Fix varobj_delete comment
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (const struct varobj *);
197
198 static char *name_of_variable (const struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (const struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (const struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (const struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 volatile struct gdb_exception except;
302 CORE_ADDR pc;
303
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
309 /* Allow creator to specify context of variable. */
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
322 else
323 fi = NULL;
324
325 /* frame = -2 means always use selected frame. */
326 if (type == USE_SELECTED_FRAME)
327 var->root->floating = 1;
328
329 pc = 0;
330 block = NULL;
331 if (fi != NULL)
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
336
337 p = expression;
338 innermost_block = NULL;
339 /* Wrap the call to parse expression, so we can
340 return a sensible error. */
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
344 }
345
346 if (except.reason < 0)
347 {
348 do_cleanups (old_chain);
349 return NULL;
350 }
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
401
402 var->type = value_type (type_only_value);
403 }
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
412
413 /* Set language info */
414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
415
416 install_new_value (var, value, 1 /* Initial assignment */);
417
418 /* Set ourselves as our root. */
419 var->root->rootvar = var;
420
421 /* Reset the selected frame. */
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
424 }
425
426 /* If the variable object name is null, that means this
427 is a temporary variable, so don't install it. */
428
429 if ((var != NULL) && (objname != NULL))
430 {
431 var->obj_name = xstrdup (objname);
432
433 /* If a varobj name is duplicated, the install will fail so
434 we must cleanup. */
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444 }
445
446 /* Generates an unique name that can be used for a varobj. */
447
448 char *
449 varobj_gen_name (void)
450 {
451 static int id = 0;
452 char *obj_name;
453
454 /* Generate a name for this object. */
455 id++;
456 obj_name = xstrprintf ("var%d", id);
457
458 return obj_name;
459 }
460
461 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
463
464 struct varobj *
465 varobj_get_handle (char *objname)
466 {
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
482 error (_("Variable object not found"));
483
484 return cv->var;
485 }
486
487 /* Given the handle, return the name of the object. */
488
489 char *
490 varobj_get_objname (const struct varobj *var)
491 {
492 return var->obj_name;
493 }
494
495 /* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
497
498 char *
499 varobj_get_expression (const struct varobj *var)
500 {
501 return name_of_variable (var);
502 }
503
504 /* Deletes a varobj and all its children if only_children == 0,
505 otherwise deletes only the children. If DELLIST is non-NULL, it is
506 assigned a malloc'ed list of all the (malloc'ed) names of the variables
507 that have been deleted (NULL terminated). Returns the number of deleted
508 variables. */
509
510 int
511 varobj_delete (struct varobj *var, char ***dellist, int only_children)
512 {
513 int delcount;
514 int mycount;
515 struct cpstack *result = NULL;
516 char **cp;
517
518 /* Initialize a stack for temporary results. */
519 cppush (&result, NULL);
520
521 if (only_children)
522 /* Delete only the variable children. */
523 delcount = delete_variable (&result, var, 1 /* only the children */ );
524 else
525 /* Delete the variable and all its children. */
526 delcount = delete_variable (&result, var, 0 /* parent+children */ );
527
528 /* We may have been asked to return a list of what has been deleted. */
529 if (dellist != NULL)
530 {
531 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
532
533 cp = *dellist;
534 mycount = delcount;
535 *cp = cppop (&result);
536 while ((*cp != NULL) && (mycount > 0))
537 {
538 mycount--;
539 cp++;
540 *cp = cppop (&result);
541 }
542
543 if (mycount || (*cp != NULL))
544 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
545 mycount);
546 }
547
548 return delcount;
549 }
550
551 #if HAVE_PYTHON
552
553 /* Convenience function for varobj_set_visualizer. Instantiate a
554 pretty-printer for a given value. */
555 static PyObject *
556 instantiate_pretty_printer (PyObject *constructor, struct value *value)
557 {
558 PyObject *val_obj = NULL;
559 PyObject *printer;
560
561 val_obj = value_to_value_object (value);
562 if (! val_obj)
563 return NULL;
564
565 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
566 Py_DECREF (val_obj);
567 return printer;
568 }
569
570 #endif
571
572 /* Set/Get variable object display format. */
573
574 enum varobj_display_formats
575 varobj_set_display_format (struct varobj *var,
576 enum varobj_display_formats format)
577 {
578 switch (format)
579 {
580 case FORMAT_NATURAL:
581 case FORMAT_BINARY:
582 case FORMAT_DECIMAL:
583 case FORMAT_HEXADECIMAL:
584 case FORMAT_OCTAL:
585 var->format = format;
586 break;
587
588 default:
589 var->format = variable_default_display (var);
590 }
591
592 if (varobj_value_is_changeable_p (var)
593 && var->value && !value_lazy (var->value))
594 {
595 xfree (var->print_value);
596 var->print_value = varobj_value_get_print_value (var->value,
597 var->format, var);
598 }
599
600 return var->format;
601 }
602
603 enum varobj_display_formats
604 varobj_get_display_format (const struct varobj *var)
605 {
606 return var->format;
607 }
608
609 char *
610 varobj_get_display_hint (const struct varobj *var)
611 {
612 char *result = NULL;
613
614 #if HAVE_PYTHON
615 struct cleanup *back_to;
616
617 if (!gdb_python_initialized)
618 return NULL;
619
620 back_to = varobj_ensure_python_env (var);
621
622 if (var->dynamic->pretty_printer != NULL)
623 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
624
625 do_cleanups (back_to);
626 #endif
627
628 return result;
629 }
630
631 /* Return true if the varobj has items after TO, false otherwise. */
632
633 int
634 varobj_has_more (const struct varobj *var, int to)
635 {
636 if (VEC_length (varobj_p, var->children) > to)
637 return 1;
638 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
639 && (var->dynamic->saved_item != NULL));
640 }
641
642 /* If the variable object is bound to a specific thread, that
643 is its evaluation can always be done in context of a frame
644 inside that thread, returns GDB id of the thread -- which
645 is always positive. Otherwise, returns -1. */
646 int
647 varobj_get_thread_id (const struct varobj *var)
648 {
649 if (var->root->valid_block && var->root->thread_id > 0)
650 return var->root->thread_id;
651 else
652 return -1;
653 }
654
655 void
656 varobj_set_frozen (struct varobj *var, int frozen)
657 {
658 /* When a variable is unfrozen, we don't fetch its value.
659 The 'not_fetched' flag remains set, so next -var-update
660 won't complain.
661
662 We don't fetch the value, because for structures the client
663 should do -var-update anyway. It would be bad to have different
664 client-size logic for structure and other types. */
665 var->frozen = frozen;
666 }
667
668 int
669 varobj_get_frozen (const struct varobj *var)
670 {
671 return var->frozen;
672 }
673
674 /* A helper function that restricts a range to what is actually
675 available in a VEC. This follows the usual rules for the meaning
676 of FROM and TO -- if either is negative, the entire range is
677 used. */
678
679 void
680 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
681 {
682 if (*from < 0 || *to < 0)
683 {
684 *from = 0;
685 *to = VEC_length (varobj_p, children);
686 }
687 else
688 {
689 if (*from > VEC_length (varobj_p, children))
690 *from = VEC_length (varobj_p, children);
691 if (*to > VEC_length (varobj_p, children))
692 *to = VEC_length (varobj_p, children);
693 if (*from > *to)
694 *from = *to;
695 }
696 }
697
698 /* A helper for update_dynamic_varobj_children that installs a new
699 child when needed. */
700
701 static void
702 install_dynamic_child (struct varobj *var,
703 VEC (varobj_p) **changed,
704 VEC (varobj_p) **type_changed,
705 VEC (varobj_p) **new,
706 VEC (varobj_p) **unchanged,
707 int *cchanged,
708 int index,
709 struct varobj_item *item)
710 {
711 if (VEC_length (varobj_p, var->children) < index + 1)
712 {
713 /* There's no child yet. */
714 struct varobj *child = varobj_add_child (var, item);
715
716 if (new)
717 {
718 VEC_safe_push (varobj_p, *new, child);
719 *cchanged = 1;
720 }
721 }
722 else
723 {
724 varobj_p existing = VEC_index (varobj_p, var->children, index);
725 int type_updated = update_type_if_necessary (existing, item->value);
726
727 if (type_updated)
728 {
729 if (type_changed)
730 VEC_safe_push (varobj_p, *type_changed, existing);
731 }
732 if (install_new_value (existing, item->value, 0))
733 {
734 if (!type_updated && changed)
735 VEC_safe_push (varobj_p, *changed, existing);
736 }
737 else if (!type_updated && unchanged)
738 VEC_safe_push (varobj_p, *unchanged, existing);
739 }
740 }
741
742 #if HAVE_PYTHON
743
744 static int
745 dynamic_varobj_has_child_method (const struct varobj *var)
746 {
747 struct cleanup *back_to;
748 PyObject *printer = var->dynamic->pretty_printer;
749 int result;
750
751 if (!gdb_python_initialized)
752 return 0;
753
754 back_to = varobj_ensure_python_env (var);
755 result = PyObject_HasAttr (printer, gdbpy_children_cst);
756 do_cleanups (back_to);
757 return result;
758 }
759 #endif
760
761 /* A factory for creating dynamic varobj's iterators. Returns an
762 iterator object suitable for iterating over VAR's children. */
763
764 static struct varobj_iter *
765 varobj_get_iterator (struct varobj *var)
766 {
767 #if HAVE_PYTHON
768 if (var->dynamic->pretty_printer)
769 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
770 #endif
771
772 gdb_assert_not_reached (_("\
773 requested an iterator from a non-dynamic varobj"));
774 }
775
776 /* Release and clear VAR's saved item, if any. */
777
778 static void
779 varobj_clear_saved_item (struct varobj_dynamic *var)
780 {
781 if (var->saved_item != NULL)
782 {
783 value_free (var->saved_item->value);
784 xfree (var->saved_item);
785 var->saved_item = NULL;
786 }
787 }
788
789 static int
790 update_dynamic_varobj_children (struct varobj *var,
791 VEC (varobj_p) **changed,
792 VEC (varobj_p) **type_changed,
793 VEC (varobj_p) **new,
794 VEC (varobj_p) **unchanged,
795 int *cchanged,
796 int update_children,
797 int from,
798 int to)
799 {
800 int i;
801
802 *cchanged = 0;
803
804 if (update_children || var->dynamic->child_iter == NULL)
805 {
806 varobj_iter_delete (var->dynamic->child_iter);
807 var->dynamic->child_iter = varobj_get_iterator (var);
808
809 varobj_clear_saved_item (var->dynamic);
810
811 i = 0;
812
813 if (var->dynamic->child_iter == NULL)
814 return 0;
815 }
816 else
817 i = VEC_length (varobj_p, var->children);
818
819 /* We ask for one extra child, so that MI can report whether there
820 are more children. */
821 for (; to < 0 || i < to + 1; ++i)
822 {
823 varobj_item *item;
824
825 /* See if there was a leftover from last time. */
826 if (var->dynamic->saved_item != NULL)
827 {
828 item = var->dynamic->saved_item;
829 var->dynamic->saved_item = NULL;
830 }
831 else
832 {
833 item = varobj_iter_next (var->dynamic->child_iter);
834 /* Release vitem->value so its lifetime is not bound to the
835 execution of a command. */
836 if (item != NULL && item->value != NULL)
837 release_value_or_incref (item->value);
838 }
839
840 if (item == NULL)
841 {
842 /* Iteration is done. Remove iterator from VAR. */
843 varobj_iter_delete (var->dynamic->child_iter);
844 var->dynamic->child_iter = NULL;
845 break;
846 }
847 /* We don't want to push the extra child on any report list. */
848 if (to < 0 || i < to)
849 {
850 int can_mention = from < 0 || i >= from;
851
852 install_dynamic_child (var, can_mention ? changed : NULL,
853 can_mention ? type_changed : NULL,
854 can_mention ? new : NULL,
855 can_mention ? unchanged : NULL,
856 can_mention ? cchanged : NULL, i,
857 item);
858
859 xfree (item);
860 }
861 else
862 {
863 var->dynamic->saved_item = item;
864
865 /* We want to truncate the child list just before this
866 element. */
867 break;
868 }
869 }
870
871 if (i < VEC_length (varobj_p, var->children))
872 {
873 int j;
874
875 *cchanged = 1;
876 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
877 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
878 VEC_truncate (varobj_p, var->children, i);
879 }
880
881 /* If there are fewer children than requested, note that the list of
882 children changed. */
883 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
884 *cchanged = 1;
885
886 var->num_children = VEC_length (varobj_p, var->children);
887
888 return 1;
889 }
890
891 int
892 varobj_get_num_children (struct varobj *var)
893 {
894 if (var->num_children == -1)
895 {
896 if (varobj_is_dynamic_p (var))
897 {
898 int dummy;
899
900 /* If we have a dynamic varobj, don't report -1 children.
901 So, try to fetch some children first. */
902 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
903 0, 0, 0);
904 }
905 else
906 var->num_children = number_of_children (var);
907 }
908
909 return var->num_children >= 0 ? var->num_children : 0;
910 }
911
912 /* Creates a list of the immediate children of a variable object;
913 the return code is the number of such children or -1 on error. */
914
915 VEC (varobj_p)*
916 varobj_list_children (struct varobj *var, int *from, int *to)
917 {
918 char *name;
919 int i, children_changed;
920
921 var->dynamic->children_requested = 1;
922
923 if (varobj_is_dynamic_p (var))
924 {
925 /* This, in theory, can result in the number of children changing without
926 frontend noticing. But well, calling -var-list-children on the same
927 varobj twice is not something a sane frontend would do. */
928 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
929 &children_changed, 0, 0, *to);
930 varobj_restrict_range (var->children, from, to);
931 return var->children;
932 }
933
934 if (var->num_children == -1)
935 var->num_children = number_of_children (var);
936
937 /* If that failed, give up. */
938 if (var->num_children == -1)
939 return var->children;
940
941 /* If we're called when the list of children is not yet initialized,
942 allocate enough elements in it. */
943 while (VEC_length (varobj_p, var->children) < var->num_children)
944 VEC_safe_push (varobj_p, var->children, NULL);
945
946 for (i = 0; i < var->num_children; i++)
947 {
948 varobj_p existing = VEC_index (varobj_p, var->children, i);
949
950 if (existing == NULL)
951 {
952 /* Either it's the first call to varobj_list_children for
953 this variable object, and the child was never created,
954 or it was explicitly deleted by the client. */
955 name = name_of_child (var, i);
956 existing = create_child (var, i, name);
957 VEC_replace (varobj_p, var->children, i, existing);
958 }
959 }
960
961 varobj_restrict_range (var->children, from, to);
962 return var->children;
963 }
964
965 static struct varobj *
966 varobj_add_child (struct varobj *var, struct varobj_item *item)
967 {
968 varobj_p v = create_child_with_value (var,
969 VEC_length (varobj_p, var->children),
970 item);
971
972 VEC_safe_push (varobj_p, var->children, v);
973 return v;
974 }
975
976 /* Obtain the type of an object Variable as a string similar to the one gdb
977 prints on the console. The caller is responsible for freeing the string.
978 */
979
980 char *
981 varobj_get_type (struct varobj *var)
982 {
983 /* For the "fake" variables, do not return a type. (Its type is
984 NULL, too.)
985 Do not return a type for invalid variables as well. */
986 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
987 return NULL;
988
989 return type_to_string (var->type);
990 }
991
992 /* Obtain the type of an object variable. */
993
994 struct type *
995 varobj_get_gdb_type (const struct varobj *var)
996 {
997 return var->type;
998 }
999
1000 /* Is VAR a path expression parent, i.e., can it be used to construct
1001 a valid path expression? */
1002
1003 static int
1004 is_path_expr_parent (const struct varobj *var)
1005 {
1006 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1007 return var->root->lang_ops->is_path_expr_parent (var);
1008 }
1009
1010 /* Is VAR a path expression parent, i.e., can it be used to construct
1011 a valid path expression? By default we assume any VAR can be a path
1012 parent. */
1013
1014 int
1015 varobj_default_is_path_expr_parent (const struct varobj *var)
1016 {
1017 return 1;
1018 }
1019
1020 /* Return the path expression parent for VAR. */
1021
1022 struct varobj *
1023 varobj_get_path_expr_parent (struct varobj *var)
1024 {
1025 struct varobj *parent = var;
1026
1027 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1028 parent = parent->parent;
1029
1030 return parent;
1031 }
1032
1033 /* Return a pointer to the full rooted expression of varobj VAR.
1034 If it has not been computed yet, compute it. */
1035 char *
1036 varobj_get_path_expr (struct varobj *var)
1037 {
1038 if (var->path_expr == NULL)
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
1043 gdb_assert (!is_root_p (var));
1044
1045 var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1046 }
1047
1048 return var->path_expr;
1049 }
1050
1051 const struct language_defn *
1052 varobj_get_language (const struct varobj *var)
1053 {
1054 return var->root->exp->language_defn;
1055 }
1056
1057 int
1058 varobj_get_attributes (const struct varobj *var)
1059 {
1060 int attributes = 0;
1061
1062 if (varobj_editable_p (var))
1063 /* FIXME: define masks for attributes. */
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067 }
1068
1069 /* Return true if VAR is a dynamic varobj. */
1070
1071 int
1072 varobj_is_dynamic_p (const struct varobj *var)
1073 {
1074 return var->dynamic->pretty_printer != NULL;
1075 }
1076
1077 char *
1078 varobj_get_formatted_value (struct varobj *var,
1079 enum varobj_display_formats format)
1080 {
1081 return my_value_of_variable (var, format);
1082 }
1083
1084 char *
1085 varobj_get_value (struct varobj *var)
1086 {
1087 return my_value_of_variable (var, var->format);
1088 }
1089
1090 /* Set the value of an object variable (if it is editable) to the
1091 value of the given expression. */
1092 /* Note: Invokes functions that can call error(). */
1093
1094 int
1095 varobj_set_value (struct varobj *var, char *expression)
1096 {
1097 struct value *val = NULL; /* Initialize to keep gcc happy. */
1098 /* The argument "expression" contains the variable's new value.
1099 We need to first construct a legal expression for this -- ugh! */
1100 /* Does this cover all the bases? */
1101 struct expression *exp;
1102 struct value *value = NULL; /* Initialize to keep gcc happy. */
1103 int saved_input_radix = input_radix;
1104 const char *s = expression;
1105 volatile struct gdb_exception except;
1106
1107 gdb_assert (varobj_editable_p (var));
1108
1109 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1110 exp = parse_exp_1 (&s, 0, 0, 0);
1111 TRY_CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 value = evaluate_expression (exp);
1114 }
1115
1116 if (except.reason < 0)
1117 {
1118 /* We cannot proceed without a valid expression. */
1119 xfree (exp);
1120 return 0;
1121 }
1122
1123 /* All types that are editable must also be changeable. */
1124 gdb_assert (varobj_value_is_changeable_p (var));
1125
1126 /* The value of a changeable variable object must not be lazy. */
1127 gdb_assert (!value_lazy (var->value));
1128
1129 /* Need to coerce the input. We want to check if the
1130 value of the variable object will be different
1131 after assignment, and the first thing value_assign
1132 does is coerce the input.
1133 For example, if we are assigning an array to a pointer variable we
1134 should compare the pointer with the array's address, not with the
1135 array's content. */
1136 value = coerce_array (value);
1137
1138 /* The new value may be lazy. value_assign, or
1139 rather value_contents, will take care of this. */
1140 TRY_CATCH (except, RETURN_MASK_ERROR)
1141 {
1142 val = value_assign (var->value, value);
1143 }
1144
1145 if (except.reason < 0)
1146 return 0;
1147
1148 /* If the value has changed, record it, so that next -var-update can
1149 report this change. If a variable had a value of '1', we've set it
1150 to '333' and then set again to '1', when -var-update will report this
1151 variable as changed -- because the first assignment has set the
1152 'updated' flag. There's no need to optimize that, because return value
1153 of -var-update should be considered an approximation. */
1154 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1155 input_radix = saved_input_radix;
1156 return 1;
1157 }
1158
1159 #if HAVE_PYTHON
1160
1161 /* A helper function to install a constructor function and visualizer
1162 in a varobj_dynamic. */
1163
1164 static void
1165 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1166 PyObject *visualizer)
1167 {
1168 Py_XDECREF (var->constructor);
1169 var->constructor = constructor;
1170
1171 Py_XDECREF (var->pretty_printer);
1172 var->pretty_printer = visualizer;
1173
1174 varobj_iter_delete (var->child_iter);
1175 var->child_iter = NULL;
1176 }
1177
1178 /* Install the default visualizer for VAR. */
1179
1180 static void
1181 install_default_visualizer (struct varobj *var)
1182 {
1183 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1184 if (CPLUS_FAKE_CHILD (var))
1185 return;
1186
1187 if (pretty_printing)
1188 {
1189 PyObject *pretty_printer = NULL;
1190
1191 if (var->value)
1192 {
1193 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1194 if (! pretty_printer)
1195 {
1196 gdbpy_print_stack ();
1197 error (_("Cannot instantiate printer for default visualizer"));
1198 }
1199 }
1200
1201 if (pretty_printer == Py_None)
1202 {
1203 Py_DECREF (pretty_printer);
1204 pretty_printer = NULL;
1205 }
1206
1207 install_visualizer (var->dynamic, NULL, pretty_printer);
1208 }
1209 }
1210
1211 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1212 make a new object. */
1213
1214 static void
1215 construct_visualizer (struct varobj *var, PyObject *constructor)
1216 {
1217 PyObject *pretty_printer;
1218
1219 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1220 if (CPLUS_FAKE_CHILD (var))
1221 return;
1222
1223 Py_INCREF (constructor);
1224 if (constructor == Py_None)
1225 pretty_printer = NULL;
1226 else
1227 {
1228 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1229 if (! pretty_printer)
1230 {
1231 gdbpy_print_stack ();
1232 Py_DECREF (constructor);
1233 constructor = Py_None;
1234 Py_INCREF (constructor);
1235 }
1236
1237 if (pretty_printer == Py_None)
1238 {
1239 Py_DECREF (pretty_printer);
1240 pretty_printer = NULL;
1241 }
1242 }
1243
1244 install_visualizer (var->dynamic, constructor, pretty_printer);
1245 }
1246
1247 #endif /* HAVE_PYTHON */
1248
1249 /* A helper function for install_new_value. This creates and installs
1250 a visualizer for VAR, if appropriate. */
1251
1252 static void
1253 install_new_value_visualizer (struct varobj *var)
1254 {
1255 #if HAVE_PYTHON
1256 /* If the constructor is None, then we want the raw value. If VAR
1257 does not have a value, just skip this. */
1258 if (!gdb_python_initialized)
1259 return;
1260
1261 if (var->dynamic->constructor != Py_None && var->value != NULL)
1262 {
1263 struct cleanup *cleanup;
1264
1265 cleanup = varobj_ensure_python_env (var);
1266
1267 if (var->dynamic->constructor == NULL)
1268 install_default_visualizer (var);
1269 else
1270 construct_visualizer (var, var->dynamic->constructor);
1271
1272 do_cleanups (cleanup);
1273 }
1274 #else
1275 /* Do nothing. */
1276 #endif
1277 }
1278
1279 /* When using RTTI to determine variable type it may be changed in runtime when
1280 the variable value is changed. This function checks whether type of varobj
1281 VAR will change when a new value NEW_VALUE is assigned and if it is so
1282 updates the type of VAR. */
1283
1284 static int
1285 update_type_if_necessary (struct varobj *var, struct value *new_value)
1286 {
1287 if (new_value)
1288 {
1289 struct value_print_options opts;
1290
1291 get_user_print_options (&opts);
1292 if (opts.objectprint)
1293 {
1294 struct type *new_type;
1295 char *curr_type_str, *new_type_str;
1296 int type_name_changed;
1297
1298 new_type = value_actual_type (new_value, 0, 0);
1299 new_type_str = type_to_string (new_type);
1300 curr_type_str = varobj_get_type (var);
1301 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1302 xfree (curr_type_str);
1303 xfree (new_type_str);
1304
1305 if (type_name_changed)
1306 {
1307 var->type = new_type;
1308
1309 /* This information may be not valid for a new type. */
1310 varobj_delete (var, NULL, 1);
1311 VEC_free (varobj_p, var->children);
1312 var->num_children = -1;
1313 return 1;
1314 }
1315 }
1316 }
1317
1318 return 0;
1319 }
1320
1321 /* Assign a new value to a variable object. If INITIAL is non-zero,
1322 this is the first assignement after the variable object was just
1323 created, or changed type. In that case, just assign the value
1324 and return 0.
1325 Otherwise, assign the new value, and return 1 if the value is
1326 different from the current one, 0 otherwise. The comparison is
1327 done on textual representation of value. Therefore, some types
1328 need not be compared. E.g. for structures the reported value is
1329 always "{...}", so no comparison is necessary here. If the old
1330 value was NULL and new one is not, or vice versa, we always return 1.
1331
1332 The VALUE parameter should not be released -- the function will
1333 take care of releasing it when needed. */
1334 static int
1335 install_new_value (struct varobj *var, struct value *value, int initial)
1336 {
1337 int changeable;
1338 int need_to_fetch;
1339 int changed = 0;
1340 int intentionally_not_fetched = 0;
1341 char *print_value = NULL;
1342
1343 /* We need to know the varobj's type to decide if the value should
1344 be fetched or not. C++ fake children (public/protected/private)
1345 don't have a type. */
1346 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1347 changeable = varobj_value_is_changeable_p (var);
1348
1349 /* If the type has custom visualizer, we consider it to be always
1350 changeable. FIXME: need to make sure this behaviour will not
1351 mess up read-sensitive values. */
1352 if (var->dynamic->pretty_printer != NULL)
1353 changeable = 1;
1354
1355 need_to_fetch = changeable;
1356
1357 /* We are not interested in the address of references, and given
1358 that in C++ a reference is not rebindable, it cannot
1359 meaningfully change. So, get hold of the real value. */
1360 if (value)
1361 value = coerce_ref (value);
1362
1363 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1364 /* For unions, we need to fetch the value implicitly because
1365 of implementation of union member fetch. When gdb
1366 creates a value for a field and the value of the enclosing
1367 structure is not lazy, it immediately copies the necessary
1368 bytes from the enclosing values. If the enclosing value is
1369 lazy, the call to value_fetch_lazy on the field will read
1370 the data from memory. For unions, that means we'll read the
1371 same memory more than once, which is not desirable. So
1372 fetch now. */
1373 need_to_fetch = 1;
1374
1375 /* The new value might be lazy. If the type is changeable,
1376 that is we'll be comparing values of this type, fetch the
1377 value now. Otherwise, on the next update the old value
1378 will be lazy, which means we've lost that old value. */
1379 if (need_to_fetch && value && value_lazy (value))
1380 {
1381 struct varobj *parent = var->parent;
1382 int frozen = var->frozen;
1383
1384 for (; !frozen && parent; parent = parent->parent)
1385 frozen |= parent->frozen;
1386
1387 if (frozen && initial)
1388 {
1389 /* For variables that are frozen, or are children of frozen
1390 variables, we don't do fetch on initial assignment.
1391 For non-initial assignemnt we do the fetch, since it means we're
1392 explicitly asked to compare the new value with the old one. */
1393 intentionally_not_fetched = 1;
1394 }
1395 else
1396 {
1397 volatile struct gdb_exception except;
1398
1399 TRY_CATCH (except, RETURN_MASK_ERROR)
1400 {
1401 value_fetch_lazy (value);
1402 }
1403
1404 if (except.reason < 0)
1405 {
1406 /* Set the value to NULL, so that for the next -var-update,
1407 we don't try to compare the new value with this value,
1408 that we couldn't even read. */
1409 value = NULL;
1410 }
1411 }
1412 }
1413
1414 /* Get a reference now, before possibly passing it to any Python
1415 code that might release it. */
1416 if (value != NULL)
1417 value_incref (value);
1418
1419 /* Below, we'll be comparing string rendering of old and new
1420 values. Don't get string rendering if the value is
1421 lazy -- if it is, the code above has decided that the value
1422 should not be fetched. */
1423 if (value != NULL && !value_lazy (value)
1424 && var->dynamic->pretty_printer == NULL)
1425 print_value = varobj_value_get_print_value (value, var->format, var);
1426
1427 /* If the type is changeable, compare the old and the new values.
1428 If this is the initial assignment, we don't have any old value
1429 to compare with. */
1430 if (!initial && changeable)
1431 {
1432 /* If the value of the varobj was changed by -var-set-value,
1433 then the value in the varobj and in the target is the same.
1434 However, that value is different from the value that the
1435 varobj had after the previous -var-update. So need to the
1436 varobj as changed. */
1437 if (var->updated)
1438 {
1439 changed = 1;
1440 }
1441 else if (var->dynamic->pretty_printer == NULL)
1442 {
1443 /* Try to compare the values. That requires that both
1444 values are non-lazy. */
1445 if (var->not_fetched && value_lazy (var->value))
1446 {
1447 /* This is a frozen varobj and the value was never read.
1448 Presumably, UI shows some "never read" indicator.
1449 Now that we've fetched the real value, we need to report
1450 this varobj as changed so that UI can show the real
1451 value. */
1452 changed = 1;
1453 }
1454 else if (var->value == NULL && value == NULL)
1455 /* Equal. */
1456 ;
1457 else if (var->value == NULL || value == NULL)
1458 {
1459 changed = 1;
1460 }
1461 else
1462 {
1463 gdb_assert (!value_lazy (var->value));
1464 gdb_assert (!value_lazy (value));
1465
1466 gdb_assert (var->print_value != NULL && print_value != NULL);
1467 if (strcmp (var->print_value, print_value) != 0)
1468 changed = 1;
1469 }
1470 }
1471 }
1472
1473 if (!initial && !changeable)
1474 {
1475 /* For values that are not changeable, we don't compare the values.
1476 However, we want to notice if a value was not NULL and now is NULL,
1477 or vise versa, so that we report when top-level varobjs come in scope
1478 and leave the scope. */
1479 changed = (var->value != NULL) != (value != NULL);
1480 }
1481
1482 /* We must always keep the new value, since children depend on it. */
1483 if (var->value != NULL && var->value != value)
1484 value_free (var->value);
1485 var->value = value;
1486 if (value && value_lazy (value) && intentionally_not_fetched)
1487 var->not_fetched = 1;
1488 else
1489 var->not_fetched = 0;
1490 var->updated = 0;
1491
1492 install_new_value_visualizer (var);
1493
1494 /* If we installed a pretty-printer, re-compare the printed version
1495 to see if the variable changed. */
1496 if (var->dynamic->pretty_printer != NULL)
1497 {
1498 xfree (print_value);
1499 print_value = varobj_value_get_print_value (var->value, var->format,
1500 var);
1501 if ((var->print_value == NULL && print_value != NULL)
1502 || (var->print_value != NULL && print_value == NULL)
1503 || (var->print_value != NULL && print_value != NULL
1504 && strcmp (var->print_value, print_value) != 0))
1505 changed = 1;
1506 }
1507 if (var->print_value)
1508 xfree (var->print_value);
1509 var->print_value = print_value;
1510
1511 gdb_assert (!var->value || value_type (var->value));
1512
1513 return changed;
1514 }
1515
1516 /* Return the requested range for a varobj. VAR is the varobj. FROM
1517 and TO are out parameters; *FROM and *TO will be set to the
1518 selected sub-range of VAR. If no range was selected using
1519 -var-set-update-range, then both will be -1. */
1520 void
1521 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1522 {
1523 *from = var->from;
1524 *to = var->to;
1525 }
1526
1527 /* Set the selected sub-range of children of VAR to start at index
1528 FROM and end at index TO. If either FROM or TO is less than zero,
1529 this is interpreted as a request for all children. */
1530 void
1531 varobj_set_child_range (struct varobj *var, int from, int to)
1532 {
1533 var->from = from;
1534 var->to = to;
1535 }
1536
1537 void
1538 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1539 {
1540 #if HAVE_PYTHON
1541 PyObject *mainmod, *globals, *constructor;
1542 struct cleanup *back_to;
1543
1544 if (!gdb_python_initialized)
1545 return;
1546
1547 back_to = varobj_ensure_python_env (var);
1548
1549 mainmod = PyImport_AddModule ("__main__");
1550 globals = PyModule_GetDict (mainmod);
1551 Py_INCREF (globals);
1552 make_cleanup_py_decref (globals);
1553
1554 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1555
1556 if (! constructor)
1557 {
1558 gdbpy_print_stack ();
1559 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1560 }
1561
1562 construct_visualizer (var, constructor);
1563 Py_XDECREF (constructor);
1564
1565 /* If there are any children now, wipe them. */
1566 varobj_delete (var, NULL, 1 /* children only */);
1567 var->num_children = -1;
1568
1569 do_cleanups (back_to);
1570 #else
1571 error (_("Python support required"));
1572 #endif
1573 }
1574
1575 /* If NEW_VALUE is the new value of the given varobj (var), return
1576 non-zero if var has mutated. In other words, if the type of
1577 the new value is different from the type of the varobj's old
1578 value.
1579
1580 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1581
1582 static int
1583 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1584 struct type *new_type)
1585 {
1586 /* If we haven't previously computed the number of children in var,
1587 it does not matter from the front-end's perspective whether
1588 the type has mutated or not. For all intents and purposes,
1589 it has not mutated. */
1590 if (var->num_children < 0)
1591 return 0;
1592
1593 if (var->root->lang_ops->value_has_mutated)
1594 {
1595 /* The varobj module, when installing new values, explicitly strips
1596 references, saying that we're not interested in those addresses.
1597 But detection of mutation happens before installing the new
1598 value, so our value may be a reference that we need to strip
1599 in order to remain consistent. */
1600 if (new_value != NULL)
1601 new_value = coerce_ref (new_value);
1602 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1603 }
1604 else
1605 return 0;
1606 }
1607
1608 /* Update the values for a variable and its children. This is a
1609 two-pronged attack. First, re-parse the value for the root's
1610 expression to see if it's changed. Then go all the way
1611 through its children, reconstructing them and noting if they've
1612 changed.
1613
1614 The EXPLICIT parameter specifies if this call is result
1615 of MI request to update this specific variable, or
1616 result of implicit -var-update *. For implicit request, we don't
1617 update frozen variables.
1618
1619 NOTE: This function may delete the caller's varobj. If it
1620 returns TYPE_CHANGED, then it has done this and VARP will be modified
1621 to point to the new varobj. */
1622
1623 VEC(varobj_update_result) *
1624 varobj_update (struct varobj **varp, int explicit)
1625 {
1626 int type_changed = 0;
1627 int i;
1628 struct value *new;
1629 VEC (varobj_update_result) *stack = NULL;
1630 VEC (varobj_update_result) *result = NULL;
1631
1632 /* Frozen means frozen -- we don't check for any change in
1633 this varobj, including its going out of scope, or
1634 changing type. One use case for frozen varobjs is
1635 retaining previously evaluated expressions, and we don't
1636 want them to be reevaluated at all. */
1637 if (!explicit && (*varp)->frozen)
1638 return result;
1639
1640 if (!(*varp)->root->is_valid)
1641 {
1642 varobj_update_result r = {0};
1643
1644 r.varobj = *varp;
1645 r.status = VAROBJ_INVALID;
1646 VEC_safe_push (varobj_update_result, result, &r);
1647 return result;
1648 }
1649
1650 if ((*varp)->root->rootvar == *varp)
1651 {
1652 varobj_update_result r = {0};
1653
1654 r.varobj = *varp;
1655 r.status = VAROBJ_IN_SCOPE;
1656
1657 /* Update the root variable. value_of_root can return NULL
1658 if the variable is no longer around, i.e. we stepped out of
1659 the frame in which a local existed. We are letting the
1660 value_of_root variable dispose of the varobj if the type
1661 has changed. */
1662 new = value_of_root (varp, &type_changed);
1663 if (update_type_if_necessary(*varp, new))
1664 type_changed = 1;
1665 r.varobj = *varp;
1666 r.type_changed = type_changed;
1667 if (install_new_value ((*varp), new, type_changed))
1668 r.changed = 1;
1669
1670 if (new == NULL)
1671 r.status = VAROBJ_NOT_IN_SCOPE;
1672 r.value_installed = 1;
1673
1674 if (r.status == VAROBJ_NOT_IN_SCOPE)
1675 {
1676 if (r.type_changed || r.changed)
1677 VEC_safe_push (varobj_update_result, result, &r);
1678 return result;
1679 }
1680
1681 VEC_safe_push (varobj_update_result, stack, &r);
1682 }
1683 else
1684 {
1685 varobj_update_result r = {0};
1686
1687 r.varobj = *varp;
1688 VEC_safe_push (varobj_update_result, stack, &r);
1689 }
1690
1691 /* Walk through the children, reconstructing them all. */
1692 while (!VEC_empty (varobj_update_result, stack))
1693 {
1694 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1695 struct varobj *v = r.varobj;
1696
1697 VEC_pop (varobj_update_result, stack);
1698
1699 /* Update this variable, unless it's a root, which is already
1700 updated. */
1701 if (!r.value_installed)
1702 {
1703 struct type *new_type;
1704
1705 new = value_of_child (v->parent, v->index);
1706 if (update_type_if_necessary(v, new))
1707 r.type_changed = 1;
1708 if (new)
1709 new_type = value_type (new);
1710 else
1711 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1712
1713 if (varobj_value_has_mutated (v, new, new_type))
1714 {
1715 /* The children are no longer valid; delete them now.
1716 Report the fact that its type changed as well. */
1717 varobj_delete (v, NULL, 1 /* only_children */);
1718 v->num_children = -1;
1719 v->to = -1;
1720 v->from = -1;
1721 v->type = new_type;
1722 r.type_changed = 1;
1723 }
1724
1725 if (install_new_value (v, new, r.type_changed))
1726 {
1727 r.changed = 1;
1728 v->updated = 0;
1729 }
1730 }
1731
1732 /* We probably should not get children of a dynamic varobj, but
1733 for which -var-list-children was never invoked. */
1734 if (varobj_is_dynamic_p (v))
1735 {
1736 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1737 VEC (varobj_p) *new = 0;
1738 int i, children_changed = 0;
1739
1740 if (v->frozen)
1741 continue;
1742
1743 if (!v->dynamic->children_requested)
1744 {
1745 int dummy;
1746
1747 /* If we initially did not have potential children, but
1748 now we do, consider the varobj as changed.
1749 Otherwise, if children were never requested, consider
1750 it as unchanged -- presumably, such varobj is not yet
1751 expanded in the UI, so we need not bother getting
1752 it. */
1753 if (!varobj_has_more (v, 0))
1754 {
1755 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1756 &dummy, 0, 0, 0);
1757 if (varobj_has_more (v, 0))
1758 r.changed = 1;
1759 }
1760
1761 if (r.changed)
1762 VEC_safe_push (varobj_update_result, result, &r);
1763
1764 continue;
1765 }
1766
1767 /* If update_dynamic_varobj_children returns 0, then we have
1768 a non-conforming pretty-printer, so we skip it. */
1769 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1770 &unchanged, &children_changed, 1,
1771 v->from, v->to))
1772 {
1773 if (children_changed || new)
1774 {
1775 r.children_changed = 1;
1776 r.new = new;
1777 }
1778 /* Push in reverse order so that the first child is
1779 popped from the work stack first, and so will be
1780 added to result first. This does not affect
1781 correctness, just "nicer". */
1782 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1783 {
1784 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1785 varobj_update_result r = {0};
1786
1787 /* Type may change only if value was changed. */
1788 r.varobj = tmp;
1789 r.changed = 1;
1790 r.type_changed = 1;
1791 r.value_installed = 1;
1792 VEC_safe_push (varobj_update_result, stack, &r);
1793 }
1794 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1795 {
1796 varobj_p tmp = VEC_index (varobj_p, changed, i);
1797 varobj_update_result r = {0};
1798
1799 r.varobj = tmp;
1800 r.changed = 1;
1801 r.value_installed = 1;
1802 VEC_safe_push (varobj_update_result, stack, &r);
1803 }
1804 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1805 {
1806 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1807
1808 if (!tmp->frozen)
1809 {
1810 varobj_update_result r = {0};
1811
1812 r.varobj = tmp;
1813 r.value_installed = 1;
1814 VEC_safe_push (varobj_update_result, stack, &r);
1815 }
1816 }
1817 if (r.changed || r.children_changed)
1818 VEC_safe_push (varobj_update_result, result, &r);
1819
1820 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1821 because NEW has been put into the result vector. */
1822 VEC_free (varobj_p, changed);
1823 VEC_free (varobj_p, type_changed);
1824 VEC_free (varobj_p, unchanged);
1825
1826 continue;
1827 }
1828 }
1829
1830 /* Push any children. Use reverse order so that the first
1831 child is popped from the work stack first, and so
1832 will be added to result first. This does not
1833 affect correctness, just "nicer". */
1834 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1835 {
1836 varobj_p c = VEC_index (varobj_p, v->children, i);
1837
1838 /* Child may be NULL if explicitly deleted by -var-delete. */
1839 if (c != NULL && !c->frozen)
1840 {
1841 varobj_update_result r = {0};
1842
1843 r.varobj = c;
1844 VEC_safe_push (varobj_update_result, stack, &r);
1845 }
1846 }
1847
1848 if (r.changed || r.type_changed)
1849 VEC_safe_push (varobj_update_result, result, &r);
1850 }
1851
1852 VEC_free (varobj_update_result, stack);
1853
1854 return result;
1855 }
1856 \f
1857
1858 /* Helper functions */
1859
1860 /*
1861 * Variable object construction/destruction
1862 */
1863
1864 static int
1865 delete_variable (struct cpstack **resultp, struct varobj *var,
1866 int only_children_p)
1867 {
1868 int delcount = 0;
1869
1870 delete_variable_1 (resultp, &delcount, var,
1871 only_children_p, 1 /* remove_from_parent_p */ );
1872
1873 return delcount;
1874 }
1875
1876 /* Delete the variable object VAR and its children. */
1877 /* IMPORTANT NOTE: If we delete a variable which is a child
1878 and the parent is not removed we dump core. It must be always
1879 initially called with remove_from_parent_p set. */
1880 static void
1881 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1882 struct varobj *var, int only_children_p,
1883 int remove_from_parent_p)
1884 {
1885 int i;
1886
1887 /* Delete any children of this variable, too. */
1888 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1889 {
1890 varobj_p child = VEC_index (varobj_p, var->children, i);
1891
1892 if (!child)
1893 continue;
1894 if (!remove_from_parent_p)
1895 child->parent = NULL;
1896 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1897 }
1898 VEC_free (varobj_p, var->children);
1899
1900 /* if we were called to delete only the children we are done here. */
1901 if (only_children_p)
1902 return;
1903
1904 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1905 /* If the name is null, this is a temporary variable, that has not
1906 yet been installed, don't report it, it belongs to the caller... */
1907 if (var->obj_name != NULL)
1908 {
1909 cppush (resultp, xstrdup (var->obj_name));
1910 *delcountp = *delcountp + 1;
1911 }
1912
1913 /* If this variable has a parent, remove it from its parent's list. */
1914 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1915 (as indicated by remove_from_parent_p) we don't bother doing an
1916 expensive list search to find the element to remove when we are
1917 discarding the list afterwards. */
1918 if ((remove_from_parent_p) && (var->parent != NULL))
1919 {
1920 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1921 }
1922
1923 if (var->obj_name != NULL)
1924 uninstall_variable (var);
1925
1926 /* Free memory associated with this variable. */
1927 free_variable (var);
1928 }
1929
1930 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1931 static int
1932 install_variable (struct varobj *var)
1933 {
1934 struct vlist *cv;
1935 struct vlist *newvl;
1936 const char *chp;
1937 unsigned int index = 0;
1938 unsigned int i = 1;
1939
1940 for (chp = var->obj_name; *chp; chp++)
1941 {
1942 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1943 }
1944
1945 cv = *(varobj_table + index);
1946 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1947 cv = cv->next;
1948
1949 if (cv != NULL)
1950 error (_("Duplicate variable object name"));
1951
1952 /* Add varobj to hash table. */
1953 newvl = xmalloc (sizeof (struct vlist));
1954 newvl->next = *(varobj_table + index);
1955 newvl->var = var;
1956 *(varobj_table + index) = newvl;
1957
1958 /* If root, add varobj to root list. */
1959 if (is_root_p (var))
1960 {
1961 /* Add to list of root variables. */
1962 if (rootlist == NULL)
1963 var->root->next = NULL;
1964 else
1965 var->root->next = rootlist;
1966 rootlist = var->root;
1967 }
1968
1969 return 1; /* OK */
1970 }
1971
1972 /* Unistall the object VAR. */
1973 static void
1974 uninstall_variable (struct varobj *var)
1975 {
1976 struct vlist *cv;
1977 struct vlist *prev;
1978 struct varobj_root *cr;
1979 struct varobj_root *prer;
1980 const char *chp;
1981 unsigned int index = 0;
1982 unsigned int i = 1;
1983
1984 /* Remove varobj from hash table. */
1985 for (chp = var->obj_name; *chp; chp++)
1986 {
1987 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1988 }
1989
1990 cv = *(varobj_table + index);
1991 prev = NULL;
1992 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1993 {
1994 prev = cv;
1995 cv = cv->next;
1996 }
1997
1998 if (varobjdebug)
1999 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2000
2001 if (cv == NULL)
2002 {
2003 warning
2004 ("Assertion failed: Could not find variable object \"%s\" to delete",
2005 var->obj_name);
2006 return;
2007 }
2008
2009 if (prev == NULL)
2010 *(varobj_table + index) = cv->next;
2011 else
2012 prev->next = cv->next;
2013
2014 xfree (cv);
2015
2016 /* If root, remove varobj from root list. */
2017 if (is_root_p (var))
2018 {
2019 /* Remove from list of root variables. */
2020 if (rootlist == var->root)
2021 rootlist = var->root->next;
2022 else
2023 {
2024 prer = NULL;
2025 cr = rootlist;
2026 while ((cr != NULL) && (cr->rootvar != var))
2027 {
2028 prer = cr;
2029 cr = cr->next;
2030 }
2031 if (cr == NULL)
2032 {
2033 warning (_("Assertion failed: Could not find "
2034 "varobj \"%s\" in root list"),
2035 var->obj_name);
2036 return;
2037 }
2038 if (prer == NULL)
2039 rootlist = NULL;
2040 else
2041 prer->next = cr->next;
2042 }
2043 }
2044
2045 }
2046
2047 /* Create and install a child of the parent of the given name.
2048
2049 The created VAROBJ takes ownership of the allocated NAME. */
2050
2051 static struct varobj *
2052 create_child (struct varobj *parent, int index, char *name)
2053 {
2054 struct varobj_item item;
2055
2056 item.name = name;
2057 item.value = value_of_child (parent, index);
2058
2059 return create_child_with_value (parent, index, &item);
2060 }
2061
2062 static struct varobj *
2063 create_child_with_value (struct varobj *parent, int index,
2064 struct varobj_item *item)
2065 {
2066 struct varobj *child;
2067 char *childs_name;
2068
2069 child = new_variable ();
2070
2071 /* NAME is allocated by caller. */
2072 child->name = item->name;
2073 child->index = index;
2074 child->parent = parent;
2075 child->root = parent->root;
2076
2077 if (varobj_is_anonymous_child (child))
2078 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2079 else
2080 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2081 child->obj_name = childs_name;
2082
2083 install_variable (child);
2084
2085 /* Compute the type of the child. Must do this before
2086 calling install_new_value. */
2087 if (item->value != NULL)
2088 /* If the child had no evaluation errors, var->value
2089 will be non-NULL and contain a valid type. */
2090 child->type = value_actual_type (item->value, 0, NULL);
2091 else
2092 /* Otherwise, we must compute the type. */
2093 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2094 child->index);
2095 install_new_value (child, item->value, 1);
2096
2097 return child;
2098 }
2099 \f
2100
2101 /*
2102 * Miscellaneous utility functions.
2103 */
2104
2105 /* Allocate memory and initialize a new variable. */
2106 static struct varobj *
2107 new_variable (void)
2108 {
2109 struct varobj *var;
2110
2111 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2112 var->name = NULL;
2113 var->path_expr = NULL;
2114 var->obj_name = NULL;
2115 var->index = -1;
2116 var->type = NULL;
2117 var->value = NULL;
2118 var->num_children = -1;
2119 var->parent = NULL;
2120 var->children = NULL;
2121 var->format = 0;
2122 var->root = NULL;
2123 var->updated = 0;
2124 var->print_value = NULL;
2125 var->frozen = 0;
2126 var->not_fetched = 0;
2127 var->dynamic
2128 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2129 var->dynamic->children_requested = 0;
2130 var->from = -1;
2131 var->to = -1;
2132 var->dynamic->constructor = 0;
2133 var->dynamic->pretty_printer = 0;
2134 var->dynamic->child_iter = 0;
2135 var->dynamic->saved_item = 0;
2136
2137 return var;
2138 }
2139
2140 /* Allocate memory and initialize a new root variable. */
2141 static struct varobj *
2142 new_root_variable (void)
2143 {
2144 struct varobj *var = new_variable ();
2145
2146 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2147 var->root->lang_ops = NULL;
2148 var->root->exp = NULL;
2149 var->root->valid_block = NULL;
2150 var->root->frame = null_frame_id;
2151 var->root->floating = 0;
2152 var->root->rootvar = NULL;
2153 var->root->is_valid = 1;
2154
2155 return var;
2156 }
2157
2158 /* Free any allocated memory associated with VAR. */
2159 static void
2160 free_variable (struct varobj *var)
2161 {
2162 #if HAVE_PYTHON
2163 if (var->dynamic->pretty_printer != NULL)
2164 {
2165 struct cleanup *cleanup = varobj_ensure_python_env (var);
2166
2167 Py_XDECREF (var->dynamic->constructor);
2168 Py_XDECREF (var->dynamic->pretty_printer);
2169 do_cleanups (cleanup);
2170 }
2171 #endif
2172
2173 varobj_iter_delete (var->dynamic->child_iter);
2174 varobj_clear_saved_item (var->dynamic);
2175 value_free (var->value);
2176
2177 /* Free the expression if this is a root variable. */
2178 if (is_root_p (var))
2179 {
2180 xfree (var->root->exp);
2181 xfree (var->root);
2182 }
2183
2184 xfree (var->name);
2185 xfree (var->obj_name);
2186 xfree (var->print_value);
2187 xfree (var->path_expr);
2188 xfree (var->dynamic);
2189 xfree (var);
2190 }
2191
2192 static void
2193 do_free_variable_cleanup (void *var)
2194 {
2195 free_variable (var);
2196 }
2197
2198 static struct cleanup *
2199 make_cleanup_free_variable (struct varobj *var)
2200 {
2201 return make_cleanup (do_free_variable_cleanup, var);
2202 }
2203
2204 /* Return the type of the value that's stored in VAR,
2205 or that would have being stored there if the
2206 value were accessible.
2207
2208 This differs from VAR->type in that VAR->type is always
2209 the true type of the expession in the source language.
2210 The return value of this function is the type we're
2211 actually storing in varobj, and using for displaying
2212 the values and for comparing previous and new values.
2213
2214 For example, top-level references are always stripped. */
2215 struct type *
2216 varobj_get_value_type (const struct varobj *var)
2217 {
2218 struct type *type;
2219
2220 if (var->value)
2221 type = value_type (var->value);
2222 else
2223 type = var->type;
2224
2225 type = check_typedef (type);
2226
2227 if (TYPE_CODE (type) == TYPE_CODE_REF)
2228 type = get_target_type (type);
2229
2230 type = check_typedef (type);
2231
2232 return type;
2233 }
2234
2235 /* What is the default display for this variable? We assume that
2236 everything is "natural". Any exceptions? */
2237 static enum varobj_display_formats
2238 variable_default_display (struct varobj *var)
2239 {
2240 return FORMAT_NATURAL;
2241 }
2242
2243 /* FIXME: The following should be generic for any pointer. */
2244 static void
2245 cppush (struct cpstack **pstack, char *name)
2246 {
2247 struct cpstack *s;
2248
2249 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2250 s->name = name;
2251 s->next = *pstack;
2252 *pstack = s;
2253 }
2254
2255 /* FIXME: The following should be generic for any pointer. */
2256 static char *
2257 cppop (struct cpstack **pstack)
2258 {
2259 struct cpstack *s;
2260 char *v;
2261
2262 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2263 return NULL;
2264
2265 s = *pstack;
2266 v = s->name;
2267 *pstack = (*pstack)->next;
2268 xfree (s);
2269
2270 return v;
2271 }
2272 \f
2273 /*
2274 * Language-dependencies
2275 */
2276
2277 /* Common entry points */
2278
2279 /* Return the number of children for a given variable.
2280 The result of this function is defined by the language
2281 implementation. The number of children returned by this function
2282 is the number of children that the user will see in the variable
2283 display. */
2284 static int
2285 number_of_children (const struct varobj *var)
2286 {
2287 return (*var->root->lang_ops->number_of_children) (var);
2288 }
2289
2290 /* What is the expression for the root varobj VAR? Returns a malloc'd
2291 string. */
2292 static char *
2293 name_of_variable (const struct varobj *var)
2294 {
2295 return (*var->root->lang_ops->name_of_variable) (var);
2296 }
2297
2298 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2299 string. */
2300 static char *
2301 name_of_child (struct varobj *var, int index)
2302 {
2303 return (*var->root->lang_ops->name_of_child) (var, index);
2304 }
2305
2306 /* If frame associated with VAR can be found, switch
2307 to it and return 1. Otherwise, return 0. */
2308
2309 static int
2310 check_scope (const struct varobj *var)
2311 {
2312 struct frame_info *fi;
2313 int scope;
2314
2315 fi = frame_find_by_id (var->root->frame);
2316 scope = fi != NULL;
2317
2318 if (fi)
2319 {
2320 CORE_ADDR pc = get_frame_pc (fi);
2321
2322 if (pc < BLOCK_START (var->root->valid_block) ||
2323 pc >= BLOCK_END (var->root->valid_block))
2324 scope = 0;
2325 else
2326 select_frame (fi);
2327 }
2328 return scope;
2329 }
2330
2331 /* Helper function to value_of_root. */
2332
2333 static struct value *
2334 value_of_root_1 (struct varobj **var_handle)
2335 {
2336 struct value *new_val = NULL;
2337 struct varobj *var = *var_handle;
2338 int within_scope = 0;
2339 struct cleanup *back_to;
2340
2341 /* Only root variables can be updated... */
2342 if (!is_root_p (var))
2343 /* Not a root var. */
2344 return NULL;
2345
2346 back_to = make_cleanup_restore_current_thread ();
2347
2348 /* Determine whether the variable is still around. */
2349 if (var->root->valid_block == NULL || var->root->floating)
2350 within_scope = 1;
2351 else if (var->root->thread_id == 0)
2352 {
2353 /* The program was single-threaded when the variable object was
2354 created. Technically, it's possible that the program became
2355 multi-threaded since then, but we don't support such
2356 scenario yet. */
2357 within_scope = check_scope (var);
2358 }
2359 else
2360 {
2361 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2362 if (in_thread_list (ptid))
2363 {
2364 switch_to_thread (ptid);
2365 within_scope = check_scope (var);
2366 }
2367 }
2368
2369 if (within_scope)
2370 {
2371 volatile struct gdb_exception except;
2372
2373 /* We need to catch errors here, because if evaluate
2374 expression fails we want to just return NULL. */
2375 TRY_CATCH (except, RETURN_MASK_ERROR)
2376 {
2377 new_val = evaluate_expression (var->root->exp);
2378 }
2379 }
2380
2381 do_cleanups (back_to);
2382
2383 return new_val;
2384 }
2385
2386 /* What is the ``struct value *'' of the root variable VAR?
2387 For floating variable object, evaluation can get us a value
2388 of different type from what is stored in varobj already. In
2389 that case:
2390 - *type_changed will be set to 1
2391 - old varobj will be freed, and new one will be
2392 created, with the same name.
2393 - *var_handle will be set to the new varobj
2394 Otherwise, *type_changed will be set to 0. */
2395 static struct value *
2396 value_of_root (struct varobj **var_handle, int *type_changed)
2397 {
2398 struct varobj *var;
2399
2400 if (var_handle == NULL)
2401 return NULL;
2402
2403 var = *var_handle;
2404
2405 /* This should really be an exception, since this should
2406 only get called with a root variable. */
2407
2408 if (!is_root_p (var))
2409 return NULL;
2410
2411 if (var->root->floating)
2412 {
2413 struct varobj *tmp_var;
2414 char *old_type, *new_type;
2415
2416 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2417 USE_SELECTED_FRAME);
2418 if (tmp_var == NULL)
2419 {
2420 return NULL;
2421 }
2422 old_type = varobj_get_type (var);
2423 new_type = varobj_get_type (tmp_var);
2424 if (strcmp (old_type, new_type) == 0)
2425 {
2426 /* The expression presently stored inside var->root->exp
2427 remembers the locations of local variables relatively to
2428 the frame where the expression was created (in DWARF location
2429 button, for example). Naturally, those locations are not
2430 correct in other frames, so update the expression. */
2431
2432 struct expression *tmp_exp = var->root->exp;
2433
2434 var->root->exp = tmp_var->root->exp;
2435 tmp_var->root->exp = tmp_exp;
2436
2437 varobj_delete (tmp_var, NULL, 0);
2438 *type_changed = 0;
2439 }
2440 else
2441 {
2442 tmp_var->obj_name = xstrdup (var->obj_name);
2443 tmp_var->from = var->from;
2444 tmp_var->to = var->to;
2445 varobj_delete (var, NULL, 0);
2446
2447 install_variable (tmp_var);
2448 *var_handle = tmp_var;
2449 var = *var_handle;
2450 *type_changed = 1;
2451 }
2452 xfree (old_type);
2453 xfree (new_type);
2454 }
2455 else
2456 {
2457 *type_changed = 0;
2458 }
2459
2460 {
2461 struct value *value;
2462
2463 value = value_of_root_1 (var_handle);
2464 if (var->value == NULL || value == NULL)
2465 {
2466 /* For root varobj-s, a NULL value indicates a scoping issue.
2467 So, nothing to do in terms of checking for mutations. */
2468 }
2469 else if (varobj_value_has_mutated (var, value, value_type (value)))
2470 {
2471 /* The type has mutated, so the children are no longer valid.
2472 Just delete them, and tell our caller that the type has
2473 changed. */
2474 varobj_delete (var, NULL, 1 /* only_children */);
2475 var->num_children = -1;
2476 var->to = -1;
2477 var->from = -1;
2478 *type_changed = 1;
2479 }
2480 return value;
2481 }
2482 }
2483
2484 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2485 static struct value *
2486 value_of_child (struct varobj *parent, int index)
2487 {
2488 struct value *value;
2489
2490 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2491
2492 return value;
2493 }
2494
2495 /* GDB already has a command called "value_of_variable". Sigh. */
2496 static char *
2497 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2498 {
2499 if (var->root->is_valid)
2500 {
2501 if (var->dynamic->pretty_printer != NULL)
2502 return varobj_value_get_print_value (var->value, var->format, var);
2503 return (*var->root->lang_ops->value_of_variable) (var, format);
2504 }
2505 else
2506 return NULL;
2507 }
2508
2509 void
2510 varobj_formatted_print_options (struct value_print_options *opts,
2511 enum varobj_display_formats format)
2512 {
2513 get_formatted_print_options (opts, format_code[(int) format]);
2514 opts->deref_ref = 0;
2515 opts->raw = 1;
2516 }
2517
2518 char *
2519 varobj_value_get_print_value (struct value *value,
2520 enum varobj_display_formats format,
2521 const struct varobj *var)
2522 {
2523 struct ui_file *stb;
2524 struct cleanup *old_chain;
2525 char *thevalue = NULL;
2526 struct value_print_options opts;
2527 struct type *type = NULL;
2528 long len = 0;
2529 char *encoding = NULL;
2530 struct gdbarch *gdbarch = NULL;
2531 /* Initialize it just to avoid a GCC false warning. */
2532 CORE_ADDR str_addr = 0;
2533 int string_print = 0;
2534
2535 if (value == NULL)
2536 return NULL;
2537
2538 stb = mem_fileopen ();
2539 old_chain = make_cleanup_ui_file_delete (stb);
2540
2541 gdbarch = get_type_arch (value_type (value));
2542 #if HAVE_PYTHON
2543 if (gdb_python_initialized)
2544 {
2545 PyObject *value_formatter = var->dynamic->pretty_printer;
2546
2547 varobj_ensure_python_env (var);
2548
2549 if (value_formatter)
2550 {
2551 /* First check to see if we have any children at all. If so,
2552 we simply return {...}. */
2553 if (dynamic_varobj_has_child_method (var))
2554 {
2555 do_cleanups (old_chain);
2556 return xstrdup ("{...}");
2557 }
2558
2559 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2560 {
2561 struct value *replacement;
2562 PyObject *output = NULL;
2563
2564 output = apply_varobj_pretty_printer (value_formatter,
2565 &replacement,
2566 stb);
2567
2568 /* If we have string like output ... */
2569 if (output)
2570 {
2571 make_cleanup_py_decref (output);
2572
2573 /* If this is a lazy string, extract it. For lazy
2574 strings we always print as a string, so set
2575 string_print. */
2576 if (gdbpy_is_lazy_string (output))
2577 {
2578 gdbpy_extract_lazy_string (output, &str_addr, &type,
2579 &len, &encoding);
2580 make_cleanup (free_current_contents, &encoding);
2581 string_print = 1;
2582 }
2583 else
2584 {
2585 /* If it is a regular (non-lazy) string, extract
2586 it and copy the contents into THEVALUE. If the
2587 hint says to print it as a string, set
2588 string_print. Otherwise just return the extracted
2589 string as a value. */
2590
2591 char *s = python_string_to_target_string (output);
2592
2593 if (s)
2594 {
2595 char *hint;
2596
2597 hint = gdbpy_get_display_hint (value_formatter);
2598 if (hint)
2599 {
2600 if (!strcmp (hint, "string"))
2601 string_print = 1;
2602 xfree (hint);
2603 }
2604
2605 len = strlen (s);
2606 thevalue = xmemdup (s, len + 1, len + 1);
2607 type = builtin_type (gdbarch)->builtin_char;
2608 xfree (s);
2609
2610 if (!string_print)
2611 {
2612 do_cleanups (old_chain);
2613 return thevalue;
2614 }
2615
2616 make_cleanup (xfree, thevalue);
2617 }
2618 else
2619 gdbpy_print_stack ();
2620 }
2621 }
2622 /* If the printer returned a replacement value, set VALUE
2623 to REPLACEMENT. If there is not a replacement value,
2624 just use the value passed to this function. */
2625 if (replacement)
2626 value = replacement;
2627 }
2628 }
2629 }
2630 #endif
2631
2632 varobj_formatted_print_options (&opts, format);
2633
2634 /* If the THEVALUE has contents, it is a regular string. */
2635 if (thevalue)
2636 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2637 else if (string_print)
2638 /* Otherwise, if string_print is set, and it is not a regular
2639 string, it is a lazy string. */
2640 val_print_string (type, encoding, str_addr, len, stb, &opts);
2641 else
2642 /* All other cases. */
2643 common_val_print (value, stb, 0, &opts, current_language);
2644
2645 thevalue = ui_file_xstrdup (stb, NULL);
2646
2647 do_cleanups (old_chain);
2648 return thevalue;
2649 }
2650
2651 int
2652 varobj_editable_p (const struct varobj *var)
2653 {
2654 struct type *type;
2655
2656 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2657 return 0;
2658
2659 type = varobj_get_value_type (var);
2660
2661 switch (TYPE_CODE (type))
2662 {
2663 case TYPE_CODE_STRUCT:
2664 case TYPE_CODE_UNION:
2665 case TYPE_CODE_ARRAY:
2666 case TYPE_CODE_FUNC:
2667 case TYPE_CODE_METHOD:
2668 return 0;
2669 break;
2670
2671 default:
2672 return 1;
2673 break;
2674 }
2675 }
2676
2677 /* Call VAR's value_is_changeable_p language-specific callback. */
2678
2679 int
2680 varobj_value_is_changeable_p (const struct varobj *var)
2681 {
2682 return var->root->lang_ops->value_is_changeable_p (var);
2683 }
2684
2685 /* Return 1 if that varobj is floating, that is is always evaluated in the
2686 selected frame, and not bound to thread/frame. Such variable objects
2687 are created using '@' as frame specifier to -var-create. */
2688 int
2689 varobj_floating_p (const struct varobj *var)
2690 {
2691 return var->root->floating;
2692 }
2693
2694 /* Implement the "value_is_changeable_p" varobj callback for most
2695 languages. */
2696
2697 int
2698 varobj_default_value_is_changeable_p (const struct varobj *var)
2699 {
2700 int r;
2701 struct type *type;
2702
2703 if (CPLUS_FAKE_CHILD (var))
2704 return 0;
2705
2706 type = varobj_get_value_type (var);
2707
2708 switch (TYPE_CODE (type))
2709 {
2710 case TYPE_CODE_STRUCT:
2711 case TYPE_CODE_UNION:
2712 case TYPE_CODE_ARRAY:
2713 r = 0;
2714 break;
2715
2716 default:
2717 r = 1;
2718 }
2719
2720 return r;
2721 }
2722
2723 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2724 with an arbitrary caller supplied DATA pointer. */
2725
2726 void
2727 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2728 {
2729 struct varobj_root *var_root, *var_root_next;
2730
2731 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2732
2733 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2734 {
2735 var_root_next = var_root->next;
2736
2737 (*func) (var_root->rootvar, data);
2738 }
2739 }
2740
2741 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2742 defined on globals. It is a helper for varobj_invalidate.
2743
2744 This function is called after changing the symbol file, in this case the
2745 pointers to "struct type" stored by the varobj are no longer valid. All
2746 varobj must be either re-evaluated, or marked as invalid here. */
2747
2748 static void
2749 varobj_invalidate_iter (struct varobj *var, void *unused)
2750 {
2751 /* global and floating var must be re-evaluated. */
2752 if (var->root->floating || var->root->valid_block == NULL)
2753 {
2754 struct varobj *tmp_var;
2755
2756 /* Try to create a varobj with same expression. If we succeed
2757 replace the old varobj, otherwise invalidate it. */
2758 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2759 USE_CURRENT_FRAME);
2760 if (tmp_var != NULL)
2761 {
2762 tmp_var->obj_name = xstrdup (var->obj_name);
2763 varobj_delete (var, NULL, 0);
2764 install_variable (tmp_var);
2765 }
2766 else
2767 var->root->is_valid = 0;
2768 }
2769 else /* locals must be invalidated. */
2770 var->root->is_valid = 0;
2771 }
2772
2773 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2774 are defined on globals.
2775 Invalidated varobjs will be always printed in_scope="invalid". */
2776
2777 void
2778 varobj_invalidate (void)
2779 {
2780 all_root_varobjs (varobj_invalidate_iter, NULL);
2781 }
2782 \f
2783 extern void _initialize_varobj (void);
2784 void
2785 _initialize_varobj (void)
2786 {
2787 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2788
2789 varobj_table = xmalloc (sizeof_table);
2790 memset (varobj_table, 0, sizeof_table);
2791
2792 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2793 &varobjdebug,
2794 _("Set varobj debugging."),
2795 _("Show varobj debugging."),
2796 _("When non-zero, varobj debugging is enabled."),
2797 NULL, show_varobjdebug,
2798 &setdebuglist, &showdebuglist);
2799 }
This page took 0.119937 seconds and 5 git commands to generate.