523f74613bfdbb787ecd17c86a7a0f6a50642922
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #include "python/py-ref.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* Non-zero if we want to see trace of varobj level stuff. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104
105 /* Next root variable */
106 struct varobj_root *next = NULL;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 bool children_requested = false;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter = NULL;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, bool);
153
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155
156 static bool install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static enum varobj_display_formats variable_default_display (struct varobj *);
169
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
172
173 static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
175
176 /* Language-specific routines. */
177
178 static int number_of_children (const struct varobj *);
179
180 static std::string name_of_variable (const struct varobj *);
181
182 static std::string name_of_child (struct varobj *, int);
183
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
185
186 static struct value *value_of_child (const struct varobj *parent, int index);
187
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
190
191 static bool is_root_p (const struct varobj *var);
192
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
195
196 /* Private data */
197
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
203
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
207
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
210
211 \f
212
213 /* API Implementation */
214 static bool
215 is_root_p (const struct varobj *var)
216 {
217 return (var->root->rootvar == var);
218 }
219
220 #ifdef HAVE_PYTHON
221
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225 {
226 }
227
228 #endif
229
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 {
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
244 {
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
256 return frame;
257 }
258
259 return NULL;
260 }
261
262 /* Creates a varobj (not its children). */
263
264 struct varobj *
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 {
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270
271 if (expression != NULL)
272 {
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
276 const char *p;
277 struct value *value = NULL;
278 CORE_ADDR pc;
279
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
298 else
299 fi = NULL;
300
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
317 TRY
318 {
319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
320 }
321
322 CATCH (except, RETURN_MASK_ERROR)
323 {
324 return NULL;
325 }
326 END_CATCH
327
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 {
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
335 return NULL;
336 }
337
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block = innermost_block.block ();
340 var->name = expression;
341 /* For a root var, the name and the expr are the same. */
342 var->path_expr = expression;
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
347 Since select_frame is so benign, just call it for all cases. */
348 if (var->root->valid_block)
349 {
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
357 var->root->frame = get_frame_id (fi);
358 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
359 old_id = get_frame_id (get_selected_frame (NULL));
360 select_frame (fi);
361 }
362
363 /* We definitely need to catch errors here.
364 If evaluate_expression succeeds we got the value we wanted.
365 But if it fails, we still go on with a call to evaluate_type(). */
366 TRY
367 {
368 value = evaluate_expression (var->root->exp.get ());
369 }
370 CATCH (except, RETURN_MASK_ERROR)
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
375
376 var->type = value_type (type_only_value);
377 }
378 END_CATCH
379
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
388
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
391
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
393
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
396
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
400 }
401
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
404
405 if ((var != NULL) && (objname != NULL))
406 {
407 var->obj_name = objname;
408
409 /* If a varobj name is duplicated, the install will fail so
410 we must cleanup. */
411 if (!install_variable (var.get ()))
412 return NULL;
413 }
414
415 return var.release ();
416 }
417
418 /* Generates an unique name that can be used for a varobj. */
419
420 std::string
421 varobj_gen_name (void)
422 {
423 static int id = 0;
424
425 /* Generate a name for this object. */
426 id++;
427 return string_printf ("var%d", id);
428 }
429
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
432
433 struct varobj *
434 varobj_get_handle (const char *objname)
435 {
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
448 cv = cv->next;
449
450 if (cv == NULL)
451 error (_("Variable object not found"));
452
453 return cv->var;
454 }
455
456 /* Given the handle, return the name of the object. */
457
458 const char *
459 varobj_get_objname (const struct varobj *var)
460 {
461 return var->obj_name.c_str ();
462 }
463
464 /* Given the handle, return the expression represented by the
465 object. */
466
467 std::string
468 varobj_get_expression (const struct varobj *var)
469 {
470 return name_of_variable (var);
471 }
472
473 /* See varobj.h. */
474
475 int
476 varobj_delete (struct varobj *var, bool only_children)
477 {
478 return delete_variable (var, only_children);
479 }
480
481 #if HAVE_PYTHON
482
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485 static PyObject *
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
487 {
488 PyObject *val_obj = NULL;
489 PyObject *printer;
490
491 val_obj = value_to_value_object (value);
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
498 }
499
500 #endif
501
502 /* Set/Get variable object display format. */
503
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507 {
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
523 if (varobj_value_is_changeable_p (var)
524 && var->value && !value_lazy (var->value))
525 {
526 var->print_value = varobj_value_get_print_value (var->value,
527 var->format, var);
528 }
529
530 return var->format;
531 }
532
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
535 {
536 return var->format;
537 }
538
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
541 {
542 gdb::unique_xmalloc_ptr<char> result;
543
544 #if HAVE_PYTHON
545 if (!gdb_python_initialized)
546 return NULL;
547
548 gdbpy_enter_varobj enter_py (var);
549
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
552 #endif
553
554 return result;
555 }
556
557 /* Return true if the varobj has items after TO, false otherwise. */
558
559 bool
560 varobj_has_more (const struct varobj *var, int to)
561 {
562 if (var->children.size () > to)
563 return true;
564
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
567 }
568
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
573 int
574 varobj_get_thread_id (const struct varobj *var)
575 {
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580 }
581
582 void
583 varobj_set_frozen (struct varobj *var, bool frozen)
584 {
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593 }
594
595 bool
596 varobj_get_frozen (const struct varobj *var)
597 {
598 return var->frozen;
599 }
600
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
606 void
607 varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
609 {
610 int len = children.size ();
611
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
615 *to = len;
616 }
617 else
618 {
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
623 if (*from > *to)
624 *from = *to;
625 }
626 }
627
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631 static void
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
637 bool *cchanged,
638 int index,
639 struct varobj_item *item)
640 {
641 if (var->children.size () < index + 1)
642 {
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
645
646 if (newobj != NULL)
647 {
648 newobj->push_back (child);
649 *cchanged = true;
650 }
651 }
652 else
653 {
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
656
657 if (type_updated)
658 {
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
661 }
662 if (install_new_value (existing, item->value, 0))
663 {
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
666 }
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
669 }
670 }
671
672 #if HAVE_PYTHON
673
674 static bool
675 dynamic_varobj_has_child_method (const struct varobj *var)
676 {
677 PyObject *printer = var->dynamic->pretty_printer;
678
679 if (!gdb_python_initialized)
680 return false;
681
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
684 }
685 #endif
686
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
692 {
693 #if HAVE_PYTHON
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
696 #endif
697
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
700 }
701
702 /* Release and clear VAR's saved item, if any. */
703
704 static void
705 varobj_clear_saved_item (struct varobj_dynamic *var)
706 {
707 if (var->saved_item != NULL)
708 {
709 value_free (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
712 }
713 }
714
715 static bool
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
721 bool *cchanged,
722 bool update_children,
723 int from,
724 int to)
725 {
726 int i;
727
728 *cchanged = false;
729
730 if (update_children || var->dynamic->child_iter == NULL)
731 {
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
734
735 varobj_clear_saved_item (var->dynamic);
736
737 i = 0;
738
739 if (var->dynamic->child_iter == NULL)
740 return false;
741 }
742 else
743 i = var->children.size ();
744
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
748 {
749 varobj_item *item;
750
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
753 {
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
756 }
757 else
758 {
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 release_value_or_incref (item->value);
764 }
765
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
775 {
776 bool can_mention = from < 0 || i >= from;
777
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
783 item);
784
785 delete item;
786 }
787 else
788 {
789 var->dynamic->saved_item = item;
790
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
795 }
796
797 if (i < var->children.size ())
798 {
799 *cchanged = true;
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
804 }
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
808 if (to >= 0 && var->children.size () < to)
809 *cchanged = true;
810
811 var->num_children = var->children.size ();
812
813 return true;
814 }
815
816 int
817 varobj_get_num_children (struct varobj *var)
818 {
819 if (var->num_children == -1)
820 {
821 if (varobj_is_dynamic_p (var))
822 {
823 bool dummy;
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
828 false, 0, 0);
829 }
830 else
831 var->num_children = number_of_children (var);
832 }
833
834 return var->num_children >= 0 ? var->num_children : 0;
835 }
836
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
839
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
842 {
843 var->dynamic->children_requested = true;
844
845 if (varobj_is_dynamic_p (var))
846 {
847 bool children_changed;
848
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
856 }
857
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
864
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
869
870 for (int i = 0; i < var->num_children; i++)
871 {
872 if (var->children[i] == NULL)
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
879 }
880 }
881
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
884 }
885
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
888 {
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
892
893 return v;
894 }
895
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
898 */
899
900 std::string
901 varobj_get_type (struct varobj *var)
902 {
903 /* For the "fake" variables, do not return a type. (Its type is
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
908
909 return type_to_string (var->type);
910 }
911
912 /* Obtain the type of an object variable. */
913
914 struct type *
915 varobj_get_gdb_type (const struct varobj *var)
916 {
917 return var->type;
918 }
919
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
923 static bool
924 is_path_expr_parent (const struct varobj *var)
925 {
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928 }
929
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
933
934 bool
935 varobj_default_is_path_expr_parent (const struct varobj *var)
936 {
937 return true;
938 }
939
940 /* Return the path expression parent for VAR. */
941
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
944 {
945 const struct varobj *parent = var;
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 return parent;
951 }
952
953 /* Return a pointer to the full rooted expression of varobj VAR.
954 If it has not been computed yet, compute it. */
955
956 const char *
957 varobj_get_path_expr (const struct varobj *var)
958 {
959 if (var->path_expr.empty ())
960 {
961 /* For root varobjs, we initialize path_expr
962 when creating varobj, so here it should be
963 child varobj. */
964 struct varobj *mutable_var = (struct varobj *) var;
965 gdb_assert (!is_root_p (var));
966
967 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
968 }
969
970 return var->path_expr.c_str ();
971 }
972
973 const struct language_defn *
974 varobj_get_language (const struct varobj *var)
975 {
976 return var->root->exp->language_defn;
977 }
978
979 int
980 varobj_get_attributes (const struct varobj *var)
981 {
982 int attributes = 0;
983
984 if (varobj_editable_p (var))
985 /* FIXME: define masks for attributes. */
986 attributes |= 0x00000001; /* Editable */
987
988 return attributes;
989 }
990
991 /* Return true if VAR is a dynamic varobj. */
992
993 bool
994 varobj_is_dynamic_p (const struct varobj *var)
995 {
996 return var->dynamic->pretty_printer != NULL;
997 }
998
999 std::string
1000 varobj_get_formatted_value (struct varobj *var,
1001 enum varobj_display_formats format)
1002 {
1003 return my_value_of_variable (var, format);
1004 }
1005
1006 std::string
1007 varobj_get_value (struct varobj *var)
1008 {
1009 return my_value_of_variable (var, var->format);
1010 }
1011
1012 /* Set the value of an object variable (if it is editable) to the
1013 value of the given expression. */
1014 /* Note: Invokes functions that can call error(). */
1015
1016 bool
1017 varobj_set_value (struct varobj *var, const char *expression)
1018 {
1019 struct value *val = NULL; /* Initialize to keep gcc happy. */
1020 /* The argument "expression" contains the variable's new value.
1021 We need to first construct a legal expression for this -- ugh! */
1022 /* Does this cover all the bases? */
1023 struct value *value = NULL; /* Initialize to keep gcc happy. */
1024 int saved_input_radix = input_radix;
1025 const char *s = expression;
1026
1027 gdb_assert (varobj_editable_p (var));
1028
1029 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1030 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1031 TRY
1032 {
1033 value = evaluate_expression (exp.get ());
1034 }
1035
1036 CATCH (except, RETURN_MASK_ERROR)
1037 {
1038 /* We cannot proceed without a valid expression. */
1039 return false;
1040 }
1041 END_CATCH
1042
1043 /* All types that are editable must also be changeable. */
1044 gdb_assert (varobj_value_is_changeable_p (var));
1045
1046 /* The value of a changeable variable object must not be lazy. */
1047 gdb_assert (!value_lazy (var->value));
1048
1049 /* Need to coerce the input. We want to check if the
1050 value of the variable object will be different
1051 after assignment, and the first thing value_assign
1052 does is coerce the input.
1053 For example, if we are assigning an array to a pointer variable we
1054 should compare the pointer with the array's address, not with the
1055 array's content. */
1056 value = coerce_array (value);
1057
1058 /* The new value may be lazy. value_assign, or
1059 rather value_contents, will take care of this. */
1060 TRY
1061 {
1062 val = value_assign (var->value, value);
1063 }
1064
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
1067 return false;
1068 }
1069 END_CATCH
1070
1071 /* If the value has changed, record it, so that next -var-update can
1072 report this change. If a variable had a value of '1', we've set it
1073 to '333' and then set again to '1', when -var-update will report this
1074 variable as changed -- because the first assignment has set the
1075 'updated' flag. There's no need to optimize that, because return value
1076 of -var-update should be considered an approximation. */
1077 var->updated = install_new_value (var, val, false /* Compare values. */);
1078 input_radix = saved_input_radix;
1079 return true;
1080 }
1081
1082 #if HAVE_PYTHON
1083
1084 /* A helper function to install a constructor function and visualizer
1085 in a varobj_dynamic. */
1086
1087 static void
1088 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1089 PyObject *visualizer)
1090 {
1091 Py_XDECREF (var->constructor);
1092 var->constructor = constructor;
1093
1094 Py_XDECREF (var->pretty_printer);
1095 var->pretty_printer = visualizer;
1096
1097 varobj_iter_delete (var->child_iter);
1098 var->child_iter = NULL;
1099 }
1100
1101 /* Install the default visualizer for VAR. */
1102
1103 static void
1104 install_default_visualizer (struct varobj *var)
1105 {
1106 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1107 if (CPLUS_FAKE_CHILD (var))
1108 return;
1109
1110 if (pretty_printing)
1111 {
1112 PyObject *pretty_printer = NULL;
1113
1114 if (var->value)
1115 {
1116 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1117 if (! pretty_printer)
1118 {
1119 gdbpy_print_stack ();
1120 error (_("Cannot instantiate printer for default visualizer"));
1121 }
1122 }
1123
1124 if (pretty_printer == Py_None)
1125 {
1126 Py_DECREF (pretty_printer);
1127 pretty_printer = NULL;
1128 }
1129
1130 install_visualizer (var->dynamic, NULL, pretty_printer);
1131 }
1132 }
1133
1134 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137 static void
1138 construct_visualizer (struct varobj *var, PyObject *constructor)
1139 {
1140 PyObject *pretty_printer;
1141
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
1151 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
1167 install_visualizer (var->dynamic, constructor, pretty_printer);
1168 }
1169
1170 #endif /* HAVE_PYTHON */
1171
1172 /* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175 static void
1176 install_new_value_visualizer (struct varobj *var)
1177 {
1178 #if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
1181 if (!gdb_python_initialized)
1182 return;
1183
1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
1185 {
1186 gdbpy_enter_varobj enter_py (var);
1187
1188 if (var->dynamic->constructor == NULL)
1189 install_default_visualizer (var);
1190 else
1191 construct_visualizer (var, var->dynamic->constructor);
1192 }
1193 #else
1194 /* Do nothing. */
1195 #endif
1196 }
1197
1198 /* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
1203 static bool
1204 update_type_if_necessary (struct varobj *var, struct value *new_value)
1205 {
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
1216
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
1223 varobj_delete (var, 1);
1224 var->children.clear ();
1225 var->num_children = -1;
1226 return true;
1227 }
1228 }
1229 }
1230
1231 return false;
1232 }
1233
1234 /* Assign a new value to a variable object. If INITIAL is true,
1235 this is the first assignment after the variable object was just
1236 created, or changed type. In that case, just assign the value
1237 and return false.
1238 Otherwise, assign the new value, and return true if the value is
1239 different from the current one, false otherwise. The comparison is
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
1243 value was NULL and new one is not, or vice versa, we always return true.
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
1247 static bool
1248 install_new_value (struct varobj *var, struct value *value, bool initial)
1249 {
1250 bool changeable;
1251 bool need_to_fetch;
1252 bool changed = false;
1253 bool intentionally_not_fetched = false;
1254
1255 /* We need to know the varobj's type to decide if the value should
1256 be fetched or not. C++ fake children (public/protected/private)
1257 don't have a type. */
1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1259 changeable = varobj_value_is_changeable_p (var);
1260
1261 /* If the type has custom visualizer, we consider it to be always
1262 changeable. FIXME: need to make sure this behaviour will not
1263 mess up read-sensitive values. */
1264 if (var->dynamic->pretty_printer != NULL)
1265 changeable = true;
1266
1267 need_to_fetch = changeable;
1268
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
1273 value = coerce_ref (value);
1274
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
1285 need_to_fetch = true;
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
1293 const struct varobj *parent = var->parent;
1294 bool frozen = var->frozen;
1295
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
1305 intentionally_not_fetched = true;
1306 }
1307 else
1308 {
1309
1310 TRY
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
1315 CATCH (except, RETURN_MASK_ERROR)
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
1322 END_CATCH
1323 }
1324 }
1325
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 if (value != NULL)
1329 value_incref (value);
1330
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
1335 std::string print_value;
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
1338 print_value = varobj_value_get_print_value (value, var->format, var);
1339
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
1343 if (!initial && changeable)
1344 {
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
1348 varobj had after the previous -var-update. So need to the
1349 varobj as changed. */
1350 if (var->updated)
1351 changed = true;
1352 else if (var->dynamic->pretty_printer == NULL)
1353 {
1354 /* Try to compare the values. That requires that both
1355 values are non-lazy. */
1356 if (var->not_fetched && value_lazy (var->value))
1357 {
1358 /* This is a frozen varobj and the value was never read.
1359 Presumably, UI shows some "never read" indicator.
1360 Now that we've fetched the real value, we need to report
1361 this varobj as changed so that UI can show the real
1362 value. */
1363 changed = true;
1364 }
1365 else if (var->value == NULL && value == NULL)
1366 /* Equal. */
1367 ;
1368 else if (var->value == NULL || value == NULL)
1369 {
1370 changed = true;
1371 }
1372 else
1373 {
1374 gdb_assert (!value_lazy (var->value));
1375 gdb_assert (!value_lazy (value));
1376
1377 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1378 if (var->print_value != print_value)
1379 changed = true;
1380 }
1381 }
1382 }
1383
1384 if (!initial && !changeable)
1385 {
1386 /* For values that are not changeable, we don't compare the values.
1387 However, we want to notice if a value was not NULL and now is NULL,
1388 or vise versa, so that we report when top-level varobjs come in scope
1389 and leave the scope. */
1390 changed = (var->value != NULL) != (value != NULL);
1391 }
1392
1393 /* We must always keep the new value, since children depend on it. */
1394 if (var->value != NULL && var->value != value)
1395 value_free (var->value);
1396 var->value = value;
1397 if (value && value_lazy (value) && intentionally_not_fetched)
1398 var->not_fetched = true;
1399 else
1400 var->not_fetched = false;
1401 var->updated = false;
1402
1403 install_new_value_visualizer (var);
1404
1405 /* If we installed a pretty-printer, re-compare the printed version
1406 to see if the variable changed. */
1407 if (var->dynamic->pretty_printer != NULL)
1408 {
1409 print_value = varobj_value_get_print_value (var->value, var->format,
1410 var);
1411 if ((var->print_value.empty () && !print_value.empty ())
1412 || (!var->print_value.empty () && print_value.empty ())
1413 || (!var->print_value.empty () && !print_value.empty ()
1414 && var->print_value != print_value))
1415 changed = true;
1416 }
1417 var->print_value = print_value;
1418
1419 gdb_assert (!var->value || value_type (var->value));
1420
1421 return changed;
1422 }
1423
1424 /* Return the requested range for a varobj. VAR is the varobj. FROM
1425 and TO are out parameters; *FROM and *TO will be set to the
1426 selected sub-range of VAR. If no range was selected using
1427 -var-set-update-range, then both will be -1. */
1428 void
1429 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1430 {
1431 *from = var->from;
1432 *to = var->to;
1433 }
1434
1435 /* Set the selected sub-range of children of VAR to start at index
1436 FROM and end at index TO. If either FROM or TO is less than zero,
1437 this is interpreted as a request for all children. */
1438 void
1439 varobj_set_child_range (struct varobj *var, int from, int to)
1440 {
1441 var->from = from;
1442 var->to = to;
1443 }
1444
1445 void
1446 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1447 {
1448 #if HAVE_PYTHON
1449 PyObject *mainmod;
1450
1451 if (!gdb_python_initialized)
1452 return;
1453
1454 gdbpy_enter_varobj enter_py (var);
1455
1456 mainmod = PyImport_AddModule ("__main__");
1457 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1458 Py_INCREF (globals.get ());
1459
1460 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1461 globals.get (), globals.get ()));
1462
1463 if (constructor == NULL)
1464 {
1465 gdbpy_print_stack ();
1466 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1467 }
1468
1469 construct_visualizer (var, constructor.get ());
1470
1471 /* If there are any children now, wipe them. */
1472 varobj_delete (var, 1 /* children only */);
1473 var->num_children = -1;
1474 #else
1475 error (_("Python support required"));
1476 #endif
1477 }
1478
1479 /* If NEW_VALUE is the new value of the given varobj (var), return
1480 true if var has mutated. In other words, if the type of
1481 the new value is different from the type of the varobj's old
1482 value.
1483
1484 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1485
1486 static bool
1487 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1488 struct type *new_type)
1489 {
1490 /* If we haven't previously computed the number of children in var,
1491 it does not matter from the front-end's perspective whether
1492 the type has mutated or not. For all intents and purposes,
1493 it has not mutated. */
1494 if (var->num_children < 0)
1495 return false;
1496
1497 if (var->root->lang_ops->value_has_mutated != NULL)
1498 {
1499 /* The varobj module, when installing new values, explicitly strips
1500 references, saying that we're not interested in those addresses.
1501 But detection of mutation happens before installing the new
1502 value, so our value may be a reference that we need to strip
1503 in order to remain consistent. */
1504 if (new_value != NULL)
1505 new_value = coerce_ref (new_value);
1506 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1507 }
1508 else
1509 return false;
1510 }
1511
1512 /* Update the values for a variable and its children. This is a
1513 two-pronged attack. First, re-parse the value for the root's
1514 expression to see if it's changed. Then go all the way
1515 through its children, reconstructing them and noting if they've
1516 changed.
1517
1518 The IS_EXPLICIT parameter specifies if this call is result
1519 of MI request to update this specific variable, or
1520 result of implicit -var-update *. For implicit request, we don't
1521 update frozen variables.
1522
1523 NOTE: This function may delete the caller's varobj. If it
1524 returns TYPE_CHANGED, then it has done this and VARP will be modified
1525 to point to the new varobj. */
1526
1527 std::vector<varobj_update_result>
1528 varobj_update (struct varobj **varp, bool is_explicit)
1529 {
1530 bool type_changed = false;
1531 struct value *newobj;
1532 std::vector<varobj_update_result> stack;
1533 std::vector<varobj_update_result> result;
1534
1535 /* Frozen means frozen -- we don't check for any change in
1536 this varobj, including its going out of scope, or
1537 changing type. One use case for frozen varobjs is
1538 retaining previously evaluated expressions, and we don't
1539 want them to be reevaluated at all. */
1540 if (!is_explicit && (*varp)->frozen)
1541 return result;
1542
1543 if (!(*varp)->root->is_valid)
1544 {
1545 result.emplace_back (*varp, VAROBJ_INVALID);
1546 return result;
1547 }
1548
1549 if ((*varp)->root->rootvar == *varp)
1550 {
1551 varobj_update_result r (*varp);
1552
1553 /* Update the root variable. value_of_root can return NULL
1554 if the variable is no longer around, i.e. we stepped out of
1555 the frame in which a local existed. We are letting the
1556 value_of_root variable dispose of the varobj if the type
1557 has changed. */
1558 newobj = value_of_root (varp, &type_changed);
1559 if (update_type_if_necessary (*varp, newobj))
1560 type_changed = true;
1561 r.varobj = *varp;
1562 r.type_changed = type_changed;
1563 if (install_new_value ((*varp), newobj, type_changed))
1564 r.changed = true;
1565
1566 if (newobj == NULL)
1567 r.status = VAROBJ_NOT_IN_SCOPE;
1568 r.value_installed = true;
1569
1570 if (r.status == VAROBJ_NOT_IN_SCOPE)
1571 {
1572 if (r.type_changed || r.changed)
1573 result.push_back (std::move (r));
1574
1575 return result;
1576 }
1577
1578 stack.push_back (std::move (r));
1579 }
1580 else
1581 stack.emplace_back (*varp);
1582
1583 /* Walk through the children, reconstructing them all. */
1584 while (!stack.empty ())
1585 {
1586 varobj_update_result r = std::move (stack.back ());
1587 stack.pop_back ();
1588 struct varobj *v = r.varobj;
1589
1590 /* Update this variable, unless it's a root, which is already
1591 updated. */
1592 if (!r.value_installed)
1593 {
1594 struct type *new_type;
1595
1596 newobj = value_of_child (v->parent, v->index);
1597 if (update_type_if_necessary (v, newobj))
1598 r.type_changed = true;
1599 if (newobj)
1600 new_type = value_type (newobj);
1601 else
1602 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1603
1604 if (varobj_value_has_mutated (v, newobj, new_type))
1605 {
1606 /* The children are no longer valid; delete them now.
1607 Report the fact that its type changed as well. */
1608 varobj_delete (v, 1 /* only_children */);
1609 v->num_children = -1;
1610 v->to = -1;
1611 v->from = -1;
1612 v->type = new_type;
1613 r.type_changed = true;
1614 }
1615
1616 if (install_new_value (v, newobj, r.type_changed))
1617 {
1618 r.changed = true;
1619 v->updated = false;
1620 }
1621 }
1622
1623 /* We probably should not get children of a dynamic varobj, but
1624 for which -var-list-children was never invoked. */
1625 if (varobj_is_dynamic_p (v))
1626 {
1627 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1628 bool children_changed = false;
1629
1630 if (v->frozen)
1631 continue;
1632
1633 if (!v->dynamic->children_requested)
1634 {
1635 bool dummy;
1636
1637 /* If we initially did not have potential children, but
1638 now we do, consider the varobj as changed.
1639 Otherwise, if children were never requested, consider
1640 it as unchanged -- presumably, such varobj is not yet
1641 expanded in the UI, so we need not bother getting
1642 it. */
1643 if (!varobj_has_more (v, 0))
1644 {
1645 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1646 &dummy, false, 0, 0);
1647 if (varobj_has_more (v, 0))
1648 r.changed = true;
1649 }
1650
1651 if (r.changed)
1652 result.push_back (std::move (r));
1653
1654 continue;
1655 }
1656
1657 /* If update_dynamic_varobj_children returns false, then we have
1658 a non-conforming pretty-printer, so we skip it. */
1659 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1660 &unchanged, &children_changed, true,
1661 v->from, v->to))
1662 {
1663 if (children_changed || !newobj.empty ())
1664 {
1665 r.children_changed = true;
1666 r.newobj = std::move (newobj);
1667 }
1668 /* Push in reverse order so that the first child is
1669 popped from the work stack first, and so will be
1670 added to result first. This does not affect
1671 correctness, just "nicer". */
1672 for (int i = type_changed.size () - 1; i >= 0; --i)
1673 {
1674 varobj_update_result r (type_changed[i]);
1675
1676 /* Type may change only if value was changed. */
1677 r.changed = true;
1678 r.type_changed = true;
1679 r.value_installed = true;
1680
1681 stack.push_back (std::move (r));
1682 }
1683 for (int i = changed.size () - 1; i >= 0; --i)
1684 {
1685 varobj_update_result r (changed[i]);
1686
1687 r.changed = true;
1688 r.value_installed = true;
1689
1690 stack.push_back (std::move (r));
1691 }
1692 for (int i = unchanged.size () - 1; i >= 0; --i)
1693 {
1694 if (!unchanged[i]->frozen)
1695 {
1696 varobj_update_result r (unchanged[i]);
1697
1698 r.value_installed = true;
1699
1700 stack.push_back (std::move (r));
1701 }
1702 }
1703 if (r.changed || r.children_changed)
1704 result.push_back (std::move (r));
1705
1706 continue;
1707 }
1708 }
1709
1710 /* Push any children. Use reverse order so that the first
1711 child is popped from the work stack first, and so
1712 will be added to result first. This does not
1713 affect correctness, just "nicer". */
1714 for (int i = v->children.size () - 1; i >= 0; --i)
1715 {
1716 varobj *c = v->children[i];
1717
1718 /* Child may be NULL if explicitly deleted by -var-delete. */
1719 if (c != NULL && !c->frozen)
1720 stack.emplace_back (c);
1721 }
1722
1723 if (r.changed || r.type_changed)
1724 result.push_back (std::move (r));
1725 }
1726
1727 return result;
1728 }
1729
1730 /* Helper functions */
1731
1732 /*
1733 * Variable object construction/destruction
1734 */
1735
1736 static int
1737 delete_variable (struct varobj *var, bool only_children_p)
1738 {
1739 int delcount = 0;
1740
1741 delete_variable_1 (&delcount, var, only_children_p,
1742 true /* remove_from_parent_p */ );
1743
1744 return delcount;
1745 }
1746
1747 /* Delete the variable object VAR and its children. */
1748 /* IMPORTANT NOTE: If we delete a variable which is a child
1749 and the parent is not removed we dump core. It must be always
1750 initially called with remove_from_parent_p set. */
1751 static void
1752 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1753 bool remove_from_parent_p)
1754 {
1755 /* Delete any children of this variable, too. */
1756 for (varobj *child : var->children)
1757 {
1758 if (!child)
1759 continue;
1760
1761 if (!remove_from_parent_p)
1762 child->parent = NULL;
1763
1764 delete_variable_1 (delcountp, child, false, only_children_p);
1765 }
1766 var->children.clear ();
1767
1768 /* if we were called to delete only the children we are done here. */
1769 if (only_children_p)
1770 return;
1771
1772 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1773 /* If the name is empty, this is a temporary variable, that has not
1774 yet been installed, don't report it, it belongs to the caller... */
1775 if (!var->obj_name.empty ())
1776 {
1777 *delcountp = *delcountp + 1;
1778 }
1779
1780 /* If this variable has a parent, remove it from its parent's list. */
1781 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1782 (as indicated by remove_from_parent_p) we don't bother doing an
1783 expensive list search to find the element to remove when we are
1784 discarding the list afterwards. */
1785 if ((remove_from_parent_p) && (var->parent != NULL))
1786 var->parent->children[var->index] = NULL;
1787
1788 if (!var->obj_name.empty ())
1789 uninstall_variable (var);
1790
1791 /* Free memory associated with this variable. */
1792 delete var;
1793 }
1794
1795 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1796 static bool
1797 install_variable (struct varobj *var)
1798 {
1799 struct vlist *cv;
1800 struct vlist *newvl;
1801 const char *chp;
1802 unsigned int index = 0;
1803 unsigned int i = 1;
1804
1805 for (chp = var->obj_name.c_str (); *chp; chp++)
1806 {
1807 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1808 }
1809
1810 cv = *(varobj_table + index);
1811 while (cv != NULL && cv->var->obj_name != var->obj_name)
1812 cv = cv->next;
1813
1814 if (cv != NULL)
1815 error (_("Duplicate variable object name"));
1816
1817 /* Add varobj to hash table. */
1818 newvl = XNEW (struct vlist);
1819 newvl->next = *(varobj_table + index);
1820 newvl->var = var;
1821 *(varobj_table + index) = newvl;
1822
1823 /* If root, add varobj to root list. */
1824 if (is_root_p (var))
1825 {
1826 /* Add to list of root variables. */
1827 if (rootlist == NULL)
1828 var->root->next = NULL;
1829 else
1830 var->root->next = rootlist;
1831 rootlist = var->root;
1832 }
1833
1834 return true; /* OK */
1835 }
1836
1837 /* Unistall the object VAR. */
1838 static void
1839 uninstall_variable (struct varobj *var)
1840 {
1841 struct vlist *cv;
1842 struct vlist *prev;
1843 struct varobj_root *cr;
1844 struct varobj_root *prer;
1845 const char *chp;
1846 unsigned int index = 0;
1847 unsigned int i = 1;
1848
1849 /* Remove varobj from hash table. */
1850 for (chp = var->obj_name.c_str (); *chp; chp++)
1851 {
1852 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1853 }
1854
1855 cv = *(varobj_table + index);
1856 prev = NULL;
1857 while (cv != NULL && cv->var->obj_name != var->obj_name)
1858 {
1859 prev = cv;
1860 cv = cv->next;
1861 }
1862
1863 if (varobjdebug)
1864 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1865
1866 if (cv == NULL)
1867 {
1868 warning
1869 ("Assertion failed: Could not find variable object \"%s\" to delete",
1870 var->obj_name.c_str ());
1871 return;
1872 }
1873
1874 if (prev == NULL)
1875 *(varobj_table + index) = cv->next;
1876 else
1877 prev->next = cv->next;
1878
1879 xfree (cv);
1880
1881 /* If root, remove varobj from root list. */
1882 if (is_root_p (var))
1883 {
1884 /* Remove from list of root variables. */
1885 if (rootlist == var->root)
1886 rootlist = var->root->next;
1887 else
1888 {
1889 prer = NULL;
1890 cr = rootlist;
1891 while ((cr != NULL) && (cr->rootvar != var))
1892 {
1893 prer = cr;
1894 cr = cr->next;
1895 }
1896 if (cr == NULL)
1897 {
1898 warning (_("Assertion failed: Could not find "
1899 "varobj \"%s\" in root list"),
1900 var->obj_name.c_str ());
1901 return;
1902 }
1903 if (prer == NULL)
1904 rootlist = NULL;
1905 else
1906 prer->next = cr->next;
1907 }
1908 }
1909
1910 }
1911
1912 /* Create and install a child of the parent of the given name.
1913
1914 The created VAROBJ takes ownership of the allocated NAME. */
1915
1916 static struct varobj *
1917 create_child (struct varobj *parent, int index, std::string &name)
1918 {
1919 struct varobj_item item;
1920
1921 std::swap (item.name, name);
1922 item.value = value_of_child (parent, index);
1923
1924 return create_child_with_value (parent, index, &item);
1925 }
1926
1927 static struct varobj *
1928 create_child_with_value (struct varobj *parent, int index,
1929 struct varobj_item *item)
1930 {
1931 varobj *child = new varobj (parent->root);
1932
1933 /* NAME is allocated by caller. */
1934 std::swap (child->name, item->name);
1935 child->index = index;
1936 child->parent = parent;
1937
1938 if (varobj_is_anonymous_child (child))
1939 child->obj_name = string_printf ("%s.%d_anonymous",
1940 parent->obj_name.c_str (), index);
1941 else
1942 child->obj_name = string_printf ("%s.%s",
1943 parent->obj_name.c_str (),
1944 child->name.c_str ());
1945
1946 install_variable (child);
1947
1948 /* Compute the type of the child. Must do this before
1949 calling install_new_value. */
1950 if (item->value != NULL)
1951 /* If the child had no evaluation errors, var->value
1952 will be non-NULL and contain a valid type. */
1953 child->type = value_actual_type (item->value, 0, NULL);
1954 else
1955 /* Otherwise, we must compute the type. */
1956 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1957 child->index);
1958 install_new_value (child, item->value, 1);
1959
1960 return child;
1961 }
1962 \f
1963
1964 /*
1965 * Miscellaneous utility functions.
1966 */
1967
1968 /* Allocate memory and initialize a new variable. */
1969 varobj::varobj (varobj_root *root_)
1970 : root (root_), dynamic (new varobj_dynamic)
1971 {
1972 }
1973
1974 /* Free any allocated memory associated with VAR. */
1975
1976 varobj::~varobj ()
1977 {
1978 varobj *var = this;
1979
1980 #if HAVE_PYTHON
1981 if (var->dynamic->pretty_printer != NULL)
1982 {
1983 gdbpy_enter_varobj enter_py (var);
1984
1985 Py_XDECREF (var->dynamic->constructor);
1986 Py_XDECREF (var->dynamic->pretty_printer);
1987 }
1988 #endif
1989
1990 varobj_iter_delete (var->dynamic->child_iter);
1991 varobj_clear_saved_item (var->dynamic);
1992 value_free (var->value);
1993
1994 if (is_root_p (var))
1995 delete var->root;
1996
1997 delete var->dynamic;
1998 }
1999
2000 /* Return the type of the value that's stored in VAR,
2001 or that would have being stored there if the
2002 value were accessible.
2003
2004 This differs from VAR->type in that VAR->type is always
2005 the true type of the expession in the source language.
2006 The return value of this function is the type we're
2007 actually storing in varobj, and using for displaying
2008 the values and for comparing previous and new values.
2009
2010 For example, top-level references are always stripped. */
2011 struct type *
2012 varobj_get_value_type (const struct varobj *var)
2013 {
2014 struct type *type;
2015
2016 if (var->value)
2017 type = value_type (var->value);
2018 else
2019 type = var->type;
2020
2021 type = check_typedef (type);
2022
2023 if (TYPE_IS_REFERENCE (type))
2024 type = get_target_type (type);
2025
2026 type = check_typedef (type);
2027
2028 return type;
2029 }
2030
2031 /* What is the default display for this variable? We assume that
2032 everything is "natural". Any exceptions? */
2033 static enum varobj_display_formats
2034 variable_default_display (struct varobj *var)
2035 {
2036 return FORMAT_NATURAL;
2037 }
2038
2039 /*
2040 * Language-dependencies
2041 */
2042
2043 /* Common entry points */
2044
2045 /* Return the number of children for a given variable.
2046 The result of this function is defined by the language
2047 implementation. The number of children returned by this function
2048 is the number of children that the user will see in the variable
2049 display. */
2050 static int
2051 number_of_children (const struct varobj *var)
2052 {
2053 return (*var->root->lang_ops->number_of_children) (var);
2054 }
2055
2056 /* What is the expression for the root varobj VAR? */
2057
2058 static std::string
2059 name_of_variable (const struct varobj *var)
2060 {
2061 return (*var->root->lang_ops->name_of_variable) (var);
2062 }
2063
2064 /* What is the name of the INDEX'th child of VAR? */
2065
2066 static std::string
2067 name_of_child (struct varobj *var, int index)
2068 {
2069 return (*var->root->lang_ops->name_of_child) (var, index);
2070 }
2071
2072 /* If frame associated with VAR can be found, switch
2073 to it and return true. Otherwise, return false. */
2074
2075 static bool
2076 check_scope (const struct varobj *var)
2077 {
2078 struct frame_info *fi;
2079 bool scope;
2080
2081 fi = frame_find_by_id (var->root->frame);
2082 scope = fi != NULL;
2083
2084 if (fi)
2085 {
2086 CORE_ADDR pc = get_frame_pc (fi);
2087
2088 if (pc < BLOCK_START (var->root->valid_block) ||
2089 pc >= BLOCK_END (var->root->valid_block))
2090 scope = false;
2091 else
2092 select_frame (fi);
2093 }
2094 return scope;
2095 }
2096
2097 /* Helper function to value_of_root. */
2098
2099 static struct value *
2100 value_of_root_1 (struct varobj **var_handle)
2101 {
2102 struct value *new_val = NULL;
2103 struct varobj *var = *var_handle;
2104 bool within_scope = false;
2105
2106 /* Only root variables can be updated... */
2107 if (!is_root_p (var))
2108 /* Not a root var. */
2109 return NULL;
2110
2111 scoped_restore_current_thread restore_thread;
2112
2113 /* Determine whether the variable is still around. */
2114 if (var->root->valid_block == NULL || var->root->floating)
2115 within_scope = true;
2116 else if (var->root->thread_id == 0)
2117 {
2118 /* The program was single-threaded when the variable object was
2119 created. Technically, it's possible that the program became
2120 multi-threaded since then, but we don't support such
2121 scenario yet. */
2122 within_scope = check_scope (var);
2123 }
2124 else
2125 {
2126 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2127
2128 if (!ptid_equal (minus_one_ptid, ptid))
2129 {
2130 switch_to_thread (ptid);
2131 within_scope = check_scope (var);
2132 }
2133 }
2134
2135 if (within_scope)
2136 {
2137
2138 /* We need to catch errors here, because if evaluate
2139 expression fails we want to just return NULL. */
2140 TRY
2141 {
2142 new_val = evaluate_expression (var->root->exp.get ());
2143 }
2144 CATCH (except, RETURN_MASK_ERROR)
2145 {
2146 }
2147 END_CATCH
2148 }
2149
2150 return new_val;
2151 }
2152
2153 /* What is the ``struct value *'' of the root variable VAR?
2154 For floating variable object, evaluation can get us a value
2155 of different type from what is stored in varobj already. In
2156 that case:
2157 - *type_changed will be set to 1
2158 - old varobj will be freed, and new one will be
2159 created, with the same name.
2160 - *var_handle will be set to the new varobj
2161 Otherwise, *type_changed will be set to 0. */
2162 static struct value *
2163 value_of_root (struct varobj **var_handle, bool *type_changed)
2164 {
2165 struct varobj *var;
2166
2167 if (var_handle == NULL)
2168 return NULL;
2169
2170 var = *var_handle;
2171
2172 /* This should really be an exception, since this should
2173 only get called with a root variable. */
2174
2175 if (!is_root_p (var))
2176 return NULL;
2177
2178 if (var->root->floating)
2179 {
2180 struct varobj *tmp_var;
2181
2182 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2183 USE_SELECTED_FRAME);
2184 if (tmp_var == NULL)
2185 {
2186 return NULL;
2187 }
2188 std::string old_type = varobj_get_type (var);
2189 std::string new_type = varobj_get_type (tmp_var);
2190 if (old_type == new_type)
2191 {
2192 /* The expression presently stored inside var->root->exp
2193 remembers the locations of local variables relatively to
2194 the frame where the expression was created (in DWARF location
2195 button, for example). Naturally, those locations are not
2196 correct in other frames, so update the expression. */
2197
2198 std::swap (var->root->exp, tmp_var->root->exp);
2199
2200 varobj_delete (tmp_var, 0);
2201 *type_changed = 0;
2202 }
2203 else
2204 {
2205 tmp_var->obj_name = var->obj_name;
2206 tmp_var->from = var->from;
2207 tmp_var->to = var->to;
2208 varobj_delete (var, 0);
2209
2210 install_variable (tmp_var);
2211 *var_handle = tmp_var;
2212 var = *var_handle;
2213 *type_changed = true;
2214 }
2215 }
2216 else
2217 {
2218 *type_changed = 0;
2219 }
2220
2221 {
2222 struct value *value;
2223
2224 value = value_of_root_1 (var_handle);
2225 if (var->value == NULL || value == NULL)
2226 {
2227 /* For root varobj-s, a NULL value indicates a scoping issue.
2228 So, nothing to do in terms of checking for mutations. */
2229 }
2230 else if (varobj_value_has_mutated (var, value, value_type (value)))
2231 {
2232 /* The type has mutated, so the children are no longer valid.
2233 Just delete them, and tell our caller that the type has
2234 changed. */
2235 varobj_delete (var, 1 /* only_children */);
2236 var->num_children = -1;
2237 var->to = -1;
2238 var->from = -1;
2239 *type_changed = true;
2240 }
2241 return value;
2242 }
2243 }
2244
2245 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2246 static struct value *
2247 value_of_child (const struct varobj *parent, int index)
2248 {
2249 struct value *value;
2250
2251 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2252
2253 return value;
2254 }
2255
2256 /* GDB already has a command called "value_of_variable". Sigh. */
2257 static std::string
2258 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2259 {
2260 if (var->root->is_valid)
2261 {
2262 if (var->dynamic->pretty_printer != NULL)
2263 return varobj_value_get_print_value (var->value, var->format, var);
2264 return (*var->root->lang_ops->value_of_variable) (var, format);
2265 }
2266 else
2267 return std::string ();
2268 }
2269
2270 void
2271 varobj_formatted_print_options (struct value_print_options *opts,
2272 enum varobj_display_formats format)
2273 {
2274 get_formatted_print_options (opts, format_code[(int) format]);
2275 opts->deref_ref = 0;
2276 opts->raw = 1;
2277 }
2278
2279 std::string
2280 varobj_value_get_print_value (struct value *value,
2281 enum varobj_display_formats format,
2282 const struct varobj *var)
2283 {
2284 struct value_print_options opts;
2285 struct type *type = NULL;
2286 long len = 0;
2287 gdb::unique_xmalloc_ptr<char> encoding;
2288 /* Initialize it just to avoid a GCC false warning. */
2289 CORE_ADDR str_addr = 0;
2290 bool string_print = false;
2291
2292 if (value == NULL)
2293 return std::string ();
2294
2295 string_file stb;
2296 std::string thevalue;
2297
2298 #if HAVE_PYTHON
2299 if (gdb_python_initialized)
2300 {
2301 PyObject *value_formatter = var->dynamic->pretty_printer;
2302
2303 gdbpy_enter_varobj enter_py (var);
2304
2305 if (value_formatter)
2306 {
2307 /* First check to see if we have any children at all. If so,
2308 we simply return {...}. */
2309 if (dynamic_varobj_has_child_method (var))
2310 return "{...}";
2311
2312 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2313 {
2314 struct value *replacement;
2315
2316 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2317 &replacement,
2318 &stb));
2319
2320 /* If we have string like output ... */
2321 if (output != NULL)
2322 {
2323 /* If this is a lazy string, extract it. For lazy
2324 strings we always print as a string, so set
2325 string_print. */
2326 if (gdbpy_is_lazy_string (output.get ()))
2327 {
2328 gdbpy_extract_lazy_string (output.get (), &str_addr,
2329 &type, &len, &encoding);
2330 string_print = true;
2331 }
2332 else
2333 {
2334 /* If it is a regular (non-lazy) string, extract
2335 it and copy the contents into THEVALUE. If the
2336 hint says to print it as a string, set
2337 string_print. Otherwise just return the extracted
2338 string as a value. */
2339
2340 gdb::unique_xmalloc_ptr<char> s
2341 = python_string_to_target_string (output.get ());
2342
2343 if (s)
2344 {
2345 struct gdbarch *gdbarch;
2346
2347 gdb::unique_xmalloc_ptr<char> hint
2348 = gdbpy_get_display_hint (value_formatter);
2349 if (hint)
2350 {
2351 if (!strcmp (hint.get (), "string"))
2352 string_print = true;
2353 }
2354
2355 thevalue = std::string (s.get ());
2356 len = thevalue.size ();
2357 gdbarch = get_type_arch (value_type (value));
2358 type = builtin_type (gdbarch)->builtin_char;
2359
2360 if (!string_print)
2361 return thevalue;
2362 }
2363 else
2364 gdbpy_print_stack ();
2365 }
2366 }
2367 /* If the printer returned a replacement value, set VALUE
2368 to REPLACEMENT. If there is not a replacement value,
2369 just use the value passed to this function. */
2370 if (replacement)
2371 value = replacement;
2372 }
2373 }
2374 }
2375 #endif
2376
2377 varobj_formatted_print_options (&opts, format);
2378
2379 /* If the THEVALUE has contents, it is a regular string. */
2380 if (!thevalue.empty ())
2381 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2382 len, encoding.get (), 0, &opts);
2383 else if (string_print)
2384 /* Otherwise, if string_print is set, and it is not a regular
2385 string, it is a lazy string. */
2386 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2387 else
2388 /* All other cases. */
2389 common_val_print (value, &stb, 0, &opts, current_language);
2390
2391 return std::move (stb.string ());
2392 }
2393
2394 bool
2395 varobj_editable_p (const struct varobj *var)
2396 {
2397 struct type *type;
2398
2399 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2400 return false;
2401
2402 type = varobj_get_value_type (var);
2403
2404 switch (TYPE_CODE (type))
2405 {
2406 case TYPE_CODE_STRUCT:
2407 case TYPE_CODE_UNION:
2408 case TYPE_CODE_ARRAY:
2409 case TYPE_CODE_FUNC:
2410 case TYPE_CODE_METHOD:
2411 return false;
2412 break;
2413
2414 default:
2415 return true;
2416 break;
2417 }
2418 }
2419
2420 /* Call VAR's value_is_changeable_p language-specific callback. */
2421
2422 bool
2423 varobj_value_is_changeable_p (const struct varobj *var)
2424 {
2425 return var->root->lang_ops->value_is_changeable_p (var);
2426 }
2427
2428 /* Return true if that varobj is floating, that is is always evaluated in the
2429 selected frame, and not bound to thread/frame. Such variable objects
2430 are created using '@' as frame specifier to -var-create. */
2431 bool
2432 varobj_floating_p (const struct varobj *var)
2433 {
2434 return var->root->floating;
2435 }
2436
2437 /* Implement the "value_is_changeable_p" varobj callback for most
2438 languages. */
2439
2440 bool
2441 varobj_default_value_is_changeable_p (const struct varobj *var)
2442 {
2443 bool r;
2444 struct type *type;
2445
2446 if (CPLUS_FAKE_CHILD (var))
2447 return false;
2448
2449 type = varobj_get_value_type (var);
2450
2451 switch (TYPE_CODE (type))
2452 {
2453 case TYPE_CODE_STRUCT:
2454 case TYPE_CODE_UNION:
2455 case TYPE_CODE_ARRAY:
2456 r = false;
2457 break;
2458
2459 default:
2460 r = true;
2461 }
2462
2463 return r;
2464 }
2465
2466 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2467 with an arbitrary caller supplied DATA pointer. */
2468
2469 void
2470 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2471 {
2472 struct varobj_root *var_root, *var_root_next;
2473
2474 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2475
2476 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2477 {
2478 var_root_next = var_root->next;
2479
2480 (*func) (var_root->rootvar, data);
2481 }
2482 }
2483
2484 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2485 defined on globals. It is a helper for varobj_invalidate.
2486
2487 This function is called after changing the symbol file, in this case the
2488 pointers to "struct type" stored by the varobj are no longer valid. All
2489 varobj must be either re-evaluated, or marked as invalid here. */
2490
2491 static void
2492 varobj_invalidate_iter (struct varobj *var, void *unused)
2493 {
2494 /* global and floating var must be re-evaluated. */
2495 if (var->root->floating || var->root->valid_block == NULL)
2496 {
2497 struct varobj *tmp_var;
2498
2499 /* Try to create a varobj with same expression. If we succeed
2500 replace the old varobj, otherwise invalidate it. */
2501 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2502 USE_CURRENT_FRAME);
2503 if (tmp_var != NULL)
2504 {
2505 tmp_var->obj_name = var->obj_name;
2506 varobj_delete (var, 0);
2507 install_variable (tmp_var);
2508 }
2509 else
2510 var->root->is_valid = false;
2511 }
2512 else /* locals must be invalidated. */
2513 var->root->is_valid = false;
2514 }
2515
2516 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2517 are defined on globals.
2518 Invalidated varobjs will be always printed in_scope="invalid". */
2519
2520 void
2521 varobj_invalidate (void)
2522 {
2523 all_root_varobjs (varobj_invalidate_iter, NULL);
2524 }
2525
2526 void
2527 _initialize_varobj (void)
2528 {
2529 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2530
2531 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2532 &varobjdebug,
2533 _("Set varobj debugging."),
2534 _("Show varobj debugging."),
2535 _("When non-zero, varobj debugging is enabled."),
2536 NULL, show_varobjdebug,
2537 &setdebuglist, &showdebuglist);
2538 }
This page took 0.110396 seconds and 3 git commands to generate.