* README: Mention gdbserver/README.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34
35 /* Non-zero if we want to see trace of varobj level stuff. */
36
37 int varobjdebug = 0;
38 static void
39 show_varobjdebug (struct ui_file *file, int from_tty,
40 struct cmd_list_element *c, const char *value)
41 {
42 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
43 }
44
45 /* String representations of gdb's format codes */
46 char *varobj_format_string[] =
47 { "natural", "binary", "decimal", "hexadecimal", "octal" };
48
49 /* String representations of gdb's known languages */
50 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
51
52 /* Data structures */
53
54 /* Every root variable has one of these structures saved in its
55 varobj. Members which must be free'd are noted. */
56 struct varobj_root
57 {
58
59 /* Alloc'd expression for this parent. */
60 struct expression *exp;
61
62 /* Block for which this expression is valid */
63 struct block *valid_block;
64
65 /* The frame for this expression */
66 struct frame_id frame;
67
68 /* If 1, "update" always recomputes the frame & valid block
69 using the currently selected frame. */
70 int use_selected_frame;
71
72 /* Flag that indicates validity: set to 0 when this varobj_root refers
73 to symbols that do not exist anymore. */
74 int is_valid;
75
76 /* Language info for this variable and its children */
77 struct language_specific *lang;
78
79 /* The varobj for this root node. */
80 struct varobj *rootvar;
81
82 /* Next root variable */
83 struct varobj_root *next;
84 };
85
86 typedef struct varobj *varobj_p;
87
88 DEF_VEC_P (varobj_p);
89
90 /* Every variable in the system has a structure of this type defined
91 for it. This structure holds all information necessary to manipulate
92 a particular object variable. Members which must be freed are noted. */
93 struct varobj
94 {
95
96 /* Alloc'd name of the variable for this object.. If this variable is a
97 child, then this name will be the child's source name.
98 (bar, not foo.bar) */
99 /* NOTE: This is the "expression" */
100 char *name;
101
102 /* Alloc'd expression for this child. Can be used to create a
103 root variable corresponding to this child. */
104 char *path_expr;
105
106 /* The alloc'd name for this variable's object. This is here for
107 convenience when constructing this object's children. */
108 char *obj_name;
109
110 /* Index of this variable in its parent or -1 */
111 int index;
112
113 /* The type of this variable. This can be NULL
114 for artifial variable objects -- currently, the "accessibility"
115 variable objects in C++. */
116 struct type *type;
117
118 /* The value of this expression or subexpression. A NULL value
119 indicates there was an error getting this value.
120 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
121 the value is either NULL, or not lazy. */
122 struct value *value;
123
124 /* The number of (immediate) children this variable has */
125 int num_children;
126
127 /* If this object is a child, this points to its immediate parent. */
128 struct varobj *parent;
129
130 /* Children of this object. */
131 VEC (varobj_p) *children;
132
133 /* Description of the root variable. Points to root variable for children. */
134 struct varobj_root *root;
135
136 /* The format of the output for this object */
137 enum varobj_display_formats format;
138
139 /* Was this variable updated via a varobj_set_value operation */
140 int updated;
141
142 /* Last print value. */
143 char *print_value;
144
145 /* Is this variable frozen. Frozen variables are never implicitly
146 updated by -var-update *
147 or -var-update <direct-or-indirect-parent>. */
148 int frozen;
149
150 /* Is the value of this variable intentionally not fetched? It is
151 not fetched if either the variable is frozen, or any parents is
152 frozen. */
153 int not_fetched;
154 };
155
156 struct cpstack
157 {
158 char *name;
159 struct cpstack *next;
160 };
161
162 /* A list of varobjs */
163
164 struct vlist
165 {
166 struct varobj *var;
167 struct vlist *next;
168 };
169
170 /* Private function prototypes */
171
172 /* Helper functions for the above subcommands. */
173
174 static int delete_variable (struct cpstack **, struct varobj *, int);
175
176 static void delete_variable_1 (struct cpstack **, int *,
177 struct varobj *, int, int);
178
179 static int install_variable (struct varobj *);
180
181 static void uninstall_variable (struct varobj *);
182
183 static struct varobj *create_child (struct varobj *, int, char *);
184
185 /* Utility routines */
186
187 static struct varobj *new_variable (void);
188
189 static struct varobj *new_root_variable (void);
190
191 static void free_variable (struct varobj *var);
192
193 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
194
195 static struct type *get_type (struct varobj *var);
196
197 static struct type *get_value_type (struct varobj *var);
198
199 static struct type *get_target_type (struct type *);
200
201 static enum varobj_display_formats variable_default_display (struct varobj *);
202
203 static void cppush (struct cpstack **pstack, char *name);
204
205 static char *cppop (struct cpstack **pstack);
206
207 static int install_new_value (struct varobj *var, struct value *value,
208 int initial);
209
210 /* Language-specific routines. */
211
212 static enum varobj_languages variable_language (struct varobj *var);
213
214 static int number_of_children (struct varobj *);
215
216 static char *name_of_variable (struct varobj *);
217
218 static char *name_of_child (struct varobj *, int);
219
220 static struct value *value_of_root (struct varobj **var_handle, int *);
221
222 static struct value *value_of_child (struct varobj *parent, int index);
223
224 static char *my_value_of_variable (struct varobj *var);
225
226 static char *value_get_print_value (struct value *value,
227 enum varobj_display_formats format);
228
229 static int varobj_value_is_changeable_p (struct varobj *var);
230
231 static int is_root_p (struct varobj *var);
232
233 /* C implementation */
234
235 static int c_number_of_children (struct varobj *var);
236
237 static char *c_name_of_variable (struct varobj *parent);
238
239 static char *c_name_of_child (struct varobj *parent, int index);
240
241 static char *c_path_expr_of_child (struct varobj *child);
242
243 static struct value *c_value_of_root (struct varobj **var_handle);
244
245 static struct value *c_value_of_child (struct varobj *parent, int index);
246
247 static struct type *c_type_of_child (struct varobj *parent, int index);
248
249 static char *c_value_of_variable (struct varobj *var);
250
251 /* C++ implementation */
252
253 static int cplus_number_of_children (struct varobj *var);
254
255 static void cplus_class_num_children (struct type *type, int children[3]);
256
257 static char *cplus_name_of_variable (struct varobj *parent);
258
259 static char *cplus_name_of_child (struct varobj *parent, int index);
260
261 static char *cplus_path_expr_of_child (struct varobj *child);
262
263 static struct value *cplus_value_of_root (struct varobj **var_handle);
264
265 static struct value *cplus_value_of_child (struct varobj *parent, int index);
266
267 static struct type *cplus_type_of_child (struct varobj *parent, int index);
268
269 static char *cplus_value_of_variable (struct varobj *var);
270
271 /* Java implementation */
272
273 static int java_number_of_children (struct varobj *var);
274
275 static char *java_name_of_variable (struct varobj *parent);
276
277 static char *java_name_of_child (struct varobj *parent, int index);
278
279 static char *java_path_expr_of_child (struct varobj *child);
280
281 static struct value *java_value_of_root (struct varobj **var_handle);
282
283 static struct value *java_value_of_child (struct varobj *parent, int index);
284
285 static struct type *java_type_of_child (struct varobj *parent, int index);
286
287 static char *java_value_of_variable (struct varobj *var);
288
289 /* The language specific vector */
290
291 struct language_specific
292 {
293
294 /* The language of this variable */
295 enum varobj_languages language;
296
297 /* The number of children of PARENT. */
298 int (*number_of_children) (struct varobj * parent);
299
300 /* The name (expression) of a root varobj. */
301 char *(*name_of_variable) (struct varobj * parent);
302
303 /* The name of the INDEX'th child of PARENT. */
304 char *(*name_of_child) (struct varobj * parent, int index);
305
306 /* Returns the rooted expression of CHILD, which is a variable
307 obtain that has some parent. */
308 char *(*path_expr_of_child) (struct varobj * child);
309
310 /* The ``struct value *'' of the root variable ROOT. */
311 struct value *(*value_of_root) (struct varobj ** root_handle);
312
313 /* The ``struct value *'' of the INDEX'th child of PARENT. */
314 struct value *(*value_of_child) (struct varobj * parent, int index);
315
316 /* The type of the INDEX'th child of PARENT. */
317 struct type *(*type_of_child) (struct varobj * parent, int index);
318
319 /* The current value of VAR. */
320 char *(*value_of_variable) (struct varobj * var);
321 };
322
323 /* Array of known source language routines. */
324 static struct language_specific languages[vlang_end] = {
325 /* Unknown (try treating as C */
326 {
327 vlang_unknown,
328 c_number_of_children,
329 c_name_of_variable,
330 c_name_of_child,
331 c_path_expr_of_child,
332 c_value_of_root,
333 c_value_of_child,
334 c_type_of_child,
335 c_value_of_variable}
336 ,
337 /* C */
338 {
339 vlang_c,
340 c_number_of_children,
341 c_name_of_variable,
342 c_name_of_child,
343 c_path_expr_of_child,
344 c_value_of_root,
345 c_value_of_child,
346 c_type_of_child,
347 c_value_of_variable}
348 ,
349 /* C++ */
350 {
351 vlang_cplus,
352 cplus_number_of_children,
353 cplus_name_of_variable,
354 cplus_name_of_child,
355 cplus_path_expr_of_child,
356 cplus_value_of_root,
357 cplus_value_of_child,
358 cplus_type_of_child,
359 cplus_value_of_variable}
360 ,
361 /* Java */
362 {
363 vlang_java,
364 java_number_of_children,
365 java_name_of_variable,
366 java_name_of_child,
367 java_path_expr_of_child,
368 java_value_of_root,
369 java_value_of_child,
370 java_type_of_child,
371 java_value_of_variable}
372 };
373
374 /* A little convenience enum for dealing with C++/Java */
375 enum vsections
376 {
377 v_public = 0, v_private, v_protected
378 };
379
380 /* Private data */
381
382 /* Mappings of varobj_display_formats enums to gdb's format codes */
383 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
384
385 /* Header of the list of root variable objects */
386 static struct varobj_root *rootlist;
387 static int rootcount = 0; /* number of root varobjs in the list */
388
389 /* Prime number indicating the number of buckets in the hash table */
390 /* A prime large enough to avoid too many colisions */
391 #define VAROBJ_TABLE_SIZE 227
392
393 /* Pointer to the varobj hash table (built at run time) */
394 static struct vlist **varobj_table;
395
396 /* Is the variable X one of our "fake" children? */
397 #define CPLUS_FAKE_CHILD(x) \
398 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
399 \f
400
401 /* API Implementation */
402 static int
403 is_root_p (struct varobj *var)
404 {
405 return (var->root->rootvar == var);
406 }
407
408 /* Creates a varobj (not its children) */
409
410 /* Return the full FRAME which corresponds to the given CORE_ADDR
411 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
412
413 static struct frame_info *
414 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
415 {
416 struct frame_info *frame = NULL;
417
418 if (frame_addr == (CORE_ADDR) 0)
419 return NULL;
420
421 while (1)
422 {
423 frame = get_prev_frame (frame);
424 if (frame == NULL)
425 return NULL;
426 if (get_frame_base_address (frame) == frame_addr)
427 return frame;
428 }
429 }
430
431 struct varobj *
432 varobj_create (char *objname,
433 char *expression, CORE_ADDR frame, enum varobj_type type)
434 {
435 struct varobj *var;
436 struct frame_info *fi;
437 struct frame_info *old_fi = NULL;
438 struct block *block;
439 struct cleanup *old_chain;
440
441 /* Fill out a varobj structure for the (root) variable being constructed. */
442 var = new_root_variable ();
443 old_chain = make_cleanup_free_variable (var);
444
445 if (expression != NULL)
446 {
447 char *p;
448 enum varobj_languages lang;
449 struct value *value = NULL;
450 int expr_len;
451
452 /* Parse and evaluate the expression, filling in as much
453 of the variable's data as possible */
454
455 /* Allow creator to specify context of variable */
456 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
457 fi = deprecated_safe_get_selected_frame ();
458 else
459 /* FIXME: cagney/2002-11-23: This code should be doing a
460 lookup using the frame ID and not just the frame's
461 ``address''. This, of course, means an interface change.
462 However, with out that interface change ISAs, such as the
463 ia64 with its two stacks, won't work. Similar goes for the
464 case where there is a frameless function. */
465 fi = find_frame_addr_in_frame_chain (frame);
466
467 /* frame = -2 means always use selected frame */
468 if (type == USE_SELECTED_FRAME)
469 var->root->use_selected_frame = 1;
470
471 block = NULL;
472 if (fi != NULL)
473 block = get_frame_block (fi, 0);
474
475 p = expression;
476 innermost_block = NULL;
477 /* Wrap the call to parse expression, so we can
478 return a sensible error. */
479 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
480 {
481 return NULL;
482 }
483
484 /* Don't allow variables to be created for types. */
485 if (var->root->exp->elts[0].opcode == OP_TYPE)
486 {
487 do_cleanups (old_chain);
488 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
489 " as an expression.\n");
490 return NULL;
491 }
492
493 var->format = variable_default_display (var);
494 var->root->valid_block = innermost_block;
495 expr_len = strlen (expression);
496 var->name = savestring (expression, expr_len);
497 /* For a root var, the name and the expr are the same. */
498 var->path_expr = savestring (expression, expr_len);
499
500 /* When the frame is different from the current frame,
501 we must select the appropriate frame before parsing
502 the expression, otherwise the value will not be current.
503 Since select_frame is so benign, just call it for all cases. */
504 if (fi != NULL)
505 {
506 var->root->frame = get_frame_id (fi);
507 old_fi = get_selected_frame (NULL);
508 select_frame (fi);
509 }
510
511 /* We definitely need to catch errors here.
512 If evaluate_expression succeeds we got the value we wanted.
513 But if it fails, we still go on with a call to evaluate_type() */
514 if (!gdb_evaluate_expression (var->root->exp, &value))
515 {
516 /* Error getting the value. Try to at least get the
517 right type. */
518 struct value *type_only_value = evaluate_type (var->root->exp);
519 var->type = value_type (type_only_value);
520 }
521 else
522 var->type = value_type (value);
523
524 install_new_value (var, value, 1 /* Initial assignment */);
525
526 /* Set language info */
527 lang = variable_language (var);
528 var->root->lang = &languages[lang];
529
530 /* Set ourselves as our root */
531 var->root->rootvar = var;
532
533 /* Reset the selected frame */
534 if (fi != NULL)
535 select_frame (old_fi);
536 }
537
538 /* If the variable object name is null, that means this
539 is a temporary variable, so don't install it. */
540
541 if ((var != NULL) && (objname != NULL))
542 {
543 var->obj_name = savestring (objname, strlen (objname));
544
545 /* If a varobj name is duplicated, the install will fail so
546 we must clenup */
547 if (!install_variable (var))
548 {
549 do_cleanups (old_chain);
550 return NULL;
551 }
552 }
553
554 discard_cleanups (old_chain);
555 return var;
556 }
557
558 /* Generates an unique name that can be used for a varobj */
559
560 char *
561 varobj_gen_name (void)
562 {
563 static int id = 0;
564 char *obj_name;
565
566 /* generate a name for this object */
567 id++;
568 obj_name = xstrprintf ("var%d", id);
569
570 return obj_name;
571 }
572
573 /* Given an "objname", returns the pointer to the corresponding varobj
574 or NULL if not found */
575
576 struct varobj *
577 varobj_get_handle (char *objname)
578 {
579 struct vlist *cv;
580 const char *chp;
581 unsigned int index = 0;
582 unsigned int i = 1;
583
584 for (chp = objname; *chp; chp++)
585 {
586 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
587 }
588
589 cv = *(varobj_table + index);
590 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
591 cv = cv->next;
592
593 if (cv == NULL)
594 error (_("Variable object not found"));
595
596 return cv->var;
597 }
598
599 /* Given the handle, return the name of the object */
600
601 char *
602 varobj_get_objname (struct varobj *var)
603 {
604 return var->obj_name;
605 }
606
607 /* Given the handle, return the expression represented by the object */
608
609 char *
610 varobj_get_expression (struct varobj *var)
611 {
612 return name_of_variable (var);
613 }
614
615 /* Deletes a varobj and all its children if only_children == 0,
616 otherwise deletes only the children; returns a malloc'ed list of all the
617 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
618
619 int
620 varobj_delete (struct varobj *var, char ***dellist, int only_children)
621 {
622 int delcount;
623 int mycount;
624 struct cpstack *result = NULL;
625 char **cp;
626
627 /* Initialize a stack for temporary results */
628 cppush (&result, NULL);
629
630 if (only_children)
631 /* Delete only the variable children */
632 delcount = delete_variable (&result, var, 1 /* only the children */ );
633 else
634 /* Delete the variable and all its children */
635 delcount = delete_variable (&result, var, 0 /* parent+children */ );
636
637 /* We may have been asked to return a list of what has been deleted */
638 if (dellist != NULL)
639 {
640 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
641
642 cp = *dellist;
643 mycount = delcount;
644 *cp = cppop (&result);
645 while ((*cp != NULL) && (mycount > 0))
646 {
647 mycount--;
648 cp++;
649 *cp = cppop (&result);
650 }
651
652 if (mycount || (*cp != NULL))
653 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
654 mycount);
655 }
656
657 return delcount;
658 }
659
660 /* Set/Get variable object display format */
661
662 enum varobj_display_formats
663 varobj_set_display_format (struct varobj *var,
664 enum varobj_display_formats format)
665 {
666 switch (format)
667 {
668 case FORMAT_NATURAL:
669 case FORMAT_BINARY:
670 case FORMAT_DECIMAL:
671 case FORMAT_HEXADECIMAL:
672 case FORMAT_OCTAL:
673 var->format = format;
674 break;
675
676 default:
677 var->format = variable_default_display (var);
678 }
679
680 return var->format;
681 }
682
683 enum varobj_display_formats
684 varobj_get_display_format (struct varobj *var)
685 {
686 return var->format;
687 }
688
689 void
690 varobj_set_frozen (struct varobj *var, int frozen)
691 {
692 /* When a variable is unfrozen, we don't fetch its value.
693 The 'not_fetched' flag remains set, so next -var-update
694 won't complain.
695
696 We don't fetch the value, because for structures the client
697 should do -var-update anyway. It would be bad to have different
698 client-size logic for structure and other types. */
699 var->frozen = frozen;
700 }
701
702 int
703 varobj_get_frozen (struct varobj *var)
704 {
705 return var->frozen;
706 }
707
708
709 int
710 varobj_get_num_children (struct varobj *var)
711 {
712 if (var->num_children == -1)
713 var->num_children = number_of_children (var);
714
715 return var->num_children;
716 }
717
718 /* Creates a list of the immediate children of a variable object;
719 the return code is the number of such children or -1 on error */
720
721 int
722 varobj_list_children (struct varobj *var, struct varobj ***childlist)
723 {
724 struct varobj *child;
725 char *name;
726 int i;
727
728 /* sanity check: have we been passed a pointer? */
729 if (childlist == NULL)
730 return -1;
731
732 *childlist = NULL;
733
734 if (var->num_children == -1)
735 var->num_children = number_of_children (var);
736
737 /* If that failed, give up. */
738 if (var->num_children == -1)
739 return -1;
740
741 /* If we're called when the list of children is not yet initialized,
742 allocate enough elements in it. */
743 while (VEC_length (varobj_p, var->children) < var->num_children)
744 VEC_safe_push (varobj_p, var->children, NULL);
745
746 /* List of children */
747 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
748
749 for (i = 0; i < var->num_children; i++)
750 {
751 varobj_p existing;
752
753 /* Mark as the end in case we bail out */
754 *((*childlist) + i) = NULL;
755
756 existing = VEC_index (varobj_p, var->children, i);
757
758 if (existing == NULL)
759 {
760 /* Either it's the first call to varobj_list_children for
761 this variable object, and the child was never created,
762 or it was explicitly deleted by the client. */
763 name = name_of_child (var, i);
764 existing = create_child (var, i, name);
765 VEC_replace (varobj_p, var->children, i, existing);
766 }
767
768 *((*childlist) + i) = existing;
769 }
770
771 /* End of list is marked by a NULL pointer */
772 *((*childlist) + i) = NULL;
773
774 return var->num_children;
775 }
776
777 /* Obtain the type of an object Variable as a string similar to the one gdb
778 prints on the console */
779
780 char *
781 varobj_get_type (struct varobj *var)
782 {
783 struct value *val;
784 struct cleanup *old_chain;
785 struct ui_file *stb;
786 char *thetype;
787 long length;
788
789 /* For the "fake" variables, do not return a type. (It's type is
790 NULL, too.)
791 Do not return a type for invalid variables as well. */
792 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
793 return NULL;
794
795 stb = mem_fileopen ();
796 old_chain = make_cleanup_ui_file_delete (stb);
797
798 /* To print the type, we simply create a zero ``struct value *'' and
799 cast it to our type. We then typeprint this variable. */
800 val = value_zero (var->type, not_lval);
801 type_print (value_type (val), "", stb, -1);
802
803 thetype = ui_file_xstrdup (stb, &length);
804 do_cleanups (old_chain);
805 return thetype;
806 }
807
808 /* Obtain the type of an object variable. */
809
810 struct type *
811 varobj_get_gdb_type (struct varobj *var)
812 {
813 return var->type;
814 }
815
816 /* Return a pointer to the full rooted expression of varobj VAR.
817 If it has not been computed yet, compute it. */
818 char *
819 varobj_get_path_expr (struct varobj *var)
820 {
821 if (var->path_expr != NULL)
822 return var->path_expr;
823 else
824 {
825 /* For root varobjs, we initialize path_expr
826 when creating varobj, so here it should be
827 child varobj. */
828 gdb_assert (!is_root_p (var));
829 return (*var->root->lang->path_expr_of_child) (var);
830 }
831 }
832
833 enum varobj_languages
834 varobj_get_language (struct varobj *var)
835 {
836 return variable_language (var);
837 }
838
839 int
840 varobj_get_attributes (struct varobj *var)
841 {
842 int attributes = 0;
843
844 if (varobj_editable_p (var))
845 /* FIXME: define masks for attributes */
846 attributes |= 0x00000001; /* Editable */
847
848 return attributes;
849 }
850
851 char *
852 varobj_get_value (struct varobj *var)
853 {
854 return my_value_of_variable (var);
855 }
856
857 /* Set the value of an object variable (if it is editable) to the
858 value of the given expression */
859 /* Note: Invokes functions that can call error() */
860
861 int
862 varobj_set_value (struct varobj *var, char *expression)
863 {
864 struct value *val;
865 int offset = 0;
866 int error = 0;
867
868 /* The argument "expression" contains the variable's new value.
869 We need to first construct a legal expression for this -- ugh! */
870 /* Does this cover all the bases? */
871 struct expression *exp;
872 struct value *value;
873 int saved_input_radix = input_radix;
874 char *s = expression;
875 int i;
876
877 gdb_assert (varobj_editable_p (var));
878
879 input_radix = 10; /* ALWAYS reset to decimal temporarily */
880 exp = parse_exp_1 (&s, 0, 0);
881 if (!gdb_evaluate_expression (exp, &value))
882 {
883 /* We cannot proceed without a valid expression. */
884 xfree (exp);
885 return 0;
886 }
887
888 /* All types that are editable must also be changeable. */
889 gdb_assert (varobj_value_is_changeable_p (var));
890
891 /* The value of a changeable variable object must not be lazy. */
892 gdb_assert (!value_lazy (var->value));
893
894 /* Need to coerce the input. We want to check if the
895 value of the variable object will be different
896 after assignment, and the first thing value_assign
897 does is coerce the input.
898 For example, if we are assigning an array to a pointer variable we
899 should compare the pointer with the the array's address, not with the
900 array's content. */
901 value = coerce_array (value);
902
903 /* The new value may be lazy. gdb_value_assign, or
904 rather value_contents, will take care of this.
905 If fetching of the new value will fail, gdb_value_assign
906 with catch the exception. */
907 if (!gdb_value_assign (var->value, value, &val))
908 return 0;
909
910 /* If the value has changed, record it, so that next -var-update can
911 report this change. If a variable had a value of '1', we've set it
912 to '333' and then set again to '1', when -var-update will report this
913 variable as changed -- because the first assignment has set the
914 'updated' flag. There's no need to optimize that, because return value
915 of -var-update should be considered an approximation. */
916 var->updated = install_new_value (var, val, 0 /* Compare values. */);
917 input_radix = saved_input_radix;
918 return 1;
919 }
920
921 /* Returns a malloc'ed list with all root variable objects */
922 int
923 varobj_list (struct varobj ***varlist)
924 {
925 struct varobj **cv;
926 struct varobj_root *croot;
927 int mycount = rootcount;
928
929 /* Alloc (rootcount + 1) entries for the result */
930 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
931
932 cv = *varlist;
933 croot = rootlist;
934 while ((croot != NULL) && (mycount > 0))
935 {
936 *cv = croot->rootvar;
937 mycount--;
938 cv++;
939 croot = croot->next;
940 }
941 /* Mark the end of the list */
942 *cv = NULL;
943
944 if (mycount || (croot != NULL))
945 warning
946 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
947 rootcount, mycount);
948
949 return rootcount;
950 }
951
952 /* Assign a new value to a variable object. If INITIAL is non-zero,
953 this is the first assignement after the variable object was just
954 created, or changed type. In that case, just assign the value
955 and return 0.
956 Otherwise, assign the value and if type_changeable returns non-zero,
957 find if the new value is different from the current value.
958 Return 1 if so, and 0 if the values are equal.
959
960 The VALUE parameter should not be released -- the function will
961 take care of releasing it when needed. */
962 static int
963 install_new_value (struct varobj *var, struct value *value, int initial)
964 {
965 int changeable;
966 int need_to_fetch;
967 int changed = 0;
968 int intentionally_not_fetched = 0;
969 char *print_value = NULL;
970
971 /* We need to know the varobj's type to decide if the value should
972 be fetched or not. C++ fake children (public/protected/private) don't have
973 a type. */
974 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
975 changeable = varobj_value_is_changeable_p (var);
976 need_to_fetch = changeable;
977
978 /* We are not interested in the address of references, and given
979 that in C++ a reference is not rebindable, it cannot
980 meaningfully change. So, get hold of the real value. */
981 if (value)
982 {
983 value = coerce_ref (value);
984 release_value (value);
985 }
986
987 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
988 /* For unions, we need to fetch the value implicitly because
989 of implementation of union member fetch. When gdb
990 creates a value for a field and the value of the enclosing
991 structure is not lazy, it immediately copies the necessary
992 bytes from the enclosing values. If the enclosing value is
993 lazy, the call to value_fetch_lazy on the field will read
994 the data from memory. For unions, that means we'll read the
995 same memory more than once, which is not desirable. So
996 fetch now. */
997 need_to_fetch = 1;
998
999 /* The new value might be lazy. If the type is changeable,
1000 that is we'll be comparing values of this type, fetch the
1001 value now. Otherwise, on the next update the old value
1002 will be lazy, which means we've lost that old value. */
1003 if (need_to_fetch && value && value_lazy (value))
1004 {
1005 struct varobj *parent = var->parent;
1006 int frozen = var->frozen;
1007 for (; !frozen && parent; parent = parent->parent)
1008 frozen |= parent->frozen;
1009
1010 if (frozen && initial)
1011 {
1012 /* For variables that are frozen, or are children of frozen
1013 variables, we don't do fetch on initial assignment.
1014 For non-initial assignemnt we do the fetch, since it means we're
1015 explicitly asked to compare the new value with the old one. */
1016 intentionally_not_fetched = 1;
1017 }
1018 else if (!gdb_value_fetch_lazy (value))
1019 {
1020 /* Set the value to NULL, so that for the next -var-update,
1021 we don't try to compare the new value with this value,
1022 that we couldn't even read. */
1023 value = NULL;
1024 }
1025 }
1026
1027 /* Below, we'll be comparing string rendering of old and new
1028 values. Don't get string rendering if the value is
1029 lazy -- if it is, the code above has decided that the value
1030 should not be fetched. */
1031 if (value && !value_lazy (value))
1032 print_value = value_get_print_value (value, var->format);
1033
1034 /* If the type is changeable, compare the old and the new values.
1035 If this is the initial assignment, we don't have any old value
1036 to compare with. */
1037 if (!initial && changeable)
1038 {
1039 /* If the value of the varobj was changed by -var-set-value, then the
1040 value in the varobj and in the target is the same. However, that value
1041 is different from the value that the varobj had after the previous
1042 -var-update. So need to the varobj as changed. */
1043 if (var->updated)
1044 {
1045 changed = 1;
1046 }
1047 else
1048 {
1049 /* Try to compare the values. That requires that both
1050 values are non-lazy. */
1051 if (var->not_fetched && value_lazy (var->value))
1052 {
1053 /* This is a frozen varobj and the value was never read.
1054 Presumably, UI shows some "never read" indicator.
1055 Now that we've fetched the real value, we need to report
1056 this varobj as changed so that UI can show the real
1057 value. */
1058 changed = 1;
1059 }
1060 else if (var->value == NULL && value == NULL)
1061 /* Equal. */
1062 ;
1063 else if (var->value == NULL || value == NULL)
1064 {
1065 changed = 1;
1066 }
1067 else
1068 {
1069 gdb_assert (!value_lazy (var->value));
1070 gdb_assert (!value_lazy (value));
1071
1072 gdb_assert (var->print_value != NULL && print_value != NULL);
1073 if (strcmp (var->print_value, print_value) != 0)
1074 changed = 1;
1075 }
1076 }
1077 }
1078
1079 /* We must always keep the new value, since children depend on it. */
1080 if (var->value != NULL && var->value != value)
1081 value_free (var->value);
1082 var->value = value;
1083 if (var->print_value)
1084 xfree (var->print_value);
1085 var->print_value = print_value;
1086 if (value && value_lazy (value) && intentionally_not_fetched)
1087 var->not_fetched = 1;
1088 else
1089 var->not_fetched = 0;
1090 var->updated = 0;
1091
1092 gdb_assert (!var->value || value_type (var->value));
1093
1094 return changed;
1095 }
1096
1097 /* Update the values for a variable and its children. This is a
1098 two-pronged attack. First, re-parse the value for the root's
1099 expression to see if it's changed. Then go all the way
1100 through its children, reconstructing them and noting if they've
1101 changed.
1102 Return value:
1103 < 0 for error values, see varobj.h.
1104 Otherwise it is the number of children + parent changed.
1105
1106 The EXPLICIT parameter specifies if this call is result
1107 of MI request to update this specific variable, or
1108 result of implicit -var-update *. For implicit request, we don't
1109 update frozen variables.
1110
1111 NOTE: This function may delete the caller's varobj. If it
1112 returns TYPE_CHANGED, then it has done this and VARP will be modified
1113 to point to the new varobj. */
1114
1115 int
1116 varobj_update (struct varobj **varp, struct varobj ***changelist,
1117 int explicit)
1118 {
1119 int changed = 0;
1120 int type_changed = 0;
1121 int i;
1122 int vleft;
1123 struct varobj *v;
1124 struct varobj **cv;
1125 struct varobj **templist = NULL;
1126 struct value *new;
1127 VEC (varobj_p) *stack = NULL;
1128 VEC (varobj_p) *result = NULL;
1129 struct frame_id old_fid;
1130 struct frame_info *fi;
1131
1132 /* sanity check: have we been passed a pointer? */
1133 gdb_assert (changelist);
1134
1135 /* Frozen means frozen -- we don't check for any change in
1136 this varobj, including its going out of scope, or
1137 changing type. One use case for frozen varobjs is
1138 retaining previously evaluated expressions, and we don't
1139 want them to be reevaluated at all. */
1140 if (!explicit && (*varp)->frozen)
1141 return 0;
1142
1143 if (!(*varp)->root->is_valid)
1144 return INVALID;
1145
1146 if ((*varp)->root->rootvar == *varp)
1147 {
1148 /* Save the selected stack frame, since we will need to change it
1149 in order to evaluate expressions. */
1150 old_fid = get_frame_id (deprecated_safe_get_selected_frame ());
1151
1152 /* Update the root variable. value_of_root can return NULL
1153 if the variable is no longer around, i.e. we stepped out of
1154 the frame in which a local existed. We are letting the
1155 value_of_root variable dispose of the varobj if the type
1156 has changed. */
1157 type_changed = 1;
1158 new = value_of_root (varp, &type_changed);
1159
1160 /* Restore selected frame. */
1161 fi = frame_find_by_id (old_fid);
1162 if (fi)
1163 select_frame (fi);
1164
1165 /* If this is a "use_selected_frame" varobj, and its type has changed,
1166 them note that it's changed. */
1167 if (type_changed)
1168 VEC_safe_push (varobj_p, result, *varp);
1169
1170 if (install_new_value ((*varp), new, type_changed))
1171 {
1172 /* If type_changed is 1, install_new_value will never return
1173 non-zero, so we'll never report the same variable twice. */
1174 gdb_assert (!type_changed);
1175 VEC_safe_push (varobj_p, result, *varp);
1176 }
1177
1178 if (new == NULL)
1179 {
1180 /* This means the varobj itself is out of scope.
1181 Report it. */
1182 VEC_free (varobj_p, result);
1183 return NOT_IN_SCOPE;
1184 }
1185 }
1186
1187 VEC_safe_push (varobj_p, stack, *varp);
1188
1189 /* Walk through the children, reconstructing them all. */
1190 while (!VEC_empty (varobj_p, stack))
1191 {
1192 v = VEC_pop (varobj_p, stack);
1193
1194 /* Push any children. Use reverse order so that the first
1195 child is popped from the work stack first, and so
1196 will be added to result first. This does not
1197 affect correctness, just "nicer". */
1198 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1199 {
1200 varobj_p c = VEC_index (varobj_p, v->children, i);
1201 /* Child may be NULL if explicitly deleted by -var-delete. */
1202 if (c != NULL && !c->frozen)
1203 VEC_safe_push (varobj_p, stack, c);
1204 }
1205
1206 /* Update this variable, unless it's a root, which is already
1207 updated. */
1208 if (v->root->rootvar != v)
1209 {
1210 new = value_of_child (v->parent, v->index);
1211 if (install_new_value (v, new, 0 /* type not changed */))
1212 {
1213 /* Note that it's changed */
1214 VEC_safe_push (varobj_p, result, v);
1215 v->updated = 0;
1216 }
1217 }
1218 }
1219
1220 /* Alloc (changed + 1) list entries. */
1221 changed = VEC_length (varobj_p, result);
1222 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1223 cv = *changelist;
1224
1225 for (i = 0; i < changed; ++i)
1226 {
1227 *cv = VEC_index (varobj_p, result, i);
1228 gdb_assert (*cv != NULL);
1229 ++cv;
1230 }
1231 *cv = 0;
1232
1233 VEC_free (varobj_p, stack);
1234 VEC_free (varobj_p, result);
1235
1236 if (type_changed)
1237 return TYPE_CHANGED;
1238 else
1239 return changed;
1240 }
1241 \f
1242
1243 /* Helper functions */
1244
1245 /*
1246 * Variable object construction/destruction
1247 */
1248
1249 static int
1250 delete_variable (struct cpstack **resultp, struct varobj *var,
1251 int only_children_p)
1252 {
1253 int delcount = 0;
1254
1255 delete_variable_1 (resultp, &delcount, var,
1256 only_children_p, 1 /* remove_from_parent_p */ );
1257
1258 return delcount;
1259 }
1260
1261 /* Delete the variable object VAR and its children */
1262 /* IMPORTANT NOTE: If we delete a variable which is a child
1263 and the parent is not removed we dump core. It must be always
1264 initially called with remove_from_parent_p set */
1265 static void
1266 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1267 struct varobj *var, int only_children_p,
1268 int remove_from_parent_p)
1269 {
1270 int i;
1271
1272 /* Delete any children of this variable, too. */
1273 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1274 {
1275 varobj_p child = VEC_index (varobj_p, var->children, i);
1276 if (!child)
1277 continue;
1278 if (!remove_from_parent_p)
1279 child->parent = NULL;
1280 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1281 }
1282 VEC_free (varobj_p, var->children);
1283
1284 /* if we were called to delete only the children we are done here */
1285 if (only_children_p)
1286 return;
1287
1288 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1289 /* If the name is null, this is a temporary variable, that has not
1290 yet been installed, don't report it, it belongs to the caller... */
1291 if (var->obj_name != NULL)
1292 {
1293 cppush (resultp, xstrdup (var->obj_name));
1294 *delcountp = *delcountp + 1;
1295 }
1296
1297 /* If this variable has a parent, remove it from its parent's list */
1298 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1299 (as indicated by remove_from_parent_p) we don't bother doing an
1300 expensive list search to find the element to remove when we are
1301 discarding the list afterwards */
1302 if ((remove_from_parent_p) && (var->parent != NULL))
1303 {
1304 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1305 }
1306
1307 if (var->obj_name != NULL)
1308 uninstall_variable (var);
1309
1310 /* Free memory associated with this variable */
1311 free_variable (var);
1312 }
1313
1314 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1315 static int
1316 install_variable (struct varobj *var)
1317 {
1318 struct vlist *cv;
1319 struct vlist *newvl;
1320 const char *chp;
1321 unsigned int index = 0;
1322 unsigned int i = 1;
1323
1324 for (chp = var->obj_name; *chp; chp++)
1325 {
1326 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1327 }
1328
1329 cv = *(varobj_table + index);
1330 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1331 cv = cv->next;
1332
1333 if (cv != NULL)
1334 error (_("Duplicate variable object name"));
1335
1336 /* Add varobj to hash table */
1337 newvl = xmalloc (sizeof (struct vlist));
1338 newvl->next = *(varobj_table + index);
1339 newvl->var = var;
1340 *(varobj_table + index) = newvl;
1341
1342 /* If root, add varobj to root list */
1343 if (is_root_p (var))
1344 {
1345 /* Add to list of root variables */
1346 if (rootlist == NULL)
1347 var->root->next = NULL;
1348 else
1349 var->root->next = rootlist;
1350 rootlist = var->root;
1351 rootcount++;
1352 }
1353
1354 return 1; /* OK */
1355 }
1356
1357 /* Unistall the object VAR. */
1358 static void
1359 uninstall_variable (struct varobj *var)
1360 {
1361 struct vlist *cv;
1362 struct vlist *prev;
1363 struct varobj_root *cr;
1364 struct varobj_root *prer;
1365 const char *chp;
1366 unsigned int index = 0;
1367 unsigned int i = 1;
1368
1369 /* Remove varobj from hash table */
1370 for (chp = var->obj_name; *chp; chp++)
1371 {
1372 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1373 }
1374
1375 cv = *(varobj_table + index);
1376 prev = NULL;
1377 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1378 {
1379 prev = cv;
1380 cv = cv->next;
1381 }
1382
1383 if (varobjdebug)
1384 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1385
1386 if (cv == NULL)
1387 {
1388 warning
1389 ("Assertion failed: Could not find variable object \"%s\" to delete",
1390 var->obj_name);
1391 return;
1392 }
1393
1394 if (prev == NULL)
1395 *(varobj_table + index) = cv->next;
1396 else
1397 prev->next = cv->next;
1398
1399 xfree (cv);
1400
1401 /* If root, remove varobj from root list */
1402 if (is_root_p (var))
1403 {
1404 /* Remove from list of root variables */
1405 if (rootlist == var->root)
1406 rootlist = var->root->next;
1407 else
1408 {
1409 prer = NULL;
1410 cr = rootlist;
1411 while ((cr != NULL) && (cr->rootvar != var))
1412 {
1413 prer = cr;
1414 cr = cr->next;
1415 }
1416 if (cr == NULL)
1417 {
1418 warning
1419 ("Assertion failed: Could not find varobj \"%s\" in root list",
1420 var->obj_name);
1421 return;
1422 }
1423 if (prer == NULL)
1424 rootlist = NULL;
1425 else
1426 prer->next = cr->next;
1427 }
1428 rootcount--;
1429 }
1430
1431 }
1432
1433 /* Create and install a child of the parent of the given name */
1434 static struct varobj *
1435 create_child (struct varobj *parent, int index, char *name)
1436 {
1437 struct varobj *child;
1438 char *childs_name;
1439 struct value *value;
1440
1441 child = new_variable ();
1442
1443 /* name is allocated by name_of_child */
1444 child->name = name;
1445 child->index = index;
1446 value = value_of_child (parent, index);
1447 child->parent = parent;
1448 child->root = parent->root;
1449 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1450 child->obj_name = childs_name;
1451 install_variable (child);
1452
1453 /* Compute the type of the child. Must do this before
1454 calling install_new_value. */
1455 if (value != NULL)
1456 /* If the child had no evaluation errors, var->value
1457 will be non-NULL and contain a valid type. */
1458 child->type = value_type (value);
1459 else
1460 /* Otherwise, we must compute the type. */
1461 child->type = (*child->root->lang->type_of_child) (child->parent,
1462 child->index);
1463 install_new_value (child, value, 1);
1464
1465 return child;
1466 }
1467 \f
1468
1469 /*
1470 * Miscellaneous utility functions.
1471 */
1472
1473 /* Allocate memory and initialize a new variable */
1474 static struct varobj *
1475 new_variable (void)
1476 {
1477 struct varobj *var;
1478
1479 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1480 var->name = NULL;
1481 var->path_expr = NULL;
1482 var->obj_name = NULL;
1483 var->index = -1;
1484 var->type = NULL;
1485 var->value = NULL;
1486 var->num_children = -1;
1487 var->parent = NULL;
1488 var->children = NULL;
1489 var->format = 0;
1490 var->root = NULL;
1491 var->updated = 0;
1492 var->print_value = NULL;
1493 var->frozen = 0;
1494 var->not_fetched = 0;
1495
1496 return var;
1497 }
1498
1499 /* Allocate memory and initialize a new root variable */
1500 static struct varobj *
1501 new_root_variable (void)
1502 {
1503 struct varobj *var = new_variable ();
1504 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1505 var->root->lang = NULL;
1506 var->root->exp = NULL;
1507 var->root->valid_block = NULL;
1508 var->root->frame = null_frame_id;
1509 var->root->use_selected_frame = 0;
1510 var->root->rootvar = NULL;
1511 var->root->is_valid = 1;
1512
1513 return var;
1514 }
1515
1516 /* Free any allocated memory associated with VAR. */
1517 static void
1518 free_variable (struct varobj *var)
1519 {
1520 /* Free the expression if this is a root variable. */
1521 if (is_root_p (var))
1522 {
1523 free_current_contents (&var->root->exp);
1524 xfree (var->root);
1525 }
1526
1527 xfree (var->name);
1528 xfree (var->obj_name);
1529 xfree (var->print_value);
1530 xfree (var->path_expr);
1531 xfree (var);
1532 }
1533
1534 static void
1535 do_free_variable_cleanup (void *var)
1536 {
1537 free_variable (var);
1538 }
1539
1540 static struct cleanup *
1541 make_cleanup_free_variable (struct varobj *var)
1542 {
1543 return make_cleanup (do_free_variable_cleanup, var);
1544 }
1545
1546 /* This returns the type of the variable. It also skips past typedefs
1547 to return the real type of the variable.
1548
1549 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1550 except within get_target_type and get_type. */
1551 static struct type *
1552 get_type (struct varobj *var)
1553 {
1554 struct type *type;
1555 type = var->type;
1556
1557 if (type != NULL)
1558 type = check_typedef (type);
1559
1560 return type;
1561 }
1562
1563 /* Return the type of the value that's stored in VAR,
1564 or that would have being stored there if the
1565 value were accessible.
1566
1567 This differs from VAR->type in that VAR->type is always
1568 the true type of the expession in the source language.
1569 The return value of this function is the type we're
1570 actually storing in varobj, and using for displaying
1571 the values and for comparing previous and new values.
1572
1573 For example, top-level references are always stripped. */
1574 static struct type *
1575 get_value_type (struct varobj *var)
1576 {
1577 struct type *type;
1578
1579 if (var->value)
1580 type = value_type (var->value);
1581 else
1582 type = var->type;
1583
1584 type = check_typedef (type);
1585
1586 if (TYPE_CODE (type) == TYPE_CODE_REF)
1587 type = get_target_type (type);
1588
1589 type = check_typedef (type);
1590
1591 return type;
1592 }
1593
1594 /* This returns the target type (or NULL) of TYPE, also skipping
1595 past typedefs, just like get_type ().
1596
1597 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1598 except within get_target_type and get_type. */
1599 static struct type *
1600 get_target_type (struct type *type)
1601 {
1602 if (type != NULL)
1603 {
1604 type = TYPE_TARGET_TYPE (type);
1605 if (type != NULL)
1606 type = check_typedef (type);
1607 }
1608
1609 return type;
1610 }
1611
1612 /* What is the default display for this variable? We assume that
1613 everything is "natural". Any exceptions? */
1614 static enum varobj_display_formats
1615 variable_default_display (struct varobj *var)
1616 {
1617 return FORMAT_NATURAL;
1618 }
1619
1620 /* FIXME: The following should be generic for any pointer */
1621 static void
1622 cppush (struct cpstack **pstack, char *name)
1623 {
1624 struct cpstack *s;
1625
1626 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1627 s->name = name;
1628 s->next = *pstack;
1629 *pstack = s;
1630 }
1631
1632 /* FIXME: The following should be generic for any pointer */
1633 static char *
1634 cppop (struct cpstack **pstack)
1635 {
1636 struct cpstack *s;
1637 char *v;
1638
1639 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1640 return NULL;
1641
1642 s = *pstack;
1643 v = s->name;
1644 *pstack = (*pstack)->next;
1645 xfree (s);
1646
1647 return v;
1648 }
1649 \f
1650 /*
1651 * Language-dependencies
1652 */
1653
1654 /* Common entry points */
1655
1656 /* Get the language of variable VAR. */
1657 static enum varobj_languages
1658 variable_language (struct varobj *var)
1659 {
1660 enum varobj_languages lang;
1661
1662 switch (var->root->exp->language_defn->la_language)
1663 {
1664 default:
1665 case language_c:
1666 lang = vlang_c;
1667 break;
1668 case language_cplus:
1669 lang = vlang_cplus;
1670 break;
1671 case language_java:
1672 lang = vlang_java;
1673 break;
1674 }
1675
1676 return lang;
1677 }
1678
1679 /* Return the number of children for a given variable.
1680 The result of this function is defined by the language
1681 implementation. The number of children returned by this function
1682 is the number of children that the user will see in the variable
1683 display. */
1684 static int
1685 number_of_children (struct varobj *var)
1686 {
1687 return (*var->root->lang->number_of_children) (var);;
1688 }
1689
1690 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1691 static char *
1692 name_of_variable (struct varobj *var)
1693 {
1694 return (*var->root->lang->name_of_variable) (var);
1695 }
1696
1697 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1698 static char *
1699 name_of_child (struct varobj *var, int index)
1700 {
1701 return (*var->root->lang->name_of_child) (var, index);
1702 }
1703
1704 /* What is the ``struct value *'' of the root variable VAR?
1705 TYPE_CHANGED controls what to do if the type of a
1706 use_selected_frame = 1 variable changes. On input,
1707 TYPE_CHANGED = 1 means discard the old varobj, and replace
1708 it with this one. TYPE_CHANGED = 0 means leave it around.
1709 NB: In both cases, var_handle will point to the new varobj,
1710 so if you use TYPE_CHANGED = 0, you will have to stash the
1711 old varobj pointer away somewhere before calling this.
1712 On return, TYPE_CHANGED will be 1 if the type has changed, and
1713 0 otherwise. */
1714 static struct value *
1715 value_of_root (struct varobj **var_handle, int *type_changed)
1716 {
1717 struct varobj *var;
1718
1719 if (var_handle == NULL)
1720 return NULL;
1721
1722 var = *var_handle;
1723
1724 /* This should really be an exception, since this should
1725 only get called with a root variable. */
1726
1727 if (!is_root_p (var))
1728 return NULL;
1729
1730 if (var->root->use_selected_frame)
1731 {
1732 struct varobj *tmp_var;
1733 char *old_type, *new_type;
1734
1735 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1736 USE_SELECTED_FRAME);
1737 if (tmp_var == NULL)
1738 {
1739 return NULL;
1740 }
1741 old_type = varobj_get_type (var);
1742 new_type = varobj_get_type (tmp_var);
1743 if (strcmp (old_type, new_type) == 0)
1744 {
1745 varobj_delete (tmp_var, NULL, 0);
1746 *type_changed = 0;
1747 }
1748 else
1749 {
1750 if (*type_changed)
1751 {
1752 tmp_var->obj_name =
1753 savestring (var->obj_name, strlen (var->obj_name));
1754 varobj_delete (var, NULL, 0);
1755 }
1756 else
1757 {
1758 tmp_var->obj_name = varobj_gen_name ();
1759 }
1760 install_variable (tmp_var);
1761 *var_handle = tmp_var;
1762 var = *var_handle;
1763 *type_changed = 1;
1764 }
1765 xfree (old_type);
1766 xfree (new_type);
1767 }
1768 else
1769 {
1770 *type_changed = 0;
1771 }
1772
1773 return (*var->root->lang->value_of_root) (var_handle);
1774 }
1775
1776 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1777 static struct value *
1778 value_of_child (struct varobj *parent, int index)
1779 {
1780 struct value *value;
1781
1782 value = (*parent->root->lang->value_of_child) (parent, index);
1783
1784 return value;
1785 }
1786
1787 /* GDB already has a command called "value_of_variable". Sigh. */
1788 static char *
1789 my_value_of_variable (struct varobj *var)
1790 {
1791 if (var->root->is_valid)
1792 return (*var->root->lang->value_of_variable) (var);
1793 else
1794 return NULL;
1795 }
1796
1797 static char *
1798 value_get_print_value (struct value *value, enum varobj_display_formats format)
1799 {
1800 long dummy;
1801 struct ui_file *stb;
1802 struct cleanup *old_chain;
1803 char *thevalue;
1804
1805 if (value == NULL)
1806 return NULL;
1807
1808 stb = mem_fileopen ();
1809 old_chain = make_cleanup_ui_file_delete (stb);
1810
1811 common_val_print (value, stb, format_code[(int) format], 1, 0, 0);
1812 thevalue = ui_file_xstrdup (stb, &dummy);
1813
1814 do_cleanups (old_chain);
1815 return thevalue;
1816 }
1817
1818 int
1819 varobj_editable_p (struct varobj *var)
1820 {
1821 struct type *type;
1822 struct value *value;
1823
1824 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
1825 return 0;
1826
1827 type = get_value_type (var);
1828
1829 switch (TYPE_CODE (type))
1830 {
1831 case TYPE_CODE_STRUCT:
1832 case TYPE_CODE_UNION:
1833 case TYPE_CODE_ARRAY:
1834 case TYPE_CODE_FUNC:
1835 case TYPE_CODE_METHOD:
1836 return 0;
1837 break;
1838
1839 default:
1840 return 1;
1841 break;
1842 }
1843 }
1844
1845 /* Return non-zero if changes in value of VAR
1846 must be detected and reported by -var-update.
1847 Return zero is -var-update should never report
1848 changes of such values. This makes sense for structures
1849 (since the changes in children values will be reported separately),
1850 or for artifical objects (like 'public' pseudo-field in C++).
1851
1852 Return value of 0 means that gdb need not call value_fetch_lazy
1853 for the value of this variable object. */
1854 static int
1855 varobj_value_is_changeable_p (struct varobj *var)
1856 {
1857 int r;
1858 struct type *type;
1859
1860 if (CPLUS_FAKE_CHILD (var))
1861 return 0;
1862
1863 type = get_value_type (var);
1864
1865 switch (TYPE_CODE (type))
1866 {
1867 case TYPE_CODE_STRUCT:
1868 case TYPE_CODE_UNION:
1869 case TYPE_CODE_ARRAY:
1870 r = 0;
1871 break;
1872
1873 default:
1874 r = 1;
1875 }
1876
1877 return r;
1878 }
1879
1880 /* Given the value and the type of a variable object,
1881 adjust the value and type to those necessary
1882 for getting children of the variable object.
1883 This includes dereferencing top-level references
1884 to all types and dereferencing pointers to
1885 structures.
1886
1887 Both TYPE and *TYPE should be non-null. VALUE
1888 can be null if we want to only translate type.
1889 *VALUE can be null as well -- if the parent
1890 value is not known.
1891
1892 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
1893 depending on whether pointer was deferenced
1894 in this function. */
1895 static void
1896 adjust_value_for_child_access (struct value **value,
1897 struct type **type,
1898 int *was_ptr)
1899 {
1900 gdb_assert (type && *type);
1901
1902 if (was_ptr)
1903 *was_ptr = 0;
1904
1905 *type = check_typedef (*type);
1906
1907 /* The type of value stored in varobj, that is passed
1908 to us, is already supposed to be
1909 reference-stripped. */
1910
1911 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
1912
1913 /* Pointers to structures are treated just like
1914 structures when accessing children. Don't
1915 dererences pointers to other types. */
1916 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
1917 {
1918 struct type *target_type = get_target_type (*type);
1919 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
1920 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
1921 {
1922 if (value && *value)
1923 gdb_value_ind (*value, value);
1924 *type = target_type;
1925 if (was_ptr)
1926 *was_ptr = 1;
1927 }
1928 }
1929
1930 /* The 'get_target_type' function calls check_typedef on
1931 result, so we can immediately check type code. No
1932 need to call check_typedef here. */
1933 }
1934
1935 /* C */
1936 static int
1937 c_number_of_children (struct varobj *var)
1938 {
1939 struct type *type = get_value_type (var);
1940 int children = 0;
1941 struct type *target;
1942
1943 adjust_value_for_child_access (NULL, &type, NULL);
1944 target = get_target_type (type);
1945
1946 switch (TYPE_CODE (type))
1947 {
1948 case TYPE_CODE_ARRAY:
1949 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1950 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1951 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1952 else
1953 /* If we don't know how many elements there are, don't display
1954 any. */
1955 children = 0;
1956 break;
1957
1958 case TYPE_CODE_STRUCT:
1959 case TYPE_CODE_UNION:
1960 children = TYPE_NFIELDS (type);
1961 break;
1962
1963 case TYPE_CODE_PTR:
1964 /* The type here is a pointer to non-struct. Typically, pointers
1965 have one child, except for function ptrs, which have no children,
1966 and except for void*, as we don't know what to show.
1967
1968 We can show char* so we allow it to be dereferenced. If you decide
1969 to test for it, please mind that a little magic is necessary to
1970 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1971 TYPE_NAME == "char" */
1972 if (TYPE_CODE (target) == TYPE_CODE_FUNC
1973 || TYPE_CODE (target) == TYPE_CODE_VOID)
1974 children = 0;
1975 else
1976 children = 1;
1977 break;
1978
1979 default:
1980 /* Other types have no children */
1981 break;
1982 }
1983
1984 return children;
1985 }
1986
1987 static char *
1988 c_name_of_variable (struct varobj *parent)
1989 {
1990 return savestring (parent->name, strlen (parent->name));
1991 }
1992
1993 /* Return the value of element TYPE_INDEX of a structure
1994 value VALUE. VALUE's type should be a structure,
1995 or union, or a typedef to struct/union.
1996
1997 Returns NULL if getting the value fails. Never throws. */
1998 static struct value *
1999 value_struct_element_index (struct value *value, int type_index)
2000 {
2001 struct value *result = NULL;
2002 volatile struct gdb_exception e;
2003
2004 struct type *type = value_type (value);
2005 type = check_typedef (type);
2006
2007 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2008 || TYPE_CODE (type) == TYPE_CODE_UNION);
2009
2010 TRY_CATCH (e, RETURN_MASK_ERROR)
2011 {
2012 if (TYPE_FIELD_STATIC (type, type_index))
2013 result = value_static_field (type, type_index);
2014 else
2015 result = value_primitive_field (value, 0, type_index, type);
2016 }
2017 if (e.reason < 0)
2018 {
2019 return NULL;
2020 }
2021 else
2022 {
2023 return result;
2024 }
2025 }
2026
2027 /* Obtain the information about child INDEX of the variable
2028 object PARENT.
2029 If CNAME is not null, sets *CNAME to the name of the child relative
2030 to the parent.
2031 If CVALUE is not null, sets *CVALUE to the value of the child.
2032 If CTYPE is not null, sets *CTYPE to the type of the child.
2033
2034 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2035 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2036 to NULL. */
2037 static void
2038 c_describe_child (struct varobj *parent, int index,
2039 char **cname, struct value **cvalue, struct type **ctype,
2040 char **cfull_expression)
2041 {
2042 struct value *value = parent->value;
2043 struct type *type = get_value_type (parent);
2044 char *parent_expression = NULL;
2045 int was_ptr;
2046
2047 if (cname)
2048 *cname = NULL;
2049 if (cvalue)
2050 *cvalue = NULL;
2051 if (ctype)
2052 *ctype = NULL;
2053 if (cfull_expression)
2054 {
2055 *cfull_expression = NULL;
2056 parent_expression = varobj_get_path_expr (parent);
2057 }
2058 adjust_value_for_child_access (&value, &type, &was_ptr);
2059
2060 switch (TYPE_CODE (type))
2061 {
2062 case TYPE_CODE_ARRAY:
2063 if (cname)
2064 *cname = xstrprintf ("%d", index
2065 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2066
2067 if (cvalue && value)
2068 {
2069 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2070 struct value *indval =
2071 value_from_longest (builtin_type_int, (LONGEST) real_index);
2072 gdb_value_subscript (value, indval, cvalue);
2073 }
2074
2075 if (ctype)
2076 *ctype = get_target_type (type);
2077
2078 if (cfull_expression)
2079 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2080 index
2081 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2082
2083
2084 break;
2085
2086 case TYPE_CODE_STRUCT:
2087 case TYPE_CODE_UNION:
2088 if (cname)
2089 {
2090 char *string = TYPE_FIELD_NAME (type, index);
2091 *cname = savestring (string, strlen (string));
2092 }
2093
2094 if (cvalue && value)
2095 {
2096 /* For C, varobj index is the same as type index. */
2097 *cvalue = value_struct_element_index (value, index);
2098 }
2099
2100 if (ctype)
2101 *ctype = TYPE_FIELD_TYPE (type, index);
2102
2103 if (cfull_expression)
2104 {
2105 char *join = was_ptr ? "->" : ".";
2106 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2107 TYPE_FIELD_NAME (type, index));
2108 }
2109
2110 break;
2111
2112 case TYPE_CODE_PTR:
2113 if (cname)
2114 *cname = xstrprintf ("*%s", parent->name);
2115
2116 if (cvalue && value)
2117 gdb_value_ind (value, cvalue);
2118
2119 /* Don't use get_target_type because it calls
2120 check_typedef and here, we want to show the true
2121 declared type of the variable. */
2122 if (ctype)
2123 *ctype = TYPE_TARGET_TYPE (type);
2124
2125 if (cfull_expression)
2126 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2127
2128 break;
2129
2130 default:
2131 /* This should not happen */
2132 if (cname)
2133 *cname = xstrdup ("???");
2134 if (cfull_expression)
2135 *cfull_expression = xstrdup ("???");
2136 /* Don't set value and type, we don't know then. */
2137 }
2138 }
2139
2140 static char *
2141 c_name_of_child (struct varobj *parent, int index)
2142 {
2143 char *name;
2144 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2145 return name;
2146 }
2147
2148 static char *
2149 c_path_expr_of_child (struct varobj *child)
2150 {
2151 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2152 &child->path_expr);
2153 return child->path_expr;
2154 }
2155
2156 static struct value *
2157 c_value_of_root (struct varobj **var_handle)
2158 {
2159 struct value *new_val = NULL;
2160 struct varobj *var = *var_handle;
2161 struct frame_info *fi;
2162 int within_scope;
2163
2164 /* Only root variables can be updated... */
2165 if (!is_root_p (var))
2166 /* Not a root var */
2167 return NULL;
2168
2169
2170 /* Determine whether the variable is still around. */
2171 if (var->root->valid_block == NULL || var->root->use_selected_frame)
2172 within_scope = 1;
2173 else
2174 {
2175 fi = frame_find_by_id (var->root->frame);
2176 within_scope = fi != NULL;
2177 /* FIXME: select_frame could fail */
2178 if (fi)
2179 {
2180 CORE_ADDR pc = get_frame_pc (fi);
2181 if (pc < BLOCK_START (var->root->valid_block) ||
2182 pc >= BLOCK_END (var->root->valid_block))
2183 within_scope = 0;
2184 else
2185 select_frame (fi);
2186 }
2187 }
2188
2189 if (within_scope)
2190 {
2191 /* We need to catch errors here, because if evaluate
2192 expression fails we want to just return NULL. */
2193 gdb_evaluate_expression (var->root->exp, &new_val);
2194 return new_val;
2195 }
2196
2197 return NULL;
2198 }
2199
2200 static struct value *
2201 c_value_of_child (struct varobj *parent, int index)
2202 {
2203 struct value *value = NULL;
2204 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2205
2206 return value;
2207 }
2208
2209 static struct type *
2210 c_type_of_child (struct varobj *parent, int index)
2211 {
2212 struct type *type = NULL;
2213 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2214 return type;
2215 }
2216
2217 static char *
2218 c_value_of_variable (struct varobj *var)
2219 {
2220 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2221 it will print out its children instead of "{...}". So we need to
2222 catch that case explicitly. */
2223 struct type *type = get_type (var);
2224
2225 /* Strip top-level references. */
2226 while (TYPE_CODE (type) == TYPE_CODE_REF)
2227 type = check_typedef (TYPE_TARGET_TYPE (type));
2228
2229 switch (TYPE_CODE (type))
2230 {
2231 case TYPE_CODE_STRUCT:
2232 case TYPE_CODE_UNION:
2233 return xstrdup ("{...}");
2234 /* break; */
2235
2236 case TYPE_CODE_ARRAY:
2237 {
2238 char *number;
2239 number = xstrprintf ("[%d]", var->num_children);
2240 return (number);
2241 }
2242 /* break; */
2243
2244 default:
2245 {
2246 if (var->value == NULL)
2247 {
2248 /* This can happen if we attempt to get the value of a struct
2249 member when the parent is an invalid pointer. This is an
2250 error condition, so we should tell the caller. */
2251 return NULL;
2252 }
2253 else
2254 {
2255 if (var->not_fetched && value_lazy (var->value))
2256 /* Frozen variable and no value yet. We don't
2257 implicitly fetch the value. MI response will
2258 use empty string for the value, which is OK. */
2259 return NULL;
2260
2261 gdb_assert (varobj_value_is_changeable_p (var));
2262 gdb_assert (!value_lazy (var->value));
2263 return value_get_print_value (var->value, var->format);
2264 }
2265 }
2266 }
2267 }
2268 \f
2269
2270 /* C++ */
2271
2272 static int
2273 cplus_number_of_children (struct varobj *var)
2274 {
2275 struct type *type;
2276 int children, dont_know;
2277
2278 dont_know = 1;
2279 children = 0;
2280
2281 if (!CPLUS_FAKE_CHILD (var))
2282 {
2283 type = get_value_type (var);
2284 adjust_value_for_child_access (NULL, &type, NULL);
2285
2286 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2287 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2288 {
2289 int kids[3];
2290
2291 cplus_class_num_children (type, kids);
2292 if (kids[v_public] != 0)
2293 children++;
2294 if (kids[v_private] != 0)
2295 children++;
2296 if (kids[v_protected] != 0)
2297 children++;
2298
2299 /* Add any baseclasses */
2300 children += TYPE_N_BASECLASSES (type);
2301 dont_know = 0;
2302
2303 /* FIXME: save children in var */
2304 }
2305 }
2306 else
2307 {
2308 int kids[3];
2309
2310 type = get_value_type (var->parent);
2311 adjust_value_for_child_access (NULL, &type, NULL);
2312
2313 cplus_class_num_children (type, kids);
2314 if (strcmp (var->name, "public") == 0)
2315 children = kids[v_public];
2316 else if (strcmp (var->name, "private") == 0)
2317 children = kids[v_private];
2318 else
2319 children = kids[v_protected];
2320 dont_know = 0;
2321 }
2322
2323 if (dont_know)
2324 children = c_number_of_children (var);
2325
2326 return children;
2327 }
2328
2329 /* Compute # of public, private, and protected variables in this class.
2330 That means we need to descend into all baseclasses and find out
2331 how many are there, too. */
2332 static void
2333 cplus_class_num_children (struct type *type, int children[3])
2334 {
2335 int i;
2336
2337 children[v_public] = 0;
2338 children[v_private] = 0;
2339 children[v_protected] = 0;
2340
2341 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2342 {
2343 /* If we have a virtual table pointer, omit it. */
2344 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2345 continue;
2346
2347 if (TYPE_FIELD_PROTECTED (type, i))
2348 children[v_protected]++;
2349 else if (TYPE_FIELD_PRIVATE (type, i))
2350 children[v_private]++;
2351 else
2352 children[v_public]++;
2353 }
2354 }
2355
2356 static char *
2357 cplus_name_of_variable (struct varobj *parent)
2358 {
2359 return c_name_of_variable (parent);
2360 }
2361
2362 enum accessibility { private_field, protected_field, public_field };
2363
2364 /* Check if field INDEX of TYPE has the specified accessibility.
2365 Return 0 if so and 1 otherwise. */
2366 static int
2367 match_accessibility (struct type *type, int index, enum accessibility acc)
2368 {
2369 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2370 return 1;
2371 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2372 return 1;
2373 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2374 && !TYPE_FIELD_PROTECTED (type, index))
2375 return 1;
2376 else
2377 return 0;
2378 }
2379
2380 static void
2381 cplus_describe_child (struct varobj *parent, int index,
2382 char **cname, struct value **cvalue, struct type **ctype,
2383 char **cfull_expression)
2384 {
2385 char *name = NULL;
2386 struct value *value;
2387 struct type *type;
2388 int was_ptr;
2389 char *parent_expression = NULL;
2390
2391 if (cname)
2392 *cname = NULL;
2393 if (cvalue)
2394 *cvalue = NULL;
2395 if (ctype)
2396 *ctype = NULL;
2397 if (cfull_expression)
2398 *cfull_expression = NULL;
2399
2400 if (CPLUS_FAKE_CHILD (parent))
2401 {
2402 value = parent->parent->value;
2403 type = get_value_type (parent->parent);
2404 if (cfull_expression)
2405 parent_expression = varobj_get_path_expr (parent->parent);
2406 }
2407 else
2408 {
2409 value = parent->value;
2410 type = get_value_type (parent);
2411 if (cfull_expression)
2412 parent_expression = varobj_get_path_expr (parent);
2413 }
2414
2415 adjust_value_for_child_access (&value, &type, &was_ptr);
2416
2417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2418 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
2419 {
2420 char *join = was_ptr ? "->" : ".";
2421 if (CPLUS_FAKE_CHILD (parent))
2422 {
2423 /* The fields of the class type are ordered as they
2424 appear in the class. We are given an index for a
2425 particular access control type ("public","protected",
2426 or "private"). We must skip over fields that don't
2427 have the access control we are looking for to properly
2428 find the indexed field. */
2429 int type_index = TYPE_N_BASECLASSES (type);
2430 enum accessibility acc = public_field;
2431 if (strcmp (parent->name, "private") == 0)
2432 acc = private_field;
2433 else if (strcmp (parent->name, "protected") == 0)
2434 acc = protected_field;
2435
2436 while (index >= 0)
2437 {
2438 if (TYPE_VPTR_BASETYPE (type) == type
2439 && type_index == TYPE_VPTR_FIELDNO (type))
2440 ; /* ignore vptr */
2441 else if (match_accessibility (type, type_index, acc))
2442 --index;
2443 ++type_index;
2444 }
2445 --type_index;
2446
2447 if (cname)
2448 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2449
2450 if (cvalue && value)
2451 *cvalue = value_struct_element_index (value, type_index);
2452
2453 if (ctype)
2454 *ctype = TYPE_FIELD_TYPE (type, type_index);
2455
2456 if (cfull_expression)
2457 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2458 join,
2459 TYPE_FIELD_NAME (type, type_index));
2460 }
2461 else if (index < TYPE_N_BASECLASSES (type))
2462 {
2463 /* This is a baseclass. */
2464 if (cname)
2465 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2466
2467 if (cvalue && value)
2468 {
2469 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2470 release_value (*cvalue);
2471 }
2472
2473 if (ctype)
2474 {
2475 *ctype = TYPE_FIELD_TYPE (type, index);
2476 }
2477
2478 if (cfull_expression)
2479 {
2480 char *ptr = was_ptr ? "*" : "";
2481 /* Cast the parent to the base' type. Note that in gdb,
2482 expression like
2483 (Base1)d
2484 will create an lvalue, for all appearences, so we don't
2485 need to use more fancy:
2486 *(Base1*)(&d)
2487 construct. */
2488 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2489 ptr,
2490 TYPE_FIELD_NAME (type, index),
2491 ptr,
2492 parent_expression);
2493 }
2494 }
2495 else
2496 {
2497 char *access = NULL;
2498 int children[3];
2499 cplus_class_num_children (type, children);
2500
2501 /* Everything beyond the baseclasses can
2502 only be "public", "private", or "protected"
2503
2504 The special "fake" children are always output by varobj in
2505 this order. So if INDEX == 2, it MUST be "protected". */
2506 index -= TYPE_N_BASECLASSES (type);
2507 switch (index)
2508 {
2509 case 0:
2510 if (children[v_public] > 0)
2511 access = "public";
2512 else if (children[v_private] > 0)
2513 access = "private";
2514 else
2515 access = "protected";
2516 break;
2517 case 1:
2518 if (children[v_public] > 0)
2519 {
2520 if (children[v_private] > 0)
2521 access = "private";
2522 else
2523 access = "protected";
2524 }
2525 else if (children[v_private] > 0)
2526 access = "protected";
2527 break;
2528 case 2:
2529 /* Must be protected */
2530 access = "protected";
2531 break;
2532 default:
2533 /* error! */
2534 break;
2535 }
2536
2537 gdb_assert (access);
2538 if (cname)
2539 *cname = xstrdup (access);
2540
2541 /* Value and type and full expression are null here. */
2542 }
2543 }
2544 else
2545 {
2546 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2547 }
2548 }
2549
2550 static char *
2551 cplus_name_of_child (struct varobj *parent, int index)
2552 {
2553 char *name = NULL;
2554 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
2555 return name;
2556 }
2557
2558 static char *
2559 cplus_path_expr_of_child (struct varobj *child)
2560 {
2561 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
2562 &child->path_expr);
2563 return child->path_expr;
2564 }
2565
2566 static struct value *
2567 cplus_value_of_root (struct varobj **var_handle)
2568 {
2569 return c_value_of_root (var_handle);
2570 }
2571
2572 static struct value *
2573 cplus_value_of_child (struct varobj *parent, int index)
2574 {
2575 struct value *value = NULL;
2576 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
2577 return value;
2578 }
2579
2580 static struct type *
2581 cplus_type_of_child (struct varobj *parent, int index)
2582 {
2583 struct type *type = NULL;
2584 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
2585 return type;
2586 }
2587
2588 static char *
2589 cplus_value_of_variable (struct varobj *var)
2590 {
2591
2592 /* If we have one of our special types, don't print out
2593 any value. */
2594 if (CPLUS_FAKE_CHILD (var))
2595 return xstrdup ("");
2596
2597 return c_value_of_variable (var);
2598 }
2599 \f
2600 /* Java */
2601
2602 static int
2603 java_number_of_children (struct varobj *var)
2604 {
2605 return cplus_number_of_children (var);
2606 }
2607
2608 static char *
2609 java_name_of_variable (struct varobj *parent)
2610 {
2611 char *p, *name;
2612
2613 name = cplus_name_of_variable (parent);
2614 /* If the name has "-" in it, it is because we
2615 needed to escape periods in the name... */
2616 p = name;
2617
2618 while (*p != '\000')
2619 {
2620 if (*p == '-')
2621 *p = '.';
2622 p++;
2623 }
2624
2625 return name;
2626 }
2627
2628 static char *
2629 java_name_of_child (struct varobj *parent, int index)
2630 {
2631 char *name, *p;
2632
2633 name = cplus_name_of_child (parent, index);
2634 /* Escape any periods in the name... */
2635 p = name;
2636
2637 while (*p != '\000')
2638 {
2639 if (*p == '.')
2640 *p = '-';
2641 p++;
2642 }
2643
2644 return name;
2645 }
2646
2647 static char *
2648 java_path_expr_of_child (struct varobj *child)
2649 {
2650 return NULL;
2651 }
2652
2653 static struct value *
2654 java_value_of_root (struct varobj **var_handle)
2655 {
2656 return cplus_value_of_root (var_handle);
2657 }
2658
2659 static struct value *
2660 java_value_of_child (struct varobj *parent, int index)
2661 {
2662 return cplus_value_of_child (parent, index);
2663 }
2664
2665 static struct type *
2666 java_type_of_child (struct varobj *parent, int index)
2667 {
2668 return cplus_type_of_child (parent, index);
2669 }
2670
2671 static char *
2672 java_value_of_variable (struct varobj *var)
2673 {
2674 return cplus_value_of_variable (var);
2675 }
2676 \f
2677 extern void _initialize_varobj (void);
2678 void
2679 _initialize_varobj (void)
2680 {
2681 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2682
2683 varobj_table = xmalloc (sizeof_table);
2684 memset (varobj_table, 0, sizeof_table);
2685
2686 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2687 &varobjdebug, _("\
2688 Set varobj debugging."), _("\
2689 Show varobj debugging."), _("\
2690 When non-zero, varobj debugging is enabled."),
2691 NULL,
2692 show_varobjdebug,
2693 &setlist, &showlist);
2694 }
2695
2696 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2697 are defined on globals.
2698 Invalidated varobjs will be always printed in_scope="invalid". */
2699 void
2700 varobj_invalidate (void)
2701 {
2702 struct varobj **all_rootvarobj;
2703 struct varobj **varp;
2704
2705 if (varobj_list (&all_rootvarobj) > 0)
2706 {
2707 varp = all_rootvarobj;
2708 while (*varp != NULL)
2709 {
2710 /* global var must be re-evaluated. */
2711 if ((*varp)->root->valid_block == NULL)
2712 {
2713 struct varobj *tmp_var;
2714
2715 /* Try to create a varobj with same expression. If we succeed replace
2716 the old varobj, otherwise invalidate it. */
2717 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME);
2718 if (tmp_var != NULL)
2719 {
2720 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
2721 varobj_delete (*varp, NULL, 0);
2722 install_variable (tmp_var);
2723 }
2724 else
2725 (*varp)->root->is_valid = 0;
2726 }
2727 else /* locals must be invalidated. */
2728 (*varp)->root->is_valid = 0;
2729
2730 varp++;
2731 }
2732 xfree (all_rootvarobj);
2733 }
2734 return;
2735 }
This page took 0.086951 seconds and 4 git commands to generate.