gdb: Remove use of VEC from dwarf2read.c
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "gdbsupport/vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34 #include "gdbarch.h"
35
36 #if HAVE_PYTHON
37 #include "python/python.h"
38 #include "python/python-internal.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* See varobj.h. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104
105 /* Next root variable */
106 struct varobj_root *next = NULL;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 bool children_requested = false;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter = NULL;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, bool);
153
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155
156 static bool install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static enum varobj_display_formats variable_default_display (struct varobj *);
169
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
172
173 static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
175
176 /* Language-specific routines. */
177
178 static int number_of_children (const struct varobj *);
179
180 static std::string name_of_variable (const struct varobj *);
181
182 static std::string name_of_child (struct varobj *, int);
183
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
185
186 static struct value *value_of_child (const struct varobj *parent, int index);
187
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
190
191 static bool is_root_p (const struct varobj *var);
192
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
195
196 /* Private data */
197
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
203
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
207
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
210
211 \f
212
213 /* API Implementation */
214 static bool
215 is_root_p (const struct varobj *var)
216 {
217 return (var->root->rootvar == var);
218 }
219
220 #ifdef HAVE_PYTHON
221
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225 {
226 }
227
228 #endif
229
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 {
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
244 {
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
256 return frame;
257 }
258
259 return NULL;
260 }
261
262 /* Creates a varobj (not its children). */
263
264 struct varobj *
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 {
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270
271 if (expression != NULL)
272 {
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
276 const char *p;
277 struct value *value = NULL;
278 CORE_ADDR pc;
279
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
298 else
299 fi = NULL;
300
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313
314 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
315 | INNERMOST_BLOCK_FOR_REGISTERS);
316 /* Wrap the call to parse expression, so we can
317 return a sensible error. */
318 try
319 {
320 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
321 }
322
323 catch (const gdb_exception_error &except)
324 {
325 return NULL;
326 }
327
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 {
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
335 return NULL;
336 }
337
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block =
340 var->root->floating ? NULL : tracker.block ();
341 var->name = expression;
342 /* For a root var, the name and the expr are the same. */
343 var->path_expr = expression;
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
348 Since select_frame is so benign, just call it for all cases. */
349 if (var->root->valid_block)
350 {
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
358 var->root->frame = get_frame_id (fi);
359 var->root->thread_id = inferior_thread ()->global_num;
360 old_id = get_frame_id (get_selected_frame (NULL));
361 select_frame (fi);
362 }
363
364 /* We definitely need to catch errors here.
365 If evaluate_expression succeeds we got the value we wanted.
366 But if it fails, we still go on with a call to evaluate_type(). */
367 try
368 {
369 value = evaluate_expression (var->root->exp.get ());
370 }
371 catch (const gdb_exception_error &except)
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376
377 var->type = value_type (type_only_value);
378 }
379
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
388
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
391
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
393
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
396
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
400 }
401
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
404
405 if ((var != NULL) && (objname != NULL))
406 {
407 var->obj_name = objname;
408
409 /* If a varobj name is duplicated, the install will fail so
410 we must cleanup. */
411 if (!install_variable (var.get ()))
412 return NULL;
413 }
414
415 return var.release ();
416 }
417
418 /* Generates an unique name that can be used for a varobj. */
419
420 std::string
421 varobj_gen_name (void)
422 {
423 static int id = 0;
424
425 /* Generate a name for this object. */
426 id++;
427 return string_printf ("var%d", id);
428 }
429
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
432
433 struct varobj *
434 varobj_get_handle (const char *objname)
435 {
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
448 cv = cv->next;
449
450 if (cv == NULL)
451 error (_("Variable object not found"));
452
453 return cv->var;
454 }
455
456 /* Given the handle, return the name of the object. */
457
458 const char *
459 varobj_get_objname (const struct varobj *var)
460 {
461 return var->obj_name.c_str ();
462 }
463
464 /* Given the handle, return the expression represented by the
465 object. */
466
467 std::string
468 varobj_get_expression (const struct varobj *var)
469 {
470 return name_of_variable (var);
471 }
472
473 /* See varobj.h. */
474
475 int
476 varobj_delete (struct varobj *var, bool only_children)
477 {
478 return delete_variable (var, only_children);
479 }
480
481 #if HAVE_PYTHON
482
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485 static PyObject *
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
487 {
488 PyObject *val_obj = NULL;
489 PyObject *printer;
490
491 val_obj = value_to_value_object (value);
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
498 }
499
500 #endif
501
502 /* Set/Get variable object display format. */
503
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507 {
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
523 if (varobj_value_is_changeable_p (var)
524 && var->value != nullptr && !value_lazy (var->value.get ()))
525 {
526 var->print_value = varobj_value_get_print_value (var->value.get (),
527 var->format, var);
528 }
529
530 return var->format;
531 }
532
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
535 {
536 return var->format;
537 }
538
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
541 {
542 gdb::unique_xmalloc_ptr<char> result;
543
544 #if HAVE_PYTHON
545 if (!gdb_python_initialized)
546 return NULL;
547
548 gdbpy_enter_varobj enter_py (var);
549
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
552 #endif
553
554 return result;
555 }
556
557 /* Return true if the varobj has items after TO, false otherwise. */
558
559 bool
560 varobj_has_more (const struct varobj *var, int to)
561 {
562 if (var->children.size () > to)
563 return true;
564
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
567 }
568
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
573 int
574 varobj_get_thread_id (const struct varobj *var)
575 {
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580 }
581
582 void
583 varobj_set_frozen (struct varobj *var, bool frozen)
584 {
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593 }
594
595 bool
596 varobj_get_frozen (const struct varobj *var)
597 {
598 return var->frozen;
599 }
600
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
606 void
607 varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
609 {
610 int len = children.size ();
611
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
615 *to = len;
616 }
617 else
618 {
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
623 if (*from > *to)
624 *from = *to;
625 }
626 }
627
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631 static void
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
637 bool *cchanged,
638 int index,
639 struct varobj_item *item)
640 {
641 if (var->children.size () < index + 1)
642 {
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
645
646 if (newobj != NULL)
647 {
648 newobj->push_back (child);
649 *cchanged = true;
650 }
651 }
652 else
653 {
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
656
657 if (type_updated)
658 {
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
661 }
662 if (install_new_value (existing, item->value, 0))
663 {
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
666 }
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
669 }
670 }
671
672 #if HAVE_PYTHON
673
674 static bool
675 dynamic_varobj_has_child_method (const struct varobj *var)
676 {
677 PyObject *printer = var->dynamic->pretty_printer;
678
679 if (!gdb_python_initialized)
680 return false;
681
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
684 }
685 #endif
686
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
692 {
693 #if HAVE_PYTHON
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
696 #endif
697
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
700 }
701
702 /* Release and clear VAR's saved item, if any. */
703
704 static void
705 varobj_clear_saved_item (struct varobj_dynamic *var)
706 {
707 if (var->saved_item != NULL)
708 {
709 value_decref (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
712 }
713 }
714
715 static bool
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
721 bool *cchanged,
722 bool update_children,
723 int from,
724 int to)
725 {
726 int i;
727
728 *cchanged = false;
729
730 if (update_children || var->dynamic->child_iter == NULL)
731 {
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
734
735 varobj_clear_saved_item (var->dynamic);
736
737 i = 0;
738
739 if (var->dynamic->child_iter == NULL)
740 return false;
741 }
742 else
743 i = var->children.size ();
744
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
748 {
749 varobj_item *item;
750
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
753 {
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
756 }
757 else
758 {
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 item->value = release_value (item->value).release ();
764 }
765
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
775 {
776 bool can_mention = from < 0 || i >= from;
777
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
783 item);
784
785 delete item;
786 }
787 else
788 {
789 var->dynamic->saved_item = item;
790
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
795 }
796
797 if (i < var->children.size ())
798 {
799 *cchanged = true;
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
804 }
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
808 if (to >= 0 && var->children.size () < to)
809 *cchanged = true;
810
811 var->num_children = var->children.size ();
812
813 return true;
814 }
815
816 int
817 varobj_get_num_children (struct varobj *var)
818 {
819 if (var->num_children == -1)
820 {
821 if (varobj_is_dynamic_p (var))
822 {
823 bool dummy;
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
828 false, 0, 0);
829 }
830 else
831 var->num_children = number_of_children (var);
832 }
833
834 return var->num_children >= 0 ? var->num_children : 0;
835 }
836
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
839
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
842 {
843 var->dynamic->children_requested = true;
844
845 if (varobj_is_dynamic_p (var))
846 {
847 bool children_changed;
848
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
856 }
857
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
864
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
869
870 for (int i = 0; i < var->num_children; i++)
871 {
872 if (var->children[i] == NULL)
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
879 }
880 }
881
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
884 }
885
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
888 {
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
892
893 return v;
894 }
895
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
898 */
899
900 std::string
901 varobj_get_type (struct varobj *var)
902 {
903 /* For the "fake" variables, do not return a type. (Its type is
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
908
909 return type_to_string (var->type);
910 }
911
912 /* Obtain the type of an object variable. */
913
914 struct type *
915 varobj_get_gdb_type (const struct varobj *var)
916 {
917 return var->type;
918 }
919
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
923 static bool
924 is_path_expr_parent (const struct varobj *var)
925 {
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928 }
929
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
933
934 bool
935 varobj_default_is_path_expr_parent (const struct varobj *var)
936 {
937 return true;
938 }
939
940 /* Return the path expression parent for VAR. */
941
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
944 {
945 const struct varobj *parent = var;
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
954
955 return parent;
956 }
957
958 /* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
960
961 const char *
962 varobj_get_path_expr (const struct varobj *var)
963 {
964 if (var->path_expr.empty ())
965 {
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
968 child varobj. */
969 struct varobj *mutable_var = (struct varobj *) var;
970 gdb_assert (!is_root_p (var));
971
972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
973 }
974
975 return var->path_expr.c_str ();
976 }
977
978 const struct language_defn *
979 varobj_get_language (const struct varobj *var)
980 {
981 return var->root->exp->language_defn;
982 }
983
984 int
985 varobj_get_attributes (const struct varobj *var)
986 {
987 int attributes = 0;
988
989 if (varobj_editable_p (var))
990 /* FIXME: define masks for attributes. */
991 attributes |= 0x00000001; /* Editable */
992
993 return attributes;
994 }
995
996 /* Return true if VAR is a dynamic varobj. */
997
998 bool
999 varobj_is_dynamic_p (const struct varobj *var)
1000 {
1001 return var->dynamic->pretty_printer != NULL;
1002 }
1003
1004 std::string
1005 varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1007 {
1008 return my_value_of_variable (var, format);
1009 }
1010
1011 std::string
1012 varobj_get_value (struct varobj *var)
1013 {
1014 return my_value_of_variable (var, var->format);
1015 }
1016
1017 /* Set the value of an object variable (if it is editable) to the
1018 value of the given expression. */
1019 /* Note: Invokes functions that can call error(). */
1020
1021 bool
1022 varobj_set_value (struct varobj *var, const char *expression)
1023 {
1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
1025 /* The argument "expression" contains the variable's new value.
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
1029 int saved_input_radix = input_radix;
1030 const char *s = expression;
1031
1032 gdb_assert (varobj_editable_p (var));
1033
1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1036 try
1037 {
1038 value = evaluate_expression (exp.get ());
1039 }
1040
1041 catch (const gdb_exception_error &except)
1042 {
1043 /* We cannot proceed without a valid expression. */
1044 return false;
1045 }
1046
1047 /* All types that are editable must also be changeable. */
1048 gdb_assert (varobj_value_is_changeable_p (var));
1049
1050 /* The value of a changeable variable object must not be lazy. */
1051 gdb_assert (!value_lazy (var->value.get ()));
1052
1053 /* Need to coerce the input. We want to check if the
1054 value of the variable object will be different
1055 after assignment, and the first thing value_assign
1056 does is coerce the input.
1057 For example, if we are assigning an array to a pointer variable we
1058 should compare the pointer with the array's address, not with the
1059 array's content. */
1060 value = coerce_array (value);
1061
1062 /* The new value may be lazy. value_assign, or
1063 rather value_contents, will take care of this. */
1064 try
1065 {
1066 val = value_assign (var->value.get (), value);
1067 }
1068
1069 catch (const gdb_exception_error &except)
1070 {
1071 return false;
1072 }
1073
1074 /* If the value has changed, record it, so that next -var-update can
1075 report this change. If a variable had a value of '1', we've set it
1076 to '333' and then set again to '1', when -var-update will report this
1077 variable as changed -- because the first assignment has set the
1078 'updated' flag. There's no need to optimize that, because return value
1079 of -var-update should be considered an approximation. */
1080 var->updated = install_new_value (var, val, false /* Compare values. */);
1081 input_radix = saved_input_radix;
1082 return true;
1083 }
1084
1085 #if HAVE_PYTHON
1086
1087 /* A helper function to install a constructor function and visualizer
1088 in a varobj_dynamic. */
1089
1090 static void
1091 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1092 PyObject *visualizer)
1093 {
1094 Py_XDECREF (var->constructor);
1095 var->constructor = constructor;
1096
1097 Py_XDECREF (var->pretty_printer);
1098 var->pretty_printer = visualizer;
1099
1100 varobj_iter_delete (var->child_iter);
1101 var->child_iter = NULL;
1102 }
1103
1104 /* Install the default visualizer for VAR. */
1105
1106 static void
1107 install_default_visualizer (struct varobj *var)
1108 {
1109 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1110 if (CPLUS_FAKE_CHILD (var))
1111 return;
1112
1113 if (pretty_printing)
1114 {
1115 gdbpy_ref<> pretty_printer;
1116
1117 if (var->value != nullptr)
1118 {
1119 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1120 if (pretty_printer == nullptr)
1121 {
1122 gdbpy_print_stack ();
1123 error (_("Cannot instantiate printer for default visualizer"));
1124 }
1125 }
1126
1127 if (pretty_printer == Py_None)
1128 pretty_printer.reset (nullptr);
1129
1130 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1131 }
1132 }
1133
1134 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137 static void
1138 construct_visualizer (struct varobj *var, PyObject *constructor)
1139 {
1140 PyObject *pretty_printer;
1141
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
1151 pretty_printer = instantiate_pretty_printer (constructor,
1152 var->value.get ());
1153 if (! pretty_printer)
1154 {
1155 gdbpy_print_stack ();
1156 Py_DECREF (constructor);
1157 constructor = Py_None;
1158 Py_INCREF (constructor);
1159 }
1160
1161 if (pretty_printer == Py_None)
1162 {
1163 Py_DECREF (pretty_printer);
1164 pretty_printer = NULL;
1165 }
1166 }
1167
1168 install_visualizer (var->dynamic, constructor, pretty_printer);
1169 }
1170
1171 #endif /* HAVE_PYTHON */
1172
1173 /* A helper function for install_new_value. This creates and installs
1174 a visualizer for VAR, if appropriate. */
1175
1176 static void
1177 install_new_value_visualizer (struct varobj *var)
1178 {
1179 #if HAVE_PYTHON
1180 /* If the constructor is None, then we want the raw value. If VAR
1181 does not have a value, just skip this. */
1182 if (!gdb_python_initialized)
1183 return;
1184
1185 if (var->dynamic->constructor != Py_None && var->value != NULL)
1186 {
1187 gdbpy_enter_varobj enter_py (var);
1188
1189 if (var->dynamic->constructor == NULL)
1190 install_default_visualizer (var);
1191 else
1192 construct_visualizer (var, var->dynamic->constructor);
1193 }
1194 #else
1195 /* Do nothing. */
1196 #endif
1197 }
1198
1199 /* When using RTTI to determine variable type it may be changed in runtime when
1200 the variable value is changed. This function checks whether type of varobj
1201 VAR will change when a new value NEW_VALUE is assigned and if it is so
1202 updates the type of VAR. */
1203
1204 static bool
1205 update_type_if_necessary (struct varobj *var, struct value *new_value)
1206 {
1207 if (new_value)
1208 {
1209 struct value_print_options opts;
1210
1211 get_user_print_options (&opts);
1212 if (opts.objectprint)
1213 {
1214 struct type *new_type = value_actual_type (new_value, 0, 0);
1215 std::string new_type_str = type_to_string (new_type);
1216 std::string curr_type_str = varobj_get_type (var);
1217
1218 /* Did the type name change? */
1219 if (curr_type_str != new_type_str)
1220 {
1221 var->type = new_type;
1222
1223 /* This information may be not valid for a new type. */
1224 varobj_delete (var, 1);
1225 var->children.clear ();
1226 var->num_children = -1;
1227 return true;
1228 }
1229 }
1230 }
1231
1232 return false;
1233 }
1234
1235 /* Assign a new value to a variable object. If INITIAL is true,
1236 this is the first assignment after the variable object was just
1237 created, or changed type. In that case, just assign the value
1238 and return false.
1239 Otherwise, assign the new value, and return true if the value is
1240 different from the current one, false otherwise. The comparison is
1241 done on textual representation of value. Therefore, some types
1242 need not be compared. E.g. for structures the reported value is
1243 always "{...}", so no comparison is necessary here. If the old
1244 value was NULL and new one is not, or vice versa, we always return true.
1245
1246 The VALUE parameter should not be released -- the function will
1247 take care of releasing it when needed. */
1248 static bool
1249 install_new_value (struct varobj *var, struct value *value, bool initial)
1250 {
1251 bool changeable;
1252 bool need_to_fetch;
1253 bool changed = false;
1254 bool intentionally_not_fetched = false;
1255
1256 /* We need to know the varobj's type to decide if the value should
1257 be fetched or not. C++ fake children (public/protected/private)
1258 don't have a type. */
1259 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1260 changeable = varobj_value_is_changeable_p (var);
1261
1262 /* If the type has custom visualizer, we consider it to be always
1263 changeable. FIXME: need to make sure this behaviour will not
1264 mess up read-sensitive values. */
1265 if (var->dynamic->pretty_printer != NULL)
1266 changeable = true;
1267
1268 need_to_fetch = changeable;
1269
1270 /* We are not interested in the address of references, and given
1271 that in C++ a reference is not rebindable, it cannot
1272 meaningfully change. So, get hold of the real value. */
1273 if (value)
1274 value = coerce_ref (value);
1275
1276 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1277 /* For unions, we need to fetch the value implicitly because
1278 of implementation of union member fetch. When gdb
1279 creates a value for a field and the value of the enclosing
1280 structure is not lazy, it immediately copies the necessary
1281 bytes from the enclosing values. If the enclosing value is
1282 lazy, the call to value_fetch_lazy on the field will read
1283 the data from memory. For unions, that means we'll read the
1284 same memory more than once, which is not desirable. So
1285 fetch now. */
1286 need_to_fetch = true;
1287
1288 /* The new value might be lazy. If the type is changeable,
1289 that is we'll be comparing values of this type, fetch the
1290 value now. Otherwise, on the next update the old value
1291 will be lazy, which means we've lost that old value. */
1292 if (need_to_fetch && value && value_lazy (value))
1293 {
1294 const struct varobj *parent = var->parent;
1295 bool frozen = var->frozen;
1296
1297 for (; !frozen && parent; parent = parent->parent)
1298 frozen |= parent->frozen;
1299
1300 if (frozen && initial)
1301 {
1302 /* For variables that are frozen, or are children of frozen
1303 variables, we don't do fetch on initial assignment.
1304 For non-initial assignemnt we do the fetch, since it means we're
1305 explicitly asked to compare the new value with the old one. */
1306 intentionally_not_fetched = true;
1307 }
1308 else
1309 {
1310
1311 try
1312 {
1313 value_fetch_lazy (value);
1314 }
1315
1316 catch (const gdb_exception_error &except)
1317 {
1318 /* Set the value to NULL, so that for the next -var-update,
1319 we don't try to compare the new value with this value,
1320 that we couldn't even read. */
1321 value = NULL;
1322 }
1323 }
1324 }
1325
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 value_ref_ptr value_holder;
1329 if (value != NULL)
1330 value_holder = value_ref_ptr::new_reference (value);
1331
1332 /* Below, we'll be comparing string rendering of old and new
1333 values. Don't get string rendering if the value is
1334 lazy -- if it is, the code above has decided that the value
1335 should not be fetched. */
1336 std::string print_value;
1337 if (value != NULL && !value_lazy (value)
1338 && var->dynamic->pretty_printer == NULL)
1339 print_value = varobj_value_get_print_value (value, var->format, var);
1340
1341 /* If the type is changeable, compare the old and the new values.
1342 If this is the initial assignment, we don't have any old value
1343 to compare with. */
1344 if (!initial && changeable)
1345 {
1346 /* If the value of the varobj was changed by -var-set-value,
1347 then the value in the varobj and in the target is the same.
1348 However, that value is different from the value that the
1349 varobj had after the previous -var-update. So need to the
1350 varobj as changed. */
1351 if (var->updated)
1352 changed = true;
1353 else if (var->dynamic->pretty_printer == NULL)
1354 {
1355 /* Try to compare the values. That requires that both
1356 values are non-lazy. */
1357 if (var->not_fetched && value_lazy (var->value.get ()))
1358 {
1359 /* This is a frozen varobj and the value was never read.
1360 Presumably, UI shows some "never read" indicator.
1361 Now that we've fetched the real value, we need to report
1362 this varobj as changed so that UI can show the real
1363 value. */
1364 changed = true;
1365 }
1366 else if (var->value == NULL && value == NULL)
1367 /* Equal. */
1368 ;
1369 else if (var->value == NULL || value == NULL)
1370 {
1371 changed = true;
1372 }
1373 else
1374 {
1375 gdb_assert (!value_lazy (var->value.get ()));
1376 gdb_assert (!value_lazy (value));
1377
1378 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1379 if (var->print_value != print_value)
1380 changed = true;
1381 }
1382 }
1383 }
1384
1385 if (!initial && !changeable)
1386 {
1387 /* For values that are not changeable, we don't compare the values.
1388 However, we want to notice if a value was not NULL and now is NULL,
1389 or vise versa, so that we report when top-level varobjs come in scope
1390 and leave the scope. */
1391 changed = (var->value != NULL) != (value != NULL);
1392 }
1393
1394 /* We must always keep the new value, since children depend on it. */
1395 var->value = value_holder;
1396 if (value && value_lazy (value) && intentionally_not_fetched)
1397 var->not_fetched = true;
1398 else
1399 var->not_fetched = false;
1400 var->updated = false;
1401
1402 install_new_value_visualizer (var);
1403
1404 /* If we installed a pretty-printer, re-compare the printed version
1405 to see if the variable changed. */
1406 if (var->dynamic->pretty_printer != NULL)
1407 {
1408 print_value = varobj_value_get_print_value (var->value.get (),
1409 var->format, var);
1410 if ((var->print_value.empty () && !print_value.empty ())
1411 || (!var->print_value.empty () && print_value.empty ())
1412 || (!var->print_value.empty () && !print_value.empty ()
1413 && var->print_value != print_value))
1414 changed = true;
1415 }
1416 var->print_value = print_value;
1417
1418 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1419
1420 return changed;
1421 }
1422
1423 /* Return the requested range for a varobj. VAR is the varobj. FROM
1424 and TO are out parameters; *FROM and *TO will be set to the
1425 selected sub-range of VAR. If no range was selected using
1426 -var-set-update-range, then both will be -1. */
1427 void
1428 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1429 {
1430 *from = var->from;
1431 *to = var->to;
1432 }
1433
1434 /* Set the selected sub-range of children of VAR to start at index
1435 FROM and end at index TO. If either FROM or TO is less than zero,
1436 this is interpreted as a request for all children. */
1437 void
1438 varobj_set_child_range (struct varobj *var, int from, int to)
1439 {
1440 var->from = from;
1441 var->to = to;
1442 }
1443
1444 void
1445 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1446 {
1447 #if HAVE_PYTHON
1448 PyObject *mainmod;
1449
1450 if (!gdb_python_initialized)
1451 return;
1452
1453 gdbpy_enter_varobj enter_py (var);
1454
1455 mainmod = PyImport_AddModule ("__main__");
1456 gdbpy_ref<> globals
1457 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1458 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1459 globals.get (), globals.get ()));
1460
1461 if (constructor == NULL)
1462 {
1463 gdbpy_print_stack ();
1464 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1465 }
1466
1467 construct_visualizer (var, constructor.get ());
1468
1469 /* If there are any children now, wipe them. */
1470 varobj_delete (var, 1 /* children only */);
1471 var->num_children = -1;
1472 #else
1473 error (_("Python support required"));
1474 #endif
1475 }
1476
1477 /* If NEW_VALUE is the new value of the given varobj (var), return
1478 true if var has mutated. In other words, if the type of
1479 the new value is different from the type of the varobj's old
1480 value.
1481
1482 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1483
1484 static bool
1485 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1486 struct type *new_type)
1487 {
1488 /* If we haven't previously computed the number of children in var,
1489 it does not matter from the front-end's perspective whether
1490 the type has mutated or not. For all intents and purposes,
1491 it has not mutated. */
1492 if (var->num_children < 0)
1493 return false;
1494
1495 if (var->root->lang_ops->value_has_mutated != NULL)
1496 {
1497 /* The varobj module, when installing new values, explicitly strips
1498 references, saying that we're not interested in those addresses.
1499 But detection of mutation happens before installing the new
1500 value, so our value may be a reference that we need to strip
1501 in order to remain consistent. */
1502 if (new_value != NULL)
1503 new_value = coerce_ref (new_value);
1504 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1505 }
1506 else
1507 return false;
1508 }
1509
1510 /* Update the values for a variable and its children. This is a
1511 two-pronged attack. First, re-parse the value for the root's
1512 expression to see if it's changed. Then go all the way
1513 through its children, reconstructing them and noting if they've
1514 changed.
1515
1516 The IS_EXPLICIT parameter specifies if this call is result
1517 of MI request to update this specific variable, or
1518 result of implicit -var-update *. For implicit request, we don't
1519 update frozen variables.
1520
1521 NOTE: This function may delete the caller's varobj. If it
1522 returns TYPE_CHANGED, then it has done this and VARP will be modified
1523 to point to the new varobj. */
1524
1525 std::vector<varobj_update_result>
1526 varobj_update (struct varobj **varp, bool is_explicit)
1527 {
1528 bool type_changed = false;
1529 struct value *newobj;
1530 std::vector<varobj_update_result> stack;
1531 std::vector<varobj_update_result> result;
1532
1533 /* Frozen means frozen -- we don't check for any change in
1534 this varobj, including its going out of scope, or
1535 changing type. One use case for frozen varobjs is
1536 retaining previously evaluated expressions, and we don't
1537 want them to be reevaluated at all. */
1538 if (!is_explicit && (*varp)->frozen)
1539 return result;
1540
1541 if (!(*varp)->root->is_valid)
1542 {
1543 result.emplace_back (*varp, VAROBJ_INVALID);
1544 return result;
1545 }
1546
1547 if ((*varp)->root->rootvar == *varp)
1548 {
1549 varobj_update_result r (*varp);
1550
1551 /* Update the root variable. value_of_root can return NULL
1552 if the variable is no longer around, i.e. we stepped out of
1553 the frame in which a local existed. We are letting the
1554 value_of_root variable dispose of the varobj if the type
1555 has changed. */
1556 newobj = value_of_root (varp, &type_changed);
1557 if (update_type_if_necessary (*varp, newobj))
1558 type_changed = true;
1559 r.varobj = *varp;
1560 r.type_changed = type_changed;
1561 if (install_new_value ((*varp), newobj, type_changed))
1562 r.changed = true;
1563
1564 if (newobj == NULL)
1565 r.status = VAROBJ_NOT_IN_SCOPE;
1566 r.value_installed = true;
1567
1568 if (r.status == VAROBJ_NOT_IN_SCOPE)
1569 {
1570 if (r.type_changed || r.changed)
1571 result.push_back (std::move (r));
1572
1573 return result;
1574 }
1575
1576 stack.push_back (std::move (r));
1577 }
1578 else
1579 stack.emplace_back (*varp);
1580
1581 /* Walk through the children, reconstructing them all. */
1582 while (!stack.empty ())
1583 {
1584 varobj_update_result r = std::move (stack.back ());
1585 stack.pop_back ();
1586 struct varobj *v = r.varobj;
1587
1588 /* Update this variable, unless it's a root, which is already
1589 updated. */
1590 if (!r.value_installed)
1591 {
1592 struct type *new_type;
1593
1594 newobj = value_of_child (v->parent, v->index);
1595 if (update_type_if_necessary (v, newobj))
1596 r.type_changed = true;
1597 if (newobj)
1598 new_type = value_type (newobj);
1599 else
1600 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1601
1602 if (varobj_value_has_mutated (v, newobj, new_type))
1603 {
1604 /* The children are no longer valid; delete them now.
1605 Report the fact that its type changed as well. */
1606 varobj_delete (v, 1 /* only_children */);
1607 v->num_children = -1;
1608 v->to = -1;
1609 v->from = -1;
1610 v->type = new_type;
1611 r.type_changed = true;
1612 }
1613
1614 if (install_new_value (v, newobj, r.type_changed))
1615 {
1616 r.changed = true;
1617 v->updated = false;
1618 }
1619 }
1620
1621 /* We probably should not get children of a dynamic varobj, but
1622 for which -var-list-children was never invoked. */
1623 if (varobj_is_dynamic_p (v))
1624 {
1625 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1626 bool children_changed = false;
1627
1628 if (v->frozen)
1629 continue;
1630
1631 if (!v->dynamic->children_requested)
1632 {
1633 bool dummy;
1634
1635 /* If we initially did not have potential children, but
1636 now we do, consider the varobj as changed.
1637 Otherwise, if children were never requested, consider
1638 it as unchanged -- presumably, such varobj is not yet
1639 expanded in the UI, so we need not bother getting
1640 it. */
1641 if (!varobj_has_more (v, 0))
1642 {
1643 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1644 &dummy, false, 0, 0);
1645 if (varobj_has_more (v, 0))
1646 r.changed = true;
1647 }
1648
1649 if (r.changed)
1650 result.push_back (std::move (r));
1651
1652 continue;
1653 }
1654
1655 /* If update_dynamic_varobj_children returns false, then we have
1656 a non-conforming pretty-printer, so we skip it. */
1657 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1658 &newobj_vec,
1659 &unchanged, &children_changed,
1660 true, v->from, v->to))
1661 {
1662 if (children_changed || !newobj_vec.empty ())
1663 {
1664 r.children_changed = true;
1665 r.newobj = std::move (newobj_vec);
1666 }
1667 /* Push in reverse order so that the first child is
1668 popped from the work stack first, and so will be
1669 added to result first. This does not affect
1670 correctness, just "nicer". */
1671 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1672 {
1673 varobj_update_result item (type_changed_vec[i]);
1674
1675 /* Type may change only if value was changed. */
1676 item.changed = true;
1677 item.type_changed = true;
1678 item.value_installed = true;
1679
1680 stack.push_back (std::move (item));
1681 }
1682 for (int i = changed.size () - 1; i >= 0; --i)
1683 {
1684 varobj_update_result item (changed[i]);
1685
1686 item.changed = true;
1687 item.value_installed = true;
1688
1689 stack.push_back (std::move (item));
1690 }
1691 for (int i = unchanged.size () - 1; i >= 0; --i)
1692 {
1693 if (!unchanged[i]->frozen)
1694 {
1695 varobj_update_result item (unchanged[i]);
1696
1697 item.value_installed = true;
1698
1699 stack.push_back (std::move (item));
1700 }
1701 }
1702 if (r.changed || r.children_changed)
1703 result.push_back (std::move (r));
1704
1705 continue;
1706 }
1707 }
1708
1709 /* Push any children. Use reverse order so that the first
1710 child is popped from the work stack first, and so
1711 will be added to result first. This does not
1712 affect correctness, just "nicer". */
1713 for (int i = v->children.size () - 1; i >= 0; --i)
1714 {
1715 varobj *c = v->children[i];
1716
1717 /* Child may be NULL if explicitly deleted by -var-delete. */
1718 if (c != NULL && !c->frozen)
1719 stack.emplace_back (c);
1720 }
1721
1722 if (r.changed || r.type_changed)
1723 result.push_back (std::move (r));
1724 }
1725
1726 return result;
1727 }
1728
1729 /* Helper functions */
1730
1731 /*
1732 * Variable object construction/destruction
1733 */
1734
1735 static int
1736 delete_variable (struct varobj *var, bool only_children_p)
1737 {
1738 int delcount = 0;
1739
1740 delete_variable_1 (&delcount, var, only_children_p,
1741 true /* remove_from_parent_p */ );
1742
1743 return delcount;
1744 }
1745
1746 /* Delete the variable object VAR and its children. */
1747 /* IMPORTANT NOTE: If we delete a variable which is a child
1748 and the parent is not removed we dump core. It must be always
1749 initially called with remove_from_parent_p set. */
1750 static void
1751 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1752 bool remove_from_parent_p)
1753 {
1754 /* Delete any children of this variable, too. */
1755 for (varobj *child : var->children)
1756 {
1757 if (!child)
1758 continue;
1759
1760 if (!remove_from_parent_p)
1761 child->parent = NULL;
1762
1763 delete_variable_1 (delcountp, child, false, only_children_p);
1764 }
1765 var->children.clear ();
1766
1767 /* if we were called to delete only the children we are done here. */
1768 if (only_children_p)
1769 return;
1770
1771 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1772 /* If the name is empty, this is a temporary variable, that has not
1773 yet been installed, don't report it, it belongs to the caller... */
1774 if (!var->obj_name.empty ())
1775 {
1776 *delcountp = *delcountp + 1;
1777 }
1778
1779 /* If this variable has a parent, remove it from its parent's list. */
1780 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1781 (as indicated by remove_from_parent_p) we don't bother doing an
1782 expensive list search to find the element to remove when we are
1783 discarding the list afterwards. */
1784 if ((remove_from_parent_p) && (var->parent != NULL))
1785 var->parent->children[var->index] = NULL;
1786
1787 if (!var->obj_name.empty ())
1788 uninstall_variable (var);
1789
1790 /* Free memory associated with this variable. */
1791 delete var;
1792 }
1793
1794 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1795 static bool
1796 install_variable (struct varobj *var)
1797 {
1798 struct vlist *cv;
1799 struct vlist *newvl;
1800 const char *chp;
1801 unsigned int index = 0;
1802 unsigned int i = 1;
1803
1804 for (chp = var->obj_name.c_str (); *chp; chp++)
1805 {
1806 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1807 }
1808
1809 cv = *(varobj_table + index);
1810 while (cv != NULL && cv->var->obj_name != var->obj_name)
1811 cv = cv->next;
1812
1813 if (cv != NULL)
1814 error (_("Duplicate variable object name"));
1815
1816 /* Add varobj to hash table. */
1817 newvl = XNEW (struct vlist);
1818 newvl->next = *(varobj_table + index);
1819 newvl->var = var;
1820 *(varobj_table + index) = newvl;
1821
1822 /* If root, add varobj to root list. */
1823 if (is_root_p (var))
1824 {
1825 /* Add to list of root variables. */
1826 if (rootlist == NULL)
1827 var->root->next = NULL;
1828 else
1829 var->root->next = rootlist;
1830 rootlist = var->root;
1831 }
1832
1833 return true; /* OK */
1834 }
1835
1836 /* Unistall the object VAR. */
1837 static void
1838 uninstall_variable (struct varobj *var)
1839 {
1840 struct vlist *cv;
1841 struct vlist *prev;
1842 struct varobj_root *cr;
1843 struct varobj_root *prer;
1844 const char *chp;
1845 unsigned int index = 0;
1846 unsigned int i = 1;
1847
1848 /* Remove varobj from hash table. */
1849 for (chp = var->obj_name.c_str (); *chp; chp++)
1850 {
1851 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1852 }
1853
1854 cv = *(varobj_table + index);
1855 prev = NULL;
1856 while (cv != NULL && cv->var->obj_name != var->obj_name)
1857 {
1858 prev = cv;
1859 cv = cv->next;
1860 }
1861
1862 if (varobjdebug)
1863 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1864
1865 if (cv == NULL)
1866 {
1867 warning
1868 ("Assertion failed: Could not find variable object \"%s\" to delete",
1869 var->obj_name.c_str ());
1870 return;
1871 }
1872
1873 if (prev == NULL)
1874 *(varobj_table + index) = cv->next;
1875 else
1876 prev->next = cv->next;
1877
1878 xfree (cv);
1879
1880 /* If root, remove varobj from root list. */
1881 if (is_root_p (var))
1882 {
1883 /* Remove from list of root variables. */
1884 if (rootlist == var->root)
1885 rootlist = var->root->next;
1886 else
1887 {
1888 prer = NULL;
1889 cr = rootlist;
1890 while ((cr != NULL) && (cr->rootvar != var))
1891 {
1892 prer = cr;
1893 cr = cr->next;
1894 }
1895 if (cr == NULL)
1896 {
1897 warning (_("Assertion failed: Could not find "
1898 "varobj \"%s\" in root list"),
1899 var->obj_name.c_str ());
1900 return;
1901 }
1902 if (prer == NULL)
1903 rootlist = NULL;
1904 else
1905 prer->next = cr->next;
1906 }
1907 }
1908
1909 }
1910
1911 /* Create and install a child of the parent of the given name.
1912
1913 The created VAROBJ takes ownership of the allocated NAME. */
1914
1915 static struct varobj *
1916 create_child (struct varobj *parent, int index, std::string &name)
1917 {
1918 struct varobj_item item;
1919
1920 std::swap (item.name, name);
1921 item.value = value_of_child (parent, index);
1922
1923 return create_child_with_value (parent, index, &item);
1924 }
1925
1926 static struct varobj *
1927 create_child_with_value (struct varobj *parent, int index,
1928 struct varobj_item *item)
1929 {
1930 varobj *child = new varobj (parent->root);
1931
1932 /* NAME is allocated by caller. */
1933 std::swap (child->name, item->name);
1934 child->index = index;
1935 child->parent = parent;
1936
1937 if (varobj_is_anonymous_child (child))
1938 child->obj_name = string_printf ("%s.%d_anonymous",
1939 parent->obj_name.c_str (), index);
1940 else
1941 child->obj_name = string_printf ("%s.%s",
1942 parent->obj_name.c_str (),
1943 child->name.c_str ());
1944
1945 install_variable (child);
1946
1947 /* Compute the type of the child. Must do this before
1948 calling install_new_value. */
1949 if (item->value != NULL)
1950 /* If the child had no evaluation errors, var->value
1951 will be non-NULL and contain a valid type. */
1952 child->type = value_actual_type (item->value, 0, NULL);
1953 else
1954 /* Otherwise, we must compute the type. */
1955 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1956 child->index);
1957 install_new_value (child, item->value, 1);
1958
1959 return child;
1960 }
1961 \f
1962
1963 /*
1964 * Miscellaneous utility functions.
1965 */
1966
1967 /* Allocate memory and initialize a new variable. */
1968 varobj::varobj (varobj_root *root_)
1969 : root (root_), dynamic (new varobj_dynamic)
1970 {
1971 }
1972
1973 /* Free any allocated memory associated with VAR. */
1974
1975 varobj::~varobj ()
1976 {
1977 varobj *var = this;
1978
1979 #if HAVE_PYTHON
1980 if (var->dynamic->pretty_printer != NULL)
1981 {
1982 gdbpy_enter_varobj enter_py (var);
1983
1984 Py_XDECREF (var->dynamic->constructor);
1985 Py_XDECREF (var->dynamic->pretty_printer);
1986 }
1987 #endif
1988
1989 varobj_iter_delete (var->dynamic->child_iter);
1990 varobj_clear_saved_item (var->dynamic);
1991
1992 if (is_root_p (var))
1993 delete var->root;
1994
1995 delete var->dynamic;
1996 }
1997
1998 /* Return the type of the value that's stored in VAR,
1999 or that would have being stored there if the
2000 value were accessible.
2001
2002 This differs from VAR->type in that VAR->type is always
2003 the true type of the expession in the source language.
2004 The return value of this function is the type we're
2005 actually storing in varobj, and using for displaying
2006 the values and for comparing previous and new values.
2007
2008 For example, top-level references are always stripped. */
2009 struct type *
2010 varobj_get_value_type (const struct varobj *var)
2011 {
2012 struct type *type;
2013
2014 if (var->value != nullptr)
2015 type = value_type (var->value.get ());
2016 else
2017 type = var->type;
2018
2019 type = check_typedef (type);
2020
2021 if (TYPE_IS_REFERENCE (type))
2022 type = get_target_type (type);
2023
2024 type = check_typedef (type);
2025
2026 return type;
2027 }
2028
2029 /* What is the default display for this variable? We assume that
2030 everything is "natural". Any exceptions? */
2031 static enum varobj_display_formats
2032 variable_default_display (struct varobj *var)
2033 {
2034 return FORMAT_NATURAL;
2035 }
2036
2037 /*
2038 * Language-dependencies
2039 */
2040
2041 /* Common entry points */
2042
2043 /* Return the number of children for a given variable.
2044 The result of this function is defined by the language
2045 implementation. The number of children returned by this function
2046 is the number of children that the user will see in the variable
2047 display. */
2048 static int
2049 number_of_children (const struct varobj *var)
2050 {
2051 return (*var->root->lang_ops->number_of_children) (var);
2052 }
2053
2054 /* What is the expression for the root varobj VAR? */
2055
2056 static std::string
2057 name_of_variable (const struct varobj *var)
2058 {
2059 return (*var->root->lang_ops->name_of_variable) (var);
2060 }
2061
2062 /* What is the name of the INDEX'th child of VAR? */
2063
2064 static std::string
2065 name_of_child (struct varobj *var, int index)
2066 {
2067 return (*var->root->lang_ops->name_of_child) (var, index);
2068 }
2069
2070 /* If frame associated with VAR can be found, switch
2071 to it and return true. Otherwise, return false. */
2072
2073 static bool
2074 check_scope (const struct varobj *var)
2075 {
2076 struct frame_info *fi;
2077 bool scope;
2078
2079 fi = frame_find_by_id (var->root->frame);
2080 scope = fi != NULL;
2081
2082 if (fi)
2083 {
2084 CORE_ADDR pc = get_frame_pc (fi);
2085
2086 if (pc < BLOCK_START (var->root->valid_block) ||
2087 pc >= BLOCK_END (var->root->valid_block))
2088 scope = false;
2089 else
2090 select_frame (fi);
2091 }
2092 return scope;
2093 }
2094
2095 /* Helper function to value_of_root. */
2096
2097 static struct value *
2098 value_of_root_1 (struct varobj **var_handle)
2099 {
2100 struct value *new_val = NULL;
2101 struct varobj *var = *var_handle;
2102 bool within_scope = false;
2103
2104 /* Only root variables can be updated... */
2105 if (!is_root_p (var))
2106 /* Not a root var. */
2107 return NULL;
2108
2109 scoped_restore_current_thread restore_thread;
2110
2111 /* Determine whether the variable is still around. */
2112 if (var->root->valid_block == NULL || var->root->floating)
2113 within_scope = true;
2114 else if (var->root->thread_id == 0)
2115 {
2116 /* The program was single-threaded when the variable object was
2117 created. Technically, it's possible that the program became
2118 multi-threaded since then, but we don't support such
2119 scenario yet. */
2120 within_scope = check_scope (var);
2121 }
2122 else
2123 {
2124 thread_info *thread = find_thread_global_id (var->root->thread_id);
2125
2126 if (thread != NULL)
2127 {
2128 switch_to_thread (thread);
2129 within_scope = check_scope (var);
2130 }
2131 }
2132
2133 if (within_scope)
2134 {
2135
2136 /* We need to catch errors here, because if evaluate
2137 expression fails we want to just return NULL. */
2138 try
2139 {
2140 new_val = evaluate_expression (var->root->exp.get ());
2141 }
2142 catch (const gdb_exception_error &except)
2143 {
2144 }
2145 }
2146
2147 return new_val;
2148 }
2149
2150 /* What is the ``struct value *'' of the root variable VAR?
2151 For floating variable object, evaluation can get us a value
2152 of different type from what is stored in varobj already. In
2153 that case:
2154 - *type_changed will be set to 1
2155 - old varobj will be freed, and new one will be
2156 created, with the same name.
2157 - *var_handle will be set to the new varobj
2158 Otherwise, *type_changed will be set to 0. */
2159 static struct value *
2160 value_of_root (struct varobj **var_handle, bool *type_changed)
2161 {
2162 struct varobj *var;
2163
2164 if (var_handle == NULL)
2165 return NULL;
2166
2167 var = *var_handle;
2168
2169 /* This should really be an exception, since this should
2170 only get called with a root variable. */
2171
2172 if (!is_root_p (var))
2173 return NULL;
2174
2175 if (var->root->floating)
2176 {
2177 struct varobj *tmp_var;
2178
2179 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2180 USE_SELECTED_FRAME);
2181 if (tmp_var == NULL)
2182 {
2183 return NULL;
2184 }
2185 std::string old_type = varobj_get_type (var);
2186 std::string new_type = varobj_get_type (tmp_var);
2187 if (old_type == new_type)
2188 {
2189 /* The expression presently stored inside var->root->exp
2190 remembers the locations of local variables relatively to
2191 the frame where the expression was created (in DWARF location
2192 button, for example). Naturally, those locations are not
2193 correct in other frames, so update the expression. */
2194
2195 std::swap (var->root->exp, tmp_var->root->exp);
2196
2197 varobj_delete (tmp_var, 0);
2198 *type_changed = 0;
2199 }
2200 else
2201 {
2202 tmp_var->obj_name = var->obj_name;
2203 tmp_var->from = var->from;
2204 tmp_var->to = var->to;
2205 varobj_delete (var, 0);
2206
2207 install_variable (tmp_var);
2208 *var_handle = tmp_var;
2209 var = *var_handle;
2210 *type_changed = true;
2211 }
2212 }
2213 else
2214 {
2215 *type_changed = 0;
2216 }
2217
2218 {
2219 struct value *value;
2220
2221 value = value_of_root_1 (var_handle);
2222 if (var->value == NULL || value == NULL)
2223 {
2224 /* For root varobj-s, a NULL value indicates a scoping issue.
2225 So, nothing to do in terms of checking for mutations. */
2226 }
2227 else if (varobj_value_has_mutated (var, value, value_type (value)))
2228 {
2229 /* The type has mutated, so the children are no longer valid.
2230 Just delete them, and tell our caller that the type has
2231 changed. */
2232 varobj_delete (var, 1 /* only_children */);
2233 var->num_children = -1;
2234 var->to = -1;
2235 var->from = -1;
2236 *type_changed = true;
2237 }
2238 return value;
2239 }
2240 }
2241
2242 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2243 static struct value *
2244 value_of_child (const struct varobj *parent, int index)
2245 {
2246 struct value *value;
2247
2248 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2249
2250 return value;
2251 }
2252
2253 /* GDB already has a command called "value_of_variable". Sigh. */
2254 static std::string
2255 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2256 {
2257 if (var->root->is_valid)
2258 {
2259 if (var->dynamic->pretty_printer != NULL)
2260 return varobj_value_get_print_value (var->value.get (), var->format,
2261 var);
2262 return (*var->root->lang_ops->value_of_variable) (var, format);
2263 }
2264 else
2265 return std::string ();
2266 }
2267
2268 void
2269 varobj_formatted_print_options (struct value_print_options *opts,
2270 enum varobj_display_formats format)
2271 {
2272 get_formatted_print_options (opts, format_code[(int) format]);
2273 opts->deref_ref = 0;
2274 opts->raw = !pretty_printing;
2275 }
2276
2277 std::string
2278 varobj_value_get_print_value (struct value *value,
2279 enum varobj_display_formats format,
2280 const struct varobj *var)
2281 {
2282 struct value_print_options opts;
2283 struct type *type = NULL;
2284 long len = 0;
2285 gdb::unique_xmalloc_ptr<char> encoding;
2286 /* Initialize it just to avoid a GCC false warning. */
2287 CORE_ADDR str_addr = 0;
2288 bool string_print = false;
2289
2290 if (value == NULL)
2291 return std::string ();
2292
2293 string_file stb;
2294 std::string thevalue;
2295
2296 #if HAVE_PYTHON
2297 if (gdb_python_initialized)
2298 {
2299 PyObject *value_formatter = var->dynamic->pretty_printer;
2300
2301 gdbpy_enter_varobj enter_py (var);
2302
2303 if (value_formatter)
2304 {
2305 /* First check to see if we have any children at all. If so,
2306 we simply return {...}. */
2307 if (dynamic_varobj_has_child_method (var))
2308 return "{...}";
2309
2310 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2311 {
2312 struct value *replacement;
2313
2314 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2315 &replacement,
2316 &stb);
2317
2318 /* If we have string like output ... */
2319 if (output != NULL)
2320 {
2321 /* If this is a lazy string, extract it. For lazy
2322 strings we always print as a string, so set
2323 string_print. */
2324 if (gdbpy_is_lazy_string (output.get ()))
2325 {
2326 gdbpy_extract_lazy_string (output.get (), &str_addr,
2327 &type, &len, &encoding);
2328 string_print = true;
2329 }
2330 else
2331 {
2332 /* If it is a regular (non-lazy) string, extract
2333 it and copy the contents into THEVALUE. If the
2334 hint says to print it as a string, set
2335 string_print. Otherwise just return the extracted
2336 string as a value. */
2337
2338 gdb::unique_xmalloc_ptr<char> s
2339 = python_string_to_target_string (output.get ());
2340
2341 if (s)
2342 {
2343 struct gdbarch *gdbarch;
2344
2345 gdb::unique_xmalloc_ptr<char> hint
2346 = gdbpy_get_display_hint (value_formatter);
2347 if (hint)
2348 {
2349 if (!strcmp (hint.get (), "string"))
2350 string_print = true;
2351 }
2352
2353 thevalue = std::string (s.get ());
2354 len = thevalue.size ();
2355 gdbarch = get_type_arch (value_type (value));
2356 type = builtin_type (gdbarch)->builtin_char;
2357
2358 if (!string_print)
2359 return thevalue;
2360 }
2361 else
2362 gdbpy_print_stack ();
2363 }
2364 }
2365 /* If the printer returned a replacement value, set VALUE
2366 to REPLACEMENT. If there is not a replacement value,
2367 just use the value passed to this function. */
2368 if (replacement)
2369 value = replacement;
2370 }
2371 }
2372 }
2373 #endif
2374
2375 varobj_formatted_print_options (&opts, format);
2376
2377 /* If the THEVALUE has contents, it is a regular string. */
2378 if (!thevalue.empty ())
2379 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2380 len, encoding.get (), 0, &opts);
2381 else if (string_print)
2382 /* Otherwise, if string_print is set, and it is not a regular
2383 string, it is a lazy string. */
2384 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2385 else
2386 /* All other cases. */
2387 common_val_print (value, &stb, 0, &opts, current_language);
2388
2389 return std::move (stb.string ());
2390 }
2391
2392 bool
2393 varobj_editable_p (const struct varobj *var)
2394 {
2395 struct type *type;
2396
2397 if (!(var->root->is_valid && var->value != nullptr
2398 && VALUE_LVAL (var->value.get ())))
2399 return false;
2400
2401 type = varobj_get_value_type (var);
2402
2403 switch (TYPE_CODE (type))
2404 {
2405 case TYPE_CODE_STRUCT:
2406 case TYPE_CODE_UNION:
2407 case TYPE_CODE_ARRAY:
2408 case TYPE_CODE_FUNC:
2409 case TYPE_CODE_METHOD:
2410 return false;
2411 break;
2412
2413 default:
2414 return true;
2415 break;
2416 }
2417 }
2418
2419 /* Call VAR's value_is_changeable_p language-specific callback. */
2420
2421 bool
2422 varobj_value_is_changeable_p (const struct varobj *var)
2423 {
2424 return var->root->lang_ops->value_is_changeable_p (var);
2425 }
2426
2427 /* Return true if that varobj is floating, that is is always evaluated in the
2428 selected frame, and not bound to thread/frame. Such variable objects
2429 are created using '@' as frame specifier to -var-create. */
2430 bool
2431 varobj_floating_p (const struct varobj *var)
2432 {
2433 return var->root->floating;
2434 }
2435
2436 /* Implement the "value_is_changeable_p" varobj callback for most
2437 languages. */
2438
2439 bool
2440 varobj_default_value_is_changeable_p (const struct varobj *var)
2441 {
2442 bool r;
2443 struct type *type;
2444
2445 if (CPLUS_FAKE_CHILD (var))
2446 return false;
2447
2448 type = varobj_get_value_type (var);
2449
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_STRUCT:
2453 case TYPE_CODE_UNION:
2454 case TYPE_CODE_ARRAY:
2455 r = false;
2456 break;
2457
2458 default:
2459 r = true;
2460 }
2461
2462 return r;
2463 }
2464
2465 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2466 with an arbitrary caller supplied DATA pointer. */
2467
2468 void
2469 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2470 {
2471 struct varobj_root *var_root, *var_root_next;
2472
2473 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2474
2475 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2476 {
2477 var_root_next = var_root->next;
2478
2479 (*func) (var_root->rootvar, data);
2480 }
2481 }
2482
2483 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2484 defined on globals. It is a helper for varobj_invalidate.
2485
2486 This function is called after changing the symbol file, in this case the
2487 pointers to "struct type" stored by the varobj are no longer valid. All
2488 varobj must be either re-evaluated, or marked as invalid here. */
2489
2490 static void
2491 varobj_invalidate_iter (struct varobj *var, void *unused)
2492 {
2493 /* global and floating var must be re-evaluated. */
2494 if (var->root->floating || var->root->valid_block == NULL)
2495 {
2496 struct varobj *tmp_var;
2497
2498 /* Try to create a varobj with same expression. If we succeed
2499 replace the old varobj, otherwise invalidate it. */
2500 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2501 USE_CURRENT_FRAME);
2502 if (tmp_var != NULL)
2503 {
2504 tmp_var->obj_name = var->obj_name;
2505 varobj_delete (var, 0);
2506 install_variable (tmp_var);
2507 }
2508 else
2509 var->root->is_valid = false;
2510 }
2511 else /* locals must be invalidated. */
2512 var->root->is_valid = false;
2513 }
2514
2515 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2516 are defined on globals.
2517 Invalidated varobjs will be always printed in_scope="invalid". */
2518
2519 void
2520 varobj_invalidate (void)
2521 {
2522 all_root_varobjs (varobj_invalidate_iter, NULL);
2523 }
2524
2525 void
2526 _initialize_varobj (void)
2527 {
2528 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2529
2530 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2531 &varobjdebug,
2532 _("Set varobj debugging."),
2533 _("Show varobj debugging."),
2534 _("When non-zero, varobj debugging is enabled."),
2535 NULL, show_varobjdebug,
2536 &setdebuglist, &showdebuglist);
2537 }
This page took 0.087125 seconds and 4 git commands to generate.