* Makefile.in (objfiles.o, symfile.o): Update.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 #include "defs.h"
22 #include "exceptions.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "frame.h"
26 #include "language.h"
27 #include "wrapper.h"
28 #include "gdbcmd.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34
35 /* Non-zero if we want to see trace of varobj level stuff. */
36
37 int varobjdebug = 0;
38 static void
39 show_varobjdebug (struct ui_file *file, int from_tty,
40 struct cmd_list_element *c, const char *value)
41 {
42 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
43 }
44
45 /* String representations of gdb's format codes */
46 char *varobj_format_string[] =
47 { "natural", "binary", "decimal", "hexadecimal", "octal" };
48
49 /* String representations of gdb's known languages */
50 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
51
52 /* Data structures */
53
54 /* Every root variable has one of these structures saved in its
55 varobj. Members which must be free'd are noted. */
56 struct varobj_root
57 {
58
59 /* Alloc'd expression for this parent. */
60 struct expression *exp;
61
62 /* Block for which this expression is valid */
63 struct block *valid_block;
64
65 /* The frame for this expression */
66 struct frame_id frame;
67
68 /* If 1, "update" always recomputes the frame & valid block
69 using the currently selected frame. */
70 int use_selected_frame;
71
72 /* Language info for this variable and its children */
73 struct language_specific *lang;
74
75 /* The varobj for this root node. */
76 struct varobj *rootvar;
77
78 /* Next root variable */
79 struct varobj_root *next;
80 };
81
82 /* Every variable in the system has a structure of this type defined
83 for it. This structure holds all information necessary to manipulate
84 a particular object variable. Members which must be freed are noted. */
85 struct varobj
86 {
87
88 /* Alloc'd name of the variable for this object.. If this variable is a
89 child, then this name will be the child's source name.
90 (bar, not foo.bar) */
91 /* NOTE: This is the "expression" */
92 char *name;
93
94 /* The alloc'd name for this variable's object. This is here for
95 convenience when constructing this object's children. */
96 char *obj_name;
97
98 /* Index of this variable in its parent or -1 */
99 int index;
100
101 /* The type of this variable. This may NEVER be NULL. */
102 struct type *type;
103
104 /* The value of this expression or subexpression. This may be NULL. */
105 struct value *value;
106
107 /* Did an error occur evaluating the expression or getting its value? */
108 int error;
109
110 /* The number of (immediate) children this variable has */
111 int num_children;
112
113 /* If this object is a child, this points to its immediate parent. */
114 struct varobj *parent;
115
116 /* A list of this object's children */
117 struct varobj_child *children;
118
119 /* Description of the root variable. Points to root variable for children. */
120 struct varobj_root *root;
121
122 /* The format of the output for this object */
123 enum varobj_display_formats format;
124
125 /* Was this variable updated via a varobj_set_value operation */
126 int updated;
127 };
128
129 /* Every variable keeps a linked list of its children, described
130 by the following structure. */
131 /* FIXME: Deprecated. All should use vlist instead */
132
133 struct varobj_child
134 {
135
136 /* Pointer to the child's data */
137 struct varobj *child;
138
139 /* Pointer to the next child */
140 struct varobj_child *next;
141 };
142
143 /* A stack of varobjs */
144 /* FIXME: Deprecated. All should use vlist instead */
145
146 struct vstack
147 {
148 struct varobj *var;
149 struct vstack *next;
150 };
151
152 struct cpstack
153 {
154 char *name;
155 struct cpstack *next;
156 };
157
158 /* A list of varobjs */
159
160 struct vlist
161 {
162 struct varobj *var;
163 struct vlist *next;
164 };
165
166 /* Private function prototypes */
167
168 /* Helper functions for the above subcommands. */
169
170 static int delete_variable (struct cpstack **, struct varobj *, int);
171
172 static void delete_variable_1 (struct cpstack **, int *,
173 struct varobj *, int, int);
174
175 static int install_variable (struct varobj *);
176
177 static void uninstall_variable (struct varobj *);
178
179 static struct varobj *child_exists (struct varobj *, char *);
180
181 static struct varobj *create_child (struct varobj *, int, char *);
182
183 static void save_child_in_parent (struct varobj *, struct varobj *);
184
185 static void remove_child_from_parent (struct varobj *, struct varobj *);
186
187 /* Utility routines */
188
189 static struct varobj *new_variable (void);
190
191 static struct varobj *new_root_variable (void);
192
193 static void free_variable (struct varobj *var);
194
195 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
196
197 static struct type *get_type (struct varobj *var);
198
199 static struct type *get_type_deref (struct varobj *var);
200
201 static struct type *get_target_type (struct type *);
202
203 static enum varobj_display_formats variable_default_display (struct varobj *);
204
205 static int my_value_equal (struct value *, struct value *, int *);
206
207 static void vpush (struct vstack **pstack, struct varobj *var);
208
209 static struct varobj *vpop (struct vstack **pstack);
210
211 static void cppush (struct cpstack **pstack, char *name);
212
213 static char *cppop (struct cpstack **pstack);
214
215 /* Language-specific routines. */
216
217 static enum varobj_languages variable_language (struct varobj *var);
218
219 static int number_of_children (struct varobj *);
220
221 static char *name_of_variable (struct varobj *);
222
223 static char *name_of_child (struct varobj *, int);
224
225 static struct value *value_of_root (struct varobj **var_handle, int *);
226
227 static struct value *value_of_child (struct varobj *parent, int index);
228
229 static struct type *type_of_child (struct varobj *var);
230
231 static int variable_editable (struct varobj *var);
232
233 static char *my_value_of_variable (struct varobj *var);
234
235 static int type_changeable (struct varobj *var);
236
237 /* C implementation */
238
239 static int c_number_of_children (struct varobj *var);
240
241 static char *c_name_of_variable (struct varobj *parent);
242
243 static char *c_name_of_child (struct varobj *parent, int index);
244
245 static struct value *c_value_of_root (struct varobj **var_handle);
246
247 static struct value *c_value_of_child (struct varobj *parent, int index);
248
249 static struct type *c_type_of_child (struct varobj *parent, int index);
250
251 static int c_variable_editable (struct varobj *var);
252
253 static char *c_value_of_variable (struct varobj *var);
254
255 /* C++ implementation */
256
257 static int cplus_number_of_children (struct varobj *var);
258
259 static void cplus_class_num_children (struct type *type, int children[3]);
260
261 static char *cplus_name_of_variable (struct varobj *parent);
262
263 static char *cplus_name_of_child (struct varobj *parent, int index);
264
265 static struct value *cplus_value_of_root (struct varobj **var_handle);
266
267 static struct value *cplus_value_of_child (struct varobj *parent, int index);
268
269 static struct type *cplus_type_of_child (struct varobj *parent, int index);
270
271 static int cplus_variable_editable (struct varobj *var);
272
273 static char *cplus_value_of_variable (struct varobj *var);
274
275 /* Java implementation */
276
277 static int java_number_of_children (struct varobj *var);
278
279 static char *java_name_of_variable (struct varobj *parent);
280
281 static char *java_name_of_child (struct varobj *parent, int index);
282
283 static struct value *java_value_of_root (struct varobj **var_handle);
284
285 static struct value *java_value_of_child (struct varobj *parent, int index);
286
287 static struct type *java_type_of_child (struct varobj *parent, int index);
288
289 static int java_variable_editable (struct varobj *var);
290
291 static char *java_value_of_variable (struct varobj *var);
292
293 /* The language specific vector */
294
295 struct language_specific
296 {
297
298 /* The language of this variable */
299 enum varobj_languages language;
300
301 /* The number of children of PARENT. */
302 int (*number_of_children) (struct varobj * parent);
303
304 /* The name (expression) of a root varobj. */
305 char *(*name_of_variable) (struct varobj * parent);
306
307 /* The name of the INDEX'th child of PARENT. */
308 char *(*name_of_child) (struct varobj * parent, int index);
309
310 /* The ``struct value *'' of the root variable ROOT. */
311 struct value *(*value_of_root) (struct varobj ** root_handle);
312
313 /* The ``struct value *'' of the INDEX'th child of PARENT. */
314 struct value *(*value_of_child) (struct varobj * parent, int index);
315
316 /* The type of the INDEX'th child of PARENT. */
317 struct type *(*type_of_child) (struct varobj * parent, int index);
318
319 /* Is VAR editable? */
320 int (*variable_editable) (struct varobj * var);
321
322 /* The current value of VAR. */
323 char *(*value_of_variable) (struct varobj * var);
324 };
325
326 /* Array of known source language routines. */
327 static struct language_specific
328 languages[vlang_end][sizeof (struct language_specific)] = {
329 /* Unknown (try treating as C */
330 {
331 vlang_unknown,
332 c_number_of_children,
333 c_name_of_variable,
334 c_name_of_child,
335 c_value_of_root,
336 c_value_of_child,
337 c_type_of_child,
338 c_variable_editable,
339 c_value_of_variable}
340 ,
341 /* C */
342 {
343 vlang_c,
344 c_number_of_children,
345 c_name_of_variable,
346 c_name_of_child,
347 c_value_of_root,
348 c_value_of_child,
349 c_type_of_child,
350 c_variable_editable,
351 c_value_of_variable}
352 ,
353 /* C++ */
354 {
355 vlang_cplus,
356 cplus_number_of_children,
357 cplus_name_of_variable,
358 cplus_name_of_child,
359 cplus_value_of_root,
360 cplus_value_of_child,
361 cplus_type_of_child,
362 cplus_variable_editable,
363 cplus_value_of_variable}
364 ,
365 /* Java */
366 {
367 vlang_java,
368 java_number_of_children,
369 java_name_of_variable,
370 java_name_of_child,
371 java_value_of_root,
372 java_value_of_child,
373 java_type_of_child,
374 java_variable_editable,
375 java_value_of_variable}
376 };
377
378 /* A little convenience enum for dealing with C++/Java */
379 enum vsections
380 {
381 v_public = 0, v_private, v_protected
382 };
383
384 /* Private data */
385
386 /* Mappings of varobj_display_formats enums to gdb's format codes */
387 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
388
389 /* Header of the list of root variable objects */
390 static struct varobj_root *rootlist;
391 static int rootcount = 0; /* number of root varobjs in the list */
392
393 /* Prime number indicating the number of buckets in the hash table */
394 /* A prime large enough to avoid too many colisions */
395 #define VAROBJ_TABLE_SIZE 227
396
397 /* Pointer to the varobj hash table (built at run time) */
398 static struct vlist **varobj_table;
399
400 /* Is the variable X one of our "fake" children? */
401 #define CPLUS_FAKE_CHILD(x) \
402 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
403 \f
404
405 /* API Implementation */
406
407 /* Creates a varobj (not its children) */
408
409 /* Return the full FRAME which corresponds to the given CORE_ADDR
410 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
411
412 static struct frame_info *
413 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
414 {
415 struct frame_info *frame = NULL;
416
417 if (frame_addr == (CORE_ADDR) 0)
418 return NULL;
419
420 while (1)
421 {
422 frame = get_prev_frame (frame);
423 if (frame == NULL)
424 return NULL;
425 if (get_frame_base_address (frame) == frame_addr)
426 return frame;
427 }
428 }
429
430 struct varobj *
431 varobj_create (char *objname,
432 char *expression, CORE_ADDR frame, enum varobj_type type)
433 {
434 struct varobj *var;
435 struct frame_info *fi;
436 struct frame_info *old_fi = NULL;
437 struct block *block;
438 struct cleanup *old_chain;
439
440 /* Fill out a varobj structure for the (root) variable being constructed. */
441 var = new_root_variable ();
442 old_chain = make_cleanup_free_variable (var);
443
444 if (expression != NULL)
445 {
446 char *p;
447 enum varobj_languages lang;
448
449 /* Parse and evaluate the expression, filling in as much
450 of the variable's data as possible */
451
452 /* Allow creator to specify context of variable */
453 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
454 fi = deprecated_selected_frame;
455 else
456 /* FIXME: cagney/2002-11-23: This code should be doing a
457 lookup using the frame ID and not just the frame's
458 ``address''. This, of course, means an interface change.
459 However, with out that interface change ISAs, such as the
460 ia64 with its two stacks, won't work. Similar goes for the
461 case where there is a frameless function. */
462 fi = find_frame_addr_in_frame_chain (frame);
463
464 /* frame = -2 means always use selected frame */
465 if (type == USE_SELECTED_FRAME)
466 var->root->use_selected_frame = 1;
467
468 block = NULL;
469 if (fi != NULL)
470 block = get_frame_block (fi, 0);
471
472 p = expression;
473 innermost_block = NULL;
474 /* Wrap the call to parse expression, so we can
475 return a sensible error. */
476 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
477 {
478 return NULL;
479 }
480
481 /* Don't allow variables to be created for types. */
482 if (var->root->exp->elts[0].opcode == OP_TYPE)
483 {
484 do_cleanups (old_chain);
485 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
486 " as an expression.\n");
487 return NULL;
488 }
489
490 var->format = variable_default_display (var);
491 var->root->valid_block = innermost_block;
492 var->name = savestring (expression, strlen (expression));
493
494 /* When the frame is different from the current frame,
495 we must select the appropriate frame before parsing
496 the expression, otherwise the value will not be current.
497 Since select_frame is so benign, just call it for all cases. */
498 if (fi != NULL)
499 {
500 var->root->frame = get_frame_id (fi);
501 old_fi = deprecated_selected_frame;
502 select_frame (fi);
503 }
504
505 /* We definitively need to catch errors here.
506 If evaluate_expression succeeds we got the value we wanted.
507 But if it fails, we still go on with a call to evaluate_type() */
508 if (gdb_evaluate_expression (var->root->exp, &var->value))
509 {
510 /* no error */
511 release_value (var->value);
512 if (value_lazy (var->value))
513 gdb_value_fetch_lazy (var->value);
514 }
515 else
516 var->value = evaluate_type (var->root->exp);
517
518 var->type = value_type (var->value);
519
520 /* Set language info */
521 lang = variable_language (var);
522 var->root->lang = languages[lang];
523
524 /* Set ourselves as our root */
525 var->root->rootvar = var;
526
527 /* Reset the selected frame */
528 if (fi != NULL)
529 select_frame (old_fi);
530 }
531
532 /* If the variable object name is null, that means this
533 is a temporary variable, so don't install it. */
534
535 if ((var != NULL) && (objname != NULL))
536 {
537 var->obj_name = savestring (objname, strlen (objname));
538
539 /* If a varobj name is duplicated, the install will fail so
540 we must clenup */
541 if (!install_variable (var))
542 {
543 do_cleanups (old_chain);
544 return NULL;
545 }
546 }
547
548 discard_cleanups (old_chain);
549 return var;
550 }
551
552 /* Generates an unique name that can be used for a varobj */
553
554 char *
555 varobj_gen_name (void)
556 {
557 static int id = 0;
558 char *obj_name;
559
560 /* generate a name for this object */
561 id++;
562 obj_name = xstrprintf ("var%d", id);
563
564 return obj_name;
565 }
566
567 /* Given an "objname", returns the pointer to the corresponding varobj
568 or NULL if not found */
569
570 struct varobj *
571 varobj_get_handle (char *objname)
572 {
573 struct vlist *cv;
574 const char *chp;
575 unsigned int index = 0;
576 unsigned int i = 1;
577
578 for (chp = objname; *chp; chp++)
579 {
580 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
581 }
582
583 cv = *(varobj_table + index);
584 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
585 cv = cv->next;
586
587 if (cv == NULL)
588 error (_("Variable object not found"));
589
590 return cv->var;
591 }
592
593 /* Given the handle, return the name of the object */
594
595 char *
596 varobj_get_objname (struct varobj *var)
597 {
598 return var->obj_name;
599 }
600
601 /* Given the handle, return the expression represented by the object */
602
603 char *
604 varobj_get_expression (struct varobj *var)
605 {
606 return name_of_variable (var);
607 }
608
609 /* Deletes a varobj and all its children if only_children == 0,
610 otherwise deletes only the children; returns a malloc'ed list of all the
611 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
612
613 int
614 varobj_delete (struct varobj *var, char ***dellist, int only_children)
615 {
616 int delcount;
617 int mycount;
618 struct cpstack *result = NULL;
619 char **cp;
620
621 /* Initialize a stack for temporary results */
622 cppush (&result, NULL);
623
624 if (only_children)
625 /* Delete only the variable children */
626 delcount = delete_variable (&result, var, 1 /* only the children */ );
627 else
628 /* Delete the variable and all its children */
629 delcount = delete_variable (&result, var, 0 /* parent+children */ );
630
631 /* We may have been asked to return a list of what has been deleted */
632 if (dellist != NULL)
633 {
634 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
635
636 cp = *dellist;
637 mycount = delcount;
638 *cp = cppop (&result);
639 while ((*cp != NULL) && (mycount > 0))
640 {
641 mycount--;
642 cp++;
643 *cp = cppop (&result);
644 }
645
646 if (mycount || (*cp != NULL))
647 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
648 mycount);
649 }
650
651 return delcount;
652 }
653
654 /* Set/Get variable object display format */
655
656 enum varobj_display_formats
657 varobj_set_display_format (struct varobj *var,
658 enum varobj_display_formats format)
659 {
660 switch (format)
661 {
662 case FORMAT_NATURAL:
663 case FORMAT_BINARY:
664 case FORMAT_DECIMAL:
665 case FORMAT_HEXADECIMAL:
666 case FORMAT_OCTAL:
667 var->format = format;
668 break;
669
670 default:
671 var->format = variable_default_display (var);
672 }
673
674 return var->format;
675 }
676
677 enum varobj_display_formats
678 varobj_get_display_format (struct varobj *var)
679 {
680 return var->format;
681 }
682
683 int
684 varobj_get_num_children (struct varobj *var)
685 {
686 if (var->num_children == -1)
687 var->num_children = number_of_children (var);
688
689 return var->num_children;
690 }
691
692 /* Creates a list of the immediate children of a variable object;
693 the return code is the number of such children or -1 on error */
694
695 int
696 varobj_list_children (struct varobj *var, struct varobj ***childlist)
697 {
698 struct varobj *child;
699 char *name;
700 int i;
701
702 /* sanity check: have we been passed a pointer? */
703 if (childlist == NULL)
704 return -1;
705
706 *childlist = NULL;
707
708 if (var->num_children == -1)
709 var->num_children = number_of_children (var);
710
711 /* List of children */
712 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
713
714 for (i = 0; i < var->num_children; i++)
715 {
716 /* Mark as the end in case we bail out */
717 *((*childlist) + i) = NULL;
718
719 /* check if child exists, if not create */
720 name = name_of_child (var, i);
721 child = child_exists (var, name);
722 if (child == NULL)
723 child = create_child (var, i, name);
724
725 *((*childlist) + i) = child;
726 }
727
728 /* End of list is marked by a NULL pointer */
729 *((*childlist) + i) = NULL;
730
731 return var->num_children;
732 }
733
734 /* Obtain the type of an object Variable as a string similar to the one gdb
735 prints on the console */
736
737 char *
738 varobj_get_type (struct varobj *var)
739 {
740 struct value *val;
741 struct cleanup *old_chain;
742 struct ui_file *stb;
743 char *thetype;
744 long length;
745
746 /* For the "fake" variables, do not return a type. (It's type is
747 NULL, too.) */
748 if (CPLUS_FAKE_CHILD (var))
749 return NULL;
750
751 stb = mem_fileopen ();
752 old_chain = make_cleanup_ui_file_delete (stb);
753
754 /* To print the type, we simply create a zero ``struct value *'' and
755 cast it to our type. We then typeprint this variable. */
756 val = value_zero (var->type, not_lval);
757 type_print (value_type (val), "", stb, -1);
758
759 thetype = ui_file_xstrdup (stb, &length);
760 do_cleanups (old_chain);
761 return thetype;
762 }
763
764 /* Obtain the type of an object variable. */
765
766 struct type *
767 varobj_get_gdb_type (struct varobj *var)
768 {
769 return var->type;
770 }
771
772 enum varobj_languages
773 varobj_get_language (struct varobj *var)
774 {
775 return variable_language (var);
776 }
777
778 int
779 varobj_get_attributes (struct varobj *var)
780 {
781 int attributes = 0;
782
783 if (variable_editable (var))
784 /* FIXME: define masks for attributes */
785 attributes |= 0x00000001; /* Editable */
786
787 return attributes;
788 }
789
790 char *
791 varobj_get_value (struct varobj *var)
792 {
793 return my_value_of_variable (var);
794 }
795
796 /* Set the value of an object variable (if it is editable) to the
797 value of the given expression */
798 /* Note: Invokes functions that can call error() */
799
800 int
801 varobj_set_value (struct varobj *var, char *expression)
802 {
803 struct value *val;
804 int offset = 0;
805 int error = 0;
806
807 /* The argument "expression" contains the variable's new value.
808 We need to first construct a legal expression for this -- ugh! */
809 /* Does this cover all the bases? */
810 struct expression *exp;
811 struct value *value;
812 int saved_input_radix = input_radix;
813
814 if (var->value != NULL && variable_editable (var) && !var->error)
815 {
816 char *s = expression;
817 int i;
818
819 input_radix = 10; /* ALWAYS reset to decimal temporarily */
820 exp = parse_exp_1 (&s, 0, 0);
821 if (!gdb_evaluate_expression (exp, &value))
822 {
823 /* We cannot proceed without a valid expression. */
824 xfree (exp);
825 return 0;
826 }
827
828 if (!my_value_equal (var->value, value, &error))
829 var->updated = 1;
830 if (!gdb_value_assign (var->value, value, &val))
831 return 0;
832 value_free (var->value);
833 release_value (val);
834 var->value = val;
835 input_radix = saved_input_radix;
836 return 1;
837 }
838
839 return 0;
840 }
841
842 /* Returns a malloc'ed list with all root variable objects */
843 int
844 varobj_list (struct varobj ***varlist)
845 {
846 struct varobj **cv;
847 struct varobj_root *croot;
848 int mycount = rootcount;
849
850 /* Alloc (rootcount + 1) entries for the result */
851 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
852
853 cv = *varlist;
854 croot = rootlist;
855 while ((croot != NULL) && (mycount > 0))
856 {
857 *cv = croot->rootvar;
858 mycount--;
859 cv++;
860 croot = croot->next;
861 }
862 /* Mark the end of the list */
863 *cv = NULL;
864
865 if (mycount || (croot != NULL))
866 warning
867 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
868 rootcount, mycount);
869
870 return rootcount;
871 }
872
873 /* Update the values for a variable and its children. This is a
874 two-pronged attack. First, re-parse the value for the root's
875 expression to see if it's changed. Then go all the way
876 through its children, reconstructing them and noting if they've
877 changed.
878 Return value:
879 -1 if there was an error updating the varobj
880 -2 if the type changed
881 Otherwise it is the number of children + parent changed
882
883 Only root variables can be updated...
884
885 NOTE: This function may delete the caller's varobj. If it
886 returns -2, then it has done this and VARP will be modified
887 to point to the new varobj. */
888
889 int
890 varobj_update (struct varobj **varp, struct varobj ***changelist)
891 {
892 int changed = 0;
893 int error = 0;
894 int type_changed;
895 int i;
896 int vleft;
897 struct varobj *v;
898 struct varobj **cv;
899 struct varobj **templist = NULL;
900 struct value *new;
901 struct vstack *stack = NULL;
902 struct vstack *result = NULL;
903 struct frame_id old_fid;
904 struct frame_info *fi;
905
906 /* sanity check: have we been passed a pointer? */
907 if (changelist == NULL)
908 return -1;
909
910 /* Only root variables can be updated... */
911 if ((*varp)->root->rootvar != *varp)
912 /* Not a root var */
913 return -1;
914
915 /* Save the selected stack frame, since we will need to change it
916 in order to evaluate expressions. */
917 old_fid = get_frame_id (deprecated_selected_frame);
918
919 /* Update the root variable. value_of_root can return NULL
920 if the variable is no longer around, i.e. we stepped out of
921 the frame in which a local existed. We are letting the
922 value_of_root variable dispose of the varobj if the type
923 has changed. */
924 type_changed = 1;
925 new = value_of_root (varp, &type_changed);
926 if (new == NULL)
927 {
928 (*varp)->error = 1;
929 return -1;
930 }
931
932 /* Initialize a stack for temporary results */
933 vpush (&result, NULL);
934
935 /* If this is a "use_selected_frame" varobj, and its type has changed,
936 them note that it's changed. */
937 if (type_changed)
938 {
939 vpush (&result, *varp);
940 changed++;
941 }
942 /* If values are not equal, note that it's changed.
943 There a couple of exceptions here, though.
944 We don't want some types to be reported as "changed". */
945 else if (type_changeable (*varp) &&
946 ((*varp)->updated || !my_value_equal ((*varp)->value, new, &error)))
947 {
948 vpush (&result, *varp);
949 (*varp)->updated = 0;
950 changed++;
951 /* Its value is going to be updated to NEW. */
952 (*varp)->error = error;
953 }
954
955 /* We must always keep around the new value for this root
956 variable expression, or we lose the updated children! */
957 value_free ((*varp)->value);
958 (*varp)->value = new;
959
960 /* Initialize a stack */
961 vpush (&stack, NULL);
962
963 /* Push the root's children */
964 if ((*varp)->children != NULL)
965 {
966 struct varobj_child *c;
967 for (c = (*varp)->children; c != NULL; c = c->next)
968 vpush (&stack, c->child);
969 }
970
971 /* Walk through the children, reconstructing them all. */
972 v = vpop (&stack);
973 while (v != NULL)
974 {
975 /* Push any children */
976 if (v->children != NULL)
977 {
978 struct varobj_child *c;
979 for (c = v->children; c != NULL; c = c->next)
980 vpush (&stack, c->child);
981 }
982
983 /* Update this variable */
984 new = value_of_child (v->parent, v->index);
985 if (type_changeable (v) &&
986 (v->updated || !my_value_equal (v->value, new, &error)))
987 {
988 /* Note that it's changed */
989 vpush (&result, v);
990 v->updated = 0;
991 changed++;
992 }
993 /* Its value is going to be updated to NEW. */
994 v->error = error;
995
996 /* We must always keep new values, since children depend on it. */
997 if (v->value != NULL)
998 value_free (v->value);
999 v->value = new;
1000
1001 /* Get next child */
1002 v = vpop (&stack);
1003 }
1004
1005 /* Alloc (changed + 1) list entries */
1006 /* FIXME: add a cleanup for the allocated list(s)
1007 because one day the select_frame called below can longjump */
1008 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1009 if (changed > 1)
1010 {
1011 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1012 cv = templist;
1013 }
1014 else
1015 cv = *changelist;
1016
1017 /* Copy from result stack to list */
1018 vleft = changed;
1019 *cv = vpop (&result);
1020 while ((*cv != NULL) && (vleft > 0))
1021 {
1022 vleft--;
1023 cv++;
1024 *cv = vpop (&result);
1025 }
1026 if (vleft)
1027 warning (_("varobj_update: assertion failed - vleft <> 0"));
1028
1029 if (changed > 1)
1030 {
1031 /* Now we revert the order. */
1032 for (i = 0; i < changed; i++)
1033 *(*changelist + i) = *(templist + changed - 1 - i);
1034 *(*changelist + changed) = NULL;
1035 }
1036
1037 /* Restore selected frame */
1038 fi = frame_find_by_id (old_fid);
1039 if (fi)
1040 select_frame (fi);
1041
1042 if (type_changed)
1043 return -2;
1044 else
1045 return changed;
1046 }
1047 \f
1048
1049 /* Helper functions */
1050
1051 /*
1052 * Variable object construction/destruction
1053 */
1054
1055 static int
1056 delete_variable (struct cpstack **resultp, struct varobj *var,
1057 int only_children_p)
1058 {
1059 int delcount = 0;
1060
1061 delete_variable_1 (resultp, &delcount, var,
1062 only_children_p, 1 /* remove_from_parent_p */ );
1063
1064 return delcount;
1065 }
1066
1067 /* Delete the variable object VAR and its children */
1068 /* IMPORTANT NOTE: If we delete a variable which is a child
1069 and the parent is not removed we dump core. It must be always
1070 initially called with remove_from_parent_p set */
1071 static void
1072 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1073 struct varobj *var, int only_children_p,
1074 int remove_from_parent_p)
1075 {
1076 struct varobj_child *vc;
1077 struct varobj_child *next;
1078
1079 /* Delete any children of this variable, too. */
1080 for (vc = var->children; vc != NULL; vc = next)
1081 {
1082 if (!remove_from_parent_p)
1083 vc->child->parent = NULL;
1084 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1085 next = vc->next;
1086 xfree (vc);
1087 }
1088
1089 /* if we were called to delete only the children we are done here */
1090 if (only_children_p)
1091 return;
1092
1093 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1094 /* If the name is null, this is a temporary variable, that has not
1095 yet been installed, don't report it, it belongs to the caller... */
1096 if (var->obj_name != NULL)
1097 {
1098 cppush (resultp, xstrdup (var->obj_name));
1099 *delcountp = *delcountp + 1;
1100 }
1101
1102 /* If this variable has a parent, remove it from its parent's list */
1103 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1104 (as indicated by remove_from_parent_p) we don't bother doing an
1105 expensive list search to find the element to remove when we are
1106 discarding the list afterwards */
1107 if ((remove_from_parent_p) && (var->parent != NULL))
1108 {
1109 remove_child_from_parent (var->parent, var);
1110 }
1111
1112 if (var->obj_name != NULL)
1113 uninstall_variable (var);
1114
1115 /* Free memory associated with this variable */
1116 free_variable (var);
1117 }
1118
1119 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1120 static int
1121 install_variable (struct varobj *var)
1122 {
1123 struct vlist *cv;
1124 struct vlist *newvl;
1125 const char *chp;
1126 unsigned int index = 0;
1127 unsigned int i = 1;
1128
1129 for (chp = var->obj_name; *chp; chp++)
1130 {
1131 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1132 }
1133
1134 cv = *(varobj_table + index);
1135 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1136 cv = cv->next;
1137
1138 if (cv != NULL)
1139 error (_("Duplicate variable object name"));
1140
1141 /* Add varobj to hash table */
1142 newvl = xmalloc (sizeof (struct vlist));
1143 newvl->next = *(varobj_table + index);
1144 newvl->var = var;
1145 *(varobj_table + index) = newvl;
1146
1147 /* If root, add varobj to root list */
1148 if (var->root->rootvar == var)
1149 {
1150 /* Add to list of root variables */
1151 if (rootlist == NULL)
1152 var->root->next = NULL;
1153 else
1154 var->root->next = rootlist;
1155 rootlist = var->root;
1156 rootcount++;
1157 }
1158
1159 return 1; /* OK */
1160 }
1161
1162 /* Unistall the object VAR. */
1163 static void
1164 uninstall_variable (struct varobj *var)
1165 {
1166 struct vlist *cv;
1167 struct vlist *prev;
1168 struct varobj_root *cr;
1169 struct varobj_root *prer;
1170 const char *chp;
1171 unsigned int index = 0;
1172 unsigned int i = 1;
1173
1174 /* Remove varobj from hash table */
1175 for (chp = var->obj_name; *chp; chp++)
1176 {
1177 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1178 }
1179
1180 cv = *(varobj_table + index);
1181 prev = NULL;
1182 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1183 {
1184 prev = cv;
1185 cv = cv->next;
1186 }
1187
1188 if (varobjdebug)
1189 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1190
1191 if (cv == NULL)
1192 {
1193 warning
1194 ("Assertion failed: Could not find variable object \"%s\" to delete",
1195 var->obj_name);
1196 return;
1197 }
1198
1199 if (prev == NULL)
1200 *(varobj_table + index) = cv->next;
1201 else
1202 prev->next = cv->next;
1203
1204 xfree (cv);
1205
1206 /* If root, remove varobj from root list */
1207 if (var->root->rootvar == var)
1208 {
1209 /* Remove from list of root variables */
1210 if (rootlist == var->root)
1211 rootlist = var->root->next;
1212 else
1213 {
1214 prer = NULL;
1215 cr = rootlist;
1216 while ((cr != NULL) && (cr->rootvar != var))
1217 {
1218 prer = cr;
1219 cr = cr->next;
1220 }
1221 if (cr == NULL)
1222 {
1223 warning
1224 ("Assertion failed: Could not find varobj \"%s\" in root list",
1225 var->obj_name);
1226 return;
1227 }
1228 if (prer == NULL)
1229 rootlist = NULL;
1230 else
1231 prer->next = cr->next;
1232 }
1233 rootcount--;
1234 }
1235
1236 }
1237
1238 /* Does a child with the name NAME exist in VAR? If so, return its data.
1239 If not, return NULL. */
1240 static struct varobj *
1241 child_exists (struct varobj *var, char *name)
1242 {
1243 struct varobj_child *vc;
1244
1245 for (vc = var->children; vc != NULL; vc = vc->next)
1246 {
1247 if (strcmp (vc->child->name, name) == 0)
1248 return vc->child;
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* Create and install a child of the parent of the given name */
1255 static struct varobj *
1256 create_child (struct varobj *parent, int index, char *name)
1257 {
1258 struct varobj *child;
1259 char *childs_name;
1260
1261 child = new_variable ();
1262
1263 /* name is allocated by name_of_child */
1264 child->name = name;
1265 child->index = index;
1266 child->value = value_of_child (parent, index);
1267 if ((!CPLUS_FAKE_CHILD (child) && child->value == NULL) || parent->error)
1268 child->error = 1;
1269 child->parent = parent;
1270 child->root = parent->root;
1271 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1272 child->obj_name = childs_name;
1273 install_variable (child);
1274
1275 /* Save a pointer to this child in the parent */
1276 save_child_in_parent (parent, child);
1277
1278 /* Note the type of this child */
1279 child->type = type_of_child (child);
1280
1281 return child;
1282 }
1283
1284 /* FIXME: This should be a generic add to list */
1285 /* Save CHILD in the PARENT's data. */
1286 static void
1287 save_child_in_parent (struct varobj *parent, struct varobj *child)
1288 {
1289 struct varobj_child *vc;
1290
1291 /* Insert the child at the top */
1292 vc = parent->children;
1293 parent->children =
1294 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1295
1296 parent->children->next = vc;
1297 parent->children->child = child;
1298 }
1299
1300 /* FIXME: This should be a generic remove from list */
1301 /* Remove the CHILD from the PARENT's list of children. */
1302 static void
1303 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1304 {
1305 struct varobj_child *vc, *prev;
1306
1307 /* Find the child in the parent's list */
1308 prev = NULL;
1309 for (vc = parent->children; vc != NULL;)
1310 {
1311 if (vc->child == child)
1312 break;
1313 prev = vc;
1314 vc = vc->next;
1315 }
1316
1317 if (prev == NULL)
1318 parent->children = vc->next;
1319 else
1320 prev->next = vc->next;
1321
1322 }
1323 \f
1324
1325 /*
1326 * Miscellaneous utility functions.
1327 */
1328
1329 /* Allocate memory and initialize a new variable */
1330 static struct varobj *
1331 new_variable (void)
1332 {
1333 struct varobj *var;
1334
1335 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1336 var->name = NULL;
1337 var->obj_name = NULL;
1338 var->index = -1;
1339 var->type = NULL;
1340 var->value = NULL;
1341 var->error = 0;
1342 var->num_children = -1;
1343 var->parent = NULL;
1344 var->children = NULL;
1345 var->format = 0;
1346 var->root = NULL;
1347 var->updated = 0;
1348
1349 return var;
1350 }
1351
1352 /* Allocate memory and initialize a new root variable */
1353 static struct varobj *
1354 new_root_variable (void)
1355 {
1356 struct varobj *var = new_variable ();
1357 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1358 var->root->lang = NULL;
1359 var->root->exp = NULL;
1360 var->root->valid_block = NULL;
1361 var->root->frame = null_frame_id;
1362 var->root->use_selected_frame = 0;
1363 var->root->rootvar = NULL;
1364
1365 return var;
1366 }
1367
1368 /* Free any allocated memory associated with VAR. */
1369 static void
1370 free_variable (struct varobj *var)
1371 {
1372 /* Free the expression if this is a root variable. */
1373 if (var->root->rootvar == var)
1374 {
1375 free_current_contents (&var->root->exp);
1376 xfree (var->root);
1377 }
1378
1379 xfree (var->name);
1380 xfree (var->obj_name);
1381 xfree (var);
1382 }
1383
1384 static void
1385 do_free_variable_cleanup (void *var)
1386 {
1387 free_variable (var);
1388 }
1389
1390 static struct cleanup *
1391 make_cleanup_free_variable (struct varobj *var)
1392 {
1393 return make_cleanup (do_free_variable_cleanup, var);
1394 }
1395
1396 /* This returns the type of the variable. It also skips past typedefs
1397 to return the real type of the variable.
1398
1399 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1400 except within get_target_type and get_type. */
1401 static struct type *
1402 get_type (struct varobj *var)
1403 {
1404 struct type *type;
1405 type = var->type;
1406
1407 if (type != NULL)
1408 type = check_typedef (type);
1409
1410 return type;
1411 }
1412
1413 /* This returns the type of the variable, dereferencing pointers, too. */
1414 static struct type *
1415 get_type_deref (struct varobj *var)
1416 {
1417 struct type *type;
1418
1419 type = get_type (var);
1420
1421 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1422 || TYPE_CODE (type) == TYPE_CODE_REF))
1423 type = get_target_type (type);
1424
1425 return type;
1426 }
1427
1428 /* This returns the target type (or NULL) of TYPE, also skipping
1429 past typedefs, just like get_type ().
1430
1431 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1432 except within get_target_type and get_type. */
1433 static struct type *
1434 get_target_type (struct type *type)
1435 {
1436 if (type != NULL)
1437 {
1438 type = TYPE_TARGET_TYPE (type);
1439 if (type != NULL)
1440 type = check_typedef (type);
1441 }
1442
1443 return type;
1444 }
1445
1446 /* What is the default display for this variable? We assume that
1447 everything is "natural". Any exceptions? */
1448 static enum varobj_display_formats
1449 variable_default_display (struct varobj *var)
1450 {
1451 return FORMAT_NATURAL;
1452 }
1453
1454 /* This function is similar to GDB's value_contents_equal, except that
1455 this one is "safe"; it never longjmps. It determines if the VAL1's
1456 value is the same as VAL2. If for some reason the value of VAR2
1457 can't be established, *ERROR2 is set to non-zero. */
1458
1459 static int
1460 my_value_equal (struct value *val1, struct value *volatile val2, int *error2)
1461 {
1462 volatile struct gdb_exception except;
1463
1464 /* As a special case, if both are null, we say they're equal. */
1465 if (val1 == NULL && val2 == NULL)
1466 return 1;
1467 else if (val1 == NULL || val2 == NULL)
1468 return 0;
1469
1470 /* The contents of VAL1 are supposed to be known. */
1471 gdb_assert (!value_lazy (val1));
1472
1473 /* Make sure we also know the contents of VAL2. */
1474 val2 = coerce_array (val2);
1475 TRY_CATCH (except, RETURN_MASK_ERROR)
1476 {
1477 if (value_lazy (val2))
1478 value_fetch_lazy (val2);
1479 }
1480 if (except.reason < 0)
1481 {
1482 *error2 = 1;
1483 return 0;
1484 }
1485 gdb_assert (!value_lazy (val2));
1486
1487 return value_contents_equal (val1, val2);
1488 }
1489
1490 /* FIXME: The following should be generic for any pointer */
1491 static void
1492 vpush (struct vstack **pstack, struct varobj *var)
1493 {
1494 struct vstack *s;
1495
1496 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1497 s->var = var;
1498 s->next = *pstack;
1499 *pstack = s;
1500 }
1501
1502 /* FIXME: The following should be generic for any pointer */
1503 static struct varobj *
1504 vpop (struct vstack **pstack)
1505 {
1506 struct vstack *s;
1507 struct varobj *v;
1508
1509 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1510 return NULL;
1511
1512 s = *pstack;
1513 v = s->var;
1514 *pstack = (*pstack)->next;
1515 xfree (s);
1516
1517 return v;
1518 }
1519
1520 /* FIXME: The following should be generic for any pointer */
1521 static void
1522 cppush (struct cpstack **pstack, char *name)
1523 {
1524 struct cpstack *s;
1525
1526 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1527 s->name = name;
1528 s->next = *pstack;
1529 *pstack = s;
1530 }
1531
1532 /* FIXME: The following should be generic for any pointer */
1533 static char *
1534 cppop (struct cpstack **pstack)
1535 {
1536 struct cpstack *s;
1537 char *v;
1538
1539 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1540 return NULL;
1541
1542 s = *pstack;
1543 v = s->name;
1544 *pstack = (*pstack)->next;
1545 xfree (s);
1546
1547 return v;
1548 }
1549 \f
1550 /*
1551 * Language-dependencies
1552 */
1553
1554 /* Common entry points */
1555
1556 /* Get the language of variable VAR. */
1557 static enum varobj_languages
1558 variable_language (struct varobj *var)
1559 {
1560 enum varobj_languages lang;
1561
1562 switch (var->root->exp->language_defn->la_language)
1563 {
1564 default:
1565 case language_c:
1566 lang = vlang_c;
1567 break;
1568 case language_cplus:
1569 lang = vlang_cplus;
1570 break;
1571 case language_java:
1572 lang = vlang_java;
1573 break;
1574 }
1575
1576 return lang;
1577 }
1578
1579 /* Return the number of children for a given variable.
1580 The result of this function is defined by the language
1581 implementation. The number of children returned by this function
1582 is the number of children that the user will see in the variable
1583 display. */
1584 static int
1585 number_of_children (struct varobj *var)
1586 {
1587 return (*var->root->lang->number_of_children) (var);;
1588 }
1589
1590 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1591 static char *
1592 name_of_variable (struct varobj *var)
1593 {
1594 return (*var->root->lang->name_of_variable) (var);
1595 }
1596
1597 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1598 static char *
1599 name_of_child (struct varobj *var, int index)
1600 {
1601 return (*var->root->lang->name_of_child) (var, index);
1602 }
1603
1604 /* What is the ``struct value *'' of the root variable VAR?
1605 TYPE_CHANGED controls what to do if the type of a
1606 use_selected_frame = 1 variable changes. On input,
1607 TYPE_CHANGED = 1 means discard the old varobj, and replace
1608 it with this one. TYPE_CHANGED = 0 means leave it around.
1609 NB: In both cases, var_handle will point to the new varobj,
1610 so if you use TYPE_CHANGED = 0, you will have to stash the
1611 old varobj pointer away somewhere before calling this.
1612 On return, TYPE_CHANGED will be 1 if the type has changed, and
1613 0 otherwise. */
1614 static struct value *
1615 value_of_root (struct varobj **var_handle, int *type_changed)
1616 {
1617 struct varobj *var;
1618
1619 if (var_handle == NULL)
1620 return NULL;
1621
1622 var = *var_handle;
1623
1624 /* This should really be an exception, since this should
1625 only get called with a root variable. */
1626
1627 if (var->root->rootvar != var)
1628 return NULL;
1629
1630 if (var->root->use_selected_frame)
1631 {
1632 struct varobj *tmp_var;
1633 char *old_type, *new_type;
1634 old_type = varobj_get_type (var);
1635 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1636 USE_SELECTED_FRAME);
1637 if (tmp_var == NULL)
1638 {
1639 return NULL;
1640 }
1641 new_type = varobj_get_type (tmp_var);
1642 if (strcmp (old_type, new_type) == 0)
1643 {
1644 varobj_delete (tmp_var, NULL, 0);
1645 *type_changed = 0;
1646 }
1647 else
1648 {
1649 if (*type_changed)
1650 {
1651 tmp_var->obj_name =
1652 savestring (var->obj_name, strlen (var->obj_name));
1653 varobj_delete (var, NULL, 0);
1654 }
1655 else
1656 {
1657 tmp_var->obj_name = varobj_gen_name ();
1658 }
1659 install_variable (tmp_var);
1660 *var_handle = tmp_var;
1661 var = *var_handle;
1662 *type_changed = 1;
1663 }
1664 }
1665 else
1666 {
1667 *type_changed = 0;
1668 }
1669
1670 return (*var->root->lang->value_of_root) (var_handle);
1671 }
1672
1673 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1674 static struct value *
1675 value_of_child (struct varobj *parent, int index)
1676 {
1677 struct value *value;
1678
1679 value = (*parent->root->lang->value_of_child) (parent, index);
1680
1681 /* If we're being lazy, fetch the real value of the variable. */
1682 if (value != NULL && value_lazy (value))
1683 {
1684 /* If we fail to fetch the value of the child, return
1685 NULL so that callers notice that we're leaving an
1686 error message. */
1687 if (!gdb_value_fetch_lazy (value))
1688 value = NULL;
1689 }
1690
1691 return value;
1692 }
1693
1694 /* What is the type of VAR? */
1695 static struct type *
1696 type_of_child (struct varobj *var)
1697 {
1698
1699 /* If the child had no evaluation errors, var->value
1700 will be non-NULL and contain a valid type. */
1701 if (var->value != NULL)
1702 return value_type (var->value);
1703
1704 /* Otherwise, we must compute the type. */
1705 return (*var->root->lang->type_of_child) (var->parent, var->index);
1706 }
1707
1708 /* Is this variable editable? Use the variable's type to make
1709 this determination. */
1710 static int
1711 variable_editable (struct varobj *var)
1712 {
1713 return (*var->root->lang->variable_editable) (var);
1714 }
1715
1716 /* GDB already has a command called "value_of_variable". Sigh. */
1717 static char *
1718 my_value_of_variable (struct varobj *var)
1719 {
1720 return (*var->root->lang->value_of_variable) (var);
1721 }
1722
1723 /* Is VAR something that can change? Depending on language,
1724 some variable's values never change. For example,
1725 struct and unions never change values. */
1726 static int
1727 type_changeable (struct varobj *var)
1728 {
1729 int r;
1730 struct type *type;
1731
1732 if (CPLUS_FAKE_CHILD (var))
1733 return 0;
1734
1735 type = get_type (var);
1736
1737 switch (TYPE_CODE (type))
1738 {
1739 case TYPE_CODE_STRUCT:
1740 case TYPE_CODE_UNION:
1741 case TYPE_CODE_ARRAY:
1742 r = 0;
1743 break;
1744
1745 default:
1746 r = 1;
1747 }
1748
1749 return r;
1750 }
1751
1752 /* C */
1753 static int
1754 c_number_of_children (struct varobj *var)
1755 {
1756 struct type *type;
1757 struct type *target;
1758 int children;
1759
1760 type = get_type (var);
1761 target = get_target_type (type);
1762 children = 0;
1763
1764 switch (TYPE_CODE (type))
1765 {
1766 case TYPE_CODE_ARRAY:
1767 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1768 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1769 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1770 else
1771 children = -1;
1772 break;
1773
1774 case TYPE_CODE_STRUCT:
1775 case TYPE_CODE_UNION:
1776 children = TYPE_NFIELDS (type);
1777 break;
1778
1779 case TYPE_CODE_PTR:
1780 /* This is where things get compilcated. All pointers have one child.
1781 Except, of course, for struct and union ptr, which we automagically
1782 dereference for the user and function ptrs, which have no children.
1783 We also don't dereference void* as we don't know what to show.
1784 We can show char* so we allow it to be dereferenced. If you decide
1785 to test for it, please mind that a little magic is necessary to
1786 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1787 TYPE_NAME == "char" */
1788
1789 switch (TYPE_CODE (target))
1790 {
1791 case TYPE_CODE_STRUCT:
1792 case TYPE_CODE_UNION:
1793 children = TYPE_NFIELDS (target);
1794 break;
1795
1796 case TYPE_CODE_FUNC:
1797 case TYPE_CODE_VOID:
1798 children = 0;
1799 break;
1800
1801 default:
1802 children = 1;
1803 }
1804 break;
1805
1806 default:
1807 /* Other types have no children */
1808 break;
1809 }
1810
1811 return children;
1812 }
1813
1814 static char *
1815 c_name_of_variable (struct varobj *parent)
1816 {
1817 return savestring (parent->name, strlen (parent->name));
1818 }
1819
1820 static char *
1821 c_name_of_child (struct varobj *parent, int index)
1822 {
1823 struct type *type;
1824 struct type *target;
1825 char *name;
1826 char *string;
1827
1828 type = get_type (parent);
1829 target = get_target_type (type);
1830
1831 switch (TYPE_CODE (type))
1832 {
1833 case TYPE_CODE_ARRAY:
1834 name = xstrprintf ("%d", index
1835 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
1836 break;
1837
1838 case TYPE_CODE_STRUCT:
1839 case TYPE_CODE_UNION:
1840 string = TYPE_FIELD_NAME (type, index);
1841 name = savestring (string, strlen (string));
1842 break;
1843
1844 case TYPE_CODE_PTR:
1845 switch (TYPE_CODE (target))
1846 {
1847 case TYPE_CODE_STRUCT:
1848 case TYPE_CODE_UNION:
1849 string = TYPE_FIELD_NAME (target, index);
1850 name = savestring (string, strlen (string));
1851 break;
1852
1853 default:
1854 name = xstrprintf ("*%s", parent->name);
1855 break;
1856 }
1857 break;
1858
1859 default:
1860 /* This should not happen */
1861 name = xstrdup ("???");
1862 }
1863
1864 return name;
1865 }
1866
1867 static struct value *
1868 c_value_of_root (struct varobj **var_handle)
1869 {
1870 struct value *new_val;
1871 struct varobj *var = *var_handle;
1872 struct frame_info *fi;
1873 int within_scope;
1874
1875 /* Only root variables can be updated... */
1876 if (var->root->rootvar != var)
1877 /* Not a root var */
1878 return NULL;
1879
1880
1881 /* Determine whether the variable is still around. */
1882 if (var->root->valid_block == NULL)
1883 within_scope = 1;
1884 else
1885 {
1886 reinit_frame_cache ();
1887 fi = frame_find_by_id (var->root->frame);
1888 within_scope = fi != NULL;
1889 /* FIXME: select_frame could fail */
1890 if (within_scope)
1891 select_frame (fi);
1892 }
1893
1894 if (within_scope)
1895 {
1896 /* We need to catch errors here, because if evaluate
1897 expression fails we just want to make val->error = 1 and
1898 go on */
1899 if (gdb_evaluate_expression (var->root->exp, &new_val))
1900 {
1901 if (value_lazy (new_val))
1902 {
1903 /* We need to catch errors because if
1904 value_fetch_lazy fails we still want to continue
1905 (after making val->error = 1) */
1906 /* FIXME: Shouldn't be using value_contents()? The
1907 comment on value_fetch_lazy() says it is only called
1908 from the macro... */
1909 if (!gdb_value_fetch_lazy (new_val))
1910 var->error = 1;
1911 else
1912 var->error = 0;
1913 }
1914 }
1915 else
1916 var->error = 1;
1917
1918 release_value (new_val);
1919 return new_val;
1920 }
1921
1922 return NULL;
1923 }
1924
1925 static struct value *
1926 c_value_of_child (struct varobj *parent, int index)
1927 {
1928 struct value *value;
1929 struct value *temp;
1930 struct value *indval;
1931 struct type *type, *target;
1932 char *name;
1933 int real_index;
1934
1935 type = get_type (parent);
1936 target = get_target_type (type);
1937 name = name_of_child (parent, index);
1938 temp = parent->value;
1939 value = NULL;
1940
1941 if (temp != NULL)
1942 {
1943 switch (TYPE_CODE (type))
1944 {
1945 case TYPE_CODE_ARRAY:
1946 real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
1947 #if 0
1948 /* This breaks if the array lives in a (vector) register. */
1949 value = value_slice (temp, real_index, 1);
1950 temp = value_coerce_array (value);
1951 gdb_value_ind (temp, &value);
1952 #else
1953 indval = value_from_longest (builtin_type_int, (LONGEST) real_index);
1954 gdb_value_subscript (temp, indval, &value);
1955 #endif
1956 break;
1957
1958 case TYPE_CODE_STRUCT:
1959 case TYPE_CODE_UNION:
1960 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1961 "vstructure");
1962 break;
1963
1964 case TYPE_CODE_PTR:
1965 switch (TYPE_CODE (target))
1966 {
1967 case TYPE_CODE_STRUCT:
1968 case TYPE_CODE_UNION:
1969 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1970 "vstructure");
1971 break;
1972
1973 default:
1974 gdb_value_ind (temp, &value);
1975 break;
1976 }
1977 break;
1978
1979 default:
1980 break;
1981 }
1982 }
1983
1984 if (value != NULL)
1985 release_value (value);
1986
1987 xfree (name);
1988 return value;
1989 }
1990
1991 static struct type *
1992 c_type_of_child (struct varobj *parent, int index)
1993 {
1994 struct type *type;
1995 char *name = name_of_child (parent, index);
1996
1997 switch (TYPE_CODE (parent->type))
1998 {
1999 case TYPE_CODE_ARRAY:
2000 type = get_target_type (parent->type);
2001 break;
2002
2003 case TYPE_CODE_STRUCT:
2004 case TYPE_CODE_UNION:
2005 type = lookup_struct_elt_type (parent->type, name, 0);
2006 break;
2007
2008 case TYPE_CODE_PTR:
2009 switch (TYPE_CODE (get_target_type (parent->type)))
2010 {
2011 case TYPE_CODE_STRUCT:
2012 case TYPE_CODE_UNION:
2013 type = lookup_struct_elt_type (parent->type, name, 0);
2014 break;
2015
2016 default:
2017 type = get_target_type (parent->type);
2018 break;
2019 }
2020 break;
2021
2022 default:
2023 /* This should not happen as only the above types have children */
2024 warning (_("Child of parent whose type does not allow children"));
2025 /* FIXME: Can we still go on? */
2026 type = NULL;
2027 break;
2028 }
2029
2030 xfree (name);
2031 return type;
2032 }
2033
2034 static int
2035 c_variable_editable (struct varobj *var)
2036 {
2037 switch (TYPE_CODE (get_type (var)))
2038 {
2039 case TYPE_CODE_STRUCT:
2040 case TYPE_CODE_UNION:
2041 case TYPE_CODE_ARRAY:
2042 case TYPE_CODE_FUNC:
2043 case TYPE_CODE_MEMBER:
2044 case TYPE_CODE_METHOD:
2045 return 0;
2046 break;
2047
2048 default:
2049 return 1;
2050 break;
2051 }
2052 }
2053
2054 static char *
2055 c_value_of_variable (struct varobj *var)
2056 {
2057 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2058 it will print out its children instead of "{...}". So we need to
2059 catch that case explicitly. */
2060 struct type *type = get_type (var);
2061
2062 /* Strip top-level references. */
2063 while (TYPE_CODE (type) == TYPE_CODE_REF)
2064 type = check_typedef (TYPE_TARGET_TYPE (type));
2065
2066 switch (TYPE_CODE (type))
2067 {
2068 case TYPE_CODE_STRUCT:
2069 case TYPE_CODE_UNION:
2070 return xstrdup ("{...}");
2071 /* break; */
2072
2073 case TYPE_CODE_ARRAY:
2074 {
2075 char *number;
2076 number = xstrprintf ("[%d]", var->num_children);
2077 return (number);
2078 }
2079 /* break; */
2080
2081 default:
2082 {
2083 if (var->value == NULL)
2084 {
2085 /* This can happen if we attempt to get the value of a struct
2086 member when the parent is an invalid pointer. This is an
2087 error condition, so we should tell the caller. */
2088 return NULL;
2089 }
2090 else
2091 {
2092 long dummy;
2093 struct ui_file *stb = mem_fileopen ();
2094 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2095 char *thevalue;
2096
2097 if (value_lazy (var->value))
2098 gdb_value_fetch_lazy (var->value);
2099 common_val_print (var->value, stb,
2100 format_code[(int) var->format], 1, 0, 0);
2101 thevalue = ui_file_xstrdup (stb, &dummy);
2102 do_cleanups (old_chain);
2103 return thevalue;
2104 }
2105 }
2106 }
2107 }
2108 \f
2109
2110 /* C++ */
2111
2112 static int
2113 cplus_number_of_children (struct varobj *var)
2114 {
2115 struct type *type;
2116 int children, dont_know;
2117
2118 dont_know = 1;
2119 children = 0;
2120
2121 if (!CPLUS_FAKE_CHILD (var))
2122 {
2123 type = get_type_deref (var);
2124
2125 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2126 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2127 {
2128 int kids[3];
2129
2130 cplus_class_num_children (type, kids);
2131 if (kids[v_public] != 0)
2132 children++;
2133 if (kids[v_private] != 0)
2134 children++;
2135 if (kids[v_protected] != 0)
2136 children++;
2137
2138 /* Add any baseclasses */
2139 children += TYPE_N_BASECLASSES (type);
2140 dont_know = 0;
2141
2142 /* FIXME: save children in var */
2143 }
2144 }
2145 else
2146 {
2147 int kids[3];
2148
2149 type = get_type_deref (var->parent);
2150
2151 cplus_class_num_children (type, kids);
2152 if (strcmp (var->name, "public") == 0)
2153 children = kids[v_public];
2154 else if (strcmp (var->name, "private") == 0)
2155 children = kids[v_private];
2156 else
2157 children = kids[v_protected];
2158 dont_know = 0;
2159 }
2160
2161 if (dont_know)
2162 children = c_number_of_children (var);
2163
2164 return children;
2165 }
2166
2167 /* Compute # of public, private, and protected variables in this class.
2168 That means we need to descend into all baseclasses and find out
2169 how many are there, too. */
2170 static void
2171 cplus_class_num_children (struct type *type, int children[3])
2172 {
2173 int i;
2174
2175 children[v_public] = 0;
2176 children[v_private] = 0;
2177 children[v_protected] = 0;
2178
2179 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2180 {
2181 /* If we have a virtual table pointer, omit it. */
2182 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2183 continue;
2184
2185 if (TYPE_FIELD_PROTECTED (type, i))
2186 children[v_protected]++;
2187 else if (TYPE_FIELD_PRIVATE (type, i))
2188 children[v_private]++;
2189 else
2190 children[v_public]++;
2191 }
2192 }
2193
2194 static char *
2195 cplus_name_of_variable (struct varobj *parent)
2196 {
2197 return c_name_of_variable (parent);
2198 }
2199
2200 static char *
2201 cplus_name_of_child (struct varobj *parent, int index)
2202 {
2203 char *name;
2204 struct type *type;
2205
2206 if (CPLUS_FAKE_CHILD (parent))
2207 {
2208 /* Looking for children of public, private, or protected. */
2209 type = get_type_deref (parent->parent);
2210 }
2211 else
2212 type = get_type_deref (parent);
2213
2214 name = NULL;
2215 switch (TYPE_CODE (type))
2216 {
2217 case TYPE_CODE_STRUCT:
2218 case TYPE_CODE_UNION:
2219 if (CPLUS_FAKE_CHILD (parent))
2220 {
2221 /* The fields of the class type are ordered as they
2222 appear in the class. We are given an index for a
2223 particular access control type ("public","protected",
2224 or "private"). We must skip over fields that don't
2225 have the access control we are looking for to properly
2226 find the indexed field. */
2227 int type_index = TYPE_N_BASECLASSES (type);
2228 if (strcmp (parent->name, "private") == 0)
2229 {
2230 while (index >= 0)
2231 {
2232 if (TYPE_VPTR_BASETYPE (type) == type
2233 && type_index == TYPE_VPTR_FIELDNO (type))
2234 ; /* ignore vptr */
2235 else if (TYPE_FIELD_PRIVATE (type, type_index))
2236 --index;
2237 ++type_index;
2238 }
2239 --type_index;
2240 }
2241 else if (strcmp (parent->name, "protected") == 0)
2242 {
2243 while (index >= 0)
2244 {
2245 if (TYPE_VPTR_BASETYPE (type) == type
2246 && type_index == TYPE_VPTR_FIELDNO (type))
2247 ; /* ignore vptr */
2248 else if (TYPE_FIELD_PROTECTED (type, type_index))
2249 --index;
2250 ++type_index;
2251 }
2252 --type_index;
2253 }
2254 else
2255 {
2256 while (index >= 0)
2257 {
2258 if (TYPE_VPTR_BASETYPE (type) == type
2259 && type_index == TYPE_VPTR_FIELDNO (type))
2260 ; /* ignore vptr */
2261 else if (!TYPE_FIELD_PRIVATE (type, type_index) &&
2262 !TYPE_FIELD_PROTECTED (type, type_index))
2263 --index;
2264 ++type_index;
2265 }
2266 --type_index;
2267 }
2268
2269 name = TYPE_FIELD_NAME (type, type_index);
2270 }
2271 else if (index < TYPE_N_BASECLASSES (type))
2272 /* We are looking up the name of a base class */
2273 name = TYPE_FIELD_NAME (type, index);
2274 else
2275 {
2276 int children[3];
2277 cplus_class_num_children(type, children);
2278
2279 /* Everything beyond the baseclasses can
2280 only be "public", "private", or "protected"
2281
2282 The special "fake" children are always output by varobj in
2283 this order. So if INDEX == 2, it MUST be "protected". */
2284 index -= TYPE_N_BASECLASSES (type);
2285 switch (index)
2286 {
2287 case 0:
2288 if (children[v_public] > 0)
2289 name = "public";
2290 else if (children[v_private] > 0)
2291 name = "private";
2292 else
2293 name = "protected";
2294 break;
2295 case 1:
2296 if (children[v_public] > 0)
2297 {
2298 if (children[v_private] > 0)
2299 name = "private";
2300 else
2301 name = "protected";
2302 }
2303 else if (children[v_private] > 0)
2304 name = "protected";
2305 break;
2306 case 2:
2307 /* Must be protected */
2308 name = "protected";
2309 break;
2310 default:
2311 /* error! */
2312 break;
2313 }
2314 }
2315 break;
2316
2317 default:
2318 break;
2319 }
2320
2321 if (name == NULL)
2322 return c_name_of_child (parent, index);
2323 else
2324 {
2325 if (name != NULL)
2326 name = savestring (name, strlen (name));
2327 }
2328
2329 return name;
2330 }
2331
2332 static struct value *
2333 cplus_value_of_root (struct varobj **var_handle)
2334 {
2335 return c_value_of_root (var_handle);
2336 }
2337
2338 static struct value *
2339 cplus_value_of_child (struct varobj *parent, int index)
2340 {
2341 struct type *type;
2342 struct value *value;
2343
2344 if (CPLUS_FAKE_CHILD (parent))
2345 type = get_type_deref (parent->parent);
2346 else
2347 type = get_type_deref (parent);
2348
2349 value = NULL;
2350
2351 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2352 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2353 {
2354 if (CPLUS_FAKE_CHILD (parent))
2355 {
2356 char *name;
2357 struct value *temp = parent->parent->value;
2358
2359 if (temp == NULL)
2360 return NULL;
2361
2362 name = name_of_child (parent, index);
2363 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2364 "cplus_structure");
2365 if (value != NULL)
2366 release_value (value);
2367
2368 xfree (name);
2369 }
2370 else if (index >= TYPE_N_BASECLASSES (type))
2371 {
2372 /* public, private, or protected */
2373 return NULL;
2374 }
2375 else
2376 {
2377 /* Baseclass */
2378 if (parent->value != NULL)
2379 {
2380 struct value *temp = NULL;
2381
2382 if (TYPE_CODE (value_type (parent->value)) == TYPE_CODE_PTR
2383 || TYPE_CODE (value_type (parent->value)) == TYPE_CODE_REF)
2384 {
2385 if (!gdb_value_ind (parent->value, &temp))
2386 return NULL;
2387 }
2388 else
2389 temp = parent->value;
2390
2391 if (temp != NULL)
2392 {
2393 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2394 release_value (value);
2395 }
2396 else
2397 {
2398 /* We failed to evaluate the parent's value, so don't even
2399 bother trying to evaluate this child. */
2400 return NULL;
2401 }
2402 }
2403 }
2404 }
2405
2406 if (value == NULL)
2407 return c_value_of_child (parent, index);
2408
2409 return value;
2410 }
2411
2412 static struct type *
2413 cplus_type_of_child (struct varobj *parent, int index)
2414 {
2415 struct type *type, *t;
2416
2417 if (CPLUS_FAKE_CHILD (parent))
2418 {
2419 /* Looking for the type of a child of public, private, or protected. */
2420 t = get_type_deref (parent->parent);
2421 }
2422 else
2423 t = get_type_deref (parent);
2424
2425 type = NULL;
2426 switch (TYPE_CODE (t))
2427 {
2428 case TYPE_CODE_STRUCT:
2429 case TYPE_CODE_UNION:
2430 if (CPLUS_FAKE_CHILD (parent))
2431 {
2432 char *name = cplus_name_of_child (parent, index);
2433 type = lookup_struct_elt_type (t, name, 0);
2434 xfree (name);
2435 }
2436 else if (index < TYPE_N_BASECLASSES (t))
2437 type = TYPE_FIELD_TYPE (t, index);
2438 else
2439 {
2440 /* special */
2441 return NULL;
2442 }
2443 break;
2444
2445 default:
2446 break;
2447 }
2448
2449 if (type == NULL)
2450 return c_type_of_child (parent, index);
2451
2452 return type;
2453 }
2454
2455 static int
2456 cplus_variable_editable (struct varobj *var)
2457 {
2458 if (CPLUS_FAKE_CHILD (var))
2459 return 0;
2460
2461 return c_variable_editable (var);
2462 }
2463
2464 static char *
2465 cplus_value_of_variable (struct varobj *var)
2466 {
2467
2468 /* If we have one of our special types, don't print out
2469 any value. */
2470 if (CPLUS_FAKE_CHILD (var))
2471 return xstrdup ("");
2472
2473 return c_value_of_variable (var);
2474 }
2475 \f
2476 /* Java */
2477
2478 static int
2479 java_number_of_children (struct varobj *var)
2480 {
2481 return cplus_number_of_children (var);
2482 }
2483
2484 static char *
2485 java_name_of_variable (struct varobj *parent)
2486 {
2487 char *p, *name;
2488
2489 name = cplus_name_of_variable (parent);
2490 /* If the name has "-" in it, it is because we
2491 needed to escape periods in the name... */
2492 p = name;
2493
2494 while (*p != '\000')
2495 {
2496 if (*p == '-')
2497 *p = '.';
2498 p++;
2499 }
2500
2501 return name;
2502 }
2503
2504 static char *
2505 java_name_of_child (struct varobj *parent, int index)
2506 {
2507 char *name, *p;
2508
2509 name = cplus_name_of_child (parent, index);
2510 /* Escape any periods in the name... */
2511 p = name;
2512
2513 while (*p != '\000')
2514 {
2515 if (*p == '.')
2516 *p = '-';
2517 p++;
2518 }
2519
2520 return name;
2521 }
2522
2523 static struct value *
2524 java_value_of_root (struct varobj **var_handle)
2525 {
2526 return cplus_value_of_root (var_handle);
2527 }
2528
2529 static struct value *
2530 java_value_of_child (struct varobj *parent, int index)
2531 {
2532 return cplus_value_of_child (parent, index);
2533 }
2534
2535 static struct type *
2536 java_type_of_child (struct varobj *parent, int index)
2537 {
2538 return cplus_type_of_child (parent, index);
2539 }
2540
2541 static int
2542 java_variable_editable (struct varobj *var)
2543 {
2544 return cplus_variable_editable (var);
2545 }
2546
2547 static char *
2548 java_value_of_variable (struct varobj *var)
2549 {
2550 return cplus_value_of_variable (var);
2551 }
2552 \f
2553 extern void _initialize_varobj (void);
2554 void
2555 _initialize_varobj (void)
2556 {
2557 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2558
2559 varobj_table = xmalloc (sizeof_table);
2560 memset (varobj_table, 0, sizeof_table);
2561
2562 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2563 &varobjdebug, _("\
2564 Set varobj debugging."), _("\
2565 Show varobj debugging."), _("\
2566 When non-zero, varobj debugging is enabled."),
2567 NULL,
2568 show_varobjdebug,
2569 &setlist, &showlist);
2570 }
This page took 0.081024 seconds and 4 git commands to generate.