Split vDSO range lookup to a gdbarch hook
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (struct varobj *);
197
198 static char *name_of_variable (struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 volatile struct gdb_exception except;
302 CORE_ADDR pc;
303
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
309 /* Allow creator to specify context of variable. */
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
322 else
323 fi = NULL;
324
325 /* frame = -2 means always use selected frame. */
326 if (type == USE_SELECTED_FRAME)
327 var->root->floating = 1;
328
329 pc = 0;
330 block = NULL;
331 if (fi != NULL)
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
336
337 p = expression;
338 innermost_block = NULL;
339 /* Wrap the call to parse expression, so we can
340 return a sensible error. */
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
344 }
345
346 if (except.reason < 0)
347 {
348 do_cleanups (old_chain);
349 return NULL;
350 }
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
401
402 var->type = value_type (type_only_value);
403 }
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
412
413 /* Set language info */
414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
415
416 install_new_value (var, value, 1 /* Initial assignment */);
417
418 /* Set ourselves as our root. */
419 var->root->rootvar = var;
420
421 /* Reset the selected frame. */
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
424 }
425
426 /* If the variable object name is null, that means this
427 is a temporary variable, so don't install it. */
428
429 if ((var != NULL) && (objname != NULL))
430 {
431 var->obj_name = xstrdup (objname);
432
433 /* If a varobj name is duplicated, the install will fail so
434 we must cleanup. */
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444 }
445
446 /* Generates an unique name that can be used for a varobj. */
447
448 char *
449 varobj_gen_name (void)
450 {
451 static int id = 0;
452 char *obj_name;
453
454 /* Generate a name for this object. */
455 id++;
456 obj_name = xstrprintf ("var%d", id);
457
458 return obj_name;
459 }
460
461 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
463
464 struct varobj *
465 varobj_get_handle (char *objname)
466 {
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
482 error (_("Variable object not found"));
483
484 return cv->var;
485 }
486
487 /* Given the handle, return the name of the object. */
488
489 char *
490 varobj_get_objname (struct varobj *var)
491 {
492 return var->obj_name;
493 }
494
495 /* Given the handle, return the expression represented by the object. */
496
497 char *
498 varobj_get_expression (struct varobj *var)
499 {
500 return name_of_variable (var);
501 }
502
503 /* Deletes a varobj and all its children if only_children == 0,
504 otherwise deletes only the children; returns a malloc'ed list of
505 all the (malloc'ed) names of the variables that have been deleted
506 (NULL terminated). */
507
508 int
509 varobj_delete (struct varobj *var, char ***dellist, int only_children)
510 {
511 int delcount;
512 int mycount;
513 struct cpstack *result = NULL;
514 char **cp;
515
516 /* Initialize a stack for temporary results. */
517 cppush (&result, NULL);
518
519 if (only_children)
520 /* Delete only the variable children. */
521 delcount = delete_variable (&result, var, 1 /* only the children */ );
522 else
523 /* Delete the variable and all its children. */
524 delcount = delete_variable (&result, var, 0 /* parent+children */ );
525
526 /* We may have been asked to return a list of what has been deleted. */
527 if (dellist != NULL)
528 {
529 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
530
531 cp = *dellist;
532 mycount = delcount;
533 *cp = cppop (&result);
534 while ((*cp != NULL) && (mycount > 0))
535 {
536 mycount--;
537 cp++;
538 *cp = cppop (&result);
539 }
540
541 if (mycount || (*cp != NULL))
542 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
543 mycount);
544 }
545
546 return delcount;
547 }
548
549 #if HAVE_PYTHON
550
551 /* Convenience function for varobj_set_visualizer. Instantiate a
552 pretty-printer for a given value. */
553 static PyObject *
554 instantiate_pretty_printer (PyObject *constructor, struct value *value)
555 {
556 PyObject *val_obj = NULL;
557 PyObject *printer;
558
559 val_obj = value_to_value_object (value);
560 if (! val_obj)
561 return NULL;
562
563 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
564 Py_DECREF (val_obj);
565 return printer;
566 }
567
568 #endif
569
570 /* Set/Get variable object display format. */
571
572 enum varobj_display_formats
573 varobj_set_display_format (struct varobj *var,
574 enum varobj_display_formats format)
575 {
576 switch (format)
577 {
578 case FORMAT_NATURAL:
579 case FORMAT_BINARY:
580 case FORMAT_DECIMAL:
581 case FORMAT_HEXADECIMAL:
582 case FORMAT_OCTAL:
583 var->format = format;
584 break;
585
586 default:
587 var->format = variable_default_display (var);
588 }
589
590 if (varobj_value_is_changeable_p (var)
591 && var->value && !value_lazy (var->value))
592 {
593 xfree (var->print_value);
594 var->print_value = varobj_value_get_print_value (var->value,
595 var->format, var);
596 }
597
598 return var->format;
599 }
600
601 enum varobj_display_formats
602 varobj_get_display_format (struct varobj *var)
603 {
604 return var->format;
605 }
606
607 char *
608 varobj_get_display_hint (struct varobj *var)
609 {
610 char *result = NULL;
611
612 #if HAVE_PYTHON
613 struct cleanup *back_to;
614
615 if (!gdb_python_initialized)
616 return NULL;
617
618 back_to = varobj_ensure_python_env (var);
619
620 if (var->dynamic->pretty_printer != NULL)
621 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
622
623 do_cleanups (back_to);
624 #endif
625
626 return result;
627 }
628
629 /* Return true if the varobj has items after TO, false otherwise. */
630
631 int
632 varobj_has_more (struct varobj *var, int to)
633 {
634 if (VEC_length (varobj_p, var->children) > to)
635 return 1;
636 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
637 && (var->dynamic->saved_item != NULL));
638 }
639
640 /* If the variable object is bound to a specific thread, that
641 is its evaluation can always be done in context of a frame
642 inside that thread, returns GDB id of the thread -- which
643 is always positive. Otherwise, returns -1. */
644 int
645 varobj_get_thread_id (struct varobj *var)
646 {
647 if (var->root->valid_block && var->root->thread_id > 0)
648 return var->root->thread_id;
649 else
650 return -1;
651 }
652
653 void
654 varobj_set_frozen (struct varobj *var, int frozen)
655 {
656 /* When a variable is unfrozen, we don't fetch its value.
657 The 'not_fetched' flag remains set, so next -var-update
658 won't complain.
659
660 We don't fetch the value, because for structures the client
661 should do -var-update anyway. It would be bad to have different
662 client-size logic for structure and other types. */
663 var->frozen = frozen;
664 }
665
666 int
667 varobj_get_frozen (struct varobj *var)
668 {
669 return var->frozen;
670 }
671
672 /* A helper function that restricts a range to what is actually
673 available in a VEC. This follows the usual rules for the meaning
674 of FROM and TO -- if either is negative, the entire range is
675 used. */
676
677 void
678 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
679 {
680 if (*from < 0 || *to < 0)
681 {
682 *from = 0;
683 *to = VEC_length (varobj_p, children);
684 }
685 else
686 {
687 if (*from > VEC_length (varobj_p, children))
688 *from = VEC_length (varobj_p, children);
689 if (*to > VEC_length (varobj_p, children))
690 *to = VEC_length (varobj_p, children);
691 if (*from > *to)
692 *from = *to;
693 }
694 }
695
696 /* A helper for update_dynamic_varobj_children that installs a new
697 child when needed. */
698
699 static void
700 install_dynamic_child (struct varobj *var,
701 VEC (varobj_p) **changed,
702 VEC (varobj_p) **type_changed,
703 VEC (varobj_p) **new,
704 VEC (varobj_p) **unchanged,
705 int *cchanged,
706 int index,
707 struct varobj_item *item)
708 {
709 if (VEC_length (varobj_p, var->children) < index + 1)
710 {
711 /* There's no child yet. */
712 struct varobj *child = varobj_add_child (var, item);
713
714 if (new)
715 {
716 VEC_safe_push (varobj_p, *new, child);
717 *cchanged = 1;
718 }
719 }
720 else
721 {
722 varobj_p existing = VEC_index (varobj_p, var->children, index);
723 int type_updated = update_type_if_necessary (existing, item->value);
724
725 if (type_updated)
726 {
727 if (type_changed)
728 VEC_safe_push (varobj_p, *type_changed, existing);
729 }
730 if (install_new_value (existing, item->value, 0))
731 {
732 if (!type_updated && changed)
733 VEC_safe_push (varobj_p, *changed, existing);
734 }
735 else if (!type_updated && unchanged)
736 VEC_safe_push (varobj_p, *unchanged, existing);
737 }
738 }
739
740 #if HAVE_PYTHON
741
742 static int
743 dynamic_varobj_has_child_method (struct varobj *var)
744 {
745 struct cleanup *back_to;
746 PyObject *printer = var->dynamic->pretty_printer;
747 int result;
748
749 if (!gdb_python_initialized)
750 return 0;
751
752 back_to = varobj_ensure_python_env (var);
753 result = PyObject_HasAttr (printer, gdbpy_children_cst);
754 do_cleanups (back_to);
755 return result;
756 }
757 #endif
758
759 /* A factory for creating dynamic varobj's iterators. Returns an
760 iterator object suitable for iterating over VAR's children. */
761
762 static struct varobj_iter *
763 varobj_get_iterator (struct varobj *var)
764 {
765 #if HAVE_PYTHON
766 if (var->dynamic->pretty_printer)
767 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
768 #endif
769
770 gdb_assert_not_reached (_("\
771 requested an iterator from a non-dynamic varobj"));
772 }
773
774 /* Release and clear VAR's saved item, if any. */
775
776 static void
777 varobj_clear_saved_item (struct varobj_dynamic *var)
778 {
779 if (var->saved_item != NULL)
780 {
781 value_free (var->saved_item->value);
782 xfree (var->saved_item);
783 var->saved_item = NULL;
784 }
785 }
786
787 static int
788 update_dynamic_varobj_children (struct varobj *var,
789 VEC (varobj_p) **changed,
790 VEC (varobj_p) **type_changed,
791 VEC (varobj_p) **new,
792 VEC (varobj_p) **unchanged,
793 int *cchanged,
794 int update_children,
795 int from,
796 int to)
797 {
798 int i;
799
800 *cchanged = 0;
801
802 if (update_children || var->dynamic->child_iter == NULL)
803 {
804 varobj_iter_delete (var->dynamic->child_iter);
805 var->dynamic->child_iter = varobj_get_iterator (var);
806
807 varobj_clear_saved_item (var->dynamic);
808
809 i = 0;
810
811 if (var->dynamic->child_iter == NULL)
812 return 0;
813 }
814 else
815 i = VEC_length (varobj_p, var->children);
816
817 /* We ask for one extra child, so that MI can report whether there
818 are more children. */
819 for (; to < 0 || i < to + 1; ++i)
820 {
821 varobj_item *item;
822
823 /* See if there was a leftover from last time. */
824 if (var->dynamic->saved_item != NULL)
825 {
826 item = var->dynamic->saved_item;
827 var->dynamic->saved_item = NULL;
828 }
829 else
830 {
831 item = varobj_iter_next (var->dynamic->child_iter);
832 /* Release vitem->value so its lifetime is not bound to the
833 execution of a command. */
834 if (item != NULL && item->value != NULL)
835 release_value_or_incref (item->value);
836 }
837
838 if (item == NULL)
839 {
840 /* Iteration is done. Remove iterator from VAR. */
841 varobj_iter_delete (var->dynamic->child_iter);
842 var->dynamic->child_iter = NULL;
843 break;
844 }
845 /* We don't want to push the extra child on any report list. */
846 if (to < 0 || i < to)
847 {
848 int can_mention = from < 0 || i >= from;
849
850 install_dynamic_child (var, can_mention ? changed : NULL,
851 can_mention ? type_changed : NULL,
852 can_mention ? new : NULL,
853 can_mention ? unchanged : NULL,
854 can_mention ? cchanged : NULL, i,
855 item);
856
857 xfree (item);
858 }
859 else
860 {
861 var->dynamic->saved_item = item;
862
863 /* We want to truncate the child list just before this
864 element. */
865 break;
866 }
867 }
868
869 if (i < VEC_length (varobj_p, var->children))
870 {
871 int j;
872
873 *cchanged = 1;
874 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
875 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
876 VEC_truncate (varobj_p, var->children, i);
877 }
878
879 /* If there are fewer children than requested, note that the list of
880 children changed. */
881 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
882 *cchanged = 1;
883
884 var->num_children = VEC_length (varobj_p, var->children);
885
886 return 1;
887 }
888
889 int
890 varobj_get_num_children (struct varobj *var)
891 {
892 if (var->num_children == -1)
893 {
894 if (varobj_is_dynamic_p (var))
895 {
896 int dummy;
897
898 /* If we have a dynamic varobj, don't report -1 children.
899 So, try to fetch some children first. */
900 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
901 0, 0, 0);
902 }
903 else
904 var->num_children = number_of_children (var);
905 }
906
907 return var->num_children >= 0 ? var->num_children : 0;
908 }
909
910 /* Creates a list of the immediate children of a variable object;
911 the return code is the number of such children or -1 on error. */
912
913 VEC (varobj_p)*
914 varobj_list_children (struct varobj *var, int *from, int *to)
915 {
916 char *name;
917 int i, children_changed;
918
919 var->dynamic->children_requested = 1;
920
921 if (varobj_is_dynamic_p (var))
922 {
923 /* This, in theory, can result in the number of children changing without
924 frontend noticing. But well, calling -var-list-children on the same
925 varobj twice is not something a sane frontend would do. */
926 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
927 &children_changed, 0, 0, *to);
928 varobj_restrict_range (var->children, from, to);
929 return var->children;
930 }
931
932 if (var->num_children == -1)
933 var->num_children = number_of_children (var);
934
935 /* If that failed, give up. */
936 if (var->num_children == -1)
937 return var->children;
938
939 /* If we're called when the list of children is not yet initialized,
940 allocate enough elements in it. */
941 while (VEC_length (varobj_p, var->children) < var->num_children)
942 VEC_safe_push (varobj_p, var->children, NULL);
943
944 for (i = 0; i < var->num_children; i++)
945 {
946 varobj_p existing = VEC_index (varobj_p, var->children, i);
947
948 if (existing == NULL)
949 {
950 /* Either it's the first call to varobj_list_children for
951 this variable object, and the child was never created,
952 or it was explicitly deleted by the client. */
953 name = name_of_child (var, i);
954 existing = create_child (var, i, name);
955 VEC_replace (varobj_p, var->children, i, existing);
956 }
957 }
958
959 varobj_restrict_range (var->children, from, to);
960 return var->children;
961 }
962
963 static struct varobj *
964 varobj_add_child (struct varobj *var, struct varobj_item *item)
965 {
966 varobj_p v = create_child_with_value (var,
967 VEC_length (varobj_p, var->children),
968 item);
969
970 VEC_safe_push (varobj_p, var->children, v);
971 return v;
972 }
973
974 /* Obtain the type of an object Variable as a string similar to the one gdb
975 prints on the console. */
976
977 char *
978 varobj_get_type (struct varobj *var)
979 {
980 /* For the "fake" variables, do not return a type. (Its type is
981 NULL, too.)
982 Do not return a type for invalid variables as well. */
983 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
984 return NULL;
985
986 return type_to_string (var->type);
987 }
988
989 /* Obtain the type of an object variable. */
990
991 struct type *
992 varobj_get_gdb_type (struct varobj *var)
993 {
994 return var->type;
995 }
996
997 /* Is VAR a path expression parent, i.e., can it be used to construct
998 a valid path expression? */
999
1000 static int
1001 is_path_expr_parent (struct varobj *var)
1002 {
1003 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1004 return var->root->lang_ops->is_path_expr_parent (var);
1005 }
1006
1007 /* Is VAR a path expression parent, i.e., can it be used to construct
1008 a valid path expression? By default we assume any VAR can be a path
1009 parent. */
1010
1011 int
1012 varobj_default_is_path_expr_parent (struct varobj *var)
1013 {
1014 return 1;
1015 }
1016
1017 /* Return the path expression parent for VAR. */
1018
1019 struct varobj *
1020 varobj_get_path_expr_parent (struct varobj *var)
1021 {
1022 struct varobj *parent = var;
1023
1024 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1025 parent = parent->parent;
1026
1027 return parent;
1028 }
1029
1030 /* Return a pointer to the full rooted expression of varobj VAR.
1031 If it has not been computed yet, compute it. */
1032 char *
1033 varobj_get_path_expr (struct varobj *var)
1034 {
1035 if (var->path_expr != NULL)
1036 return var->path_expr;
1037 else
1038 {
1039 /* For root varobjs, we initialize path_expr
1040 when creating varobj, so here it should be
1041 child varobj. */
1042 gdb_assert (!is_root_p (var));
1043 return (*var->root->lang_ops->path_expr_of_child) (var);
1044 }
1045 }
1046
1047 const struct language_defn *
1048 varobj_get_language (struct varobj *var)
1049 {
1050 return var->root->exp->language_defn;
1051 }
1052
1053 int
1054 varobj_get_attributes (struct varobj *var)
1055 {
1056 int attributes = 0;
1057
1058 if (varobj_editable_p (var))
1059 /* FIXME: define masks for attributes. */
1060 attributes |= 0x00000001; /* Editable */
1061
1062 return attributes;
1063 }
1064
1065 /* Return true if VAR is a dynamic varobj. */
1066
1067 int
1068 varobj_is_dynamic_p (struct varobj *var)
1069 {
1070 return var->dynamic->pretty_printer != NULL;
1071 }
1072
1073 char *
1074 varobj_get_formatted_value (struct varobj *var,
1075 enum varobj_display_formats format)
1076 {
1077 return my_value_of_variable (var, format);
1078 }
1079
1080 char *
1081 varobj_get_value (struct varobj *var)
1082 {
1083 return my_value_of_variable (var, var->format);
1084 }
1085
1086 /* Set the value of an object variable (if it is editable) to the
1087 value of the given expression. */
1088 /* Note: Invokes functions that can call error(). */
1089
1090 int
1091 varobj_set_value (struct varobj *var, char *expression)
1092 {
1093 struct value *val = NULL; /* Initialize to keep gcc happy. */
1094 /* The argument "expression" contains the variable's new value.
1095 We need to first construct a legal expression for this -- ugh! */
1096 /* Does this cover all the bases? */
1097 struct expression *exp;
1098 struct value *value = NULL; /* Initialize to keep gcc happy. */
1099 int saved_input_radix = input_radix;
1100 const char *s = expression;
1101 volatile struct gdb_exception except;
1102
1103 gdb_assert (varobj_editable_p (var));
1104
1105 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1106 exp = parse_exp_1 (&s, 0, 0, 0);
1107 TRY_CATCH (except, RETURN_MASK_ERROR)
1108 {
1109 value = evaluate_expression (exp);
1110 }
1111
1112 if (except.reason < 0)
1113 {
1114 /* We cannot proceed without a valid expression. */
1115 xfree (exp);
1116 return 0;
1117 }
1118
1119 /* All types that are editable must also be changeable. */
1120 gdb_assert (varobj_value_is_changeable_p (var));
1121
1122 /* The value of a changeable variable object must not be lazy. */
1123 gdb_assert (!value_lazy (var->value));
1124
1125 /* Need to coerce the input. We want to check if the
1126 value of the variable object will be different
1127 after assignment, and the first thing value_assign
1128 does is coerce the input.
1129 For example, if we are assigning an array to a pointer variable we
1130 should compare the pointer with the array's address, not with the
1131 array's content. */
1132 value = coerce_array (value);
1133
1134 /* The new value may be lazy. value_assign, or
1135 rather value_contents, will take care of this. */
1136 TRY_CATCH (except, RETURN_MASK_ERROR)
1137 {
1138 val = value_assign (var->value, value);
1139 }
1140
1141 if (except.reason < 0)
1142 return 0;
1143
1144 /* If the value has changed, record it, so that next -var-update can
1145 report this change. If a variable had a value of '1', we've set it
1146 to '333' and then set again to '1', when -var-update will report this
1147 variable as changed -- because the first assignment has set the
1148 'updated' flag. There's no need to optimize that, because return value
1149 of -var-update should be considered an approximation. */
1150 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1151 input_radix = saved_input_radix;
1152 return 1;
1153 }
1154
1155 #if HAVE_PYTHON
1156
1157 /* A helper function to install a constructor function and visualizer
1158 in a varobj_dynamic. */
1159
1160 static void
1161 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1162 PyObject *visualizer)
1163 {
1164 Py_XDECREF (var->constructor);
1165 var->constructor = constructor;
1166
1167 Py_XDECREF (var->pretty_printer);
1168 var->pretty_printer = visualizer;
1169
1170 varobj_iter_delete (var->child_iter);
1171 var->child_iter = NULL;
1172 }
1173
1174 /* Install the default visualizer for VAR. */
1175
1176 static void
1177 install_default_visualizer (struct varobj *var)
1178 {
1179 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1180 if (CPLUS_FAKE_CHILD (var))
1181 return;
1182
1183 if (pretty_printing)
1184 {
1185 PyObject *pretty_printer = NULL;
1186
1187 if (var->value)
1188 {
1189 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1190 if (! pretty_printer)
1191 {
1192 gdbpy_print_stack ();
1193 error (_("Cannot instantiate printer for default visualizer"));
1194 }
1195 }
1196
1197 if (pretty_printer == Py_None)
1198 {
1199 Py_DECREF (pretty_printer);
1200 pretty_printer = NULL;
1201 }
1202
1203 install_visualizer (var->dynamic, NULL, pretty_printer);
1204 }
1205 }
1206
1207 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1208 make a new object. */
1209
1210 static void
1211 construct_visualizer (struct varobj *var, PyObject *constructor)
1212 {
1213 PyObject *pretty_printer;
1214
1215 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1216 if (CPLUS_FAKE_CHILD (var))
1217 return;
1218
1219 Py_INCREF (constructor);
1220 if (constructor == Py_None)
1221 pretty_printer = NULL;
1222 else
1223 {
1224 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1225 if (! pretty_printer)
1226 {
1227 gdbpy_print_stack ();
1228 Py_DECREF (constructor);
1229 constructor = Py_None;
1230 Py_INCREF (constructor);
1231 }
1232
1233 if (pretty_printer == Py_None)
1234 {
1235 Py_DECREF (pretty_printer);
1236 pretty_printer = NULL;
1237 }
1238 }
1239
1240 install_visualizer (var->dynamic, constructor, pretty_printer);
1241 }
1242
1243 #endif /* HAVE_PYTHON */
1244
1245 /* A helper function for install_new_value. This creates and installs
1246 a visualizer for VAR, if appropriate. */
1247
1248 static void
1249 install_new_value_visualizer (struct varobj *var)
1250 {
1251 #if HAVE_PYTHON
1252 /* If the constructor is None, then we want the raw value. If VAR
1253 does not have a value, just skip this. */
1254 if (!gdb_python_initialized)
1255 return;
1256
1257 if (var->dynamic->constructor != Py_None && var->value != NULL)
1258 {
1259 struct cleanup *cleanup;
1260
1261 cleanup = varobj_ensure_python_env (var);
1262
1263 if (var->dynamic->constructor == NULL)
1264 install_default_visualizer (var);
1265 else
1266 construct_visualizer (var, var->dynamic->constructor);
1267
1268 do_cleanups (cleanup);
1269 }
1270 #else
1271 /* Do nothing. */
1272 #endif
1273 }
1274
1275 /* When using RTTI to determine variable type it may be changed in runtime when
1276 the variable value is changed. This function checks whether type of varobj
1277 VAR will change when a new value NEW_VALUE is assigned and if it is so
1278 updates the type of VAR. */
1279
1280 static int
1281 update_type_if_necessary (struct varobj *var, struct value *new_value)
1282 {
1283 if (new_value)
1284 {
1285 struct value_print_options opts;
1286
1287 get_user_print_options (&opts);
1288 if (opts.objectprint)
1289 {
1290 struct type *new_type;
1291 char *curr_type_str, *new_type_str;
1292
1293 new_type = value_actual_type (new_value, 0, 0);
1294 new_type_str = type_to_string (new_type);
1295 curr_type_str = varobj_get_type (var);
1296 if (strcmp (curr_type_str, new_type_str) != 0)
1297 {
1298 var->type = new_type;
1299
1300 /* This information may be not valid for a new type. */
1301 varobj_delete (var, NULL, 1);
1302 VEC_free (varobj_p, var->children);
1303 var->num_children = -1;
1304 return 1;
1305 }
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312 /* Assign a new value to a variable object. If INITIAL is non-zero,
1313 this is the first assignement after the variable object was just
1314 created, or changed type. In that case, just assign the value
1315 and return 0.
1316 Otherwise, assign the new value, and return 1 if the value is
1317 different from the current one, 0 otherwise. The comparison is
1318 done on textual representation of value. Therefore, some types
1319 need not be compared. E.g. for structures the reported value is
1320 always "{...}", so no comparison is necessary here. If the old
1321 value was NULL and new one is not, or vice versa, we always return 1.
1322
1323 The VALUE parameter should not be released -- the function will
1324 take care of releasing it when needed. */
1325 static int
1326 install_new_value (struct varobj *var, struct value *value, int initial)
1327 {
1328 int changeable;
1329 int need_to_fetch;
1330 int changed = 0;
1331 int intentionally_not_fetched = 0;
1332 char *print_value = NULL;
1333
1334 /* We need to know the varobj's type to decide if the value should
1335 be fetched or not. C++ fake children (public/protected/private)
1336 don't have a type. */
1337 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1338 changeable = varobj_value_is_changeable_p (var);
1339
1340 /* If the type has custom visualizer, we consider it to be always
1341 changeable. FIXME: need to make sure this behaviour will not
1342 mess up read-sensitive values. */
1343 if (var->dynamic->pretty_printer != NULL)
1344 changeable = 1;
1345
1346 need_to_fetch = changeable;
1347
1348 /* We are not interested in the address of references, and given
1349 that in C++ a reference is not rebindable, it cannot
1350 meaningfully change. So, get hold of the real value. */
1351 if (value)
1352 value = coerce_ref (value);
1353
1354 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1355 /* For unions, we need to fetch the value implicitly because
1356 of implementation of union member fetch. When gdb
1357 creates a value for a field and the value of the enclosing
1358 structure is not lazy, it immediately copies the necessary
1359 bytes from the enclosing values. If the enclosing value is
1360 lazy, the call to value_fetch_lazy on the field will read
1361 the data from memory. For unions, that means we'll read the
1362 same memory more than once, which is not desirable. So
1363 fetch now. */
1364 need_to_fetch = 1;
1365
1366 /* The new value might be lazy. If the type is changeable,
1367 that is we'll be comparing values of this type, fetch the
1368 value now. Otherwise, on the next update the old value
1369 will be lazy, which means we've lost that old value. */
1370 if (need_to_fetch && value && value_lazy (value))
1371 {
1372 struct varobj *parent = var->parent;
1373 int frozen = var->frozen;
1374
1375 for (; !frozen && parent; parent = parent->parent)
1376 frozen |= parent->frozen;
1377
1378 if (frozen && initial)
1379 {
1380 /* For variables that are frozen, or are children of frozen
1381 variables, we don't do fetch on initial assignment.
1382 For non-initial assignemnt we do the fetch, since it means we're
1383 explicitly asked to compare the new value with the old one. */
1384 intentionally_not_fetched = 1;
1385 }
1386 else
1387 {
1388 volatile struct gdb_exception except;
1389
1390 TRY_CATCH (except, RETURN_MASK_ERROR)
1391 {
1392 value_fetch_lazy (value);
1393 }
1394
1395 if (except.reason < 0)
1396 {
1397 /* Set the value to NULL, so that for the next -var-update,
1398 we don't try to compare the new value with this value,
1399 that we couldn't even read. */
1400 value = NULL;
1401 }
1402 }
1403 }
1404
1405 /* Get a reference now, before possibly passing it to any Python
1406 code that might release it. */
1407 if (value != NULL)
1408 value_incref (value);
1409
1410 /* Below, we'll be comparing string rendering of old and new
1411 values. Don't get string rendering if the value is
1412 lazy -- if it is, the code above has decided that the value
1413 should not be fetched. */
1414 if (value != NULL && !value_lazy (value)
1415 && var->dynamic->pretty_printer == NULL)
1416 print_value = varobj_value_get_print_value (value, var->format, var);
1417
1418 /* If the type is changeable, compare the old and the new values.
1419 If this is the initial assignment, we don't have any old value
1420 to compare with. */
1421 if (!initial && changeable)
1422 {
1423 /* If the value of the varobj was changed by -var-set-value,
1424 then the value in the varobj and in the target is the same.
1425 However, that value is different from the value that the
1426 varobj had after the previous -var-update. So need to the
1427 varobj as changed. */
1428 if (var->updated)
1429 {
1430 changed = 1;
1431 }
1432 else if (var->dynamic->pretty_printer == NULL)
1433 {
1434 /* Try to compare the values. That requires that both
1435 values are non-lazy. */
1436 if (var->not_fetched && value_lazy (var->value))
1437 {
1438 /* This is a frozen varobj and the value was never read.
1439 Presumably, UI shows some "never read" indicator.
1440 Now that we've fetched the real value, we need to report
1441 this varobj as changed so that UI can show the real
1442 value. */
1443 changed = 1;
1444 }
1445 else if (var->value == NULL && value == NULL)
1446 /* Equal. */
1447 ;
1448 else if (var->value == NULL || value == NULL)
1449 {
1450 changed = 1;
1451 }
1452 else
1453 {
1454 gdb_assert (!value_lazy (var->value));
1455 gdb_assert (!value_lazy (value));
1456
1457 gdb_assert (var->print_value != NULL && print_value != NULL);
1458 if (strcmp (var->print_value, print_value) != 0)
1459 changed = 1;
1460 }
1461 }
1462 }
1463
1464 if (!initial && !changeable)
1465 {
1466 /* For values that are not changeable, we don't compare the values.
1467 However, we want to notice if a value was not NULL and now is NULL,
1468 or vise versa, so that we report when top-level varobjs come in scope
1469 and leave the scope. */
1470 changed = (var->value != NULL) != (value != NULL);
1471 }
1472
1473 /* We must always keep the new value, since children depend on it. */
1474 if (var->value != NULL && var->value != value)
1475 value_free (var->value);
1476 var->value = value;
1477 if (value && value_lazy (value) && intentionally_not_fetched)
1478 var->not_fetched = 1;
1479 else
1480 var->not_fetched = 0;
1481 var->updated = 0;
1482
1483 install_new_value_visualizer (var);
1484
1485 /* If we installed a pretty-printer, re-compare the printed version
1486 to see if the variable changed. */
1487 if (var->dynamic->pretty_printer != NULL)
1488 {
1489 xfree (print_value);
1490 print_value = varobj_value_get_print_value (var->value, var->format,
1491 var);
1492 if ((var->print_value == NULL && print_value != NULL)
1493 || (var->print_value != NULL && print_value == NULL)
1494 || (var->print_value != NULL && print_value != NULL
1495 && strcmp (var->print_value, print_value) != 0))
1496 changed = 1;
1497 }
1498 if (var->print_value)
1499 xfree (var->print_value);
1500 var->print_value = print_value;
1501
1502 gdb_assert (!var->value || value_type (var->value));
1503
1504 return changed;
1505 }
1506
1507 /* Return the requested range for a varobj. VAR is the varobj. FROM
1508 and TO are out parameters; *FROM and *TO will be set to the
1509 selected sub-range of VAR. If no range was selected using
1510 -var-set-update-range, then both will be -1. */
1511 void
1512 varobj_get_child_range (struct varobj *var, int *from, int *to)
1513 {
1514 *from = var->from;
1515 *to = var->to;
1516 }
1517
1518 /* Set the selected sub-range of children of VAR to start at index
1519 FROM and end at index TO. If either FROM or TO is less than zero,
1520 this is interpreted as a request for all children. */
1521 void
1522 varobj_set_child_range (struct varobj *var, int from, int to)
1523 {
1524 var->from = from;
1525 var->to = to;
1526 }
1527
1528 void
1529 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1530 {
1531 #if HAVE_PYTHON
1532 PyObject *mainmod, *globals, *constructor;
1533 struct cleanup *back_to;
1534
1535 if (!gdb_python_initialized)
1536 return;
1537
1538 back_to = varobj_ensure_python_env (var);
1539
1540 mainmod = PyImport_AddModule ("__main__");
1541 globals = PyModule_GetDict (mainmod);
1542 Py_INCREF (globals);
1543 make_cleanup_py_decref (globals);
1544
1545 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1546
1547 if (! constructor)
1548 {
1549 gdbpy_print_stack ();
1550 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1551 }
1552
1553 construct_visualizer (var, constructor);
1554 Py_XDECREF (constructor);
1555
1556 /* If there are any children now, wipe them. */
1557 varobj_delete (var, NULL, 1 /* children only */);
1558 var->num_children = -1;
1559
1560 do_cleanups (back_to);
1561 #else
1562 error (_("Python support required"));
1563 #endif
1564 }
1565
1566 /* If NEW_VALUE is the new value of the given varobj (var), return
1567 non-zero if var has mutated. In other words, if the type of
1568 the new value is different from the type of the varobj's old
1569 value.
1570
1571 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1572
1573 static int
1574 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1575 struct type *new_type)
1576 {
1577 /* If we haven't previously computed the number of children in var,
1578 it does not matter from the front-end's perspective whether
1579 the type has mutated or not. For all intents and purposes,
1580 it has not mutated. */
1581 if (var->num_children < 0)
1582 return 0;
1583
1584 if (var->root->lang_ops->value_has_mutated)
1585 {
1586 /* The varobj module, when installing new values, explicitly strips
1587 references, saying that we're not interested in those addresses.
1588 But detection of mutation happens before installing the new
1589 value, so our value may be a reference that we need to strip
1590 in order to remain consistent. */
1591 if (new_value != NULL)
1592 new_value = coerce_ref (new_value);
1593 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1594 }
1595 else
1596 return 0;
1597 }
1598
1599 /* Update the values for a variable and its children. This is a
1600 two-pronged attack. First, re-parse the value for the root's
1601 expression to see if it's changed. Then go all the way
1602 through its children, reconstructing them and noting if they've
1603 changed.
1604
1605 The EXPLICIT parameter specifies if this call is result
1606 of MI request to update this specific variable, or
1607 result of implicit -var-update *. For implicit request, we don't
1608 update frozen variables.
1609
1610 NOTE: This function may delete the caller's varobj. If it
1611 returns TYPE_CHANGED, then it has done this and VARP will be modified
1612 to point to the new varobj. */
1613
1614 VEC(varobj_update_result) *
1615 varobj_update (struct varobj **varp, int explicit)
1616 {
1617 int type_changed = 0;
1618 int i;
1619 struct value *new;
1620 VEC (varobj_update_result) *stack = NULL;
1621 VEC (varobj_update_result) *result = NULL;
1622
1623 /* Frozen means frozen -- we don't check for any change in
1624 this varobj, including its going out of scope, or
1625 changing type. One use case for frozen varobjs is
1626 retaining previously evaluated expressions, and we don't
1627 want them to be reevaluated at all. */
1628 if (!explicit && (*varp)->frozen)
1629 return result;
1630
1631 if (!(*varp)->root->is_valid)
1632 {
1633 varobj_update_result r = {0};
1634
1635 r.varobj = *varp;
1636 r.status = VAROBJ_INVALID;
1637 VEC_safe_push (varobj_update_result, result, &r);
1638 return result;
1639 }
1640
1641 if ((*varp)->root->rootvar == *varp)
1642 {
1643 varobj_update_result r = {0};
1644
1645 r.varobj = *varp;
1646 r.status = VAROBJ_IN_SCOPE;
1647
1648 /* Update the root variable. value_of_root can return NULL
1649 if the variable is no longer around, i.e. we stepped out of
1650 the frame in which a local existed. We are letting the
1651 value_of_root variable dispose of the varobj if the type
1652 has changed. */
1653 new = value_of_root (varp, &type_changed);
1654 if (update_type_if_necessary(*varp, new))
1655 type_changed = 1;
1656 r.varobj = *varp;
1657 r.type_changed = type_changed;
1658 if (install_new_value ((*varp), new, type_changed))
1659 r.changed = 1;
1660
1661 if (new == NULL)
1662 r.status = VAROBJ_NOT_IN_SCOPE;
1663 r.value_installed = 1;
1664
1665 if (r.status == VAROBJ_NOT_IN_SCOPE)
1666 {
1667 if (r.type_changed || r.changed)
1668 VEC_safe_push (varobj_update_result, result, &r);
1669 return result;
1670 }
1671
1672 VEC_safe_push (varobj_update_result, stack, &r);
1673 }
1674 else
1675 {
1676 varobj_update_result r = {0};
1677
1678 r.varobj = *varp;
1679 VEC_safe_push (varobj_update_result, stack, &r);
1680 }
1681
1682 /* Walk through the children, reconstructing them all. */
1683 while (!VEC_empty (varobj_update_result, stack))
1684 {
1685 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1686 struct varobj *v = r.varobj;
1687
1688 VEC_pop (varobj_update_result, stack);
1689
1690 /* Update this variable, unless it's a root, which is already
1691 updated. */
1692 if (!r.value_installed)
1693 {
1694 struct type *new_type;
1695
1696 new = value_of_child (v->parent, v->index);
1697 if (update_type_if_necessary(v, new))
1698 r.type_changed = 1;
1699 if (new)
1700 new_type = value_type (new);
1701 else
1702 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1703
1704 if (varobj_value_has_mutated (v, new, new_type))
1705 {
1706 /* The children are no longer valid; delete them now.
1707 Report the fact that its type changed as well. */
1708 varobj_delete (v, NULL, 1 /* only_children */);
1709 v->num_children = -1;
1710 v->to = -1;
1711 v->from = -1;
1712 v->type = new_type;
1713 r.type_changed = 1;
1714 }
1715
1716 if (install_new_value (v, new, r.type_changed))
1717 {
1718 r.changed = 1;
1719 v->updated = 0;
1720 }
1721 }
1722
1723 /* We probably should not get children of a dynamic varobj, but
1724 for which -var-list-children was never invoked. */
1725 if (varobj_is_dynamic_p (v))
1726 {
1727 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1728 VEC (varobj_p) *new = 0;
1729 int i, children_changed = 0;
1730
1731 if (v->frozen)
1732 continue;
1733
1734 if (!v->dynamic->children_requested)
1735 {
1736 int dummy;
1737
1738 /* If we initially did not have potential children, but
1739 now we do, consider the varobj as changed.
1740 Otherwise, if children were never requested, consider
1741 it as unchanged -- presumably, such varobj is not yet
1742 expanded in the UI, so we need not bother getting
1743 it. */
1744 if (!varobj_has_more (v, 0))
1745 {
1746 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1747 &dummy, 0, 0, 0);
1748 if (varobj_has_more (v, 0))
1749 r.changed = 1;
1750 }
1751
1752 if (r.changed)
1753 VEC_safe_push (varobj_update_result, result, &r);
1754
1755 continue;
1756 }
1757
1758 /* If update_dynamic_varobj_children returns 0, then we have
1759 a non-conforming pretty-printer, so we skip it. */
1760 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1761 &unchanged, &children_changed, 1,
1762 v->from, v->to))
1763 {
1764 if (children_changed || new)
1765 {
1766 r.children_changed = 1;
1767 r.new = new;
1768 }
1769 /* Push in reverse order so that the first child is
1770 popped from the work stack first, and so will be
1771 added to result first. This does not affect
1772 correctness, just "nicer". */
1773 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1774 {
1775 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1776 varobj_update_result r = {0};
1777
1778 /* Type may change only if value was changed. */
1779 r.varobj = tmp;
1780 r.changed = 1;
1781 r.type_changed = 1;
1782 r.value_installed = 1;
1783 VEC_safe_push (varobj_update_result, stack, &r);
1784 }
1785 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1786 {
1787 varobj_p tmp = VEC_index (varobj_p, changed, i);
1788 varobj_update_result r = {0};
1789
1790 r.varobj = tmp;
1791 r.changed = 1;
1792 r.value_installed = 1;
1793 VEC_safe_push (varobj_update_result, stack, &r);
1794 }
1795 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1796 {
1797 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1798
1799 if (!tmp->frozen)
1800 {
1801 varobj_update_result r = {0};
1802
1803 r.varobj = tmp;
1804 r.value_installed = 1;
1805 VEC_safe_push (varobj_update_result, stack, &r);
1806 }
1807 }
1808 if (r.changed || r.children_changed)
1809 VEC_safe_push (varobj_update_result, result, &r);
1810
1811 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1812 because NEW has been put into the result vector. */
1813 VEC_free (varobj_p, changed);
1814 VEC_free (varobj_p, type_changed);
1815 VEC_free (varobj_p, unchanged);
1816
1817 continue;
1818 }
1819 }
1820
1821 /* Push any children. Use reverse order so that the first
1822 child is popped from the work stack first, and so
1823 will be added to result first. This does not
1824 affect correctness, just "nicer". */
1825 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1826 {
1827 varobj_p c = VEC_index (varobj_p, v->children, i);
1828
1829 /* Child may be NULL if explicitly deleted by -var-delete. */
1830 if (c != NULL && !c->frozen)
1831 {
1832 varobj_update_result r = {0};
1833
1834 r.varobj = c;
1835 VEC_safe_push (varobj_update_result, stack, &r);
1836 }
1837 }
1838
1839 if (r.changed || r.type_changed)
1840 VEC_safe_push (varobj_update_result, result, &r);
1841 }
1842
1843 VEC_free (varobj_update_result, stack);
1844
1845 return result;
1846 }
1847 \f
1848
1849 /* Helper functions */
1850
1851 /*
1852 * Variable object construction/destruction
1853 */
1854
1855 static int
1856 delete_variable (struct cpstack **resultp, struct varobj *var,
1857 int only_children_p)
1858 {
1859 int delcount = 0;
1860
1861 delete_variable_1 (resultp, &delcount, var,
1862 only_children_p, 1 /* remove_from_parent_p */ );
1863
1864 return delcount;
1865 }
1866
1867 /* Delete the variable object VAR and its children. */
1868 /* IMPORTANT NOTE: If we delete a variable which is a child
1869 and the parent is not removed we dump core. It must be always
1870 initially called with remove_from_parent_p set. */
1871 static void
1872 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1873 struct varobj *var, int only_children_p,
1874 int remove_from_parent_p)
1875 {
1876 int i;
1877
1878 /* Delete any children of this variable, too. */
1879 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1880 {
1881 varobj_p child = VEC_index (varobj_p, var->children, i);
1882
1883 if (!child)
1884 continue;
1885 if (!remove_from_parent_p)
1886 child->parent = NULL;
1887 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1888 }
1889 VEC_free (varobj_p, var->children);
1890
1891 /* if we were called to delete only the children we are done here. */
1892 if (only_children_p)
1893 return;
1894
1895 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1896 /* If the name is null, this is a temporary variable, that has not
1897 yet been installed, don't report it, it belongs to the caller... */
1898 if (var->obj_name != NULL)
1899 {
1900 cppush (resultp, xstrdup (var->obj_name));
1901 *delcountp = *delcountp + 1;
1902 }
1903
1904 /* If this variable has a parent, remove it from its parent's list. */
1905 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1906 (as indicated by remove_from_parent_p) we don't bother doing an
1907 expensive list search to find the element to remove when we are
1908 discarding the list afterwards. */
1909 if ((remove_from_parent_p) && (var->parent != NULL))
1910 {
1911 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1912 }
1913
1914 if (var->obj_name != NULL)
1915 uninstall_variable (var);
1916
1917 /* Free memory associated with this variable. */
1918 free_variable (var);
1919 }
1920
1921 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1922 static int
1923 install_variable (struct varobj *var)
1924 {
1925 struct vlist *cv;
1926 struct vlist *newvl;
1927 const char *chp;
1928 unsigned int index = 0;
1929 unsigned int i = 1;
1930
1931 for (chp = var->obj_name; *chp; chp++)
1932 {
1933 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1934 }
1935
1936 cv = *(varobj_table + index);
1937 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1938 cv = cv->next;
1939
1940 if (cv != NULL)
1941 error (_("Duplicate variable object name"));
1942
1943 /* Add varobj to hash table. */
1944 newvl = xmalloc (sizeof (struct vlist));
1945 newvl->next = *(varobj_table + index);
1946 newvl->var = var;
1947 *(varobj_table + index) = newvl;
1948
1949 /* If root, add varobj to root list. */
1950 if (is_root_p (var))
1951 {
1952 /* Add to list of root variables. */
1953 if (rootlist == NULL)
1954 var->root->next = NULL;
1955 else
1956 var->root->next = rootlist;
1957 rootlist = var->root;
1958 }
1959
1960 return 1; /* OK */
1961 }
1962
1963 /* Unistall the object VAR. */
1964 static void
1965 uninstall_variable (struct varobj *var)
1966 {
1967 struct vlist *cv;
1968 struct vlist *prev;
1969 struct varobj_root *cr;
1970 struct varobj_root *prer;
1971 const char *chp;
1972 unsigned int index = 0;
1973 unsigned int i = 1;
1974
1975 /* Remove varobj from hash table. */
1976 for (chp = var->obj_name; *chp; chp++)
1977 {
1978 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1979 }
1980
1981 cv = *(varobj_table + index);
1982 prev = NULL;
1983 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1984 {
1985 prev = cv;
1986 cv = cv->next;
1987 }
1988
1989 if (varobjdebug)
1990 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1991
1992 if (cv == NULL)
1993 {
1994 warning
1995 ("Assertion failed: Could not find variable object \"%s\" to delete",
1996 var->obj_name);
1997 return;
1998 }
1999
2000 if (prev == NULL)
2001 *(varobj_table + index) = cv->next;
2002 else
2003 prev->next = cv->next;
2004
2005 xfree (cv);
2006
2007 /* If root, remove varobj from root list. */
2008 if (is_root_p (var))
2009 {
2010 /* Remove from list of root variables. */
2011 if (rootlist == var->root)
2012 rootlist = var->root->next;
2013 else
2014 {
2015 prer = NULL;
2016 cr = rootlist;
2017 while ((cr != NULL) && (cr->rootvar != var))
2018 {
2019 prer = cr;
2020 cr = cr->next;
2021 }
2022 if (cr == NULL)
2023 {
2024 warning (_("Assertion failed: Could not find "
2025 "varobj \"%s\" in root list"),
2026 var->obj_name);
2027 return;
2028 }
2029 if (prer == NULL)
2030 rootlist = NULL;
2031 else
2032 prer->next = cr->next;
2033 }
2034 }
2035
2036 }
2037
2038 /* Create and install a child of the parent of the given name. */
2039 static struct varobj *
2040 create_child (struct varobj *parent, int index, char *name)
2041 {
2042 struct varobj_item item;
2043
2044 item.name = name;
2045 item.value = value_of_child (parent, index);
2046
2047 return create_child_with_value (parent, index, &item);
2048 }
2049
2050 static struct varobj *
2051 create_child_with_value (struct varobj *parent, int index,
2052 struct varobj_item *item)
2053 {
2054 struct varobj *child;
2055 char *childs_name;
2056
2057 child = new_variable ();
2058
2059 /* NAME is allocated by caller. */
2060 child->name = item->name;
2061 child->index = index;
2062 child->parent = parent;
2063 child->root = parent->root;
2064
2065 if (varobj_is_anonymous_child (child))
2066 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2067 else
2068 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2069 child->obj_name = childs_name;
2070
2071 install_variable (child);
2072
2073 /* Compute the type of the child. Must do this before
2074 calling install_new_value. */
2075 if (item->value != NULL)
2076 /* If the child had no evaluation errors, var->value
2077 will be non-NULL and contain a valid type. */
2078 child->type = value_actual_type (item->value, 0, NULL);
2079 else
2080 /* Otherwise, we must compute the type. */
2081 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2082 child->index);
2083 install_new_value (child, item->value, 1);
2084
2085 return child;
2086 }
2087 \f
2088
2089 /*
2090 * Miscellaneous utility functions.
2091 */
2092
2093 /* Allocate memory and initialize a new variable. */
2094 static struct varobj *
2095 new_variable (void)
2096 {
2097 struct varobj *var;
2098
2099 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2100 var->name = NULL;
2101 var->path_expr = NULL;
2102 var->obj_name = NULL;
2103 var->index = -1;
2104 var->type = NULL;
2105 var->value = NULL;
2106 var->num_children = -1;
2107 var->parent = NULL;
2108 var->children = NULL;
2109 var->format = 0;
2110 var->root = NULL;
2111 var->updated = 0;
2112 var->print_value = NULL;
2113 var->frozen = 0;
2114 var->not_fetched = 0;
2115 var->dynamic
2116 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2117 var->dynamic->children_requested = 0;
2118 var->from = -1;
2119 var->to = -1;
2120 var->dynamic->constructor = 0;
2121 var->dynamic->pretty_printer = 0;
2122 var->dynamic->child_iter = 0;
2123 var->dynamic->saved_item = 0;
2124
2125 return var;
2126 }
2127
2128 /* Allocate memory and initialize a new root variable. */
2129 static struct varobj *
2130 new_root_variable (void)
2131 {
2132 struct varobj *var = new_variable ();
2133
2134 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2135 var->root->lang_ops = NULL;
2136 var->root->exp = NULL;
2137 var->root->valid_block = NULL;
2138 var->root->frame = null_frame_id;
2139 var->root->floating = 0;
2140 var->root->rootvar = NULL;
2141 var->root->is_valid = 1;
2142
2143 return var;
2144 }
2145
2146 /* Free any allocated memory associated with VAR. */
2147 static void
2148 free_variable (struct varobj *var)
2149 {
2150 #if HAVE_PYTHON
2151 if (var->dynamic->pretty_printer != NULL)
2152 {
2153 struct cleanup *cleanup = varobj_ensure_python_env (var);
2154
2155 Py_XDECREF (var->dynamic->constructor);
2156 Py_XDECREF (var->dynamic->pretty_printer);
2157 do_cleanups (cleanup);
2158 }
2159 #endif
2160
2161 varobj_iter_delete (var->dynamic->child_iter);
2162 varobj_clear_saved_item (var->dynamic);
2163 value_free (var->value);
2164
2165 /* Free the expression if this is a root variable. */
2166 if (is_root_p (var))
2167 {
2168 xfree (var->root->exp);
2169 xfree (var->root);
2170 }
2171
2172 xfree (var->name);
2173 xfree (var->obj_name);
2174 xfree (var->print_value);
2175 xfree (var->path_expr);
2176 xfree (var->dynamic);
2177 xfree (var);
2178 }
2179
2180 static void
2181 do_free_variable_cleanup (void *var)
2182 {
2183 free_variable (var);
2184 }
2185
2186 static struct cleanup *
2187 make_cleanup_free_variable (struct varobj *var)
2188 {
2189 return make_cleanup (do_free_variable_cleanup, var);
2190 }
2191
2192 /* Return the type of the value that's stored in VAR,
2193 or that would have being stored there if the
2194 value were accessible.
2195
2196 This differs from VAR->type in that VAR->type is always
2197 the true type of the expession in the source language.
2198 The return value of this function is the type we're
2199 actually storing in varobj, and using for displaying
2200 the values and for comparing previous and new values.
2201
2202 For example, top-level references are always stripped. */
2203 struct type *
2204 varobj_get_value_type (struct varobj *var)
2205 {
2206 struct type *type;
2207
2208 if (var->value)
2209 type = value_type (var->value);
2210 else
2211 type = var->type;
2212
2213 type = check_typedef (type);
2214
2215 if (TYPE_CODE (type) == TYPE_CODE_REF)
2216 type = get_target_type (type);
2217
2218 type = check_typedef (type);
2219
2220 return type;
2221 }
2222
2223 /* What is the default display for this variable? We assume that
2224 everything is "natural". Any exceptions? */
2225 static enum varobj_display_formats
2226 variable_default_display (struct varobj *var)
2227 {
2228 return FORMAT_NATURAL;
2229 }
2230
2231 /* FIXME: The following should be generic for any pointer. */
2232 static void
2233 cppush (struct cpstack **pstack, char *name)
2234 {
2235 struct cpstack *s;
2236
2237 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2238 s->name = name;
2239 s->next = *pstack;
2240 *pstack = s;
2241 }
2242
2243 /* FIXME: The following should be generic for any pointer. */
2244 static char *
2245 cppop (struct cpstack **pstack)
2246 {
2247 struct cpstack *s;
2248 char *v;
2249
2250 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2251 return NULL;
2252
2253 s = *pstack;
2254 v = s->name;
2255 *pstack = (*pstack)->next;
2256 xfree (s);
2257
2258 return v;
2259 }
2260 \f
2261 /*
2262 * Language-dependencies
2263 */
2264
2265 /* Common entry points */
2266
2267 /* Return the number of children for a given variable.
2268 The result of this function is defined by the language
2269 implementation. The number of children returned by this function
2270 is the number of children that the user will see in the variable
2271 display. */
2272 static int
2273 number_of_children (struct varobj *var)
2274 {
2275 return (*var->root->lang_ops->number_of_children) (var);
2276 }
2277
2278 /* What is the expression for the root varobj VAR? Returns a malloc'd
2279 string. */
2280 static char *
2281 name_of_variable (struct varobj *var)
2282 {
2283 return (*var->root->lang_ops->name_of_variable) (var);
2284 }
2285
2286 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2287 string. */
2288 static char *
2289 name_of_child (struct varobj *var, int index)
2290 {
2291 return (*var->root->lang_ops->name_of_child) (var, index);
2292 }
2293
2294 /* If frame associated with VAR can be found, switch
2295 to it and return 1. Otherwise, return 0. */
2296
2297 static int
2298 check_scope (struct varobj *var)
2299 {
2300 struct frame_info *fi;
2301 int scope;
2302
2303 fi = frame_find_by_id (var->root->frame);
2304 scope = fi != NULL;
2305
2306 if (fi)
2307 {
2308 CORE_ADDR pc = get_frame_pc (fi);
2309
2310 if (pc < BLOCK_START (var->root->valid_block) ||
2311 pc >= BLOCK_END (var->root->valid_block))
2312 scope = 0;
2313 else
2314 select_frame (fi);
2315 }
2316 return scope;
2317 }
2318
2319 /* Helper function to value_of_root. */
2320
2321 static struct value *
2322 value_of_root_1 (struct varobj **var_handle)
2323 {
2324 struct value *new_val = NULL;
2325 struct varobj *var = *var_handle;
2326 int within_scope = 0;
2327 struct cleanup *back_to;
2328
2329 /* Only root variables can be updated... */
2330 if (!is_root_p (var))
2331 /* Not a root var. */
2332 return NULL;
2333
2334 back_to = make_cleanup_restore_current_thread ();
2335
2336 /* Determine whether the variable is still around. */
2337 if (var->root->valid_block == NULL || var->root->floating)
2338 within_scope = 1;
2339 else if (var->root->thread_id == 0)
2340 {
2341 /* The program was single-threaded when the variable object was
2342 created. Technically, it's possible that the program became
2343 multi-threaded since then, but we don't support such
2344 scenario yet. */
2345 within_scope = check_scope (var);
2346 }
2347 else
2348 {
2349 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2350 if (in_thread_list (ptid))
2351 {
2352 switch_to_thread (ptid);
2353 within_scope = check_scope (var);
2354 }
2355 }
2356
2357 if (within_scope)
2358 {
2359 volatile struct gdb_exception except;
2360
2361 /* We need to catch errors here, because if evaluate
2362 expression fails we want to just return NULL. */
2363 TRY_CATCH (except, RETURN_MASK_ERROR)
2364 {
2365 new_val = evaluate_expression (var->root->exp);
2366 }
2367 }
2368
2369 do_cleanups (back_to);
2370
2371 return new_val;
2372 }
2373
2374 /* What is the ``struct value *'' of the root variable VAR?
2375 For floating variable object, evaluation can get us a value
2376 of different type from what is stored in varobj already. In
2377 that case:
2378 - *type_changed will be set to 1
2379 - old varobj will be freed, and new one will be
2380 created, with the same name.
2381 - *var_handle will be set to the new varobj
2382 Otherwise, *type_changed will be set to 0. */
2383 static struct value *
2384 value_of_root (struct varobj **var_handle, int *type_changed)
2385 {
2386 struct varobj *var;
2387
2388 if (var_handle == NULL)
2389 return NULL;
2390
2391 var = *var_handle;
2392
2393 /* This should really be an exception, since this should
2394 only get called with a root variable. */
2395
2396 if (!is_root_p (var))
2397 return NULL;
2398
2399 if (var->root->floating)
2400 {
2401 struct varobj *tmp_var;
2402 char *old_type, *new_type;
2403
2404 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2405 USE_SELECTED_FRAME);
2406 if (tmp_var == NULL)
2407 {
2408 return NULL;
2409 }
2410 old_type = varobj_get_type (var);
2411 new_type = varobj_get_type (tmp_var);
2412 if (strcmp (old_type, new_type) == 0)
2413 {
2414 /* The expression presently stored inside var->root->exp
2415 remembers the locations of local variables relatively to
2416 the frame where the expression was created (in DWARF location
2417 button, for example). Naturally, those locations are not
2418 correct in other frames, so update the expression. */
2419
2420 struct expression *tmp_exp = var->root->exp;
2421
2422 var->root->exp = tmp_var->root->exp;
2423 tmp_var->root->exp = tmp_exp;
2424
2425 varobj_delete (tmp_var, NULL, 0);
2426 *type_changed = 0;
2427 }
2428 else
2429 {
2430 tmp_var->obj_name = xstrdup (var->obj_name);
2431 tmp_var->from = var->from;
2432 tmp_var->to = var->to;
2433 varobj_delete (var, NULL, 0);
2434
2435 install_variable (tmp_var);
2436 *var_handle = tmp_var;
2437 var = *var_handle;
2438 *type_changed = 1;
2439 }
2440 xfree (old_type);
2441 xfree (new_type);
2442 }
2443 else
2444 {
2445 *type_changed = 0;
2446 }
2447
2448 {
2449 struct value *value;
2450
2451 value = value_of_root_1 (var_handle);
2452 if (var->value == NULL || value == NULL)
2453 {
2454 /* For root varobj-s, a NULL value indicates a scoping issue.
2455 So, nothing to do in terms of checking for mutations. */
2456 }
2457 else if (varobj_value_has_mutated (var, value, value_type (value)))
2458 {
2459 /* The type has mutated, so the children are no longer valid.
2460 Just delete them, and tell our caller that the type has
2461 changed. */
2462 varobj_delete (var, NULL, 1 /* only_children */);
2463 var->num_children = -1;
2464 var->to = -1;
2465 var->from = -1;
2466 *type_changed = 1;
2467 }
2468 return value;
2469 }
2470 }
2471
2472 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2473 static struct value *
2474 value_of_child (struct varobj *parent, int index)
2475 {
2476 struct value *value;
2477
2478 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2479
2480 return value;
2481 }
2482
2483 /* GDB already has a command called "value_of_variable". Sigh. */
2484 static char *
2485 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2486 {
2487 if (var->root->is_valid)
2488 {
2489 if (var->dynamic->pretty_printer != NULL)
2490 return varobj_value_get_print_value (var->value, var->format, var);
2491 return (*var->root->lang_ops->value_of_variable) (var, format);
2492 }
2493 else
2494 return NULL;
2495 }
2496
2497 void
2498 varobj_formatted_print_options (struct value_print_options *opts,
2499 enum varobj_display_formats format)
2500 {
2501 get_formatted_print_options (opts, format_code[(int) format]);
2502 opts->deref_ref = 0;
2503 opts->raw = 1;
2504 }
2505
2506 char *
2507 varobj_value_get_print_value (struct value *value,
2508 enum varobj_display_formats format,
2509 struct varobj *var)
2510 {
2511 struct ui_file *stb;
2512 struct cleanup *old_chain;
2513 char *thevalue = NULL;
2514 struct value_print_options opts;
2515 struct type *type = NULL;
2516 long len = 0;
2517 char *encoding = NULL;
2518 struct gdbarch *gdbarch = NULL;
2519 /* Initialize it just to avoid a GCC false warning. */
2520 CORE_ADDR str_addr = 0;
2521 int string_print = 0;
2522
2523 if (value == NULL)
2524 return NULL;
2525
2526 stb = mem_fileopen ();
2527 old_chain = make_cleanup_ui_file_delete (stb);
2528
2529 gdbarch = get_type_arch (value_type (value));
2530 #if HAVE_PYTHON
2531 if (gdb_python_initialized)
2532 {
2533 PyObject *value_formatter = var->dynamic->pretty_printer;
2534
2535 varobj_ensure_python_env (var);
2536
2537 if (value_formatter)
2538 {
2539 /* First check to see if we have any children at all. If so,
2540 we simply return {...}. */
2541 if (dynamic_varobj_has_child_method (var))
2542 {
2543 do_cleanups (old_chain);
2544 return xstrdup ("{...}");
2545 }
2546
2547 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2548 {
2549 struct value *replacement;
2550 PyObject *output = NULL;
2551
2552 output = apply_varobj_pretty_printer (value_formatter,
2553 &replacement,
2554 stb);
2555
2556 /* If we have string like output ... */
2557 if (output)
2558 {
2559 make_cleanup_py_decref (output);
2560
2561 /* If this is a lazy string, extract it. For lazy
2562 strings we always print as a string, so set
2563 string_print. */
2564 if (gdbpy_is_lazy_string (output))
2565 {
2566 gdbpy_extract_lazy_string (output, &str_addr, &type,
2567 &len, &encoding);
2568 make_cleanup (free_current_contents, &encoding);
2569 string_print = 1;
2570 }
2571 else
2572 {
2573 /* If it is a regular (non-lazy) string, extract
2574 it and copy the contents into THEVALUE. If the
2575 hint says to print it as a string, set
2576 string_print. Otherwise just return the extracted
2577 string as a value. */
2578
2579 char *s = python_string_to_target_string (output);
2580
2581 if (s)
2582 {
2583 char *hint;
2584
2585 hint = gdbpy_get_display_hint (value_formatter);
2586 if (hint)
2587 {
2588 if (!strcmp (hint, "string"))
2589 string_print = 1;
2590 xfree (hint);
2591 }
2592
2593 len = strlen (s);
2594 thevalue = xmemdup (s, len + 1, len + 1);
2595 type = builtin_type (gdbarch)->builtin_char;
2596 xfree (s);
2597
2598 if (!string_print)
2599 {
2600 do_cleanups (old_chain);
2601 return thevalue;
2602 }
2603
2604 make_cleanup (xfree, thevalue);
2605 }
2606 else
2607 gdbpy_print_stack ();
2608 }
2609 }
2610 /* If the printer returned a replacement value, set VALUE
2611 to REPLACEMENT. If there is not a replacement value,
2612 just use the value passed to this function. */
2613 if (replacement)
2614 value = replacement;
2615 }
2616 }
2617 }
2618 #endif
2619
2620 varobj_formatted_print_options (&opts, format);
2621
2622 /* If the THEVALUE has contents, it is a regular string. */
2623 if (thevalue)
2624 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2625 else if (string_print)
2626 /* Otherwise, if string_print is set, and it is not a regular
2627 string, it is a lazy string. */
2628 val_print_string (type, encoding, str_addr, len, stb, &opts);
2629 else
2630 /* All other cases. */
2631 common_val_print (value, stb, 0, &opts, current_language);
2632
2633 thevalue = ui_file_xstrdup (stb, NULL);
2634
2635 do_cleanups (old_chain);
2636 return thevalue;
2637 }
2638
2639 int
2640 varobj_editable_p (struct varobj *var)
2641 {
2642 struct type *type;
2643
2644 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2645 return 0;
2646
2647 type = varobj_get_value_type (var);
2648
2649 switch (TYPE_CODE (type))
2650 {
2651 case TYPE_CODE_STRUCT:
2652 case TYPE_CODE_UNION:
2653 case TYPE_CODE_ARRAY:
2654 case TYPE_CODE_FUNC:
2655 case TYPE_CODE_METHOD:
2656 return 0;
2657 break;
2658
2659 default:
2660 return 1;
2661 break;
2662 }
2663 }
2664
2665 /* Call VAR's value_is_changeable_p language-specific callback. */
2666
2667 int
2668 varobj_value_is_changeable_p (struct varobj *var)
2669 {
2670 return var->root->lang_ops->value_is_changeable_p (var);
2671 }
2672
2673 /* Return 1 if that varobj is floating, that is is always evaluated in the
2674 selected frame, and not bound to thread/frame. Such variable objects
2675 are created using '@' as frame specifier to -var-create. */
2676 int
2677 varobj_floating_p (struct varobj *var)
2678 {
2679 return var->root->floating;
2680 }
2681
2682 /* Implement the "value_is_changeable_p" varobj callback for most
2683 languages. */
2684
2685 int
2686 varobj_default_value_is_changeable_p (struct varobj *var)
2687 {
2688 int r;
2689 struct type *type;
2690
2691 if (CPLUS_FAKE_CHILD (var))
2692 return 0;
2693
2694 type = varobj_get_value_type (var);
2695
2696 switch (TYPE_CODE (type))
2697 {
2698 case TYPE_CODE_STRUCT:
2699 case TYPE_CODE_UNION:
2700 case TYPE_CODE_ARRAY:
2701 r = 0;
2702 break;
2703
2704 default:
2705 r = 1;
2706 }
2707
2708 return r;
2709 }
2710
2711 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2712 with an arbitrary caller supplied DATA pointer. */
2713
2714 void
2715 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2716 {
2717 struct varobj_root *var_root, *var_root_next;
2718
2719 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2720
2721 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2722 {
2723 var_root_next = var_root->next;
2724
2725 (*func) (var_root->rootvar, data);
2726 }
2727 }
2728
2729 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2730 defined on globals. It is a helper for varobj_invalidate.
2731
2732 This function is called after changing the symbol file, in this case the
2733 pointers to "struct type" stored by the varobj are no longer valid. All
2734 varobj must be either re-evaluated, or marked as invalid here. */
2735
2736 static void
2737 varobj_invalidate_iter (struct varobj *var, void *unused)
2738 {
2739 /* global and floating var must be re-evaluated. */
2740 if (var->root->floating || var->root->valid_block == NULL)
2741 {
2742 struct varobj *tmp_var;
2743
2744 /* Try to create a varobj with same expression. If we succeed
2745 replace the old varobj, otherwise invalidate it. */
2746 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2747 USE_CURRENT_FRAME);
2748 if (tmp_var != NULL)
2749 {
2750 tmp_var->obj_name = xstrdup (var->obj_name);
2751 varobj_delete (var, NULL, 0);
2752 install_variable (tmp_var);
2753 }
2754 else
2755 var->root->is_valid = 0;
2756 }
2757 else /* locals must be invalidated. */
2758 var->root->is_valid = 0;
2759 }
2760
2761 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2762 are defined on globals.
2763 Invalidated varobjs will be always printed in_scope="invalid". */
2764
2765 void
2766 varobj_invalidate (void)
2767 {
2768 all_root_varobjs (varobj_invalidate_iter, NULL);
2769 }
2770 \f
2771 extern void _initialize_varobj (void);
2772 void
2773 _initialize_varobj (void)
2774 {
2775 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2776
2777 varobj_table = xmalloc (sizeof_table);
2778 memset (varobj_table, 0, sizeof_table);
2779
2780 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2781 &varobjdebug,
2782 _("Set varobj debugging."),
2783 _("Show varobj debugging."),
2784 _("When non-zero, varobj debugging is enabled."),
2785 NULL, show_varobjdebug,
2786 &setdebuglist, &showdebuglist);
2787 }
This page took 0.090435 seconds and 4 git commands to generate.