* ui-file.h (ui_file_xstrdup): Mention that the length argument
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61
62 /* Data structures */
63
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66 struct varobj_root
67 {
68
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
71
72 /* Block for which this expression is valid */
73 struct block *valid_block;
74
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
77 struct frame_id frame;
78
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
90
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
97
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
100
101 /* Next root variable */
102 struct varobj_root *next;
103 };
104
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108 struct varobj
109 {
110
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
116
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
124
125 /* Index of this variable in its parent or -1 */
126 int index;
127
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
131 struct type *type;
132
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
137 struct value *value;
138
139 /* The number of (immediate) children this variable has */
140 int num_children;
141
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
144
145 /* Children of this object. */
146 VEC (varobj_p) *children;
147
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
156
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
162
163 /* Last print value. */
164 char *print_value;
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
179 };
180
181 struct cpstack
182 {
183 char *name;
184 struct cpstack *next;
185 };
186
187 /* A list of varobjs */
188
189 struct vlist
190 {
191 struct varobj *var;
192 struct vlist *next;
193 };
194
195 /* Private function prototypes */
196
197 /* Helper functions for the above subcommands. */
198
199 static int delete_variable (struct cpstack **, struct varobj *, int);
200
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
203
204 static int install_variable (struct varobj *);
205
206 static void uninstall_variable (struct varobj *);
207
208 static struct varobj *create_child (struct varobj *, int, char *);
209
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
214 /* Utility routines */
215
216 static struct varobj *new_variable (void);
217
218 static struct varobj *new_root_variable (void);
219
220 static void free_variable (struct varobj *var);
221
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
224 static struct type *get_type (struct varobj *var);
225
226 static struct type *get_value_type (struct varobj *var);
227
228 static struct type *get_target_type (struct type *);
229
230 static enum varobj_display_formats variable_default_display (struct varobj *);
231
232 static void cppush (struct cpstack **pstack, char *name);
233
234 static char *cppop (struct cpstack **pstack);
235
236 static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
239 static void install_default_visualizer (struct varobj *var);
240
241 /* Language-specific routines. */
242
243 static enum varobj_languages variable_language (struct varobj *var);
244
245 static int number_of_children (struct varobj *);
246
247 static char *name_of_variable (struct varobj *);
248
249 static char *name_of_child (struct varobj *, int);
250
251 static struct value *value_of_root (struct varobj **var_handle, int *);
252
253 static struct value *value_of_child (struct varobj *parent, int index);
254
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
257
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 struct varobj *var);
261
262 static int varobj_value_is_changeable_p (struct varobj *var);
263
264 static int is_root_p (struct varobj *var);
265
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
269 /* C implementation */
270
271 static int c_number_of_children (struct varobj *var);
272
273 static char *c_name_of_variable (struct varobj *parent);
274
275 static char *c_name_of_child (struct varobj *parent, int index);
276
277 static char *c_path_expr_of_child (struct varobj *child);
278
279 static struct value *c_value_of_root (struct varobj **var_handle);
280
281 static struct value *c_value_of_child (struct varobj *parent, int index);
282
283 static struct type *c_type_of_child (struct varobj *parent, int index);
284
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 /* C++ implementation */
289
290 static int cplus_number_of_children (struct varobj *var);
291
292 static void cplus_class_num_children (struct type *type, int children[3]);
293
294 static char *cplus_name_of_variable (struct varobj *parent);
295
296 static char *cplus_name_of_child (struct varobj *parent, int index);
297
298 static char *cplus_path_expr_of_child (struct varobj *child);
299
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
301
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
303
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
305
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
308
309 /* Java implementation */
310
311 static int java_number_of_children (struct varobj *var);
312
313 static char *java_name_of_variable (struct varobj *parent);
314
315 static char *java_name_of_child (struct varobj *parent, int index);
316
317 static char *java_path_expr_of_child (struct varobj *child);
318
319 static struct value *java_value_of_root (struct varobj **var_handle);
320
321 static struct value *java_value_of_child (struct varobj *parent, int index);
322
323 static struct type *java_type_of_child (struct varobj *parent, int index);
324
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
327
328 /* The language specific vector */
329
330 struct language_specific
331 {
332
333 /* The language of this variable */
334 enum varobj_languages language;
335
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
338
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
341
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
344
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
351
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
354
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
357
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
361 };
362
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
366 {
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
371 c_path_expr_of_child,
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
375 c_value_of_variable}
376 ,
377 /* C */
378 {
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
383 c_path_expr_of_child,
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
387 c_value_of_variable}
388 ,
389 /* C++ */
390 {
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
395 cplus_path_expr_of_child,
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
399 cplus_value_of_variable}
400 ,
401 /* Java */
402 {
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
407 java_path_expr_of_child,
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
411 java_value_of_variable}
412 };
413
414 /* A little convenience enum for dealing with C++/Java */
415 enum vsections
416 {
417 v_public = 0, v_private, v_protected
418 };
419
420 /* Private data */
421
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
424
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427
428 /* Prime number indicating the number of buckets in the hash table */
429 /* A prime large enough to avoid too many colisions */
430 #define VAROBJ_TABLE_SIZE 227
431
432 /* Pointer to the varobj hash table (built at run time) */
433 static struct vlist **varobj_table;
434
435 /* Is the variable X one of our "fake" children? */
436 #define CPLUS_FAKE_CHILD(x) \
437 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
438 \f
439
440 /* API Implementation */
441 static int
442 is_root_p (struct varobj *var)
443 {
444 return (var->root->rootvar == var);
445 }
446
447 #ifdef HAVE_PYTHON
448 /* Helper function to install a Python environment suitable for
449 use during operations on VAR. */
450 struct cleanup *
451 varobj_ensure_python_env (struct varobj *var)
452 {
453 return ensure_python_env (var->root->exp->gdbarch,
454 var->root->exp->language_defn);
455 }
456 #endif
457
458 /* Creates a varobj (not its children) */
459
460 /* Return the full FRAME which corresponds to the given CORE_ADDR
461 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
462
463 static struct frame_info *
464 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
465 {
466 struct frame_info *frame = NULL;
467
468 if (frame_addr == (CORE_ADDR) 0)
469 return NULL;
470
471 for (frame = get_current_frame ();
472 frame != NULL;
473 frame = get_prev_frame (frame))
474 {
475 /* The CORE_ADDR we get as argument was parsed from a string GDB
476 output as $fp. This output got truncated to gdbarch_addr_bit.
477 Truncate the frame base address in the same manner before
478 comparing it against our argument. */
479 CORE_ADDR frame_base = get_frame_base_address (frame);
480 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
481 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
482 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
483
484 if (frame_base == frame_addr)
485 return frame;
486 }
487
488 return NULL;
489 }
490
491 struct varobj *
492 varobj_create (char *objname,
493 char *expression, CORE_ADDR frame, enum varobj_type type)
494 {
495 struct varobj *var;
496 struct frame_info *fi;
497 struct frame_info *old_fi = NULL;
498 struct block *block;
499 struct cleanup *old_chain;
500
501 /* Fill out a varobj structure for the (root) variable being constructed. */
502 var = new_root_variable ();
503 old_chain = make_cleanup_free_variable (var);
504
505 if (expression != NULL)
506 {
507 char *p;
508 enum varobj_languages lang;
509 struct value *value = NULL;
510
511 /* Parse and evaluate the expression, filling in as much of the
512 variable's data as possible. */
513
514 if (has_stack_frames ())
515 {
516 /* Allow creator to specify context of variable */
517 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
518 fi = get_selected_frame (NULL);
519 else
520 /* FIXME: cagney/2002-11-23: This code should be doing a
521 lookup using the frame ID and not just the frame's
522 ``address''. This, of course, means an interface
523 change. However, with out that interface change ISAs,
524 such as the ia64 with its two stacks, won't work.
525 Similar goes for the case where there is a frameless
526 function. */
527 fi = find_frame_addr_in_frame_chain (frame);
528 }
529 else
530 fi = NULL;
531
532 /* frame = -2 means always use selected frame */
533 if (type == USE_SELECTED_FRAME)
534 var->root->floating = 1;
535
536 block = NULL;
537 if (fi != NULL)
538 block = get_frame_block (fi, 0);
539
540 p = expression;
541 innermost_block = NULL;
542 /* Wrap the call to parse expression, so we can
543 return a sensible error. */
544 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
545 {
546 return NULL;
547 }
548
549 /* Don't allow variables to be created for types. */
550 if (var->root->exp->elts[0].opcode == OP_TYPE)
551 {
552 do_cleanups (old_chain);
553 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
554 " as an expression.\n");
555 return NULL;
556 }
557
558 var->format = variable_default_display (var);
559 var->root->valid_block = innermost_block;
560 var->name = xstrdup (expression);
561 /* For a root var, the name and the expr are the same. */
562 var->path_expr = xstrdup (expression);
563
564 /* When the frame is different from the current frame,
565 we must select the appropriate frame before parsing
566 the expression, otherwise the value will not be current.
567 Since select_frame is so benign, just call it for all cases. */
568 if (innermost_block && fi != NULL)
569 {
570 var->root->frame = get_frame_id (fi);
571 var->root->thread_id = pid_to_thread_id (inferior_ptid);
572 old_fi = get_selected_frame (NULL);
573 select_frame (fi);
574 }
575
576 /* We definitely need to catch errors here.
577 If evaluate_expression succeeds we got the value we wanted.
578 But if it fails, we still go on with a call to evaluate_type() */
579 if (!gdb_evaluate_expression (var->root->exp, &value))
580 {
581 /* Error getting the value. Try to at least get the
582 right type. */
583 struct value *type_only_value = evaluate_type (var->root->exp);
584 var->type = value_type (type_only_value);
585 }
586 else
587 var->type = value_type (value);
588
589 install_new_value (var, value, 1 /* Initial assignment */);
590
591 /* Set language info */
592 lang = variable_language (var);
593 var->root->lang = &languages[lang];
594
595 /* Set ourselves as our root */
596 var->root->rootvar = var;
597
598 /* Reset the selected frame */
599 if (old_fi != NULL)
600 select_frame (old_fi);
601 }
602
603 /* If the variable object name is null, that means this
604 is a temporary variable, so don't install it. */
605
606 if ((var != NULL) && (objname != NULL))
607 {
608 var->obj_name = xstrdup (objname);
609
610 /* If a varobj name is duplicated, the install will fail so
611 we must clenup */
612 if (!install_variable (var))
613 {
614 do_cleanups (old_chain);
615 return NULL;
616 }
617 }
618
619 install_default_visualizer (var);
620 discard_cleanups (old_chain);
621 return var;
622 }
623
624 /* Generates an unique name that can be used for a varobj */
625
626 char *
627 varobj_gen_name (void)
628 {
629 static int id = 0;
630 char *obj_name;
631
632 /* generate a name for this object */
633 id++;
634 obj_name = xstrprintf ("var%d", id);
635
636 return obj_name;
637 }
638
639 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
640 error if OBJNAME cannot be found. */
641
642 struct varobj *
643 varobj_get_handle (char *objname)
644 {
645 struct vlist *cv;
646 const char *chp;
647 unsigned int index = 0;
648 unsigned int i = 1;
649
650 for (chp = objname; *chp; chp++)
651 {
652 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
653 }
654
655 cv = *(varobj_table + index);
656 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
657 cv = cv->next;
658
659 if (cv == NULL)
660 error (_("Variable object not found"));
661
662 return cv->var;
663 }
664
665 /* Given the handle, return the name of the object */
666
667 char *
668 varobj_get_objname (struct varobj *var)
669 {
670 return var->obj_name;
671 }
672
673 /* Given the handle, return the expression represented by the object */
674
675 char *
676 varobj_get_expression (struct varobj *var)
677 {
678 return name_of_variable (var);
679 }
680
681 /* Deletes a varobj and all its children if only_children == 0,
682 otherwise deletes only the children; returns a malloc'ed list of all the
683 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
684
685 int
686 varobj_delete (struct varobj *var, char ***dellist, int only_children)
687 {
688 int delcount;
689 int mycount;
690 struct cpstack *result = NULL;
691 char **cp;
692
693 /* Initialize a stack for temporary results */
694 cppush (&result, NULL);
695
696 if (only_children)
697 /* Delete only the variable children */
698 delcount = delete_variable (&result, var, 1 /* only the children */ );
699 else
700 /* Delete the variable and all its children */
701 delcount = delete_variable (&result, var, 0 /* parent+children */ );
702
703 /* We may have been asked to return a list of what has been deleted */
704 if (dellist != NULL)
705 {
706 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
707
708 cp = *dellist;
709 mycount = delcount;
710 *cp = cppop (&result);
711 while ((*cp != NULL) && (mycount > 0))
712 {
713 mycount--;
714 cp++;
715 *cp = cppop (&result);
716 }
717
718 if (mycount || (*cp != NULL))
719 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
720 mycount);
721 }
722
723 return delcount;
724 }
725
726 /* Convenience function for varobj_set_visualizer. Instantiate a
727 pretty-printer for a given value. */
728 static PyObject *
729 instantiate_pretty_printer (PyObject *constructor, struct value *value)
730 {
731 #if HAVE_PYTHON
732 PyObject *val_obj = NULL;
733 PyObject *printer;
734 volatile struct gdb_exception except;
735
736 TRY_CATCH (except, RETURN_MASK_ALL)
737 {
738 value = value_copy (value);
739 }
740 GDB_PY_HANDLE_EXCEPTION (except);
741 val_obj = value_to_value_object (value);
742
743 if (! val_obj)
744 return NULL;
745
746 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
747 Py_DECREF (val_obj);
748 return printer;
749 #endif
750 return NULL;
751 }
752
753 /* Set/Get variable object display format */
754
755 enum varobj_display_formats
756 varobj_set_display_format (struct varobj *var,
757 enum varobj_display_formats format)
758 {
759 switch (format)
760 {
761 case FORMAT_NATURAL:
762 case FORMAT_BINARY:
763 case FORMAT_DECIMAL:
764 case FORMAT_HEXADECIMAL:
765 case FORMAT_OCTAL:
766 var->format = format;
767 break;
768
769 default:
770 var->format = variable_default_display (var);
771 }
772
773 if (varobj_value_is_changeable_p (var)
774 && var->value && !value_lazy (var->value))
775 {
776 xfree (var->print_value);
777 var->print_value = value_get_print_value (var->value, var->format, var);
778 }
779
780 return var->format;
781 }
782
783 enum varobj_display_formats
784 varobj_get_display_format (struct varobj *var)
785 {
786 return var->format;
787 }
788
789 char *
790 varobj_get_display_hint (struct varobj *var)
791 {
792 char *result = NULL;
793
794 #if HAVE_PYTHON
795 struct cleanup *back_to = varobj_ensure_python_env (var);
796
797 if (var->pretty_printer)
798 result = gdbpy_get_display_hint (var->pretty_printer);
799
800 do_cleanups (back_to);
801 #endif
802
803 return result;
804 }
805
806 /* If the variable object is bound to a specific thread, that
807 is its evaluation can always be done in context of a frame
808 inside that thread, returns GDB id of the thread -- which
809 is always positive. Otherwise, returns -1. */
810 int
811 varobj_get_thread_id (struct varobj *var)
812 {
813 if (var->root->valid_block && var->root->thread_id > 0)
814 return var->root->thread_id;
815 else
816 return -1;
817 }
818
819 void
820 varobj_set_frozen (struct varobj *var, int frozen)
821 {
822 /* When a variable is unfrozen, we don't fetch its value.
823 The 'not_fetched' flag remains set, so next -var-update
824 won't complain.
825
826 We don't fetch the value, because for structures the client
827 should do -var-update anyway. It would be bad to have different
828 client-size logic for structure and other types. */
829 var->frozen = frozen;
830 }
831
832 int
833 varobj_get_frozen (struct varobj *var)
834 {
835 return var->frozen;
836 }
837
838 static int
839 update_dynamic_varobj_children (struct varobj *var,
840 VEC (varobj_p) **changed,
841 VEC (varobj_p) **new_and_unchanged,
842 int *cchanged)
843
844 {
845 #if HAVE_PYTHON
846 /* FIXME: we *might* want to provide this functionality as
847 a standalone function, so that other interested parties
848 than varobj code can benefit for this. */
849 struct cleanup *back_to;
850 PyObject *children;
851 PyObject *iterator;
852 int i;
853 int children_changed = 0;
854 PyObject *printer = var->pretty_printer;
855
856 back_to = varobj_ensure_python_env (var);
857
858 *cchanged = 0;
859 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
860 {
861 do_cleanups (back_to);
862 return 0;
863 }
864
865 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
866 NULL);
867
868 if (!children)
869 {
870 gdbpy_print_stack ();
871 error (_("Null value returned for children"));
872 }
873
874 make_cleanup_py_decref (children);
875
876 if (!PyIter_Check (children))
877 error (_("Returned value is not iterable"));
878
879 iterator = PyObject_GetIter (children);
880 if (!iterator)
881 {
882 gdbpy_print_stack ();
883 error (_("Could not get children iterator"));
884 }
885 make_cleanup_py_decref (iterator);
886
887 for (i = 0; ; ++i)
888 {
889 PyObject *item = PyIter_Next (iterator);
890 PyObject *py_v;
891 struct value *v;
892 char *name;
893 struct cleanup *inner;
894
895 if (!item)
896 break;
897 inner = make_cleanup_py_decref (item);
898
899 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
900 error (_("Invalid item from the child list"));
901
902 v = convert_value_from_python (py_v);
903
904 /* TODO: This assume the name of the i-th child never changes. */
905
906 /* Now see what to do here. */
907 if (VEC_length (varobj_p, var->children) < i + 1)
908 {
909 /* There's no child yet. */
910 struct varobj *child = varobj_add_child (var, name, v);
911 if (new_and_unchanged)
912 VEC_safe_push (varobj_p, *new_and_unchanged, child);
913 children_changed = 1;
914 }
915 else
916 {
917 varobj_p existing = VEC_index (varobj_p, var->children, i);
918 if (install_new_value (existing, v, 0) && changed)
919 {
920 if (changed)
921 VEC_safe_push (varobj_p, *changed, existing);
922 }
923 else
924 {
925 if (new_and_unchanged)
926 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
927 }
928 }
929
930 do_cleanups (inner);
931 }
932
933 if (i < VEC_length (varobj_p, var->children))
934 {
935 int i;
936 children_changed = 1;
937 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
938 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
939 }
940 VEC_truncate (varobj_p, var->children, i);
941 var->num_children = VEC_length (varobj_p, var->children);
942
943 do_cleanups (back_to);
944
945 *cchanged = children_changed;
946 return 1;
947 #else
948 gdb_assert (0 && "should never be called if Python is not enabled");
949 #endif
950 }
951
952 int
953 varobj_get_num_children (struct varobj *var)
954 {
955 if (var->num_children == -1)
956 {
957 int changed;
958 if (!var->pretty_printer
959 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
960 var->num_children = number_of_children (var);
961 }
962
963 return var->num_children;
964 }
965
966 /* Creates a list of the immediate children of a variable object;
967 the return code is the number of such children or -1 on error */
968
969 VEC (varobj_p)*
970 varobj_list_children (struct varobj *var)
971 {
972 struct varobj *child;
973 char *name;
974 int i, children_changed;
975
976 var->children_requested = 1;
977
978 if (var->pretty_printer
979 /* This, in theory, can result in the number of children changing without
980 frontend noticing. But well, calling -var-list-children on the same
981 varobj twice is not something a sane frontend would do. */
982 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
983 return var->children;
984
985 if (var->num_children == -1)
986 var->num_children = number_of_children (var);
987
988 /* If that failed, give up. */
989 if (var->num_children == -1)
990 return var->children;
991
992 /* If we're called when the list of children is not yet initialized,
993 allocate enough elements in it. */
994 while (VEC_length (varobj_p, var->children) < var->num_children)
995 VEC_safe_push (varobj_p, var->children, NULL);
996
997 for (i = 0; i < var->num_children; i++)
998 {
999 varobj_p existing = VEC_index (varobj_p, var->children, i);
1000
1001 if (existing == NULL)
1002 {
1003 /* Either it's the first call to varobj_list_children for
1004 this variable object, and the child was never created,
1005 or it was explicitly deleted by the client. */
1006 name = name_of_child (var, i);
1007 existing = create_child (var, i, name);
1008 VEC_replace (varobj_p, var->children, i, existing);
1009 install_default_visualizer (existing);
1010 }
1011 }
1012
1013 return var->children;
1014 }
1015
1016 static struct varobj *
1017 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1018 {
1019 varobj_p v = create_child_with_value (var,
1020 VEC_length (varobj_p, var->children),
1021 name, value);
1022 VEC_safe_push (varobj_p, var->children, v);
1023 install_default_visualizer (v);
1024 return v;
1025 }
1026
1027 /* Obtain the type of an object Variable as a string similar to the one gdb
1028 prints on the console */
1029
1030 char *
1031 varobj_get_type (struct varobj *var)
1032 {
1033 /* For the "fake" variables, do not return a type. (It's type is
1034 NULL, too.)
1035 Do not return a type for invalid variables as well. */
1036 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1037 return NULL;
1038
1039 return type_to_string (var->type);
1040 }
1041
1042 /* Obtain the type of an object variable. */
1043
1044 struct type *
1045 varobj_get_gdb_type (struct varobj *var)
1046 {
1047 return var->type;
1048 }
1049
1050 /* Return a pointer to the full rooted expression of varobj VAR.
1051 If it has not been computed yet, compute it. */
1052 char *
1053 varobj_get_path_expr (struct varobj *var)
1054 {
1055 if (var->path_expr != NULL)
1056 return var->path_expr;
1057 else
1058 {
1059 /* For root varobjs, we initialize path_expr
1060 when creating varobj, so here it should be
1061 child varobj. */
1062 gdb_assert (!is_root_p (var));
1063 return (*var->root->lang->path_expr_of_child) (var);
1064 }
1065 }
1066
1067 enum varobj_languages
1068 varobj_get_language (struct varobj *var)
1069 {
1070 return variable_language (var);
1071 }
1072
1073 int
1074 varobj_get_attributes (struct varobj *var)
1075 {
1076 int attributes = 0;
1077
1078 if (varobj_editable_p (var))
1079 /* FIXME: define masks for attributes */
1080 attributes |= 0x00000001; /* Editable */
1081
1082 return attributes;
1083 }
1084
1085 char *
1086 varobj_get_formatted_value (struct varobj *var,
1087 enum varobj_display_formats format)
1088 {
1089 return my_value_of_variable (var, format);
1090 }
1091
1092 char *
1093 varobj_get_value (struct varobj *var)
1094 {
1095 return my_value_of_variable (var, var->format);
1096 }
1097
1098 /* Set the value of an object variable (if it is editable) to the
1099 value of the given expression */
1100 /* Note: Invokes functions that can call error() */
1101
1102 int
1103 varobj_set_value (struct varobj *var, char *expression)
1104 {
1105 struct value *val;
1106 int offset = 0;
1107 int error = 0;
1108
1109 /* The argument "expression" contains the variable's new value.
1110 We need to first construct a legal expression for this -- ugh! */
1111 /* Does this cover all the bases? */
1112 struct expression *exp;
1113 struct value *value;
1114 int saved_input_radix = input_radix;
1115 char *s = expression;
1116 int i;
1117
1118 gdb_assert (varobj_editable_p (var));
1119
1120 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1121 exp = parse_exp_1 (&s, 0, 0);
1122 if (!gdb_evaluate_expression (exp, &value))
1123 {
1124 /* We cannot proceed without a valid expression. */
1125 xfree (exp);
1126 return 0;
1127 }
1128
1129 /* All types that are editable must also be changeable. */
1130 gdb_assert (varobj_value_is_changeable_p (var));
1131
1132 /* The value of a changeable variable object must not be lazy. */
1133 gdb_assert (!value_lazy (var->value));
1134
1135 /* Need to coerce the input. We want to check if the
1136 value of the variable object will be different
1137 after assignment, and the first thing value_assign
1138 does is coerce the input.
1139 For example, if we are assigning an array to a pointer variable we
1140 should compare the pointer with the the array's address, not with the
1141 array's content. */
1142 value = coerce_array (value);
1143
1144 /* The new value may be lazy. gdb_value_assign, or
1145 rather value_contents, will take care of this.
1146 If fetching of the new value will fail, gdb_value_assign
1147 with catch the exception. */
1148 if (!gdb_value_assign (var->value, value, &val))
1149 return 0;
1150
1151 /* If the value has changed, record it, so that next -var-update can
1152 report this change. If a variable had a value of '1', we've set it
1153 to '333' and then set again to '1', when -var-update will report this
1154 variable as changed -- because the first assignment has set the
1155 'updated' flag. There's no need to optimize that, because return value
1156 of -var-update should be considered an approximation. */
1157 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1158 input_radix = saved_input_radix;
1159 return 1;
1160 }
1161
1162 /* Assign a new value to a variable object. If INITIAL is non-zero,
1163 this is the first assignement after the variable object was just
1164 created, or changed type. In that case, just assign the value
1165 and return 0.
1166 Otherwise, assign the new value, and return 1 if the value is different
1167 from the current one, 0 otherwise. The comparison is done on textual
1168 representation of value. Therefore, some types need not be compared. E.g.
1169 for structures the reported value is always "{...}", so no comparison is
1170 necessary here. If the old value was NULL and new one is not, or vice versa,
1171 we always return 1.
1172
1173 The VALUE parameter should not be released -- the function will
1174 take care of releasing it when needed. */
1175 static int
1176 install_new_value (struct varobj *var, struct value *value, int initial)
1177 {
1178 int changeable;
1179 int need_to_fetch;
1180 int changed = 0;
1181 int intentionally_not_fetched = 0;
1182 char *print_value = NULL;
1183
1184 /* We need to know the varobj's type to decide if the value should
1185 be fetched or not. C++ fake children (public/protected/private) don't have
1186 a type. */
1187 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1188 changeable = varobj_value_is_changeable_p (var);
1189
1190 /* If the type has custom visualizer, we consider it to be always
1191 changeable. FIXME: need to make sure this behaviour will not
1192 mess up read-sensitive values. */
1193 if (var->pretty_printer)
1194 changeable = 1;
1195
1196 need_to_fetch = changeable;
1197
1198 /* We are not interested in the address of references, and given
1199 that in C++ a reference is not rebindable, it cannot
1200 meaningfully change. So, get hold of the real value. */
1201 if (value)
1202 {
1203 value = coerce_ref (value);
1204 release_value (value);
1205 }
1206
1207 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1208 /* For unions, we need to fetch the value implicitly because
1209 of implementation of union member fetch. When gdb
1210 creates a value for a field and the value of the enclosing
1211 structure is not lazy, it immediately copies the necessary
1212 bytes from the enclosing values. If the enclosing value is
1213 lazy, the call to value_fetch_lazy on the field will read
1214 the data from memory. For unions, that means we'll read the
1215 same memory more than once, which is not desirable. So
1216 fetch now. */
1217 need_to_fetch = 1;
1218
1219 /* The new value might be lazy. If the type is changeable,
1220 that is we'll be comparing values of this type, fetch the
1221 value now. Otherwise, on the next update the old value
1222 will be lazy, which means we've lost that old value. */
1223 if (need_to_fetch && value && value_lazy (value))
1224 {
1225 struct varobj *parent = var->parent;
1226 int frozen = var->frozen;
1227 for (; !frozen && parent; parent = parent->parent)
1228 frozen |= parent->frozen;
1229
1230 if (frozen && initial)
1231 {
1232 /* For variables that are frozen, or are children of frozen
1233 variables, we don't do fetch on initial assignment.
1234 For non-initial assignemnt we do the fetch, since it means we're
1235 explicitly asked to compare the new value with the old one. */
1236 intentionally_not_fetched = 1;
1237 }
1238 else if (!gdb_value_fetch_lazy (value))
1239 {
1240 /* Set the value to NULL, so that for the next -var-update,
1241 we don't try to compare the new value with this value,
1242 that we couldn't even read. */
1243 value = NULL;
1244 }
1245 }
1246
1247
1248 /* Below, we'll be comparing string rendering of old and new
1249 values. Don't get string rendering if the value is
1250 lazy -- if it is, the code above has decided that the value
1251 should not be fetched. */
1252 if (value && !value_lazy (value))
1253 print_value = value_get_print_value (value, var->format, var);
1254
1255 /* If the type is changeable, compare the old and the new values.
1256 If this is the initial assignment, we don't have any old value
1257 to compare with. */
1258 if (!initial && changeable)
1259 {
1260 /* If the value of the varobj was changed by -var-set-value, then the
1261 value in the varobj and in the target is the same. However, that value
1262 is different from the value that the varobj had after the previous
1263 -var-update. So need to the varobj as changed. */
1264 if (var->updated)
1265 {
1266 changed = 1;
1267 }
1268 else
1269 {
1270 /* Try to compare the values. That requires that both
1271 values are non-lazy. */
1272 if (var->not_fetched && value_lazy (var->value))
1273 {
1274 /* This is a frozen varobj and the value was never read.
1275 Presumably, UI shows some "never read" indicator.
1276 Now that we've fetched the real value, we need to report
1277 this varobj as changed so that UI can show the real
1278 value. */
1279 changed = 1;
1280 }
1281 else if (var->value == NULL && value == NULL)
1282 /* Equal. */
1283 ;
1284 else if (var->value == NULL || value == NULL)
1285 {
1286 changed = 1;
1287 }
1288 else
1289 {
1290 gdb_assert (!value_lazy (var->value));
1291 gdb_assert (!value_lazy (value));
1292
1293 gdb_assert (var->print_value != NULL && print_value != NULL);
1294 if (strcmp (var->print_value, print_value) != 0)
1295 changed = 1;
1296 }
1297 }
1298 }
1299
1300 if (!initial && !changeable)
1301 {
1302 /* For values that are not changeable, we don't compare the values.
1303 However, we want to notice if a value was not NULL and now is NULL,
1304 or vise versa, so that we report when top-level varobjs come in scope
1305 and leave the scope. */
1306 changed = (var->value != NULL) != (value != NULL);
1307 }
1308
1309 /* We must always keep the new value, since children depend on it. */
1310 if (var->value != NULL && var->value != value)
1311 value_free (var->value);
1312 var->value = value;
1313 if (var->print_value)
1314 xfree (var->print_value);
1315 var->print_value = print_value;
1316 if (value && value_lazy (value) && intentionally_not_fetched)
1317 var->not_fetched = 1;
1318 else
1319 var->not_fetched = 0;
1320 var->updated = 0;
1321
1322 gdb_assert (!var->value || value_type (var->value));
1323
1324 return changed;
1325 }
1326
1327 static void
1328 install_visualizer (struct varobj *var, PyObject *visualizer)
1329 {
1330 #if HAVE_PYTHON
1331 /* If there are any children now, wipe them. */
1332 varobj_delete (var, NULL, 1 /* children only */);
1333 var->num_children = -1;
1334
1335 Py_XDECREF (var->pretty_printer);
1336 var->pretty_printer = visualizer;
1337
1338 install_new_value (var, var->value, 1);
1339
1340 /* If we removed the visualizer, and the user ever requested the
1341 object's children, then we must compute the list of children.
1342 Note that we needn't do this when installing a visualizer,
1343 because updating will recompute dynamic children. */
1344 if (!visualizer && var->children_requested)
1345 varobj_list_children (var);
1346 #else
1347 error (_("Python support required"));
1348 #endif
1349 }
1350
1351 static void
1352 install_default_visualizer (struct varobj *var)
1353 {
1354 #if HAVE_PYTHON
1355 struct cleanup *cleanup;
1356 PyObject *pretty_printer = NULL;
1357
1358 cleanup = varobj_ensure_python_env (var);
1359
1360 if (var->value)
1361 {
1362 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1363 if (! pretty_printer)
1364 {
1365 gdbpy_print_stack ();
1366 error (_("Cannot instantiate printer for default visualizer"));
1367 }
1368 }
1369
1370 if (pretty_printer == Py_None)
1371 {
1372 Py_DECREF (pretty_printer);
1373 pretty_printer = NULL;
1374 }
1375
1376 install_visualizer (var, pretty_printer);
1377 do_cleanups (cleanup);
1378 #else
1379 /* No error is right as this function is inserted just as a hook. */
1380 #endif
1381 }
1382
1383 void
1384 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1385 {
1386 #if HAVE_PYTHON
1387 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1388 struct cleanup *back_to, *value;
1389
1390 back_to = varobj_ensure_python_env (var);
1391
1392 mainmod = PyImport_AddModule ("__main__");
1393 globals = PyModule_GetDict (mainmod);
1394 Py_INCREF (globals);
1395 make_cleanup_py_decref (globals);
1396
1397 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1398
1399 /* Do not instantiate NoneType. */
1400 if (constructor == Py_None)
1401 {
1402 pretty_printer = Py_None;
1403 Py_INCREF (pretty_printer);
1404 }
1405 else
1406 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1407
1408 Py_XDECREF (constructor);
1409
1410 if (! pretty_printer)
1411 {
1412 gdbpy_print_stack ();
1413 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1414 }
1415
1416 if (pretty_printer == Py_None)
1417 {
1418 Py_DECREF (pretty_printer);
1419 pretty_printer = NULL;
1420 }
1421
1422 install_visualizer (var, pretty_printer);
1423
1424 do_cleanups (back_to);
1425 #else
1426 error (_("Python support required"));
1427 #endif
1428 }
1429
1430 /* Update the values for a variable and its children. This is a
1431 two-pronged attack. First, re-parse the value for the root's
1432 expression to see if it's changed. Then go all the way
1433 through its children, reconstructing them and noting if they've
1434 changed.
1435
1436 The EXPLICIT parameter specifies if this call is result
1437 of MI request to update this specific variable, or
1438 result of implicit -var-update *. For implicit request, we don't
1439 update frozen variables.
1440
1441 NOTE: This function may delete the caller's varobj. If it
1442 returns TYPE_CHANGED, then it has done this and VARP will be modified
1443 to point to the new varobj. */
1444
1445 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1446 {
1447 int changed = 0;
1448 int type_changed = 0;
1449 int i;
1450 int vleft;
1451 struct varobj *v;
1452 struct varobj **cv;
1453 struct varobj **templist = NULL;
1454 struct value *new;
1455 VEC (varobj_update_result) *stack = NULL;
1456 VEC (varobj_update_result) *result = NULL;
1457 struct frame_info *fi;
1458
1459 /* Frozen means frozen -- we don't check for any change in
1460 this varobj, including its going out of scope, or
1461 changing type. One use case for frozen varobjs is
1462 retaining previously evaluated expressions, and we don't
1463 want them to be reevaluated at all. */
1464 if (!explicit && (*varp)->frozen)
1465 return result;
1466
1467 if (!(*varp)->root->is_valid)
1468 {
1469 varobj_update_result r = {*varp};
1470 r.status = VAROBJ_INVALID;
1471 VEC_safe_push (varobj_update_result, result, &r);
1472 return result;
1473 }
1474
1475 if ((*varp)->root->rootvar == *varp)
1476 {
1477 varobj_update_result r = {*varp};
1478 r.status = VAROBJ_IN_SCOPE;
1479
1480 /* Update the root variable. value_of_root can return NULL
1481 if the variable is no longer around, i.e. we stepped out of
1482 the frame in which a local existed. We are letting the
1483 value_of_root variable dispose of the varobj if the type
1484 has changed. */
1485 new = value_of_root (varp, &type_changed);
1486 r.varobj = *varp;
1487
1488 r.type_changed = type_changed;
1489 if (install_new_value ((*varp), new, type_changed))
1490 r.changed = 1;
1491
1492 if (new == NULL)
1493 r.status = VAROBJ_NOT_IN_SCOPE;
1494 r.value_installed = 1;
1495
1496 if (r.status == VAROBJ_NOT_IN_SCOPE)
1497 {
1498 if (r.type_changed || r.changed)
1499 VEC_safe_push (varobj_update_result, result, &r);
1500 return result;
1501 }
1502
1503 VEC_safe_push (varobj_update_result, stack, &r);
1504 }
1505 else
1506 {
1507 varobj_update_result r = {*varp};
1508 VEC_safe_push (varobj_update_result, stack, &r);
1509 }
1510
1511 /* Walk through the children, reconstructing them all. */
1512 while (!VEC_empty (varobj_update_result, stack))
1513 {
1514 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1515 struct varobj *v = r.varobj;
1516
1517 VEC_pop (varobj_update_result, stack);
1518
1519 /* Update this variable, unless it's a root, which is already
1520 updated. */
1521 if (!r.value_installed)
1522 {
1523 new = value_of_child (v->parent, v->index);
1524 if (install_new_value (v, new, 0 /* type not changed */))
1525 {
1526 r.changed = 1;
1527 v->updated = 0;
1528 }
1529 }
1530
1531 /* We probably should not get children of a varobj that has a
1532 pretty-printer, but for which -var-list-children was never
1533 invoked. Presumably, such varobj is not yet expanded in the
1534 UI, so we need not bother getting it. */
1535 if (v->pretty_printer)
1536 {
1537 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1538 int i, children_changed;
1539 varobj_p tmp;
1540
1541 if (!v->children_requested)
1542 continue;
1543
1544 if (v->frozen)
1545 continue;
1546
1547 /* If update_dynamic_varobj_children returns 0, then we have
1548 a non-conforming pretty-printer, so we skip it. */
1549 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1550 &children_changed))
1551 {
1552 if (children_changed)
1553 r.children_changed = 1;
1554 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1555 {
1556 varobj_update_result r = {tmp};
1557 r.changed = 1;
1558 r.value_installed = 1;
1559 VEC_safe_push (varobj_update_result, stack, &r);
1560 }
1561 for (i = 0;
1562 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1563 ++i)
1564 {
1565 varobj_update_result r = {tmp};
1566 r.value_installed = 1;
1567 VEC_safe_push (varobj_update_result, stack, &r);
1568 }
1569 if (r.changed || r.children_changed)
1570 VEC_safe_push (varobj_update_result, result, &r);
1571 continue;
1572 }
1573 }
1574
1575 /* Push any children. Use reverse order so that the first
1576 child is popped from the work stack first, and so
1577 will be added to result first. This does not
1578 affect correctness, just "nicer". */
1579 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1580 {
1581 varobj_p c = VEC_index (varobj_p, v->children, i);
1582 /* Child may be NULL if explicitly deleted by -var-delete. */
1583 if (c != NULL && !c->frozen)
1584 {
1585 varobj_update_result r = {c};
1586 VEC_safe_push (varobj_update_result, stack, &r);
1587 }
1588 }
1589
1590 if (r.changed || r.type_changed)
1591 VEC_safe_push (varobj_update_result, result, &r);
1592 }
1593
1594 VEC_free (varobj_update_result, stack);
1595
1596 return result;
1597 }
1598 \f
1599
1600 /* Helper functions */
1601
1602 /*
1603 * Variable object construction/destruction
1604 */
1605
1606 static int
1607 delete_variable (struct cpstack **resultp, struct varobj *var,
1608 int only_children_p)
1609 {
1610 int delcount = 0;
1611
1612 delete_variable_1 (resultp, &delcount, var,
1613 only_children_p, 1 /* remove_from_parent_p */ );
1614
1615 return delcount;
1616 }
1617
1618 /* Delete the variable object VAR and its children */
1619 /* IMPORTANT NOTE: If we delete a variable which is a child
1620 and the parent is not removed we dump core. It must be always
1621 initially called with remove_from_parent_p set */
1622 static void
1623 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1624 struct varobj *var, int only_children_p,
1625 int remove_from_parent_p)
1626 {
1627 int i;
1628
1629 /* Delete any children of this variable, too. */
1630 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1631 {
1632 varobj_p child = VEC_index (varobj_p, var->children, i);
1633 if (!child)
1634 continue;
1635 if (!remove_from_parent_p)
1636 child->parent = NULL;
1637 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1638 }
1639 VEC_free (varobj_p, var->children);
1640
1641 /* if we were called to delete only the children we are done here */
1642 if (only_children_p)
1643 return;
1644
1645 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1646 /* If the name is null, this is a temporary variable, that has not
1647 yet been installed, don't report it, it belongs to the caller... */
1648 if (var->obj_name != NULL)
1649 {
1650 cppush (resultp, xstrdup (var->obj_name));
1651 *delcountp = *delcountp + 1;
1652 }
1653
1654 /* If this variable has a parent, remove it from its parent's list */
1655 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1656 (as indicated by remove_from_parent_p) we don't bother doing an
1657 expensive list search to find the element to remove when we are
1658 discarding the list afterwards */
1659 if ((remove_from_parent_p) && (var->parent != NULL))
1660 {
1661 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1662 }
1663
1664 if (var->obj_name != NULL)
1665 uninstall_variable (var);
1666
1667 /* Free memory associated with this variable */
1668 free_variable (var);
1669 }
1670
1671 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1672 static int
1673 install_variable (struct varobj *var)
1674 {
1675 struct vlist *cv;
1676 struct vlist *newvl;
1677 const char *chp;
1678 unsigned int index = 0;
1679 unsigned int i = 1;
1680
1681 for (chp = var->obj_name; *chp; chp++)
1682 {
1683 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1684 }
1685
1686 cv = *(varobj_table + index);
1687 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1688 cv = cv->next;
1689
1690 if (cv != NULL)
1691 error (_("Duplicate variable object name"));
1692
1693 /* Add varobj to hash table */
1694 newvl = xmalloc (sizeof (struct vlist));
1695 newvl->next = *(varobj_table + index);
1696 newvl->var = var;
1697 *(varobj_table + index) = newvl;
1698
1699 /* If root, add varobj to root list */
1700 if (is_root_p (var))
1701 {
1702 /* Add to list of root variables */
1703 if (rootlist == NULL)
1704 var->root->next = NULL;
1705 else
1706 var->root->next = rootlist;
1707 rootlist = var->root;
1708 }
1709
1710 return 1; /* OK */
1711 }
1712
1713 /* Unistall the object VAR. */
1714 static void
1715 uninstall_variable (struct varobj *var)
1716 {
1717 struct vlist *cv;
1718 struct vlist *prev;
1719 struct varobj_root *cr;
1720 struct varobj_root *prer;
1721 const char *chp;
1722 unsigned int index = 0;
1723 unsigned int i = 1;
1724
1725 /* Remove varobj from hash table */
1726 for (chp = var->obj_name; *chp; chp++)
1727 {
1728 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1729 }
1730
1731 cv = *(varobj_table + index);
1732 prev = NULL;
1733 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1734 {
1735 prev = cv;
1736 cv = cv->next;
1737 }
1738
1739 if (varobjdebug)
1740 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1741
1742 if (cv == NULL)
1743 {
1744 warning
1745 ("Assertion failed: Could not find variable object \"%s\" to delete",
1746 var->obj_name);
1747 return;
1748 }
1749
1750 if (prev == NULL)
1751 *(varobj_table + index) = cv->next;
1752 else
1753 prev->next = cv->next;
1754
1755 xfree (cv);
1756
1757 /* If root, remove varobj from root list */
1758 if (is_root_p (var))
1759 {
1760 /* Remove from list of root variables */
1761 if (rootlist == var->root)
1762 rootlist = var->root->next;
1763 else
1764 {
1765 prer = NULL;
1766 cr = rootlist;
1767 while ((cr != NULL) && (cr->rootvar != var))
1768 {
1769 prer = cr;
1770 cr = cr->next;
1771 }
1772 if (cr == NULL)
1773 {
1774 warning
1775 ("Assertion failed: Could not find varobj \"%s\" in root list",
1776 var->obj_name);
1777 return;
1778 }
1779 if (prer == NULL)
1780 rootlist = NULL;
1781 else
1782 prer->next = cr->next;
1783 }
1784 }
1785
1786 }
1787
1788 /* Create and install a child of the parent of the given name */
1789 static struct varobj *
1790 create_child (struct varobj *parent, int index, char *name)
1791 {
1792 return create_child_with_value (parent, index, name,
1793 value_of_child (parent, index));
1794 }
1795
1796 static struct varobj *
1797 create_child_with_value (struct varobj *parent, int index, const char *name,
1798 struct value *value)
1799 {
1800 struct varobj *child;
1801 char *childs_name;
1802
1803 child = new_variable ();
1804
1805 /* name is allocated by name_of_child */
1806 /* FIXME: xstrdup should not be here. */
1807 child->name = xstrdup (name);
1808 child->index = index;
1809 child->parent = parent;
1810 child->root = parent->root;
1811 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1812 child->obj_name = childs_name;
1813 install_variable (child);
1814
1815 /* Compute the type of the child. Must do this before
1816 calling install_new_value. */
1817 if (value != NULL)
1818 /* If the child had no evaluation errors, var->value
1819 will be non-NULL and contain a valid type. */
1820 child->type = value_type (value);
1821 else
1822 /* Otherwise, we must compute the type. */
1823 child->type = (*child->root->lang->type_of_child) (child->parent,
1824 child->index);
1825 install_new_value (child, value, 1);
1826
1827 return child;
1828 }
1829 \f
1830
1831 /*
1832 * Miscellaneous utility functions.
1833 */
1834
1835 /* Allocate memory and initialize a new variable */
1836 static struct varobj *
1837 new_variable (void)
1838 {
1839 struct varobj *var;
1840
1841 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1842 var->name = NULL;
1843 var->path_expr = NULL;
1844 var->obj_name = NULL;
1845 var->index = -1;
1846 var->type = NULL;
1847 var->value = NULL;
1848 var->num_children = -1;
1849 var->parent = NULL;
1850 var->children = NULL;
1851 var->format = 0;
1852 var->root = NULL;
1853 var->updated = 0;
1854 var->print_value = NULL;
1855 var->frozen = 0;
1856 var->not_fetched = 0;
1857 var->children_requested = 0;
1858 var->pretty_printer = 0;
1859
1860 return var;
1861 }
1862
1863 /* Allocate memory and initialize a new root variable */
1864 static struct varobj *
1865 new_root_variable (void)
1866 {
1867 struct varobj *var = new_variable ();
1868 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1869 var->root->lang = NULL;
1870 var->root->exp = NULL;
1871 var->root->valid_block = NULL;
1872 var->root->frame = null_frame_id;
1873 var->root->floating = 0;
1874 var->root->rootvar = NULL;
1875 var->root->is_valid = 1;
1876
1877 return var;
1878 }
1879
1880 /* Free any allocated memory associated with VAR. */
1881 static void
1882 free_variable (struct varobj *var)
1883 {
1884 #if HAVE_PYTHON
1885 if (var->pretty_printer)
1886 {
1887 struct cleanup *cleanup = varobj_ensure_python_env (var);
1888 Py_DECREF (var->pretty_printer);
1889 do_cleanups (cleanup);
1890 }
1891 #endif
1892
1893 value_free (var->value);
1894
1895 /* Free the expression if this is a root variable. */
1896 if (is_root_p (var))
1897 {
1898 xfree (var->root->exp);
1899 xfree (var->root);
1900 }
1901
1902 xfree (var->name);
1903 xfree (var->obj_name);
1904 xfree (var->print_value);
1905 xfree (var->path_expr);
1906 xfree (var);
1907 }
1908
1909 static void
1910 do_free_variable_cleanup (void *var)
1911 {
1912 free_variable (var);
1913 }
1914
1915 static struct cleanup *
1916 make_cleanup_free_variable (struct varobj *var)
1917 {
1918 return make_cleanup (do_free_variable_cleanup, var);
1919 }
1920
1921 /* This returns the type of the variable. It also skips past typedefs
1922 to return the real type of the variable.
1923
1924 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1925 except within get_target_type and get_type. */
1926 static struct type *
1927 get_type (struct varobj *var)
1928 {
1929 struct type *type;
1930 type = var->type;
1931
1932 if (type != NULL)
1933 type = check_typedef (type);
1934
1935 return type;
1936 }
1937
1938 /* Return the type of the value that's stored in VAR,
1939 or that would have being stored there if the
1940 value were accessible.
1941
1942 This differs from VAR->type in that VAR->type is always
1943 the true type of the expession in the source language.
1944 The return value of this function is the type we're
1945 actually storing in varobj, and using for displaying
1946 the values and for comparing previous and new values.
1947
1948 For example, top-level references are always stripped. */
1949 static struct type *
1950 get_value_type (struct varobj *var)
1951 {
1952 struct type *type;
1953
1954 if (var->value)
1955 type = value_type (var->value);
1956 else
1957 type = var->type;
1958
1959 type = check_typedef (type);
1960
1961 if (TYPE_CODE (type) == TYPE_CODE_REF)
1962 type = get_target_type (type);
1963
1964 type = check_typedef (type);
1965
1966 return type;
1967 }
1968
1969 /* This returns the target type (or NULL) of TYPE, also skipping
1970 past typedefs, just like get_type ().
1971
1972 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1973 except within get_target_type and get_type. */
1974 static struct type *
1975 get_target_type (struct type *type)
1976 {
1977 if (type != NULL)
1978 {
1979 type = TYPE_TARGET_TYPE (type);
1980 if (type != NULL)
1981 type = check_typedef (type);
1982 }
1983
1984 return type;
1985 }
1986
1987 /* What is the default display for this variable? We assume that
1988 everything is "natural". Any exceptions? */
1989 static enum varobj_display_formats
1990 variable_default_display (struct varobj *var)
1991 {
1992 return FORMAT_NATURAL;
1993 }
1994
1995 /* FIXME: The following should be generic for any pointer */
1996 static void
1997 cppush (struct cpstack **pstack, char *name)
1998 {
1999 struct cpstack *s;
2000
2001 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2002 s->name = name;
2003 s->next = *pstack;
2004 *pstack = s;
2005 }
2006
2007 /* FIXME: The following should be generic for any pointer */
2008 static char *
2009 cppop (struct cpstack **pstack)
2010 {
2011 struct cpstack *s;
2012 char *v;
2013
2014 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2015 return NULL;
2016
2017 s = *pstack;
2018 v = s->name;
2019 *pstack = (*pstack)->next;
2020 xfree (s);
2021
2022 return v;
2023 }
2024 \f
2025 /*
2026 * Language-dependencies
2027 */
2028
2029 /* Common entry points */
2030
2031 /* Get the language of variable VAR. */
2032 static enum varobj_languages
2033 variable_language (struct varobj *var)
2034 {
2035 enum varobj_languages lang;
2036
2037 switch (var->root->exp->language_defn->la_language)
2038 {
2039 default:
2040 case language_c:
2041 lang = vlang_c;
2042 break;
2043 case language_cplus:
2044 lang = vlang_cplus;
2045 break;
2046 case language_java:
2047 lang = vlang_java;
2048 break;
2049 }
2050
2051 return lang;
2052 }
2053
2054 /* Return the number of children for a given variable.
2055 The result of this function is defined by the language
2056 implementation. The number of children returned by this function
2057 is the number of children that the user will see in the variable
2058 display. */
2059 static int
2060 number_of_children (struct varobj *var)
2061 {
2062 return (*var->root->lang->number_of_children) (var);;
2063 }
2064
2065 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2066 static char *
2067 name_of_variable (struct varobj *var)
2068 {
2069 return (*var->root->lang->name_of_variable) (var);
2070 }
2071
2072 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2073 static char *
2074 name_of_child (struct varobj *var, int index)
2075 {
2076 return (*var->root->lang->name_of_child) (var, index);
2077 }
2078
2079 /* What is the ``struct value *'' of the root variable VAR?
2080 For floating variable object, evaluation can get us a value
2081 of different type from what is stored in varobj already. In
2082 that case:
2083 - *type_changed will be set to 1
2084 - old varobj will be freed, and new one will be
2085 created, with the same name.
2086 - *var_handle will be set to the new varobj
2087 Otherwise, *type_changed will be set to 0. */
2088 static struct value *
2089 value_of_root (struct varobj **var_handle, int *type_changed)
2090 {
2091 struct varobj *var;
2092
2093 if (var_handle == NULL)
2094 return NULL;
2095
2096 var = *var_handle;
2097
2098 /* This should really be an exception, since this should
2099 only get called with a root variable. */
2100
2101 if (!is_root_p (var))
2102 return NULL;
2103
2104 if (var->root->floating)
2105 {
2106 struct varobj *tmp_var;
2107 char *old_type, *new_type;
2108
2109 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2110 USE_SELECTED_FRAME);
2111 if (tmp_var == NULL)
2112 {
2113 return NULL;
2114 }
2115 old_type = varobj_get_type (var);
2116 new_type = varobj_get_type (tmp_var);
2117 if (strcmp (old_type, new_type) == 0)
2118 {
2119 /* The expression presently stored inside var->root->exp
2120 remembers the locations of local variables relatively to
2121 the frame where the expression was created (in DWARF location
2122 button, for example). Naturally, those locations are not
2123 correct in other frames, so update the expression. */
2124
2125 struct expression *tmp_exp = var->root->exp;
2126 var->root->exp = tmp_var->root->exp;
2127 tmp_var->root->exp = tmp_exp;
2128
2129 varobj_delete (tmp_var, NULL, 0);
2130 *type_changed = 0;
2131 }
2132 else
2133 {
2134 tmp_var->obj_name = xstrdup (var->obj_name);
2135 varobj_delete (var, NULL, 0);
2136
2137 install_variable (tmp_var);
2138 *var_handle = tmp_var;
2139 var = *var_handle;
2140 *type_changed = 1;
2141 }
2142 xfree (old_type);
2143 xfree (new_type);
2144 }
2145 else
2146 {
2147 *type_changed = 0;
2148 }
2149
2150 return (*var->root->lang->value_of_root) (var_handle);
2151 }
2152
2153 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2154 static struct value *
2155 value_of_child (struct varobj *parent, int index)
2156 {
2157 struct value *value;
2158
2159 value = (*parent->root->lang->value_of_child) (parent, index);
2160
2161 return value;
2162 }
2163
2164 /* GDB already has a command called "value_of_variable". Sigh. */
2165 static char *
2166 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2167 {
2168 if (var->root->is_valid)
2169 return (*var->root->lang->value_of_variable) (var, format);
2170 else
2171 return NULL;
2172 }
2173
2174 static char *
2175 value_get_print_value (struct value *value, enum varobj_display_formats format,
2176 struct varobj *var)
2177 {
2178 struct ui_file *stb;
2179 struct cleanup *old_chain;
2180 gdb_byte *thevalue = NULL;
2181 struct value_print_options opts;
2182 int len = 0;
2183
2184 if (value == NULL)
2185 return NULL;
2186
2187 #if HAVE_PYTHON
2188 {
2189 struct cleanup *back_to = varobj_ensure_python_env (var);
2190 PyObject *value_formatter = var->pretty_printer;
2191
2192 if (value_formatter && PyObject_HasAttr (value_formatter,
2193 gdbpy_to_string_cst))
2194 {
2195 char *hint;
2196 struct value *replacement;
2197 int string_print = 0;
2198 PyObject *output = NULL;
2199
2200 hint = gdbpy_get_display_hint (value_formatter);
2201 if (hint)
2202 {
2203 if (!strcmp (hint, "string"))
2204 string_print = 1;
2205 xfree (hint);
2206 }
2207
2208 output = apply_varobj_pretty_printer (value_formatter,
2209 &replacement);
2210 if (output)
2211 {
2212 PyObject *py_str = python_string_to_target_python_string (output);
2213 if (py_str)
2214 {
2215 char *s = PyString_AsString (py_str);
2216 len = PyString_Size (py_str);
2217 thevalue = xmemdup (s, len + 1, len + 1);
2218 Py_DECREF (py_str);
2219 }
2220 Py_DECREF (output);
2221 }
2222 if (thevalue && !string_print)
2223 {
2224 do_cleanups (back_to);
2225 return thevalue;
2226 }
2227 if (replacement)
2228 value = replacement;
2229 }
2230 do_cleanups (back_to);
2231 }
2232 #endif
2233
2234 stb = mem_fileopen ();
2235 old_chain = make_cleanup_ui_file_delete (stb);
2236
2237 get_formatted_print_options (&opts, format_code[(int) format]);
2238 opts.deref_ref = 0;
2239 opts.raw = 1;
2240 if (thevalue)
2241 {
2242 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2243 make_cleanup (xfree, thevalue);
2244 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2245 thevalue, len, 0, &opts);
2246 }
2247 else
2248 common_val_print (value, stb, 0, &opts, current_language);
2249 thevalue = ui_file_xstrdup (stb, NULL);
2250
2251 do_cleanups (old_chain);
2252 return thevalue;
2253 }
2254
2255 int
2256 varobj_editable_p (struct varobj *var)
2257 {
2258 struct type *type;
2259 struct value *value;
2260
2261 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2262 return 0;
2263
2264 type = get_value_type (var);
2265
2266 switch (TYPE_CODE (type))
2267 {
2268 case TYPE_CODE_STRUCT:
2269 case TYPE_CODE_UNION:
2270 case TYPE_CODE_ARRAY:
2271 case TYPE_CODE_FUNC:
2272 case TYPE_CODE_METHOD:
2273 return 0;
2274 break;
2275
2276 default:
2277 return 1;
2278 break;
2279 }
2280 }
2281
2282 /* Return non-zero if changes in value of VAR
2283 must be detected and reported by -var-update.
2284 Return zero is -var-update should never report
2285 changes of such values. This makes sense for structures
2286 (since the changes in children values will be reported separately),
2287 or for artifical objects (like 'public' pseudo-field in C++).
2288
2289 Return value of 0 means that gdb need not call value_fetch_lazy
2290 for the value of this variable object. */
2291 static int
2292 varobj_value_is_changeable_p (struct varobj *var)
2293 {
2294 int r;
2295 struct type *type;
2296
2297 if (CPLUS_FAKE_CHILD (var))
2298 return 0;
2299
2300 type = get_value_type (var);
2301
2302 switch (TYPE_CODE (type))
2303 {
2304 case TYPE_CODE_STRUCT:
2305 case TYPE_CODE_UNION:
2306 case TYPE_CODE_ARRAY:
2307 r = 0;
2308 break;
2309
2310 default:
2311 r = 1;
2312 }
2313
2314 return r;
2315 }
2316
2317 /* Return 1 if that varobj is floating, that is is always evaluated in the
2318 selected frame, and not bound to thread/frame. Such variable objects
2319 are created using '@' as frame specifier to -var-create. */
2320 int
2321 varobj_floating_p (struct varobj *var)
2322 {
2323 return var->root->floating;
2324 }
2325
2326 /* Given the value and the type of a variable object,
2327 adjust the value and type to those necessary
2328 for getting children of the variable object.
2329 This includes dereferencing top-level references
2330 to all types and dereferencing pointers to
2331 structures.
2332
2333 Both TYPE and *TYPE should be non-null. VALUE
2334 can be null if we want to only translate type.
2335 *VALUE can be null as well -- if the parent
2336 value is not known.
2337
2338 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2339 depending on whether pointer was dereferenced
2340 in this function. */
2341 static void
2342 adjust_value_for_child_access (struct value **value,
2343 struct type **type,
2344 int *was_ptr)
2345 {
2346 gdb_assert (type && *type);
2347
2348 if (was_ptr)
2349 *was_ptr = 0;
2350
2351 *type = check_typedef (*type);
2352
2353 /* The type of value stored in varobj, that is passed
2354 to us, is already supposed to be
2355 reference-stripped. */
2356
2357 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2358
2359 /* Pointers to structures are treated just like
2360 structures when accessing children. Don't
2361 dererences pointers to other types. */
2362 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2363 {
2364 struct type *target_type = get_target_type (*type);
2365 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2366 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2367 {
2368 if (value && *value)
2369 {
2370 int success = gdb_value_ind (*value, value);
2371 if (!success)
2372 *value = NULL;
2373 }
2374 *type = target_type;
2375 if (was_ptr)
2376 *was_ptr = 1;
2377 }
2378 }
2379
2380 /* The 'get_target_type' function calls check_typedef on
2381 result, so we can immediately check type code. No
2382 need to call check_typedef here. */
2383 }
2384
2385 /* C */
2386 static int
2387 c_number_of_children (struct varobj *var)
2388 {
2389 struct type *type = get_value_type (var);
2390 int children = 0;
2391 struct type *target;
2392
2393 adjust_value_for_child_access (NULL, &type, NULL);
2394 target = get_target_type (type);
2395
2396 switch (TYPE_CODE (type))
2397 {
2398 case TYPE_CODE_ARRAY:
2399 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2400 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2401 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2402 else
2403 /* If we don't know how many elements there are, don't display
2404 any. */
2405 children = 0;
2406 break;
2407
2408 case TYPE_CODE_STRUCT:
2409 case TYPE_CODE_UNION:
2410 children = TYPE_NFIELDS (type);
2411 break;
2412
2413 case TYPE_CODE_PTR:
2414 /* The type here is a pointer to non-struct. Typically, pointers
2415 have one child, except for function ptrs, which have no children,
2416 and except for void*, as we don't know what to show.
2417
2418 We can show char* so we allow it to be dereferenced. If you decide
2419 to test for it, please mind that a little magic is necessary to
2420 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2421 TYPE_NAME == "char" */
2422 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2423 || TYPE_CODE (target) == TYPE_CODE_VOID)
2424 children = 0;
2425 else
2426 children = 1;
2427 break;
2428
2429 default:
2430 /* Other types have no children */
2431 break;
2432 }
2433
2434 return children;
2435 }
2436
2437 static char *
2438 c_name_of_variable (struct varobj *parent)
2439 {
2440 return xstrdup (parent->name);
2441 }
2442
2443 /* Return the value of element TYPE_INDEX of a structure
2444 value VALUE. VALUE's type should be a structure,
2445 or union, or a typedef to struct/union.
2446
2447 Returns NULL if getting the value fails. Never throws. */
2448 static struct value *
2449 value_struct_element_index (struct value *value, int type_index)
2450 {
2451 struct value *result = NULL;
2452 volatile struct gdb_exception e;
2453
2454 struct type *type = value_type (value);
2455 type = check_typedef (type);
2456
2457 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2458 || TYPE_CODE (type) == TYPE_CODE_UNION);
2459
2460 TRY_CATCH (e, RETURN_MASK_ERROR)
2461 {
2462 if (field_is_static (&TYPE_FIELD (type, type_index)))
2463 result = value_static_field (type, type_index);
2464 else
2465 result = value_primitive_field (value, 0, type_index, type);
2466 }
2467 if (e.reason < 0)
2468 {
2469 return NULL;
2470 }
2471 else
2472 {
2473 return result;
2474 }
2475 }
2476
2477 /* Obtain the information about child INDEX of the variable
2478 object PARENT.
2479 If CNAME is not null, sets *CNAME to the name of the child relative
2480 to the parent.
2481 If CVALUE is not null, sets *CVALUE to the value of the child.
2482 If CTYPE is not null, sets *CTYPE to the type of the child.
2483
2484 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2485 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2486 to NULL. */
2487 static void
2488 c_describe_child (struct varobj *parent, int index,
2489 char **cname, struct value **cvalue, struct type **ctype,
2490 char **cfull_expression)
2491 {
2492 struct value *value = parent->value;
2493 struct type *type = get_value_type (parent);
2494 char *parent_expression = NULL;
2495 int was_ptr;
2496
2497 if (cname)
2498 *cname = NULL;
2499 if (cvalue)
2500 *cvalue = NULL;
2501 if (ctype)
2502 *ctype = NULL;
2503 if (cfull_expression)
2504 {
2505 *cfull_expression = NULL;
2506 parent_expression = varobj_get_path_expr (parent);
2507 }
2508 adjust_value_for_child_access (&value, &type, &was_ptr);
2509
2510 switch (TYPE_CODE (type))
2511 {
2512 case TYPE_CODE_ARRAY:
2513 if (cname)
2514 *cname = xstrprintf ("%d", index
2515 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2516
2517 if (cvalue && value)
2518 {
2519 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2520 gdb_value_subscript (value, real_index, cvalue);
2521 }
2522
2523 if (ctype)
2524 *ctype = get_target_type (type);
2525
2526 if (cfull_expression)
2527 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2528 index
2529 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2530
2531
2532 break;
2533
2534 case TYPE_CODE_STRUCT:
2535 case TYPE_CODE_UNION:
2536 if (cname)
2537 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2538
2539 if (cvalue && value)
2540 {
2541 /* For C, varobj index is the same as type index. */
2542 *cvalue = value_struct_element_index (value, index);
2543 }
2544
2545 if (ctype)
2546 *ctype = TYPE_FIELD_TYPE (type, index);
2547
2548 if (cfull_expression)
2549 {
2550 char *join = was_ptr ? "->" : ".";
2551 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2552 TYPE_FIELD_NAME (type, index));
2553 }
2554
2555 break;
2556
2557 case TYPE_CODE_PTR:
2558 if (cname)
2559 *cname = xstrprintf ("*%s", parent->name);
2560
2561 if (cvalue && value)
2562 {
2563 int success = gdb_value_ind (value, cvalue);
2564 if (!success)
2565 *cvalue = NULL;
2566 }
2567
2568 /* Don't use get_target_type because it calls
2569 check_typedef and here, we want to show the true
2570 declared type of the variable. */
2571 if (ctype)
2572 *ctype = TYPE_TARGET_TYPE (type);
2573
2574 if (cfull_expression)
2575 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2576
2577 break;
2578
2579 default:
2580 /* This should not happen */
2581 if (cname)
2582 *cname = xstrdup ("???");
2583 if (cfull_expression)
2584 *cfull_expression = xstrdup ("???");
2585 /* Don't set value and type, we don't know then. */
2586 }
2587 }
2588
2589 static char *
2590 c_name_of_child (struct varobj *parent, int index)
2591 {
2592 char *name;
2593 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2594 return name;
2595 }
2596
2597 static char *
2598 c_path_expr_of_child (struct varobj *child)
2599 {
2600 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2601 &child->path_expr);
2602 return child->path_expr;
2603 }
2604
2605 /* If frame associated with VAR can be found, switch
2606 to it and return 1. Otherwise, return 0. */
2607 static int
2608 check_scope (struct varobj *var)
2609 {
2610 struct frame_info *fi;
2611 int scope;
2612
2613 fi = frame_find_by_id (var->root->frame);
2614 scope = fi != NULL;
2615
2616 if (fi)
2617 {
2618 CORE_ADDR pc = get_frame_pc (fi);
2619 if (pc < BLOCK_START (var->root->valid_block) ||
2620 pc >= BLOCK_END (var->root->valid_block))
2621 scope = 0;
2622 else
2623 select_frame (fi);
2624 }
2625 return scope;
2626 }
2627
2628 static struct value *
2629 c_value_of_root (struct varobj **var_handle)
2630 {
2631 struct value *new_val = NULL;
2632 struct varobj *var = *var_handle;
2633 struct frame_info *fi;
2634 int within_scope = 0;
2635 struct cleanup *back_to;
2636
2637 /* Only root variables can be updated... */
2638 if (!is_root_p (var))
2639 /* Not a root var */
2640 return NULL;
2641
2642 back_to = make_cleanup_restore_current_thread ();
2643
2644 /* Determine whether the variable is still around. */
2645 if (var->root->valid_block == NULL || var->root->floating)
2646 within_scope = 1;
2647 else if (var->root->thread_id == 0)
2648 {
2649 /* The program was single-threaded when the variable object was
2650 created. Technically, it's possible that the program became
2651 multi-threaded since then, but we don't support such
2652 scenario yet. */
2653 within_scope = check_scope (var);
2654 }
2655 else
2656 {
2657 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2658 if (in_thread_list (ptid))
2659 {
2660 switch_to_thread (ptid);
2661 within_scope = check_scope (var);
2662 }
2663 }
2664
2665 if (within_scope)
2666 {
2667 /* We need to catch errors here, because if evaluate
2668 expression fails we want to just return NULL. */
2669 gdb_evaluate_expression (var->root->exp, &new_val);
2670 return new_val;
2671 }
2672
2673 do_cleanups (back_to);
2674
2675 return NULL;
2676 }
2677
2678 static struct value *
2679 c_value_of_child (struct varobj *parent, int index)
2680 {
2681 struct value *value = NULL;
2682 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2683
2684 return value;
2685 }
2686
2687 static struct type *
2688 c_type_of_child (struct varobj *parent, int index)
2689 {
2690 struct type *type = NULL;
2691 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2692 return type;
2693 }
2694
2695 static char *
2696 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2697 {
2698 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2699 it will print out its children instead of "{...}". So we need to
2700 catch that case explicitly. */
2701 struct type *type = get_type (var);
2702
2703 /* If we have a custom formatter, return whatever string it has
2704 produced. */
2705 if (var->pretty_printer && var->print_value)
2706 return xstrdup (var->print_value);
2707
2708 /* Strip top-level references. */
2709 while (TYPE_CODE (type) == TYPE_CODE_REF)
2710 type = check_typedef (TYPE_TARGET_TYPE (type));
2711
2712 switch (TYPE_CODE (type))
2713 {
2714 case TYPE_CODE_STRUCT:
2715 case TYPE_CODE_UNION:
2716 return xstrdup ("{...}");
2717 /* break; */
2718
2719 case TYPE_CODE_ARRAY:
2720 {
2721 char *number;
2722 number = xstrprintf ("[%d]", var->num_children);
2723 return (number);
2724 }
2725 /* break; */
2726
2727 default:
2728 {
2729 if (var->value == NULL)
2730 {
2731 /* This can happen if we attempt to get the value of a struct
2732 member when the parent is an invalid pointer. This is an
2733 error condition, so we should tell the caller. */
2734 return NULL;
2735 }
2736 else
2737 {
2738 if (var->not_fetched && value_lazy (var->value))
2739 /* Frozen variable and no value yet. We don't
2740 implicitly fetch the value. MI response will
2741 use empty string for the value, which is OK. */
2742 return NULL;
2743
2744 gdb_assert (varobj_value_is_changeable_p (var));
2745 gdb_assert (!value_lazy (var->value));
2746
2747 /* If the specified format is the current one,
2748 we can reuse print_value */
2749 if (format == var->format)
2750 return xstrdup (var->print_value);
2751 else
2752 return value_get_print_value (var->value, format, var);
2753 }
2754 }
2755 }
2756 }
2757 \f
2758
2759 /* C++ */
2760
2761 static int
2762 cplus_number_of_children (struct varobj *var)
2763 {
2764 struct type *type;
2765 int children, dont_know;
2766
2767 dont_know = 1;
2768 children = 0;
2769
2770 if (!CPLUS_FAKE_CHILD (var))
2771 {
2772 type = get_value_type (var);
2773 adjust_value_for_child_access (NULL, &type, NULL);
2774
2775 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2776 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2777 {
2778 int kids[3];
2779
2780 cplus_class_num_children (type, kids);
2781 if (kids[v_public] != 0)
2782 children++;
2783 if (kids[v_private] != 0)
2784 children++;
2785 if (kids[v_protected] != 0)
2786 children++;
2787
2788 /* Add any baseclasses */
2789 children += TYPE_N_BASECLASSES (type);
2790 dont_know = 0;
2791
2792 /* FIXME: save children in var */
2793 }
2794 }
2795 else
2796 {
2797 int kids[3];
2798
2799 type = get_value_type (var->parent);
2800 adjust_value_for_child_access (NULL, &type, NULL);
2801
2802 cplus_class_num_children (type, kids);
2803 if (strcmp (var->name, "public") == 0)
2804 children = kids[v_public];
2805 else if (strcmp (var->name, "private") == 0)
2806 children = kids[v_private];
2807 else
2808 children = kids[v_protected];
2809 dont_know = 0;
2810 }
2811
2812 if (dont_know)
2813 children = c_number_of_children (var);
2814
2815 return children;
2816 }
2817
2818 /* Compute # of public, private, and protected variables in this class.
2819 That means we need to descend into all baseclasses and find out
2820 how many are there, too. */
2821 static void
2822 cplus_class_num_children (struct type *type, int children[3])
2823 {
2824 int i;
2825
2826 children[v_public] = 0;
2827 children[v_private] = 0;
2828 children[v_protected] = 0;
2829
2830 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2831 {
2832 /* If we have a virtual table pointer, omit it. */
2833 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2834 continue;
2835
2836 if (TYPE_FIELD_PROTECTED (type, i))
2837 children[v_protected]++;
2838 else if (TYPE_FIELD_PRIVATE (type, i))
2839 children[v_private]++;
2840 else
2841 children[v_public]++;
2842 }
2843 }
2844
2845 static char *
2846 cplus_name_of_variable (struct varobj *parent)
2847 {
2848 return c_name_of_variable (parent);
2849 }
2850
2851 enum accessibility { private_field, protected_field, public_field };
2852
2853 /* Check if field INDEX of TYPE has the specified accessibility.
2854 Return 0 if so and 1 otherwise. */
2855 static int
2856 match_accessibility (struct type *type, int index, enum accessibility acc)
2857 {
2858 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2859 return 1;
2860 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2861 return 1;
2862 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2863 && !TYPE_FIELD_PROTECTED (type, index))
2864 return 1;
2865 else
2866 return 0;
2867 }
2868
2869 static void
2870 cplus_describe_child (struct varobj *parent, int index,
2871 char **cname, struct value **cvalue, struct type **ctype,
2872 char **cfull_expression)
2873 {
2874 char *name = NULL;
2875 struct value *value;
2876 struct type *type;
2877 int was_ptr;
2878 char *parent_expression = NULL;
2879
2880 if (cname)
2881 *cname = NULL;
2882 if (cvalue)
2883 *cvalue = NULL;
2884 if (ctype)
2885 *ctype = NULL;
2886 if (cfull_expression)
2887 *cfull_expression = NULL;
2888
2889 if (CPLUS_FAKE_CHILD (parent))
2890 {
2891 value = parent->parent->value;
2892 type = get_value_type (parent->parent);
2893 if (cfull_expression)
2894 parent_expression = varobj_get_path_expr (parent->parent);
2895 }
2896 else
2897 {
2898 value = parent->value;
2899 type = get_value_type (parent);
2900 if (cfull_expression)
2901 parent_expression = varobj_get_path_expr (parent);
2902 }
2903
2904 adjust_value_for_child_access (&value, &type, &was_ptr);
2905
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2907 || TYPE_CODE (type) == TYPE_CODE_UNION)
2908 {
2909 char *join = was_ptr ? "->" : ".";
2910 if (CPLUS_FAKE_CHILD (parent))
2911 {
2912 /* The fields of the class type are ordered as they
2913 appear in the class. We are given an index for a
2914 particular access control type ("public","protected",
2915 or "private"). We must skip over fields that don't
2916 have the access control we are looking for to properly
2917 find the indexed field. */
2918 int type_index = TYPE_N_BASECLASSES (type);
2919 enum accessibility acc = public_field;
2920 if (strcmp (parent->name, "private") == 0)
2921 acc = private_field;
2922 else if (strcmp (parent->name, "protected") == 0)
2923 acc = protected_field;
2924
2925 while (index >= 0)
2926 {
2927 if (TYPE_VPTR_BASETYPE (type) == type
2928 && type_index == TYPE_VPTR_FIELDNO (type))
2929 ; /* ignore vptr */
2930 else if (match_accessibility (type, type_index, acc))
2931 --index;
2932 ++type_index;
2933 }
2934 --type_index;
2935
2936 if (cname)
2937 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2938
2939 if (cvalue && value)
2940 *cvalue = value_struct_element_index (value, type_index);
2941
2942 if (ctype)
2943 *ctype = TYPE_FIELD_TYPE (type, type_index);
2944
2945 if (cfull_expression)
2946 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2947 join,
2948 TYPE_FIELD_NAME (type, type_index));
2949 }
2950 else if (index < TYPE_N_BASECLASSES (type))
2951 {
2952 /* This is a baseclass. */
2953 if (cname)
2954 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2955
2956 if (cvalue && value)
2957 {
2958 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2959 release_value (*cvalue);
2960 }
2961
2962 if (ctype)
2963 {
2964 *ctype = TYPE_FIELD_TYPE (type, index);
2965 }
2966
2967 if (cfull_expression)
2968 {
2969 char *ptr = was_ptr ? "*" : "";
2970 /* Cast the parent to the base' type. Note that in gdb,
2971 expression like
2972 (Base1)d
2973 will create an lvalue, for all appearences, so we don't
2974 need to use more fancy:
2975 *(Base1*)(&d)
2976 construct. */
2977 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2978 ptr,
2979 TYPE_FIELD_NAME (type, index),
2980 ptr,
2981 parent_expression);
2982 }
2983 }
2984 else
2985 {
2986 char *access = NULL;
2987 int children[3];
2988 cplus_class_num_children (type, children);
2989
2990 /* Everything beyond the baseclasses can
2991 only be "public", "private", or "protected"
2992
2993 The special "fake" children are always output by varobj in
2994 this order. So if INDEX == 2, it MUST be "protected". */
2995 index -= TYPE_N_BASECLASSES (type);
2996 switch (index)
2997 {
2998 case 0:
2999 if (children[v_public] > 0)
3000 access = "public";
3001 else if (children[v_private] > 0)
3002 access = "private";
3003 else
3004 access = "protected";
3005 break;
3006 case 1:
3007 if (children[v_public] > 0)
3008 {
3009 if (children[v_private] > 0)
3010 access = "private";
3011 else
3012 access = "protected";
3013 }
3014 else if (children[v_private] > 0)
3015 access = "protected";
3016 break;
3017 case 2:
3018 /* Must be protected */
3019 access = "protected";
3020 break;
3021 default:
3022 /* error! */
3023 break;
3024 }
3025
3026 gdb_assert (access);
3027 if (cname)
3028 *cname = xstrdup (access);
3029
3030 /* Value and type and full expression are null here. */
3031 }
3032 }
3033 else
3034 {
3035 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3036 }
3037 }
3038
3039 static char *
3040 cplus_name_of_child (struct varobj *parent, int index)
3041 {
3042 char *name = NULL;
3043 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3044 return name;
3045 }
3046
3047 static char *
3048 cplus_path_expr_of_child (struct varobj *child)
3049 {
3050 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3051 &child->path_expr);
3052 return child->path_expr;
3053 }
3054
3055 static struct value *
3056 cplus_value_of_root (struct varobj **var_handle)
3057 {
3058 return c_value_of_root (var_handle);
3059 }
3060
3061 static struct value *
3062 cplus_value_of_child (struct varobj *parent, int index)
3063 {
3064 struct value *value = NULL;
3065 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3066 return value;
3067 }
3068
3069 static struct type *
3070 cplus_type_of_child (struct varobj *parent, int index)
3071 {
3072 struct type *type = NULL;
3073 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3074 return type;
3075 }
3076
3077 static char *
3078 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3079 {
3080
3081 /* If we have one of our special types, don't print out
3082 any value. */
3083 if (CPLUS_FAKE_CHILD (var))
3084 return xstrdup ("");
3085
3086 return c_value_of_variable (var, format);
3087 }
3088 \f
3089 /* Java */
3090
3091 static int
3092 java_number_of_children (struct varobj *var)
3093 {
3094 return cplus_number_of_children (var);
3095 }
3096
3097 static char *
3098 java_name_of_variable (struct varobj *parent)
3099 {
3100 char *p, *name;
3101
3102 name = cplus_name_of_variable (parent);
3103 /* If the name has "-" in it, it is because we
3104 needed to escape periods in the name... */
3105 p = name;
3106
3107 while (*p != '\000')
3108 {
3109 if (*p == '-')
3110 *p = '.';
3111 p++;
3112 }
3113
3114 return name;
3115 }
3116
3117 static char *
3118 java_name_of_child (struct varobj *parent, int index)
3119 {
3120 char *name, *p;
3121
3122 name = cplus_name_of_child (parent, index);
3123 /* Escape any periods in the name... */
3124 p = name;
3125
3126 while (*p != '\000')
3127 {
3128 if (*p == '.')
3129 *p = '-';
3130 p++;
3131 }
3132
3133 return name;
3134 }
3135
3136 static char *
3137 java_path_expr_of_child (struct varobj *child)
3138 {
3139 return NULL;
3140 }
3141
3142 static struct value *
3143 java_value_of_root (struct varobj **var_handle)
3144 {
3145 return cplus_value_of_root (var_handle);
3146 }
3147
3148 static struct value *
3149 java_value_of_child (struct varobj *parent, int index)
3150 {
3151 return cplus_value_of_child (parent, index);
3152 }
3153
3154 static struct type *
3155 java_type_of_child (struct varobj *parent, int index)
3156 {
3157 return cplus_type_of_child (parent, index);
3158 }
3159
3160 static char *
3161 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3162 {
3163 return cplus_value_of_variable (var, format);
3164 }
3165
3166 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3167 with an arbitrary caller supplied DATA pointer. */
3168
3169 void
3170 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3171 {
3172 struct varobj_root *var_root, *var_root_next;
3173
3174 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3175
3176 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3177 {
3178 var_root_next = var_root->next;
3179
3180 (*func) (var_root->rootvar, data);
3181 }
3182 }
3183 \f
3184 extern void _initialize_varobj (void);
3185 void
3186 _initialize_varobj (void)
3187 {
3188 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3189
3190 varobj_table = xmalloc (sizeof_table);
3191 memset (varobj_table, 0, sizeof_table);
3192
3193 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3194 &varobjdebug, _("\
3195 Set varobj debugging."), _("\
3196 Show varobj debugging."), _("\
3197 When non-zero, varobj debugging is enabled."),
3198 NULL,
3199 show_varobjdebug,
3200 &setlist, &showlist);
3201 }
3202
3203 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3204 defined on globals. It is a helper for varobj_invalidate. */
3205
3206 static void
3207 varobj_invalidate_iter (struct varobj *var, void *unused)
3208 {
3209 /* Floating varobjs are reparsed on each stop, so we don't care if the
3210 presently parsed expression refers to something that's gone. */
3211 if (var->root->floating)
3212 return;
3213
3214 /* global var must be re-evaluated. */
3215 if (var->root->valid_block == NULL)
3216 {
3217 struct varobj *tmp_var;
3218
3219 /* Try to create a varobj with same expression. If we succeed
3220 replace the old varobj, otherwise invalidate it. */
3221 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3222 USE_CURRENT_FRAME);
3223 if (tmp_var != NULL)
3224 {
3225 tmp_var->obj_name = xstrdup (var->obj_name);
3226 varobj_delete (var, NULL, 0);
3227 install_variable (tmp_var);
3228 }
3229 else
3230 var->root->is_valid = 0;
3231 }
3232 else /* locals must be invalidated. */
3233 var->root->is_valid = 0;
3234 }
3235
3236 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3237 are defined on globals.
3238 Invalidated varobjs will be always printed in_scope="invalid". */
3239
3240 void
3241 varobj_invalidate (void)
3242 {
3243 all_root_varobjs (varobj_invalidate_iter, NULL);
3244 }
This page took 0.0954700000000001 seconds and 4 git commands to generate.