Iterate over 'struct varobj_item' instead of PyObject
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include <string.h>
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "varobj-iter.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 unsigned int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes. */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* True if we want to allow Python-based pretty-printing. */
60 static int pretty_printing = 0;
61
62 void
63 varobj_enable_pretty_printing (void)
64 {
65 pretty_printing = 1;
66 }
67
68 /* Data structures */
69
70 /* Every root variable has one of these structures saved in its
71 varobj. Members which must be free'd are noted. */
72 struct varobj_root
73 {
74
75 /* Alloc'd expression for this parent. */
76 struct expression *exp;
77
78 /* Block for which this expression is valid. */
79 const struct block *valid_block;
80
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
83 struct frame_id frame;
84
85 /* The thread ID that this varobj_root belong to. This field
86 is only valid if valid_block is not NULL.
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
94 always updated in the specific scope/thread/frame. */
95 int floating;
96
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
101 /* Language-related operations for this variable and its
102 children. */
103 const struct lang_varobj_ops *lang_ops;
104
105 /* The varobj for this root node. */
106 struct varobj *rootvar;
107
108 /* Next root variable */
109 struct varobj_root *next;
110 };
111
112 /* Dynamic part of varobj. */
113
114 struct varobj_dynamic
115 {
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
133 struct varobj_iter *child_iter;
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
140 varobj_item *saved_item;
141 };
142
143 struct cpstack
144 {
145 char *name;
146 struct cpstack *next;
147 };
148
149 /* A list of varobjs */
150
151 struct vlist
152 {
153 struct varobj *var;
154 struct vlist *next;
155 };
156
157 /* Private function prototypes */
158
159 /* Helper functions for the above subcommands. */
160
161 static int delete_variable (struct cpstack **, struct varobj *, int);
162
163 static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
165
166 static int install_variable (struct varobj *);
167
168 static void uninstall_variable (struct varobj *);
169
170 static struct varobj *create_child (struct varobj *, int, char *);
171
172 static struct varobj *
173 create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
175
176 /* Utility routines */
177
178 static struct varobj *new_variable (void);
179
180 static struct varobj *new_root_variable (void);
181
182 static void free_variable (struct varobj *var);
183
184 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
186 static enum varobj_display_formats variable_default_display (struct varobj *);
187
188 static void cppush (struct cpstack **pstack, char *name);
189
190 static char *cppop (struct cpstack **pstack);
191
192 static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
195 static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
198 /* Language-specific routines. */
199
200 static int number_of_children (struct varobj *);
201
202 static char *name_of_variable (struct varobj *);
203
204 static char *name_of_child (struct varobj *, int);
205
206 static struct value *value_of_root (struct varobj **var_handle, int *);
207
208 static struct value *value_of_child (struct varobj *parent, int index);
209
210 static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
212
213 static int is_root_p (struct varobj *var);
214
215 #if HAVE_PYTHON
216
217 static struct varobj *varobj_add_child (struct varobj *var,
218 struct varobj_item *item);
219
220 #endif /* HAVE_PYTHON */
221
222 /* Private data */
223
224 /* Mappings of varobj_display_formats enums to gdb's format codes. */
225 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
226
227 /* Header of the list of root variable objects. */
228 static struct varobj_root *rootlist;
229
230 /* Prime number indicating the number of buckets in the hash table. */
231 /* A prime large enough to avoid too many colisions. */
232 #define VAROBJ_TABLE_SIZE 227
233
234 /* Pointer to the varobj hash table (built at run time). */
235 static struct vlist **varobj_table;
236
237 \f
238
239 /* API Implementation */
240 static int
241 is_root_p (struct varobj *var)
242 {
243 return (var->root->rootvar == var);
244 }
245
246 #ifdef HAVE_PYTHON
247 /* Helper function to install a Python environment suitable for
248 use during operations on VAR. */
249 struct cleanup *
250 varobj_ensure_python_env (struct varobj *var)
251 {
252 return ensure_python_env (var->root->exp->gdbarch,
253 var->root->exp->language_defn);
254 }
255 #endif
256
257 /* Creates a varobj (not its children). */
258
259 /* Return the full FRAME which corresponds to the given CORE_ADDR
260 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
261
262 static struct frame_info *
263 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
264 {
265 struct frame_info *frame = NULL;
266
267 if (frame_addr == (CORE_ADDR) 0)
268 return NULL;
269
270 for (frame = get_current_frame ();
271 frame != NULL;
272 frame = get_prev_frame (frame))
273 {
274 /* The CORE_ADDR we get as argument was parsed from a string GDB
275 output as $fp. This output got truncated to gdbarch_addr_bit.
276 Truncate the frame base address in the same manner before
277 comparing it against our argument. */
278 CORE_ADDR frame_base = get_frame_base_address (frame);
279 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
280
281 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
282 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
283
284 if (frame_base == frame_addr)
285 return frame;
286 }
287
288 return NULL;
289 }
290
291 struct varobj *
292 varobj_create (char *objname,
293 char *expression, CORE_ADDR frame, enum varobj_type type)
294 {
295 struct varobj *var;
296 struct cleanup *old_chain;
297
298 /* Fill out a varobj structure for the (root) variable being constructed. */
299 var = new_root_variable ();
300 old_chain = make_cleanup_free_variable (var);
301
302 if (expression != NULL)
303 {
304 struct frame_info *fi;
305 struct frame_id old_id = null_frame_id;
306 struct block *block;
307 const char *p;
308 struct value *value = NULL;
309 volatile struct gdb_exception except;
310 CORE_ADDR pc;
311
312 /* Parse and evaluate the expression, filling in as much of the
313 variable's data as possible. */
314
315 if (has_stack_frames ())
316 {
317 /* Allow creator to specify context of variable. */
318 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
319 fi = get_selected_frame (NULL);
320 else
321 /* FIXME: cagney/2002-11-23: This code should be doing a
322 lookup using the frame ID and not just the frame's
323 ``address''. This, of course, means an interface
324 change. However, with out that interface change ISAs,
325 such as the ia64 with its two stacks, won't work.
326 Similar goes for the case where there is a frameless
327 function. */
328 fi = find_frame_addr_in_frame_chain (frame);
329 }
330 else
331 fi = NULL;
332
333 /* frame = -2 means always use selected frame. */
334 if (type == USE_SELECTED_FRAME)
335 var->root->floating = 1;
336
337 pc = 0;
338 block = NULL;
339 if (fi != NULL)
340 {
341 block = get_frame_block (fi, 0);
342 pc = get_frame_pc (fi);
343 }
344
345 p = expression;
346 innermost_block = NULL;
347 /* Wrap the call to parse expression, so we can
348 return a sensible error. */
349 TRY_CATCH (except, RETURN_MASK_ERROR)
350 {
351 var->root->exp = parse_exp_1 (&p, pc, block, 0);
352 }
353
354 if (except.reason < 0)
355 {
356 do_cleanups (old_chain);
357 return NULL;
358 }
359
360 /* Don't allow variables to be created for types. */
361 if (var->root->exp->elts[0].opcode == OP_TYPE
362 || var->root->exp->elts[0].opcode == OP_TYPEOF
363 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
364 {
365 do_cleanups (old_chain);
366 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
367 " as an expression.\n");
368 return NULL;
369 }
370
371 var->format = variable_default_display (var);
372 var->root->valid_block = innermost_block;
373 var->name = xstrdup (expression);
374 /* For a root var, the name and the expr are the same. */
375 var->path_expr = xstrdup (expression);
376
377 /* When the frame is different from the current frame,
378 we must select the appropriate frame before parsing
379 the expression, otherwise the value will not be current.
380 Since select_frame is so benign, just call it for all cases. */
381 if (innermost_block)
382 {
383 /* User could specify explicit FRAME-ADDR which was not found but
384 EXPRESSION is frame specific and we would not be able to evaluate
385 it correctly next time. With VALID_BLOCK set we must also set
386 FRAME and THREAD_ID. */
387 if (fi == NULL)
388 error (_("Failed to find the specified frame"));
389
390 var->root->frame = get_frame_id (fi);
391 var->root->thread_id = pid_to_thread_id (inferior_ptid);
392 old_id = get_frame_id (get_selected_frame (NULL));
393 select_frame (fi);
394 }
395
396 /* We definitely need to catch errors here.
397 If evaluate_expression succeeds we got the value we wanted.
398 But if it fails, we still go on with a call to evaluate_type(). */
399 TRY_CATCH (except, RETURN_MASK_ERROR)
400 {
401 value = evaluate_expression (var->root->exp);
402 }
403
404 if (except.reason < 0)
405 {
406 /* Error getting the value. Try to at least get the
407 right type. */
408 struct value *type_only_value = evaluate_type (var->root->exp);
409
410 var->type = value_type (type_only_value);
411 }
412 else
413 {
414 int real_type_found = 0;
415
416 var->type = value_actual_type (value, 0, &real_type_found);
417 if (real_type_found)
418 value = value_cast (var->type, value);
419 }
420
421 /* Set language info */
422 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
423
424 install_new_value (var, value, 1 /* Initial assignment */);
425
426 /* Set ourselves as our root. */
427 var->root->rootvar = var;
428
429 /* Reset the selected frame. */
430 if (frame_id_p (old_id))
431 select_frame (frame_find_by_id (old_id));
432 }
433
434 /* If the variable object name is null, that means this
435 is a temporary variable, so don't install it. */
436
437 if ((var != NULL) && (objname != NULL))
438 {
439 var->obj_name = xstrdup (objname);
440
441 /* If a varobj name is duplicated, the install will fail so
442 we must cleanup. */
443 if (!install_variable (var))
444 {
445 do_cleanups (old_chain);
446 return NULL;
447 }
448 }
449
450 discard_cleanups (old_chain);
451 return var;
452 }
453
454 /* Generates an unique name that can be used for a varobj. */
455
456 char *
457 varobj_gen_name (void)
458 {
459 static int id = 0;
460 char *obj_name;
461
462 /* Generate a name for this object. */
463 id++;
464 obj_name = xstrprintf ("var%d", id);
465
466 return obj_name;
467 }
468
469 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
470 error if OBJNAME cannot be found. */
471
472 struct varobj *
473 varobj_get_handle (char *objname)
474 {
475 struct vlist *cv;
476 const char *chp;
477 unsigned int index = 0;
478 unsigned int i = 1;
479
480 for (chp = objname; *chp; chp++)
481 {
482 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
483 }
484
485 cv = *(varobj_table + index);
486 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
487 cv = cv->next;
488
489 if (cv == NULL)
490 error (_("Variable object not found"));
491
492 return cv->var;
493 }
494
495 /* Given the handle, return the name of the object. */
496
497 char *
498 varobj_get_objname (struct varobj *var)
499 {
500 return var->obj_name;
501 }
502
503 /* Given the handle, return the expression represented by the object. */
504
505 char *
506 varobj_get_expression (struct varobj *var)
507 {
508 return name_of_variable (var);
509 }
510
511 /* Deletes a varobj and all its children if only_children == 0,
512 otherwise deletes only the children; returns a malloc'ed list of
513 all the (malloc'ed) names of the variables that have been deleted
514 (NULL terminated). */
515
516 int
517 varobj_delete (struct varobj *var, char ***dellist, int only_children)
518 {
519 int delcount;
520 int mycount;
521 struct cpstack *result = NULL;
522 char **cp;
523
524 /* Initialize a stack for temporary results. */
525 cppush (&result, NULL);
526
527 if (only_children)
528 /* Delete only the variable children. */
529 delcount = delete_variable (&result, var, 1 /* only the children */ );
530 else
531 /* Delete the variable and all its children. */
532 delcount = delete_variable (&result, var, 0 /* parent+children */ );
533
534 /* We may have been asked to return a list of what has been deleted. */
535 if (dellist != NULL)
536 {
537 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
538
539 cp = *dellist;
540 mycount = delcount;
541 *cp = cppop (&result);
542 while ((*cp != NULL) && (mycount > 0))
543 {
544 mycount--;
545 cp++;
546 *cp = cppop (&result);
547 }
548
549 if (mycount || (*cp != NULL))
550 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
551 mycount);
552 }
553
554 return delcount;
555 }
556
557 #if HAVE_PYTHON
558
559 /* Convenience function for varobj_set_visualizer. Instantiate a
560 pretty-printer for a given value. */
561 static PyObject *
562 instantiate_pretty_printer (PyObject *constructor, struct value *value)
563 {
564 PyObject *val_obj = NULL;
565 PyObject *printer;
566
567 val_obj = value_to_value_object (value);
568 if (! val_obj)
569 return NULL;
570
571 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
572 Py_DECREF (val_obj);
573 return printer;
574 }
575
576 #endif
577
578 /* Set/Get variable object display format. */
579
580 enum varobj_display_formats
581 varobj_set_display_format (struct varobj *var,
582 enum varobj_display_formats format)
583 {
584 switch (format)
585 {
586 case FORMAT_NATURAL:
587 case FORMAT_BINARY:
588 case FORMAT_DECIMAL:
589 case FORMAT_HEXADECIMAL:
590 case FORMAT_OCTAL:
591 var->format = format;
592 break;
593
594 default:
595 var->format = variable_default_display (var);
596 }
597
598 if (varobj_value_is_changeable_p (var)
599 && var->value && !value_lazy (var->value))
600 {
601 xfree (var->print_value);
602 var->print_value = varobj_value_get_print_value (var->value,
603 var->format, var);
604 }
605
606 return var->format;
607 }
608
609 enum varobj_display_formats
610 varobj_get_display_format (struct varobj *var)
611 {
612 return var->format;
613 }
614
615 char *
616 varobj_get_display_hint (struct varobj *var)
617 {
618 char *result = NULL;
619
620 #if HAVE_PYTHON
621 struct cleanup *back_to;
622
623 if (!gdb_python_initialized)
624 return NULL;
625
626 back_to = varobj_ensure_python_env (var);
627
628 if (var->dynamic->pretty_printer != NULL)
629 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
630
631 do_cleanups (back_to);
632 #endif
633
634 return result;
635 }
636
637 /* Return true if the varobj has items after TO, false otherwise. */
638
639 int
640 varobj_has_more (struct varobj *var, int to)
641 {
642 if (VEC_length (varobj_p, var->children) > to)
643 return 1;
644 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
645 && (var->dynamic->saved_item != NULL));
646 }
647
648 /* If the variable object is bound to a specific thread, that
649 is its evaluation can always be done in context of a frame
650 inside that thread, returns GDB id of the thread -- which
651 is always positive. Otherwise, returns -1. */
652 int
653 varobj_get_thread_id (struct varobj *var)
654 {
655 if (var->root->valid_block && var->root->thread_id > 0)
656 return var->root->thread_id;
657 else
658 return -1;
659 }
660
661 void
662 varobj_set_frozen (struct varobj *var, int frozen)
663 {
664 /* When a variable is unfrozen, we don't fetch its value.
665 The 'not_fetched' flag remains set, so next -var-update
666 won't complain.
667
668 We don't fetch the value, because for structures the client
669 should do -var-update anyway. It would be bad to have different
670 client-size logic for structure and other types. */
671 var->frozen = frozen;
672 }
673
674 int
675 varobj_get_frozen (struct varobj *var)
676 {
677 return var->frozen;
678 }
679
680 /* A helper function that restricts a range to what is actually
681 available in a VEC. This follows the usual rules for the meaning
682 of FROM and TO -- if either is negative, the entire range is
683 used. */
684
685 void
686 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
687 {
688 if (*from < 0 || *to < 0)
689 {
690 *from = 0;
691 *to = VEC_length (varobj_p, children);
692 }
693 else
694 {
695 if (*from > VEC_length (varobj_p, children))
696 *from = VEC_length (varobj_p, children);
697 if (*to > VEC_length (varobj_p, children))
698 *to = VEC_length (varobj_p, children);
699 if (*from > *to)
700 *from = *to;
701 }
702 }
703
704 #if HAVE_PYTHON
705
706 /* A helper for update_dynamic_varobj_children that installs a new
707 child when needed. */
708
709 static void
710 install_dynamic_child (struct varobj *var,
711 VEC (varobj_p) **changed,
712 VEC (varobj_p) **type_changed,
713 VEC (varobj_p) **new,
714 VEC (varobj_p) **unchanged,
715 int *cchanged,
716 int index,
717 struct varobj_item *item)
718 {
719 if (VEC_length (varobj_p, var->children) < index + 1)
720 {
721 /* There's no child yet. */
722 struct varobj *child = varobj_add_child (var, item);
723
724 if (new)
725 {
726 VEC_safe_push (varobj_p, *new, child);
727 *cchanged = 1;
728 }
729 }
730 else
731 {
732 varobj_p existing = VEC_index (varobj_p, var->children, index);
733 int type_updated = update_type_if_necessary (existing, item->value);
734
735 if (type_updated)
736 {
737 if (type_changed)
738 VEC_safe_push (varobj_p, *type_changed, existing);
739 }
740 if (install_new_value (existing, item->value, 0))
741 {
742 if (!type_updated && changed)
743 VEC_safe_push (varobj_p, *changed, existing);
744 }
745 else if (!type_updated && unchanged)
746 VEC_safe_push (varobj_p, *unchanged, existing);
747 }
748 }
749
750 static int
751 dynamic_varobj_has_child_method (struct varobj *var)
752 {
753 struct cleanup *back_to;
754 PyObject *printer = var->dynamic->pretty_printer;
755 int result;
756
757 if (!gdb_python_initialized)
758 return 0;
759
760 back_to = varobj_ensure_python_env (var);
761 result = PyObject_HasAttr (printer, gdbpy_children_cst);
762 do_cleanups (back_to);
763 return result;
764 }
765
766 /* A factory for creating dynamic varobj's iterators. Returns an
767 iterator object suitable for iterating over VAR's children. */
768
769 static struct varobj_iter *
770 varobj_get_iterator (struct varobj *var)
771 {
772 if (var->dynamic->pretty_printer)
773 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
774
775 gdb_assert_not_reached (_("\
776 requested an iterator from a non-dynamic varobj"));
777 }
778
779 /* Release and clear VAR's saved item, if any. */
780
781 static void
782 varobj_clear_saved_item (struct varobj_dynamic *var)
783 {
784 if (var->saved_item != NULL)
785 {
786 value_free (var->saved_item->value);
787 xfree (var->saved_item);
788 var->saved_item = NULL;
789 }
790 }
791 #endif
792
793 static int
794 update_dynamic_varobj_children (struct varobj *var,
795 VEC (varobj_p) **changed,
796 VEC (varobj_p) **type_changed,
797 VEC (varobj_p) **new,
798 VEC (varobj_p) **unchanged,
799 int *cchanged,
800 int update_children,
801 int from,
802 int to)
803 {
804 #if HAVE_PYTHON
805 int i;
806
807 *cchanged = 0;
808
809 if (update_children || var->dynamic->child_iter == NULL)
810 {
811 varobj_iter_delete (var->dynamic->child_iter);
812 var->dynamic->child_iter = varobj_get_iterator (var);
813
814 varobj_clear_saved_item (var->dynamic);
815
816 i = 0;
817
818 if (var->dynamic->child_iter == NULL)
819 return 0;
820 }
821 else
822 i = VEC_length (varobj_p, var->children);
823
824 /* We ask for one extra child, so that MI can report whether there
825 are more children. */
826 for (; to < 0 || i < to + 1; ++i)
827 {
828 varobj_item *item;
829
830 /* See if there was a leftover from last time. */
831 if (var->dynamic->saved_item != NULL)
832 {
833 item = var->dynamic->saved_item;
834 var->dynamic->saved_item = NULL;
835 }
836 else
837 {
838 item = varobj_iter_next (var->dynamic->child_iter);
839 /* Release vitem->value so its lifetime is not bound to the
840 execution of a command. */
841 if (item != NULL && item->value != NULL)
842 release_value_or_incref (item->value);
843 }
844
845 if (item == NULL)
846 {
847 /* Iteration is done. Remove iterator from VAR. */
848 varobj_iter_delete (var->dynamic->child_iter);
849 var->dynamic->child_iter = NULL;
850 break;
851 }
852 /* We don't want to push the extra child on any report list. */
853 if (to < 0 || i < to)
854 {
855 int can_mention = from < 0 || i >= from;
856
857 install_dynamic_child (var, can_mention ? changed : NULL,
858 can_mention ? type_changed : NULL,
859 can_mention ? new : NULL,
860 can_mention ? unchanged : NULL,
861 can_mention ? cchanged : NULL, i,
862 item);
863
864 xfree (item);
865 }
866 else
867 {
868 var->dynamic->saved_item = item;
869
870 /* We want to truncate the child list just before this
871 element. */
872 break;
873 }
874 }
875
876 if (i < VEC_length (varobj_p, var->children))
877 {
878 int j;
879
880 *cchanged = 1;
881 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
882 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
883 VEC_truncate (varobj_p, var->children, i);
884 }
885
886 /* If there are fewer children than requested, note that the list of
887 children changed. */
888 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
889 *cchanged = 1;
890
891 var->num_children = VEC_length (varobj_p, var->children);
892
893 return 1;
894 #else
895 gdb_assert_not_reached ("should never be called if Python is not enabled");
896 #endif
897 }
898
899 int
900 varobj_get_num_children (struct varobj *var)
901 {
902 if (var->num_children == -1)
903 {
904 if (var->dynamic->pretty_printer != NULL)
905 {
906 int dummy;
907
908 /* If we have a dynamic varobj, don't report -1 children.
909 So, try to fetch some children first. */
910 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
911 0, 0, 0);
912 }
913 else
914 var->num_children = number_of_children (var);
915 }
916
917 return var->num_children >= 0 ? var->num_children : 0;
918 }
919
920 /* Creates a list of the immediate children of a variable object;
921 the return code is the number of such children or -1 on error. */
922
923 VEC (varobj_p)*
924 varobj_list_children (struct varobj *var, int *from, int *to)
925 {
926 char *name;
927 int i, children_changed;
928
929 var->dynamic->children_requested = 1;
930
931 if (var->dynamic->pretty_printer != NULL)
932 {
933 /* This, in theory, can result in the number of children changing without
934 frontend noticing. But well, calling -var-list-children on the same
935 varobj twice is not something a sane frontend would do. */
936 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
937 &children_changed, 0, 0, *to);
938 varobj_restrict_range (var->children, from, to);
939 return var->children;
940 }
941
942 if (var->num_children == -1)
943 var->num_children = number_of_children (var);
944
945 /* If that failed, give up. */
946 if (var->num_children == -1)
947 return var->children;
948
949 /* If we're called when the list of children is not yet initialized,
950 allocate enough elements in it. */
951 while (VEC_length (varobj_p, var->children) < var->num_children)
952 VEC_safe_push (varobj_p, var->children, NULL);
953
954 for (i = 0; i < var->num_children; i++)
955 {
956 varobj_p existing = VEC_index (varobj_p, var->children, i);
957
958 if (existing == NULL)
959 {
960 /* Either it's the first call to varobj_list_children for
961 this variable object, and the child was never created,
962 or it was explicitly deleted by the client. */
963 name = name_of_child (var, i);
964 existing = create_child (var, i, name);
965 VEC_replace (varobj_p, var->children, i, existing);
966 }
967 }
968
969 varobj_restrict_range (var->children, from, to);
970 return var->children;
971 }
972
973 #if HAVE_PYTHON
974
975 static struct varobj *
976 varobj_add_child (struct varobj *var, struct varobj_item *item)
977 {
978 varobj_p v = create_child_with_value (var,
979 VEC_length (varobj_p, var->children),
980 item);
981
982 VEC_safe_push (varobj_p, var->children, v);
983 return v;
984 }
985
986 #endif /* HAVE_PYTHON */
987
988 /* Obtain the type of an object Variable as a string similar to the one gdb
989 prints on the console. */
990
991 char *
992 varobj_get_type (struct varobj *var)
993 {
994 /* For the "fake" variables, do not return a type. (Its type is
995 NULL, too.)
996 Do not return a type for invalid variables as well. */
997 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
998 return NULL;
999
1000 return type_to_string (var->type);
1001 }
1002
1003 /* Obtain the type of an object variable. */
1004
1005 struct type *
1006 varobj_get_gdb_type (struct varobj *var)
1007 {
1008 return var->type;
1009 }
1010
1011 /* Is VAR a path expression parent, i.e., can it be used to construct
1012 a valid path expression? */
1013
1014 static int
1015 is_path_expr_parent (struct varobj *var)
1016 {
1017 struct type *type;
1018
1019 /* "Fake" children are not path_expr parents. */
1020 if (CPLUS_FAKE_CHILD (var))
1021 return 0;
1022
1023 type = varobj_get_value_type (var);
1024
1025 /* Anonymous unions and structs are also not path_expr parents. */
1026 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1027 || TYPE_CODE (type) == TYPE_CODE_UNION)
1028 && TYPE_NAME (type) == NULL);
1029 }
1030
1031 /* Return the path expression parent for VAR. */
1032
1033 struct varobj *
1034 varobj_get_path_expr_parent (struct varobj *var)
1035 {
1036 struct varobj *parent = var;
1037
1038 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1039 parent = parent->parent;
1040
1041 return parent;
1042 }
1043
1044 /* Return a pointer to the full rooted expression of varobj VAR.
1045 If it has not been computed yet, compute it. */
1046 char *
1047 varobj_get_path_expr (struct varobj *var)
1048 {
1049 if (var->path_expr != NULL)
1050 return var->path_expr;
1051 else
1052 {
1053 /* For root varobjs, we initialize path_expr
1054 when creating varobj, so here it should be
1055 child varobj. */
1056 gdb_assert (!is_root_p (var));
1057 return (*var->root->lang_ops->path_expr_of_child) (var);
1058 }
1059 }
1060
1061 const struct language_defn *
1062 varobj_get_language (struct varobj *var)
1063 {
1064 return var->root->exp->language_defn;
1065 }
1066
1067 int
1068 varobj_get_attributes (struct varobj *var)
1069 {
1070 int attributes = 0;
1071
1072 if (varobj_editable_p (var))
1073 /* FIXME: define masks for attributes. */
1074 attributes |= 0x00000001; /* Editable */
1075
1076 return attributes;
1077 }
1078
1079 int
1080 varobj_pretty_printed_p (struct varobj *var)
1081 {
1082 return var->dynamic->pretty_printer != NULL;
1083 }
1084
1085 char *
1086 varobj_get_formatted_value (struct varobj *var,
1087 enum varobj_display_formats format)
1088 {
1089 return my_value_of_variable (var, format);
1090 }
1091
1092 char *
1093 varobj_get_value (struct varobj *var)
1094 {
1095 return my_value_of_variable (var, var->format);
1096 }
1097
1098 /* Set the value of an object variable (if it is editable) to the
1099 value of the given expression. */
1100 /* Note: Invokes functions that can call error(). */
1101
1102 int
1103 varobj_set_value (struct varobj *var, char *expression)
1104 {
1105 struct value *val = NULL; /* Initialize to keep gcc happy. */
1106 /* The argument "expression" contains the variable's new value.
1107 We need to first construct a legal expression for this -- ugh! */
1108 /* Does this cover all the bases? */
1109 struct expression *exp;
1110 struct value *value = NULL; /* Initialize to keep gcc happy. */
1111 int saved_input_radix = input_radix;
1112 const char *s = expression;
1113 volatile struct gdb_exception except;
1114
1115 gdb_assert (varobj_editable_p (var));
1116
1117 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1118 exp = parse_exp_1 (&s, 0, 0, 0);
1119 TRY_CATCH (except, RETURN_MASK_ERROR)
1120 {
1121 value = evaluate_expression (exp);
1122 }
1123
1124 if (except.reason < 0)
1125 {
1126 /* We cannot proceed without a valid expression. */
1127 xfree (exp);
1128 return 0;
1129 }
1130
1131 /* All types that are editable must also be changeable. */
1132 gdb_assert (varobj_value_is_changeable_p (var));
1133
1134 /* The value of a changeable variable object must not be lazy. */
1135 gdb_assert (!value_lazy (var->value));
1136
1137 /* Need to coerce the input. We want to check if the
1138 value of the variable object will be different
1139 after assignment, and the first thing value_assign
1140 does is coerce the input.
1141 For example, if we are assigning an array to a pointer variable we
1142 should compare the pointer with the array's address, not with the
1143 array's content. */
1144 value = coerce_array (value);
1145
1146 /* The new value may be lazy. value_assign, or
1147 rather value_contents, will take care of this. */
1148 TRY_CATCH (except, RETURN_MASK_ERROR)
1149 {
1150 val = value_assign (var->value, value);
1151 }
1152
1153 if (except.reason < 0)
1154 return 0;
1155
1156 /* If the value has changed, record it, so that next -var-update can
1157 report this change. If a variable had a value of '1', we've set it
1158 to '333' and then set again to '1', when -var-update will report this
1159 variable as changed -- because the first assignment has set the
1160 'updated' flag. There's no need to optimize that, because return value
1161 of -var-update should be considered an approximation. */
1162 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1163 input_radix = saved_input_radix;
1164 return 1;
1165 }
1166
1167 #if HAVE_PYTHON
1168
1169 /* A helper function to install a constructor function and visualizer
1170 in a varobj_dynamic. */
1171
1172 static void
1173 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1174 PyObject *visualizer)
1175 {
1176 Py_XDECREF (var->constructor);
1177 var->constructor = constructor;
1178
1179 Py_XDECREF (var->pretty_printer);
1180 var->pretty_printer = visualizer;
1181
1182 varobj_iter_delete (var->child_iter);
1183 var->child_iter = NULL;
1184 }
1185
1186 /* Install the default visualizer for VAR. */
1187
1188 static void
1189 install_default_visualizer (struct varobj *var)
1190 {
1191 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1192 if (CPLUS_FAKE_CHILD (var))
1193 return;
1194
1195 if (pretty_printing)
1196 {
1197 PyObject *pretty_printer = NULL;
1198
1199 if (var->value)
1200 {
1201 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1202 if (! pretty_printer)
1203 {
1204 gdbpy_print_stack ();
1205 error (_("Cannot instantiate printer for default visualizer"));
1206 }
1207 }
1208
1209 if (pretty_printer == Py_None)
1210 {
1211 Py_DECREF (pretty_printer);
1212 pretty_printer = NULL;
1213 }
1214
1215 install_visualizer (var->dynamic, NULL, pretty_printer);
1216 }
1217 }
1218
1219 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1220 make a new object. */
1221
1222 static void
1223 construct_visualizer (struct varobj *var, PyObject *constructor)
1224 {
1225 PyObject *pretty_printer;
1226
1227 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1228 if (CPLUS_FAKE_CHILD (var))
1229 return;
1230
1231 Py_INCREF (constructor);
1232 if (constructor == Py_None)
1233 pretty_printer = NULL;
1234 else
1235 {
1236 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1237 if (! pretty_printer)
1238 {
1239 gdbpy_print_stack ();
1240 Py_DECREF (constructor);
1241 constructor = Py_None;
1242 Py_INCREF (constructor);
1243 }
1244
1245 if (pretty_printer == Py_None)
1246 {
1247 Py_DECREF (pretty_printer);
1248 pretty_printer = NULL;
1249 }
1250 }
1251
1252 install_visualizer (var->dynamic, constructor, pretty_printer);
1253 }
1254
1255 #endif /* HAVE_PYTHON */
1256
1257 /* A helper function for install_new_value. This creates and installs
1258 a visualizer for VAR, if appropriate. */
1259
1260 static void
1261 install_new_value_visualizer (struct varobj *var)
1262 {
1263 #if HAVE_PYTHON
1264 /* If the constructor is None, then we want the raw value. If VAR
1265 does not have a value, just skip this. */
1266 if (!gdb_python_initialized)
1267 return;
1268
1269 if (var->dynamic->constructor != Py_None && var->value != NULL)
1270 {
1271 struct cleanup *cleanup;
1272
1273 cleanup = varobj_ensure_python_env (var);
1274
1275 if (var->dynamic->constructor == NULL)
1276 install_default_visualizer (var);
1277 else
1278 construct_visualizer (var, var->dynamic->constructor);
1279
1280 do_cleanups (cleanup);
1281 }
1282 #else
1283 /* Do nothing. */
1284 #endif
1285 }
1286
1287 /* When using RTTI to determine variable type it may be changed in runtime when
1288 the variable value is changed. This function checks whether type of varobj
1289 VAR will change when a new value NEW_VALUE is assigned and if it is so
1290 updates the type of VAR. */
1291
1292 static int
1293 update_type_if_necessary (struct varobj *var, struct value *new_value)
1294 {
1295 if (new_value)
1296 {
1297 struct value_print_options opts;
1298
1299 get_user_print_options (&opts);
1300 if (opts.objectprint)
1301 {
1302 struct type *new_type;
1303 char *curr_type_str, *new_type_str;
1304
1305 new_type = value_actual_type (new_value, 0, 0);
1306 new_type_str = type_to_string (new_type);
1307 curr_type_str = varobj_get_type (var);
1308 if (strcmp (curr_type_str, new_type_str) != 0)
1309 {
1310 var->type = new_type;
1311
1312 /* This information may be not valid for a new type. */
1313 varobj_delete (var, NULL, 1);
1314 VEC_free (varobj_p, var->children);
1315 var->num_children = -1;
1316 return 1;
1317 }
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
1324 /* Assign a new value to a variable object. If INITIAL is non-zero,
1325 this is the first assignement after the variable object was just
1326 created, or changed type. In that case, just assign the value
1327 and return 0.
1328 Otherwise, assign the new value, and return 1 if the value is
1329 different from the current one, 0 otherwise. The comparison is
1330 done on textual representation of value. Therefore, some types
1331 need not be compared. E.g. for structures the reported value is
1332 always "{...}", so no comparison is necessary here. If the old
1333 value was NULL and new one is not, or vice versa, we always return 1.
1334
1335 The VALUE parameter should not be released -- the function will
1336 take care of releasing it when needed. */
1337 static int
1338 install_new_value (struct varobj *var, struct value *value, int initial)
1339 {
1340 int changeable;
1341 int need_to_fetch;
1342 int changed = 0;
1343 int intentionally_not_fetched = 0;
1344 char *print_value = NULL;
1345
1346 /* We need to know the varobj's type to decide if the value should
1347 be fetched or not. C++ fake children (public/protected/private)
1348 don't have a type. */
1349 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1350 changeable = varobj_value_is_changeable_p (var);
1351
1352 /* If the type has custom visualizer, we consider it to be always
1353 changeable. FIXME: need to make sure this behaviour will not
1354 mess up read-sensitive values. */
1355 if (var->dynamic->pretty_printer != NULL)
1356 changeable = 1;
1357
1358 need_to_fetch = changeable;
1359
1360 /* We are not interested in the address of references, and given
1361 that in C++ a reference is not rebindable, it cannot
1362 meaningfully change. So, get hold of the real value. */
1363 if (value)
1364 value = coerce_ref (value);
1365
1366 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1367 /* For unions, we need to fetch the value implicitly because
1368 of implementation of union member fetch. When gdb
1369 creates a value for a field and the value of the enclosing
1370 structure is not lazy, it immediately copies the necessary
1371 bytes from the enclosing values. If the enclosing value is
1372 lazy, the call to value_fetch_lazy on the field will read
1373 the data from memory. For unions, that means we'll read the
1374 same memory more than once, which is not desirable. So
1375 fetch now. */
1376 need_to_fetch = 1;
1377
1378 /* The new value might be lazy. If the type is changeable,
1379 that is we'll be comparing values of this type, fetch the
1380 value now. Otherwise, on the next update the old value
1381 will be lazy, which means we've lost that old value. */
1382 if (need_to_fetch && value && value_lazy (value))
1383 {
1384 struct varobj *parent = var->parent;
1385 int frozen = var->frozen;
1386
1387 for (; !frozen && parent; parent = parent->parent)
1388 frozen |= parent->frozen;
1389
1390 if (frozen && initial)
1391 {
1392 /* For variables that are frozen, or are children of frozen
1393 variables, we don't do fetch on initial assignment.
1394 For non-initial assignemnt we do the fetch, since it means we're
1395 explicitly asked to compare the new value with the old one. */
1396 intentionally_not_fetched = 1;
1397 }
1398 else
1399 {
1400 volatile struct gdb_exception except;
1401
1402 TRY_CATCH (except, RETURN_MASK_ERROR)
1403 {
1404 value_fetch_lazy (value);
1405 }
1406
1407 if (except.reason < 0)
1408 {
1409 /* Set the value to NULL, so that for the next -var-update,
1410 we don't try to compare the new value with this value,
1411 that we couldn't even read. */
1412 value = NULL;
1413 }
1414 }
1415 }
1416
1417 /* Get a reference now, before possibly passing it to any Python
1418 code that might release it. */
1419 if (value != NULL)
1420 value_incref (value);
1421
1422 /* Below, we'll be comparing string rendering of old and new
1423 values. Don't get string rendering if the value is
1424 lazy -- if it is, the code above has decided that the value
1425 should not be fetched. */
1426 if (value != NULL && !value_lazy (value)
1427 && var->dynamic->pretty_printer == NULL)
1428 print_value = varobj_value_get_print_value (value, var->format, var);
1429
1430 /* If the type is changeable, compare the old and the new values.
1431 If this is the initial assignment, we don't have any old value
1432 to compare with. */
1433 if (!initial && changeable)
1434 {
1435 /* If the value of the varobj was changed by -var-set-value,
1436 then the value in the varobj and in the target is the same.
1437 However, that value is different from the value that the
1438 varobj had after the previous -var-update. So need to the
1439 varobj as changed. */
1440 if (var->updated)
1441 {
1442 changed = 1;
1443 }
1444 else if (var->dynamic->pretty_printer == NULL)
1445 {
1446 /* Try to compare the values. That requires that both
1447 values are non-lazy. */
1448 if (var->not_fetched && value_lazy (var->value))
1449 {
1450 /* This is a frozen varobj and the value was never read.
1451 Presumably, UI shows some "never read" indicator.
1452 Now that we've fetched the real value, we need to report
1453 this varobj as changed so that UI can show the real
1454 value. */
1455 changed = 1;
1456 }
1457 else if (var->value == NULL && value == NULL)
1458 /* Equal. */
1459 ;
1460 else if (var->value == NULL || value == NULL)
1461 {
1462 changed = 1;
1463 }
1464 else
1465 {
1466 gdb_assert (!value_lazy (var->value));
1467 gdb_assert (!value_lazy (value));
1468
1469 gdb_assert (var->print_value != NULL && print_value != NULL);
1470 if (strcmp (var->print_value, print_value) != 0)
1471 changed = 1;
1472 }
1473 }
1474 }
1475
1476 if (!initial && !changeable)
1477 {
1478 /* For values that are not changeable, we don't compare the values.
1479 However, we want to notice if a value was not NULL and now is NULL,
1480 or vise versa, so that we report when top-level varobjs come in scope
1481 and leave the scope. */
1482 changed = (var->value != NULL) != (value != NULL);
1483 }
1484
1485 /* We must always keep the new value, since children depend on it. */
1486 if (var->value != NULL && var->value != value)
1487 value_free (var->value);
1488 var->value = value;
1489 if (value && value_lazy (value) && intentionally_not_fetched)
1490 var->not_fetched = 1;
1491 else
1492 var->not_fetched = 0;
1493 var->updated = 0;
1494
1495 install_new_value_visualizer (var);
1496
1497 /* If we installed a pretty-printer, re-compare the printed version
1498 to see if the variable changed. */
1499 if (var->dynamic->pretty_printer != NULL)
1500 {
1501 xfree (print_value);
1502 print_value = varobj_value_get_print_value (var->value, var->format,
1503 var);
1504 if ((var->print_value == NULL && print_value != NULL)
1505 || (var->print_value != NULL && print_value == NULL)
1506 || (var->print_value != NULL && print_value != NULL
1507 && strcmp (var->print_value, print_value) != 0))
1508 changed = 1;
1509 }
1510 if (var->print_value)
1511 xfree (var->print_value);
1512 var->print_value = print_value;
1513
1514 gdb_assert (!var->value || value_type (var->value));
1515
1516 return changed;
1517 }
1518
1519 /* Return the requested range for a varobj. VAR is the varobj. FROM
1520 and TO are out parameters; *FROM and *TO will be set to the
1521 selected sub-range of VAR. If no range was selected using
1522 -var-set-update-range, then both will be -1. */
1523 void
1524 varobj_get_child_range (struct varobj *var, int *from, int *to)
1525 {
1526 *from = var->from;
1527 *to = var->to;
1528 }
1529
1530 /* Set the selected sub-range of children of VAR to start at index
1531 FROM and end at index TO. If either FROM or TO is less than zero,
1532 this is interpreted as a request for all children. */
1533 void
1534 varobj_set_child_range (struct varobj *var, int from, int to)
1535 {
1536 var->from = from;
1537 var->to = to;
1538 }
1539
1540 void
1541 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1542 {
1543 #if HAVE_PYTHON
1544 PyObject *mainmod, *globals, *constructor;
1545 struct cleanup *back_to;
1546
1547 if (!gdb_python_initialized)
1548 return;
1549
1550 back_to = varobj_ensure_python_env (var);
1551
1552 mainmod = PyImport_AddModule ("__main__");
1553 globals = PyModule_GetDict (mainmod);
1554 Py_INCREF (globals);
1555 make_cleanup_py_decref (globals);
1556
1557 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1558
1559 if (! constructor)
1560 {
1561 gdbpy_print_stack ();
1562 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1563 }
1564
1565 construct_visualizer (var, constructor);
1566 Py_XDECREF (constructor);
1567
1568 /* If there are any children now, wipe them. */
1569 varobj_delete (var, NULL, 1 /* children only */);
1570 var->num_children = -1;
1571
1572 do_cleanups (back_to);
1573 #else
1574 error (_("Python support required"));
1575 #endif
1576 }
1577
1578 /* If NEW_VALUE is the new value of the given varobj (var), return
1579 non-zero if var has mutated. In other words, if the type of
1580 the new value is different from the type of the varobj's old
1581 value.
1582
1583 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1584
1585 static int
1586 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1587 struct type *new_type)
1588 {
1589 /* If we haven't previously computed the number of children in var,
1590 it does not matter from the front-end's perspective whether
1591 the type has mutated or not. For all intents and purposes,
1592 it has not mutated. */
1593 if (var->num_children < 0)
1594 return 0;
1595
1596 if (var->root->lang_ops->value_has_mutated)
1597 {
1598 /* The varobj module, when installing new values, explicitly strips
1599 references, saying that we're not interested in those addresses.
1600 But detection of mutation happens before installing the new
1601 value, so our value may be a reference that we need to strip
1602 in order to remain consistent. */
1603 if (new_value != NULL)
1604 new_value = coerce_ref (new_value);
1605 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1606 }
1607 else
1608 return 0;
1609 }
1610
1611 /* Update the values for a variable and its children. This is a
1612 two-pronged attack. First, re-parse the value for the root's
1613 expression to see if it's changed. Then go all the way
1614 through its children, reconstructing them and noting if they've
1615 changed.
1616
1617 The EXPLICIT parameter specifies if this call is result
1618 of MI request to update this specific variable, or
1619 result of implicit -var-update *. For implicit request, we don't
1620 update frozen variables.
1621
1622 NOTE: This function may delete the caller's varobj. If it
1623 returns TYPE_CHANGED, then it has done this and VARP will be modified
1624 to point to the new varobj. */
1625
1626 VEC(varobj_update_result) *
1627 varobj_update (struct varobj **varp, int explicit)
1628 {
1629 int type_changed = 0;
1630 int i;
1631 struct value *new;
1632 VEC (varobj_update_result) *stack = NULL;
1633 VEC (varobj_update_result) *result = NULL;
1634
1635 /* Frozen means frozen -- we don't check for any change in
1636 this varobj, including its going out of scope, or
1637 changing type. One use case for frozen varobjs is
1638 retaining previously evaluated expressions, and we don't
1639 want them to be reevaluated at all. */
1640 if (!explicit && (*varp)->frozen)
1641 return result;
1642
1643 if (!(*varp)->root->is_valid)
1644 {
1645 varobj_update_result r = {0};
1646
1647 r.varobj = *varp;
1648 r.status = VAROBJ_INVALID;
1649 VEC_safe_push (varobj_update_result, result, &r);
1650 return result;
1651 }
1652
1653 if ((*varp)->root->rootvar == *varp)
1654 {
1655 varobj_update_result r = {0};
1656
1657 r.varobj = *varp;
1658 r.status = VAROBJ_IN_SCOPE;
1659
1660 /* Update the root variable. value_of_root can return NULL
1661 if the variable is no longer around, i.e. we stepped out of
1662 the frame in which a local existed. We are letting the
1663 value_of_root variable dispose of the varobj if the type
1664 has changed. */
1665 new = value_of_root (varp, &type_changed);
1666 if (update_type_if_necessary(*varp, new))
1667 type_changed = 1;
1668 r.varobj = *varp;
1669 r.type_changed = type_changed;
1670 if (install_new_value ((*varp), new, type_changed))
1671 r.changed = 1;
1672
1673 if (new == NULL)
1674 r.status = VAROBJ_NOT_IN_SCOPE;
1675 r.value_installed = 1;
1676
1677 if (r.status == VAROBJ_NOT_IN_SCOPE)
1678 {
1679 if (r.type_changed || r.changed)
1680 VEC_safe_push (varobj_update_result, result, &r);
1681 return result;
1682 }
1683
1684 VEC_safe_push (varobj_update_result, stack, &r);
1685 }
1686 else
1687 {
1688 varobj_update_result r = {0};
1689
1690 r.varobj = *varp;
1691 VEC_safe_push (varobj_update_result, stack, &r);
1692 }
1693
1694 /* Walk through the children, reconstructing them all. */
1695 while (!VEC_empty (varobj_update_result, stack))
1696 {
1697 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1698 struct varobj *v = r.varobj;
1699
1700 VEC_pop (varobj_update_result, stack);
1701
1702 /* Update this variable, unless it's a root, which is already
1703 updated. */
1704 if (!r.value_installed)
1705 {
1706 struct type *new_type;
1707
1708 new = value_of_child (v->parent, v->index);
1709 if (update_type_if_necessary(v, new))
1710 r.type_changed = 1;
1711 if (new)
1712 new_type = value_type (new);
1713 else
1714 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1715
1716 if (varobj_value_has_mutated (v, new, new_type))
1717 {
1718 /* The children are no longer valid; delete them now.
1719 Report the fact that its type changed as well. */
1720 varobj_delete (v, NULL, 1 /* only_children */);
1721 v->num_children = -1;
1722 v->to = -1;
1723 v->from = -1;
1724 v->type = new_type;
1725 r.type_changed = 1;
1726 }
1727
1728 if (install_new_value (v, new, r.type_changed))
1729 {
1730 r.changed = 1;
1731 v->updated = 0;
1732 }
1733 }
1734
1735 /* We probably should not get children of a varobj that has a
1736 pretty-printer, but for which -var-list-children was never
1737 invoked. */
1738 if (v->dynamic->pretty_printer != NULL)
1739 {
1740 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1741 VEC (varobj_p) *new = 0;
1742 int i, children_changed = 0;
1743
1744 if (v->frozen)
1745 continue;
1746
1747 if (!v->dynamic->children_requested)
1748 {
1749 int dummy;
1750
1751 /* If we initially did not have potential children, but
1752 now we do, consider the varobj as changed.
1753 Otherwise, if children were never requested, consider
1754 it as unchanged -- presumably, such varobj is not yet
1755 expanded in the UI, so we need not bother getting
1756 it. */
1757 if (!varobj_has_more (v, 0))
1758 {
1759 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1760 &dummy, 0, 0, 0);
1761 if (varobj_has_more (v, 0))
1762 r.changed = 1;
1763 }
1764
1765 if (r.changed)
1766 VEC_safe_push (varobj_update_result, result, &r);
1767
1768 continue;
1769 }
1770
1771 /* If update_dynamic_varobj_children returns 0, then we have
1772 a non-conforming pretty-printer, so we skip it. */
1773 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1774 &unchanged, &children_changed, 1,
1775 v->from, v->to))
1776 {
1777 if (children_changed || new)
1778 {
1779 r.children_changed = 1;
1780 r.new = new;
1781 }
1782 /* Push in reverse order so that the first child is
1783 popped from the work stack first, and so will be
1784 added to result first. This does not affect
1785 correctness, just "nicer". */
1786 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1787 {
1788 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1789 varobj_update_result r = {0};
1790
1791 /* Type may change only if value was changed. */
1792 r.varobj = tmp;
1793 r.changed = 1;
1794 r.type_changed = 1;
1795 r.value_installed = 1;
1796 VEC_safe_push (varobj_update_result, stack, &r);
1797 }
1798 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1799 {
1800 varobj_p tmp = VEC_index (varobj_p, changed, i);
1801 varobj_update_result r = {0};
1802
1803 r.varobj = tmp;
1804 r.changed = 1;
1805 r.value_installed = 1;
1806 VEC_safe_push (varobj_update_result, stack, &r);
1807 }
1808 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1809 {
1810 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1811
1812 if (!tmp->frozen)
1813 {
1814 varobj_update_result r = {0};
1815
1816 r.varobj = tmp;
1817 r.value_installed = 1;
1818 VEC_safe_push (varobj_update_result, stack, &r);
1819 }
1820 }
1821 if (r.changed || r.children_changed)
1822 VEC_safe_push (varobj_update_result, result, &r);
1823
1824 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1825 because NEW has been put into the result vector. */
1826 VEC_free (varobj_p, changed);
1827 VEC_free (varobj_p, type_changed);
1828 VEC_free (varobj_p, unchanged);
1829
1830 continue;
1831 }
1832 }
1833
1834 /* Push any children. Use reverse order so that the first
1835 child is popped from the work stack first, and so
1836 will be added to result first. This does not
1837 affect correctness, just "nicer". */
1838 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1839 {
1840 varobj_p c = VEC_index (varobj_p, v->children, i);
1841
1842 /* Child may be NULL if explicitly deleted by -var-delete. */
1843 if (c != NULL && !c->frozen)
1844 {
1845 varobj_update_result r = {0};
1846
1847 r.varobj = c;
1848 VEC_safe_push (varobj_update_result, stack, &r);
1849 }
1850 }
1851
1852 if (r.changed || r.type_changed)
1853 VEC_safe_push (varobj_update_result, result, &r);
1854 }
1855
1856 VEC_free (varobj_update_result, stack);
1857
1858 return result;
1859 }
1860 \f
1861
1862 /* Helper functions */
1863
1864 /*
1865 * Variable object construction/destruction
1866 */
1867
1868 static int
1869 delete_variable (struct cpstack **resultp, struct varobj *var,
1870 int only_children_p)
1871 {
1872 int delcount = 0;
1873
1874 delete_variable_1 (resultp, &delcount, var,
1875 only_children_p, 1 /* remove_from_parent_p */ );
1876
1877 return delcount;
1878 }
1879
1880 /* Delete the variable object VAR and its children. */
1881 /* IMPORTANT NOTE: If we delete a variable which is a child
1882 and the parent is not removed we dump core. It must be always
1883 initially called with remove_from_parent_p set. */
1884 static void
1885 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1886 struct varobj *var, int only_children_p,
1887 int remove_from_parent_p)
1888 {
1889 int i;
1890
1891 /* Delete any children of this variable, too. */
1892 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1893 {
1894 varobj_p child = VEC_index (varobj_p, var->children, i);
1895
1896 if (!child)
1897 continue;
1898 if (!remove_from_parent_p)
1899 child->parent = NULL;
1900 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1901 }
1902 VEC_free (varobj_p, var->children);
1903
1904 /* if we were called to delete only the children we are done here. */
1905 if (only_children_p)
1906 return;
1907
1908 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1909 /* If the name is null, this is a temporary variable, that has not
1910 yet been installed, don't report it, it belongs to the caller... */
1911 if (var->obj_name != NULL)
1912 {
1913 cppush (resultp, xstrdup (var->obj_name));
1914 *delcountp = *delcountp + 1;
1915 }
1916
1917 /* If this variable has a parent, remove it from its parent's list. */
1918 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1919 (as indicated by remove_from_parent_p) we don't bother doing an
1920 expensive list search to find the element to remove when we are
1921 discarding the list afterwards. */
1922 if ((remove_from_parent_p) && (var->parent != NULL))
1923 {
1924 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1925 }
1926
1927 if (var->obj_name != NULL)
1928 uninstall_variable (var);
1929
1930 /* Free memory associated with this variable. */
1931 free_variable (var);
1932 }
1933
1934 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1935 static int
1936 install_variable (struct varobj *var)
1937 {
1938 struct vlist *cv;
1939 struct vlist *newvl;
1940 const char *chp;
1941 unsigned int index = 0;
1942 unsigned int i = 1;
1943
1944 for (chp = var->obj_name; *chp; chp++)
1945 {
1946 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1947 }
1948
1949 cv = *(varobj_table + index);
1950 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1951 cv = cv->next;
1952
1953 if (cv != NULL)
1954 error (_("Duplicate variable object name"));
1955
1956 /* Add varobj to hash table. */
1957 newvl = xmalloc (sizeof (struct vlist));
1958 newvl->next = *(varobj_table + index);
1959 newvl->var = var;
1960 *(varobj_table + index) = newvl;
1961
1962 /* If root, add varobj to root list. */
1963 if (is_root_p (var))
1964 {
1965 /* Add to list of root variables. */
1966 if (rootlist == NULL)
1967 var->root->next = NULL;
1968 else
1969 var->root->next = rootlist;
1970 rootlist = var->root;
1971 }
1972
1973 return 1; /* OK */
1974 }
1975
1976 /* Unistall the object VAR. */
1977 static void
1978 uninstall_variable (struct varobj *var)
1979 {
1980 struct vlist *cv;
1981 struct vlist *prev;
1982 struct varobj_root *cr;
1983 struct varobj_root *prer;
1984 const char *chp;
1985 unsigned int index = 0;
1986 unsigned int i = 1;
1987
1988 /* Remove varobj from hash table. */
1989 for (chp = var->obj_name; *chp; chp++)
1990 {
1991 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1992 }
1993
1994 cv = *(varobj_table + index);
1995 prev = NULL;
1996 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1997 {
1998 prev = cv;
1999 cv = cv->next;
2000 }
2001
2002 if (varobjdebug)
2003 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2004
2005 if (cv == NULL)
2006 {
2007 warning
2008 ("Assertion failed: Could not find variable object \"%s\" to delete",
2009 var->obj_name);
2010 return;
2011 }
2012
2013 if (prev == NULL)
2014 *(varobj_table + index) = cv->next;
2015 else
2016 prev->next = cv->next;
2017
2018 xfree (cv);
2019
2020 /* If root, remove varobj from root list. */
2021 if (is_root_p (var))
2022 {
2023 /* Remove from list of root variables. */
2024 if (rootlist == var->root)
2025 rootlist = var->root->next;
2026 else
2027 {
2028 prer = NULL;
2029 cr = rootlist;
2030 while ((cr != NULL) && (cr->rootvar != var))
2031 {
2032 prer = cr;
2033 cr = cr->next;
2034 }
2035 if (cr == NULL)
2036 {
2037 warning (_("Assertion failed: Could not find "
2038 "varobj \"%s\" in root list"),
2039 var->obj_name);
2040 return;
2041 }
2042 if (prer == NULL)
2043 rootlist = NULL;
2044 else
2045 prer->next = cr->next;
2046 }
2047 }
2048
2049 }
2050
2051 /* Create and install a child of the parent of the given name. */
2052 static struct varobj *
2053 create_child (struct varobj *parent, int index, char *name)
2054 {
2055 struct varobj_item item;
2056
2057 item.name = name;
2058 item.value = value_of_child (parent, index);
2059
2060 return create_child_with_value (parent, index, &item);
2061 }
2062
2063 static struct varobj *
2064 create_child_with_value (struct varobj *parent, int index,
2065 struct varobj_item *item)
2066 {
2067 struct varobj *child;
2068 char *childs_name;
2069
2070 child = new_variable ();
2071
2072 /* NAME is allocated by caller. */
2073 child->name = item->name;
2074 child->index = index;
2075 child->parent = parent;
2076 child->root = parent->root;
2077
2078 if (varobj_is_anonymous_child (child))
2079 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2080 else
2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2082 child->obj_name = childs_name;
2083
2084 install_variable (child);
2085
2086 /* Compute the type of the child. Must do this before
2087 calling install_new_value. */
2088 if (item->value != NULL)
2089 /* If the child had no evaluation errors, var->value
2090 will be non-NULL and contain a valid type. */
2091 child->type = value_actual_type (item->value, 0, NULL);
2092 else
2093 /* Otherwise, we must compute the type. */
2094 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2095 child->index);
2096 install_new_value (child, item->value, 1);
2097
2098 return child;
2099 }
2100 \f
2101
2102 /*
2103 * Miscellaneous utility functions.
2104 */
2105
2106 /* Allocate memory and initialize a new variable. */
2107 static struct varobj *
2108 new_variable (void)
2109 {
2110 struct varobj *var;
2111
2112 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2113 var->name = NULL;
2114 var->path_expr = NULL;
2115 var->obj_name = NULL;
2116 var->index = -1;
2117 var->type = NULL;
2118 var->value = NULL;
2119 var->num_children = -1;
2120 var->parent = NULL;
2121 var->children = NULL;
2122 var->format = 0;
2123 var->root = NULL;
2124 var->updated = 0;
2125 var->print_value = NULL;
2126 var->frozen = 0;
2127 var->not_fetched = 0;
2128 var->dynamic
2129 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2130 var->dynamic->children_requested = 0;
2131 var->from = -1;
2132 var->to = -1;
2133 var->dynamic->constructor = 0;
2134 var->dynamic->pretty_printer = 0;
2135 var->dynamic->child_iter = 0;
2136 var->dynamic->saved_item = 0;
2137
2138 return var;
2139 }
2140
2141 /* Allocate memory and initialize a new root variable. */
2142 static struct varobj *
2143 new_root_variable (void)
2144 {
2145 struct varobj *var = new_variable ();
2146
2147 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2148 var->root->lang_ops = NULL;
2149 var->root->exp = NULL;
2150 var->root->valid_block = NULL;
2151 var->root->frame = null_frame_id;
2152 var->root->floating = 0;
2153 var->root->rootvar = NULL;
2154 var->root->is_valid = 1;
2155
2156 return var;
2157 }
2158
2159 /* Free any allocated memory associated with VAR. */
2160 static void
2161 free_variable (struct varobj *var)
2162 {
2163 #if HAVE_PYTHON
2164 if (var->dynamic->pretty_printer != NULL)
2165 {
2166 struct cleanup *cleanup = varobj_ensure_python_env (var);
2167
2168 Py_XDECREF (var->dynamic->constructor);
2169 Py_XDECREF (var->dynamic->pretty_printer);
2170 do_cleanups (cleanup);
2171 }
2172 #endif
2173
2174 varobj_iter_delete (var->dynamic->child_iter);
2175 varobj_clear_saved_item (var->dynamic);
2176 value_free (var->value);
2177
2178 /* Free the expression if this is a root variable. */
2179 if (is_root_p (var))
2180 {
2181 xfree (var->root->exp);
2182 xfree (var->root);
2183 }
2184
2185 xfree (var->name);
2186 xfree (var->obj_name);
2187 xfree (var->print_value);
2188 xfree (var->path_expr);
2189 xfree (var->dynamic);
2190 xfree (var);
2191 }
2192
2193 static void
2194 do_free_variable_cleanup (void *var)
2195 {
2196 free_variable (var);
2197 }
2198
2199 static struct cleanup *
2200 make_cleanup_free_variable (struct varobj *var)
2201 {
2202 return make_cleanup (do_free_variable_cleanup, var);
2203 }
2204
2205 /* Return the type of the value that's stored in VAR,
2206 or that would have being stored there if the
2207 value were accessible.
2208
2209 This differs from VAR->type in that VAR->type is always
2210 the true type of the expession in the source language.
2211 The return value of this function is the type we're
2212 actually storing in varobj, and using for displaying
2213 the values and for comparing previous and new values.
2214
2215 For example, top-level references are always stripped. */
2216 struct type *
2217 varobj_get_value_type (struct varobj *var)
2218 {
2219 struct type *type;
2220
2221 if (var->value)
2222 type = value_type (var->value);
2223 else
2224 type = var->type;
2225
2226 type = check_typedef (type);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_REF)
2229 type = get_target_type (type);
2230
2231 type = check_typedef (type);
2232
2233 return type;
2234 }
2235
2236 /* What is the default display for this variable? We assume that
2237 everything is "natural". Any exceptions? */
2238 static enum varobj_display_formats
2239 variable_default_display (struct varobj *var)
2240 {
2241 return FORMAT_NATURAL;
2242 }
2243
2244 /* FIXME: The following should be generic for any pointer. */
2245 static void
2246 cppush (struct cpstack **pstack, char *name)
2247 {
2248 struct cpstack *s;
2249
2250 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2251 s->name = name;
2252 s->next = *pstack;
2253 *pstack = s;
2254 }
2255
2256 /* FIXME: The following should be generic for any pointer. */
2257 static char *
2258 cppop (struct cpstack **pstack)
2259 {
2260 struct cpstack *s;
2261 char *v;
2262
2263 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2264 return NULL;
2265
2266 s = *pstack;
2267 v = s->name;
2268 *pstack = (*pstack)->next;
2269 xfree (s);
2270
2271 return v;
2272 }
2273 \f
2274 /*
2275 * Language-dependencies
2276 */
2277
2278 /* Common entry points */
2279
2280 /* Return the number of children for a given variable.
2281 The result of this function is defined by the language
2282 implementation. The number of children returned by this function
2283 is the number of children that the user will see in the variable
2284 display. */
2285 static int
2286 number_of_children (struct varobj *var)
2287 {
2288 return (*var->root->lang_ops->number_of_children) (var);
2289 }
2290
2291 /* What is the expression for the root varobj VAR? Returns a malloc'd
2292 string. */
2293 static char *
2294 name_of_variable (struct varobj *var)
2295 {
2296 return (*var->root->lang_ops->name_of_variable) (var);
2297 }
2298
2299 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2300 string. */
2301 static char *
2302 name_of_child (struct varobj *var, int index)
2303 {
2304 return (*var->root->lang_ops->name_of_child) (var, index);
2305 }
2306
2307 /* If frame associated with VAR can be found, switch
2308 to it and return 1. Otherwise, return 0. */
2309
2310 static int
2311 check_scope (struct varobj *var)
2312 {
2313 struct frame_info *fi;
2314 int scope;
2315
2316 fi = frame_find_by_id (var->root->frame);
2317 scope = fi != NULL;
2318
2319 if (fi)
2320 {
2321 CORE_ADDR pc = get_frame_pc (fi);
2322
2323 if (pc < BLOCK_START (var->root->valid_block) ||
2324 pc >= BLOCK_END (var->root->valid_block))
2325 scope = 0;
2326 else
2327 select_frame (fi);
2328 }
2329 return scope;
2330 }
2331
2332 /* Helper function to value_of_root. */
2333
2334 static struct value *
2335 value_of_root_1 (struct varobj **var_handle)
2336 {
2337 struct value *new_val = NULL;
2338 struct varobj *var = *var_handle;
2339 int within_scope = 0;
2340 struct cleanup *back_to;
2341
2342 /* Only root variables can be updated... */
2343 if (!is_root_p (var))
2344 /* Not a root var. */
2345 return NULL;
2346
2347 back_to = make_cleanup_restore_current_thread ();
2348
2349 /* Determine whether the variable is still around. */
2350 if (var->root->valid_block == NULL || var->root->floating)
2351 within_scope = 1;
2352 else if (var->root->thread_id == 0)
2353 {
2354 /* The program was single-threaded when the variable object was
2355 created. Technically, it's possible that the program became
2356 multi-threaded since then, but we don't support such
2357 scenario yet. */
2358 within_scope = check_scope (var);
2359 }
2360 else
2361 {
2362 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2363 if (in_thread_list (ptid))
2364 {
2365 switch_to_thread (ptid);
2366 within_scope = check_scope (var);
2367 }
2368 }
2369
2370 if (within_scope)
2371 {
2372 volatile struct gdb_exception except;
2373
2374 /* We need to catch errors here, because if evaluate
2375 expression fails we want to just return NULL. */
2376 TRY_CATCH (except, RETURN_MASK_ERROR)
2377 {
2378 new_val = evaluate_expression (var->root->exp);
2379 }
2380 }
2381
2382 do_cleanups (back_to);
2383
2384 return new_val;
2385 }
2386
2387 /* What is the ``struct value *'' of the root variable VAR?
2388 For floating variable object, evaluation can get us a value
2389 of different type from what is stored in varobj already. In
2390 that case:
2391 - *type_changed will be set to 1
2392 - old varobj will be freed, and new one will be
2393 created, with the same name.
2394 - *var_handle will be set to the new varobj
2395 Otherwise, *type_changed will be set to 0. */
2396 static struct value *
2397 value_of_root (struct varobj **var_handle, int *type_changed)
2398 {
2399 struct varobj *var;
2400
2401 if (var_handle == NULL)
2402 return NULL;
2403
2404 var = *var_handle;
2405
2406 /* This should really be an exception, since this should
2407 only get called with a root variable. */
2408
2409 if (!is_root_p (var))
2410 return NULL;
2411
2412 if (var->root->floating)
2413 {
2414 struct varobj *tmp_var;
2415 char *old_type, *new_type;
2416
2417 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2418 USE_SELECTED_FRAME);
2419 if (tmp_var == NULL)
2420 {
2421 return NULL;
2422 }
2423 old_type = varobj_get_type (var);
2424 new_type = varobj_get_type (tmp_var);
2425 if (strcmp (old_type, new_type) == 0)
2426 {
2427 /* The expression presently stored inside var->root->exp
2428 remembers the locations of local variables relatively to
2429 the frame where the expression was created (in DWARF location
2430 button, for example). Naturally, those locations are not
2431 correct in other frames, so update the expression. */
2432
2433 struct expression *tmp_exp = var->root->exp;
2434
2435 var->root->exp = tmp_var->root->exp;
2436 tmp_var->root->exp = tmp_exp;
2437
2438 varobj_delete (tmp_var, NULL, 0);
2439 *type_changed = 0;
2440 }
2441 else
2442 {
2443 tmp_var->obj_name = xstrdup (var->obj_name);
2444 tmp_var->from = var->from;
2445 tmp_var->to = var->to;
2446 varobj_delete (var, NULL, 0);
2447
2448 install_variable (tmp_var);
2449 *var_handle = tmp_var;
2450 var = *var_handle;
2451 *type_changed = 1;
2452 }
2453 xfree (old_type);
2454 xfree (new_type);
2455 }
2456 else
2457 {
2458 *type_changed = 0;
2459 }
2460
2461 {
2462 struct value *value;
2463
2464 value = value_of_root_1 (var_handle);
2465 if (var->value == NULL || value == NULL)
2466 {
2467 /* For root varobj-s, a NULL value indicates a scoping issue.
2468 So, nothing to do in terms of checking for mutations. */
2469 }
2470 else if (varobj_value_has_mutated (var, value, value_type (value)))
2471 {
2472 /* The type has mutated, so the children are no longer valid.
2473 Just delete them, and tell our caller that the type has
2474 changed. */
2475 varobj_delete (var, NULL, 1 /* only_children */);
2476 var->num_children = -1;
2477 var->to = -1;
2478 var->from = -1;
2479 *type_changed = 1;
2480 }
2481 return value;
2482 }
2483 }
2484
2485 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2486 static struct value *
2487 value_of_child (struct varobj *parent, int index)
2488 {
2489 struct value *value;
2490
2491 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2492
2493 return value;
2494 }
2495
2496 /* GDB already has a command called "value_of_variable". Sigh. */
2497 static char *
2498 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2499 {
2500 if (var->root->is_valid)
2501 {
2502 if (var->dynamic->pretty_printer != NULL)
2503 return varobj_value_get_print_value (var->value, var->format, var);
2504 return (*var->root->lang_ops->value_of_variable) (var, format);
2505 }
2506 else
2507 return NULL;
2508 }
2509
2510 void
2511 varobj_formatted_print_options (struct value_print_options *opts,
2512 enum varobj_display_formats format)
2513 {
2514 get_formatted_print_options (opts, format_code[(int) format]);
2515 opts->deref_ref = 0;
2516 opts->raw = 1;
2517 }
2518
2519 char *
2520 varobj_value_get_print_value (struct value *value,
2521 enum varobj_display_formats format,
2522 struct varobj *var)
2523 {
2524 struct ui_file *stb;
2525 struct cleanup *old_chain;
2526 char *thevalue = NULL;
2527 struct value_print_options opts;
2528 struct type *type = NULL;
2529 long len = 0;
2530 char *encoding = NULL;
2531 struct gdbarch *gdbarch = NULL;
2532 /* Initialize it just to avoid a GCC false warning. */
2533 CORE_ADDR str_addr = 0;
2534 int string_print = 0;
2535
2536 if (value == NULL)
2537 return NULL;
2538
2539 stb = mem_fileopen ();
2540 old_chain = make_cleanup_ui_file_delete (stb);
2541
2542 gdbarch = get_type_arch (value_type (value));
2543 #if HAVE_PYTHON
2544 if (gdb_python_initialized)
2545 {
2546 PyObject *value_formatter = var->dynamic->pretty_printer;
2547
2548 varobj_ensure_python_env (var);
2549
2550 if (value_formatter)
2551 {
2552 /* First check to see if we have any children at all. If so,
2553 we simply return {...}. */
2554 if (dynamic_varobj_has_child_method (var))
2555 {
2556 do_cleanups (old_chain);
2557 return xstrdup ("{...}");
2558 }
2559
2560 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2561 {
2562 struct value *replacement;
2563 PyObject *output = NULL;
2564
2565 output = apply_varobj_pretty_printer (value_formatter,
2566 &replacement,
2567 stb);
2568
2569 /* If we have string like output ... */
2570 if (output)
2571 {
2572 make_cleanup_py_decref (output);
2573
2574 /* If this is a lazy string, extract it. For lazy
2575 strings we always print as a string, so set
2576 string_print. */
2577 if (gdbpy_is_lazy_string (output))
2578 {
2579 gdbpy_extract_lazy_string (output, &str_addr, &type,
2580 &len, &encoding);
2581 make_cleanup (free_current_contents, &encoding);
2582 string_print = 1;
2583 }
2584 else
2585 {
2586 /* If it is a regular (non-lazy) string, extract
2587 it and copy the contents into THEVALUE. If the
2588 hint says to print it as a string, set
2589 string_print. Otherwise just return the extracted
2590 string as a value. */
2591
2592 char *s = python_string_to_target_string (output);
2593
2594 if (s)
2595 {
2596 char *hint;
2597
2598 hint = gdbpy_get_display_hint (value_formatter);
2599 if (hint)
2600 {
2601 if (!strcmp (hint, "string"))
2602 string_print = 1;
2603 xfree (hint);
2604 }
2605
2606 len = strlen (s);
2607 thevalue = xmemdup (s, len + 1, len + 1);
2608 type = builtin_type (gdbarch)->builtin_char;
2609 xfree (s);
2610
2611 if (!string_print)
2612 {
2613 do_cleanups (old_chain);
2614 return thevalue;
2615 }
2616
2617 make_cleanup (xfree, thevalue);
2618 }
2619 else
2620 gdbpy_print_stack ();
2621 }
2622 }
2623 /* If the printer returned a replacement value, set VALUE
2624 to REPLACEMENT. If there is not a replacement value,
2625 just use the value passed to this function. */
2626 if (replacement)
2627 value = replacement;
2628 }
2629 }
2630 }
2631 #endif
2632
2633 varobj_formatted_print_options (&opts, format);
2634
2635 /* If the THEVALUE has contents, it is a regular string. */
2636 if (thevalue)
2637 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2638 else if (string_print)
2639 /* Otherwise, if string_print is set, and it is not a regular
2640 string, it is a lazy string. */
2641 val_print_string (type, encoding, str_addr, len, stb, &opts);
2642 else
2643 /* All other cases. */
2644 common_val_print (value, stb, 0, &opts, current_language);
2645
2646 thevalue = ui_file_xstrdup (stb, NULL);
2647
2648 do_cleanups (old_chain);
2649 return thevalue;
2650 }
2651
2652 int
2653 varobj_editable_p (struct varobj *var)
2654 {
2655 struct type *type;
2656
2657 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2658 return 0;
2659
2660 type = varobj_get_value_type (var);
2661
2662 switch (TYPE_CODE (type))
2663 {
2664 case TYPE_CODE_STRUCT:
2665 case TYPE_CODE_UNION:
2666 case TYPE_CODE_ARRAY:
2667 case TYPE_CODE_FUNC:
2668 case TYPE_CODE_METHOD:
2669 return 0;
2670 break;
2671
2672 default:
2673 return 1;
2674 break;
2675 }
2676 }
2677
2678 /* Call VAR's value_is_changeable_p language-specific callback. */
2679
2680 int
2681 varobj_value_is_changeable_p (struct varobj *var)
2682 {
2683 return var->root->lang_ops->value_is_changeable_p (var);
2684 }
2685
2686 /* Return 1 if that varobj is floating, that is is always evaluated in the
2687 selected frame, and not bound to thread/frame. Such variable objects
2688 are created using '@' as frame specifier to -var-create. */
2689 int
2690 varobj_floating_p (struct varobj *var)
2691 {
2692 return var->root->floating;
2693 }
2694
2695 /* Implement the "value_is_changeable_p" varobj callback for most
2696 languages. */
2697
2698 int
2699 varobj_default_value_is_changeable_p (struct varobj *var)
2700 {
2701 int r;
2702 struct type *type;
2703
2704 if (CPLUS_FAKE_CHILD (var))
2705 return 0;
2706
2707 type = varobj_get_value_type (var);
2708
2709 switch (TYPE_CODE (type))
2710 {
2711 case TYPE_CODE_STRUCT:
2712 case TYPE_CODE_UNION:
2713 case TYPE_CODE_ARRAY:
2714 r = 0;
2715 break;
2716
2717 default:
2718 r = 1;
2719 }
2720
2721 return r;
2722 }
2723
2724 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2725 with an arbitrary caller supplied DATA pointer. */
2726
2727 void
2728 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2729 {
2730 struct varobj_root *var_root, *var_root_next;
2731
2732 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2733
2734 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2735 {
2736 var_root_next = var_root->next;
2737
2738 (*func) (var_root->rootvar, data);
2739 }
2740 }
2741 \f
2742 extern void _initialize_varobj (void);
2743 void
2744 _initialize_varobj (void)
2745 {
2746 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2747
2748 varobj_table = xmalloc (sizeof_table);
2749 memset (varobj_table, 0, sizeof_table);
2750
2751 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2752 &varobjdebug,
2753 _("Set varobj debugging."),
2754 _("Show varobj debugging."),
2755 _("When non-zero, varobj debugging is enabled."),
2756 NULL, show_varobjdebug,
2757 &setdebuglist, &showdebuglist);
2758 }
2759
2760 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2761 defined on globals. It is a helper for varobj_invalidate.
2762
2763 This function is called after changing the symbol file, in this case the
2764 pointers to "struct type" stored by the varobj are no longer valid. All
2765 varobj must be either re-evaluated, or marked as invalid here. */
2766
2767 static void
2768 varobj_invalidate_iter (struct varobj *var, void *unused)
2769 {
2770 /* global and floating var must be re-evaluated. */
2771 if (var->root->floating || var->root->valid_block == NULL)
2772 {
2773 struct varobj *tmp_var;
2774
2775 /* Try to create a varobj with same expression. If we succeed
2776 replace the old varobj, otherwise invalidate it. */
2777 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2778 USE_CURRENT_FRAME);
2779 if (tmp_var != NULL)
2780 {
2781 tmp_var->obj_name = xstrdup (var->obj_name);
2782 varobj_delete (var, NULL, 0);
2783 install_variable (tmp_var);
2784 }
2785 else
2786 var->root->is_valid = 0;
2787 }
2788 else /* locals must be invalidated. */
2789 var->root->is_valid = 0;
2790 }
2791
2792 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2793 are defined on globals.
2794 Invalidated varobjs will be always printed in_scope="invalid". */
2795
2796 void
2797 varobj_invalidate (void)
2798 {
2799 all_root_varobjs (varobj_invalidate_iter, NULL);
2800 }
This page took 0.104437 seconds and 5 git commands to generate.