2002-01-23 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330,
17 Boston, MA 02111-1307, USA. */
18
19 #include "defs.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "wrapper.h"
25 #include "gdbcmd.h"
26 #include <math.h>
27
28 #include "varobj.h"
29
30 /* Non-zero if we want to see trace of varobj level stuff. */
31
32 int varobjdebug = 0;
33
34 /* String representations of gdb's format codes */
35 char *varobj_format_string[] =
36 { "natural", "binary", "decimal", "hexadecimal", "octal" };
37
38 /* String representations of gdb's known languages */
39 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
40
41 /* Data structures */
42
43 /* Every root variable has one of these structures saved in its
44 varobj. Members which must be free'd are noted. */
45 struct varobj_root
46 {
47
48 /* Alloc'd expression for this parent. */
49 struct expression *exp;
50
51 /* Block for which this expression is valid */
52 struct block *valid_block;
53
54 /* The frame for this expression */
55 CORE_ADDR frame;
56
57 /* If 1, "update" always recomputes the frame & valid block
58 using the currently selected frame. */
59 int use_selected_frame;
60
61 /* Language info for this variable and its children */
62 struct language_specific *lang;
63
64 /* The varobj for this root node. */
65 struct varobj *rootvar;
66
67 /* Next root variable */
68 struct varobj_root *next;
69 };
70
71 /* Every variable in the system has a structure of this type defined
72 for it. This structure holds all information necessary to manipulate
73 a particular object variable. Members which must be freed are noted. */
74 struct varobj
75 {
76
77 /* Alloc'd name of the variable for this object.. If this variable is a
78 child, then this name will be the child's source name.
79 (bar, not foo.bar) */
80 /* NOTE: This is the "expression" */
81 char *name;
82
83 /* The alloc'd name for this variable's object. This is here for
84 convenience when constructing this object's children. */
85 char *obj_name;
86
87 /* Index of this variable in its parent or -1 */
88 int index;
89
90 /* The type of this variable. This may NEVER be NULL. */
91 struct type *type;
92
93 /* The value of this expression or subexpression. This may be NULL. */
94 struct value *value;
95
96 /* Did an error occur evaluating the expression or getting its value? */
97 int error;
98
99 /* The number of (immediate) children this variable has */
100 int num_children;
101
102 /* If this object is a child, this points to its immediate parent. */
103 struct varobj *parent;
104
105 /* A list of this object's children */
106 struct varobj_child *children;
107
108 /* Description of the root variable. Points to root variable for children. */
109 struct varobj_root *root;
110
111 /* The format of the output for this object */
112 enum varobj_display_formats format;
113 };
114
115 /* Every variable keeps a linked list of its children, described
116 by the following structure. */
117 /* FIXME: Deprecated. All should use vlist instead */
118
119 struct varobj_child
120 {
121
122 /* Pointer to the child's data */
123 struct varobj *child;
124
125 /* Pointer to the next child */
126 struct varobj_child *next;
127 };
128
129 /* A stack of varobjs */
130 /* FIXME: Deprecated. All should use vlist instead */
131
132 struct vstack
133 {
134 struct varobj *var;
135 struct vstack *next;
136 };
137
138 struct cpstack
139 {
140 char *name;
141 struct cpstack *next;
142 };
143
144 /* A list of varobjs */
145
146 struct vlist
147 {
148 struct varobj *var;
149 struct vlist *next;
150 };
151
152 /* Private function prototypes */
153
154 /* Helper functions for the above subcommands. */
155
156 static int delete_variable (struct cpstack **, struct varobj *, int);
157
158 static void delete_variable_1 (struct cpstack **, int *,
159 struct varobj *, int, int);
160
161 static int install_variable (struct varobj *);
162
163 static void uninstall_variable (struct varobj *);
164
165 static struct varobj *child_exists (struct varobj *, char *);
166
167 static struct varobj *create_child (struct varobj *, int, char *);
168
169 static void save_child_in_parent (struct varobj *, struct varobj *);
170
171 static void remove_child_from_parent (struct varobj *, struct varobj *);
172
173 /* Utility routines */
174
175 static struct varobj *new_variable (void);
176
177 static struct varobj *new_root_variable (void);
178
179 static void free_variable (struct varobj *var);
180
181 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182
183 static struct type *get_type (struct varobj *var);
184
185 static struct type *get_type_deref (struct varobj *var);
186
187 static struct type *get_target_type (struct type *);
188
189 static enum varobj_display_formats variable_default_display (struct varobj *);
190
191 static int my_value_equal (struct value *, struct value *, int *);
192
193 static void vpush (struct vstack **pstack, struct varobj *var);
194
195 static struct varobj *vpop (struct vstack **pstack);
196
197 static void cppush (struct cpstack **pstack, char *name);
198
199 static char *cppop (struct cpstack **pstack);
200
201 /* Language-specific routines. */
202
203 static enum varobj_languages variable_language (struct varobj *var);
204
205 static int number_of_children (struct varobj *);
206
207 static char *name_of_variable (struct varobj *);
208
209 static char *name_of_child (struct varobj *, int);
210
211 static struct value *value_of_root (struct varobj **var_handle, int *);
212
213 static struct value *value_of_child (struct varobj *parent, int index);
214
215 static struct type *type_of_child (struct varobj *var);
216
217 static int variable_editable (struct varobj *var);
218
219 static char *my_value_of_variable (struct varobj *var);
220
221 static int type_changeable (struct varobj *var);
222
223 /* C implementation */
224
225 static int c_number_of_children (struct varobj *var);
226
227 static char *c_name_of_variable (struct varobj *parent);
228
229 static char *c_name_of_child (struct varobj *parent, int index);
230
231 static struct value *c_value_of_root (struct varobj **var_handle);
232
233 static struct value *c_value_of_child (struct varobj *parent, int index);
234
235 static struct type *c_type_of_child (struct varobj *parent, int index);
236
237 static int c_variable_editable (struct varobj *var);
238
239 static char *c_value_of_variable (struct varobj *var);
240
241 /* C++ implementation */
242
243 static int cplus_number_of_children (struct varobj *var);
244
245 static void cplus_class_num_children (struct type *type, int children[3]);
246
247 static char *cplus_name_of_variable (struct varobj *parent);
248
249 static char *cplus_name_of_child (struct varobj *parent, int index);
250
251 static struct value *cplus_value_of_root (struct varobj **var_handle);
252
253 static struct value *cplus_value_of_child (struct varobj *parent, int index);
254
255 static struct type *cplus_type_of_child (struct varobj *parent, int index);
256
257 static int cplus_variable_editable (struct varobj *var);
258
259 static char *cplus_value_of_variable (struct varobj *var);
260
261 /* Java implementation */
262
263 static int java_number_of_children (struct varobj *var);
264
265 static char *java_name_of_variable (struct varobj *parent);
266
267 static char *java_name_of_child (struct varobj *parent, int index);
268
269 static struct value *java_value_of_root (struct varobj **var_handle);
270
271 static struct value *java_value_of_child (struct varobj *parent, int index);
272
273 static struct type *java_type_of_child (struct varobj *parent, int index);
274
275 static int java_variable_editable (struct varobj *var);
276
277 static char *java_value_of_variable (struct varobj *var);
278
279 /* The language specific vector */
280
281 struct language_specific
282 {
283
284 /* The language of this variable */
285 enum varobj_languages language;
286
287 /* The number of children of PARENT. */
288 int (*number_of_children) (struct varobj * parent);
289
290 /* The name (expression) of a root varobj. */
291 char *(*name_of_variable) (struct varobj * parent);
292
293 /* The name of the INDEX'th child of PARENT. */
294 char *(*name_of_child) (struct varobj * parent, int index);
295
296 /* The ``struct value *'' of the root variable ROOT. */
297 struct value *(*value_of_root) (struct varobj ** root_handle);
298
299 /* The ``struct value *'' of the INDEX'th child of PARENT. */
300 struct value *(*value_of_child) (struct varobj * parent, int index);
301
302 /* The type of the INDEX'th child of PARENT. */
303 struct type *(*type_of_child) (struct varobj * parent, int index);
304
305 /* Is VAR editable? */
306 int (*variable_editable) (struct varobj * var);
307
308 /* The current value of VAR. */
309 char *(*value_of_variable) (struct varobj * var);
310 };
311
312 /* Array of known source language routines. */
313 static struct language_specific
314 languages[vlang_end][sizeof (struct language_specific)] = {
315 /* Unknown (try treating as C */
316 {
317 vlang_unknown,
318 c_number_of_children,
319 c_name_of_variable,
320 c_name_of_child,
321 c_value_of_root,
322 c_value_of_child,
323 c_type_of_child,
324 c_variable_editable,
325 c_value_of_variable}
326 ,
327 /* C */
328 {
329 vlang_c,
330 c_number_of_children,
331 c_name_of_variable,
332 c_name_of_child,
333 c_value_of_root,
334 c_value_of_child,
335 c_type_of_child,
336 c_variable_editable,
337 c_value_of_variable}
338 ,
339 /* C++ */
340 {
341 vlang_cplus,
342 cplus_number_of_children,
343 cplus_name_of_variable,
344 cplus_name_of_child,
345 cplus_value_of_root,
346 cplus_value_of_child,
347 cplus_type_of_child,
348 cplus_variable_editable,
349 cplus_value_of_variable}
350 ,
351 /* Java */
352 {
353 vlang_java,
354 java_number_of_children,
355 java_name_of_variable,
356 java_name_of_child,
357 java_value_of_root,
358 java_value_of_child,
359 java_type_of_child,
360 java_variable_editable,
361 java_value_of_variable}
362 };
363
364 /* A little convenience enum for dealing with C++/Java */
365 enum vsections
366 {
367 v_public = 0, v_private, v_protected
368 };
369
370 /* Private data */
371
372 /* Mappings of varobj_display_formats enums to gdb's format codes */
373 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
374
375 /* Header of the list of root variable objects */
376 static struct varobj_root *rootlist;
377 static int rootcount = 0; /* number of root varobjs in the list */
378
379 /* Prime number indicating the number of buckets in the hash table */
380 /* A prime large enough to avoid too many colisions */
381 #define VAROBJ_TABLE_SIZE 227
382
383 /* Pointer to the varobj hash table (built at run time) */
384 static struct vlist **varobj_table;
385
386 /* Is the variable X one of our "fake" children? */
387 #define CPLUS_FAKE_CHILD(x) \
388 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
389 \f
390
391 /* API Implementation */
392
393 /* Creates a varobj (not its children) */
394
395 struct varobj *
396 varobj_create (char *objname,
397 char *expression, CORE_ADDR frame, enum varobj_type type)
398 {
399 struct varobj *var;
400 struct frame_info *fi;
401 struct frame_info *old_fi = NULL;
402 struct block *block;
403 struct cleanup *old_chain;
404
405 /* Fill out a varobj structure for the (root) variable being constructed. */
406 var = new_root_variable ();
407 old_chain = make_cleanup_free_variable (var);
408
409 if (expression != NULL)
410 {
411 char *p;
412 enum varobj_languages lang;
413
414 /* Parse and evaluate the expression, filling in as much
415 of the variable's data as possible */
416
417 /* Allow creator to specify context of variable */
418 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
419 fi = selected_frame;
420 else
421 fi = find_frame_addr_in_frame_chain (frame);
422
423 /* frame = -2 means always use selected frame */
424 if (type == USE_SELECTED_FRAME)
425 var->root->use_selected_frame = 1;
426
427 block = NULL;
428 if (fi != NULL)
429 block = get_frame_block (fi);
430
431 p = expression;
432 innermost_block = NULL;
433 /* Wrap the call to parse expression, so we can
434 return a sensible error. */
435 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
436 {
437 return NULL;
438 }
439
440 /* Don't allow variables to be created for types. */
441 if (var->root->exp->elts[0].opcode == OP_TYPE)
442 {
443 do_cleanups (old_chain);
444 fprintf_unfiltered (gdb_stderr,
445 "Attempt to use a type name as an expression.");
446 return NULL;
447 }
448
449 var->format = variable_default_display (var);
450 var->root->valid_block = innermost_block;
451 var->name = savestring (expression, strlen (expression));
452
453 /* When the frame is different from the current frame,
454 we must select the appropriate frame before parsing
455 the expression, otherwise the value will not be current.
456 Since select_frame is so benign, just call it for all cases. */
457 if (fi != NULL)
458 {
459 var->root->frame = FRAME_FP (fi);
460 old_fi = selected_frame;
461 select_frame (fi, -1);
462 }
463
464 /* We definitively need to catch errors here.
465 If evaluate_expression succeeds we got the value we wanted.
466 But if it fails, we still go on with a call to evaluate_type() */
467 if (gdb_evaluate_expression (var->root->exp, &var->value))
468 {
469 /* no error */
470 release_value (var->value);
471 if (VALUE_LAZY (var->value))
472 gdb_value_fetch_lazy (var->value);
473 }
474 else
475 var->value = evaluate_type (var->root->exp);
476
477 var->type = VALUE_TYPE (var->value);
478
479 /* Set language info */
480 lang = variable_language (var);
481 var->root->lang = languages[lang];
482
483 /* Set ourselves as our root */
484 var->root->rootvar = var;
485
486 /* Reset the selected frame */
487 if (fi != NULL)
488 select_frame (old_fi, -1);
489 }
490
491 /* If the variable object name is null, that means this
492 is a temporary variable, so don't install it. */
493
494 if ((var != NULL) && (objname != NULL))
495 {
496 var->obj_name = savestring (objname, strlen (objname));
497
498 /* If a varobj name is duplicated, the install will fail so
499 we must clenup */
500 if (!install_variable (var))
501 {
502 do_cleanups (old_chain);
503 return NULL;
504 }
505 }
506
507 discard_cleanups (old_chain);
508 return var;
509 }
510
511 /* Generates an unique name that can be used for a varobj */
512
513 char *
514 varobj_gen_name (void)
515 {
516 static int id = 0;
517 char obj_name[31];
518
519 /* generate a name for this object */
520 id++;
521 sprintf (obj_name, "var%d", id);
522
523 return xstrdup (obj_name);
524 }
525
526 /* Given an "objname", returns the pointer to the corresponding varobj
527 or NULL if not found */
528
529 struct varobj *
530 varobj_get_handle (char *objname)
531 {
532 struct vlist *cv;
533 const char *chp;
534 unsigned int index = 0;
535 unsigned int i = 1;
536
537 for (chp = objname; *chp; chp++)
538 {
539 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
540 }
541
542 cv = *(varobj_table + index);
543 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
544 cv = cv->next;
545
546 if (cv == NULL)
547 error ("Variable object not found");
548
549 return cv->var;
550 }
551
552 /* Given the handle, return the name of the object */
553
554 char *
555 varobj_get_objname (struct varobj *var)
556 {
557 return var->obj_name;
558 }
559
560 /* Given the handle, return the expression represented by the object */
561
562 char *
563 varobj_get_expression (struct varobj *var)
564 {
565 return name_of_variable (var);
566 }
567
568 /* Deletes a varobj and all its children if only_children == 0,
569 otherwise deletes only the children; returns a malloc'ed list of all the
570 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
571
572 int
573 varobj_delete (struct varobj *var, char ***dellist, int only_children)
574 {
575 int delcount;
576 int mycount;
577 struct cpstack *result = NULL;
578 char **cp;
579
580 /* Initialize a stack for temporary results */
581 cppush (&result, NULL);
582
583 if (only_children)
584 /* Delete only the variable children */
585 delcount = delete_variable (&result, var, 1 /* only the children */ );
586 else
587 /* Delete the variable and all its children */
588 delcount = delete_variable (&result, var, 0 /* parent+children */ );
589
590 /* We may have been asked to return a list of what has been deleted */
591 if (dellist != NULL)
592 {
593 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
594
595 cp = *dellist;
596 mycount = delcount;
597 *cp = cppop (&result);
598 while ((*cp != NULL) && (mycount > 0))
599 {
600 mycount--;
601 cp++;
602 *cp = cppop (&result);
603 }
604
605 if (mycount || (*cp != NULL))
606 warning ("varobj_delete: assertion failed - mycount(=%d) <> 0",
607 mycount);
608 }
609
610 return delcount;
611 }
612
613 /* Set/Get variable object display format */
614
615 enum varobj_display_formats
616 varobj_set_display_format (struct varobj *var,
617 enum varobj_display_formats format)
618 {
619 switch (format)
620 {
621 case FORMAT_NATURAL:
622 case FORMAT_BINARY:
623 case FORMAT_DECIMAL:
624 case FORMAT_HEXADECIMAL:
625 case FORMAT_OCTAL:
626 var->format = format;
627 break;
628
629 default:
630 var->format = variable_default_display (var);
631 }
632
633 return var->format;
634 }
635
636 enum varobj_display_formats
637 varobj_get_display_format (struct varobj *var)
638 {
639 return var->format;
640 }
641
642 int
643 varobj_get_num_children (struct varobj *var)
644 {
645 if (var->num_children == -1)
646 var->num_children = number_of_children (var);
647
648 return var->num_children;
649 }
650
651 /* Creates a list of the immediate children of a variable object;
652 the return code is the number of such children or -1 on error */
653
654 int
655 varobj_list_children (struct varobj *var, struct varobj ***childlist)
656 {
657 struct varobj *child;
658 char *name;
659 int i;
660
661 /* sanity check: have we been passed a pointer? */
662 if (childlist == NULL)
663 return -1;
664
665 *childlist = NULL;
666
667 if (var->num_children == -1)
668 var->num_children = number_of_children (var);
669
670 /* List of children */
671 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
672
673 for (i = 0; i < var->num_children; i++)
674 {
675 /* Mark as the end in case we bail out */
676 *((*childlist) + i) = NULL;
677
678 /* check if child exists, if not create */
679 name = name_of_child (var, i);
680 child = child_exists (var, name);
681 if (child == NULL)
682 child = create_child (var, i, name);
683
684 *((*childlist) + i) = child;
685 }
686
687 /* End of list is marked by a NULL pointer */
688 *((*childlist) + i) = NULL;
689
690 return var->num_children;
691 }
692
693 /* Obtain the type of an object Variable as a string similar to the one gdb
694 prints on the console */
695
696 char *
697 varobj_get_type (struct varobj *var)
698 {
699 struct value *val;
700 struct cleanup *old_chain;
701 struct ui_file *stb;
702 char *thetype;
703 long length;
704
705 /* For the "fake" variables, do not return a type. (It's type is
706 NULL, too.) */
707 if (CPLUS_FAKE_CHILD (var))
708 return NULL;
709
710 stb = mem_fileopen ();
711 old_chain = make_cleanup_ui_file_delete (stb);
712
713 /* To print the type, we simply create a zero ``struct value *'' and
714 cast it to our type. We then typeprint this variable. */
715 val = value_zero (var->type, not_lval);
716 type_print (VALUE_TYPE (val), "", stb, -1);
717
718 thetype = ui_file_xstrdup (stb, &length);
719 do_cleanups (old_chain);
720 return thetype;
721 }
722
723 enum varobj_languages
724 varobj_get_language (struct varobj *var)
725 {
726 return variable_language (var);
727 }
728
729 int
730 varobj_get_attributes (struct varobj *var)
731 {
732 int attributes = 0;
733
734 if (variable_editable (var))
735 /* FIXME: define masks for attributes */
736 attributes |= 0x00000001; /* Editable */
737
738 return attributes;
739 }
740
741 char *
742 varobj_get_value (struct varobj *var)
743 {
744 return my_value_of_variable (var);
745 }
746
747 /* Set the value of an object variable (if it is editable) to the
748 value of the given expression */
749 /* Note: Invokes functions that can call error() */
750
751 int
752 varobj_set_value (struct varobj *var, char *expression)
753 {
754 struct value *val;
755 int offset = 0;
756
757 /* The argument "expression" contains the variable's new value.
758 We need to first construct a legal expression for this -- ugh! */
759 /* Does this cover all the bases? */
760 struct expression *exp;
761 struct value *value;
762 int saved_input_radix = input_radix;
763
764 if (var->value != NULL && variable_editable (var) && !var->error)
765 {
766 char *s = expression;
767 int i;
768
769 input_radix = 10; /* ALWAYS reset to decimal temporarily */
770 if (!gdb_parse_exp_1 (&s, 0, 0, &exp))
771 /* We cannot proceed without a well-formed expression. */
772 return 0;
773 if (!gdb_evaluate_expression (exp, &value))
774 {
775 /* We cannot proceed without a valid expression. */
776 xfree (exp);
777 return 0;
778 }
779
780 if (!gdb_value_assign (var->value, value, &val))
781 return 0;
782 value_free (var->value);
783 release_value (val);
784 var->value = val;
785 input_radix = saved_input_radix;
786 return 1;
787 }
788
789 return 0;
790 }
791
792 /* Returns a malloc'ed list with all root variable objects */
793 int
794 varobj_list (struct varobj ***varlist)
795 {
796 struct varobj **cv;
797 struct varobj_root *croot;
798 int mycount = rootcount;
799
800 /* Alloc (rootcount + 1) entries for the result */
801 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
802
803 cv = *varlist;
804 croot = rootlist;
805 while ((croot != NULL) && (mycount > 0))
806 {
807 *cv = croot->rootvar;
808 mycount--;
809 cv++;
810 croot = croot->next;
811 }
812 /* Mark the end of the list */
813 *cv = NULL;
814
815 if (mycount || (croot != NULL))
816 warning
817 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
818 rootcount, mycount);
819
820 return rootcount;
821 }
822
823 /* Update the values for a variable and its children. This is a
824 two-pronged attack. First, re-parse the value for the root's
825 expression to see if it's changed. Then go all the way
826 through its children, reconstructing them and noting if they've
827 changed.
828 Return value:
829 -1 if there was an error updating the varobj
830 -2 if the type changed
831 Otherwise it is the number of children + parent changed
832
833 Only root variables can be updated...
834
835 NOTE: This function may delete the caller's varobj. If it
836 returns -2, then it has done this and VARP will be modified
837 to point to the new varobj. */
838
839 int
840 varobj_update (struct varobj **varp, struct varobj ***changelist)
841 {
842 int changed = 0;
843 int type_changed;
844 int i;
845 int vleft;
846 int error2;
847 struct varobj *v;
848 struct varobj **cv;
849 struct varobj **templist = NULL;
850 struct value *new;
851 struct vstack *stack = NULL;
852 struct vstack *result = NULL;
853 struct frame_info *old_fi;
854
855 /* sanity check: have we been passed a pointer? */
856 if (changelist == NULL)
857 return -1;
858
859 /* Only root variables can be updated... */
860 if ((*varp)->root->rootvar != *varp)
861 /* Not a root var */
862 return -1;
863
864 /* Save the selected stack frame, since we will need to change it
865 in order to evaluate expressions. */
866 old_fi = selected_frame;
867
868 /* Update the root variable. value_of_root can return NULL
869 if the variable is no longer around, i.e. we stepped out of
870 the frame in which a local existed. We are letting the
871 value_of_root variable dispose of the varobj if the type
872 has changed. */
873 type_changed = 1;
874 new = value_of_root (varp, &type_changed);
875 if (new == NULL)
876 {
877 (*varp)->error = 1;
878 return -1;
879 }
880
881 /* Initialize a stack for temporary results */
882 vpush (&result, NULL);
883
884 /* If this is a "use_selected_frame" varobj, and its type has changed,
885 them note that it's changed. */
886 if (type_changed)
887 {
888 vpush (&result, *varp);
889 changed++;
890 }
891 /* If values are not equal, note that it's changed.
892 There a couple of exceptions here, though.
893 We don't want some types to be reported as "changed". */
894 else if (type_changeable (*varp)
895 && !my_value_equal ((*varp)->value, new, &error2))
896 {
897 vpush (&result, *varp);
898 changed++;
899 /* error2 replaces var->error since this new value
900 WILL replace the old one. */
901 (*varp)->error = error2;
902 }
903
904 /* We must always keep around the new value for this root
905 variable expression, or we lose the updated children! */
906 value_free ((*varp)->value);
907 (*varp)->value = new;
908
909 /* Initialize a stack */
910 vpush (&stack, NULL);
911
912 /* Push the root's children */
913 if ((*varp)->children != NULL)
914 {
915 struct varobj_child *c;
916 for (c = (*varp)->children; c != NULL; c = c->next)
917 vpush (&stack, c->child);
918 }
919
920 /* Walk through the children, reconstructing them all. */
921 v = vpop (&stack);
922 while (v != NULL)
923 {
924 /* Push any children */
925 if (v->children != NULL)
926 {
927 struct varobj_child *c;
928 for (c = v->children; c != NULL; c = c->next)
929 vpush (&stack, c->child);
930 }
931
932 /* Update this variable */
933 new = value_of_child (v->parent, v->index);
934 if (type_changeable (v) && !my_value_equal (v->value, new, &error2))
935 {
936 /* Note that it's changed */
937 vpush (&result, v);
938 changed++;
939 }
940 /* error2 replaces v->error since this new value
941 WILL replace the old one. */
942 v->error = error2;
943
944 /* We must always keep new values, since children depend on it. */
945 if (v->value != NULL)
946 value_free (v->value);
947 v->value = new;
948
949 /* Get next child */
950 v = vpop (&stack);
951 }
952
953 /* Alloc (changed + 1) list entries */
954 /* FIXME: add a cleanup for the allocated list(s)
955 because one day the select_frame called below can longjump */
956 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
957 if (changed > 1)
958 {
959 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
960 cv = templist;
961 }
962 else
963 cv = *changelist;
964
965 /* Copy from result stack to list */
966 vleft = changed;
967 *cv = vpop (&result);
968 while ((*cv != NULL) && (vleft > 0))
969 {
970 vleft--;
971 cv++;
972 *cv = vpop (&result);
973 }
974 if (vleft)
975 warning ("varobj_update: assertion failed - vleft <> 0");
976
977 if (changed > 1)
978 {
979 /* Now we revert the order. */
980 for (i = 0; i < changed; i++)
981 *(*changelist + i) = *(templist + changed - 1 - i);
982 *(*changelist + changed) = NULL;
983 }
984
985 /* Restore selected frame */
986 select_frame (old_fi, -1);
987
988 if (type_changed)
989 return -2;
990 else
991 return changed;
992 }
993 \f
994
995 /* Helper functions */
996
997 /*
998 * Variable object construction/destruction
999 */
1000
1001 static int
1002 delete_variable (struct cpstack **resultp, struct varobj *var,
1003 int only_children_p)
1004 {
1005 int delcount = 0;
1006
1007 delete_variable_1 (resultp, &delcount, var,
1008 only_children_p, 1 /* remove_from_parent_p */ );
1009
1010 return delcount;
1011 }
1012
1013 /* Delete the variable object VAR and its children */
1014 /* IMPORTANT NOTE: If we delete a variable which is a child
1015 and the parent is not removed we dump core. It must be always
1016 initially called with remove_from_parent_p set */
1017 static void
1018 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1019 struct varobj *var, int only_children_p,
1020 int remove_from_parent_p)
1021 {
1022 struct varobj_child *vc;
1023 struct varobj_child *next;
1024
1025 /* Delete any children of this variable, too. */
1026 for (vc = var->children; vc != NULL; vc = next)
1027 {
1028 if (!remove_from_parent_p)
1029 vc->child->parent = NULL;
1030 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1031 next = vc->next;
1032 xfree (vc);
1033 }
1034
1035 /* if we were called to delete only the children we are done here */
1036 if (only_children_p)
1037 return;
1038
1039 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1040 /* If the name is null, this is a temporary variable, that has not
1041 yet been installed, don't report it, it belongs to the caller... */
1042 if (var->obj_name != NULL)
1043 {
1044 cppush (resultp, xstrdup (var->obj_name));
1045 *delcountp = *delcountp + 1;
1046 }
1047
1048 /* If this variable has a parent, remove it from its parent's list */
1049 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1050 (as indicated by remove_from_parent_p) we don't bother doing an
1051 expensive list search to find the element to remove when we are
1052 discarding the list afterwards */
1053 if ((remove_from_parent_p) && (var->parent != NULL))
1054 {
1055 remove_child_from_parent (var->parent, var);
1056 }
1057
1058 if (var->obj_name != NULL)
1059 uninstall_variable (var);
1060
1061 /* Free memory associated with this variable */
1062 free_variable (var);
1063 }
1064
1065 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1066 static int
1067 install_variable (struct varobj *var)
1068 {
1069 struct vlist *cv;
1070 struct vlist *newvl;
1071 const char *chp;
1072 unsigned int index = 0;
1073 unsigned int i = 1;
1074
1075 for (chp = var->obj_name; *chp; chp++)
1076 {
1077 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1078 }
1079
1080 cv = *(varobj_table + index);
1081 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1082 cv = cv->next;
1083
1084 if (cv != NULL)
1085 error ("Duplicate variable object name");
1086
1087 /* Add varobj to hash table */
1088 newvl = xmalloc (sizeof (struct vlist));
1089 newvl->next = *(varobj_table + index);
1090 newvl->var = var;
1091 *(varobj_table + index) = newvl;
1092
1093 /* If root, add varobj to root list */
1094 if (var->root->rootvar == var)
1095 {
1096 /* Add to list of root variables */
1097 if (rootlist == NULL)
1098 var->root->next = NULL;
1099 else
1100 var->root->next = rootlist;
1101 rootlist = var->root;
1102 rootcount++;
1103 }
1104
1105 return 1; /* OK */
1106 }
1107
1108 /* Unistall the object VAR. */
1109 static void
1110 uninstall_variable (struct varobj *var)
1111 {
1112 struct vlist *cv;
1113 struct vlist *prev;
1114 struct varobj_root *cr;
1115 struct varobj_root *prer;
1116 const char *chp;
1117 unsigned int index = 0;
1118 unsigned int i = 1;
1119
1120 /* Remove varobj from hash table */
1121 for (chp = var->obj_name; *chp; chp++)
1122 {
1123 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1124 }
1125
1126 cv = *(varobj_table + index);
1127 prev = NULL;
1128 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1129 {
1130 prev = cv;
1131 cv = cv->next;
1132 }
1133
1134 if (varobjdebug)
1135 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1136
1137 if (cv == NULL)
1138 {
1139 warning
1140 ("Assertion failed: Could not find variable object \"%s\" to delete",
1141 var->obj_name);
1142 return;
1143 }
1144
1145 if (prev == NULL)
1146 *(varobj_table + index) = cv->next;
1147 else
1148 prev->next = cv->next;
1149
1150 xfree (cv);
1151
1152 /* If root, remove varobj from root list */
1153 if (var->root->rootvar == var)
1154 {
1155 /* Remove from list of root variables */
1156 if (rootlist == var->root)
1157 rootlist = var->root->next;
1158 else
1159 {
1160 prer = NULL;
1161 cr = rootlist;
1162 while ((cr != NULL) && (cr->rootvar != var))
1163 {
1164 prer = cr;
1165 cr = cr->next;
1166 }
1167 if (cr == NULL)
1168 {
1169 warning
1170 ("Assertion failed: Could not find varobj \"%s\" in root list",
1171 var->obj_name);
1172 return;
1173 }
1174 if (prer == NULL)
1175 rootlist = NULL;
1176 else
1177 prer->next = cr->next;
1178 }
1179 rootcount--;
1180 }
1181
1182 }
1183
1184 /* Does a child with the name NAME exist in VAR? If so, return its data.
1185 If not, return NULL. */
1186 static struct varobj *
1187 child_exists (struct varobj *var, char *name)
1188 {
1189 struct varobj_child *vc;
1190
1191 for (vc = var->children; vc != NULL; vc = vc->next)
1192 {
1193 if (STREQ (vc->child->name, name))
1194 return vc->child;
1195 }
1196
1197 return NULL;
1198 }
1199
1200 /* Create and install a child of the parent of the given name */
1201 static struct varobj *
1202 create_child (struct varobj *parent, int index, char *name)
1203 {
1204 struct varobj *child;
1205 char *childs_name;
1206
1207 child = new_variable ();
1208
1209 /* name is allocated by name_of_child */
1210 child->name = name;
1211 child->index = index;
1212 child->value = value_of_child (parent, index);
1213 if ((!CPLUS_FAKE_CHILD(child) && child->value == NULL) || parent->error)
1214 child->error = 1;
1215 child->parent = parent;
1216 child->root = parent->root;
1217 childs_name =
1218 (char *) xmalloc ((strlen (parent->obj_name) + strlen (name) + 2) *
1219 sizeof (char));
1220 sprintf (childs_name, "%s.%s", parent->obj_name, name);
1221 child->obj_name = childs_name;
1222 install_variable (child);
1223
1224 /* Save a pointer to this child in the parent */
1225 save_child_in_parent (parent, child);
1226
1227 /* Note the type of this child */
1228 child->type = type_of_child (child);
1229
1230 return child;
1231 }
1232
1233 /* FIXME: This should be a generic add to list */
1234 /* Save CHILD in the PARENT's data. */
1235 static void
1236 save_child_in_parent (struct varobj *parent, struct varobj *child)
1237 {
1238 struct varobj_child *vc;
1239
1240 /* Insert the child at the top */
1241 vc = parent->children;
1242 parent->children =
1243 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1244
1245 parent->children->next = vc;
1246 parent->children->child = child;
1247 }
1248
1249 /* FIXME: This should be a generic remove from list */
1250 /* Remove the CHILD from the PARENT's list of children. */
1251 static void
1252 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1253 {
1254 struct varobj_child *vc, *prev;
1255
1256 /* Find the child in the parent's list */
1257 prev = NULL;
1258 for (vc = parent->children; vc != NULL;)
1259 {
1260 if (vc->child == child)
1261 break;
1262 prev = vc;
1263 vc = vc->next;
1264 }
1265
1266 if (prev == NULL)
1267 parent->children = vc->next;
1268 else
1269 prev->next = vc->next;
1270
1271 }
1272 \f
1273
1274 /*
1275 * Miscellaneous utility functions.
1276 */
1277
1278 /* Allocate memory and initialize a new variable */
1279 static struct varobj *
1280 new_variable (void)
1281 {
1282 struct varobj *var;
1283
1284 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1285 var->name = NULL;
1286 var->obj_name = NULL;
1287 var->index = -1;
1288 var->type = NULL;
1289 var->value = NULL;
1290 var->error = 0;
1291 var->num_children = -1;
1292 var->parent = NULL;
1293 var->children = NULL;
1294 var->format = 0;
1295 var->root = NULL;
1296
1297 return var;
1298 }
1299
1300 /* Allocate memory and initialize a new root variable */
1301 static struct varobj *
1302 new_root_variable (void)
1303 {
1304 struct varobj *var = new_variable ();
1305 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1306 var->root->lang = NULL;
1307 var->root->exp = NULL;
1308 var->root->valid_block = NULL;
1309 var->root->frame = (CORE_ADDR) -1;
1310 var->root->use_selected_frame = 0;
1311 var->root->rootvar = NULL;
1312
1313 return var;
1314 }
1315
1316 /* Free any allocated memory associated with VAR. */
1317 static void
1318 free_variable (struct varobj *var)
1319 {
1320 /* Free the expression if this is a root variable. */
1321 if (var->root->rootvar == var)
1322 {
1323 free_current_contents ((char **) &var->root->exp);
1324 xfree (var->root);
1325 }
1326
1327 xfree (var->name);
1328 xfree (var->obj_name);
1329 xfree (var);
1330 }
1331
1332 static void
1333 do_free_variable_cleanup (void *var)
1334 {
1335 free_variable (var);
1336 }
1337
1338 static struct cleanup *
1339 make_cleanup_free_variable (struct varobj *var)
1340 {
1341 return make_cleanup (do_free_variable_cleanup, var);
1342 }
1343
1344 /* This returns the type of the variable. This skips past typedefs
1345 and returns the real type of the variable. It also dereferences
1346 pointers and references. */
1347 static struct type *
1348 get_type (struct varobj *var)
1349 {
1350 struct type *type;
1351 type = var->type;
1352
1353 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1354 type = TYPE_TARGET_TYPE (type);
1355
1356 return type;
1357 }
1358
1359 /* This returns the type of the variable, dereferencing pointers, too. */
1360 static struct type *
1361 get_type_deref (struct varobj *var)
1362 {
1363 struct type *type;
1364
1365 type = get_type (var);
1366
1367 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1368 || TYPE_CODE (type) == TYPE_CODE_REF))
1369 type = get_target_type (type);
1370
1371 return type;
1372 }
1373
1374 /* This returns the target type (or NULL) of TYPE, also skipping
1375 past typedefs, just like get_type (). */
1376 static struct type *
1377 get_target_type (struct type *type)
1378 {
1379 if (type != NULL)
1380 {
1381 type = TYPE_TARGET_TYPE (type);
1382 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1383 type = TYPE_TARGET_TYPE (type);
1384 }
1385
1386 return type;
1387 }
1388
1389 /* What is the default display for this variable? We assume that
1390 everything is "natural". Any exceptions? */
1391 static enum varobj_display_formats
1392 variable_default_display (struct varobj *var)
1393 {
1394 return FORMAT_NATURAL;
1395 }
1396
1397 /* This function is similar to gdb's value_equal, except that this
1398 one is "safe" -- it NEVER longjmps. It determines if the VAR's
1399 value is the same as VAL2. */
1400 static int
1401 my_value_equal (struct value *val1, struct value *val2, int *error2)
1402 {
1403 int r, err1, err2;
1404
1405 *error2 = 0;
1406 /* Special case: NULL values. If both are null, say
1407 they're equal. */
1408 if (val1 == NULL && val2 == NULL)
1409 return 1;
1410 else if (val1 == NULL || val2 == NULL)
1411 return 0;
1412
1413 /* This is bogus, but unfortunately necessary. We must know
1414 exactly what caused an error -- reading val1 or val2 -- so
1415 that we can really determine if we think that something has changed. */
1416 err1 = 0;
1417 err2 = 0;
1418 /* We do need to catch errors here because the whole purpose
1419 is to test if value_equal() has errored */
1420 if (!gdb_value_equal (val1, val1, &r))
1421 err1 = 1;
1422
1423 if (!gdb_value_equal (val2, val2, &r))
1424 *error2 = err2 = 1;
1425
1426 if (err1 != err2)
1427 return 0;
1428
1429 if (!gdb_value_equal (val1, val2, &r))
1430 {
1431 /* An error occurred, this could have happened if
1432 either val1 or val2 errored. ERR1 and ERR2 tell
1433 us which of these it is. If both errored, then
1434 we assume nothing has changed. If one of them is
1435 valid, though, then something has changed. */
1436 if (err1 == err2)
1437 {
1438 /* both the old and new values caused errors, so
1439 we say the value did not change */
1440 /* This is indeterminate, though. Perhaps we should
1441 be safe and say, yes, it changed anyway?? */
1442 return 1;
1443 }
1444 else
1445 {
1446 return 0;
1447 }
1448 }
1449
1450 return r;
1451 }
1452
1453 /* FIXME: The following should be generic for any pointer */
1454 static void
1455 vpush (struct vstack **pstack, struct varobj *var)
1456 {
1457 struct vstack *s;
1458
1459 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1460 s->var = var;
1461 s->next = *pstack;
1462 *pstack = s;
1463 }
1464
1465 /* FIXME: The following should be generic for any pointer */
1466 static struct varobj *
1467 vpop (struct vstack **pstack)
1468 {
1469 struct vstack *s;
1470 struct varobj *v;
1471
1472 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1473 return NULL;
1474
1475 s = *pstack;
1476 v = s->var;
1477 *pstack = (*pstack)->next;
1478 xfree (s);
1479
1480 return v;
1481 }
1482
1483 /* FIXME: The following should be generic for any pointer */
1484 static void
1485 cppush (struct cpstack **pstack, char *name)
1486 {
1487 struct cpstack *s;
1488
1489 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1490 s->name = name;
1491 s->next = *pstack;
1492 *pstack = s;
1493 }
1494
1495 /* FIXME: The following should be generic for any pointer */
1496 static char *
1497 cppop (struct cpstack **pstack)
1498 {
1499 struct cpstack *s;
1500 char *v;
1501
1502 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1503 return NULL;
1504
1505 s = *pstack;
1506 v = s->name;
1507 *pstack = (*pstack)->next;
1508 xfree (s);
1509
1510 return v;
1511 }
1512 \f
1513 /*
1514 * Language-dependencies
1515 */
1516
1517 /* Common entry points */
1518
1519 /* Get the language of variable VAR. */
1520 static enum varobj_languages
1521 variable_language (struct varobj *var)
1522 {
1523 enum varobj_languages lang;
1524
1525 switch (var->root->exp->language_defn->la_language)
1526 {
1527 default:
1528 case language_c:
1529 lang = vlang_c;
1530 break;
1531 case language_cplus:
1532 lang = vlang_cplus;
1533 break;
1534 case language_java:
1535 lang = vlang_java;
1536 break;
1537 }
1538
1539 return lang;
1540 }
1541
1542 /* Return the number of children for a given variable.
1543 The result of this function is defined by the language
1544 implementation. The number of children returned by this function
1545 is the number of children that the user will see in the variable
1546 display. */
1547 static int
1548 number_of_children (struct varobj *var)
1549 {
1550 return (*var->root->lang->number_of_children) (var);;
1551 }
1552
1553 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1554 static char *
1555 name_of_variable (struct varobj *var)
1556 {
1557 return (*var->root->lang->name_of_variable) (var);
1558 }
1559
1560 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1561 static char *
1562 name_of_child (struct varobj *var, int index)
1563 {
1564 return (*var->root->lang->name_of_child) (var, index);
1565 }
1566
1567 /* What is the ``struct value *'' of the root variable VAR?
1568 TYPE_CHANGED controls what to do if the type of a
1569 use_selected_frame = 1 variable changes. On input,
1570 TYPE_CHANGED = 1 means discard the old varobj, and replace
1571 it with this one. TYPE_CHANGED = 0 means leave it around.
1572 NB: In both cases, var_handle will point to the new varobj,
1573 so if you use TYPE_CHANGED = 0, you will have to stash the
1574 old varobj pointer away somewhere before calling this.
1575 On return, TYPE_CHANGED will be 1 if the type has changed, and
1576 0 otherwise. */
1577 static struct value *
1578 value_of_root (struct varobj **var_handle, int *type_changed)
1579 {
1580 struct varobj *var;
1581
1582 if (var_handle == NULL)
1583 return NULL;
1584
1585 var = *var_handle;
1586
1587 /* This should really be an exception, since this should
1588 only get called with a root variable. */
1589
1590 if (var->root->rootvar != var)
1591 return NULL;
1592
1593 if (var->root->use_selected_frame)
1594 {
1595 struct varobj *tmp_var;
1596 char *old_type, *new_type;
1597 old_type = varobj_get_type (var);
1598 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1599 USE_SELECTED_FRAME);
1600 if (tmp_var == NULL)
1601 {
1602 return NULL;
1603 }
1604 new_type = varobj_get_type (tmp_var);
1605 if (strcmp (old_type, new_type) == 0)
1606 {
1607 varobj_delete (tmp_var, NULL, 0);
1608 *type_changed = 0;
1609 }
1610 else
1611 {
1612 if (*type_changed)
1613 {
1614 tmp_var->obj_name =
1615 savestring (var->obj_name, strlen (var->obj_name));
1616 varobj_delete (var, NULL, 0);
1617 }
1618 else
1619 {
1620 tmp_var->obj_name = varobj_gen_name ();
1621 }
1622 install_variable (tmp_var);
1623 *var_handle = tmp_var;
1624 var = *var_handle;
1625 *type_changed = 1;
1626 }
1627 }
1628 else
1629 {
1630 *type_changed = 0;
1631 }
1632
1633 return (*var->root->lang->value_of_root) (var_handle);
1634 }
1635
1636 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1637 static struct value *
1638 value_of_child (struct varobj *parent, int index)
1639 {
1640 struct value *value;
1641
1642 value = (*parent->root->lang->value_of_child) (parent, index);
1643
1644 /* If we're being lazy, fetch the real value of the variable. */
1645 if (value != NULL && VALUE_LAZY (value))
1646 {
1647 /* If we fail to fetch the value of the child, return
1648 NULL so that callers notice that we're leaving an
1649 error message. */
1650 if (!gdb_value_fetch_lazy (value))
1651 value = NULL;
1652 }
1653
1654 return value;
1655 }
1656
1657 /* What is the type of VAR? */
1658 static struct type *
1659 type_of_child (struct varobj *var)
1660 {
1661
1662 /* If the child had no evaluation errors, var->value
1663 will be non-NULL and contain a valid type. */
1664 if (var->value != NULL)
1665 return VALUE_TYPE (var->value);
1666
1667 /* Otherwise, we must compute the type. */
1668 return (*var->root->lang->type_of_child) (var->parent, var->index);
1669 }
1670
1671 /* Is this variable editable? Use the variable's type to make
1672 this determination. */
1673 static int
1674 variable_editable (struct varobj *var)
1675 {
1676 return (*var->root->lang->variable_editable) (var);
1677 }
1678
1679 /* GDB already has a command called "value_of_variable". Sigh. */
1680 static char *
1681 my_value_of_variable (struct varobj *var)
1682 {
1683 return (*var->root->lang->value_of_variable) (var);
1684 }
1685
1686 /* Is VAR something that can change? Depending on language,
1687 some variable's values never change. For example,
1688 struct and unions never change values. */
1689 static int
1690 type_changeable (struct varobj *var)
1691 {
1692 int r;
1693 struct type *type;
1694
1695 if (CPLUS_FAKE_CHILD (var))
1696 return 0;
1697
1698 type = get_type (var);
1699
1700 switch (TYPE_CODE (type))
1701 {
1702 case TYPE_CODE_STRUCT:
1703 case TYPE_CODE_UNION:
1704 case TYPE_CODE_ARRAY:
1705 r = 0;
1706 break;
1707
1708 default:
1709 r = 1;
1710 }
1711
1712 return r;
1713 }
1714
1715 /* C */
1716 static int
1717 c_number_of_children (struct varobj *var)
1718 {
1719 struct type *type;
1720 struct type *target;
1721 int children;
1722
1723 type = get_type (var);
1724 target = get_target_type (type);
1725 children = 0;
1726
1727 switch (TYPE_CODE (type))
1728 {
1729 case TYPE_CODE_ARRAY:
1730 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1731 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1732 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1733 else
1734 children = -1;
1735 break;
1736
1737 case TYPE_CODE_STRUCT:
1738 case TYPE_CODE_UNION:
1739 children = TYPE_NFIELDS (type);
1740 break;
1741
1742 case TYPE_CODE_PTR:
1743 /* This is where things get compilcated. All pointers have one child.
1744 Except, of course, for struct and union ptr, which we automagically
1745 dereference for the user and function ptrs, which have no children.
1746 We also don't dereference void* as we don't know what to show.
1747 We can show char* so we allow it to be dereferenced. If you decide
1748 to test for it, please mind that a little magic is necessary to
1749 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1750 TYPE_NAME == "char" */
1751
1752 switch (TYPE_CODE (target))
1753 {
1754 case TYPE_CODE_STRUCT:
1755 case TYPE_CODE_UNION:
1756 children = TYPE_NFIELDS (target);
1757 break;
1758
1759 case TYPE_CODE_FUNC:
1760 case TYPE_CODE_VOID:
1761 children = 0;
1762 break;
1763
1764 default:
1765 children = 1;
1766 }
1767 break;
1768
1769 default:
1770 /* Other types have no children */
1771 break;
1772 }
1773
1774 return children;
1775 }
1776
1777 static char *
1778 c_name_of_variable (struct varobj *parent)
1779 {
1780 return savestring (parent->name, strlen (parent->name));
1781 }
1782
1783 static char *
1784 c_name_of_child (struct varobj *parent, int index)
1785 {
1786 struct type *type;
1787 struct type *target;
1788 char *name;
1789 char *string;
1790
1791 type = get_type (parent);
1792 target = get_target_type (type);
1793
1794 switch (TYPE_CODE (type))
1795 {
1796 case TYPE_CODE_ARRAY:
1797 {
1798 /* We never get here unless parent->num_children is greater than 0... */
1799 int len = 1;
1800 while ((int) pow ((double) 10, (double) len) < index)
1801 len++;
1802 name = (char *) xmalloc (1 + len * sizeof (char));
1803 sprintf (name, "%d", index);
1804 }
1805 break;
1806
1807 case TYPE_CODE_STRUCT:
1808 case TYPE_CODE_UNION:
1809 string = TYPE_FIELD_NAME (type, index);
1810 name = savestring (string, strlen (string));
1811 break;
1812
1813 case TYPE_CODE_PTR:
1814 switch (TYPE_CODE (target))
1815 {
1816 case TYPE_CODE_STRUCT:
1817 case TYPE_CODE_UNION:
1818 string = TYPE_FIELD_NAME (target, index);
1819 name = savestring (string, strlen (string));
1820 break;
1821
1822 default:
1823 name =
1824 (char *) xmalloc ((strlen (parent->name) + 2) * sizeof (char));
1825 sprintf (name, "*%s", parent->name);
1826 break;
1827 }
1828 break;
1829
1830 default:
1831 /* This should not happen */
1832 name = xstrdup ("???");
1833 }
1834
1835 return name;
1836 }
1837
1838 static struct value *
1839 c_value_of_root (struct varobj **var_handle)
1840 {
1841 struct value *new_val;
1842 struct varobj *var = *var_handle;
1843 struct frame_info *fi;
1844 int within_scope;
1845
1846 /* Only root variables can be updated... */
1847 if (var->root->rootvar != var)
1848 /* Not a root var */
1849 return NULL;
1850
1851
1852 /* Determine whether the variable is still around. */
1853 if (var->root->valid_block == NULL)
1854 within_scope = 1;
1855 else
1856 {
1857 reinit_frame_cache ();
1858
1859
1860 fi = find_frame_addr_in_frame_chain (var->root->frame);
1861
1862 within_scope = fi != NULL;
1863 /* FIXME: select_frame could fail */
1864 if (within_scope)
1865 select_frame (fi, -1);
1866 }
1867
1868 if (within_scope)
1869 {
1870 /* We need to catch errors here, because if evaluate
1871 expression fails we just want to make val->error = 1 and
1872 go on */
1873 if (gdb_evaluate_expression (var->root->exp, &new_val))
1874 {
1875 if (VALUE_LAZY (new_val))
1876 {
1877 /* We need to catch errors because if
1878 value_fetch_lazy fails we still want to continue
1879 (after making val->error = 1) */
1880 /* FIXME: Shouldn't be using VALUE_CONTENTS? The
1881 comment on value_fetch_lazy() says it is only
1882 called from the macro... */
1883 if (!gdb_value_fetch_lazy (new_val))
1884 var->error = 1;
1885 else
1886 var->error = 0;
1887 }
1888 }
1889 else
1890 var->error = 1;
1891
1892 release_value (new_val);
1893 return new_val;
1894 }
1895
1896 return NULL;
1897 }
1898
1899 static struct value *
1900 c_value_of_child (struct varobj *parent, int index)
1901 {
1902 struct value *value;
1903 struct value *temp;
1904 struct value *indval;
1905 struct type *type, *target;
1906 char *name;
1907
1908 type = get_type (parent);
1909 target = get_target_type (type);
1910 name = name_of_child (parent, index);
1911 temp = parent->value;
1912 value = NULL;
1913
1914 if (temp != NULL)
1915 {
1916 switch (TYPE_CODE (type))
1917 {
1918 case TYPE_CODE_ARRAY:
1919 #if 0
1920 /* This breaks if the array lives in a (vector) register. */
1921 value = value_slice (temp, index, 1);
1922 temp = value_coerce_array (value);
1923 gdb_value_ind (temp, &value);
1924 #else
1925 indval = value_from_longest (builtin_type_int, (LONGEST) index);
1926 gdb_value_subscript (temp, indval, &value);
1927 #endif
1928 break;
1929
1930 case TYPE_CODE_STRUCT:
1931 case TYPE_CODE_UNION:
1932 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL, "vstructure");
1933 break;
1934
1935 case TYPE_CODE_PTR:
1936 switch (TYPE_CODE (target))
1937 {
1938 case TYPE_CODE_STRUCT:
1939 case TYPE_CODE_UNION:
1940 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL, "vstructure");
1941 break;
1942
1943 default:
1944 gdb_value_ind (temp, &value);
1945 break;
1946 }
1947 break;
1948
1949 default:
1950 break;
1951 }
1952 }
1953
1954 if (value != NULL)
1955 release_value (value);
1956
1957 xfree (name);
1958 return value;
1959 }
1960
1961 static struct type *
1962 c_type_of_child (struct varobj *parent, int index)
1963 {
1964 struct type *type;
1965 char *name = name_of_child (parent, index);
1966
1967 switch (TYPE_CODE (parent->type))
1968 {
1969 case TYPE_CODE_ARRAY:
1970 type = TYPE_TARGET_TYPE (parent->type);
1971 break;
1972
1973 case TYPE_CODE_STRUCT:
1974 case TYPE_CODE_UNION:
1975 type = lookup_struct_elt_type (parent->type, name, 0);
1976 break;
1977
1978 case TYPE_CODE_PTR:
1979 switch (TYPE_CODE (TYPE_TARGET_TYPE (parent->type)))
1980 {
1981 case TYPE_CODE_STRUCT:
1982 case TYPE_CODE_UNION:
1983 type = lookup_struct_elt_type (parent->type, name, 0);
1984 break;
1985
1986 default:
1987 type = TYPE_TARGET_TYPE (parent->type);
1988 break;
1989 }
1990 break;
1991
1992 default:
1993 /* This should not happen as only the above types have children */
1994 warning ("Child of parent whose type does not allow children");
1995 /* FIXME: Can we still go on? */
1996 type = NULL;
1997 break;
1998 }
1999
2000 xfree (name);
2001 return type;
2002 }
2003
2004 static int
2005 c_variable_editable (struct varobj *var)
2006 {
2007 switch (TYPE_CODE (get_type (var)))
2008 {
2009 case TYPE_CODE_STRUCT:
2010 case TYPE_CODE_UNION:
2011 case TYPE_CODE_ARRAY:
2012 case TYPE_CODE_FUNC:
2013 case TYPE_CODE_MEMBER:
2014 case TYPE_CODE_METHOD:
2015 return 0;
2016 break;
2017
2018 default:
2019 return 1;
2020 break;
2021 }
2022 }
2023
2024 static char *
2025 c_value_of_variable (struct varobj *var)
2026 {
2027 struct type *type;
2028
2029 /* BOGUS: if val_print sees a struct/class, it will print out its
2030 children instead of "{...}" */
2031 type = get_type (var);
2032 switch (TYPE_CODE (type))
2033 {
2034 case TYPE_CODE_STRUCT:
2035 case TYPE_CODE_UNION:
2036 return xstrdup ("{...}");
2037 /* break; */
2038
2039 case TYPE_CODE_ARRAY:
2040 {
2041 char number[18];
2042 sprintf (number, "[%d]", var->num_children);
2043 return xstrdup (number);
2044 }
2045 /* break; */
2046
2047 default:
2048 {
2049 long dummy;
2050 struct ui_file *stb = mem_fileopen ();
2051 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2052 char *thevalue;
2053
2054 if (var->value == NULL)
2055 {
2056 /* This can happen if we attempt to get the value of a struct
2057 member when the parent is an invalid pointer. This is an
2058 error condition, so we should tell the caller. */
2059 return NULL;
2060 }
2061 else
2062 {
2063 if (VALUE_LAZY (var->value))
2064 gdb_value_fetch_lazy (var->value);
2065 val_print (VALUE_TYPE (var->value), VALUE_CONTENTS_RAW (var->value), 0,
2066 VALUE_ADDRESS (var->value),
2067 stb, format_code[(int) var->format], 1, 0, 0);
2068 thevalue = ui_file_xstrdup (stb, &dummy);
2069 do_cleanups (old_chain);
2070 }
2071
2072 return thevalue;
2073 }
2074 /* break; */
2075 }
2076 }
2077 \f
2078
2079 /* C++ */
2080
2081 static int
2082 cplus_number_of_children (struct varobj *var)
2083 {
2084 struct type *type;
2085 int children, dont_know;
2086
2087 dont_know = 1;
2088 children = 0;
2089
2090 if (!CPLUS_FAKE_CHILD (var))
2091 {
2092 type = get_type_deref (var);
2093
2094 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2095 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2096 {
2097 int kids[3];
2098
2099 cplus_class_num_children (type, kids);
2100 if (kids[v_public] != 0)
2101 children++;
2102 if (kids[v_private] != 0)
2103 children++;
2104 if (kids[v_protected] != 0)
2105 children++;
2106
2107 /* Add any baseclasses */
2108 children += TYPE_N_BASECLASSES (type);
2109 dont_know = 0;
2110
2111 /* FIXME: save children in var */
2112 }
2113 }
2114 else
2115 {
2116 int kids[3];
2117
2118 type = get_type_deref (var->parent);
2119
2120 cplus_class_num_children (type, kids);
2121 if (STREQ (var->name, "public"))
2122 children = kids[v_public];
2123 else if (STREQ (var->name, "private"))
2124 children = kids[v_private];
2125 else
2126 children = kids[v_protected];
2127 dont_know = 0;
2128 }
2129
2130 if (dont_know)
2131 children = c_number_of_children (var);
2132
2133 return children;
2134 }
2135
2136 /* Compute # of public, private, and protected variables in this class.
2137 That means we need to descend into all baseclasses and find out
2138 how many are there, too. */
2139 static void
2140 cplus_class_num_children (struct type *type, int children[3])
2141 {
2142 int i;
2143
2144 children[v_public] = 0;
2145 children[v_private] = 0;
2146 children[v_protected] = 0;
2147
2148 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2149 {
2150 /* If we have a virtual table pointer, omit it. */
2151 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2152 continue;
2153
2154 if (TYPE_FIELD_PROTECTED (type, i))
2155 children[v_protected]++;
2156 else if (TYPE_FIELD_PRIVATE (type, i))
2157 children[v_private]++;
2158 else
2159 children[v_public]++;
2160 }
2161 }
2162
2163 static char *
2164 cplus_name_of_variable (struct varobj *parent)
2165 {
2166 return c_name_of_variable (parent);
2167 }
2168
2169 static char *
2170 cplus_name_of_child (struct varobj *parent, int index)
2171 {
2172 char *name;
2173 struct type *type;
2174 int children[3];
2175
2176 if (CPLUS_FAKE_CHILD (parent))
2177 {
2178 /* Looking for children of public, private, or protected. */
2179 type = get_type_deref (parent->parent);
2180 }
2181 else
2182 type = get_type_deref (parent);
2183
2184 name = NULL;
2185 switch (TYPE_CODE (type))
2186 {
2187 case TYPE_CODE_STRUCT:
2188 case TYPE_CODE_UNION:
2189 cplus_class_num_children (type, children);
2190
2191 if (CPLUS_FAKE_CHILD (parent))
2192 {
2193 int i;
2194
2195 /* Skip over vptr, if it exists. */
2196 if (TYPE_VPTR_BASETYPE (type) == type
2197 && index >= TYPE_VPTR_FIELDNO (type))
2198 index++;
2199
2200 /* FIXME: This assumes that type orders
2201 inherited, public, private, protected */
2202 i = index + TYPE_N_BASECLASSES (type);
2203 if (STREQ (parent->name, "private") || STREQ (parent->name, "protected"))
2204 i += children[v_public];
2205 if (STREQ (parent->name, "protected"))
2206 i += children[v_private];
2207
2208 name = TYPE_FIELD_NAME (type, i);
2209 }
2210 else if (index < TYPE_N_BASECLASSES (type))
2211 name = TYPE_FIELD_NAME (type, index);
2212 else
2213 {
2214 /* Everything beyond the baseclasses can
2215 only be "public", "private", or "protected" */
2216 index -= TYPE_N_BASECLASSES (type);
2217 switch (index)
2218 {
2219 case 0:
2220 if (children[v_public] != 0)
2221 {
2222 name = "public";
2223 break;
2224 }
2225 case 1:
2226 if (children[v_private] != 0)
2227 {
2228 name = "private";
2229 break;
2230 }
2231 case 2:
2232 if (children[v_protected] != 0)
2233 {
2234 name = "protected";
2235 break;
2236 }
2237 default:
2238 /* error! */
2239 break;
2240 }
2241 }
2242 break;
2243
2244 default:
2245 break;
2246 }
2247
2248 if (name == NULL)
2249 return c_name_of_child (parent, index);
2250 else
2251 {
2252 if (name != NULL)
2253 name = savestring (name, strlen (name));
2254 }
2255
2256 return name;
2257 }
2258
2259 static struct value *
2260 cplus_value_of_root (struct varobj **var_handle)
2261 {
2262 return c_value_of_root (var_handle);
2263 }
2264
2265 static struct value *
2266 cplus_value_of_child (struct varobj *parent, int index)
2267 {
2268 struct type *type;
2269 struct value *value;
2270
2271 if (CPLUS_FAKE_CHILD (parent))
2272 type = get_type_deref (parent->parent);
2273 else
2274 type = get_type_deref (parent);
2275
2276 value = NULL;
2277
2278 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2279 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2280 {
2281 if (CPLUS_FAKE_CHILD (parent))
2282 {
2283 char *name;
2284 struct value *temp = parent->parent->value;
2285
2286 if (temp == NULL)
2287 return NULL;
2288
2289 name = name_of_child (parent, index);
2290 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2291 "cplus_structure");
2292 if (value != NULL)
2293 release_value (value);
2294
2295 xfree (name);
2296 }
2297 else if (index >= TYPE_N_BASECLASSES (type))
2298 {
2299 /* public, private, or protected */
2300 return NULL;
2301 }
2302 else
2303 {
2304 /* Baseclass */
2305 if (parent->value != NULL)
2306 {
2307 struct value *temp = NULL;
2308
2309 if (TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_PTR
2310 || TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_REF)
2311 {
2312 if (!gdb_value_ind (parent->value, &temp))
2313 return NULL;
2314 }
2315 else
2316 temp = parent->value;
2317
2318 if (temp != NULL)
2319 {
2320 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2321 release_value (value);
2322 }
2323 else
2324 {
2325 /* We failed to evaluate the parent's value, so don't even
2326 bother trying to evaluate this child. */
2327 return NULL;
2328 }
2329 }
2330 }
2331 }
2332
2333 if (value == NULL)
2334 return c_value_of_child (parent, index);
2335
2336 return value;
2337 }
2338
2339 static struct type *
2340 cplus_type_of_child (struct varobj *parent, int index)
2341 {
2342 struct type *type, *t;
2343
2344 if (CPLUS_FAKE_CHILD (parent))
2345 {
2346 /* Looking for the type of a child of public, private, or protected. */
2347 t = get_type_deref (parent->parent);
2348 }
2349 else
2350 t = get_type_deref (parent);
2351
2352 type = NULL;
2353 switch (TYPE_CODE (t))
2354 {
2355 case TYPE_CODE_STRUCT:
2356 case TYPE_CODE_UNION:
2357 if (CPLUS_FAKE_CHILD (parent))
2358 {
2359 char *name = cplus_name_of_child (parent, index);
2360 type = lookup_struct_elt_type (t, name, 0);
2361 xfree (name);
2362 }
2363 else if (index < TYPE_N_BASECLASSES (t))
2364 type = TYPE_FIELD_TYPE (t, index);
2365 else
2366 {
2367 /* special */
2368 return NULL;
2369 }
2370 break;
2371
2372 default:
2373 break;
2374 }
2375
2376 if (type == NULL)
2377 return c_type_of_child (parent, index);
2378
2379 return type;
2380 }
2381
2382 static int
2383 cplus_variable_editable (struct varobj *var)
2384 {
2385 if (CPLUS_FAKE_CHILD (var))
2386 return 0;
2387
2388 return c_variable_editable (var);
2389 }
2390
2391 static char *
2392 cplus_value_of_variable (struct varobj *var)
2393 {
2394
2395 /* If we have one of our special types, don't print out
2396 any value. */
2397 if (CPLUS_FAKE_CHILD (var))
2398 return xstrdup ("");
2399
2400 return c_value_of_variable (var);
2401 }
2402 \f
2403 /* Java */
2404
2405 static int
2406 java_number_of_children (struct varobj *var)
2407 {
2408 return cplus_number_of_children (var);
2409 }
2410
2411 static char *
2412 java_name_of_variable (struct varobj *parent)
2413 {
2414 char *p, *name;
2415
2416 name = cplus_name_of_variable (parent);
2417 /* If the name has "-" in it, it is because we
2418 needed to escape periods in the name... */
2419 p = name;
2420
2421 while (*p != '\000')
2422 {
2423 if (*p == '-')
2424 *p = '.';
2425 p++;
2426 }
2427
2428 return name;
2429 }
2430
2431 static char *
2432 java_name_of_child (struct varobj *parent, int index)
2433 {
2434 char *name, *p;
2435
2436 name = cplus_name_of_child (parent, index);
2437 /* Escape any periods in the name... */
2438 p = name;
2439
2440 while (*p != '\000')
2441 {
2442 if (*p == '.')
2443 *p = '-';
2444 p++;
2445 }
2446
2447 return name;
2448 }
2449
2450 static struct value *
2451 java_value_of_root (struct varobj **var_handle)
2452 {
2453 return cplus_value_of_root (var_handle);
2454 }
2455
2456 static struct value *
2457 java_value_of_child (struct varobj *parent, int index)
2458 {
2459 return cplus_value_of_child (parent, index);
2460 }
2461
2462 static struct type *
2463 java_type_of_child (struct varobj *parent, int index)
2464 {
2465 return cplus_type_of_child (parent, index);
2466 }
2467
2468 static int
2469 java_variable_editable (struct varobj *var)
2470 {
2471 return cplus_variable_editable (var);
2472 }
2473
2474 static char *
2475 java_value_of_variable (struct varobj *var)
2476 {
2477 return cplus_value_of_variable (var);
2478 }
2479 \f
2480 extern void _initialize_varobj (void);
2481 void
2482 _initialize_varobj (void)
2483 {
2484 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2485
2486 varobj_table = xmalloc (sizeof_table);
2487 memset (varobj_table, 0, sizeof_table);
2488
2489 add_show_from_set (add_set_cmd ("debugvarobj", class_maintenance, var_zinteger, (char *) &varobjdebug, "Set varobj debugging.\n\
2490 When non-zero, varobj debugging is enabled.", &setlist),
2491 &showlist);
2492 }
This page took 0.09278 seconds and 4 git commands to generate.