit request, we don't
1740 update frozen variables.
1741
1742 NOTE: This function may delete the caller's varobj. If it
1743 returns TYPE_CHANGED, then it has done this and VARP will be modified
1744 to point to the new varobj. */
1745
1746 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1747 {
1748 int changed = 0;
1749 int type_changed = 0;
1750 int i;
1751 struct value *new;
1752 VEC (varobj_update_result) *stack = NULL;
1753 VEC (varobj_update_result) *result = NULL;
1754
1755 /* Frozen means frozen -- we don't check for any change in
1756 this varobj, including its going out of scope, or
1757 changing type. One use case for frozen varobjs is
1758 retaining previously evaluated expressions, and we don't
1759 want them to be reevaluated at all. */
1760 if (!explicit && (*varp)->frozen)
1761 return result;
1762
1763 if (!(*varp)->root->is_valid)
1764 {
1765 varobj_update_result r = {0};
1766
1767 r.varobj = *varp;
1768 r.status = VAROBJ_INVALID;
1769 VEC_safe_push (varobj_update_result, result, &r);
1770 return result;
1771 }
1772
1773 if ((*varp)->root->rootvar == *varp)
1774 {
1775 varobj_update_result r = {0};
1776
1777 r.varobj = *varp;
1778 r.status = VAROBJ_IN_SCOPE;
1779
1780 /* Update the root variable. value_of_root can return NULL
1781 if the variable is no longer around, i.e. we stepped out of
1782 the frame in which a local existed. We are letting the
1783 value_of_root variable dispose of the varobj if the type
1784 has changed. */
1785 new = value_of_root (varp, &type_changed);
1786 r.varobj = *varp;
1787
1788 r.type_changed = type_changed;
1789 if (install_new_value ((*varp), new, type_changed))
1790 r.changed = 1;
1791
1792 if (new == NULL)
1793 r.status = VAROBJ_NOT_IN_SCOPE;
1794 r.value_installed = 1;
1795
1796 if (r.status == VAROBJ_NOT_IN_SCOPE)
1797 {
1798 if (r.type_changed || r.changed)
1799 VEC_safe_push (varobj_update_result, result, &r);
1800 return result;
1801 }
1802
1803 VEC_safe_push (varobj_update_result, stack, &r);
1804 }
1805 else
1806 {
1807 varobj_update_result r = {0};
1808
1809 r.varobj = *varp;
1810 VEC_safe_push (varobj_update_result, stack, &r);
1811 }
1812
1813 /* Walk through the children, reconstructing them all. */
1814 while (!VEC_empty (varobj_update_result, stack))
1815 {
1816 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1817 struct varobj *v = r.varobj;
1818
1819 VEC_pop (varobj_update_result, stack);
1820
1821 /* Update this variable, unless it's a root, which is already
1822 updated. */
1823 if (!r.value_installed)
1824 {
1825 new = value_of_child (v->parent, v->index);
1826 if (install_new_value (v, new, 0 /* type not changed */))
1827 {
1828 r.changed = 1;
1829 v->updated = 0;
1830 }
1831 }
1832
1833 /* We probably should not get children of a varobj that has a
1834 pretty-printer, but for which -var-list-children was never
1835 invoked. */
1836 if (v->pretty_printer)
1837 {
1838 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1839 int i, children_changed = 0;
1840
1841 if (v->frozen)
1842 continue;
1843
1844 if (!v->children_requested)
1845 {
1846 int dummy;
1847
1848 /* If we initially did not have potential children, but
1849 now we do, consider the varobj as changed.
1850 Otherwise, if children were never requested, consider
1851 it as unchanged -- presumably, such varobj is not yet
1852 expanded in the UI, so we need not bother getting
1853 it. */
1854 if (!varobj_has_more (v, 0))
1855 {
1856 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1857 &dummy, 0, 0, 0);
1858 if (varobj_has_more (v, 0))
1859 r.changed = 1;
1860 }
1861
1862 if (r.changed)
1863 VEC_safe_push (varobj_update_result, result, &r);
1864
1865 continue;
1866 }
1867
1868 /* If update_dynamic_varobj_children returns 0, then we have
1869 a non-conforming pretty-printer, so we skip it. */
1870 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1871 &children_changed, 1,
1872 v->from, v->to))
1873 {
1874 if (children_changed || new)
1875 {
1876 r.children_changed = 1;
1877 r.new = new;
1878 }
1879 /* Push in reverse order so that the first child is
1880 popped from the work stack first, and so will be
1881 added to result first. This does not affect
1882 correctness, just "nicer". */
1883 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1884 {
1885 varobj_p tmp = VEC_index (varobj_p, changed, i);
1886 varobj_update_result r = {0};
1887
1888 r.varobj = tmp;
1889 r.changed = 1;
1890 r.value_installed = 1;
1891 VEC_safe_push (varobj_update_result, stack, &r);
1892 }
1893 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1894 {
1895 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1896
1897 if (!tmp->frozen)
1898 {
1899 varobj_update_result r = {0};
1900
1901 r.varobj = tmp;
1902 r.value_installed = 1;
1903 VEC_safe_push (varobj_update_result, stack, &r);
1904 }
1905 }
1906 if (r.changed || r.children_changed)
1907 VEC_safe_push (varobj_update_result, result, &r);
1908
1909 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1910 has been put into the result vector. */
1911 VEC_free (varobj_p, changed);
1912 VEC_free (varobj_p, unchanged);
1913
1914 continue;
1915 }
1916 }
1917
1918 /* Push any children. Use reverse order so that the first
1919 child is popped from the work stack first, and so
1920 will be added to result first. This does not
1921 affect correctness, just "nicer". */
1922 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1923 {
1924 varobj_p c = VEC_index (varobj_p, v->children, i);
1925
1926 /* Child may be NULL if explicitly deleted by -var-delete. */
1927 if (c != NULL && !c->frozen)
1928 {
1929 varobj_update_result r = {0};
1930
1931 r.varobj = c;
1932 VEC_safe_push (varobj_update_result, stack, &r);
1933 }
1934 }
1935
1936 if (r.changed || r.type_changed)
1937 VEC_safe_push (varobj_update_result, result, &r);
1938 }
1939
1940 VEC_free (varobj_update_result, stack);
1941
1942 return result;
1943 }
1944 \f
1945
1946 /* Helper functions */
1947
1948 /*
1949 * Variable object construction/destruction
1950 */
1951
1952 static int
1953 delete_variable (struct cpstack **resultp, struct varobj *var,
1954 int only_children_p)
1955 {
1956 int delcount = 0;
1957
1958 delete_variable_1 (resultp, &delcount, var,
1959 only_children_p, 1 /* remove_from_parent_p */ );
1960
1961 return delcount;
1962 }
1963
1964 /* Delete the variable object VAR and its children. */
1965 /* IMPORTANT NOTE: If we delete a variable which is a child
1966 and the parent is not removed we dump core. It must be always
1967 initially called with remove_from_parent_p set. */
1968 static void
1969 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1970 struct varobj *var, int only_children_p,
1971 int remove_from_parent_p)
1972 {
1973 int i;
1974
1975 /* Delete any children of this variable, too. */
1976 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1977 {
1978 varobj_p child = VEC_index (varobj_p, var->children, i);
1979
1980 if (!child)
1981 continue;
1982 if (!remove_from_parent_p)
1983 child->parent = NULL;
1984 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1985 }
1986 VEC_free (varobj_p, var->children);
1987
1988 /* if we were called to delete only the children we are done here. */
1989 if (only_children_p)
1990 return;
1991
1992 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1993 /* If the name is null, this is a temporary variable, that has not
1994 yet been installed, don't report it, it belongs to the caller... */
1995 if (var->obj_name != NULL)
1996 {
1997 cppush (resultp, xstrdup (var->obj_name));
1998 *delcountp = *delcountp + 1;
1999 }
2000
2001 /* If this variable has a parent, remove it from its parent's list. */
2002 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2003 (as indicated by remove_from_parent_p) we don't bother doing an
2004 expensive list search to find the element to remove when we are
2005 discarding the list afterwards. */
2006 if ((remove_from_parent_p) && (var->parent != NULL))
2007 {
2008 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2009 }
2010
2011 if (var->obj_name != NULL)
2012 uninstall_variable (var);
2013
2014 /* Free memory associated with this variable. */
2015 free_variable (var);
2016 }
2017
2018 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2019 static int
2020 install_variable (struct varobj *var)
2021 {
2022 struct vlist *cv;
2023 struct vlist *newvl;
2024 const char *chp;
2025 unsigned int index = 0;
2026 unsigned int i = 1;
2027
2028 for (chp = var->obj_name; *chp; chp++)
2029 {
2030 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2031 }
2032
2033 cv = *(varobj_table + index);
2034 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2035 cv = cv->next;
2036
2037 if (cv != NULL)
2038 error (_("Duplicate variable object name"));
2039
2040 /* Add varobj to hash table. */
2041 newvl = xmalloc (sizeof (struct vlist));
2042 newvl->next = *(varobj_table + index);
2043 newvl->var = var;
2044 *(varobj_table + index) = newvl;
2045
2046 /* If root, add varobj to root list. */
2047 if (is_root_p (var))
2048 {
2049 /* Add to list of root variables. */
2050 if (rootlist == NULL)
2051 var->root->next = NULL;
2052 else
2053 var->root->next = rootlist;
2054 rootlist = var->root;
2055 }
2056
2057 return 1; /* OK */
2058 }
2059
2060 /* Unistall the object VAR. */
2061 static void
2062 uninstall_variable (struct varobj *var)
2063 {
2064 struct vlist *cv;
2065 struct vlist *prev;
2066 struct varobj_root *cr;
2067 struct varobj_root *prer;
2068 const char *chp;
2069 unsigned int index = 0;
2070 unsigned int i = 1;
2071
2072 /* Remove varobj from hash table. */
2073 for (chp = var->obj_name; *chp; chp++)
2074 {
2075 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2076 }
2077
2078 cv = *(varobj_table + index);
2079 prev = NULL;
2080 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2081 {
2082 prev = cv;
2083 cv = cv->next;
2084 }
2085
2086 if (varobjdebug)
2087 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2088
2089 if (cv == NULL)
2090 {
2091 warning
2092 ("Assertion failed: Could not find variable object \"%s\" to delete",
2093 var->obj_name);
2094 return;
2095 }
2096
2097 if (prev == NULL)
2098 *(varobj_table + index) = cv->next;
2099 else
2100 prev->next = cv->next;
2101
2102 xfree (cv);
2103
2104 /* If root, remove varobj from root list. */
2105 if (is_root_p (var))
2106 {
2107 /* Remove from list of root variables. */
2108 if (rootlist == var->root)
2109 rootlist = var->root->next;
2110 else
2111 {
2112 prer = NULL;
2113 cr = rootlist;
2114 while ((cr != NULL) && (cr->rootvar != var))
2115 {
2116 prer = cr;
2117 cr = cr->next;
2118 }
2119 if (cr == NULL)
2120 {
2121 warning (_("Assertion failed: Could not find "
2122 "varobj \"%s\" in root list"),
2123 var->obj_name);
2124 return;
2125 }
2126 if (prer == NULL)
2127 rootlist = NULL;
2128 else
2129 prer->next = cr->next;
2130 }
2131 }
2132
2133 }
2134
2135 /* Create and install a child of the parent of the given name. */
2136 static struct varobj *
2137 create_child (struct varobj *parent, int index, char *name)
2138 {
2139 return create_child_with_value (parent, index, name,
2140 value_of_child (parent, index));
2141 }
2142
2143 static struct varobj *
2144 create_child_with_value (struct varobj *parent, int index, const char *name,
2145 struct value *value)
2146 {
2147 struct varobj *child;
2148 char *childs_name;
2149
2150 child = new_variable ();
2151
2152 /* Name is allocated by name_of_child. */
2153 /* FIXME: xstrdup should not be here. */
2154 child->name = xstrdup (name);
2155 child->index = index;
2156 child->parent = parent;
2157 child->root = parent->root;
2158 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2159 child->obj_name = childs_name;
2160 install_variable (child);
2161
2162 /* Compute the type of the child. Must do this before
2163 calling install_new_value. */
2164 if (value != NULL)
2165 /* If the child had no evaluation errors, var->value
2166 will be non-NULL and contain a valid type. */
2167 child->type = value_type (value);
2168 else
2169 /* Otherwise, we must compute the type. */
2170 child->type = (*child->root->lang->type_of_child) (child->parent,
2171 child->index);
2172 install_new_value (child, value, 1);
2173
2174 return child;
2175 }
2176 \f
2177
2178 /*
2179 * Miscellaneous utility functions.
2180 */
2181
2182 /* Allocate memory and initialize a new variable. */
2183 static struct varobj *
2184 new_variable (void)
2185 {
2186 struct varobj *var;
2187
2188 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2189 var->name = NULL;
2190 var->path_expr = NULL;
2191 var->obj_name = NULL;
2192 var->index = -1;
2193 var->type = NULL;
2194 var->value = NULL;
2195 var->num_children = -1;
2196 var->parent = NULL;
2197 var->children = NULL;
2198 var->format = 0;
2199 var->root = NULL;
2200 var->updated = 0;
2201 var->print_value = NULL;
2202 var->frozen = 0;
2203 var->not_fetched = 0;
2204 var->children_requested = 0;
2205 var->from = -1;
2206 var->to = -1;
2207 var->constructor = 0;
2208 var->pretty_printer = 0;
2209 var->child_iter = 0;
2210 var->saved_item = 0;
2211
2212 return var;
2213 }
2214
2215 /* Allocate memory and initialize a new root variable. */
2216 static struct varobj *
2217 new_root_variable (void)
2218 {
2219 struct varobj *var = new_variable ();
2220
2221 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2222 var->root->lang = NULL;
2223 var->root->exp = NULL;
2224 var->root->valid_block = NULL;
2225 var->root->frame = null_frame_id;
2226 var->root->floating = 0;
2227 var->root->rootvar = NULL;
2228 var->root->is_valid = 1;
2229
2230 return var;
2231 }
2232
2233 /* Free any allocated memory associated with VAR. */
2234 static void
2235 free_variable (struct varobj *var)
2236 {
2237 #if HAVE_PYTHON
2238 if (var->pretty_printer)
2239 {
2240 struct cleanup *cleanup = varobj_ensure_python_env (var);
2241 Py_XDECREF (var->constructor);
2242 Py_XDECREF (var->pretty_printer);
2243 Py_XDECREF (var->child_iter);
2244 Py_XDECREF (var->saved_item);
2245 do_cleanups (cleanup);
2246 }
2247 #endif
2248
2249 value_free (var->value);
2250
2251 /* Free the expression if this is a root variable. */
2252 if (is_root_p (var))
2253 {
2254 xfree (var->root->exp);
2255 xfree (var->root);
2256 }
2257
2258 xfree (var->name);
2259 xfree (var->obj_name);
2260 xfree (var->print_value);
2261 xfree (var->path_expr);
2262 xfree (var);
2263 }
2264
2265 static void
2266 do_free_variable_cleanup (void *var)
2267 {
2268 free_variable (var);
2269 }
2270
2271 static struct cleanup *
2272 make_cleanup_free_variable (struct varobj *var)
2273 {
2274 return make_cleanup (do_free_variable_cleanup, var);
2275 }
2276
2277 /* This returns the type of the variable. It also skips past typedefs
2278 to return the real type of the variable.
2279
2280 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2281 except within get_target_type and get_type. */
2282 static struct type *
2283 get_type (struct varobj *var)
2284 {
2285 struct type *type;
2286
2287 type = var->type;
2288 if (type != NULL)
2289 type = check_typedef (type);
2290
2291 return type;
2292 }
2293
2294 /* Return the type of the value that's stored in VAR,
2295 or that would have being stored there if the
2296 value were accessible.
2297
2298 This differs from VAR->type in that VAR->type is always
2299 the true type of the expession in the source language.
2300 The return value of this function is the type we're
2301 actually storing in varobj, and using for displaying
2302 the values and for comparing previous and new values.
2303
2304 For example, top-level references are always stripped. */
2305 static struct type *
2306 get_value_type (struct varobj *var)
2307 {
2308 struct type *type;
2309
2310 if (var->value)
2311 type = value_type (var->value);
2312 else
2313 type = var->type;
2314
2315 type = check_typedef (type);
2316
2317 if (TYPE_CODE (type) == TYPE_CODE_REF)
2318 type = get_target_type (type);
2319
2320 type = check_typedef (type);
2321
2322 return type;
2323 }
2324
2325 /* This returns the target type (or NULL) of TYPE, also skipping
2326 past typedefs, just like get_type ().
2327
2328 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2329 except within get_target_type and get_type. */
2330 static struct type *
2331 get_target_type (struct type *type)
2332 {
2333 if (type != NULL)
2334 {
2335 type = TYPE_TARGET_TYPE (type);
2336 if (type != NULL)
2337 type = check_typedef (type);
2338 }
2339
2340 return type;
2341 }
2342
2343 /* What is the default display for this variable? We assume that
2344 everything is "natural". Any exceptions? */
2345 static enum varobj_display_formats
2346 variable_default_display (struct varobj *var)
2347 {
2348 return FORMAT_NATURAL;
2349 }
2350
2351 /* FIXME: The following should be generic for any pointer. */
2352 static void
2353 cppush (struct cpstack **pstack, char *name)
2354 {
2355 struct cpstack *s;
2356
2357 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2358 s->name = name;
2359 s->next = *pstack;
2360 *pstack = s;
2361 }
2362
2363 /* FIXME: The following should be generic for any pointer. */
2364 static char *
2365 cppop (struct cpstack **pstack)
2366 {
2367 struct cpstack *s;
2368 char *v;
2369
2370 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2371 return NULL;
2372
2373 s = *pstack;
2374 v = s->name;
2375 *pstack = (*pstack)->next;
2376 xfree (s);
2377
2378 return v;
2379 }
2380 \f
2381 /*
2382 * Language-dependencies
2383 */
2384
2385 /* Common entry points */
2386
2387 /* Get the language of variable VAR. */
2388 static enum varobj_languages
2389 variable_language (struct varobj *var)
2390 {
2391 enum varobj_languages lang;
2392
2393 switch (var->root->exp->language_defn->la_language)
2394 {
2395 default:
2396 case language_c:
2397 lang = vlang_c;
2398 break;
2399 case language_cplus:
2400 lang = vlang_cplus;
2401 break;
2402 case language_java:
2403 lang = vlang_java;
2404 break;
2405 }
2406
2407 return lang;
2408 }
2409
2410 /* Return the number of children for a given variable.
2411 The result of this function is defined by the language
2412 implementation. The number of children returned by this function
2413 is the number of children that the user will see in the variable
2414 display. */
2415 static int
2416 number_of_children (struct varobj *var)
2417 {
2418 return (*var->root->lang->number_of_children) (var);
2419 }
2420
2421 /* What is the expression for the root varobj VAR? Returns a malloc'd
2422 string. */
2423 static char *
2424 name_of_variable (struct varobj *var)
2425 {
2426 return (*var->root->lang->name_of_variable) (var);
2427 }
2428
2429 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2430 string. */
2431 static char *
2432 name_of_child (struct varobj *var, int index)
2433 {
2434 return (*var->root->lang->name_of_child) (var, index);
2435 }
2436
2437 /* What is the ``struct value *'' of the root variable VAR?
2438 For floating variable object, evaluation can get us a value
2439 of different type from what is stored in varobj already. In
2440 that case:
2441 - *type_changed will be set to 1
2442 - old varobj will be freed, and new one will be
2443 created, with the same name.
2444 - *var_handle will be set to the new varobj
2445 Otherwise, *type_changed will be set to 0. */
2446 static struct value *
2447 value_of_root (struct varobj **var_handle, int *type_changed)
2448 {
2449 struct varobj *var;
2450
2451 if (var_handle == NULL)
2452 return NULL;
2453
2454 var = *var_handle;
2455
2456 /* This should really be an exception, since this should
2457 only get called with a root variable. */
2458
2459 if (!is_root_p (var))
2460 return NULL;
2461
2462 if (var->root->floating)
2463 {
2464 struct varobj *tmp_var;
2465 char *old_type, *new_type;
2466
2467 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2468 USE_SELECTED_FRAME);
2469 if (tmp_var == NULL)
2470 {
2471 return NULL;
2472 }
2473 old_type = varobj_get_type (var);
2474 new_type = varobj_get_type (tmp_var);
2475 if (strcmp (old_type, new_type) == 0)
2476 {
2477 /* The expression presently stored inside var->root->exp
2478 remembers the locations of local variables relatively to
2479 the frame where the expression was created (in DWARF location
2480 button, for example). Naturally, those locations are not
2481 correct in other frames, so update the expression. */
2482
2483 struct expression *tmp_exp = var->root->exp;
2484
2485 var->root->exp = tmp_var->root->exp;
2486 tmp_var->root->exp = tmp_exp;
2487
2488 varobj_delete (tmp_var, NULL, 0);
2489 *type_changed = 0;
2490 }
2491 else
2492 {
2493 tmp_var->obj_name = xstrdup (var->obj_name);
2494 tmp_var->from = var->from;
2495 tmp_var->to = var->to;
2496 varobj_delete (var, NULL, 0);
2497
2498 install_variable (tmp_var);
2499 *var_handle = tmp_var;
2500 var = *var_handle;
2501 *type_changed = 1;
2502 }
2503 xfree (old_type);
2504 xfree (new_type);
2505 }
2506 else
2507 {
2508 *type_changed = 0;
2509 }
2510
2511 return (*var->root->lang->value_of_root) (var_handle);
2512 }
2513
2514 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2515 static struct value *
2516 value_of_child (struct varobj *parent, int index)
2517 {
2518 struct value *value;
2519
2520 value = (*parent->root->lang->value_of_child) (parent, index);
2521
2522 return value;
2523 }
2524
2525 /* GDB already has a command called "value_of_variable". Sigh. */
2526 static char *
2527 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2528 {
2529 if (var->root->is_valid)
2530 {
2531 if (var->pretty_printer)
2532 return value_get_print_value (var->value, var->format, var);
2533 return (*var->root->lang->value_of_variable) (var, format);
2534 }
2535 else
2536 return NULL;
2537 }
2538
2539 static char *
2540 value_get_print_value (struct value *value, enum varobj_display_formats format,
2541 struct varobj *var)
2542 {
2543 struct ui_file *stb;
2544 struct cleanup *old_chain;
2545 gdb_byte *thevalue = NULL;
2546 struct value_print_options opts;
2547 struct type *type = NULL;
2548 long len = 0;
2549 char *encoding = NULL;
2550 struct gdbarch *gdbarch = NULL;
2551 /* Initialize it just to avoid a GCC false warning. */
2552 CORE_ADDR str_addr = 0;
2553 int string_print = 0;
2554
2555 if (value == NULL)
2556 return NULL;
2557
2558 stb = mem_fileopen ();
2559 old_chain = make_cleanup_ui_file_delete (stb);
2560
2561 gdbarch = get_type_arch (value_type (value));
2562 #if HAVE_PYTHON
2563 {
2564 PyObject *value_formatter = var->pretty_printer;
2565
2566 varobj_ensure_python_env (var);
2567
2568 if (value_formatter)
2569 {
2570 /* First check to see if we have any children at all. If so,
2571 we simply return {...}. */
2572 if (dynamic_varobj_has_child_method (var))
2573 {
2574 do_cleanups (old_chain);
2575 return xstrdup ("{...}");
2576 }
2577
2578 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2579 {
2580 char *hint;
2581 struct value *replacement;
2582 PyObject *output = NULL;
2583
2584 hint = gdbpy_get_display_hint (value_formatter);
2585 if (hint)
2586 {
2587 if (!strcmp (hint, "string"))
2588 string_print = 1;
2589 xfree (hint);
2590 }
2591
2592 output = apply_varobj_pretty_printer (value_formatter,
2593 &replacement,
2594 stb);
2595 if (output)
2596 {
2597 make_cleanup_py_decref (output);
2598
2599 if (gdbpy_is_lazy_string (output))
2600 {
2601 gdbpy_extract_lazy_string (output, &str_addr, &type,
2602 &len, &encoding);
2603 make_cleanup (free_current_contents, &encoding);
2604 string_print = 1;
2605 }
2606 else
2607 {
2608 PyObject *py_str
2609 = python_string_to_target_python_string (output);
2610
2611 if (py_str)
2612 {
2613 char *s = PyString_AsString (py_str);
2614
2615 len = PyString_Size (py_str);
2616 thevalue = xmemdup (s, len + 1, len + 1);
2617 type = builtin_type (gdbarch)->builtin_char;
2618 Py_DECREF (py_str);
2619
2620 if (!string_print)
2621 {
2622 do_cleanups (old_chain);
2623 return thevalue;
2624 }
2625
2626 make_cleanup (xfree, thevalue);
2627 }
2628 else
2629 gdbpy_print_stack ();
2630 }
2631 }
2632 if (replacement)
2633 value = replacement;
2634 }
2635 }
2636 }
2637 #endif
2638
2639 get_formatted_print_options (&opts, format_code[(int) format]);
2640 opts.deref_ref = 0;
2641 opts.raw = 1;
2642 if (thevalue)
2643 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2644 else if (string_print)
2645 val_print_string (type, encoding, str_addr, len, stb, &opts);
2646 else
2647 common_val_print (value, stb, 0, &opts, current_language);
2648 thevalue = ui_file_xstrdup (stb, NULL);
2649
2650 do_cleanups (old_chain);
2651 return thevalue;
2652 }
2653
2654 int
2655 varobj_editable_p (struct varobj *var)
2656 {
2657 struct type *type;
2658
2659 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2660 return 0;
2661
2662 type = get_value_type (var);
2663
2664 switch (TYPE_CODE (type))
2665 {
2666 case TYPE_CODE_STRUCT:
2667 case TYPE_CODE_UNION:
2668 case TYPE_CODE_ARRAY:
2669 case TYPE_CODE_FUNC:
2670 case TYPE_CODE_METHOD:
2671 return 0;
2672 break;
2673
2674 default:
2675 return 1;
2676 break;
2677 }
2678 }
2679
2680 /* Return non-zero if changes in value of VAR
2681 must be detected and reported by -var-update.
2682 Return zero is -var-update should never report
2683 changes of such values. This makes sense for structures
2684 (since the changes in children values will be reported separately),
2685 or for artifical objects (like 'public' pseudo-field in C++).
2686
2687 Return value of 0 means that gdb need not call value_fetch_lazy
2688 for the value of this variable object. */
2689 static int
2690 varobj_value_is_changeable_p (struct varobj *var)
2691 {
2692 int r;
2693 struct type *type;
2694
2695 if (CPLUS_FAKE_CHILD (var))
2696 return 0;
2697
2698 type = get_value_type (var);
2699
2700 switch (TYPE_CODE (type))
2701 {
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2705 r = 0;
2706 break;
2707
2708 default:
2709 r = 1;
2710 }
2711
2712 return r;
2713 }
2714
2715 /* Return 1 if that varobj is floating, that is is always evaluated in the
2716 selected frame, and not bound to thread/frame. Such variable objects
2717 are created using '@' as frame specifier to -var-create. */
2718 int
2719 varobj_floating_p (struct varobj *var)
2720 {
2721 return var->root->floating;
2722 }
2723
2724 /* Given the value and the type of a variable object,
2725 adjust the value and type to those necessary
2726 for getting children of the variable object.
2727 This includes dereferencing top-level references
2728 to all types and dereferencing pointers to
2729 structures.
2730
2731 Both TYPE and *TYPE should be non-null. VALUE
2732 can be null if we want to only translate type.
2733 *VALUE can be null as well -- if the parent
2734 value is not known.
2735
2736 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2737 depending on whether pointer was dereferenced
2738 in this function. */
2739 static void
2740 adjust_value_for_child_access (struct value **value,
2741 struct type **type,
2742 int *was_ptr)
2743 {
2744 gdb_assert (type && *type);
2745
2746 if (was_ptr)
2747 *was_ptr = 0;
2748
2749 *type = check_typedef (*type);
2750
2751 /* The type of value stored in varobj, that is passed
2752 to us, is already supposed to be
2753 reference-stripped. */
2754
2755 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2756
2757 /* Pointers to structures are treated just like
2758 structures when accessing children. Don't
2759 dererences pointers to other types. */
2760 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2761 {
2762 struct type *target_type = get_target_type (*type);
2763 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2765 {
2766 if (value && *value)
2767 {
2768 int success = gdb_value_ind (*value, value);
2769
2770 if (!success)
2771 *value = NULL;
2772 }
2773 *type = target_type;
2774 if (was_ptr)
2775 *was_ptr = 1;
2776 }
2777 }
2778
2779 /* The 'get_target_type' function calls check_typedef on
2780 result, so we can immediately check type code. No
2781 need to call check_typedef here. */
2782 }
2783
2784 /* C */
2785 static int
2786 c_number_of_children (struct varobj *var)
2787 {
2788 struct type *type = get_value_type (var);
2789 int children = 0;
2790 struct type *target;
2791
2792 adjust_value_for_child_access (NULL, &type, NULL);
2793 target = get_target_type (type);
2794
2795 switch (TYPE_CODE (type))
2796 {
2797 case TYPE_CODE_ARRAY:
2798 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2799 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2800 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2801 else
2802 /* If we don't know how many elements there are, don't display
2803 any. */
2804 children = 0;
2805 break;
2806
2807 case TYPE_CODE_STRUCT:
2808 case TYPE_CODE_UNION:
2809 children = TYPE_NFIELDS (type);
2810 break;
2811
2812 case TYPE_CODE_PTR:
2813 /* The type here is a pointer to non-struct. Typically, pointers
2814 have one child, except for function ptrs, which have no children,
2815 and except for void*, as we don't know what to show.
2816
2817 We can show char* so we allow it to be dereferenced. If you decide
2818 to test for it, please mind that a little magic is necessary to
2819 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2820 TYPE_NAME == "char". */
2821 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2822 || TYPE_CODE (target) == TYPE_CODE_VOID)
2823 children = 0;
2824 else
2825 children = 1;
2826 break;
2827
2828 default:
2829 /* Other types have no children. */
2830 break;
2831 }
2832
2833 return children;
2834 }
2835
2836 static char *
2837 c_name_of_variable (struct varobj *parent)
2838 {
2839 return xstrdup (parent->name);
2840 }
2841
2842 /* Return the value of element TYPE_INDEX of a structure
2843 value VALUE. VALUE's type should be a structure,
2844 or union, or a typedef to struct/union.
2845
2846 Returns NULL if getting the value fails. Never throws. */
2847 static struct value *
2848 value_struct_element_index (struct value *value, int type_index)
2849 {
2850 struct value *result = NULL;
2851 volatile struct gdb_exception e;
2852 struct type *type = value_type (value);
2853
2854 type = check_typedef (type);
2855
2856 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2857 || TYPE_CODE (type) == TYPE_CODE_UNION);
2858
2859 TRY_CATCH (e, RETURN_MASK_ERROR)
2860 {
2861 if (field_is_static (&TYPE_FIELD (type, type_index)))
2862 result = value_static_field (type, type_index);
2863 else
2864 result = value_primitive_field (value, 0, type_index, type);
2865 }
2866 if (e.reason < 0)
2867 {
2868 return NULL;
2869 }
2870 else
2871 {
2872 return result;
2873 }
2874 }
2875
2876 /* Obtain the information about child INDEX of the variable
2877 object PARENT.
2878 If CNAME is not null, sets *CNAME to the name of the child relative
2879 to the parent.
2880 If CVALUE is not null, sets *CVALUE to the value of the child.
2881 If CTYPE is not null, sets *CTYPE to the type of the child.
2882
2883 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2884 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2885 to NULL. */
2886 static void
2887 c_describe_child (struct varobj *parent, int index,
2888 char **cname, struct value **cvalue, struct type **ctype,
2889 char **cfull_expression)
2890 {
2891 struct value *value = parent->value;
2892 struct type *type = get_value_type (parent);
2893 char *parent_expression = NULL;
2894 int was_ptr;
2895
2896 if (cname)
2897 *cname = NULL;
2898 if (cvalue)
2899 *cvalue = NULL;
2900 if (ctype)
2901 *ctype = NULL;
2902 if (cfull_expression)
2903 {
2904 *cfull_expression = NULL;
2905 parent_expression = varobj_get_path_expr (parent);
2906 }
2907 adjust_value_for_child_access (&value, &type, &was_ptr);
2908
2909 switch (TYPE_CODE (type))
2910 {
2911 case TYPE_CODE_ARRAY:
2912 if (cname)
2913 *cname
2914 = xstrdup (int_string (index
2915 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2916 10, 1, 0, 0));
2917
2918 if (cvalue && value)
2919 {
2920 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2921
2922 gdb_value_subscript (value, real_index, cvalue);
2923 }
2924
2925 if (ctype)
2926 *ctype = get_target_type (type);
2927
2928 if (cfull_expression)
2929 *cfull_expression =
2930 xstrprintf ("(%s)[%s]", parent_expression,
2931 int_string (index
2932 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2933 10, 1, 0, 0));
2934
2935
2936 break;
2937
2938 case TYPE_CODE_STRUCT:
2939 case TYPE_CODE_UNION:
2940 if (cname)
2941 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2942
2943 if (cvalue && value)
2944 {
2945 /* For C, varobj index is the same as type index. */
2946 *cvalue = value_struct_element_index (value, index);
2947 }
2948
2949 if (ctype)
2950 *ctype = TYPE_FIELD_TYPE (type, index);
2951
2952 if (cfull_expression)
2953 {
2954 char *join = was_ptr ? "->" : ".";
2955
2956 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2957 TYPE_FIELD_NAME (type, index));
2958 }
2959
2960 break;
2961
2962 case TYPE_CODE_PTR:
2963 if (cname)
2964 *cname = xstrprintf ("*%s", parent->name);
2965
2966 if (cvalue && value)
2967 {
2968 int success = gdb_value_ind (value, cvalue);
2969
2970 if (!success)
2971 *cvalue = NULL;
2972 }
2973
2974 /* Don't use get_target_type because it calls
2975 check_typedef and here, we want to show the true
2976 declared type of the variable. */
2977 if (ctype)
2978 *ctype = TYPE_TARGET_TYPE (type);
2979
2980 if (cfull_expression)
2981 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2982
2983 break;
2984
2985 default:
2986 /* This should not happen. */
2987 if (cname)
2988 *cname = xstrdup ("???");
2989 if (cfull_expression)
2990 *cfull_expression = xstrdup ("???");
2991 /* Don't set value and type, we don't know then. */
2992 }
2993 }
2994
2995 static char *
2996 c_name_of_child (struct varobj *parent, int index)
2997 {
2998 char *name;
2999
3000 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3001 return name;
3002 }
3003
3004 static char *
3005 c_path_expr_of_child (struct varobj *child)
3006 {
3007 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3008 &child->path_expr);
3009 return child->path_expr;
3010 }
3011
3012 /* If frame associated with VAR can be found, switch
3013 to it and return 1. Otherwise, return 0. */
3014 static int
3015 check_scope (struct varobj *var)
3016 {
3017 struct frame_info *fi;
3018 int scope;
3019
3020 fi = frame_find_by_id (var->root->frame);
3021 scope = fi != NULL;
3022
3023 if (fi)
3024 {
3025 CORE_ADDR pc = get_frame_pc (fi);
3026
3027 if (pc < BLOCK_START (var->root->valid_block) ||
3028 pc >= BLOCK_END (var->root->valid_block))
3029 scope = 0;
3030 else
3031 select_frame (fi);
3032 }
3033 return scope;
3034 }
3035
3036 static struct value *
3037 c_value_of_root (struct varobj **var_handle)
3038 {
3039 struct value *new_val = NULL;
3040 struct varobj *var = *var_handle;
3041 int within_scope = 0;
3042 struct cleanup *back_to;
3043
3044 /* Only root variables can be updated... */
3045 if (!is_root_p (var))
3046 /* Not a root var. */
3047 return NULL;
3048
3049 back_to = make_cleanup_restore_current_thread ();
3050
3051 /* Determine whether the variable is still around. */
3052 if (var->root->valid_block == NULL || var->root->floating)
3053 within_scope = 1;
3054 else if (var->root->thread_id == 0)
3055 {
3056 /* The program was single-threaded when the variable object was
3057 created. Technically, it's possible that the program became
3058 multi-threaded since then, but we don't support such
3059 scenario yet. */
3060 within_scope = check_scope (var);
3061 }
3062 else
3063 {
3064 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3065 if (in_thread_list (ptid))
3066 {
3067 switch_to_thread (ptid);
3068 within_scope = check_scope (var);
3069 }
3070 }
3071
3072 if (within_scope)
3073 {
3074 /* We need to catch errors here, because if evaluate
3075 expression fails we want to just return NULL. */
3076 gdb_evaluate_expression (var->root->exp, &new_val);
3077 return new_val;
3078 }
3079
3080 do_cleanups (back_to);
3081
3082 return NULL;
3083 }
3084
3085 static struct value *
3086 c_value_of_child (struct varobj *parent, int index)
3087 {
3088 struct value *value = NULL;
3089
3090 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3091 return value;
3092 }
3093
3094 static struct type *
3095 c_type_of_child (struct varobj *parent, int index)
3096 {
3097 struct type *type = NULL;
3098
3099 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3100 return type;
3101 }
3102
3103 static char *
3104 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3105 {
3106 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3107 it will print out its children instead of "{...}". So we need to
3108 catch that case explicitly. */
3109 struct type *type = get_type (var);
3110
3111 /* If we have a custom formatter, return whatever string it has
3112 produced. */
3113 if (var->pretty_printer && var->print_value)
3114 return xstrdup (var->print_value);
3115
3116 /* Strip top-level references. */
3117 while (TYPE_CODE (type) == TYPE_CODE_REF)
3118 type = check_typedef (TYPE_TARGET_TYPE (type));
3119
3120 switch (TYPE_CODE (type))
3121 {
3122 case TYPE_CODE_STRUCT:
3123 case TYPE_CODE_UNION:
3124 return xstrdup ("{...}");
3125 /* break; */
3126
3127 case TYPE_CODE_ARRAY:
3128 {
3129 char *number;
3130
3131 number = xstrprintf ("[%d]", var->num_children);
3132 return (number);
3133 }
3134 /* break; */
3135
3136 default:
3137 {
3138 if (var->value == NULL)
3139 {
3140 /* This can happen if we attempt to get the value of a struct
3141 member when the parent is an invalid pointer. This is an
3142 error condition, so we should tell the caller. */
3143 return NULL;
3144 }
3145 else
3146 {
3147 if (var->not_fetched && value_lazy (var->value))
3148 /* Frozen variable and no value yet. We don't
3149 implicitly fetch the value. MI response will
3150 use empty string for the value, which is OK. */
3151 return NULL;
3152
3153 gdb_assert (varobj_value_is_changeable_p (var));
3154 gdb_assert (!value_lazy (var->value));
3155
3156 /* If the specified format is the current one,
3157 we can reuse print_value. */
3158 if (format == var->format)
3159 return xstrdup (var->print_value);
3160 else
3161 return value_get_print_value (var->value, format, var);
3162 }
3163 }
3164 }
3165 }
3166 \f
3167
3168 /* C++ */
3169
3170 static int
3171 cplus_number_of_children (struct varobj *var)
3172 {
3173 struct type *type;
3174 int children, dont_know;
3175
3176 dont_know = 1;
3177 children = 0;
3178
3179 if (!CPLUS_FAKE_CHILD (var))
3180 {
3181 type = get_value_type (var);
3182 adjust_value_for_child_access (NULL, &type, NULL);
3183
3184 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3185 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3186 {
3187 int kids[3];
3188
3189 cplus_class_num_children (type, kids);
3190 if (kids[v_public] != 0)
3191 children++;
3192 if (kids[v_private] != 0)
3193 children++;
3194 if (kids[v_protected] != 0)
3195 children++;
3196
3197 /* Add any baseclasses. */
3198 children += TYPE_N_BASECLASSES (type);
3199 dont_know = 0;
3200
3201 /* FIXME: save children in var. */
3202 }
3203 }
3204 else
3205 {
3206 int kids[3];
3207
3208 type = get_value_type (var->parent);
3209 adjust_value_for_child_access (NULL, &type, NULL);
3210
3211 cplus_class_num_children (type, kids);
3212 if (strcmp (var->name, "public") == 0)
3213 children = kids[v_public];
3214 else if (strcmp (var->name, "private") == 0)
3215 children = kids[v_private];
3216 else
3217 children = kids[v_protected];
3218 dont_know = 0;
3219 }
3220
3221 if (dont_know)
3222 children = c_number_of_children (var);
3223
3224 return children;
3225 }
3226
3227 /* Compute # of public, private, and protected variables in this class.
3228 That means we need to descend into all baseclasses and find out
3229 how many are there, too. */
3230 static void
3231 cplus_class_num_children (struct type *type, int children[3])
3232 {
3233 int i, vptr_fieldno;
3234 struct type *basetype = NULL;
3235
3236 children[v_public] = 0;
3237 children[v_private] = 0;
3238 children[v_protected] = 0;
3239
3240 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3241 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3242 {
3243 /* If we have a virtual table pointer, omit it. Even if virtual
3244 table pointers are not specifically marked in the debug info,
3245 they should be artificial. */
3246 if ((type == basetype && i == vptr_fieldno)
3247 || TYPE_FIELD_ARTIFICIAL (type, i))
3248 continue;
3249
3250 if (TYPE_FIELD_PROTECTED (type, i))
3251 children[v_protected]++;
3252 else if (TYPE_FIELD_PRIVATE (type, i))
3253 children[v_private]++;
3254 else
3255 children[v_public]++;
3256 }
3257 }
3258
3259 static char *
3260 cplus_name_of_variable (struct varobj *parent)
3261 {
3262 return c_name_of_variable (parent);
3263 }
3264
3265 enum accessibility { private_field, protected_field, public_field };
3266
3267 /* Check if field INDEX of TYPE has the specified accessibility.
3268 Return 0 if so and 1 otherwise. */
3269 static int
3270 match_accessibility (struct type *type, int index, enum accessibility acc)
3271 {
3272 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3273 return 1;
3274 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3275 return 1;
3276 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3277 && !TYPE_FIELD_PROTECTED (type, index))
3278 return 1;
3279 else
3280 return 0;
3281 }
3282
3283 static void
3284 cplus_describe_child (struct varobj *parent, int index,
3285 char **cname, struct value **cvalue, struct type **ctype,
3286 char **cfull_expression)
3287 {
3288 struct value *value;
3289 struct type *type;
3290 int was_ptr;
3291 char *parent_expression = NULL;
3292
3293 if (cname)
3294 *cname = NULL;
3295 if (cvalue)
3296 *cvalue = NULL;
3297 if (ctype)
3298 *ctype = NULL;
3299 if (cfull_expression)
3300 *cfull_expression = NULL;
3301
3302 if (CPLUS_FAKE_CHILD (parent))
3303 {
3304 value = parent->parent->value;
3305 type = get_value_type (parent->parent);
3306 if (cfull_expression)
3307 parent_expression = varobj_get_path_expr (parent->parent);
3308 }
3309 else
3310 {
3311 value = parent->value;
3312 type = get_value_type (parent);
3313 if (cfull_expression)
3314 parent_expression = varobj_get_path_expr (parent);
3315 }
3316
3317 adjust_value_for_child_access (&value, &type, &was_ptr);
3318
3319 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3320 || TYPE_CODE (type) == TYPE_CODE_UNION)
3321 {
3322 char *join = was_ptr ? "->" : ".";
3323
3324 if (CPLUS_FAKE_CHILD (parent))
3325 {
3326 /* The fields of the class type are ordered as they
3327 appear in the class. We are given an index for a
3328 particular access control type ("public","protected",
3329 or "private"). We must skip over fields that don't
3330 have the access control we are looking for to properly
3331 find the indexed field. */
3332 int type_index = TYPE_N_BASECLASSES (type);
3333 enum accessibility acc = public_field;
3334 int vptr_fieldno;
3335 struct type *basetype = NULL;
3336
3337 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3338 if (strcmp (parent->name, "private") == 0)
3339 acc = private_field;
3340 else if (strcmp (parent->name, "protected") == 0)
3341 acc = protected_field;
3342
3343 while (index >= 0)
3344 {
3345 if ((type == basetype && type_index == vptr_fieldno)
3346 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3347 ; /* ignore vptr */
3348 else if (match_accessibility (type, type_index, acc))
3349 --index;
3350 ++type_index;
3351 }
3352 --type_index;
3353
3354 if (cname)
3355 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3356
3357 if (cvalue && value)
3358 *cvalue = value_struct_element_index (value, type_index);
3359
3360 if (ctype)
3361 *ctype = TYPE_FIELD_TYPE (type, type_index);
3362
3363 if (cfull_expression)
3364 *cfull_expression
3365 = xstrprintf ("((%s)%s%s)", parent_expression,
3366 join,
3367 TYPE_FIELD_NAME (type, type_index));
3368 }
3369 else if (index < TYPE_N_BASECLASSES (type))
3370 {
3371 /* This is a baseclass. */
3372 if (cname)
3373 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3374
3375 if (cvalue && value)
3376 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3377
3378 if (ctype)
3379 {
3380 *ctype = TYPE_FIELD_TYPE (type, index);
3381 }
3382
3383 if (cfull_expression)
3384 {
3385 char *ptr = was_ptr ? "*" : "";
3386
3387 /* Cast the parent to the base' type. Note that in gdb,
3388 expression like
3389 (Base1)d
3390 will create an lvalue, for all appearences, so we don't
3391 need to use more fancy:
3392 *(Base1*)(&d)
3393 construct. */
3394 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3395 ptr,
3396 TYPE_FIELD_NAME (type, index),
3397 ptr,
3398 parent_expression);
3399 }
3400 }
3401 else
3402 {
3403 char *access = NULL;
3404 int children[3];
3405
3406 cplus_class_num_children (type, children);
3407
3408 /* Everything beyond the baseclasses can
3409 only be "public", "private", or "protected"
3410
3411 The special "fake" children are always output by varobj in
3412 this order. So if INDEX == 2, it MUST be "protected". */
3413 index -= TYPE_N_BASECLASSES (type);
3414 switch (index)
3415 {
3416 case 0:
3417 if (children[v_public] > 0)
3418 access = "public";
3419 else if (children[v_private] > 0)
3420 access = "private";
3421 else
3422 access = "protected";
3423 break;
3424 case 1:
3425 if (children[v_public] > 0)
3426 {
3427 if (children[v_private] > 0)
3428 access = "private";
3429 else
3430 access = "protected";
3431 }
3432 else if (children[v_private] > 0)
3433 access = "protected";
3434 break;
3435 case 2:
3436 /* Must be protected. */
3437 access = "protected";
3438 break;
3439 default:
3440 /* error! */
3441 break;
3442 }
3443
3444 gdb_assert (access);
3445 if (cname)
3446 *cname = xstrdup (access);
3447
3448 /* Value and type and full expression are null here. */
3449 }
3450 }
3451 else
3452 {
3453 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3454 }
3455 }
3456
3457 static char *
3458 cplus_name_of_child (struct varobj *parent, int index)
3459 {
3460 char *name = NULL;
3461
3462 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3463 return name;
3464 }
3465
3466 static char *
3467 cplus_path_expr_of_child (struct varobj *child)
3468 {
3469 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3470 &child->path_expr);
3471 return child->path_expr;
3472 }
3473
3474 static struct value *
3475 cplus_value_of_root (struct varobj **var_handle)
3476 {
3477 return c_value_of_root (var_handle);
3478 }
3479
3480 static struct value *
3481 cplus_value_of_child (struct varobj *parent, int index)
3482 {
3483 struct value *value = NULL;
3484
3485 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3486 return value;
3487 }
3488
3489 static struct type *
3490 cplus_type_of_child (struct varobj *parent, int index)
3491 {
3492 struct type *type = NULL;
3493
3494 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3495 return type;
3496 }
3497
3498 static char *
3499 cplus_value_of_variable (struct varobj *var,
3500 enum varobj_display_formats format)
3501 {
3502
3503 /* If we have one of our special types, don't print out
3504 any value. */
3505 if (CPLUS_FAKE_CHILD (var))
3506 return xstrdup ("");
3507
3508 return c_value_of_variable (var, format);
3509 }
3510 \f
3511 /* Java */
3512
3513 static int
3514 java_number_of_children (struct varobj *var)
3515 {
3516 return cplus_number_of_children (var);
3517 }
3518
3519 static char *
3520 java_name_of_variable (struct varobj *parent)
3521 {
3522 char *p, *name;
3523
3524 name = cplus_name_of_variable (parent);
3525 /* If the name has "-" in it, it is because we
3526 needed to escape periods in the name... */
3527 p = name;
3528
3529 while (*p != '\000')
3530 {
3531 if (*p == '-')
3532 *p = '.';
3533 p++;
3534 }
3535
3536 return name;
3537 }
3538
3539 static char *
3540 java_name_of_child (struct varobj *parent, int index)
3541 {
3542 char *name, *p;
3543
3544 name = cplus_name_of_child (parent, index);
3545 /* Escape any periods in the name... */
3546 p = name;
3547
3548 while (*p != '\000')
3549 {
3550 if (*p == '.')
3551 *p = '-';
3552 p++;
3553 }
3554
3555 return name;
3556 }
3557
3558 static char *
3559 java_path_expr_of_child (struct varobj *child)
3560 {
3561 return NULL;
3562 }
3563
3564 static struct value *
3565 java_value_of_root (struct varobj **var_handle)
3566 {
3567 return cplus_value_of_root (var_handle);
3568 }
3569
3570 static struct value *
3571 java_value_of_child (struct varobj *parent, int index)
3572 {
3573 return cplus_value_of_child (parent, index);
3574 }
3575
3576 static struct type *
3577 java_type_of_child (struct varobj *parent, int index)
3578 {
3579 return cplus_type_of_child (parent, index);
3580 }
3581
3582 static char *
3583 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3584 {
3585 return cplus_value_of_variable (var, format);
3586 }
3587
3588 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3589 with an arbitrary caller supplied DATA pointer. */
3590
3591 void
3592 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3593 {
3594 struct varobj_root *var_root, *var_root_next;
3595
3596 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3597
3598 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3599 {
3600 var_root_next = var_root->next;
3601
3602 (*func) (var_root->rootvar, data);
3603 }
3604 }
3605 \f
3606 extern void _initialize_varobj (void);
3607 void
3608 _initialize_varobj (void)
3609 {
3610 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3611
3612 varobj_table = xmalloc (sizeof_table);
3613 memset (varobj_table, 0, sizeof_table);
3614
3615 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3616 &varobjdebug,
3617 _("Set varobj debugging."),
3618 _("Show varobj debugging."),
3619 _("When non-zero, varobj debugging is enabled."),
3620 NULL, show_varobjdebug,
3621 &setlist, &showlist);
3622 }
3623
3624 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3625 defined on globals. It is a helper for varobj_invalidate. */
3626
3627 static void
3628 varobj_invalidate_iter (struct varobj *var, void *unused)
3629 {
3630 /* Floating varobjs are reparsed on each stop, so we don't care if the
3631 presently parsed expression refers to something that's gone. */
3632 if (var->root->floating)
3633 return;
3634
3635 /* global var must be re-evaluated. */
3636 if (var->root->valid_block == NULL)
3637 {
3638 struct varobj *tmp_var;
3639
3640 /* Try to create a varobj with same expression. If we succeed
3641 replace the old varobj, otherwise invalidate it. */
3642 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3643 USE_CURRENT_FRAME);
3644 if (tmp_var != NULL)
3645 {
3646 tmp_var->obj_name = xstrdup (var->obj_name);
3647 varobj_delete (var, NULL, 0);
3648 install_variable (tmp_var);
3649 }
3650 else
3651 var->root->is_valid = 0;
3652 }
3653 else /* locals must be invalidated. */
3654 var->root->is_valid = 0;
3655 }
3656
3657 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3658 are defined on globals.
3659 Invalidated varobjs will be always printed in_scope="invalid". */
3660
3661 void
3662 varobj_invalidate (void)
3663 {
3664 all_root_varobjs (varobj_invalidate_iter, NULL);
3665 }
This page took 0.106839 seconds and 4 git commands to generate.