arm-tdep.c: Remove unused arm_displaced_step_copy_insn
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, int);
152
153 static void delete_variable_1 (int *, struct varobj *, int, int);
154
155 static int install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, char *);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static struct varobj *new_variable (void);
168
169 static struct varobj *new_root_variable (void);
170
171 static void free_variable (struct varobj *var);
172
173 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
174
175 static enum varobj_display_formats variable_default_display (struct varobj *);
176
177 static int update_type_if_necessary (struct varobj *var,
178 struct value *new_value);
179
180 static int install_new_value (struct varobj *var, struct value *value,
181 int initial);
182
183 /* Language-specific routines. */
184
185 static int number_of_children (const struct varobj *);
186
187 static char *name_of_variable (const struct varobj *);
188
189 static char *name_of_child (struct varobj *, int);
190
191 static struct value *value_of_root (struct varobj **var_handle, int *);
192
193 static struct value *value_of_child (const struct varobj *parent, int index);
194
195 static char *my_value_of_variable (struct varobj *var,
196 enum varobj_display_formats format);
197
198 static int is_root_p (const struct varobj *var);
199
200 static struct varobj *varobj_add_child (struct varobj *var,
201 struct varobj_item *item);
202
203 /* Private data */
204
205 /* Mappings of varobj_display_formats enums to gdb's format codes. */
206 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
207
208 /* Header of the list of root variable objects. */
209 static struct varobj_root *rootlist;
210
211 /* Prime number indicating the number of buckets in the hash table. */
212 /* A prime large enough to avoid too many collisions. */
213 #define VAROBJ_TABLE_SIZE 227
214
215 /* Pointer to the varobj hash table (built at run time). */
216 static struct vlist **varobj_table;
217
218 \f
219
220 /* API Implementation */
221 static int
222 is_root_p (const struct varobj *var)
223 {
224 return (var->root->rootvar == var);
225 }
226
227 #ifdef HAVE_PYTHON
228 /* Helper function to install a Python environment suitable for
229 use during operations on VAR. */
230 struct cleanup *
231 varobj_ensure_python_env (const struct varobj *var)
232 {
233 return ensure_python_env (var->root->exp->gdbarch,
234 var->root->exp->language_defn);
235 }
236 #endif
237
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
240
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
243 {
244 struct frame_info *frame = NULL;
245
246 if (frame_addr == (CORE_ADDR) 0)
247 return NULL;
248
249 for (frame = get_current_frame ();
250 frame != NULL;
251 frame = get_prev_frame (frame))
252 {
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
259
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
262
263 if (frame_base == frame_addr)
264 return frame;
265 }
266
267 return NULL;
268 }
269
270 /* Creates a varobj (not its children). */
271
272 struct varobj *
273 varobj_create (char *objname,
274 char *expression, CORE_ADDR frame, enum varobj_type type)
275 {
276 struct varobj *var;
277 struct cleanup *old_chain;
278
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
282
283 if (expression != NULL)
284 {
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
288 const char *p;
289 struct value *value = NULL;
290 CORE_ADDR pc;
291
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
294
295 if (has_stack_frames ())
296 {
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
300 else
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
307 function. */
308 fi = find_frame_addr_in_frame_chain (frame);
309 }
310 else
311 fi = NULL;
312
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
316
317 pc = 0;
318 block = NULL;
319 if (fi != NULL)
320 {
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
323 }
324
325 p = expression;
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
329 TRY
330 {
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
332 }
333
334 CATCH (except, RETURN_MASK_ERROR)
335 {
336 do_cleanups (old_chain);
337 return NULL;
338 }
339 END_CATCH
340
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
345 {
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
349 return NULL;
350 }
351
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = xstrdup (expression);
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = xstrdup (expression);
357
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
362 if (innermost_block)
363 {
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
368 if (fi == NULL)
369 error (_("Failed to find the specified frame"));
370
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
374 select_frame (fi);
375 }
376
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
380 TRY
381 {
382 value = evaluate_expression (var->root->exp);
383 }
384 CATCH (except, RETURN_MASK_ERROR)
385 {
386 /* Error getting the value. Try to at least get the
387 right type. */
388 struct value *type_only_value = evaluate_type (var->root->exp);
389
390 var->type = value_type (type_only_value);
391 }
392 END_CATCH
393
394 if (value != NULL)
395 {
396 int real_type_found = 0;
397
398 var->type = value_actual_type (value, 0, &real_type_found);
399 if (real_type_found)
400 value = value_cast (var->type, value);
401 }
402
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
405
406 install_new_value (var, value, 1 /* Initial assignment */);
407
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
410
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
414 }
415
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
418
419 if ((var != NULL) && (objname != NULL))
420 {
421 var->obj_name = xstrdup (objname);
422
423 /* If a varobj name is duplicated, the install will fail so
424 we must cleanup. */
425 if (!install_variable (var))
426 {
427 do_cleanups (old_chain);
428 return NULL;
429 }
430 }
431
432 discard_cleanups (old_chain);
433 return var;
434 }
435
436 /* Generates an unique name that can be used for a varobj. */
437
438 char *
439 varobj_gen_name (void)
440 {
441 static int id = 0;
442 char *obj_name;
443
444 /* Generate a name for this object. */
445 id++;
446 obj_name = xstrprintf ("var%d", id);
447
448 return obj_name;
449 }
450
451 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
452 error if OBJNAME cannot be found. */
453
454 struct varobj *
455 varobj_get_handle (char *objname)
456 {
457 struct vlist *cv;
458 const char *chp;
459 unsigned int index = 0;
460 unsigned int i = 1;
461
462 for (chp = objname; *chp; chp++)
463 {
464 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
465 }
466
467 cv = *(varobj_table + index);
468 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
469 cv = cv->next;
470
471 if (cv == NULL)
472 error (_("Variable object not found"));
473
474 return cv->var;
475 }
476
477 /* Given the handle, return the name of the object. */
478
479 char *
480 varobj_get_objname (const struct varobj *var)
481 {
482 return var->obj_name;
483 }
484
485 /* Given the handle, return the expression represented by the object. The
486 result must be freed by the caller. */
487
488 char *
489 varobj_get_expression (const struct varobj *var)
490 {
491 return name_of_variable (var);
492 }
493
494 /* See varobj.h. */
495
496 int
497 varobj_delete (struct varobj *var, int only_children)
498 {
499 return delete_variable (var, only_children);
500 }
501
502 #if HAVE_PYTHON
503
504 /* Convenience function for varobj_set_visualizer. Instantiate a
505 pretty-printer for a given value. */
506 static PyObject *
507 instantiate_pretty_printer (PyObject *constructor, struct value *value)
508 {
509 PyObject *val_obj = NULL;
510 PyObject *printer;
511
512 val_obj = value_to_value_object (value);
513 if (! val_obj)
514 return NULL;
515
516 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
517 Py_DECREF (val_obj);
518 return printer;
519 }
520
521 #endif
522
523 /* Set/Get variable object display format. */
524
525 enum varobj_display_formats
526 varobj_set_display_format (struct varobj *var,
527 enum varobj_display_formats format)
528 {
529 switch (format)
530 {
531 case FORMAT_NATURAL:
532 case FORMAT_BINARY:
533 case FORMAT_DECIMAL:
534 case FORMAT_HEXADECIMAL:
535 case FORMAT_OCTAL:
536 case FORMAT_ZHEXADECIMAL:
537 var->format = format;
538 break;
539
540 default:
541 var->format = variable_default_display (var);
542 }
543
544 if (varobj_value_is_changeable_p (var)
545 && var->value && !value_lazy (var->value))
546 {
547 xfree (var->print_value);
548 var->print_value = varobj_value_get_print_value (var->value,
549 var->format, var);
550 }
551
552 return var->format;
553 }
554
555 enum varobj_display_formats
556 varobj_get_display_format (const struct varobj *var)
557 {
558 return var->format;
559 }
560
561 char *
562 varobj_get_display_hint (const struct varobj *var)
563 {
564 char *result = NULL;
565
566 #if HAVE_PYTHON
567 struct cleanup *back_to;
568
569 if (!gdb_python_initialized)
570 return NULL;
571
572 back_to = varobj_ensure_python_env (var);
573
574 if (var->dynamic->pretty_printer != NULL)
575 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
576
577 do_cleanups (back_to);
578 #endif
579
580 return result;
581 }
582
583 /* Return true if the varobj has items after TO, false otherwise. */
584
585 int
586 varobj_has_more (const struct varobj *var, int to)
587 {
588 if (VEC_length (varobj_p, var->children) > to)
589 return 1;
590 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
591 && (var->dynamic->saved_item != NULL));
592 }
593
594 /* If the variable object is bound to a specific thread, that
595 is its evaluation can always be done in context of a frame
596 inside that thread, returns GDB id of the thread -- which
597 is always positive. Otherwise, returns -1. */
598 int
599 varobj_get_thread_id (const struct varobj *var)
600 {
601 if (var->root->valid_block && var->root->thread_id > 0)
602 return var->root->thread_id;
603 else
604 return -1;
605 }
606
607 void
608 varobj_set_frozen (struct varobj *var, int frozen)
609 {
610 /* When a variable is unfrozen, we don't fetch its value.
611 The 'not_fetched' flag remains set, so next -var-update
612 won't complain.
613
614 We don't fetch the value, because for structures the client
615 should do -var-update anyway. It would be bad to have different
616 client-size logic for structure and other types. */
617 var->frozen = frozen;
618 }
619
620 int
621 varobj_get_frozen (const struct varobj *var)
622 {
623 return var->frozen;
624 }
625
626 /* A helper function that restricts a range to what is actually
627 available in a VEC. This follows the usual rules for the meaning
628 of FROM and TO -- if either is negative, the entire range is
629 used. */
630
631 void
632 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
633 {
634 if (*from < 0 || *to < 0)
635 {
636 *from = 0;
637 *to = VEC_length (varobj_p, children);
638 }
639 else
640 {
641 if (*from > VEC_length (varobj_p, children))
642 *from = VEC_length (varobj_p, children);
643 if (*to > VEC_length (varobj_p, children))
644 *to = VEC_length (varobj_p, children);
645 if (*from > *to)
646 *from = *to;
647 }
648 }
649
650 /* A helper for update_dynamic_varobj_children that installs a new
651 child when needed. */
652
653 static void
654 install_dynamic_child (struct varobj *var,
655 VEC (varobj_p) **changed,
656 VEC (varobj_p) **type_changed,
657 VEC (varobj_p) **newobj,
658 VEC (varobj_p) **unchanged,
659 int *cchanged,
660 int index,
661 struct varobj_item *item)
662 {
663 if (VEC_length (varobj_p, var->children) < index + 1)
664 {
665 /* There's no child yet. */
666 struct varobj *child = varobj_add_child (var, item);
667
668 if (newobj)
669 {
670 VEC_safe_push (varobj_p, *newobj, child);
671 *cchanged = 1;
672 }
673 }
674 else
675 {
676 varobj_p existing = VEC_index (varobj_p, var->children, index);
677 int type_updated = update_type_if_necessary (existing, item->value);
678
679 if (type_updated)
680 {
681 if (type_changed)
682 VEC_safe_push (varobj_p, *type_changed, existing);
683 }
684 if (install_new_value (existing, item->value, 0))
685 {
686 if (!type_updated && changed)
687 VEC_safe_push (varobj_p, *changed, existing);
688 }
689 else if (!type_updated && unchanged)
690 VEC_safe_push (varobj_p, *unchanged, existing);
691 }
692 }
693
694 #if HAVE_PYTHON
695
696 static int
697 dynamic_varobj_has_child_method (const struct varobj *var)
698 {
699 struct cleanup *back_to;
700 PyObject *printer = var->dynamic->pretty_printer;
701 int result;
702
703 if (!gdb_python_initialized)
704 return 0;
705
706 back_to = varobj_ensure_python_env (var);
707 result = PyObject_HasAttr (printer, gdbpy_children_cst);
708 do_cleanups (back_to);
709 return result;
710 }
711 #endif
712
713 /* A factory for creating dynamic varobj's iterators. Returns an
714 iterator object suitable for iterating over VAR's children. */
715
716 static struct varobj_iter *
717 varobj_get_iterator (struct varobj *var)
718 {
719 #if HAVE_PYTHON
720 if (var->dynamic->pretty_printer)
721 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
722 #endif
723
724 gdb_assert_not_reached (_("\
725 requested an iterator from a non-dynamic varobj"));
726 }
727
728 /* Release and clear VAR's saved item, if any. */
729
730 static void
731 varobj_clear_saved_item (struct varobj_dynamic *var)
732 {
733 if (var->saved_item != NULL)
734 {
735 value_free (var->saved_item->value);
736 xfree (var->saved_item);
737 var->saved_item = NULL;
738 }
739 }
740
741 static int
742 update_dynamic_varobj_children (struct varobj *var,
743 VEC (varobj_p) **changed,
744 VEC (varobj_p) **type_changed,
745 VEC (varobj_p) **newobj,
746 VEC (varobj_p) **unchanged,
747 int *cchanged,
748 int update_children,
749 int from,
750 int to)
751 {
752 int i;
753
754 *cchanged = 0;
755
756 if (update_children || var->dynamic->child_iter == NULL)
757 {
758 varobj_iter_delete (var->dynamic->child_iter);
759 var->dynamic->child_iter = varobj_get_iterator (var);
760
761 varobj_clear_saved_item (var->dynamic);
762
763 i = 0;
764
765 if (var->dynamic->child_iter == NULL)
766 return 0;
767 }
768 else
769 i = VEC_length (varobj_p, var->children);
770
771 /* We ask for one extra child, so that MI can report whether there
772 are more children. */
773 for (; to < 0 || i < to + 1; ++i)
774 {
775 varobj_item *item;
776
777 /* See if there was a leftover from last time. */
778 if (var->dynamic->saved_item != NULL)
779 {
780 item = var->dynamic->saved_item;
781 var->dynamic->saved_item = NULL;
782 }
783 else
784 {
785 item = varobj_iter_next (var->dynamic->child_iter);
786 /* Release vitem->value so its lifetime is not bound to the
787 execution of a command. */
788 if (item != NULL && item->value != NULL)
789 release_value_or_incref (item->value);
790 }
791
792 if (item == NULL)
793 {
794 /* Iteration is done. Remove iterator from VAR. */
795 varobj_iter_delete (var->dynamic->child_iter);
796 var->dynamic->child_iter = NULL;
797 break;
798 }
799 /* We don't want to push the extra child on any report list. */
800 if (to < 0 || i < to)
801 {
802 int can_mention = from < 0 || i >= from;
803
804 install_dynamic_child (var, can_mention ? changed : NULL,
805 can_mention ? type_changed : NULL,
806 can_mention ? newobj : NULL,
807 can_mention ? unchanged : NULL,
808 can_mention ? cchanged : NULL, i,
809 item);
810
811 xfree (item);
812 }
813 else
814 {
815 var->dynamic->saved_item = item;
816
817 /* We want to truncate the child list just before this
818 element. */
819 break;
820 }
821 }
822
823 if (i < VEC_length (varobj_p, var->children))
824 {
825 int j;
826
827 *cchanged = 1;
828 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
829 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
830 VEC_truncate (varobj_p, var->children, i);
831 }
832
833 /* If there are fewer children than requested, note that the list of
834 children changed. */
835 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
836 *cchanged = 1;
837
838 var->num_children = VEC_length (varobj_p, var->children);
839
840 return 1;
841 }
842
843 int
844 varobj_get_num_children (struct varobj *var)
845 {
846 if (var->num_children == -1)
847 {
848 if (varobj_is_dynamic_p (var))
849 {
850 int dummy;
851
852 /* If we have a dynamic varobj, don't report -1 children.
853 So, try to fetch some children first. */
854 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
855 0, 0, 0);
856 }
857 else
858 var->num_children = number_of_children (var);
859 }
860
861 return var->num_children >= 0 ? var->num_children : 0;
862 }
863
864 /* Creates a list of the immediate children of a variable object;
865 the return code is the number of such children or -1 on error. */
866
867 VEC (varobj_p)*
868 varobj_list_children (struct varobj *var, int *from, int *to)
869 {
870 char *name;
871 int i, children_changed;
872
873 var->dynamic->children_requested = 1;
874
875 if (varobj_is_dynamic_p (var))
876 {
877 /* This, in theory, can result in the number of children changing without
878 frontend noticing. But well, calling -var-list-children on the same
879 varobj twice is not something a sane frontend would do. */
880 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
881 &children_changed, 0, 0, *to);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
884 }
885
886 if (var->num_children == -1)
887 var->num_children = number_of_children (var);
888
889 /* If that failed, give up. */
890 if (var->num_children == -1)
891 return var->children;
892
893 /* If we're called when the list of children is not yet initialized,
894 allocate enough elements in it. */
895 while (VEC_length (varobj_p, var->children) < var->num_children)
896 VEC_safe_push (varobj_p, var->children, NULL);
897
898 for (i = 0; i < var->num_children; i++)
899 {
900 varobj_p existing = VEC_index (varobj_p, var->children, i);
901
902 if (existing == NULL)
903 {
904 /* Either it's the first call to varobj_list_children for
905 this variable object, and the child was never created,
906 or it was explicitly deleted by the client. */
907 name = name_of_child (var, i);
908 existing = create_child (var, i, name);
909 VEC_replace (varobj_p, var->children, i, existing);
910 }
911 }
912
913 varobj_restrict_range (var->children, from, to);
914 return var->children;
915 }
916
917 static struct varobj *
918 varobj_add_child (struct varobj *var, struct varobj_item *item)
919 {
920 varobj_p v = create_child_with_value (var,
921 VEC_length (varobj_p, var->children),
922 item);
923
924 VEC_safe_push (varobj_p, var->children, v);
925 return v;
926 }
927
928 /* Obtain the type of an object Variable as a string similar to the one gdb
929 prints on the console. The caller is responsible for freeing the string.
930 */
931
932 char *
933 varobj_get_type (struct varobj *var)
934 {
935 /* For the "fake" variables, do not return a type. (Its type is
936 NULL, too.)
937 Do not return a type for invalid variables as well. */
938 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
939 return NULL;
940
941 return type_to_string (var->type);
942 }
943
944 /* Obtain the type of an object variable. */
945
946 struct type *
947 varobj_get_gdb_type (const struct varobj *var)
948 {
949 return var->type;
950 }
951
952 /* Is VAR a path expression parent, i.e., can it be used to construct
953 a valid path expression? */
954
955 static int
956 is_path_expr_parent (const struct varobj *var)
957 {
958 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
959 return var->root->lang_ops->is_path_expr_parent (var);
960 }
961
962 /* Is VAR a path expression parent, i.e., can it be used to construct
963 a valid path expression? By default we assume any VAR can be a path
964 parent. */
965
966 int
967 varobj_default_is_path_expr_parent (const struct varobj *var)
968 {
969 return 1;
970 }
971
972 /* Return the path expression parent for VAR. */
973
974 const struct varobj *
975 varobj_get_path_expr_parent (const struct varobj *var)
976 {
977 const struct varobj *parent = var;
978
979 while (!is_root_p (parent) && !is_path_expr_parent (parent))
980 parent = parent->parent;
981
982 return parent;
983 }
984
985 /* Return a pointer to the full rooted expression of varobj VAR.
986 If it has not been computed yet, compute it. */
987 char *
988 varobj_get_path_expr (const struct varobj *var)
989 {
990 if (var->path_expr == NULL)
991 {
992 /* For root varobjs, we initialize path_expr
993 when creating varobj, so here it should be
994 child varobj. */
995 struct varobj *mutable_var = (struct varobj *) var;
996 gdb_assert (!is_root_p (var));
997
998 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
999 }
1000
1001 return var->path_expr;
1002 }
1003
1004 const struct language_defn *
1005 varobj_get_language (const struct varobj *var)
1006 {
1007 return var->root->exp->language_defn;
1008 }
1009
1010 int
1011 varobj_get_attributes (const struct varobj *var)
1012 {
1013 int attributes = 0;
1014
1015 if (varobj_editable_p (var))
1016 /* FIXME: define masks for attributes. */
1017 attributes |= 0x00000001; /* Editable */
1018
1019 return attributes;
1020 }
1021
1022 /* Return true if VAR is a dynamic varobj. */
1023
1024 int
1025 varobj_is_dynamic_p (const struct varobj *var)
1026 {
1027 return var->dynamic->pretty_printer != NULL;
1028 }
1029
1030 char *
1031 varobj_get_formatted_value (struct varobj *var,
1032 enum varobj_display_formats format)
1033 {
1034 return my_value_of_variable (var, format);
1035 }
1036
1037 char *
1038 varobj_get_value (struct varobj *var)
1039 {
1040 return my_value_of_variable (var, var->format);
1041 }
1042
1043 /* Set the value of an object variable (if it is editable) to the
1044 value of the given expression. */
1045 /* Note: Invokes functions that can call error(). */
1046
1047 int
1048 varobj_set_value (struct varobj *var, char *expression)
1049 {
1050 struct value *val = NULL; /* Initialize to keep gcc happy. */
1051 /* The argument "expression" contains the variable's new value.
1052 We need to first construct a legal expression for this -- ugh! */
1053 /* Does this cover all the bases? */
1054 struct expression *exp;
1055 struct value *value = NULL; /* Initialize to keep gcc happy. */
1056 int saved_input_radix = input_radix;
1057 const char *s = expression;
1058
1059 gdb_assert (varobj_editable_p (var));
1060
1061 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1062 exp = parse_exp_1 (&s, 0, 0, 0);
1063 TRY
1064 {
1065 value = evaluate_expression (exp);
1066 }
1067
1068 CATCH (except, RETURN_MASK_ERROR)
1069 {
1070 /* We cannot proceed without a valid expression. */
1071 xfree (exp);
1072 return 0;
1073 }
1074 END_CATCH
1075
1076 /* All types that are editable must also be changeable. */
1077 gdb_assert (varobj_value_is_changeable_p (var));
1078
1079 /* The value of a changeable variable object must not be lazy. */
1080 gdb_assert (!value_lazy (var->value));
1081
1082 /* Need to coerce the input. We want to check if the
1083 value of the variable object will be different
1084 after assignment, and the first thing value_assign
1085 does is coerce the input.
1086 For example, if we are assigning an array to a pointer variable we
1087 should compare the pointer with the array's address, not with the
1088 array's content. */
1089 value = coerce_array (value);
1090
1091 /* The new value may be lazy. value_assign, or
1092 rather value_contents, will take care of this. */
1093 TRY
1094 {
1095 val = value_assign (var->value, value);
1096 }
1097
1098 CATCH (except, RETURN_MASK_ERROR)
1099 {
1100 return 0;
1101 }
1102 END_CATCH
1103
1104 /* If the value has changed, record it, so that next -var-update can
1105 report this change. If a variable had a value of '1', we've set it
1106 to '333' and then set again to '1', when -var-update will report this
1107 variable as changed -- because the first assignment has set the
1108 'updated' flag. There's no need to optimize that, because return value
1109 of -var-update should be considered an approximation. */
1110 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1111 input_radix = saved_input_radix;
1112 return 1;
1113 }
1114
1115 #if HAVE_PYTHON
1116
1117 /* A helper function to install a constructor function and visualizer
1118 in a varobj_dynamic. */
1119
1120 static void
1121 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1122 PyObject *visualizer)
1123 {
1124 Py_XDECREF (var->constructor);
1125 var->constructor = constructor;
1126
1127 Py_XDECREF (var->pretty_printer);
1128 var->pretty_printer = visualizer;
1129
1130 varobj_iter_delete (var->child_iter);
1131 var->child_iter = NULL;
1132 }
1133
1134 /* Install the default visualizer for VAR. */
1135
1136 static void
1137 install_default_visualizer (struct varobj *var)
1138 {
1139 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1140 if (CPLUS_FAKE_CHILD (var))
1141 return;
1142
1143 if (pretty_printing)
1144 {
1145 PyObject *pretty_printer = NULL;
1146
1147 if (var->value)
1148 {
1149 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1150 if (! pretty_printer)
1151 {
1152 gdbpy_print_stack ();
1153 error (_("Cannot instantiate printer for default visualizer"));
1154 }
1155 }
1156
1157 if (pretty_printer == Py_None)
1158 {
1159 Py_DECREF (pretty_printer);
1160 pretty_printer = NULL;
1161 }
1162
1163 install_visualizer (var->dynamic, NULL, pretty_printer);
1164 }
1165 }
1166
1167 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1168 make a new object. */
1169
1170 static void
1171 construct_visualizer (struct varobj *var, PyObject *constructor)
1172 {
1173 PyObject *pretty_printer;
1174
1175 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1176 if (CPLUS_FAKE_CHILD (var))
1177 return;
1178
1179 Py_INCREF (constructor);
1180 if (constructor == Py_None)
1181 pretty_printer = NULL;
1182 else
1183 {
1184 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1185 if (! pretty_printer)
1186 {
1187 gdbpy_print_stack ();
1188 Py_DECREF (constructor);
1189 constructor = Py_None;
1190 Py_INCREF (constructor);
1191 }
1192
1193 if (pretty_printer == Py_None)
1194 {
1195 Py_DECREF (pretty_printer);
1196 pretty_printer = NULL;
1197 }
1198 }
1199
1200 install_visualizer (var->dynamic, constructor, pretty_printer);
1201 }
1202
1203 #endif /* HAVE_PYTHON */
1204
1205 /* A helper function for install_new_value. This creates and installs
1206 a visualizer for VAR, if appropriate. */
1207
1208 static void
1209 install_new_value_visualizer (struct varobj *var)
1210 {
1211 #if HAVE_PYTHON
1212 /* If the constructor is None, then we want the raw value. If VAR
1213 does not have a value, just skip this. */
1214 if (!gdb_python_initialized)
1215 return;
1216
1217 if (var->dynamic->constructor != Py_None && var->value != NULL)
1218 {
1219 struct cleanup *cleanup;
1220
1221 cleanup = varobj_ensure_python_env (var);
1222
1223 if (var->dynamic->constructor == NULL)
1224 install_default_visualizer (var);
1225 else
1226 construct_visualizer (var, var->dynamic->constructor);
1227
1228 do_cleanups (cleanup);
1229 }
1230 #else
1231 /* Do nothing. */
1232 #endif
1233 }
1234
1235 /* When using RTTI to determine variable type it may be changed in runtime when
1236 the variable value is changed. This function checks whether type of varobj
1237 VAR will change when a new value NEW_VALUE is assigned and if it is so
1238 updates the type of VAR. */
1239
1240 static int
1241 update_type_if_necessary (struct varobj *var, struct value *new_value)
1242 {
1243 if (new_value)
1244 {
1245 struct value_print_options opts;
1246
1247 get_user_print_options (&opts);
1248 if (opts.objectprint)
1249 {
1250 struct type *new_type;
1251 char *curr_type_str, *new_type_str;
1252 int type_name_changed;
1253
1254 new_type = value_actual_type (new_value, 0, 0);
1255 new_type_str = type_to_string (new_type);
1256 curr_type_str = varobj_get_type (var);
1257 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1258 xfree (curr_type_str);
1259 xfree (new_type_str);
1260
1261 if (type_name_changed)
1262 {
1263 var->type = new_type;
1264
1265 /* This information may be not valid for a new type. */
1266 varobj_delete (var, 1);
1267 VEC_free (varobj_p, var->children);
1268 var->num_children = -1;
1269 return 1;
1270 }
1271 }
1272 }
1273
1274 return 0;
1275 }
1276
1277 /* Assign a new value to a variable object. If INITIAL is non-zero,
1278 this is the first assignement after the variable object was just
1279 created, or changed type. In that case, just assign the value
1280 and return 0.
1281 Otherwise, assign the new value, and return 1 if the value is
1282 different from the current one, 0 otherwise. The comparison is
1283 done on textual representation of value. Therefore, some types
1284 need not be compared. E.g. for structures the reported value is
1285 always "{...}", so no comparison is necessary here. If the old
1286 value was NULL and new one is not, or vice versa, we always return 1.
1287
1288 The VALUE parameter should not be released -- the function will
1289 take care of releasing it when needed. */
1290 static int
1291 install_new_value (struct varobj *var, struct value *value, int initial)
1292 {
1293 int changeable;
1294 int need_to_fetch;
1295 int changed = 0;
1296 int intentionally_not_fetched = 0;
1297 char *print_value = NULL;
1298
1299 /* We need to know the varobj's type to decide if the value should
1300 be fetched or not. C++ fake children (public/protected/private)
1301 don't have a type. */
1302 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1303 changeable = varobj_value_is_changeable_p (var);
1304
1305 /* If the type has custom visualizer, we consider it to be always
1306 changeable. FIXME: need to make sure this behaviour will not
1307 mess up read-sensitive values. */
1308 if (var->dynamic->pretty_printer != NULL)
1309 changeable = 1;
1310
1311 need_to_fetch = changeable;
1312
1313 /* We are not interested in the address of references, and given
1314 that in C++ a reference is not rebindable, it cannot
1315 meaningfully change. So, get hold of the real value. */
1316 if (value)
1317 value = coerce_ref (value);
1318
1319 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1320 /* For unions, we need to fetch the value implicitly because
1321 of implementation of union member fetch. When gdb
1322 creates a value for a field and the value of the enclosing
1323 structure is not lazy, it immediately copies the necessary
1324 bytes from the enclosing values. If the enclosing value is
1325 lazy, the call to value_fetch_lazy on the field will read
1326 the data from memory. For unions, that means we'll read the
1327 same memory more than once, which is not desirable. So
1328 fetch now. */
1329 need_to_fetch = 1;
1330
1331 /* The new value might be lazy. If the type is changeable,
1332 that is we'll be comparing values of this type, fetch the
1333 value now. Otherwise, on the next update the old value
1334 will be lazy, which means we've lost that old value. */
1335 if (need_to_fetch && value && value_lazy (value))
1336 {
1337 const struct varobj *parent = var->parent;
1338 int frozen = var->frozen;
1339
1340 for (; !frozen && parent; parent = parent->parent)
1341 frozen |= parent->frozen;
1342
1343 if (frozen && initial)
1344 {
1345 /* For variables that are frozen, or are children of frozen
1346 variables, we don't do fetch on initial assignment.
1347 For non-initial assignemnt we do the fetch, since it means we're
1348 explicitly asked to compare the new value with the old one. */
1349 intentionally_not_fetched = 1;
1350 }
1351 else
1352 {
1353
1354 TRY
1355 {
1356 value_fetch_lazy (value);
1357 }
1358
1359 CATCH (except, RETURN_MASK_ERROR)
1360 {
1361 /* Set the value to NULL, so that for the next -var-update,
1362 we don't try to compare the new value with this value,
1363 that we couldn't even read. */
1364 value = NULL;
1365 }
1366 END_CATCH
1367 }
1368 }
1369
1370 /* Get a reference now, before possibly passing it to any Python
1371 code that might release it. */
1372 if (value != NULL)
1373 value_incref (value);
1374
1375 /* Below, we'll be comparing string rendering of old and new
1376 values. Don't get string rendering if the value is
1377 lazy -- if it is, the code above has decided that the value
1378 should not be fetched. */
1379 if (value != NULL && !value_lazy (value)
1380 && var->dynamic->pretty_printer == NULL)
1381 print_value = varobj_value_get_print_value (value, var->format, var);
1382
1383 /* If the type is changeable, compare the old and the new values.
1384 If this is the initial assignment, we don't have any old value
1385 to compare with. */
1386 if (!initial && changeable)
1387 {
1388 /* If the value of the varobj was changed by -var-set-value,
1389 then the value in the varobj and in the target is the same.
1390 However, that value is different from the value that the
1391 varobj had after the previous -var-update. So need to the
1392 varobj as changed. */
1393 if (var->updated)
1394 {
1395 changed = 1;
1396 }
1397 else if (var->dynamic->pretty_printer == NULL)
1398 {
1399 /* Try to compare the values. That requires that both
1400 values are non-lazy. */
1401 if (var->not_fetched && value_lazy (var->value))
1402 {
1403 /* This is a frozen varobj and the value was never read.
1404 Presumably, UI shows some "never read" indicator.
1405 Now that we've fetched the real value, we need to report
1406 this varobj as changed so that UI can show the real
1407 value. */
1408 changed = 1;
1409 }
1410 else if (var->value == NULL && value == NULL)
1411 /* Equal. */
1412 ;
1413 else if (var->value == NULL || value == NULL)
1414 {
1415 changed = 1;
1416 }
1417 else
1418 {
1419 gdb_assert (!value_lazy (var->value));
1420 gdb_assert (!value_lazy (value));
1421
1422 gdb_assert (var->print_value != NULL && print_value != NULL);
1423 if (strcmp (var->print_value, print_value) != 0)
1424 changed = 1;
1425 }
1426 }
1427 }
1428
1429 if (!initial && !changeable)
1430 {
1431 /* For values that are not changeable, we don't compare the values.
1432 However, we want to notice if a value was not NULL and now is NULL,
1433 or vise versa, so that we report when top-level varobjs come in scope
1434 and leave the scope. */
1435 changed = (var->value != NULL) != (value != NULL);
1436 }
1437
1438 /* We must always keep the new value, since children depend on it. */
1439 if (var->value != NULL && var->value != value)
1440 value_free (var->value);
1441 var->value = value;
1442 if (value && value_lazy (value) && intentionally_not_fetched)
1443 var->not_fetched = 1;
1444 else
1445 var->not_fetched = 0;
1446 var->updated = 0;
1447
1448 install_new_value_visualizer (var);
1449
1450 /* If we installed a pretty-printer, re-compare the printed version
1451 to see if the variable changed. */
1452 if (var->dynamic->pretty_printer != NULL)
1453 {
1454 xfree (print_value);
1455 print_value = varobj_value_get_print_value (var->value, var->format,
1456 var);
1457 if ((var->print_value == NULL && print_value != NULL)
1458 || (var->print_value != NULL && print_value == NULL)
1459 || (var->print_value != NULL && print_value != NULL
1460 && strcmp (var->print_value, print_value) != 0))
1461 changed = 1;
1462 }
1463 if (var->print_value)
1464 xfree (var->print_value);
1465 var->print_value = print_value;
1466
1467 gdb_assert (!var->value || value_type (var->value));
1468
1469 return changed;
1470 }
1471
1472 /* Return the requested range for a varobj. VAR is the varobj. FROM
1473 and TO are out parameters; *FROM and *TO will be set to the
1474 selected sub-range of VAR. If no range was selected using
1475 -var-set-update-range, then both will be -1. */
1476 void
1477 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1478 {
1479 *from = var->from;
1480 *to = var->to;
1481 }
1482
1483 /* Set the selected sub-range of children of VAR to start at index
1484 FROM and end at index TO. If either FROM or TO is less than zero,
1485 this is interpreted as a request for all children. */
1486 void
1487 varobj_set_child_range (struct varobj *var, int from, int to)
1488 {
1489 var->from = from;
1490 var->to = to;
1491 }
1492
1493 void
1494 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1495 {
1496 #if HAVE_PYTHON
1497 PyObject *mainmod, *globals, *constructor;
1498 struct cleanup *back_to;
1499
1500 if (!gdb_python_initialized)
1501 return;
1502
1503 back_to = varobj_ensure_python_env (var);
1504
1505 mainmod = PyImport_AddModule ("__main__");
1506 globals = PyModule_GetDict (mainmod);
1507 Py_INCREF (globals);
1508 make_cleanup_py_decref (globals);
1509
1510 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1511
1512 if (! constructor)
1513 {
1514 gdbpy_print_stack ();
1515 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1516 }
1517
1518 construct_visualizer (var, constructor);
1519 Py_XDECREF (constructor);
1520
1521 /* If there are any children now, wipe them. */
1522 varobj_delete (var, 1 /* children only */);
1523 var->num_children = -1;
1524
1525 do_cleanups (back_to);
1526 #else
1527 error (_("Python support required"));
1528 #endif
1529 }
1530
1531 /* If NEW_VALUE is the new value of the given varobj (var), return
1532 non-zero if var has mutated. In other words, if the type of
1533 the new value is different from the type of the varobj's old
1534 value.
1535
1536 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1537
1538 static int
1539 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1540 struct type *new_type)
1541 {
1542 /* If we haven't previously computed the number of children in var,
1543 it does not matter from the front-end's perspective whether
1544 the type has mutated or not. For all intents and purposes,
1545 it has not mutated. */
1546 if (var->num_children < 0)
1547 return 0;
1548
1549 if (var->root->lang_ops->value_has_mutated)
1550 {
1551 /* The varobj module, when installing new values, explicitly strips
1552 references, saying that we're not interested in those addresses.
1553 But detection of mutation happens before installing the new
1554 value, so our value may be a reference that we need to strip
1555 in order to remain consistent. */
1556 if (new_value != NULL)
1557 new_value = coerce_ref (new_value);
1558 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1559 }
1560 else
1561 return 0;
1562 }
1563
1564 /* Update the values for a variable and its children. This is a
1565 two-pronged attack. First, re-parse the value for the root's
1566 expression to see if it's changed. Then go all the way
1567 through its children, reconstructing them and noting if they've
1568 changed.
1569
1570 The EXPLICIT parameter specifies if this call is result
1571 of MI request to update this specific variable, or
1572 result of implicit -var-update *. For implicit request, we don't
1573 update frozen variables.
1574
1575 NOTE: This function may delete the caller's varobj. If it
1576 returns TYPE_CHANGED, then it has done this and VARP will be modified
1577 to point to the new varobj. */
1578
1579 VEC(varobj_update_result) *
1580 varobj_update (struct varobj **varp, int is_explicit)
1581 {
1582 int type_changed = 0;
1583 int i;
1584 struct value *newobj;
1585 VEC (varobj_update_result) *stack = NULL;
1586 VEC (varobj_update_result) *result = NULL;
1587
1588 /* Frozen means frozen -- we don't check for any change in
1589 this varobj, including its going out of scope, or
1590 changing type. One use case for frozen varobjs is
1591 retaining previously evaluated expressions, and we don't
1592 want them to be reevaluated at all. */
1593 if (!is_explicit && (*varp)->frozen)
1594 return result;
1595
1596 if (!(*varp)->root->is_valid)
1597 {
1598 varobj_update_result r = {0};
1599
1600 r.varobj = *varp;
1601 r.status = VAROBJ_INVALID;
1602 VEC_safe_push (varobj_update_result, result, &r);
1603 return result;
1604 }
1605
1606 if ((*varp)->root->rootvar == *varp)
1607 {
1608 varobj_update_result r = {0};
1609
1610 r.varobj = *varp;
1611 r.status = VAROBJ_IN_SCOPE;
1612
1613 /* Update the root variable. value_of_root can return NULL
1614 if the variable is no longer around, i.e. we stepped out of
1615 the frame in which a local existed. We are letting the
1616 value_of_root variable dispose of the varobj if the type
1617 has changed. */
1618 newobj = value_of_root (varp, &type_changed);
1619 if (update_type_if_necessary(*varp, newobj))
1620 type_changed = 1;
1621 r.varobj = *varp;
1622 r.type_changed = type_changed;
1623 if (install_new_value ((*varp), newobj, type_changed))
1624 r.changed = 1;
1625
1626 if (newobj == NULL)
1627 r.status = VAROBJ_NOT_IN_SCOPE;
1628 r.value_installed = 1;
1629
1630 if (r.status == VAROBJ_NOT_IN_SCOPE)
1631 {
1632 if (r.type_changed || r.changed)
1633 VEC_safe_push (varobj_update_result, result, &r);
1634 return result;
1635 }
1636
1637 VEC_safe_push (varobj_update_result, stack, &r);
1638 }
1639 else
1640 {
1641 varobj_update_result r = {0};
1642
1643 r.varobj = *varp;
1644 VEC_safe_push (varobj_update_result, stack, &r);
1645 }
1646
1647 /* Walk through the children, reconstructing them all. */
1648 while (!VEC_empty (varobj_update_result, stack))
1649 {
1650 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1651 struct varobj *v = r.varobj;
1652
1653 VEC_pop (varobj_update_result, stack);
1654
1655 /* Update this variable, unless it's a root, which is already
1656 updated. */
1657 if (!r.value_installed)
1658 {
1659 struct type *new_type;
1660
1661 newobj = value_of_child (v->parent, v->index);
1662 if (update_type_if_necessary(v, newobj))
1663 r.type_changed = 1;
1664 if (newobj)
1665 new_type = value_type (newobj);
1666 else
1667 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1668
1669 if (varobj_value_has_mutated (v, newobj, new_type))
1670 {
1671 /* The children are no longer valid; delete them now.
1672 Report the fact that its type changed as well. */
1673 varobj_delete (v, 1 /* only_children */);
1674 v->num_children = -1;
1675 v->to = -1;
1676 v->from = -1;
1677 v->type = new_type;
1678 r.type_changed = 1;
1679 }
1680
1681 if (install_new_value (v, newobj, r.type_changed))
1682 {
1683 r.changed = 1;
1684 v->updated = 0;
1685 }
1686 }
1687
1688 /* We probably should not get children of a dynamic varobj, but
1689 for which -var-list-children was never invoked. */
1690 if (varobj_is_dynamic_p (v))
1691 {
1692 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1693 VEC (varobj_p) *newobj = 0;
1694 int i, children_changed = 0;
1695
1696 if (v->frozen)
1697 continue;
1698
1699 if (!v->dynamic->children_requested)
1700 {
1701 int dummy;
1702
1703 /* If we initially did not have potential children, but
1704 now we do, consider the varobj as changed.
1705 Otherwise, if children were never requested, consider
1706 it as unchanged -- presumably, such varobj is not yet
1707 expanded in the UI, so we need not bother getting
1708 it. */
1709 if (!varobj_has_more (v, 0))
1710 {
1711 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1712 &dummy, 0, 0, 0);
1713 if (varobj_has_more (v, 0))
1714 r.changed = 1;
1715 }
1716
1717 if (r.changed)
1718 VEC_safe_push (varobj_update_result, result, &r);
1719
1720 continue;
1721 }
1722
1723 /* If update_dynamic_varobj_children returns 0, then we have
1724 a non-conforming pretty-printer, so we skip it. */
1725 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1726 &unchanged, &children_changed, 1,
1727 v->from, v->to))
1728 {
1729 if (children_changed || newobj)
1730 {
1731 r.children_changed = 1;
1732 r.newobj = newobj;
1733 }
1734 /* Push in reverse order so that the first child is
1735 popped from the work stack first, and so will be
1736 added to result first. This does not affect
1737 correctness, just "nicer". */
1738 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1739 {
1740 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1741 varobj_update_result r = {0};
1742
1743 /* Type may change only if value was changed. */
1744 r.varobj = tmp;
1745 r.changed = 1;
1746 r.type_changed = 1;
1747 r.value_installed = 1;
1748 VEC_safe_push (varobj_update_result, stack, &r);
1749 }
1750 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1751 {
1752 varobj_p tmp = VEC_index (varobj_p, changed, i);
1753 varobj_update_result r = {0};
1754
1755 r.varobj = tmp;
1756 r.changed = 1;
1757 r.value_installed = 1;
1758 VEC_safe_push (varobj_update_result, stack, &r);
1759 }
1760 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1761 {
1762 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1763
1764 if (!tmp->frozen)
1765 {
1766 varobj_update_result r = {0};
1767
1768 r.varobj = tmp;
1769 r.value_installed = 1;
1770 VEC_safe_push (varobj_update_result, stack, &r);
1771 }
1772 }
1773 if (r.changed || r.children_changed)
1774 VEC_safe_push (varobj_update_result, result, &r);
1775
1776 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1777 because NEW has been put into the result vector. */
1778 VEC_free (varobj_p, changed);
1779 VEC_free (varobj_p, type_changed);
1780 VEC_free (varobj_p, unchanged);
1781
1782 continue;
1783 }
1784 }
1785
1786 /* Push any children. Use reverse order so that the first
1787 child is popped from the work stack first, and so
1788 will be added to result first. This does not
1789 affect correctness, just "nicer". */
1790 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1791 {
1792 varobj_p c = VEC_index (varobj_p, v->children, i);
1793
1794 /* Child may be NULL if explicitly deleted by -var-delete. */
1795 if (c != NULL && !c->frozen)
1796 {
1797 varobj_update_result r = {0};
1798
1799 r.varobj = c;
1800 VEC_safe_push (varobj_update_result, stack, &r);
1801 }
1802 }
1803
1804 if (r.changed || r.type_changed)
1805 VEC_safe_push (varobj_update_result, result, &r);
1806 }
1807
1808 VEC_free (varobj_update_result, stack);
1809
1810 return result;
1811 }
1812 \f
1813
1814 /* Helper functions */
1815
1816 /*
1817 * Variable object construction/destruction
1818 */
1819
1820 static int
1821 delete_variable (struct varobj *var, int only_children_p)
1822 {
1823 int delcount = 0;
1824
1825 delete_variable_1 (&delcount, var, only_children_p,
1826 1 /* remove_from_parent_p */ );
1827
1828 return delcount;
1829 }
1830
1831 /* Delete the variable object VAR and its children. */
1832 /* IMPORTANT NOTE: If we delete a variable which is a child
1833 and the parent is not removed we dump core. It must be always
1834 initially called with remove_from_parent_p set. */
1835 static void
1836 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1837 int remove_from_parent_p)
1838 {
1839 int i;
1840
1841 /* Delete any children of this variable, too. */
1842 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1843 {
1844 varobj_p child = VEC_index (varobj_p, var->children, i);
1845
1846 if (!child)
1847 continue;
1848 if (!remove_from_parent_p)
1849 child->parent = NULL;
1850 delete_variable_1 (delcountp, child, 0, only_children_p);
1851 }
1852 VEC_free (varobj_p, var->children);
1853
1854 /* if we were called to delete only the children we are done here. */
1855 if (only_children_p)
1856 return;
1857
1858 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1859 /* If the name is null, this is a temporary variable, that has not
1860 yet been installed, don't report it, it belongs to the caller... */
1861 if (var->obj_name != NULL)
1862 {
1863 *delcountp = *delcountp + 1;
1864 }
1865
1866 /* If this variable has a parent, remove it from its parent's list. */
1867 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1868 (as indicated by remove_from_parent_p) we don't bother doing an
1869 expensive list search to find the element to remove when we are
1870 discarding the list afterwards. */
1871 if ((remove_from_parent_p) && (var->parent != NULL))
1872 {
1873 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1874 }
1875
1876 if (var->obj_name != NULL)
1877 uninstall_variable (var);
1878
1879 /* Free memory associated with this variable. */
1880 free_variable (var);
1881 }
1882
1883 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1884 static int
1885 install_variable (struct varobj *var)
1886 {
1887 struct vlist *cv;
1888 struct vlist *newvl;
1889 const char *chp;
1890 unsigned int index = 0;
1891 unsigned int i = 1;
1892
1893 for (chp = var->obj_name; *chp; chp++)
1894 {
1895 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1896 }
1897
1898 cv = *(varobj_table + index);
1899 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1900 cv = cv->next;
1901
1902 if (cv != NULL)
1903 error (_("Duplicate variable object name"));
1904
1905 /* Add varobj to hash table. */
1906 newvl = XNEW (struct vlist);
1907 newvl->next = *(varobj_table + index);
1908 newvl->var = var;
1909 *(varobj_table + index) = newvl;
1910
1911 /* If root, add varobj to root list. */
1912 if (is_root_p (var))
1913 {
1914 /* Add to list of root variables. */
1915 if (rootlist == NULL)
1916 var->root->next = NULL;
1917 else
1918 var->root->next = rootlist;
1919 rootlist = var->root;
1920 }
1921
1922 return 1; /* OK */
1923 }
1924
1925 /* Unistall the object VAR. */
1926 static void
1927 uninstall_variable (struct varobj *var)
1928 {
1929 struct vlist *cv;
1930 struct vlist *prev;
1931 struct varobj_root *cr;
1932 struct varobj_root *prer;
1933 const char *chp;
1934 unsigned int index = 0;
1935 unsigned int i = 1;
1936
1937 /* Remove varobj from hash table. */
1938 for (chp = var->obj_name; *chp; chp++)
1939 {
1940 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1941 }
1942
1943 cv = *(varobj_table + index);
1944 prev = NULL;
1945 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1946 {
1947 prev = cv;
1948 cv = cv->next;
1949 }
1950
1951 if (varobjdebug)
1952 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1953
1954 if (cv == NULL)
1955 {
1956 warning
1957 ("Assertion failed: Could not find variable object \"%s\" to delete",
1958 var->obj_name);
1959 return;
1960 }
1961
1962 if (prev == NULL)
1963 *(varobj_table + index) = cv->next;
1964 else
1965 prev->next = cv->next;
1966
1967 xfree (cv);
1968
1969 /* If root, remove varobj from root list. */
1970 if (is_root_p (var))
1971 {
1972 /* Remove from list of root variables. */
1973 if (rootlist == var->root)
1974 rootlist = var->root->next;
1975 else
1976 {
1977 prer = NULL;
1978 cr = rootlist;
1979 while ((cr != NULL) && (cr->rootvar != var))
1980 {
1981 prer = cr;
1982 cr = cr->next;
1983 }
1984 if (cr == NULL)
1985 {
1986 warning (_("Assertion failed: Could not find "
1987 "varobj \"%s\" in root list"),
1988 var->obj_name);
1989 return;
1990 }
1991 if (prer == NULL)
1992 rootlist = NULL;
1993 else
1994 prer->next = cr->next;
1995 }
1996 }
1997
1998 }
1999
2000 /* Create and install a child of the parent of the given name.
2001
2002 The created VAROBJ takes ownership of the allocated NAME. */
2003
2004 static struct varobj *
2005 create_child (struct varobj *parent, int index, char *name)
2006 {
2007 struct varobj_item item;
2008
2009 item.name = name;
2010 item.value = value_of_child (parent, index);
2011
2012 return create_child_with_value (parent, index, &item);
2013 }
2014
2015 static struct varobj *
2016 create_child_with_value (struct varobj *parent, int index,
2017 struct varobj_item *item)
2018 {
2019 struct varobj *child;
2020 char *childs_name;
2021
2022 child = new_variable ();
2023
2024 /* NAME is allocated by caller. */
2025 child->name = item->name;
2026 child->index = index;
2027 child->parent = parent;
2028 child->root = parent->root;
2029
2030 if (varobj_is_anonymous_child (child))
2031 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2032 else
2033 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2034 child->obj_name = childs_name;
2035
2036 install_variable (child);
2037
2038 /* Compute the type of the child. Must do this before
2039 calling install_new_value. */
2040 if (item->value != NULL)
2041 /* If the child had no evaluation errors, var->value
2042 will be non-NULL and contain a valid type. */
2043 child->type = value_actual_type (item->value, 0, NULL);
2044 else
2045 /* Otherwise, we must compute the type. */
2046 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2047 child->index);
2048 install_new_value (child, item->value, 1);
2049
2050 return child;
2051 }
2052 \f
2053
2054 /*
2055 * Miscellaneous utility functions.
2056 */
2057
2058 /* Allocate memory and initialize a new variable. */
2059 static struct varobj *
2060 new_variable (void)
2061 {
2062 struct varobj *var;
2063
2064 var = XNEW (struct varobj);
2065 var->name = NULL;
2066 var->path_expr = NULL;
2067 var->obj_name = NULL;
2068 var->index = -1;
2069 var->type = NULL;
2070 var->value = NULL;
2071 var->num_children = -1;
2072 var->parent = NULL;
2073 var->children = NULL;
2074 var->format = FORMAT_NATURAL;
2075 var->root = NULL;
2076 var->updated = 0;
2077 var->print_value = NULL;
2078 var->frozen = 0;
2079 var->not_fetched = 0;
2080 var->dynamic = XNEW (struct varobj_dynamic);
2081 var->dynamic->children_requested = 0;
2082 var->from = -1;
2083 var->to = -1;
2084 var->dynamic->constructor = 0;
2085 var->dynamic->pretty_printer = 0;
2086 var->dynamic->child_iter = 0;
2087 var->dynamic->saved_item = 0;
2088
2089 return var;
2090 }
2091
2092 /* Allocate memory and initialize a new root variable. */
2093 static struct varobj *
2094 new_root_variable (void)
2095 {
2096 struct varobj *var = new_variable ();
2097
2098 var->root = XNEW (struct varobj_root);
2099 var->root->lang_ops = NULL;
2100 var->root->exp = NULL;
2101 var->root->valid_block = NULL;
2102 var->root->frame = null_frame_id;
2103 var->root->floating = 0;
2104 var->root->rootvar = NULL;
2105 var->root->is_valid = 1;
2106
2107 return var;
2108 }
2109
2110 /* Free any allocated memory associated with VAR. */
2111 static void
2112 free_variable (struct varobj *var)
2113 {
2114 #if HAVE_PYTHON
2115 if (var->dynamic->pretty_printer != NULL)
2116 {
2117 struct cleanup *cleanup = varobj_ensure_python_env (var);
2118
2119 Py_XDECREF (var->dynamic->constructor);
2120 Py_XDECREF (var->dynamic->pretty_printer);
2121 do_cleanups (cleanup);
2122 }
2123 #endif
2124
2125 varobj_iter_delete (var->dynamic->child_iter);
2126 varobj_clear_saved_item (var->dynamic);
2127 value_free (var->value);
2128
2129 /* Free the expression if this is a root variable. */
2130 if (is_root_p (var))
2131 {
2132 xfree (var->root->exp);
2133 xfree (var->root);
2134 }
2135
2136 xfree (var->name);
2137 xfree (var->obj_name);
2138 xfree (var->print_value);
2139 xfree (var->path_expr);
2140 xfree (var->dynamic);
2141 xfree (var);
2142 }
2143
2144 static void
2145 do_free_variable_cleanup (void *var)
2146 {
2147 free_variable ((struct varobj *) var);
2148 }
2149
2150 static struct cleanup *
2151 make_cleanup_free_variable (struct varobj *var)
2152 {
2153 return make_cleanup (do_free_variable_cleanup, var);
2154 }
2155
2156 /* Return the type of the value that's stored in VAR,
2157 or that would have being stored there if the
2158 value were accessible.
2159
2160 This differs from VAR->type in that VAR->type is always
2161 the true type of the expession in the source language.
2162 The return value of this function is the type we're
2163 actually storing in varobj, and using for displaying
2164 the values and for comparing previous and new values.
2165
2166 For example, top-level references are always stripped. */
2167 struct type *
2168 varobj_get_value_type (const struct varobj *var)
2169 {
2170 struct type *type;
2171
2172 if (var->value)
2173 type = value_type (var->value);
2174 else
2175 type = var->type;
2176
2177 type = check_typedef (type);
2178
2179 if (TYPE_CODE (type) == TYPE_CODE_REF)
2180 type = get_target_type (type);
2181
2182 type = check_typedef (type);
2183
2184 return type;
2185 }
2186
2187 /* What is the default display for this variable? We assume that
2188 everything is "natural". Any exceptions? */
2189 static enum varobj_display_formats
2190 variable_default_display (struct varobj *var)
2191 {
2192 return FORMAT_NATURAL;
2193 }
2194
2195 /*
2196 * Language-dependencies
2197 */
2198
2199 /* Common entry points */
2200
2201 /* Return the number of children for a given variable.
2202 The result of this function is defined by the language
2203 implementation. The number of children returned by this function
2204 is the number of children that the user will see in the variable
2205 display. */
2206 static int
2207 number_of_children (const struct varobj *var)
2208 {
2209 return (*var->root->lang_ops->number_of_children) (var);
2210 }
2211
2212 /* What is the expression for the root varobj VAR? Returns a malloc'd
2213 string. */
2214 static char *
2215 name_of_variable (const struct varobj *var)
2216 {
2217 return (*var->root->lang_ops->name_of_variable) (var);
2218 }
2219
2220 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2221 string. */
2222 static char *
2223 name_of_child (struct varobj *var, int index)
2224 {
2225 return (*var->root->lang_ops->name_of_child) (var, index);
2226 }
2227
2228 /* If frame associated with VAR can be found, switch
2229 to it and return 1. Otherwise, return 0. */
2230
2231 static int
2232 check_scope (const struct varobj *var)
2233 {
2234 struct frame_info *fi;
2235 int scope;
2236
2237 fi = frame_find_by_id (var->root->frame);
2238 scope = fi != NULL;
2239
2240 if (fi)
2241 {
2242 CORE_ADDR pc = get_frame_pc (fi);
2243
2244 if (pc < BLOCK_START (var->root->valid_block) ||
2245 pc >= BLOCK_END (var->root->valid_block))
2246 scope = 0;
2247 else
2248 select_frame (fi);
2249 }
2250 return scope;
2251 }
2252
2253 /* Helper function to value_of_root. */
2254
2255 static struct value *
2256 value_of_root_1 (struct varobj **var_handle)
2257 {
2258 struct value *new_val = NULL;
2259 struct varobj *var = *var_handle;
2260 int within_scope = 0;
2261 struct cleanup *back_to;
2262
2263 /* Only root variables can be updated... */
2264 if (!is_root_p (var))
2265 /* Not a root var. */
2266 return NULL;
2267
2268 back_to = make_cleanup_restore_current_thread ();
2269
2270 /* Determine whether the variable is still around. */
2271 if (var->root->valid_block == NULL || var->root->floating)
2272 within_scope = 1;
2273 else if (var->root->thread_id == 0)
2274 {
2275 /* The program was single-threaded when the variable object was
2276 created. Technically, it's possible that the program became
2277 multi-threaded since then, but we don't support such
2278 scenario yet. */
2279 within_scope = check_scope (var);
2280 }
2281 else
2282 {
2283 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2284
2285 if (!ptid_equal (minus_one_ptid, ptid))
2286 {
2287 switch_to_thread (ptid);
2288 within_scope = check_scope (var);
2289 }
2290 }
2291
2292 if (within_scope)
2293 {
2294
2295 /* We need to catch errors here, because if evaluate
2296 expression fails we want to just return NULL. */
2297 TRY
2298 {
2299 new_val = evaluate_expression (var->root->exp);
2300 }
2301 CATCH (except, RETURN_MASK_ERROR)
2302 {
2303 }
2304 END_CATCH
2305 }
2306
2307 do_cleanups (back_to);
2308
2309 return new_val;
2310 }
2311
2312 /* What is the ``struct value *'' of the root variable VAR?
2313 For floating variable object, evaluation can get us a value
2314 of different type from what is stored in varobj already. In
2315 that case:
2316 - *type_changed will be set to 1
2317 - old varobj will be freed, and new one will be
2318 created, with the same name.
2319 - *var_handle will be set to the new varobj
2320 Otherwise, *type_changed will be set to 0. */
2321 static struct value *
2322 value_of_root (struct varobj **var_handle, int *type_changed)
2323 {
2324 struct varobj *var;
2325
2326 if (var_handle == NULL)
2327 return NULL;
2328
2329 var = *var_handle;
2330
2331 /* This should really be an exception, since this should
2332 only get called with a root variable. */
2333
2334 if (!is_root_p (var))
2335 return NULL;
2336
2337 if (var->root->floating)
2338 {
2339 struct varobj *tmp_var;
2340 char *old_type, *new_type;
2341
2342 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2343 USE_SELECTED_FRAME);
2344 if (tmp_var == NULL)
2345 {
2346 return NULL;
2347 }
2348 old_type = varobj_get_type (var);
2349 new_type = varobj_get_type (tmp_var);
2350 if (strcmp (old_type, new_type) == 0)
2351 {
2352 /* The expression presently stored inside var->root->exp
2353 remembers the locations of local variables relatively to
2354 the frame where the expression was created (in DWARF location
2355 button, for example). Naturally, those locations are not
2356 correct in other frames, so update the expression. */
2357
2358 struct expression *tmp_exp = var->root->exp;
2359
2360 var->root->exp = tmp_var->root->exp;
2361 tmp_var->root->exp = tmp_exp;
2362
2363 varobj_delete (tmp_var, 0);
2364 *type_changed = 0;
2365 }
2366 else
2367 {
2368 tmp_var->obj_name = xstrdup (var->obj_name);
2369 tmp_var->from = var->from;
2370 tmp_var->to = var->to;
2371 varobj_delete (var, 0);
2372
2373 install_variable (tmp_var);
2374 *var_handle = tmp_var;
2375 var = *var_handle;
2376 *type_changed = 1;
2377 }
2378 xfree (old_type);
2379 xfree (new_type);
2380 }
2381 else
2382 {
2383 *type_changed = 0;
2384 }
2385
2386 {
2387 struct value *value;
2388
2389 value = value_of_root_1 (var_handle);
2390 if (var->value == NULL || value == NULL)
2391 {
2392 /* For root varobj-s, a NULL value indicates a scoping issue.
2393 So, nothing to do in terms of checking for mutations. */
2394 }
2395 else if (varobj_value_has_mutated (var, value, value_type (value)))
2396 {
2397 /* The type has mutated, so the children are no longer valid.
2398 Just delete them, and tell our caller that the type has
2399 changed. */
2400 varobj_delete (var, 1 /* only_children */);
2401 var->num_children = -1;
2402 var->to = -1;
2403 var->from = -1;
2404 *type_changed = 1;
2405 }
2406 return value;
2407 }
2408 }
2409
2410 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2411 static struct value *
2412 value_of_child (const struct varobj *parent, int index)
2413 {
2414 struct value *value;
2415
2416 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2417
2418 return value;
2419 }
2420
2421 /* GDB already has a command called "value_of_variable". Sigh. */
2422 static char *
2423 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2424 {
2425 if (var->root->is_valid)
2426 {
2427 if (var->dynamic->pretty_printer != NULL)
2428 return varobj_value_get_print_value (var->value, var->format, var);
2429 return (*var->root->lang_ops->value_of_variable) (var, format);
2430 }
2431 else
2432 return NULL;
2433 }
2434
2435 void
2436 varobj_formatted_print_options (struct value_print_options *opts,
2437 enum varobj_display_formats format)
2438 {
2439 get_formatted_print_options (opts, format_code[(int) format]);
2440 opts->deref_ref = 0;
2441 opts->raw = 1;
2442 }
2443
2444 char *
2445 varobj_value_get_print_value (struct value *value,
2446 enum varobj_display_formats format,
2447 const struct varobj *var)
2448 {
2449 struct ui_file *stb;
2450 struct cleanup *old_chain;
2451 char *thevalue = NULL;
2452 struct value_print_options opts;
2453 struct type *type = NULL;
2454 long len = 0;
2455 char *encoding = NULL;
2456 struct gdbarch *gdbarch = NULL;
2457 /* Initialize it just to avoid a GCC false warning. */
2458 CORE_ADDR str_addr = 0;
2459 int string_print = 0;
2460
2461 if (value == NULL)
2462 return NULL;
2463
2464 stb = mem_fileopen ();
2465 old_chain = make_cleanup_ui_file_delete (stb);
2466
2467 gdbarch = get_type_arch (value_type (value));
2468 #if HAVE_PYTHON
2469 if (gdb_python_initialized)
2470 {
2471 PyObject *value_formatter = var->dynamic->pretty_printer;
2472
2473 varobj_ensure_python_env (var);
2474
2475 if (value_formatter)
2476 {
2477 /* First check to see if we have any children at all. If so,
2478 we simply return {...}. */
2479 if (dynamic_varobj_has_child_method (var))
2480 {
2481 do_cleanups (old_chain);
2482 return xstrdup ("{...}");
2483 }
2484
2485 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2486 {
2487 struct value *replacement;
2488 PyObject *output = NULL;
2489
2490 output = apply_varobj_pretty_printer (value_formatter,
2491 &replacement,
2492 stb);
2493
2494 /* If we have string like output ... */
2495 if (output)
2496 {
2497 make_cleanup_py_decref (output);
2498
2499 /* If this is a lazy string, extract it. For lazy
2500 strings we always print as a string, so set
2501 string_print. */
2502 if (gdbpy_is_lazy_string (output))
2503 {
2504 gdbpy_extract_lazy_string (output, &str_addr, &type,
2505 &len, &encoding);
2506 make_cleanup (free_current_contents, &encoding);
2507 string_print = 1;
2508 }
2509 else
2510 {
2511 /* If it is a regular (non-lazy) string, extract
2512 it and copy the contents into THEVALUE. If the
2513 hint says to print it as a string, set
2514 string_print. Otherwise just return the extracted
2515 string as a value. */
2516
2517 char *s = python_string_to_target_string (output);
2518
2519 if (s)
2520 {
2521 char *hint;
2522
2523 hint = gdbpy_get_display_hint (value_formatter);
2524 if (hint)
2525 {
2526 if (!strcmp (hint, "string"))
2527 string_print = 1;
2528 xfree (hint);
2529 }
2530
2531 len = strlen (s);
2532 thevalue = (char *) xmemdup (s, len + 1, len + 1);
2533 type = builtin_type (gdbarch)->builtin_char;
2534 xfree (s);
2535
2536 if (!string_print)
2537 {
2538 do_cleanups (old_chain);
2539 return thevalue;
2540 }
2541
2542 make_cleanup (xfree, thevalue);
2543 }
2544 else
2545 gdbpy_print_stack ();
2546 }
2547 }
2548 /* If the printer returned a replacement value, set VALUE
2549 to REPLACEMENT. If there is not a replacement value,
2550 just use the value passed to this function. */
2551 if (replacement)
2552 value = replacement;
2553 }
2554 }
2555 }
2556 #endif
2557
2558 varobj_formatted_print_options (&opts, format);
2559
2560 /* If the THEVALUE has contents, it is a regular string. */
2561 if (thevalue)
2562 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2563 else if (string_print)
2564 /* Otherwise, if string_print is set, and it is not a regular
2565 string, it is a lazy string. */
2566 val_print_string (type, encoding, str_addr, len, stb, &opts);
2567 else
2568 /* All other cases. */
2569 common_val_print (value, stb, 0, &opts, current_language);
2570
2571 thevalue = ui_file_xstrdup (stb, NULL);
2572
2573 do_cleanups (old_chain);
2574 return thevalue;
2575 }
2576
2577 int
2578 varobj_editable_p (const struct varobj *var)
2579 {
2580 struct type *type;
2581
2582 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2583 return 0;
2584
2585 type = varobj_get_value_type (var);
2586
2587 switch (TYPE_CODE (type))
2588 {
2589 case TYPE_CODE_STRUCT:
2590 case TYPE_CODE_UNION:
2591 case TYPE_CODE_ARRAY:
2592 case TYPE_CODE_FUNC:
2593 case TYPE_CODE_METHOD:
2594 return 0;
2595 break;
2596
2597 default:
2598 return 1;
2599 break;
2600 }
2601 }
2602
2603 /* Call VAR's value_is_changeable_p language-specific callback. */
2604
2605 int
2606 varobj_value_is_changeable_p (const struct varobj *var)
2607 {
2608 return var->root->lang_ops->value_is_changeable_p (var);
2609 }
2610
2611 /* Return 1 if that varobj is floating, that is is always evaluated in the
2612 selected frame, and not bound to thread/frame. Such variable objects
2613 are created using '@' as frame specifier to -var-create. */
2614 int
2615 varobj_floating_p (const struct varobj *var)
2616 {
2617 return var->root->floating;
2618 }
2619
2620 /* Implement the "value_is_changeable_p" varobj callback for most
2621 languages. */
2622
2623 int
2624 varobj_default_value_is_changeable_p (const struct varobj *var)
2625 {
2626 int r;
2627 struct type *type;
2628
2629 if (CPLUS_FAKE_CHILD (var))
2630 return 0;
2631
2632 type = varobj_get_value_type (var);
2633
2634 switch (TYPE_CODE (type))
2635 {
2636 case TYPE_CODE_STRUCT:
2637 case TYPE_CODE_UNION:
2638 case TYPE_CODE_ARRAY:
2639 r = 0;
2640 break;
2641
2642 default:
2643 r = 1;
2644 }
2645
2646 return r;
2647 }
2648
2649 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2650 with an arbitrary caller supplied DATA pointer. */
2651
2652 void
2653 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2654 {
2655 struct varobj_root *var_root, *var_root_next;
2656
2657 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2658
2659 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2660 {
2661 var_root_next = var_root->next;
2662
2663 (*func) (var_root->rootvar, data);
2664 }
2665 }
2666
2667 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2668 defined on globals. It is a helper for varobj_invalidate.
2669
2670 This function is called after changing the symbol file, in this case the
2671 pointers to "struct type" stored by the varobj are no longer valid. All
2672 varobj must be either re-evaluated, or marked as invalid here. */
2673
2674 static void
2675 varobj_invalidate_iter (struct varobj *var, void *unused)
2676 {
2677 /* global and floating var must be re-evaluated. */
2678 if (var->root->floating || var->root->valid_block == NULL)
2679 {
2680 struct varobj *tmp_var;
2681
2682 /* Try to create a varobj with same expression. If we succeed
2683 replace the old varobj, otherwise invalidate it. */
2684 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2685 USE_CURRENT_FRAME);
2686 if (tmp_var != NULL)
2687 {
2688 tmp_var->obj_name = xstrdup (var->obj_name);
2689 varobj_delete (var, 0);
2690 install_variable (tmp_var);
2691 }
2692 else
2693 var->root->is_valid = 0;
2694 }
2695 else /* locals must be invalidated. */
2696 var->root->is_valid = 0;
2697 }
2698
2699 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2700 are defined on globals.
2701 Invalidated varobjs will be always printed in_scope="invalid". */
2702
2703 void
2704 varobj_invalidate (void)
2705 {
2706 all_root_varobjs (varobj_invalidate_iter, NULL);
2707 }
2708 \f
2709 extern void _initialize_varobj (void);
2710 void
2711 _initialize_varobj (void)
2712 {
2713 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2714
2715 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2716 &varobjdebug,
2717 _("Set varobj debugging."),
2718 _("Show varobj debugging."),
2719 _("When non-zero, varobj debugging is enabled."),
2720 NULL, show_varobjdebug,
2721 &setdebuglist, &showdebuglist);
2722 }
This page took 0.085125 seconds and 4 git commands to generate.