gdb
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61
62 /* Data structures */
63
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66 struct varobj_root
67 {
68
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
71
72 /* Block for which this expression is valid */
73 struct block *valid_block;
74
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
77 struct frame_id frame;
78
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
90
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
97
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
100
101 /* Next root variable */
102 struct varobj_root *next;
103 };
104
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108 struct varobj
109 {
110
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
116
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
124
125 /* Index of this variable in its parent or -1 */
126 int index;
127
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
131 struct type *type;
132
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
137 struct value *value;
138
139 /* The number of (immediate) children this variable has */
140 int num_children;
141
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
144
145 /* Children of this object. */
146 VEC (varobj_p) *children;
147
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
156
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
162
163 /* Last print value. */
164 char *print_value;
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
179 };
180
181 struct cpstack
182 {
183 char *name;
184 struct cpstack *next;
185 };
186
187 /* A list of varobjs */
188
189 struct vlist
190 {
191 struct varobj *var;
192 struct vlist *next;
193 };
194
195 /* Private function prototypes */
196
197 /* Helper functions for the above subcommands. */
198
199 static int delete_variable (struct cpstack **, struct varobj *, int);
200
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
203
204 static int install_variable (struct varobj *);
205
206 static void uninstall_variable (struct varobj *);
207
208 static struct varobj *create_child (struct varobj *, int, char *);
209
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
214 /* Utility routines */
215
216 static struct varobj *new_variable (void);
217
218 static struct varobj *new_root_variable (void);
219
220 static void free_variable (struct varobj *var);
221
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
224 static struct type *get_type (struct varobj *var);
225
226 static struct type *get_value_type (struct varobj *var);
227
228 static struct type *get_target_type (struct type *);
229
230 static enum varobj_display_formats variable_default_display (struct varobj *);
231
232 static void cppush (struct cpstack **pstack, char *name);
233
234 static char *cppop (struct cpstack **pstack);
235
236 static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
239 static void install_default_visualizer (struct varobj *var);
240
241 /* Language-specific routines. */
242
243 static enum varobj_languages variable_language (struct varobj *var);
244
245 static int number_of_children (struct varobj *);
246
247 static char *name_of_variable (struct varobj *);
248
249 static char *name_of_child (struct varobj *, int);
250
251 static struct value *value_of_root (struct varobj **var_handle, int *);
252
253 static struct value *value_of_child (struct varobj *parent, int index);
254
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
257
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 PyObject *value_formatter);
261
262 static int varobj_value_is_changeable_p (struct varobj *var);
263
264 static int is_root_p (struct varobj *var);
265
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
269 /* C implementation */
270
271 static int c_number_of_children (struct varobj *var);
272
273 static char *c_name_of_variable (struct varobj *parent);
274
275 static char *c_name_of_child (struct varobj *parent, int index);
276
277 static char *c_path_expr_of_child (struct varobj *child);
278
279 static struct value *c_value_of_root (struct varobj **var_handle);
280
281 static struct value *c_value_of_child (struct varobj *parent, int index);
282
283 static struct type *c_type_of_child (struct varobj *parent, int index);
284
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 /* C++ implementation */
289
290 static int cplus_number_of_children (struct varobj *var);
291
292 static void cplus_class_num_children (struct type *type, int children[3]);
293
294 static char *cplus_name_of_variable (struct varobj *parent);
295
296 static char *cplus_name_of_child (struct varobj *parent, int index);
297
298 static char *cplus_path_expr_of_child (struct varobj *child);
299
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
301
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
303
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
305
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
308
309 /* Java implementation */
310
311 static int java_number_of_children (struct varobj *var);
312
313 static char *java_name_of_variable (struct varobj *parent);
314
315 static char *java_name_of_child (struct varobj *parent, int index);
316
317 static char *java_path_expr_of_child (struct varobj *child);
318
319 static struct value *java_value_of_root (struct varobj **var_handle);
320
321 static struct value *java_value_of_child (struct varobj *parent, int index);
322
323 static struct type *java_type_of_child (struct varobj *parent, int index);
324
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
327
328 /* The language specific vector */
329
330 struct language_specific
331 {
332
333 /* The language of this variable */
334 enum varobj_languages language;
335
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
338
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
341
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
344
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
351
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
354
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
357
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
361 };
362
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
366 {
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
371 c_path_expr_of_child,
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
375 c_value_of_variable}
376 ,
377 /* C */
378 {
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
383 c_path_expr_of_child,
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
387 c_value_of_variable}
388 ,
389 /* C++ */
390 {
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
395 cplus_path_expr_of_child,
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
399 cplus_value_of_variable}
400 ,
401 /* Java */
402 {
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
407 java_path_expr_of_child,
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
411 java_value_of_variable}
412 };
413
414 /* A little convenience enum for dealing with C++/Java */
415 enum vsections
416 {
417 v_public = 0, v_private, v_protected
418 };
419
420 /* Private data */
421
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
424
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427 static int rootcount = 0; /* number of root varobjs in the list */
428
429 /* Prime number indicating the number of buckets in the hash table */
430 /* A prime large enough to avoid too many colisions */
431 #define VAROBJ_TABLE_SIZE 227
432
433 /* Pointer to the varobj hash table (built at run time) */
434 static struct vlist **varobj_table;
435
436 /* Is the variable X one of our "fake" children? */
437 #define CPLUS_FAKE_CHILD(x) \
438 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
439 \f
440
441 /* API Implementation */
442 static int
443 is_root_p (struct varobj *var)
444 {
445 return (var->root->rootvar == var);
446 }
447
448 /* Creates a varobj (not its children) */
449
450 /* Return the full FRAME which corresponds to the given CORE_ADDR
451 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
452
453 static struct frame_info *
454 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
455 {
456 struct frame_info *frame = NULL;
457
458 if (frame_addr == (CORE_ADDR) 0)
459 return NULL;
460
461 for (frame = get_current_frame ();
462 frame != NULL;
463 frame = get_prev_frame (frame))
464 {
465 if (get_frame_base_address (frame) == frame_addr)
466 return frame;
467 }
468
469 return NULL;
470 }
471
472 struct varobj *
473 varobj_create (char *objname,
474 char *expression, CORE_ADDR frame, enum varobj_type type)
475 {
476 struct varobj *var;
477 struct frame_info *fi;
478 struct frame_info *old_fi = NULL;
479 struct block *block;
480 struct cleanup *old_chain;
481
482 /* Fill out a varobj structure for the (root) variable being constructed. */
483 var = new_root_variable ();
484 old_chain = make_cleanup_free_variable (var);
485
486 if (expression != NULL)
487 {
488 char *p;
489 enum varobj_languages lang;
490 struct value *value = NULL;
491
492 /* Parse and evaluate the expression, filling in as much of the
493 variable's data as possible. */
494
495 if (has_stack_frames ())
496 {
497 /* Allow creator to specify context of variable */
498 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
499 fi = get_selected_frame (NULL);
500 else
501 /* FIXME: cagney/2002-11-23: This code should be doing a
502 lookup using the frame ID and not just the frame's
503 ``address''. This, of course, means an interface
504 change. However, with out that interface change ISAs,
505 such as the ia64 with its two stacks, won't work.
506 Similar goes for the case where there is a frameless
507 function. */
508 fi = find_frame_addr_in_frame_chain (frame);
509 }
510 else
511 fi = NULL;
512
513 /* frame = -2 means always use selected frame */
514 if (type == USE_SELECTED_FRAME)
515 var->root->floating = 1;
516
517 block = NULL;
518 if (fi != NULL)
519 block = get_frame_block (fi, 0);
520
521 p = expression;
522 innermost_block = NULL;
523 /* Wrap the call to parse expression, so we can
524 return a sensible error. */
525 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
526 {
527 return NULL;
528 }
529
530 /* Don't allow variables to be created for types. */
531 if (var->root->exp->elts[0].opcode == OP_TYPE)
532 {
533 do_cleanups (old_chain);
534 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
535 " as an expression.\n");
536 return NULL;
537 }
538
539 var->format = variable_default_display (var);
540 var->root->valid_block = innermost_block;
541 var->name = xstrdup (expression);
542 /* For a root var, the name and the expr are the same. */
543 var->path_expr = xstrdup (expression);
544
545 /* When the frame is different from the current frame,
546 we must select the appropriate frame before parsing
547 the expression, otherwise the value will not be current.
548 Since select_frame is so benign, just call it for all cases. */
549 if (innermost_block && fi != NULL)
550 {
551 var->root->frame = get_frame_id (fi);
552 var->root->thread_id = pid_to_thread_id (inferior_ptid);
553 old_fi = get_selected_frame (NULL);
554 select_frame (fi);
555 }
556
557 /* We definitely need to catch errors here.
558 If evaluate_expression succeeds we got the value we wanted.
559 But if it fails, we still go on with a call to evaluate_type() */
560 if (!gdb_evaluate_expression (var->root->exp, &value))
561 {
562 /* Error getting the value. Try to at least get the
563 right type. */
564 struct value *type_only_value = evaluate_type (var->root->exp);
565 var->type = value_type (type_only_value);
566 }
567 else
568 var->type = value_type (value);
569
570 install_new_value (var, value, 1 /* Initial assignment */);
571
572 /* Set language info */
573 lang = variable_language (var);
574 var->root->lang = &languages[lang];
575
576 /* Set ourselves as our root */
577 var->root->rootvar = var;
578
579 /* Reset the selected frame */
580 if (fi != NULL)
581 select_frame (old_fi);
582 }
583
584 /* If the variable object name is null, that means this
585 is a temporary variable, so don't install it. */
586
587 if ((var != NULL) && (objname != NULL))
588 {
589 var->obj_name = xstrdup (objname);
590
591 /* If a varobj name is duplicated, the install will fail so
592 we must clenup */
593 if (!install_variable (var))
594 {
595 do_cleanups (old_chain);
596 return NULL;
597 }
598 }
599
600 install_default_visualizer (var);
601 discard_cleanups (old_chain);
602 return var;
603 }
604
605 /* Generates an unique name that can be used for a varobj */
606
607 char *
608 varobj_gen_name (void)
609 {
610 static int id = 0;
611 char *obj_name;
612
613 /* generate a name for this object */
614 id++;
615 obj_name = xstrprintf ("var%d", id);
616
617 return obj_name;
618 }
619
620 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
621 error if OBJNAME cannot be found. */
622
623 struct varobj *
624 varobj_get_handle (char *objname)
625 {
626 struct vlist *cv;
627 const char *chp;
628 unsigned int index = 0;
629 unsigned int i = 1;
630
631 for (chp = objname; *chp; chp++)
632 {
633 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
634 }
635
636 cv = *(varobj_table + index);
637 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
638 cv = cv->next;
639
640 if (cv == NULL)
641 error (_("Variable object not found"));
642
643 return cv->var;
644 }
645
646 /* Given the handle, return the name of the object */
647
648 char *
649 varobj_get_objname (struct varobj *var)
650 {
651 return var->obj_name;
652 }
653
654 /* Given the handle, return the expression represented by the object */
655
656 char *
657 varobj_get_expression (struct varobj *var)
658 {
659 return name_of_variable (var);
660 }
661
662 /* Deletes a varobj and all its children if only_children == 0,
663 otherwise deletes only the children; returns a malloc'ed list of all the
664 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
665
666 int
667 varobj_delete (struct varobj *var, char ***dellist, int only_children)
668 {
669 int delcount;
670 int mycount;
671 struct cpstack *result = NULL;
672 char **cp;
673
674 /* Initialize a stack for temporary results */
675 cppush (&result, NULL);
676
677 if (only_children)
678 /* Delete only the variable children */
679 delcount = delete_variable (&result, var, 1 /* only the children */ );
680 else
681 /* Delete the variable and all its children */
682 delcount = delete_variable (&result, var, 0 /* parent+children */ );
683
684 /* We may have been asked to return a list of what has been deleted */
685 if (dellist != NULL)
686 {
687 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
688
689 cp = *dellist;
690 mycount = delcount;
691 *cp = cppop (&result);
692 while ((*cp != NULL) && (mycount > 0))
693 {
694 mycount--;
695 cp++;
696 *cp = cppop (&result);
697 }
698
699 if (mycount || (*cp != NULL))
700 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
701 mycount);
702 }
703
704 return delcount;
705 }
706
707 /* Convenience function for varobj_set_visualizer. Instantiate a
708 pretty-printer for a given value. */
709 static PyObject *
710 instantiate_pretty_printer (PyObject *constructor, struct value *value)
711 {
712 #if HAVE_PYTHON
713 PyObject *val_obj = NULL;
714 PyObject *printer;
715 volatile struct gdb_exception except;
716
717 TRY_CATCH (except, RETURN_MASK_ALL)
718 {
719 value = value_copy (value);
720 }
721 GDB_PY_HANDLE_EXCEPTION (except);
722 val_obj = value_to_value_object (value);
723
724 if (! val_obj)
725 return NULL;
726
727 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
728 Py_DECREF (val_obj);
729 return printer;
730 #endif
731 return NULL;
732 }
733
734 /* Set/Get variable object display format */
735
736 enum varobj_display_formats
737 varobj_set_display_format (struct varobj *var,
738 enum varobj_display_formats format)
739 {
740 switch (format)
741 {
742 case FORMAT_NATURAL:
743 case FORMAT_BINARY:
744 case FORMAT_DECIMAL:
745 case FORMAT_HEXADECIMAL:
746 case FORMAT_OCTAL:
747 var->format = format;
748 break;
749
750 default:
751 var->format = variable_default_display (var);
752 }
753
754 if (varobj_value_is_changeable_p (var)
755 && var->value && !value_lazy (var->value))
756 {
757 xfree (var->print_value);
758 var->print_value = value_get_print_value (var->value, var->format,
759 var->pretty_printer);
760 }
761
762 return var->format;
763 }
764
765 enum varobj_display_formats
766 varobj_get_display_format (struct varobj *var)
767 {
768 return var->format;
769 }
770
771 char *
772 varobj_get_display_hint (struct varobj *var)
773 {
774 char *result = NULL;
775
776 #if HAVE_PYTHON
777 PyGILState_STATE state = PyGILState_Ensure ();
778 if (var->pretty_printer)
779 result = gdbpy_get_display_hint (var->pretty_printer);
780 PyGILState_Release (state);
781 #endif
782
783 return result;
784 }
785
786 /* If the variable object is bound to a specific thread, that
787 is its evaluation can always be done in context of a frame
788 inside that thread, returns GDB id of the thread -- which
789 is always positive. Otherwise, returns -1. */
790 int
791 varobj_get_thread_id (struct varobj *var)
792 {
793 if (var->root->valid_block && var->root->thread_id > 0)
794 return var->root->thread_id;
795 else
796 return -1;
797 }
798
799 void
800 varobj_set_frozen (struct varobj *var, int frozen)
801 {
802 /* When a variable is unfrozen, we don't fetch its value.
803 The 'not_fetched' flag remains set, so next -var-update
804 won't complain.
805
806 We don't fetch the value, because for structures the client
807 should do -var-update anyway. It would be bad to have different
808 client-size logic for structure and other types. */
809 var->frozen = frozen;
810 }
811
812 int
813 varobj_get_frozen (struct varobj *var)
814 {
815 return var->frozen;
816 }
817
818 static int
819 update_dynamic_varobj_children (struct varobj *var,
820 VEC (varobj_p) **changed,
821 VEC (varobj_p) **new_and_unchanged,
822 int *cchanged)
823
824 {
825 #if HAVE_PYTHON
826 /* FIXME: we *might* want to provide this functionality as
827 a standalone function, so that other interested parties
828 than varobj code can benefit for this. */
829 struct cleanup *back_to;
830 PyObject *children;
831 PyObject *iterator;
832 int i;
833 int children_changed = 0;
834 PyObject *printer = var->pretty_printer;
835 PyGILState_STATE state;
836
837 state = PyGILState_Ensure ();
838 back_to = make_cleanup_py_restore_gil (&state);
839
840 *cchanged = 0;
841 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
842 {
843 do_cleanups (back_to);
844 return 0;
845 }
846
847 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
848 NULL);
849
850 if (!children)
851 {
852 gdbpy_print_stack ();
853 error ("Null value returned for children");
854 }
855
856 make_cleanup_py_decref (children);
857
858 if (!PyIter_Check (children))
859 error ("Returned value is not iterable");
860
861 iterator = PyObject_GetIter (children);
862 if (!iterator)
863 {
864 gdbpy_print_stack ();
865 error ("Could not get children iterator");
866 }
867 make_cleanup_py_decref (iterator);
868
869 for (i = 0; ; ++i)
870 {
871 PyObject *item = PyIter_Next (iterator);
872 PyObject *py_v;
873 struct value *v;
874 char *name;
875 struct cleanup *inner;
876
877 if (!item)
878 break;
879 inner = make_cleanup_py_decref (item);
880
881 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
882 error ("Invalid item from the child list");
883
884 if (PyObject_TypeCheck (py_v, &value_object_type))
885 {
886 /* If we just call convert_value_from_python for this type,
887 we won't know who owns the result. For this one case we
888 need to copy the resulting value. */
889 v = value_object_to_value (py_v);
890 v = value_copy (v);
891 }
892 else
893 v = convert_value_from_python (py_v);
894
895 /* TODO: This assume the name of the i-th child never changes. */
896
897 /* Now see what to do here. */
898 if (VEC_length (varobj_p, var->children) < i + 1)
899 {
900 /* There's no child yet. */
901 struct varobj *child = varobj_add_child (var, name, v);
902 if (new_and_unchanged)
903 VEC_safe_push (varobj_p, *new_and_unchanged, child);
904 children_changed = 1;
905 }
906 else
907 {
908 varobj_p existing = VEC_index (varobj_p, var->children, i);
909 if (install_new_value (existing, v, 0) && changed)
910 {
911 if (changed)
912 VEC_safe_push (varobj_p, *changed, existing);
913 }
914 else
915 {
916 if (new_and_unchanged)
917 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
918 }
919 }
920
921 do_cleanups (inner);
922 }
923
924 if (i < VEC_length (varobj_p, var->children))
925 {
926 int i;
927 children_changed = 1;
928 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
929 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
930 }
931 VEC_truncate (varobj_p, var->children, i);
932 var->num_children = VEC_length (varobj_p, var->children);
933
934 do_cleanups (back_to);
935
936 *cchanged = children_changed;
937 return 1;
938 #else
939 gdb_assert (0 && "should never be called if Python is not enabled");
940 #endif
941 }
942
943 int
944 varobj_get_num_children (struct varobj *var)
945 {
946 if (var->num_children == -1)
947 {
948 int changed;
949 if (!var->pretty_printer
950 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
951 var->num_children = number_of_children (var);
952 }
953
954 return var->num_children;
955 }
956
957 /* Creates a list of the immediate children of a variable object;
958 the return code is the number of such children or -1 on error */
959
960 VEC (varobj_p)*
961 varobj_list_children (struct varobj *var)
962 {
963 struct varobj *child;
964 char *name;
965 int i, children_changed;
966
967 var->children_requested = 1;
968
969 if (var->pretty_printer
970 /* This, in theory, can result in the number of children changing without
971 frontend noticing. But well, calling -var-list-children on the same
972 varobj twice is not something a sane frontend would do. */
973 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
974 return var->children;
975
976 if (var->num_children == -1)
977 var->num_children = number_of_children (var);
978
979 /* If that failed, give up. */
980 if (var->num_children == -1)
981 return var->children;
982
983 /* If we're called when the list of children is not yet initialized,
984 allocate enough elements in it. */
985 while (VEC_length (varobj_p, var->children) < var->num_children)
986 VEC_safe_push (varobj_p, var->children, NULL);
987
988 for (i = 0; i < var->num_children; i++)
989 {
990 varobj_p existing = VEC_index (varobj_p, var->children, i);
991
992 if (existing == NULL)
993 {
994 /* Either it's the first call to varobj_list_children for
995 this variable object, and the child was never created,
996 or it was explicitly deleted by the client. */
997 name = name_of_child (var, i);
998 existing = create_child (var, i, name);
999 VEC_replace (varobj_p, var->children, i, existing);
1000 install_default_visualizer (existing);
1001 }
1002 }
1003
1004 return var->children;
1005 }
1006
1007 static struct varobj *
1008 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1009 {
1010 varobj_p v = create_child_with_value (var,
1011 VEC_length (varobj_p, var->children),
1012 name, value);
1013 VEC_safe_push (varobj_p, var->children, v);
1014 install_default_visualizer (v);
1015 return v;
1016 }
1017
1018 /* Obtain the type of an object Variable as a string similar to the one gdb
1019 prints on the console */
1020
1021 char *
1022 varobj_get_type (struct varobj *var)
1023 {
1024 struct value *val;
1025 struct cleanup *old_chain;
1026 struct ui_file *stb;
1027 char *thetype;
1028 long length;
1029
1030 /* For the "fake" variables, do not return a type. (It's type is
1031 NULL, too.)
1032 Do not return a type for invalid variables as well. */
1033 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1034 return NULL;
1035
1036 stb = mem_fileopen ();
1037 old_chain = make_cleanup_ui_file_delete (stb);
1038
1039 /* To print the type, we simply create a zero ``struct value *'' and
1040 cast it to our type. We then typeprint this variable. */
1041 val = value_zero (var->type, not_lval);
1042 type_print (value_type (val), "", stb, -1);
1043
1044 thetype = ui_file_xstrdup (stb, &length);
1045 do_cleanups (old_chain);
1046 return thetype;
1047 }
1048
1049 /* Obtain the type of an object variable. */
1050
1051 struct type *
1052 varobj_get_gdb_type (struct varobj *var)
1053 {
1054 return var->type;
1055 }
1056
1057 /* Return a pointer to the full rooted expression of varobj VAR.
1058 If it has not been computed yet, compute it. */
1059 char *
1060 varobj_get_path_expr (struct varobj *var)
1061 {
1062 if (var->path_expr != NULL)
1063 return var->path_expr;
1064 else
1065 {
1066 /* For root varobjs, we initialize path_expr
1067 when creating varobj, so here it should be
1068 child varobj. */
1069 gdb_assert (!is_root_p (var));
1070 return (*var->root->lang->path_expr_of_child) (var);
1071 }
1072 }
1073
1074 enum varobj_languages
1075 varobj_get_language (struct varobj *var)
1076 {
1077 return variable_language (var);
1078 }
1079
1080 int
1081 varobj_get_attributes (struct varobj *var)
1082 {
1083 int attributes = 0;
1084
1085 if (varobj_editable_p (var))
1086 /* FIXME: define masks for attributes */
1087 attributes |= 0x00000001; /* Editable */
1088
1089 return attributes;
1090 }
1091
1092 char *
1093 varobj_get_formatted_value (struct varobj *var,
1094 enum varobj_display_formats format)
1095 {
1096 return my_value_of_variable (var, format);
1097 }
1098
1099 char *
1100 varobj_get_value (struct varobj *var)
1101 {
1102 return my_value_of_variable (var, var->format);
1103 }
1104
1105 /* Set the value of an object variable (if it is editable) to the
1106 value of the given expression */
1107 /* Note: Invokes functions that can call error() */
1108
1109 int
1110 varobj_set_value (struct varobj *var, char *expression)
1111 {
1112 struct value *val;
1113 int offset = 0;
1114 int error = 0;
1115
1116 /* The argument "expression" contains the variable's new value.
1117 We need to first construct a legal expression for this -- ugh! */
1118 /* Does this cover all the bases? */
1119 struct expression *exp;
1120 struct value *value;
1121 int saved_input_radix = input_radix;
1122 char *s = expression;
1123 int i;
1124
1125 gdb_assert (varobj_editable_p (var));
1126
1127 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1128 exp = parse_exp_1 (&s, 0, 0);
1129 if (!gdb_evaluate_expression (exp, &value))
1130 {
1131 /* We cannot proceed without a valid expression. */
1132 xfree (exp);
1133 return 0;
1134 }
1135
1136 /* All types that are editable must also be changeable. */
1137 gdb_assert (varobj_value_is_changeable_p (var));
1138
1139 /* The value of a changeable variable object must not be lazy. */
1140 gdb_assert (!value_lazy (var->value));
1141
1142 /* Need to coerce the input. We want to check if the
1143 value of the variable object will be different
1144 after assignment, and the first thing value_assign
1145 does is coerce the input.
1146 For example, if we are assigning an array to a pointer variable we
1147 should compare the pointer with the the array's address, not with the
1148 array's content. */
1149 value = coerce_array (value);
1150
1151 /* The new value may be lazy. gdb_value_assign, or
1152 rather value_contents, will take care of this.
1153 If fetching of the new value will fail, gdb_value_assign
1154 with catch the exception. */
1155 if (!gdb_value_assign (var->value, value, &val))
1156 return 0;
1157
1158 /* If the value has changed, record it, so that next -var-update can
1159 report this change. If a variable had a value of '1', we've set it
1160 to '333' and then set again to '1', when -var-update will report this
1161 variable as changed -- because the first assignment has set the
1162 'updated' flag. There's no need to optimize that, because return value
1163 of -var-update should be considered an approximation. */
1164 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1165 input_radix = saved_input_radix;
1166 return 1;
1167 }
1168
1169 /* Returns a malloc'ed list with all root variable objects */
1170 int
1171 varobj_list (struct varobj ***varlist)
1172 {
1173 struct varobj **cv;
1174 struct varobj_root *croot;
1175 int mycount = rootcount;
1176
1177 /* Alloc (rootcount + 1) entries for the result */
1178 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
1179
1180 cv = *varlist;
1181 croot = rootlist;
1182 while ((croot != NULL) && (mycount > 0))
1183 {
1184 *cv = croot->rootvar;
1185 mycount--;
1186 cv++;
1187 croot = croot->next;
1188 }
1189 /* Mark the end of the list */
1190 *cv = NULL;
1191
1192 if (mycount || (croot != NULL))
1193 warning
1194 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
1195 rootcount, mycount);
1196
1197 return rootcount;
1198 }
1199
1200 /* Assign a new value to a variable object. If INITIAL is non-zero,
1201 this is the first assignement after the variable object was just
1202 created, or changed type. In that case, just assign the value
1203 and return 0.
1204 Otherwise, assign the new value, and return 1 if the value is different
1205 from the current one, 0 otherwise. The comparison is done on textual
1206 representation of value. Therefore, some types need not be compared. E.g.
1207 for structures the reported value is always "{...}", so no comparison is
1208 necessary here. If the old value was NULL and new one is not, or vice versa,
1209 we always return 1.
1210
1211 The VALUE parameter should not be released -- the function will
1212 take care of releasing it when needed. */
1213 static int
1214 install_new_value (struct varobj *var, struct value *value, int initial)
1215 {
1216 int changeable;
1217 int need_to_fetch;
1218 int changed = 0;
1219 int intentionally_not_fetched = 0;
1220 char *print_value = NULL;
1221
1222 /* We need to know the varobj's type to decide if the value should
1223 be fetched or not. C++ fake children (public/protected/private) don't have
1224 a type. */
1225 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1226 changeable = varobj_value_is_changeable_p (var);
1227
1228 /* If the type has custom visualizer, we consider it to be always
1229 changeable. FIXME: need to make sure this behaviour will not
1230 mess up read-sensitive values. */
1231 if (var->pretty_printer)
1232 changeable = 1;
1233
1234 need_to_fetch = changeable;
1235
1236 /* We are not interested in the address of references, and given
1237 that in C++ a reference is not rebindable, it cannot
1238 meaningfully change. So, get hold of the real value. */
1239 if (value)
1240 {
1241 value = coerce_ref (value);
1242 release_value (value);
1243 }
1244
1245 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1246 /* For unions, we need to fetch the value implicitly because
1247 of implementation of union member fetch. When gdb
1248 creates a value for a field and the value of the enclosing
1249 structure is not lazy, it immediately copies the necessary
1250 bytes from the enclosing values. If the enclosing value is
1251 lazy, the call to value_fetch_lazy on the field will read
1252 the data from memory. For unions, that means we'll read the
1253 same memory more than once, which is not desirable. So
1254 fetch now. */
1255 need_to_fetch = 1;
1256
1257 /* The new value might be lazy. If the type is changeable,
1258 that is we'll be comparing values of this type, fetch the
1259 value now. Otherwise, on the next update the old value
1260 will be lazy, which means we've lost that old value. */
1261 if (need_to_fetch && value && value_lazy (value))
1262 {
1263 struct varobj *parent = var->parent;
1264 int frozen = var->frozen;
1265 for (; !frozen && parent; parent = parent->parent)
1266 frozen |= parent->frozen;
1267
1268 if (frozen && initial)
1269 {
1270 /* For variables that are frozen, or are children of frozen
1271 variables, we don't do fetch on initial assignment.
1272 For non-initial assignemnt we do the fetch, since it means we're
1273 explicitly asked to compare the new value with the old one. */
1274 intentionally_not_fetched = 1;
1275 }
1276 else if (!gdb_value_fetch_lazy (value))
1277 {
1278 /* Set the value to NULL, so that for the next -var-update,
1279 we don't try to compare the new value with this value,
1280 that we couldn't even read. */
1281 value = NULL;
1282 }
1283 }
1284
1285
1286 /* Below, we'll be comparing string rendering of old and new
1287 values. Don't get string rendering if the value is
1288 lazy -- if it is, the code above has decided that the value
1289 should not be fetched. */
1290 if (value && !value_lazy (value))
1291 print_value = value_get_print_value (value, var->format,
1292 var->pretty_printer);
1293
1294 /* If the type is changeable, compare the old and the new values.
1295 If this is the initial assignment, we don't have any old value
1296 to compare with. */
1297 if (!initial && changeable)
1298 {
1299 /* If the value of the varobj was changed by -var-set-value, then the
1300 value in the varobj and in the target is the same. However, that value
1301 is different from the value that the varobj had after the previous
1302 -var-update. So need to the varobj as changed. */
1303 if (var->updated)
1304 {
1305 changed = 1;
1306 }
1307 else
1308 {
1309 /* Try to compare the values. That requires that both
1310 values are non-lazy. */
1311 if (var->not_fetched && value_lazy (var->value))
1312 {
1313 /* This is a frozen varobj and the value was never read.
1314 Presumably, UI shows some "never read" indicator.
1315 Now that we've fetched the real value, we need to report
1316 this varobj as changed so that UI can show the real
1317 value. */
1318 changed = 1;
1319 }
1320 else if (var->value == NULL && value == NULL)
1321 /* Equal. */
1322 ;
1323 else if (var->value == NULL || value == NULL)
1324 {
1325 changed = 1;
1326 }
1327 else
1328 {
1329 gdb_assert (!value_lazy (var->value));
1330 gdb_assert (!value_lazy (value));
1331
1332 gdb_assert (var->print_value != NULL && print_value != NULL);
1333 if (strcmp (var->print_value, print_value) != 0)
1334 changed = 1;
1335 }
1336 }
1337 }
1338
1339 if (!initial && !changeable)
1340 {
1341 /* For values that are not changeable, we don't compare the values.
1342 However, we want to notice if a value was not NULL and now is NULL,
1343 or vise versa, so that we report when top-level varobjs come in scope
1344 and leave the scope. */
1345 changed = (var->value != NULL) != (value != NULL);
1346 }
1347
1348 /* We must always keep the new value, since children depend on it. */
1349 if (var->value != NULL && var->value != value)
1350 value_free (var->value);
1351 var->value = value;
1352 if (var->print_value)
1353 xfree (var->print_value);
1354 var->print_value = print_value;
1355 if (value && value_lazy (value) && intentionally_not_fetched)
1356 var->not_fetched = 1;
1357 else
1358 var->not_fetched = 0;
1359 var->updated = 0;
1360
1361 gdb_assert (!var->value || value_type (var->value));
1362
1363 return changed;
1364 }
1365
1366 static void
1367 install_visualizer (struct varobj *var, PyObject *visualizer)
1368 {
1369 #if HAVE_PYTHON
1370 /* If there are any children now, wipe them. */
1371 varobj_delete (var, NULL, 1 /* children only */);
1372 var->num_children = -1;
1373
1374 Py_XDECREF (var->pretty_printer);
1375 var->pretty_printer = visualizer;
1376
1377 install_new_value (var, var->value, 1);
1378
1379 /* If we removed the visualizer, and the user ever requested the
1380 object's children, then we must compute the list of children.
1381 Note that we needn't do this when installing a visualizer,
1382 because updating will recompute dynamic children. */
1383 if (!visualizer && var->children_requested)
1384 varobj_list_children (var);
1385 #else
1386 error ("Python support required");
1387 #endif
1388 }
1389
1390 static void
1391 install_default_visualizer (struct varobj *var)
1392 {
1393 #if HAVE_PYTHON
1394 struct cleanup *cleanup;
1395 PyGILState_STATE state;
1396 PyObject *pretty_printer = NULL;
1397
1398 state = PyGILState_Ensure ();
1399 cleanup = make_cleanup_py_restore_gil (&state);
1400
1401 if (var->value)
1402 {
1403 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1404 if (! pretty_printer)
1405 {
1406 gdbpy_print_stack ();
1407 error (_("Cannot instantiate printer for default visualizer"));
1408 }
1409 }
1410
1411 if (pretty_printer == Py_None)
1412 {
1413 Py_DECREF (pretty_printer);
1414 pretty_printer = NULL;
1415 }
1416
1417 install_visualizer (var, pretty_printer);
1418 do_cleanups (cleanup);
1419 #else
1420 /* No error is right as this function is inserted just as a hook. */
1421 #endif
1422 }
1423
1424 void
1425 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1426 {
1427 #if HAVE_PYTHON
1428 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1429 struct cleanup *back_to, *value;
1430 PyGILState_STATE state;
1431
1432
1433 state = PyGILState_Ensure ();
1434 back_to = make_cleanup_py_restore_gil (&state);
1435
1436 mainmod = PyImport_AddModule ("__main__");
1437 globals = PyModule_GetDict (mainmod);
1438 Py_INCREF (globals);
1439 make_cleanup_py_decref (globals);
1440
1441 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1442
1443 /* Do not instantiate NoneType. */
1444 if (constructor == Py_None)
1445 {
1446 pretty_printer = Py_None;
1447 Py_INCREF (pretty_printer);
1448 }
1449 else
1450 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1451
1452 Py_XDECREF (constructor);
1453
1454 if (! pretty_printer)
1455 {
1456 gdbpy_print_stack ();
1457 error ("Could not evaluate visualizer expression: %s", visualizer);
1458 }
1459
1460 if (pretty_printer == Py_None)
1461 {
1462 Py_DECREF (pretty_printer);
1463 pretty_printer = NULL;
1464 }
1465
1466 install_visualizer (var, pretty_printer);
1467
1468 do_cleanups (back_to);
1469 #else
1470 error ("Python support required");
1471 #endif
1472 }
1473
1474 /* Update the values for a variable and its children. This is a
1475 two-pronged attack. First, re-parse the value for the root's
1476 expression to see if it's changed. Then go all the way
1477 through its children, reconstructing them and noting if they've
1478 changed.
1479
1480 The EXPLICIT parameter specifies if this call is result
1481 of MI request to update this specific variable, or
1482 result of implicit -var-update *. For implicit request, we don't
1483 update frozen variables.
1484
1485 NOTE: This function may delete the caller's varobj. If it
1486 returns TYPE_CHANGED, then it has done this and VARP will be modified
1487 to point to the new varobj. */
1488
1489 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1490 {
1491 int changed = 0;
1492 int type_changed = 0;
1493 int i;
1494 int vleft;
1495 struct varobj *v;
1496 struct varobj **cv;
1497 struct varobj **templist = NULL;
1498 struct value *new;
1499 VEC (varobj_update_result) *stack = NULL;
1500 VEC (varobj_update_result) *result = NULL;
1501 struct frame_info *fi;
1502
1503 /* Frozen means frozen -- we don't check for any change in
1504 this varobj, including its going out of scope, or
1505 changing type. One use case for frozen varobjs is
1506 retaining previously evaluated expressions, and we don't
1507 want them to be reevaluated at all. */
1508 if (!explicit && (*varp)->frozen)
1509 return result;
1510
1511 if (!(*varp)->root->is_valid)
1512 {
1513 varobj_update_result r = {*varp};
1514 r.status = VAROBJ_INVALID;
1515 VEC_safe_push (varobj_update_result, result, &r);
1516 return result;
1517 }
1518
1519 if ((*varp)->root->rootvar == *varp)
1520 {
1521 varobj_update_result r = {*varp};
1522 r.status = VAROBJ_IN_SCOPE;
1523
1524 /* Update the root variable. value_of_root can return NULL
1525 if the variable is no longer around, i.e. we stepped out of
1526 the frame in which a local existed. We are letting the
1527 value_of_root variable dispose of the varobj if the type
1528 has changed. */
1529 new = value_of_root (varp, &type_changed);
1530 r.varobj = *varp;
1531
1532 r.type_changed = type_changed;
1533 if (install_new_value ((*varp), new, type_changed))
1534 r.changed = 1;
1535
1536 if (new == NULL)
1537 r.status = VAROBJ_NOT_IN_SCOPE;
1538 r.value_installed = 1;
1539
1540 if (r.status == VAROBJ_NOT_IN_SCOPE)
1541 {
1542 VEC_safe_push (varobj_update_result, result, &r);
1543 return result;
1544 }
1545
1546 VEC_safe_push (varobj_update_result, stack, &r);
1547 }
1548 else
1549 {
1550 varobj_update_result r = {*varp};
1551 VEC_safe_push (varobj_update_result, stack, &r);
1552 }
1553
1554 /* Walk through the children, reconstructing them all. */
1555 while (!VEC_empty (varobj_update_result, stack))
1556 {
1557 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1558 struct varobj *v = r.varobj;
1559
1560 VEC_pop (varobj_update_result, stack);
1561
1562 /* Update this variable, unless it's a root, which is already
1563 updated. */
1564 if (!r.value_installed)
1565 {
1566 new = value_of_child (v->parent, v->index);
1567 if (install_new_value (v, new, 0 /* type not changed */))
1568 {
1569 r.changed = 1;
1570 v->updated = 0;
1571 }
1572 }
1573
1574 /* We probably should not get children of a varobj that has a
1575 pretty-printer, but for which -var-list-children was never
1576 invoked. Presumably, such varobj is not yet expanded in the
1577 UI, so we need not bother getting it. */
1578 if (v->pretty_printer)
1579 {
1580 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1581 int i, children_changed;
1582 varobj_p tmp;
1583
1584 if (!v->children_requested)
1585 continue;
1586
1587 if (v->frozen)
1588 continue;
1589
1590 /* If update_dynamic_varobj_children returns 0, then we have
1591 a non-conforming pretty-printer, so we skip it. */
1592 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1593 &children_changed))
1594 {
1595 if (children_changed)
1596 r.children_changed = 1;
1597 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1598 {
1599 varobj_update_result r = {tmp};
1600 r.changed = 1;
1601 r.value_installed = 1;
1602 VEC_safe_push (varobj_update_result, stack, &r);
1603 }
1604 for (i = 0;
1605 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1606 ++i)
1607 {
1608 varobj_update_result r = {tmp};
1609 r.value_installed = 1;
1610 VEC_safe_push (varobj_update_result, stack, &r);
1611 }
1612 if (r.changed || r.children_changed)
1613 VEC_safe_push (varobj_update_result, result, &r);
1614 continue;
1615 }
1616 }
1617
1618 /* Push any children. Use reverse order so that the first
1619 child is popped from the work stack first, and so
1620 will be added to result first. This does not
1621 affect correctness, just "nicer". */
1622 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1623 {
1624 varobj_p c = VEC_index (varobj_p, v->children, i);
1625 /* Child may be NULL if explicitly deleted by -var-delete. */
1626 if (c != NULL && !c->frozen)
1627 {
1628 varobj_update_result r = {c};
1629 VEC_safe_push (varobj_update_result, stack, &r);
1630 }
1631 }
1632
1633 if (r.changed || r.type_changed)
1634 VEC_safe_push (varobj_update_result, result, &r);
1635 }
1636
1637 VEC_free (varobj_update_result, stack);
1638
1639 return result;
1640 }
1641 \f
1642
1643 /* Helper functions */
1644
1645 /*
1646 * Variable object construction/destruction
1647 */
1648
1649 static int
1650 delete_variable (struct cpstack **resultp, struct varobj *var,
1651 int only_children_p)
1652 {
1653 int delcount = 0;
1654
1655 delete_variable_1 (resultp, &delcount, var,
1656 only_children_p, 1 /* remove_from_parent_p */ );
1657
1658 return delcount;
1659 }
1660
1661 /* Delete the variable object VAR and its children */
1662 /* IMPORTANT NOTE: If we delete a variable which is a child
1663 and the parent is not removed we dump core. It must be always
1664 initially called with remove_from_parent_p set */
1665 static void
1666 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1667 struct varobj *var, int only_children_p,
1668 int remove_from_parent_p)
1669 {
1670 int i;
1671
1672 /* Delete any children of this variable, too. */
1673 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1674 {
1675 varobj_p child = VEC_index (varobj_p, var->children, i);
1676 if (!child)
1677 continue;
1678 if (!remove_from_parent_p)
1679 child->parent = NULL;
1680 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1681 }
1682 VEC_free (varobj_p, var->children);
1683
1684 /* if we were called to delete only the children we are done here */
1685 if (only_children_p)
1686 return;
1687
1688 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1689 /* If the name is null, this is a temporary variable, that has not
1690 yet been installed, don't report it, it belongs to the caller... */
1691 if (var->obj_name != NULL)
1692 {
1693 cppush (resultp, xstrdup (var->obj_name));
1694 *delcountp = *delcountp + 1;
1695 }
1696
1697 /* If this variable has a parent, remove it from its parent's list */
1698 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1699 (as indicated by remove_from_parent_p) we don't bother doing an
1700 expensive list search to find the element to remove when we are
1701 discarding the list afterwards */
1702 if ((remove_from_parent_p) && (var->parent != NULL))
1703 {
1704 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1705 }
1706
1707 if (var->obj_name != NULL)
1708 uninstall_variable (var);
1709
1710 /* Free memory associated with this variable */
1711 free_variable (var);
1712 }
1713
1714 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1715 static int
1716 install_variable (struct varobj *var)
1717 {
1718 struct vlist *cv;
1719 struct vlist *newvl;
1720 const char *chp;
1721 unsigned int index = 0;
1722 unsigned int i = 1;
1723
1724 for (chp = var->obj_name; *chp; chp++)
1725 {
1726 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1727 }
1728
1729 cv = *(varobj_table + index);
1730 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1731 cv = cv->next;
1732
1733 if (cv != NULL)
1734 error (_("Duplicate variable object name"));
1735
1736 /* Add varobj to hash table */
1737 newvl = xmalloc (sizeof (struct vlist));
1738 newvl->next = *(varobj_table + index);
1739 newvl->var = var;
1740 *(varobj_table + index) = newvl;
1741
1742 /* If root, add varobj to root list */
1743 if (is_root_p (var))
1744 {
1745 /* Add to list of root variables */
1746 if (rootlist == NULL)
1747 var->root->next = NULL;
1748 else
1749 var->root->next = rootlist;
1750 rootlist = var->root;
1751 rootcount++;
1752 }
1753
1754 return 1; /* OK */
1755 }
1756
1757 /* Unistall the object VAR. */
1758 static void
1759 uninstall_variable (struct varobj *var)
1760 {
1761 struct vlist *cv;
1762 struct vlist *prev;
1763 struct varobj_root *cr;
1764 struct varobj_root *prer;
1765 const char *chp;
1766 unsigned int index = 0;
1767 unsigned int i = 1;
1768
1769 /* Remove varobj from hash table */
1770 for (chp = var->obj_name; *chp; chp++)
1771 {
1772 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1773 }
1774
1775 cv = *(varobj_table + index);
1776 prev = NULL;
1777 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1778 {
1779 prev = cv;
1780 cv = cv->next;
1781 }
1782
1783 if (varobjdebug)
1784 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1785
1786 if (cv == NULL)
1787 {
1788 warning
1789 ("Assertion failed: Could not find variable object \"%s\" to delete",
1790 var->obj_name);
1791 return;
1792 }
1793
1794 if (prev == NULL)
1795 *(varobj_table + index) = cv->next;
1796 else
1797 prev->next = cv->next;
1798
1799 xfree (cv);
1800
1801 /* If root, remove varobj from root list */
1802 if (is_root_p (var))
1803 {
1804 /* Remove from list of root variables */
1805 if (rootlist == var->root)
1806 rootlist = var->root->next;
1807 else
1808 {
1809 prer = NULL;
1810 cr = rootlist;
1811 while ((cr != NULL) && (cr->rootvar != var))
1812 {
1813 prer = cr;
1814 cr = cr->next;
1815 }
1816 if (cr == NULL)
1817 {
1818 warning
1819 ("Assertion failed: Could not find varobj \"%s\" in root list",
1820 var->obj_name);
1821 return;
1822 }
1823 if (prer == NULL)
1824 rootlist = NULL;
1825 else
1826 prer->next = cr->next;
1827 }
1828 rootcount--;
1829 }
1830
1831 }
1832
1833 /* Create and install a child of the parent of the given name */
1834 static struct varobj *
1835 create_child (struct varobj *parent, int index, char *name)
1836 {
1837 return create_child_with_value (parent, index, name,
1838 value_of_child (parent, index));
1839 }
1840
1841 static struct varobj *
1842 create_child_with_value (struct varobj *parent, int index, const char *name,
1843 struct value *value)
1844 {
1845 struct varobj *child;
1846 char *childs_name;
1847
1848 child = new_variable ();
1849
1850 /* name is allocated by name_of_child */
1851 /* FIXME: xstrdup should not be here. */
1852 child->name = xstrdup (name);
1853 child->index = index;
1854 child->parent = parent;
1855 child->root = parent->root;
1856 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1857 child->obj_name = childs_name;
1858 install_variable (child);
1859
1860 /* Compute the type of the child. Must do this before
1861 calling install_new_value. */
1862 if (value != NULL)
1863 /* If the child had no evaluation errors, var->value
1864 will be non-NULL and contain a valid type. */
1865 child->type = value_type (value);
1866 else
1867 /* Otherwise, we must compute the type. */
1868 child->type = (*child->root->lang->type_of_child) (child->parent,
1869 child->index);
1870 install_new_value (child, value, 1);
1871
1872 return child;
1873 }
1874 \f
1875
1876 /*
1877 * Miscellaneous utility functions.
1878 */
1879
1880 /* Allocate memory and initialize a new variable */
1881 static struct varobj *
1882 new_variable (void)
1883 {
1884 struct varobj *var;
1885
1886 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1887 var->name = NULL;
1888 var->path_expr = NULL;
1889 var->obj_name = NULL;
1890 var->index = -1;
1891 var->type = NULL;
1892 var->value = NULL;
1893 var->num_children = -1;
1894 var->parent = NULL;
1895 var->children = NULL;
1896 var->format = 0;
1897 var->root = NULL;
1898 var->updated = 0;
1899 var->print_value = NULL;
1900 var->frozen = 0;
1901 var->not_fetched = 0;
1902 var->children_requested = 0;
1903 var->pretty_printer = 0;
1904
1905 return var;
1906 }
1907
1908 /* Allocate memory and initialize a new root variable */
1909 static struct varobj *
1910 new_root_variable (void)
1911 {
1912 struct varobj *var = new_variable ();
1913 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1914 var->root->lang = NULL;
1915 var->root->exp = NULL;
1916 var->root->valid_block = NULL;
1917 var->root->frame = null_frame_id;
1918 var->root->floating = 0;
1919 var->root->rootvar = NULL;
1920 var->root->is_valid = 1;
1921
1922 return var;
1923 }
1924
1925 /* Free any allocated memory associated with VAR. */
1926 static void
1927 free_variable (struct varobj *var)
1928 {
1929 value_free (var->value);
1930
1931 /* Free the expression if this is a root variable. */
1932 if (is_root_p (var))
1933 {
1934 xfree (var->root->exp);
1935 xfree (var->root);
1936 }
1937
1938 #if HAVE_PYTHON
1939 {
1940 PyGILState_STATE state = PyGILState_Ensure ();
1941 Py_XDECREF (var->pretty_printer);
1942 PyGILState_Release (state);
1943 }
1944 #endif
1945
1946 xfree (var->name);
1947 xfree (var->obj_name);
1948 xfree (var->print_value);
1949 xfree (var->path_expr);
1950 xfree (var);
1951 }
1952
1953 static void
1954 do_free_variable_cleanup (void *var)
1955 {
1956 free_variable (var);
1957 }
1958
1959 static struct cleanup *
1960 make_cleanup_free_variable (struct varobj *var)
1961 {
1962 return make_cleanup (do_free_variable_cleanup, var);
1963 }
1964
1965 /* This returns the type of the variable. It also skips past typedefs
1966 to return the real type of the variable.
1967
1968 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1969 except within get_target_type and get_type. */
1970 static struct type *
1971 get_type (struct varobj *var)
1972 {
1973 struct type *type;
1974 type = var->type;
1975
1976 if (type != NULL)
1977 type = check_typedef (type);
1978
1979 return type;
1980 }
1981
1982 /* Return the type of the value that's stored in VAR,
1983 or that would have being stored there if the
1984 value were accessible.
1985
1986 This differs from VAR->type in that VAR->type is always
1987 the true type of the expession in the source language.
1988 The return value of this function is the type we're
1989 actually storing in varobj, and using for displaying
1990 the values and for comparing previous and new values.
1991
1992 For example, top-level references are always stripped. */
1993 static struct type *
1994 get_value_type (struct varobj *var)
1995 {
1996 struct type *type;
1997
1998 if (var->value)
1999 type = value_type (var->value);
2000 else
2001 type = var->type;
2002
2003 type = check_typedef (type);
2004
2005 if (TYPE_CODE (type) == TYPE_CODE_REF)
2006 type = get_target_type (type);
2007
2008 type = check_typedef (type);
2009
2010 return type;
2011 }
2012
2013 /* This returns the target type (or NULL) of TYPE, also skipping
2014 past typedefs, just like get_type ().
2015
2016 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2017 except within get_target_type and get_type. */
2018 static struct type *
2019 get_target_type (struct type *type)
2020 {
2021 if (type != NULL)
2022 {
2023 type = TYPE_TARGET_TYPE (type);
2024 if (type != NULL)
2025 type = check_typedef (type);
2026 }
2027
2028 return type;
2029 }
2030
2031 /* What is the default display for this variable? We assume that
2032 everything is "natural". Any exceptions? */
2033 static enum varobj_display_formats
2034 variable_default_display (struct varobj *var)
2035 {
2036 return FORMAT_NATURAL;
2037 }
2038
2039 /* FIXME: The following should be generic for any pointer */
2040 static void
2041 cppush (struct cpstack **pstack, char *name)
2042 {
2043 struct cpstack *s;
2044
2045 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2046 s->name = name;
2047 s->next = *pstack;
2048 *pstack = s;
2049 }
2050
2051 /* FIXME: The following should be generic for any pointer */
2052 static char *
2053 cppop (struct cpstack **pstack)
2054 {
2055 struct cpstack *s;
2056 char *v;
2057
2058 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2059 return NULL;
2060
2061 s = *pstack;
2062 v = s->name;
2063 *pstack = (*pstack)->next;
2064 xfree (s);
2065
2066 return v;
2067 }
2068 \f
2069 /*
2070 * Language-dependencies
2071 */
2072
2073 /* Common entry points */
2074
2075 /* Get the language of variable VAR. */
2076 static enum varobj_languages
2077 variable_language (struct varobj *var)
2078 {
2079 enum varobj_languages lang;
2080
2081 switch (var->root->exp->language_defn->la_language)
2082 {
2083 default:
2084 case language_c:
2085 lang = vlang_c;
2086 break;
2087 case language_cplus:
2088 lang = vlang_cplus;
2089 break;
2090 case language_java:
2091 lang = vlang_java;
2092 break;
2093 }
2094
2095 return lang;
2096 }
2097
2098 /* Return the number of children for a given variable.
2099 The result of this function is defined by the language
2100 implementation. The number of children returned by this function
2101 is the number of children that the user will see in the variable
2102 display. */
2103 static int
2104 number_of_children (struct varobj *var)
2105 {
2106 return (*var->root->lang->number_of_children) (var);;
2107 }
2108
2109 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2110 static char *
2111 name_of_variable (struct varobj *var)
2112 {
2113 return (*var->root->lang->name_of_variable) (var);
2114 }
2115
2116 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2117 static char *
2118 name_of_child (struct varobj *var, int index)
2119 {
2120 return (*var->root->lang->name_of_child) (var, index);
2121 }
2122
2123 /* What is the ``struct value *'' of the root variable VAR?
2124 For floating variable object, evaluation can get us a value
2125 of different type from what is stored in varobj already. In
2126 that case:
2127 - *type_changed will be set to 1
2128 - old varobj will be freed, and new one will be
2129 created, with the same name.
2130 - *var_handle will be set to the new varobj
2131 Otherwise, *type_changed will be set to 0. */
2132 static struct value *
2133 value_of_root (struct varobj **var_handle, int *type_changed)
2134 {
2135 struct varobj *var;
2136
2137 if (var_handle == NULL)
2138 return NULL;
2139
2140 var = *var_handle;
2141
2142 /* This should really be an exception, since this should
2143 only get called with a root variable. */
2144
2145 if (!is_root_p (var))
2146 return NULL;
2147
2148 if (var->root->floating)
2149 {
2150 struct varobj *tmp_var;
2151 char *old_type, *new_type;
2152
2153 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2154 USE_SELECTED_FRAME);
2155 if (tmp_var == NULL)
2156 {
2157 return NULL;
2158 }
2159 old_type = varobj_get_type (var);
2160 new_type = varobj_get_type (tmp_var);
2161 if (strcmp (old_type, new_type) == 0)
2162 {
2163 /* The expression presently stored inside var->root->exp
2164 remembers the locations of local variables relatively to
2165 the frame where the expression was created (in DWARF location
2166 button, for example). Naturally, those locations are not
2167 correct in other frames, so update the expression. */
2168
2169 struct expression *tmp_exp = var->root->exp;
2170 var->root->exp = tmp_var->root->exp;
2171 tmp_var->root->exp = tmp_exp;
2172
2173 varobj_delete (tmp_var, NULL, 0);
2174 *type_changed = 0;
2175 }
2176 else
2177 {
2178 tmp_var->obj_name = xstrdup (var->obj_name);
2179 varobj_delete (var, NULL, 0);
2180
2181 install_variable (tmp_var);
2182 *var_handle = tmp_var;
2183 var = *var_handle;
2184 *type_changed = 1;
2185 }
2186 xfree (old_type);
2187 xfree (new_type);
2188 }
2189 else
2190 {
2191 *type_changed = 0;
2192 }
2193
2194 return (*var->root->lang->value_of_root) (var_handle);
2195 }
2196
2197 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2198 static struct value *
2199 value_of_child (struct varobj *parent, int index)
2200 {
2201 struct value *value;
2202
2203 value = (*parent->root->lang->value_of_child) (parent, index);
2204
2205 return value;
2206 }
2207
2208 /* GDB already has a command called "value_of_variable". Sigh. */
2209 static char *
2210 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2211 {
2212 if (var->root->is_valid)
2213 return (*var->root->lang->value_of_variable) (var, format);
2214 else
2215 return NULL;
2216 }
2217
2218 static char *
2219 value_get_print_value (struct value *value, enum varobj_display_formats format,
2220 PyObject *value_formatter)
2221 {
2222 long dummy;
2223 struct ui_file *stb;
2224 struct cleanup *old_chain;
2225 char *thevalue = NULL;
2226 struct value_print_options opts;
2227
2228 if (value == NULL)
2229 return NULL;
2230
2231 #if HAVE_PYTHON
2232 {
2233 PyGILState_STATE state = PyGILState_Ensure ();
2234 if (value_formatter && PyObject_HasAttr (value_formatter,
2235 gdbpy_to_string_cst))
2236 {
2237 char *hint;
2238 struct value *replacement;
2239 int string_print = 0;
2240
2241 hint = gdbpy_get_display_hint (value_formatter);
2242 if (hint)
2243 {
2244 if (!strcmp (hint, "string"))
2245 string_print = 1;
2246 xfree (hint);
2247 }
2248
2249 thevalue = apply_varobj_pretty_printer (value_formatter,
2250 &replacement);
2251 if (thevalue && !string_print)
2252 {
2253 PyGILState_Release (state);
2254 return thevalue;
2255 }
2256 if (replacement)
2257 value = replacement;
2258 }
2259 PyGILState_Release (state);
2260 }
2261 #endif
2262
2263 stb = mem_fileopen ();
2264 old_chain = make_cleanup_ui_file_delete (stb);
2265
2266 get_formatted_print_options (&opts, format_code[(int) format]);
2267 opts.deref_ref = 0;
2268 opts.raw = 1;
2269 if (thevalue)
2270 {
2271 make_cleanup (xfree, thevalue);
2272 LA_PRINT_STRING (stb, builtin_type (current_gdbarch)->builtin_char,
2273 (gdb_byte *) thevalue, strlen (thevalue),
2274 0, &opts);
2275 }
2276 else
2277 common_val_print (value, stb, 0, &opts, current_language);
2278 thevalue = ui_file_xstrdup (stb, &dummy);
2279
2280 do_cleanups (old_chain);
2281 return thevalue;
2282 }
2283
2284 int
2285 varobj_editable_p (struct varobj *var)
2286 {
2287 struct type *type;
2288 struct value *value;
2289
2290 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2291 return 0;
2292
2293 type = get_value_type (var);
2294
2295 switch (TYPE_CODE (type))
2296 {
2297 case TYPE_CODE_STRUCT:
2298 case TYPE_CODE_UNION:
2299 case TYPE_CODE_ARRAY:
2300 case TYPE_CODE_FUNC:
2301 case TYPE_CODE_METHOD:
2302 return 0;
2303 break;
2304
2305 default:
2306 return 1;
2307 break;
2308 }
2309 }
2310
2311 /* Return non-zero if changes in value of VAR
2312 must be detected and reported by -var-update.
2313 Return zero is -var-update should never report
2314 changes of such values. This makes sense for structures
2315 (since the changes in children values will be reported separately),
2316 or for artifical objects (like 'public' pseudo-field in C++).
2317
2318 Return value of 0 means that gdb need not call value_fetch_lazy
2319 for the value of this variable object. */
2320 static int
2321 varobj_value_is_changeable_p (struct varobj *var)
2322 {
2323 int r;
2324 struct type *type;
2325
2326 if (CPLUS_FAKE_CHILD (var))
2327 return 0;
2328
2329 type = get_value_type (var);
2330
2331 switch (TYPE_CODE (type))
2332 {
2333 case TYPE_CODE_STRUCT:
2334 case TYPE_CODE_UNION:
2335 case TYPE_CODE_ARRAY:
2336 r = 0;
2337 break;
2338
2339 default:
2340 r = 1;
2341 }
2342
2343 return r;
2344 }
2345
2346 /* Return 1 if that varobj is floating, that is is always evaluated in the
2347 selected frame, and not bound to thread/frame. Such variable objects
2348 are created using '@' as frame specifier to -var-create. */
2349 int
2350 varobj_floating_p (struct varobj *var)
2351 {
2352 return var->root->floating;
2353 }
2354
2355 /* Given the value and the type of a variable object,
2356 adjust the value and type to those necessary
2357 for getting children of the variable object.
2358 This includes dereferencing top-level references
2359 to all types and dereferencing pointers to
2360 structures.
2361
2362 Both TYPE and *TYPE should be non-null. VALUE
2363 can be null if we want to only translate type.
2364 *VALUE can be null as well -- if the parent
2365 value is not known.
2366
2367 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2368 depending on whether pointer was dereferenced
2369 in this function. */
2370 static void
2371 adjust_value_for_child_access (struct value **value,
2372 struct type **type,
2373 int *was_ptr)
2374 {
2375 gdb_assert (type && *type);
2376
2377 if (was_ptr)
2378 *was_ptr = 0;
2379
2380 *type = check_typedef (*type);
2381
2382 /* The type of value stored in varobj, that is passed
2383 to us, is already supposed to be
2384 reference-stripped. */
2385
2386 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2387
2388 /* Pointers to structures are treated just like
2389 structures when accessing children. Don't
2390 dererences pointers to other types. */
2391 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2392 {
2393 struct type *target_type = get_target_type (*type);
2394 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2395 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2396 {
2397 if (value && *value)
2398 {
2399 int success = gdb_value_ind (*value, value);
2400 if (!success)
2401 *value = NULL;
2402 }
2403 *type = target_type;
2404 if (was_ptr)
2405 *was_ptr = 1;
2406 }
2407 }
2408
2409 /* The 'get_target_type' function calls check_typedef on
2410 result, so we can immediately check type code. No
2411 need to call check_typedef here. */
2412 }
2413
2414 /* C */
2415 static int
2416 c_number_of_children (struct varobj *var)
2417 {
2418 struct type *type = get_value_type (var);
2419 int children = 0;
2420 struct type *target;
2421
2422 adjust_value_for_child_access (NULL, &type, NULL);
2423 target = get_target_type (type);
2424
2425 switch (TYPE_CODE (type))
2426 {
2427 case TYPE_CODE_ARRAY:
2428 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2429 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2430 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2431 else
2432 /* If we don't know how many elements there are, don't display
2433 any. */
2434 children = 0;
2435 break;
2436
2437 case TYPE_CODE_STRUCT:
2438 case TYPE_CODE_UNION:
2439 children = TYPE_NFIELDS (type);
2440 break;
2441
2442 case TYPE_CODE_PTR:
2443 /* The type here is a pointer to non-struct. Typically, pointers
2444 have one child, except for function ptrs, which have no children,
2445 and except for void*, as we don't know what to show.
2446
2447 We can show char* so we allow it to be dereferenced. If you decide
2448 to test for it, please mind that a little magic is necessary to
2449 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2450 TYPE_NAME == "char" */
2451 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2452 || TYPE_CODE (target) == TYPE_CODE_VOID)
2453 children = 0;
2454 else
2455 children = 1;
2456 break;
2457
2458 default:
2459 /* Other types have no children */
2460 break;
2461 }
2462
2463 return children;
2464 }
2465
2466 static char *
2467 c_name_of_variable (struct varobj *parent)
2468 {
2469 return xstrdup (parent->name);
2470 }
2471
2472 /* Return the value of element TYPE_INDEX of a structure
2473 value VALUE. VALUE's type should be a structure,
2474 or union, or a typedef to struct/union.
2475
2476 Returns NULL if getting the value fails. Never throws. */
2477 static struct value *
2478 value_struct_element_index (struct value *value, int type_index)
2479 {
2480 struct value *result = NULL;
2481 volatile struct gdb_exception e;
2482
2483 struct type *type = value_type (value);
2484 type = check_typedef (type);
2485
2486 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2487 || TYPE_CODE (type) == TYPE_CODE_UNION);
2488
2489 TRY_CATCH (e, RETURN_MASK_ERROR)
2490 {
2491 if (field_is_static (&TYPE_FIELD (type, type_index)))
2492 result = value_static_field (type, type_index);
2493 else
2494 result = value_primitive_field (value, 0, type_index, type);
2495 }
2496 if (e.reason < 0)
2497 {
2498 return NULL;
2499 }
2500 else
2501 {
2502 return result;
2503 }
2504 }
2505
2506 /* Obtain the information about child INDEX of the variable
2507 object PARENT.
2508 If CNAME is not null, sets *CNAME to the name of the child relative
2509 to the parent.
2510 If CVALUE is not null, sets *CVALUE to the value of the child.
2511 If CTYPE is not null, sets *CTYPE to the type of the child.
2512
2513 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2514 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2515 to NULL. */
2516 static void
2517 c_describe_child (struct varobj *parent, int index,
2518 char **cname, struct value **cvalue, struct type **ctype,
2519 char **cfull_expression)
2520 {
2521 struct value *value = parent->value;
2522 struct type *type = get_value_type (parent);
2523 char *parent_expression = NULL;
2524 int was_ptr;
2525
2526 if (cname)
2527 *cname = NULL;
2528 if (cvalue)
2529 *cvalue = NULL;
2530 if (ctype)
2531 *ctype = NULL;
2532 if (cfull_expression)
2533 {
2534 *cfull_expression = NULL;
2535 parent_expression = varobj_get_path_expr (parent);
2536 }
2537 adjust_value_for_child_access (&value, &type, &was_ptr);
2538
2539 switch (TYPE_CODE (type))
2540 {
2541 case TYPE_CODE_ARRAY:
2542 if (cname)
2543 *cname = xstrprintf ("%d", index
2544 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2545
2546 if (cvalue && value)
2547 {
2548 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2549 struct value *indval =
2550 value_from_longest (builtin_type_int32, (LONGEST) real_index);
2551 gdb_value_subscript (value, indval, cvalue);
2552 }
2553
2554 if (ctype)
2555 *ctype = get_target_type (type);
2556
2557 if (cfull_expression)
2558 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2559 index
2560 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2561
2562
2563 break;
2564
2565 case TYPE_CODE_STRUCT:
2566 case TYPE_CODE_UNION:
2567 if (cname)
2568 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2569
2570 if (cvalue && value)
2571 {
2572 /* For C, varobj index is the same as type index. */
2573 *cvalue = value_struct_element_index (value, index);
2574 }
2575
2576 if (ctype)
2577 *ctype = TYPE_FIELD_TYPE (type, index);
2578
2579 if (cfull_expression)
2580 {
2581 char *join = was_ptr ? "->" : ".";
2582 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2583 TYPE_FIELD_NAME (type, index));
2584 }
2585
2586 break;
2587
2588 case TYPE_CODE_PTR:
2589 if (cname)
2590 *cname = xstrprintf ("*%s", parent->name);
2591
2592 if (cvalue && value)
2593 {
2594 int success = gdb_value_ind (value, cvalue);
2595 if (!success)
2596 *cvalue = NULL;
2597 }
2598
2599 /* Don't use get_target_type because it calls
2600 check_typedef and here, we want to show the true
2601 declared type of the variable. */
2602 if (ctype)
2603 *ctype = TYPE_TARGET_TYPE (type);
2604
2605 if (cfull_expression)
2606 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2607
2608 break;
2609
2610 default:
2611 /* This should not happen */
2612 if (cname)
2613 *cname = xstrdup ("???");
2614 if (cfull_expression)
2615 *cfull_expression = xstrdup ("???");
2616 /* Don't set value and type, we don't know then. */
2617 }
2618 }
2619
2620 static char *
2621 c_name_of_child (struct varobj *parent, int index)
2622 {
2623 char *name;
2624 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2625 return name;
2626 }
2627
2628 static char *
2629 c_path_expr_of_child (struct varobj *child)
2630 {
2631 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2632 &child->path_expr);
2633 return child->path_expr;
2634 }
2635
2636 /* If frame associated with VAR can be found, switch
2637 to it and return 1. Otherwise, return 0. */
2638 static int
2639 check_scope (struct varobj *var)
2640 {
2641 struct frame_info *fi;
2642 int scope;
2643
2644 fi = frame_find_by_id (var->root->frame);
2645 scope = fi != NULL;
2646
2647 if (fi)
2648 {
2649 CORE_ADDR pc = get_frame_pc (fi);
2650 if (pc < BLOCK_START (var->root->valid_block) ||
2651 pc >= BLOCK_END (var->root->valid_block))
2652 scope = 0;
2653 else
2654 select_frame (fi);
2655 }
2656 return scope;
2657 }
2658
2659 static struct value *
2660 c_value_of_root (struct varobj **var_handle)
2661 {
2662 struct value *new_val = NULL;
2663 struct varobj *var = *var_handle;
2664 struct frame_info *fi;
2665 int within_scope = 0;
2666 struct cleanup *back_to;
2667
2668 /* Only root variables can be updated... */
2669 if (!is_root_p (var))
2670 /* Not a root var */
2671 return NULL;
2672
2673 back_to = make_cleanup_restore_current_thread ();
2674
2675 /* Determine whether the variable is still around. */
2676 if (var->root->valid_block == NULL || var->root->floating)
2677 within_scope = 1;
2678 else if (var->root->thread_id == 0)
2679 {
2680 /* The program was single-threaded when the variable object was
2681 created. Technically, it's possible that the program became
2682 multi-threaded since then, but we don't support such
2683 scenario yet. */
2684 within_scope = check_scope (var);
2685 }
2686 else
2687 {
2688 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2689 if (in_thread_list (ptid))
2690 {
2691 switch_to_thread (ptid);
2692 within_scope = check_scope (var);
2693 }
2694 }
2695
2696 if (within_scope)
2697 {
2698 /* We need to catch errors here, because if evaluate
2699 expression fails we want to just return NULL. */
2700 gdb_evaluate_expression (var->root->exp, &new_val);
2701 return new_val;
2702 }
2703
2704 do_cleanups (back_to);
2705
2706 return NULL;
2707 }
2708
2709 static struct value *
2710 c_value_of_child (struct varobj *parent, int index)
2711 {
2712 struct value *value = NULL;
2713 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2714
2715 return value;
2716 }
2717
2718 static struct type *
2719 c_type_of_child (struct varobj *parent, int index)
2720 {
2721 struct type *type = NULL;
2722 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2723 return type;
2724 }
2725
2726 static char *
2727 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2728 {
2729 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2730 it will print out its children instead of "{...}". So we need to
2731 catch that case explicitly. */
2732 struct type *type = get_type (var);
2733
2734 /* If we have a custom formatter, return whatever string it has
2735 produced. */
2736 if (var->pretty_printer && var->print_value)
2737 return xstrdup (var->print_value);
2738
2739 /* Strip top-level references. */
2740 while (TYPE_CODE (type) == TYPE_CODE_REF)
2741 type = check_typedef (TYPE_TARGET_TYPE (type));
2742
2743 switch (TYPE_CODE (type))
2744 {
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 return xstrdup ("{...}");
2748 /* break; */
2749
2750 case TYPE_CODE_ARRAY:
2751 {
2752 char *number;
2753 number = xstrprintf ("[%d]", var->num_children);
2754 return (number);
2755 }
2756 /* break; */
2757
2758 default:
2759 {
2760 if (var->value == NULL)
2761 {
2762 /* This can happen if we attempt to get the value of a struct
2763 member when the parent is an invalid pointer. This is an
2764 error condition, so we should tell the caller. */
2765 return NULL;
2766 }
2767 else
2768 {
2769 if (var->not_fetched && value_lazy (var->value))
2770 /* Frozen variable and no value yet. We don't
2771 implicitly fetch the value. MI response will
2772 use empty string for the value, which is OK. */
2773 return NULL;
2774
2775 gdb_assert (varobj_value_is_changeable_p (var));
2776 gdb_assert (!value_lazy (var->value));
2777
2778 /* If the specified format is the current one,
2779 we can reuse print_value */
2780 if (format == var->format)
2781 return xstrdup (var->print_value);
2782 else
2783 return value_get_print_value (var->value, format,
2784 var->pretty_printer);
2785 }
2786 }
2787 }
2788 }
2789 \f
2790
2791 /* C++ */
2792
2793 static int
2794 cplus_number_of_children (struct varobj *var)
2795 {
2796 struct type *type;
2797 int children, dont_know;
2798
2799 dont_know = 1;
2800 children = 0;
2801
2802 if (!CPLUS_FAKE_CHILD (var))
2803 {
2804 type = get_value_type (var);
2805 adjust_value_for_child_access (NULL, &type, NULL);
2806
2807 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2808 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2809 {
2810 int kids[3];
2811
2812 cplus_class_num_children (type, kids);
2813 if (kids[v_public] != 0)
2814 children++;
2815 if (kids[v_private] != 0)
2816 children++;
2817 if (kids[v_protected] != 0)
2818 children++;
2819
2820 /* Add any baseclasses */
2821 children += TYPE_N_BASECLASSES (type);
2822 dont_know = 0;
2823
2824 /* FIXME: save children in var */
2825 }
2826 }
2827 else
2828 {
2829 int kids[3];
2830
2831 type = get_value_type (var->parent);
2832 adjust_value_for_child_access (NULL, &type, NULL);
2833
2834 cplus_class_num_children (type, kids);
2835 if (strcmp (var->name, "public") == 0)
2836 children = kids[v_public];
2837 else if (strcmp (var->name, "private") == 0)
2838 children = kids[v_private];
2839 else
2840 children = kids[v_protected];
2841 dont_know = 0;
2842 }
2843
2844 if (dont_know)
2845 children = c_number_of_children (var);
2846
2847 return children;
2848 }
2849
2850 /* Compute # of public, private, and protected variables in this class.
2851 That means we need to descend into all baseclasses and find out
2852 how many are there, too. */
2853 static void
2854 cplus_class_num_children (struct type *type, int children[3])
2855 {
2856 int i;
2857
2858 children[v_public] = 0;
2859 children[v_private] = 0;
2860 children[v_protected] = 0;
2861
2862 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2863 {
2864 /* If we have a virtual table pointer, omit it. */
2865 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2866 continue;
2867
2868 if (TYPE_FIELD_PROTECTED (type, i))
2869 children[v_protected]++;
2870 else if (TYPE_FIELD_PRIVATE (type, i))
2871 children[v_private]++;
2872 else
2873 children[v_public]++;
2874 }
2875 }
2876
2877 static char *
2878 cplus_name_of_variable (struct varobj *parent)
2879 {
2880 return c_name_of_variable (parent);
2881 }
2882
2883 enum accessibility { private_field, protected_field, public_field };
2884
2885 /* Check if field INDEX of TYPE has the specified accessibility.
2886 Return 0 if so and 1 otherwise. */
2887 static int
2888 match_accessibility (struct type *type, int index, enum accessibility acc)
2889 {
2890 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2891 return 1;
2892 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2893 return 1;
2894 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2895 && !TYPE_FIELD_PROTECTED (type, index))
2896 return 1;
2897 else
2898 return 0;
2899 }
2900
2901 static void
2902 cplus_describe_child (struct varobj *parent, int index,
2903 char **cname, struct value **cvalue, struct type **ctype,
2904 char **cfull_expression)
2905 {
2906 char *name = NULL;
2907 struct value *value;
2908 struct type *type;
2909 int was_ptr;
2910 char *parent_expression = NULL;
2911
2912 if (cname)
2913 *cname = NULL;
2914 if (cvalue)
2915 *cvalue = NULL;
2916 if (ctype)
2917 *ctype = NULL;
2918 if (cfull_expression)
2919 *cfull_expression = NULL;
2920
2921 if (CPLUS_FAKE_CHILD (parent))
2922 {
2923 value = parent->parent->value;
2924 type = get_value_type (parent->parent);
2925 if (cfull_expression)
2926 parent_expression = varobj_get_path_expr (parent->parent);
2927 }
2928 else
2929 {
2930 value = parent->value;
2931 type = get_value_type (parent);
2932 if (cfull_expression)
2933 parent_expression = varobj_get_path_expr (parent);
2934 }
2935
2936 adjust_value_for_child_access (&value, &type, &was_ptr);
2937
2938 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2939 || TYPE_CODE (type) == TYPE_CODE_UNION)
2940 {
2941 char *join = was_ptr ? "->" : ".";
2942 if (CPLUS_FAKE_CHILD (parent))
2943 {
2944 /* The fields of the class type are ordered as they
2945 appear in the class. We are given an index for a
2946 particular access control type ("public","protected",
2947 or "private"). We must skip over fields that don't
2948 have the access control we are looking for to properly
2949 find the indexed field. */
2950 int type_index = TYPE_N_BASECLASSES (type);
2951 enum accessibility acc = public_field;
2952 if (strcmp (parent->name, "private") == 0)
2953 acc = private_field;
2954 else if (strcmp (parent->name, "protected") == 0)
2955 acc = protected_field;
2956
2957 while (index >= 0)
2958 {
2959 if (TYPE_VPTR_BASETYPE (type) == type
2960 && type_index == TYPE_VPTR_FIELDNO (type))
2961 ; /* ignore vptr */
2962 else if (match_accessibility (type, type_index, acc))
2963 --index;
2964 ++type_index;
2965 }
2966 --type_index;
2967
2968 if (cname)
2969 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2970
2971 if (cvalue && value)
2972 *cvalue = value_struct_element_index (value, type_index);
2973
2974 if (ctype)
2975 *ctype = TYPE_FIELD_TYPE (type, type_index);
2976
2977 if (cfull_expression)
2978 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2979 join,
2980 TYPE_FIELD_NAME (type, type_index));
2981 }
2982 else if (index < TYPE_N_BASECLASSES (type))
2983 {
2984 /* This is a baseclass. */
2985 if (cname)
2986 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2987
2988 if (cvalue && value)
2989 {
2990 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2991 release_value (*cvalue);
2992 }
2993
2994 if (ctype)
2995 {
2996 *ctype = TYPE_FIELD_TYPE (type, index);
2997 }
2998
2999 if (cfull_expression)
3000 {
3001 char *ptr = was_ptr ? "*" : "";
3002 /* Cast the parent to the base' type. Note that in gdb,
3003 expression like
3004 (Base1)d
3005 will create an lvalue, for all appearences, so we don't
3006 need to use more fancy:
3007 *(Base1*)(&d)
3008 construct. */
3009 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3010 ptr,
3011 TYPE_FIELD_NAME (type, index),
3012 ptr,
3013 parent_expression);
3014 }
3015 }
3016 else
3017 {
3018 char *access = NULL;
3019 int children[3];
3020 cplus_class_num_children (type, children);
3021
3022 /* Everything beyond the baseclasses can
3023 only be "public", "private", or "protected"
3024
3025 The special "fake" children are always output by varobj in
3026 this order. So if INDEX == 2, it MUST be "protected". */
3027 index -= TYPE_N_BASECLASSES (type);
3028 switch (index)
3029 {
3030 case 0:
3031 if (children[v_public] > 0)
3032 access = "public";
3033 else if (children[v_private] > 0)
3034 access = "private";
3035 else
3036 access = "protected";
3037 break;
3038 case 1:
3039 if (children[v_public] > 0)
3040 {
3041 if (children[v_private] > 0)
3042 access = "private";
3043 else
3044 access = "protected";
3045 }
3046 else if (children[v_private] > 0)
3047 access = "protected";
3048 break;
3049 case 2:
3050 /* Must be protected */
3051 access = "protected";
3052 break;
3053 default:
3054 /* error! */
3055 break;
3056 }
3057
3058 gdb_assert (access);
3059 if (cname)
3060 *cname = xstrdup (access);
3061
3062 /* Value and type and full expression are null here. */
3063 }
3064 }
3065 else
3066 {
3067 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3068 }
3069 }
3070
3071 static char *
3072 cplus_name_of_child (struct varobj *parent, int index)
3073 {
3074 char *name = NULL;
3075 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3076 return name;
3077 }
3078
3079 static char *
3080 cplus_path_expr_of_child (struct varobj *child)
3081 {
3082 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3083 &child->path_expr);
3084 return child->path_expr;
3085 }
3086
3087 static struct value *
3088 cplus_value_of_root (struct varobj **var_handle)
3089 {
3090 return c_value_of_root (var_handle);
3091 }
3092
3093 static struct value *
3094 cplus_value_of_child (struct varobj *parent, int index)
3095 {
3096 struct value *value = NULL;
3097 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3098 return value;
3099 }
3100
3101 static struct type *
3102 cplus_type_of_child (struct varobj *parent, int index)
3103 {
3104 struct type *type = NULL;
3105 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3106 return type;
3107 }
3108
3109 static char *
3110 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3111 {
3112
3113 /* If we have one of our special types, don't print out
3114 any value. */
3115 if (CPLUS_FAKE_CHILD (var))
3116 return xstrdup ("");
3117
3118 return c_value_of_variable (var, format);
3119 }
3120 \f
3121 /* Java */
3122
3123 static int
3124 java_number_of_children (struct varobj *var)
3125 {
3126 return cplus_number_of_children (var);
3127 }
3128
3129 static char *
3130 java_name_of_variable (struct varobj *parent)
3131 {
3132 char *p, *name;
3133
3134 name = cplus_name_of_variable (parent);
3135 /* If the name has "-" in it, it is because we
3136 needed to escape periods in the name... */
3137 p = name;
3138
3139 while (*p != '\000')
3140 {
3141 if (*p == '-')
3142 *p = '.';
3143 p++;
3144 }
3145
3146 return name;
3147 }
3148
3149 static char *
3150 java_name_of_child (struct varobj *parent, int index)
3151 {
3152 char *name, *p;
3153
3154 name = cplus_name_of_child (parent, index);
3155 /* Escape any periods in the name... */
3156 p = name;
3157
3158 while (*p != '\000')
3159 {
3160 if (*p == '.')
3161 *p = '-';
3162 p++;
3163 }
3164
3165 return name;
3166 }
3167
3168 static char *
3169 java_path_expr_of_child (struct varobj *child)
3170 {
3171 return NULL;
3172 }
3173
3174 static struct value *
3175 java_value_of_root (struct varobj **var_handle)
3176 {
3177 return cplus_value_of_root (var_handle);
3178 }
3179
3180 static struct value *
3181 java_value_of_child (struct varobj *parent, int index)
3182 {
3183 return cplus_value_of_child (parent, index);
3184 }
3185
3186 static struct type *
3187 java_type_of_child (struct varobj *parent, int index)
3188 {
3189 return cplus_type_of_child (parent, index);
3190 }
3191
3192 static char *
3193 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3194 {
3195 return cplus_value_of_variable (var, format);
3196 }
3197 \f
3198 extern void _initialize_varobj (void);
3199 void
3200 _initialize_varobj (void)
3201 {
3202 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3203
3204 varobj_table = xmalloc (sizeof_table);
3205 memset (varobj_table, 0, sizeof_table);
3206
3207 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3208 &varobjdebug, _("\
3209 Set varobj debugging."), _("\
3210 Show varobj debugging."), _("\
3211 When non-zero, varobj debugging is enabled."),
3212 NULL,
3213 show_varobjdebug,
3214 &setlist, &showlist);
3215 }
3216
3217 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3218 are defined on globals.
3219 Invalidated varobjs will be always printed in_scope="invalid". */
3220
3221 void
3222 varobj_invalidate (void)
3223 {
3224 struct varobj **all_rootvarobj;
3225 struct varobj **varp;
3226
3227 if (varobj_list (&all_rootvarobj) > 0)
3228 {
3229 varp = all_rootvarobj;
3230 while (*varp != NULL)
3231 {
3232 /* Floating varobjs are reparsed on each stop, so we don't care if
3233 the presently parsed expression refers to something that's gone.
3234 */
3235 if ((*varp)->root->floating)
3236 continue;
3237
3238 /* global var must be re-evaluated. */
3239 if ((*varp)->root->valid_block == NULL)
3240 {
3241 struct varobj *tmp_var;
3242
3243 /* Try to create a varobj with same expression. If we succeed
3244 replace the old varobj, otherwise invalidate it. */
3245 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
3246 USE_CURRENT_FRAME);
3247 if (tmp_var != NULL)
3248 {
3249 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
3250 varobj_delete (*varp, NULL, 0);
3251 install_variable (tmp_var);
3252 }
3253 else
3254 (*varp)->root->is_valid = 0;
3255 }
3256 else /* locals must be invalidated. */
3257 (*varp)->root->is_valid = 0;
3258
3259 varp++;
3260 }
3261 }
3262 xfree (all_rootvarobj);
3263 return;
3264 }
This page took 0.100182 seconds and 4 git commands to generate.