* windows-tdep.c (windows_get_tlb_type): Remember last GDBARCH
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
519 return frame;
520 }
521
522 return NULL;
523 }
524
525 struct varobj *
526 varobj_create (char *objname,
527 char *expression, CORE_ADDR frame, enum varobj_type type)
528 {
529 struct varobj *var;
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
543 struct value *value = NULL;
544
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
563 else
564 fi = NULL;
565
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
568 var->root->floating = 1;
569
570 block = NULL;
571 if (fi != NULL)
572 block = get_frame_block (fi, 0);
573
574 p = expression;
575 innermost_block = NULL;
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
594 var->name = xstrdup (expression);
595 /* For a root var, the name and the expr are the same. */
596 var->path_expr = xstrdup (expression);
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
602 if (innermost_block)
603 {
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
611 var->root->frame = get_frame_id (fi);
612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
613 old_fi = get_selected_frame (NULL);
614 select_frame (fi);
615 }
616
617 /* We definitely need to catch errors here.
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
620 if (!gdb_evaluate_expression (var->root->exp, &value))
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
629
630 install_new_value (var, value, 1 /* Initial assignment */);
631
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
640 if (old_fi != NULL)
641 select_frame (old_fi);
642 }
643
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
648 {
649 var->obj_name = xstrdup (objname);
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662 }
663
664 /* Generates an unique name that can be used for a varobj */
665
666 char *
667 varobj_gen_name (void)
668 {
669 static int id = 0;
670 char *obj_name;
671
672 /* generate a name for this object */
673 id++;
674 obj_name = xstrprintf ("var%d", id);
675
676 return obj_name;
677 }
678
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
681
682 struct varobj *
683 varobj_get_handle (char *objname)
684 {
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
700 error (_("Variable object not found"));
701
702 return cv->var;
703 }
704
705 /* Given the handle, return the name of the object */
706
707 char *
708 varobj_get_objname (struct varobj *var)
709 {
710 return var->obj_name;
711 }
712
713 /* Given the handle, return the expression represented by the object */
714
715 char *
716 varobj_get_expression (struct varobj *var)
717 {
718 return name_of_variable (var);
719 }
720
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725 int
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
727 {
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
760 mycount);
761 }
762
763 return delcount;
764 }
765
766 #if HAVE_PYTHON
767
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770 static PyObject *
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
772 {
773 PyObject *val_obj = NULL;
774 PyObject *printer;
775
776 val_obj = value_to_value_object (value);
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
783 return NULL;
784 }
785
786 #endif
787
788 /* Set/Get variable object display format */
789
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793 {
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
813 }
814
815 return var->format;
816 }
817
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
820 {
821 return var->format;
822 }
823
824 char *
825 varobj_get_display_hint (struct varobj *var)
826 {
827 char *result = NULL;
828
829 #if HAVE_PYTHON
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
834
835 do_cleanups (back_to);
836 #endif
837
838 return result;
839 }
840
841 /* Return true if the varobj has items after TO, false otherwise. */
842
843 int
844 varobj_has_more (struct varobj *var, int to)
845 {
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850 }
851
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856 int
857 varobj_get_thread_id (struct varobj *var)
858 {
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863 }
864
865 void
866 varobj_set_frozen (struct varobj *var, int frozen)
867 {
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876 }
877
878 int
879 varobj_get_frozen (struct varobj *var)
880 {
881 return var->frozen;
882 }
883
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889 static void
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
891 {
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906 }
907
908 #if HAVE_PYTHON
909
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913 static void
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922 {
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944 }
945
946 static int
947 dynamic_varobj_has_child_method (struct varobj *var)
948 {
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957 }
958
959 #endif
960
961 static int
962 update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
970 {
971 #if HAVE_PYTHON
972 struct cleanup *back_to;
973 PyObject *children;
974 int i;
975 PyObject *printer = var->pretty_printer;
976
977 back_to = varobj_ensure_python_env (var);
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
986 if (update_children || !var->child_iter)
987 {
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
990
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
996
997 make_cleanup_py_decref (children);
998
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
1014 }
1015 else
1016 i = VEC_length (varobj_p, var->children);
1017
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
1021 {
1022 PyObject *item;
1023
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
1032
1033 if (!item)
1034 break;
1035
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
1038 {
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
1056 }
1057 else
1058 {
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
1061
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
1075 }
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
1086 return 1;
1087 #else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089 #endif
1090 }
1091
1092 int
1093 varobj_get_num_children (struct varobj *var)
1094 {
1095 if (var->num_children == -1)
1096 {
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
1107 var->num_children = number_of_children (var);
1108 }
1109
1110 return var->num_children >= 0 ? var->num_children : 0;
1111 }
1112
1113 /* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
1116 VEC (varobj_p)*
1117 varobj_list_children (struct varobj *var, int *from, int *to)
1118 {
1119 struct varobj *child;
1120 char *name;
1121 int i, children_changed;
1122
1123 var->children_requested = 1;
1124
1125 if (var->pretty_printer)
1126 {
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1131 0, 0, *to);
1132 restrict_range (var->children, from, to);
1133 return var->children;
1134 }
1135
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1138
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
1141 return var->children;
1142
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1147
1148 for (i = 0; i < var->num_children; i++)
1149 {
1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
1151
1152 if (existing == NULL)
1153 {
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1160 }
1161 }
1162
1163 restrict_range (var->children, from, to);
1164 return var->children;
1165 }
1166
1167 #if HAVE_PYTHON
1168
1169 static struct varobj *
1170 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1171 {
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1174 name, value);
1175 VEC_safe_push (varobj_p, var->children, v);
1176 return v;
1177 }
1178
1179 #endif /* HAVE_PYTHON */
1180
1181 /* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1183
1184 char *
1185 varobj_get_type (struct varobj *var)
1186 {
1187 /* For the "fake" variables, do not return a type. (It's type is
1188 NULL, too.)
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1191 return NULL;
1192
1193 return type_to_string (var->type);
1194 }
1195
1196 /* Obtain the type of an object variable. */
1197
1198 struct type *
1199 varobj_get_gdb_type (struct varobj *var)
1200 {
1201 return var->type;
1202 }
1203
1204 /* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1206 char *
1207 varobj_get_path_expr (struct varobj *var)
1208 {
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1211 else
1212 {
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1215 child varobj. */
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1218 }
1219 }
1220
1221 enum varobj_languages
1222 varobj_get_language (struct varobj *var)
1223 {
1224 return variable_language (var);
1225 }
1226
1227 int
1228 varobj_get_attributes (struct varobj *var)
1229 {
1230 int attributes = 0;
1231
1232 if (varobj_editable_p (var))
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1235
1236 return attributes;
1237 }
1238
1239 int
1240 varobj_pretty_printed_p (struct varobj *var)
1241 {
1242 return var->pretty_printer != NULL;
1243 }
1244
1245 char *
1246 varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1248 {
1249 return my_value_of_variable (var, format);
1250 }
1251
1252 char *
1253 varobj_get_value (struct varobj *var)
1254 {
1255 return my_value_of_variable (var, var->format);
1256 }
1257
1258 /* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260 /* Note: Invokes functions that can call error() */
1261
1262 int
1263 varobj_set_value (struct varobj *var, char *expression)
1264 {
1265 struct value *val;
1266 int offset = 0;
1267 int error = 0;
1268
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
1273 struct value *value;
1274 int saved_input_radix = input_radix;
1275 char *s = expression;
1276 int i;
1277
1278 gdb_assert (varobj_editable_p (var));
1279
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1283 {
1284 /* We cannot proceed without a valid expression. */
1285 xfree (exp);
1286 return 0;
1287 }
1288
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1291
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1294
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1301 array's content. */
1302 value = coerce_array (value);
1303
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1309 return 0;
1310
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1319 return 1;
1320 }
1321
1322 #if HAVE_PYTHON
1323
1324 /* A helper function to install a constructor function and visualizer
1325 in a varobj. */
1326
1327 static void
1328 install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1330 {
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1333
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1336
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1339 }
1340
1341 /* Install the default visualizer for VAR. */
1342
1343 static void
1344 install_default_visualizer (struct varobj *var)
1345 {
1346 if (pretty_printing)
1347 {
1348 PyObject *pretty_printer = NULL;
1349
1350 if (var->value)
1351 {
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1354 {
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1357 }
1358 }
1359
1360 if (pretty_printer == Py_None)
1361 {
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1364 }
1365
1366 install_visualizer (var, NULL, pretty_printer);
1367 }
1368 }
1369
1370 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1372
1373 static void
1374 construct_visualizer (struct varobj *var, PyObject *constructor)
1375 {
1376 PyObject *pretty_printer;
1377
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1381 else
1382 {
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1385 {
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1390 }
1391
1392 if (pretty_printer == Py_None)
1393 {
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1396 }
1397 }
1398
1399 install_visualizer (var, constructor, pretty_printer);
1400 }
1401
1402 #endif /* HAVE_PYTHON */
1403
1404 /* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1406
1407 static void
1408 install_new_value_visualizer (struct varobj *var)
1409 {
1410 #if HAVE_PYTHON
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1414 {
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1417
1418 cleanup = varobj_ensure_python_env (var);
1419
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1422 else
1423 construct_visualizer (var, var->constructor);
1424
1425 do_cleanups (cleanup);
1426 }
1427 #else
1428 /* Do nothing. */
1429 #endif
1430 }
1431
1432 /* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1435 and return 0.
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1441 we always return 1.
1442
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
1445 static int
1446 install_new_value (struct varobj *var, struct value *value, int initial)
1447 {
1448 int changeable;
1449 int need_to_fetch;
1450 int changed = 0;
1451 int intentionally_not_fetched = 0;
1452 char *print_value = NULL;
1453
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1456 a type. */
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1458 changeable = varobj_value_is_changeable_p (var);
1459
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1464 changeable = 1;
1465
1466 need_to_fetch = changeable;
1467
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1471 if (value)
1472 value = coerce_ref (value);
1473
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1483 fetch now. */
1484 need_to_fetch = 1;
1485
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1491 {
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1496
1497 if (frozen && initial)
1498 {
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1504 }
1505 else if (!gdb_value_fetch_lazy (value))
1506 {
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1510 value = NULL;
1511 }
1512 }
1513
1514
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
1519 if (value && !value_lazy (value) && !var->pretty_printer)
1520 print_value = value_get_print_value (value, var->format, var);
1521
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1524 to compare with. */
1525 if (!initial && changeable)
1526 {
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
1530 -var-update. So need to the varobj as changed. */
1531 if (var->updated)
1532 {
1533 changed = 1;
1534 }
1535 else if (! var->pretty_printer)
1536 {
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
1539 if (var->not_fetched && value_lazy (var->value))
1540 {
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1545 value. */
1546 changed = 1;
1547 }
1548 else if (var->value == NULL && value == NULL)
1549 /* Equal. */
1550 ;
1551 else if (var->value == NULL || value == NULL)
1552 {
1553 changed = 1;
1554 }
1555 else
1556 {
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
1559
1560 gdb_assert (var->print_value != NULL && print_value != NULL);
1561 if (strcmp (var->print_value, print_value) != 0)
1562 changed = 1;
1563 }
1564 }
1565 }
1566
1567 if (!initial && !changeable)
1568 {
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1574 }
1575
1576 /* We must always keep the new value, since children depend on it. */
1577 if (var->value != NULL && var->value != value)
1578 value_free (var->value);
1579 var->value = value;
1580 if (value != NULL)
1581 value_incref (value);
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1584 else
1585 var->not_fetched = 0;
1586 var->updated = 0;
1587
1588 install_new_value_visualizer (var);
1589
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1593 {
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if ((var->print_value == NULL && print_value != NULL)
1597 || (var->print_value != NULL && print_value == NULL)
1598 || (var->print_value != NULL && print_value != NULL
1599 && strcmp (var->print_value, print_value) != 0))
1600 changed = 1;
1601 }
1602 if (var->print_value)
1603 xfree (var->print_value);
1604 var->print_value = print_value;
1605
1606 gdb_assert (!var->value || value_type (var->value));
1607
1608 return changed;
1609 }
1610
1611 /* Return the requested range for a varobj. VAR is the varobj. FROM
1612 and TO are out parameters; *FROM and *TO will be set to the
1613 selected sub-range of VAR. If no range was selected using
1614 -var-set-update-range, then both will be -1. */
1615 void
1616 varobj_get_child_range (struct varobj *var, int *from, int *to)
1617 {
1618 *from = var->from;
1619 *to = var->to;
1620 }
1621
1622 /* Set the selected sub-range of children of VAR to start at index
1623 FROM and end at index TO. If either FROM or TO is less than zero,
1624 this is interpreted as a request for all children. */
1625 void
1626 varobj_set_child_range (struct varobj *var, int from, int to)
1627 {
1628 var->from = from;
1629 var->to = to;
1630 }
1631
1632 void
1633 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1634 {
1635 #if HAVE_PYTHON
1636 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1637 struct cleanup *back_to, *value;
1638
1639 back_to = varobj_ensure_python_env (var);
1640
1641 mainmod = PyImport_AddModule ("__main__");
1642 globals = PyModule_GetDict (mainmod);
1643 Py_INCREF (globals);
1644 make_cleanup_py_decref (globals);
1645
1646 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1647
1648 if (! constructor)
1649 {
1650 gdbpy_print_stack ();
1651 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1652 }
1653
1654 construct_visualizer (var, constructor);
1655 Py_XDECREF (constructor);
1656
1657 /* If there are any children now, wipe them. */
1658 varobj_delete (var, NULL, 1 /* children only */);
1659 var->num_children = -1;
1660
1661 do_cleanups (back_to);
1662 #else
1663 error (_("Python support required"));
1664 #endif
1665 }
1666
1667 /* Update the values for a variable and its children. This is a
1668 two-pronged attack. First, re-parse the value for the root's
1669 expression to see if it's changed. Then go all the way
1670 through its children, reconstructing them and noting if they've
1671 changed.
1672
1673 The EXPLICIT parameter specifies if this call is result
1674 of MI request to update this specific variable, or
1675 result of implicit -var-update *. For implicit request, we don't
1676 update frozen variables.
1677
1678 NOTE: This function may delete the caller's varobj. If it
1679 returns TYPE_CHANGED, then it has done this and VARP will be modified
1680 to point to the new varobj. */
1681
1682 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1683 {
1684 int changed = 0;
1685 int type_changed = 0;
1686 int i;
1687 int vleft;
1688 struct varobj *v;
1689 struct varobj **cv;
1690 struct varobj **templist = NULL;
1691 struct value *new;
1692 VEC (varobj_update_result) *stack = NULL;
1693 VEC (varobj_update_result) *result = NULL;
1694 struct frame_info *fi;
1695
1696 /* Frozen means frozen -- we don't check for any change in
1697 this varobj, including its going out of scope, or
1698 changing type. One use case for frozen varobjs is
1699 retaining previously evaluated expressions, and we don't
1700 want them to be reevaluated at all. */
1701 if (!explicit && (*varp)->frozen)
1702 return result;
1703
1704 if (!(*varp)->root->is_valid)
1705 {
1706 varobj_update_result r = {0};
1707 r.varobj = *varp;
1708 r.status = VAROBJ_INVALID;
1709 VEC_safe_push (varobj_update_result, result, &r);
1710 return result;
1711 }
1712
1713 if ((*varp)->root->rootvar == *varp)
1714 {
1715 varobj_update_result r = {0};
1716 r.varobj = *varp;
1717 r.status = VAROBJ_IN_SCOPE;
1718
1719 /* Update the root variable. value_of_root can return NULL
1720 if the variable is no longer around, i.e. we stepped out of
1721 the frame in which a local existed. We are letting the
1722 value_of_root variable dispose of the varobj if the type
1723 has changed. */
1724 new = value_of_root (varp, &type_changed);
1725 r.varobj = *varp;
1726
1727 r.type_changed = type_changed;
1728 if (install_new_value ((*varp), new, type_changed))
1729 r.changed = 1;
1730
1731 if (new == NULL)
1732 r.status = VAROBJ_NOT_IN_SCOPE;
1733 r.value_installed = 1;
1734
1735 if (r.status == VAROBJ_NOT_IN_SCOPE)
1736 {
1737 if (r.type_changed || r.changed)
1738 VEC_safe_push (varobj_update_result, result, &r);
1739 return result;
1740 }
1741
1742 VEC_safe_push (varobj_update_result, stack, &r);
1743 }
1744 else
1745 {
1746 varobj_update_result r = {0};
1747 r.varobj = *varp;
1748 VEC_safe_push (varobj_update_result, stack, &r);
1749 }
1750
1751 /* Walk through the children, reconstructing them all. */
1752 while (!VEC_empty (varobj_update_result, stack))
1753 {
1754 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1755 struct varobj *v = r.varobj;
1756
1757 VEC_pop (varobj_update_result, stack);
1758
1759 /* Update this variable, unless it's a root, which is already
1760 updated. */
1761 if (!r.value_installed)
1762 {
1763 new = value_of_child (v->parent, v->index);
1764 if (install_new_value (v, new, 0 /* type not changed */))
1765 {
1766 r.changed = 1;
1767 v->updated = 0;
1768 }
1769 }
1770
1771 /* We probably should not get children of a varobj that has a
1772 pretty-printer, but for which -var-list-children was never
1773 invoked. */
1774 if (v->pretty_printer)
1775 {
1776 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1777 int i, children_changed = 0;
1778
1779 if (v->frozen)
1780 continue;
1781
1782 if (!v->children_requested)
1783 {
1784 int dummy;
1785
1786 /* If we initially did not have potential children, but
1787 now we do, consider the varobj as changed.
1788 Otherwise, if children were never requested, consider
1789 it as unchanged -- presumably, such varobj is not yet
1790 expanded in the UI, so we need not bother getting
1791 it. */
1792 if (!varobj_has_more (v, 0))
1793 {
1794 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1795 &dummy, 0, 0, 0);
1796 if (varobj_has_more (v, 0))
1797 r.changed = 1;
1798 }
1799
1800 if (r.changed)
1801 VEC_safe_push (varobj_update_result, result, &r);
1802
1803 continue;
1804 }
1805
1806 /* If update_dynamic_varobj_children returns 0, then we have
1807 a non-conforming pretty-printer, so we skip it. */
1808 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1809 &children_changed, 1,
1810 v->from, v->to))
1811 {
1812 if (children_changed || new)
1813 {
1814 r.children_changed = 1;
1815 r.new = new;
1816 }
1817 /* Push in reverse order so that the first child is
1818 popped from the work stack first, and so will be
1819 added to result first. This does not affect
1820 correctness, just "nicer". */
1821 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1822 {
1823 varobj_p tmp = VEC_index (varobj_p, changed, i);
1824 varobj_update_result r = {0};
1825 r.varobj = tmp;
1826 r.changed = 1;
1827 r.value_installed = 1;
1828 VEC_safe_push (varobj_update_result, stack, &r);
1829 }
1830 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1831 {
1832 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1833 if (!tmp->frozen)
1834 {
1835 varobj_update_result r = {0};
1836 r.varobj = tmp;
1837 r.value_installed = 1;
1838 VEC_safe_push (varobj_update_result, stack, &r);
1839 }
1840 }
1841 if (r.changed || r.children_changed)
1842 VEC_safe_push (varobj_update_result, result, &r);
1843
1844 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1845 has been put into the result vector. */
1846 VEC_free (varobj_p, changed);
1847 VEC_free (varobj_p, unchanged);
1848
1849 continue;
1850 }
1851 }
1852
1853 /* Push any children. Use reverse order so that the first
1854 child is popped from the work stack first, and so
1855 will be added to result first. This does not
1856 affect correctness, just "nicer". */
1857 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1858 {
1859 varobj_p c = VEC_index (varobj_p, v->children, i);
1860 /* Child may be NULL if explicitly deleted by -var-delete. */
1861 if (c != NULL && !c->frozen)
1862 {
1863 varobj_update_result r = {0};
1864 r.varobj = c;
1865 VEC_safe_push (varobj_update_result, stack, &r);
1866 }
1867 }
1868
1869 if (r.changed || r.type_changed)
1870 VEC_safe_push (varobj_update_result, result, &r);
1871 }
1872
1873 VEC_free (varobj_update_result, stack);
1874
1875 return result;
1876 }
1877 \f
1878
1879 /* Helper functions */
1880
1881 /*
1882 * Variable object construction/destruction
1883 */
1884
1885 static int
1886 delete_variable (struct cpstack **resultp, struct varobj *var,
1887 int only_children_p)
1888 {
1889 int delcount = 0;
1890
1891 delete_variable_1 (resultp, &delcount, var,
1892 only_children_p, 1 /* remove_from_parent_p */ );
1893
1894 return delcount;
1895 }
1896
1897 /* Delete the variable object VAR and its children */
1898 /* IMPORTANT NOTE: If we delete a variable which is a child
1899 and the parent is not removed we dump core. It must be always
1900 initially called with remove_from_parent_p set */
1901 static void
1902 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1903 struct varobj *var, int only_children_p,
1904 int remove_from_parent_p)
1905 {
1906 int i;
1907
1908 /* Delete any children of this variable, too. */
1909 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1910 {
1911 varobj_p child = VEC_index (varobj_p, var->children, i);
1912 if (!child)
1913 continue;
1914 if (!remove_from_parent_p)
1915 child->parent = NULL;
1916 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1917 }
1918 VEC_free (varobj_p, var->children);
1919
1920 /* if we were called to delete only the children we are done here */
1921 if (only_children_p)
1922 return;
1923
1924 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1925 /* If the name is null, this is a temporary variable, that has not
1926 yet been installed, don't report it, it belongs to the caller... */
1927 if (var->obj_name != NULL)
1928 {
1929 cppush (resultp, xstrdup (var->obj_name));
1930 *delcountp = *delcountp + 1;
1931 }
1932
1933 /* If this variable has a parent, remove it from its parent's list */
1934 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1935 (as indicated by remove_from_parent_p) we don't bother doing an
1936 expensive list search to find the element to remove when we are
1937 discarding the list afterwards */
1938 if ((remove_from_parent_p) && (var->parent != NULL))
1939 {
1940 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1941 }
1942
1943 if (var->obj_name != NULL)
1944 uninstall_variable (var);
1945
1946 /* Free memory associated with this variable */
1947 free_variable (var);
1948 }
1949
1950 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1951 static int
1952 install_variable (struct varobj *var)
1953 {
1954 struct vlist *cv;
1955 struct vlist *newvl;
1956 const char *chp;
1957 unsigned int index = 0;
1958 unsigned int i = 1;
1959
1960 for (chp = var->obj_name; *chp; chp++)
1961 {
1962 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1963 }
1964
1965 cv = *(varobj_table + index);
1966 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1967 cv = cv->next;
1968
1969 if (cv != NULL)
1970 error (_("Duplicate variable object name"));
1971
1972 /* Add varobj to hash table */
1973 newvl = xmalloc (sizeof (struct vlist));
1974 newvl->next = *(varobj_table + index);
1975 newvl->var = var;
1976 *(varobj_table + index) = newvl;
1977
1978 /* If root, add varobj to root list */
1979 if (is_root_p (var))
1980 {
1981 /* Add to list of root variables */
1982 if (rootlist == NULL)
1983 var->root->next = NULL;
1984 else
1985 var->root->next = rootlist;
1986 rootlist = var->root;
1987 }
1988
1989 return 1; /* OK */
1990 }
1991
1992 /* Unistall the object VAR. */
1993 static void
1994 uninstall_variable (struct varobj *var)
1995 {
1996 struct vlist *cv;
1997 struct vlist *prev;
1998 struct varobj_root *cr;
1999 struct varobj_root *prer;
2000 const char *chp;
2001 unsigned int index = 0;
2002 unsigned int i = 1;
2003
2004 /* Remove varobj from hash table */
2005 for (chp = var->obj_name; *chp; chp++)
2006 {
2007 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2008 }
2009
2010 cv = *(varobj_table + index);
2011 prev = NULL;
2012 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2013 {
2014 prev = cv;
2015 cv = cv->next;
2016 }
2017
2018 if (varobjdebug)
2019 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2020
2021 if (cv == NULL)
2022 {
2023 warning
2024 ("Assertion failed: Could not find variable object \"%s\" to delete",
2025 var->obj_name);
2026 return;
2027 }
2028
2029 if (prev == NULL)
2030 *(varobj_table + index) = cv->next;
2031 else
2032 prev->next = cv->next;
2033
2034 xfree (cv);
2035
2036 /* If root, remove varobj from root list */
2037 if (is_root_p (var))
2038 {
2039 /* Remove from list of root variables */
2040 if (rootlist == var->root)
2041 rootlist = var->root->next;
2042 else
2043 {
2044 prer = NULL;
2045 cr = rootlist;
2046 while ((cr != NULL) && (cr->rootvar != var))
2047 {
2048 prer = cr;
2049 cr = cr->next;
2050 }
2051 if (cr == NULL)
2052 {
2053 warning
2054 ("Assertion failed: Could not find varobj \"%s\" in root list",
2055 var->obj_name);
2056 return;
2057 }
2058 if (prer == NULL)
2059 rootlist = NULL;
2060 else
2061 prer->next = cr->next;
2062 }
2063 }
2064
2065 }
2066
2067 /* Create and install a child of the parent of the given name */
2068 static struct varobj *
2069 create_child (struct varobj *parent, int index, char *name)
2070 {
2071 return create_child_with_value (parent, index, name,
2072 value_of_child (parent, index));
2073 }
2074
2075 static struct varobj *
2076 create_child_with_value (struct varobj *parent, int index, const char *name,
2077 struct value *value)
2078 {
2079 struct varobj *child;
2080 char *childs_name;
2081
2082 child = new_variable ();
2083
2084 /* name is allocated by name_of_child */
2085 /* FIXME: xstrdup should not be here. */
2086 child->name = xstrdup (name);
2087 child->index = index;
2088 child->parent = parent;
2089 child->root = parent->root;
2090 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2091 child->obj_name = childs_name;
2092 install_variable (child);
2093
2094 /* Compute the type of the child. Must do this before
2095 calling install_new_value. */
2096 if (value != NULL)
2097 /* If the child had no evaluation errors, var->value
2098 will be non-NULL and contain a valid type. */
2099 child->type = value_type (value);
2100 else
2101 /* Otherwise, we must compute the type. */
2102 child->type = (*child->root->lang->type_of_child) (child->parent,
2103 child->index);
2104 install_new_value (child, value, 1);
2105
2106 return child;
2107 }
2108 \f
2109
2110 /*
2111 * Miscellaneous utility functions.
2112 */
2113
2114 /* Allocate memory and initialize a new variable */
2115 static struct varobj *
2116 new_variable (void)
2117 {
2118 struct varobj *var;
2119
2120 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2121 var->name = NULL;
2122 var->path_expr = NULL;
2123 var->obj_name = NULL;
2124 var->index = -1;
2125 var->type = NULL;
2126 var->value = NULL;
2127 var->num_children = -1;
2128 var->parent = NULL;
2129 var->children = NULL;
2130 var->format = 0;
2131 var->root = NULL;
2132 var->updated = 0;
2133 var->print_value = NULL;
2134 var->frozen = 0;
2135 var->not_fetched = 0;
2136 var->children_requested = 0;
2137 var->from = -1;
2138 var->to = -1;
2139 var->constructor = 0;
2140 var->pretty_printer = 0;
2141 var->child_iter = 0;
2142 var->saved_item = 0;
2143
2144 return var;
2145 }
2146
2147 /* Allocate memory and initialize a new root variable */
2148 static struct varobj *
2149 new_root_variable (void)
2150 {
2151 struct varobj *var = new_variable ();
2152 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2153 var->root->lang = NULL;
2154 var->root->exp = NULL;
2155 var->root->valid_block = NULL;
2156 var->root->frame = null_frame_id;
2157 var->root->floating = 0;
2158 var->root->rootvar = NULL;
2159 var->root->is_valid = 1;
2160
2161 return var;
2162 }
2163
2164 /* Free any allocated memory associated with VAR. */
2165 static void
2166 free_variable (struct varobj *var)
2167 {
2168 #if HAVE_PYTHON
2169 if (var->pretty_printer)
2170 {
2171 struct cleanup *cleanup = varobj_ensure_python_env (var);
2172 Py_XDECREF (var->constructor);
2173 Py_XDECREF (var->pretty_printer);
2174 Py_XDECREF (var->child_iter);
2175 Py_XDECREF (var->saved_item);
2176 do_cleanups (cleanup);
2177 }
2178 #endif
2179
2180 value_free (var->value);
2181
2182 /* Free the expression if this is a root variable. */
2183 if (is_root_p (var))
2184 {
2185 xfree (var->root->exp);
2186 xfree (var->root);
2187 }
2188
2189 xfree (var->name);
2190 xfree (var->obj_name);
2191 xfree (var->print_value);
2192 xfree (var->path_expr);
2193 xfree (var);
2194 }
2195
2196 static void
2197 do_free_variable_cleanup (void *var)
2198 {
2199 free_variable (var);
2200 }
2201
2202 static struct cleanup *
2203 make_cleanup_free_variable (struct varobj *var)
2204 {
2205 return make_cleanup (do_free_variable_cleanup, var);
2206 }
2207
2208 /* This returns the type of the variable. It also skips past typedefs
2209 to return the real type of the variable.
2210
2211 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2212 except within get_target_type and get_type. */
2213 static struct type *
2214 get_type (struct varobj *var)
2215 {
2216 struct type *type;
2217 type = var->type;
2218
2219 if (type != NULL)
2220 type = check_typedef (type);
2221
2222 return type;
2223 }
2224
2225 /* Return the type of the value that's stored in VAR,
2226 or that would have being stored there if the
2227 value were accessible.
2228
2229 This differs from VAR->type in that VAR->type is always
2230 the true type of the expession in the source language.
2231 The return value of this function is the type we're
2232 actually storing in varobj, and using for displaying
2233 the values and for comparing previous and new values.
2234
2235 For example, top-level references are always stripped. */
2236 static struct type *
2237 get_value_type (struct varobj *var)
2238 {
2239 struct type *type;
2240
2241 if (var->value)
2242 type = value_type (var->value);
2243 else
2244 type = var->type;
2245
2246 type = check_typedef (type);
2247
2248 if (TYPE_CODE (type) == TYPE_CODE_REF)
2249 type = get_target_type (type);
2250
2251 type = check_typedef (type);
2252
2253 return type;
2254 }
2255
2256 /* This returns the target type (or NULL) of TYPE, also skipping
2257 past typedefs, just like get_type ().
2258
2259 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2260 except within get_target_type and get_type. */
2261 static struct type *
2262 get_target_type (struct type *type)
2263 {
2264 if (type != NULL)
2265 {
2266 type = TYPE_TARGET_TYPE (type);
2267 if (type != NULL)
2268 type = check_typedef (type);
2269 }
2270
2271 return type;
2272 }
2273
2274 /* What is the default display for this variable? We assume that
2275 everything is "natural". Any exceptions? */
2276 static enum varobj_display_formats
2277 variable_default_display (struct varobj *var)
2278 {
2279 return FORMAT_NATURAL;
2280 }
2281
2282 /* FIXME: The following should be generic for any pointer */
2283 static void
2284 cppush (struct cpstack **pstack, char *name)
2285 {
2286 struct cpstack *s;
2287
2288 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2289 s->name = name;
2290 s->next = *pstack;
2291 *pstack = s;
2292 }
2293
2294 /* FIXME: The following should be generic for any pointer */
2295 static char *
2296 cppop (struct cpstack **pstack)
2297 {
2298 struct cpstack *s;
2299 char *v;
2300
2301 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2302 return NULL;
2303
2304 s = *pstack;
2305 v = s->name;
2306 *pstack = (*pstack)->next;
2307 xfree (s);
2308
2309 return v;
2310 }
2311 \f
2312 /*
2313 * Language-dependencies
2314 */
2315
2316 /* Common entry points */
2317
2318 /* Get the language of variable VAR. */
2319 static enum varobj_languages
2320 variable_language (struct varobj *var)
2321 {
2322 enum varobj_languages lang;
2323
2324 switch (var->root->exp->language_defn->la_language)
2325 {
2326 default:
2327 case language_c:
2328 lang = vlang_c;
2329 break;
2330 case language_cplus:
2331 lang = vlang_cplus;
2332 break;
2333 case language_java:
2334 lang = vlang_java;
2335 break;
2336 }
2337
2338 return lang;
2339 }
2340
2341 /* Return the number of children for a given variable.
2342 The result of this function is defined by the language
2343 implementation. The number of children returned by this function
2344 is the number of children that the user will see in the variable
2345 display. */
2346 static int
2347 number_of_children (struct varobj *var)
2348 {
2349 return (*var->root->lang->number_of_children) (var);;
2350 }
2351
2352 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2353 static char *
2354 name_of_variable (struct varobj *var)
2355 {
2356 return (*var->root->lang->name_of_variable) (var);
2357 }
2358
2359 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2360 static char *
2361 name_of_child (struct varobj *var, int index)
2362 {
2363 return (*var->root->lang->name_of_child) (var, index);
2364 }
2365
2366 /* What is the ``struct value *'' of the root variable VAR?
2367 For floating variable object, evaluation can get us a value
2368 of different type from what is stored in varobj already. In
2369 that case:
2370 - *type_changed will be set to 1
2371 - old varobj will be freed, and new one will be
2372 created, with the same name.
2373 - *var_handle will be set to the new varobj
2374 Otherwise, *type_changed will be set to 0. */
2375 static struct value *
2376 value_of_root (struct varobj **var_handle, int *type_changed)
2377 {
2378 struct varobj *var;
2379
2380 if (var_handle == NULL)
2381 return NULL;
2382
2383 var = *var_handle;
2384
2385 /* This should really be an exception, since this should
2386 only get called with a root variable. */
2387
2388 if (!is_root_p (var))
2389 return NULL;
2390
2391 if (var->root->floating)
2392 {
2393 struct varobj *tmp_var;
2394 char *old_type, *new_type;
2395
2396 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2397 USE_SELECTED_FRAME);
2398 if (tmp_var == NULL)
2399 {
2400 return NULL;
2401 }
2402 old_type = varobj_get_type (var);
2403 new_type = varobj_get_type (tmp_var);
2404 if (strcmp (old_type, new_type) == 0)
2405 {
2406 /* The expression presently stored inside var->root->exp
2407 remembers the locations of local variables relatively to
2408 the frame where the expression was created (in DWARF location
2409 button, for example). Naturally, those locations are not
2410 correct in other frames, so update the expression. */
2411
2412 struct expression *tmp_exp = var->root->exp;
2413 var->root->exp = tmp_var->root->exp;
2414 tmp_var->root->exp = tmp_exp;
2415
2416 varobj_delete (tmp_var, NULL, 0);
2417 *type_changed = 0;
2418 }
2419 else
2420 {
2421 tmp_var->obj_name = xstrdup (var->obj_name);
2422 tmp_var->from = var->from;
2423 tmp_var->to = var->to;
2424 varobj_delete (var, NULL, 0);
2425
2426 install_variable (tmp_var);
2427 *var_handle = tmp_var;
2428 var = *var_handle;
2429 *type_changed = 1;
2430 }
2431 xfree (old_type);
2432 xfree (new_type);
2433 }
2434 else
2435 {
2436 *type_changed = 0;
2437 }
2438
2439 return (*var->root->lang->value_of_root) (var_handle);
2440 }
2441
2442 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2443 static struct value *
2444 value_of_child (struct varobj *parent, int index)
2445 {
2446 struct value *value;
2447
2448 value = (*parent->root->lang->value_of_child) (parent, index);
2449
2450 return value;
2451 }
2452
2453 /* GDB already has a command called "value_of_variable". Sigh. */
2454 static char *
2455 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2456 {
2457 if (var->root->is_valid)
2458 {
2459 if (var->pretty_printer)
2460 return value_get_print_value (var->value, var->format, var);
2461 return (*var->root->lang->value_of_variable) (var, format);
2462 }
2463 else
2464 return NULL;
2465 }
2466
2467 static char *
2468 value_get_print_value (struct value *value, enum varobj_display_formats format,
2469 struct varobj *var)
2470 {
2471 struct ui_file *stb;
2472 struct cleanup *old_chain;
2473 gdb_byte *thevalue = NULL;
2474 struct value_print_options opts;
2475 struct type *type = NULL;
2476 long len = 0;
2477 char *encoding = NULL;
2478 struct gdbarch *gdbarch = NULL;
2479
2480 if (value == NULL)
2481 return NULL;
2482
2483 gdbarch = get_type_arch (value_type (value));
2484 #if HAVE_PYTHON
2485 {
2486 struct cleanup *back_to = varobj_ensure_python_env (var);
2487 PyObject *value_formatter = var->pretty_printer;
2488
2489 if (value_formatter)
2490 {
2491 /* First check to see if we have any children at all. If so,
2492 we simply return {...}. */
2493 if (dynamic_varobj_has_child_method (var))
2494 return xstrdup ("{...}");
2495
2496 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2497 {
2498 char *hint;
2499 struct value *replacement;
2500 int string_print = 0;
2501 PyObject *output = NULL;
2502
2503 hint = gdbpy_get_display_hint (value_formatter);
2504 if (hint)
2505 {
2506 if (!strcmp (hint, "string"))
2507 string_print = 1;
2508 xfree (hint);
2509 }
2510
2511 output = apply_varobj_pretty_printer (value_formatter,
2512 &replacement);
2513 if (output)
2514 {
2515 if (gdbpy_is_lazy_string (output))
2516 {
2517 thevalue = gdbpy_extract_lazy_string (output, &type,
2518 &len, &encoding);
2519 string_print = 1;
2520 }
2521 else
2522 {
2523 PyObject *py_str
2524 = python_string_to_target_python_string (output);
2525 if (py_str)
2526 {
2527 char *s = PyString_AsString (py_str);
2528 len = PyString_Size (py_str);
2529 thevalue = xmemdup (s, len + 1, len + 1);
2530 type = builtin_type (gdbarch)->builtin_char;
2531 Py_DECREF (py_str);
2532 }
2533 }
2534 Py_DECREF (output);
2535 }
2536 if (thevalue && !string_print)
2537 {
2538 do_cleanups (back_to);
2539 xfree (encoding);
2540 return thevalue;
2541 }
2542 if (replacement)
2543 value = replacement;
2544 }
2545 }
2546 do_cleanups (back_to);
2547 }
2548 #endif
2549
2550 stb = mem_fileopen ();
2551 old_chain = make_cleanup_ui_file_delete (stb);
2552
2553 get_formatted_print_options (&opts, format_code[(int) format]);
2554 opts.deref_ref = 0;
2555 opts.raw = 1;
2556 if (thevalue)
2557 {
2558 make_cleanup (xfree, thevalue);
2559 make_cleanup (xfree, encoding);
2560 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2561 }
2562 else
2563 common_val_print (value, stb, 0, &opts, current_language);
2564 thevalue = ui_file_xstrdup (stb, NULL);
2565
2566 do_cleanups (old_chain);
2567 return thevalue;
2568 }
2569
2570 int
2571 varobj_editable_p (struct varobj *var)
2572 {
2573 struct type *type;
2574 struct value *value;
2575
2576 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2577 return 0;
2578
2579 type = get_value_type (var);
2580
2581 switch (TYPE_CODE (type))
2582 {
2583 case TYPE_CODE_STRUCT:
2584 case TYPE_CODE_UNION:
2585 case TYPE_CODE_ARRAY:
2586 case TYPE_CODE_FUNC:
2587 case TYPE_CODE_METHOD:
2588 return 0;
2589 break;
2590
2591 default:
2592 return 1;
2593 break;
2594 }
2595 }
2596
2597 /* Return non-zero if changes in value of VAR
2598 must be detected and reported by -var-update.
2599 Return zero is -var-update should never report
2600 changes of such values. This makes sense for structures
2601 (since the changes in children values will be reported separately),
2602 or for artifical objects (like 'public' pseudo-field in C++).
2603
2604 Return value of 0 means that gdb need not call value_fetch_lazy
2605 for the value of this variable object. */
2606 static int
2607 varobj_value_is_changeable_p (struct varobj *var)
2608 {
2609 int r;
2610 struct type *type;
2611
2612 if (CPLUS_FAKE_CHILD (var))
2613 return 0;
2614
2615 type = get_value_type (var);
2616
2617 switch (TYPE_CODE (type))
2618 {
2619 case TYPE_CODE_STRUCT:
2620 case TYPE_CODE_UNION:
2621 case TYPE_CODE_ARRAY:
2622 r = 0;
2623 break;
2624
2625 default:
2626 r = 1;
2627 }
2628
2629 return r;
2630 }
2631
2632 /* Return 1 if that varobj is floating, that is is always evaluated in the
2633 selected frame, and not bound to thread/frame. Such variable objects
2634 are created using '@' as frame specifier to -var-create. */
2635 int
2636 varobj_floating_p (struct varobj *var)
2637 {
2638 return var->root->floating;
2639 }
2640
2641 /* Given the value and the type of a variable object,
2642 adjust the value and type to those necessary
2643 for getting children of the variable object.
2644 This includes dereferencing top-level references
2645 to all types and dereferencing pointers to
2646 structures.
2647
2648 Both TYPE and *TYPE should be non-null. VALUE
2649 can be null if we want to only translate type.
2650 *VALUE can be null as well -- if the parent
2651 value is not known.
2652
2653 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2654 depending on whether pointer was dereferenced
2655 in this function. */
2656 static void
2657 adjust_value_for_child_access (struct value **value,
2658 struct type **type,
2659 int *was_ptr)
2660 {
2661 gdb_assert (type && *type);
2662
2663 if (was_ptr)
2664 *was_ptr = 0;
2665
2666 *type = check_typedef (*type);
2667
2668 /* The type of value stored in varobj, that is passed
2669 to us, is already supposed to be
2670 reference-stripped. */
2671
2672 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2673
2674 /* Pointers to structures are treated just like
2675 structures when accessing children. Don't
2676 dererences pointers to other types. */
2677 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2678 {
2679 struct type *target_type = get_target_type (*type);
2680 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2681 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2682 {
2683 if (value && *value)
2684 {
2685 int success = gdb_value_ind (*value, value);
2686 if (!success)
2687 *value = NULL;
2688 }
2689 *type = target_type;
2690 if (was_ptr)
2691 *was_ptr = 1;
2692 }
2693 }
2694
2695 /* The 'get_target_type' function calls check_typedef on
2696 result, so we can immediately check type code. No
2697 need to call check_typedef here. */
2698 }
2699
2700 /* C */
2701 static int
2702 c_number_of_children (struct varobj *var)
2703 {
2704 struct type *type = get_value_type (var);
2705 int children = 0;
2706 struct type *target;
2707
2708 adjust_value_for_child_access (NULL, &type, NULL);
2709 target = get_target_type (type);
2710
2711 switch (TYPE_CODE (type))
2712 {
2713 case TYPE_CODE_ARRAY:
2714 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2715 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2716 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2717 else
2718 /* If we don't know how many elements there are, don't display
2719 any. */
2720 children = 0;
2721 break;
2722
2723 case TYPE_CODE_STRUCT:
2724 case TYPE_CODE_UNION:
2725 children = TYPE_NFIELDS (type);
2726 break;
2727
2728 case TYPE_CODE_PTR:
2729 /* The type here is a pointer to non-struct. Typically, pointers
2730 have one child, except for function ptrs, which have no children,
2731 and except for void*, as we don't know what to show.
2732
2733 We can show char* so we allow it to be dereferenced. If you decide
2734 to test for it, please mind that a little magic is necessary to
2735 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2736 TYPE_NAME == "char" */
2737 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2738 || TYPE_CODE (target) == TYPE_CODE_VOID)
2739 children = 0;
2740 else
2741 children = 1;
2742 break;
2743
2744 default:
2745 /* Other types have no children */
2746 break;
2747 }
2748
2749 return children;
2750 }
2751
2752 static char *
2753 c_name_of_variable (struct varobj *parent)
2754 {
2755 return xstrdup (parent->name);
2756 }
2757
2758 /* Return the value of element TYPE_INDEX of a structure
2759 value VALUE. VALUE's type should be a structure,
2760 or union, or a typedef to struct/union.
2761
2762 Returns NULL if getting the value fails. Never throws. */
2763 static struct value *
2764 value_struct_element_index (struct value *value, int type_index)
2765 {
2766 struct value *result = NULL;
2767 volatile struct gdb_exception e;
2768
2769 struct type *type = value_type (value);
2770 type = check_typedef (type);
2771
2772 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2773 || TYPE_CODE (type) == TYPE_CODE_UNION);
2774
2775 TRY_CATCH (e, RETURN_MASK_ERROR)
2776 {
2777 if (field_is_static (&TYPE_FIELD (type, type_index)))
2778 result = value_static_field (type, type_index);
2779 else
2780 result = value_primitive_field (value, 0, type_index, type);
2781 }
2782 if (e.reason < 0)
2783 {
2784 return NULL;
2785 }
2786 else
2787 {
2788 return result;
2789 }
2790 }
2791
2792 /* Obtain the information about child INDEX of the variable
2793 object PARENT.
2794 If CNAME is not null, sets *CNAME to the name of the child relative
2795 to the parent.
2796 If CVALUE is not null, sets *CVALUE to the value of the child.
2797 If CTYPE is not null, sets *CTYPE to the type of the child.
2798
2799 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2800 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2801 to NULL. */
2802 static void
2803 c_describe_child (struct varobj *parent, int index,
2804 char **cname, struct value **cvalue, struct type **ctype,
2805 char **cfull_expression)
2806 {
2807 struct value *value = parent->value;
2808 struct type *type = get_value_type (parent);
2809 char *parent_expression = NULL;
2810 int was_ptr;
2811
2812 if (cname)
2813 *cname = NULL;
2814 if (cvalue)
2815 *cvalue = NULL;
2816 if (ctype)
2817 *ctype = NULL;
2818 if (cfull_expression)
2819 {
2820 *cfull_expression = NULL;
2821 parent_expression = varobj_get_path_expr (parent);
2822 }
2823 adjust_value_for_child_access (&value, &type, &was_ptr);
2824
2825 switch (TYPE_CODE (type))
2826 {
2827 case TYPE_CODE_ARRAY:
2828 if (cname)
2829 *cname = xstrdup (int_string (index
2830 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2831 10, 1, 0, 0));
2832
2833 if (cvalue && value)
2834 {
2835 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2836 gdb_value_subscript (value, real_index, cvalue);
2837 }
2838
2839 if (ctype)
2840 *ctype = get_target_type (type);
2841
2842 if (cfull_expression)
2843 *cfull_expression =
2844 xstrprintf ("(%s)[%s]", parent_expression,
2845 int_string (index
2846 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2847 10, 1, 0, 0));
2848
2849
2850 break;
2851
2852 case TYPE_CODE_STRUCT:
2853 case TYPE_CODE_UNION:
2854 if (cname)
2855 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2856
2857 if (cvalue && value)
2858 {
2859 /* For C, varobj index is the same as type index. */
2860 *cvalue = value_struct_element_index (value, index);
2861 }
2862
2863 if (ctype)
2864 *ctype = TYPE_FIELD_TYPE (type, index);
2865
2866 if (cfull_expression)
2867 {
2868 char *join = was_ptr ? "->" : ".";
2869 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2870 TYPE_FIELD_NAME (type, index));
2871 }
2872
2873 break;
2874
2875 case TYPE_CODE_PTR:
2876 if (cname)
2877 *cname = xstrprintf ("*%s", parent->name);
2878
2879 if (cvalue && value)
2880 {
2881 int success = gdb_value_ind (value, cvalue);
2882 if (!success)
2883 *cvalue = NULL;
2884 }
2885
2886 /* Don't use get_target_type because it calls
2887 check_typedef and here, we want to show the true
2888 declared type of the variable. */
2889 if (ctype)
2890 *ctype = TYPE_TARGET_TYPE (type);
2891
2892 if (cfull_expression)
2893 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2894
2895 break;
2896
2897 default:
2898 /* This should not happen */
2899 if (cname)
2900 *cname = xstrdup ("???");
2901 if (cfull_expression)
2902 *cfull_expression = xstrdup ("???");
2903 /* Don't set value and type, we don't know then. */
2904 }
2905 }
2906
2907 static char *
2908 c_name_of_child (struct varobj *parent, int index)
2909 {
2910 char *name;
2911 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2912 return name;
2913 }
2914
2915 static char *
2916 c_path_expr_of_child (struct varobj *child)
2917 {
2918 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2919 &child->path_expr);
2920 return child->path_expr;
2921 }
2922
2923 /* If frame associated with VAR can be found, switch
2924 to it and return 1. Otherwise, return 0. */
2925 static int
2926 check_scope (struct varobj *var)
2927 {
2928 struct frame_info *fi;
2929 int scope;
2930
2931 fi = frame_find_by_id (var->root->frame);
2932 scope = fi != NULL;
2933
2934 if (fi)
2935 {
2936 CORE_ADDR pc = get_frame_pc (fi);
2937 if (pc < BLOCK_START (var->root->valid_block) ||
2938 pc >= BLOCK_END (var->root->valid_block))
2939 scope = 0;
2940 else
2941 select_frame (fi);
2942 }
2943 return scope;
2944 }
2945
2946 static struct value *
2947 c_value_of_root (struct varobj **var_handle)
2948 {
2949 struct value *new_val = NULL;
2950 struct varobj *var = *var_handle;
2951 struct frame_info *fi;
2952 int within_scope = 0;
2953 struct cleanup *back_to;
2954
2955 /* Only root variables can be updated... */
2956 if (!is_root_p (var))
2957 /* Not a root var */
2958 return NULL;
2959
2960 back_to = make_cleanup_restore_current_thread ();
2961
2962 /* Determine whether the variable is still around. */
2963 if (var->root->valid_block == NULL || var->root->floating)
2964 within_scope = 1;
2965 else if (var->root->thread_id == 0)
2966 {
2967 /* The program was single-threaded when the variable object was
2968 created. Technically, it's possible that the program became
2969 multi-threaded since then, but we don't support such
2970 scenario yet. */
2971 within_scope = check_scope (var);
2972 }
2973 else
2974 {
2975 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2976 if (in_thread_list (ptid))
2977 {
2978 switch_to_thread (ptid);
2979 within_scope = check_scope (var);
2980 }
2981 }
2982
2983 if (within_scope)
2984 {
2985 /* We need to catch errors here, because if evaluate
2986 expression fails we want to just return NULL. */
2987 gdb_evaluate_expression (var->root->exp, &new_val);
2988 return new_val;
2989 }
2990
2991 do_cleanups (back_to);
2992
2993 return NULL;
2994 }
2995
2996 static struct value *
2997 c_value_of_child (struct varobj *parent, int index)
2998 {
2999 struct value *value = NULL;
3000 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3001
3002 return value;
3003 }
3004
3005 static struct type *
3006 c_type_of_child (struct varobj *parent, int index)
3007 {
3008 struct type *type = NULL;
3009 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3010 return type;
3011 }
3012
3013 static char *
3014 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3015 {
3016 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3017 it will print out its children instead of "{...}". So we need to
3018 catch that case explicitly. */
3019 struct type *type = get_type (var);
3020
3021 /* If we have a custom formatter, return whatever string it has
3022 produced. */
3023 if (var->pretty_printer && var->print_value)
3024 return xstrdup (var->print_value);
3025
3026 /* Strip top-level references. */
3027 while (TYPE_CODE (type) == TYPE_CODE_REF)
3028 type = check_typedef (TYPE_TARGET_TYPE (type));
3029
3030 switch (TYPE_CODE (type))
3031 {
3032 case TYPE_CODE_STRUCT:
3033 case TYPE_CODE_UNION:
3034 return xstrdup ("{...}");
3035 /* break; */
3036
3037 case TYPE_CODE_ARRAY:
3038 {
3039 char *number;
3040 number = xstrprintf ("[%d]", var->num_children);
3041 return (number);
3042 }
3043 /* break; */
3044
3045 default:
3046 {
3047 if (var->value == NULL)
3048 {
3049 /* This can happen if we attempt to get the value of a struct
3050 member when the parent is an invalid pointer. This is an
3051 error condition, so we should tell the caller. */
3052 return NULL;
3053 }
3054 else
3055 {
3056 if (var->not_fetched && value_lazy (var->value))
3057 /* Frozen variable and no value yet. We don't
3058 implicitly fetch the value. MI response will
3059 use empty string for the value, which is OK. */
3060 return NULL;
3061
3062 gdb_assert (varobj_value_is_changeable_p (var));
3063 gdb_assert (!value_lazy (var->value));
3064
3065 /* If the specified format is the current one,
3066 we can reuse print_value */
3067 if (format == var->format)
3068 return xstrdup (var->print_value);
3069 else
3070 return value_get_print_value (var->value, format, var);
3071 }
3072 }
3073 }
3074 }
3075 \f
3076
3077 /* C++ */
3078
3079 static int
3080 cplus_number_of_children (struct varobj *var)
3081 {
3082 struct type *type;
3083 int children, dont_know;
3084
3085 dont_know = 1;
3086 children = 0;
3087
3088 if (!CPLUS_FAKE_CHILD (var))
3089 {
3090 type = get_value_type (var);
3091 adjust_value_for_child_access (NULL, &type, NULL);
3092
3093 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3094 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3095 {
3096 int kids[3];
3097
3098 cplus_class_num_children (type, kids);
3099 if (kids[v_public] != 0)
3100 children++;
3101 if (kids[v_private] != 0)
3102 children++;
3103 if (kids[v_protected] != 0)
3104 children++;
3105
3106 /* Add any baseclasses */
3107 children += TYPE_N_BASECLASSES (type);
3108 dont_know = 0;
3109
3110 /* FIXME: save children in var */
3111 }
3112 }
3113 else
3114 {
3115 int kids[3];
3116
3117 type = get_value_type (var->parent);
3118 adjust_value_for_child_access (NULL, &type, NULL);
3119
3120 cplus_class_num_children (type, kids);
3121 if (strcmp (var->name, "public") == 0)
3122 children = kids[v_public];
3123 else if (strcmp (var->name, "private") == 0)
3124 children = kids[v_private];
3125 else
3126 children = kids[v_protected];
3127 dont_know = 0;
3128 }
3129
3130 if (dont_know)
3131 children = c_number_of_children (var);
3132
3133 return children;
3134 }
3135
3136 /* Compute # of public, private, and protected variables in this class.
3137 That means we need to descend into all baseclasses and find out
3138 how many are there, too. */
3139 static void
3140 cplus_class_num_children (struct type *type, int children[3])
3141 {
3142 int i, vptr_fieldno;
3143 struct type *basetype = NULL;
3144
3145 children[v_public] = 0;
3146 children[v_private] = 0;
3147 children[v_protected] = 0;
3148
3149 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3150 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3151 {
3152 /* If we have a virtual table pointer, omit it. Even if virtual
3153 table pointers are not specifically marked in the debug info,
3154 they should be artificial. */
3155 if ((type == basetype && i == vptr_fieldno)
3156 || TYPE_FIELD_ARTIFICIAL (type, i))
3157 continue;
3158
3159 if (TYPE_FIELD_PROTECTED (type, i))
3160 children[v_protected]++;
3161 else if (TYPE_FIELD_PRIVATE (type, i))
3162 children[v_private]++;
3163 else
3164 children[v_public]++;
3165 }
3166 }
3167
3168 static char *
3169 cplus_name_of_variable (struct varobj *parent)
3170 {
3171 return c_name_of_variable (parent);
3172 }
3173
3174 enum accessibility { private_field, protected_field, public_field };
3175
3176 /* Check if field INDEX of TYPE has the specified accessibility.
3177 Return 0 if so and 1 otherwise. */
3178 static int
3179 match_accessibility (struct type *type, int index, enum accessibility acc)
3180 {
3181 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3182 return 1;
3183 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3184 return 1;
3185 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3186 && !TYPE_FIELD_PROTECTED (type, index))
3187 return 1;
3188 else
3189 return 0;
3190 }
3191
3192 static void
3193 cplus_describe_child (struct varobj *parent, int index,
3194 char **cname, struct value **cvalue, struct type **ctype,
3195 char **cfull_expression)
3196 {
3197 char *name = NULL;
3198 struct value *value;
3199 struct type *type;
3200 int was_ptr;
3201 char *parent_expression = NULL;
3202
3203 if (cname)
3204 *cname = NULL;
3205 if (cvalue)
3206 *cvalue = NULL;
3207 if (ctype)
3208 *ctype = NULL;
3209 if (cfull_expression)
3210 *cfull_expression = NULL;
3211
3212 if (CPLUS_FAKE_CHILD (parent))
3213 {
3214 value = parent->parent->value;
3215 type = get_value_type (parent->parent);
3216 if (cfull_expression)
3217 parent_expression = varobj_get_path_expr (parent->parent);
3218 }
3219 else
3220 {
3221 value = parent->value;
3222 type = get_value_type (parent);
3223 if (cfull_expression)
3224 parent_expression = varobj_get_path_expr (parent);
3225 }
3226
3227 adjust_value_for_child_access (&value, &type, &was_ptr);
3228
3229 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3230 || TYPE_CODE (type) == TYPE_CODE_UNION)
3231 {
3232 char *join = was_ptr ? "->" : ".";
3233 if (CPLUS_FAKE_CHILD (parent))
3234 {
3235 /* The fields of the class type are ordered as they
3236 appear in the class. We are given an index for a
3237 particular access control type ("public","protected",
3238 or "private"). We must skip over fields that don't
3239 have the access control we are looking for to properly
3240 find the indexed field. */
3241 int type_index = TYPE_N_BASECLASSES (type);
3242 enum accessibility acc = public_field;
3243 int vptr_fieldno;
3244 struct type *basetype = NULL;
3245
3246 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3247 if (strcmp (parent->name, "private") == 0)
3248 acc = private_field;
3249 else if (strcmp (parent->name, "protected") == 0)
3250 acc = protected_field;
3251
3252 while (index >= 0)
3253 {
3254 if ((type == basetype && type_index == vptr_fieldno)
3255 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3256 ; /* ignore vptr */
3257 else if (match_accessibility (type, type_index, acc))
3258 --index;
3259 ++type_index;
3260 }
3261 --type_index;
3262
3263 if (cname)
3264 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3265
3266 if (cvalue && value)
3267 *cvalue = value_struct_element_index (value, type_index);
3268
3269 if (ctype)
3270 *ctype = TYPE_FIELD_TYPE (type, type_index);
3271
3272 if (cfull_expression)
3273 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3274 join,
3275 TYPE_FIELD_NAME (type, type_index));
3276 }
3277 else if (index < TYPE_N_BASECLASSES (type))
3278 {
3279 /* This is a baseclass. */
3280 if (cname)
3281 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3282
3283 if (cvalue && value)
3284 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3285
3286 if (ctype)
3287 {
3288 *ctype = TYPE_FIELD_TYPE (type, index);
3289 }
3290
3291 if (cfull_expression)
3292 {
3293 char *ptr = was_ptr ? "*" : "";
3294 /* Cast the parent to the base' type. Note that in gdb,
3295 expression like
3296 (Base1)d
3297 will create an lvalue, for all appearences, so we don't
3298 need to use more fancy:
3299 *(Base1*)(&d)
3300 construct. */
3301 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3302 ptr,
3303 TYPE_FIELD_NAME (type, index),
3304 ptr,
3305 parent_expression);
3306 }
3307 }
3308 else
3309 {
3310 char *access = NULL;
3311 int children[3];
3312 cplus_class_num_children (type, children);
3313
3314 /* Everything beyond the baseclasses can
3315 only be "public", "private", or "protected"
3316
3317 The special "fake" children are always output by varobj in
3318 this order. So if INDEX == 2, it MUST be "protected". */
3319 index -= TYPE_N_BASECLASSES (type);
3320 switch (index)
3321 {
3322 case 0:
3323 if (children[v_public] > 0)
3324 access = "public";
3325 else if (children[v_private] > 0)
3326 access = "private";
3327 else
3328 access = "protected";
3329 break;
3330 case 1:
3331 if (children[v_public] > 0)
3332 {
3333 if (children[v_private] > 0)
3334 access = "private";
3335 else
3336 access = "protected";
3337 }
3338 else if (children[v_private] > 0)
3339 access = "protected";
3340 break;
3341 case 2:
3342 /* Must be protected */
3343 access = "protected";
3344 break;
3345 default:
3346 /* error! */
3347 break;
3348 }
3349
3350 gdb_assert (access);
3351 if (cname)
3352 *cname = xstrdup (access);
3353
3354 /* Value and type and full expression are null here. */
3355 }
3356 }
3357 else
3358 {
3359 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3360 }
3361 }
3362
3363 static char *
3364 cplus_name_of_child (struct varobj *parent, int index)
3365 {
3366 char *name = NULL;
3367 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3368 return name;
3369 }
3370
3371 static char *
3372 cplus_path_expr_of_child (struct varobj *child)
3373 {
3374 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3375 &child->path_expr);
3376 return child->path_expr;
3377 }
3378
3379 static struct value *
3380 cplus_value_of_root (struct varobj **var_handle)
3381 {
3382 return c_value_of_root (var_handle);
3383 }
3384
3385 static struct value *
3386 cplus_value_of_child (struct varobj *parent, int index)
3387 {
3388 struct value *value = NULL;
3389 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3390 return value;
3391 }
3392
3393 static struct type *
3394 cplus_type_of_child (struct varobj *parent, int index)
3395 {
3396 struct type *type = NULL;
3397 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3398 return type;
3399 }
3400
3401 static char *
3402 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3403 {
3404
3405 /* If we have one of our special types, don't print out
3406 any value. */
3407 if (CPLUS_FAKE_CHILD (var))
3408 return xstrdup ("");
3409
3410 return c_value_of_variable (var, format);
3411 }
3412 \f
3413 /* Java */
3414
3415 static int
3416 java_number_of_children (struct varobj *var)
3417 {
3418 return cplus_number_of_children (var);
3419 }
3420
3421 static char *
3422 java_name_of_variable (struct varobj *parent)
3423 {
3424 char *p, *name;
3425
3426 name = cplus_name_of_variable (parent);
3427 /* If the name has "-" in it, it is because we
3428 needed to escape periods in the name... */
3429 p = name;
3430
3431 while (*p != '\000')
3432 {
3433 if (*p == '-')
3434 *p = '.';
3435 p++;
3436 }
3437
3438 return name;
3439 }
3440
3441 static char *
3442 java_name_of_child (struct varobj *parent, int index)
3443 {
3444 char *name, *p;
3445
3446 name = cplus_name_of_child (parent, index);
3447 /* Escape any periods in the name... */
3448 p = name;
3449
3450 while (*p != '\000')
3451 {
3452 if (*p == '.')
3453 *p = '-';
3454 p++;
3455 }
3456
3457 return name;
3458 }
3459
3460 static char *
3461 java_path_expr_of_child (struct varobj *child)
3462 {
3463 return NULL;
3464 }
3465
3466 static struct value *
3467 java_value_of_root (struct varobj **var_handle)
3468 {
3469 return cplus_value_of_root (var_handle);
3470 }
3471
3472 static struct value *
3473 java_value_of_child (struct varobj *parent, int index)
3474 {
3475 return cplus_value_of_child (parent, index);
3476 }
3477
3478 static struct type *
3479 java_type_of_child (struct varobj *parent, int index)
3480 {
3481 return cplus_type_of_child (parent, index);
3482 }
3483
3484 static char *
3485 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3486 {
3487 return cplus_value_of_variable (var, format);
3488 }
3489
3490 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3491 with an arbitrary caller supplied DATA pointer. */
3492
3493 void
3494 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3495 {
3496 struct varobj_root *var_root, *var_root_next;
3497
3498 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3499
3500 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3501 {
3502 var_root_next = var_root->next;
3503
3504 (*func) (var_root->rootvar, data);
3505 }
3506 }
3507 \f
3508 extern void _initialize_varobj (void);
3509 void
3510 _initialize_varobj (void)
3511 {
3512 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3513
3514 varobj_table = xmalloc (sizeof_table);
3515 memset (varobj_table, 0, sizeof_table);
3516
3517 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3518 &varobjdebug, _("\
3519 Set varobj debugging."), _("\
3520 Show varobj debugging."), _("\
3521 When non-zero, varobj debugging is enabled."),
3522 NULL,
3523 show_varobjdebug,
3524 &setlist, &showlist);
3525 }
3526
3527 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3528 defined on globals. It is a helper for varobj_invalidate. */
3529
3530 static void
3531 varobj_invalidate_iter (struct varobj *var, void *unused)
3532 {
3533 /* Floating varobjs are reparsed on each stop, so we don't care if the
3534 presently parsed expression refers to something that's gone. */
3535 if (var->root->floating)
3536 return;
3537
3538 /* global var must be re-evaluated. */
3539 if (var->root->valid_block == NULL)
3540 {
3541 struct varobj *tmp_var;
3542
3543 /* Try to create a varobj with same expression. If we succeed
3544 replace the old varobj, otherwise invalidate it. */
3545 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3546 USE_CURRENT_FRAME);
3547 if (tmp_var != NULL)
3548 {
3549 tmp_var->obj_name = xstrdup (var->obj_name);
3550 varobj_delete (var, NULL, 0);
3551 install_variable (tmp_var);
3552 }
3553 else
3554 var->root->is_valid = 0;
3555 }
3556 else /* locals must be invalidated. */
3557 var->root->is_valid = 0;
3558 }
3559
3560 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3561 are defined on globals.
3562 Invalidated varobjs will be always printed in_scope="invalid". */
3563
3564 void
3565 varobj_invalidate (void)
3566 {
3567 all_root_varobjs (varobj_invalidate_iter, NULL);
3568 }
This page took 0.105143 seconds and 4 git commands to generate.