Improve MI -var-info-path-expression for nested struct/union case.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include <string.h>
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "varobj-iter.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 unsigned int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes. */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* True if we want to allow Python-based pretty-printing. */
60 static int pretty_printing = 0;
61
62 void
63 varobj_enable_pretty_printing (void)
64 {
65 pretty_printing = 1;
66 }
67
68 /* Data structures */
69
70 /* Every root variable has one of these structures saved in its
71 varobj. Members which must be free'd are noted. */
72 struct varobj_root
73 {
74
75 /* Alloc'd expression for this parent. */
76 struct expression *exp;
77
78 /* Block for which this expression is valid. */
79 const struct block *valid_block;
80
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
83 struct frame_id frame;
84
85 /* The thread ID that this varobj_root belong to. This field
86 is only valid if valid_block is not NULL.
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
94 always updated in the specific scope/thread/frame. */
95 int floating;
96
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
101 /* Language-related operations for this variable and its
102 children. */
103 const struct lang_varobj_ops *lang_ops;
104
105 /* The varobj for this root node. */
106 struct varobj *rootvar;
107
108 /* Next root variable */
109 struct varobj_root *next;
110 };
111
112 /* Dynamic part of varobj. */
113
114 struct varobj_dynamic
115 {
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
133 struct varobj_iter *child_iter;
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
140 varobj_item *saved_item;
141 };
142
143 struct cpstack
144 {
145 char *name;
146 struct cpstack *next;
147 };
148
149 /* A list of varobjs */
150
151 struct vlist
152 {
153 struct varobj *var;
154 struct vlist *next;
155 };
156
157 /* Private function prototypes */
158
159 /* Helper functions for the above subcommands. */
160
161 static int delete_variable (struct cpstack **, struct varobj *, int);
162
163 static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
165
166 static int install_variable (struct varobj *);
167
168 static void uninstall_variable (struct varobj *);
169
170 static struct varobj *create_child (struct varobj *, int, char *);
171
172 static struct varobj *
173 create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
175
176 /* Utility routines */
177
178 static struct varobj *new_variable (void);
179
180 static struct varobj *new_root_variable (void);
181
182 static void free_variable (struct varobj *var);
183
184 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
186 static enum varobj_display_formats variable_default_display (struct varobj *);
187
188 static void cppush (struct cpstack **pstack, char *name);
189
190 static char *cppop (struct cpstack **pstack);
191
192 static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
195 static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
198 /* Language-specific routines. */
199
200 static int number_of_children (struct varobj *);
201
202 static char *name_of_variable (struct varobj *);
203
204 static char *name_of_child (struct varobj *, int);
205
206 static struct value *value_of_root (struct varobj **var_handle, int *);
207
208 static struct value *value_of_child (struct varobj *parent, int index);
209
210 static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
212
213 static int is_root_p (struct varobj *var);
214
215 static struct varobj *varobj_add_child (struct varobj *var,
216 struct varobj_item *item);
217
218 /* Private data */
219
220 /* Mappings of varobj_display_formats enums to gdb's format codes. */
221 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
222
223 /* Header of the list of root variable objects. */
224 static struct varobj_root *rootlist;
225
226 /* Prime number indicating the number of buckets in the hash table. */
227 /* A prime large enough to avoid too many colisions. */
228 #define VAROBJ_TABLE_SIZE 227
229
230 /* Pointer to the varobj hash table (built at run time). */
231 static struct vlist **varobj_table;
232
233 \f
234
235 /* API Implementation */
236 static int
237 is_root_p (struct varobj *var)
238 {
239 return (var->root->rootvar == var);
240 }
241
242 #ifdef HAVE_PYTHON
243 /* Helper function to install a Python environment suitable for
244 use during operations on VAR. */
245 struct cleanup *
246 varobj_ensure_python_env (struct varobj *var)
247 {
248 return ensure_python_env (var->root->exp->gdbarch,
249 var->root->exp->language_defn);
250 }
251 #endif
252
253 /* Creates a varobj (not its children). */
254
255 /* Return the full FRAME which corresponds to the given CORE_ADDR
256 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
257
258 static struct frame_info *
259 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
260 {
261 struct frame_info *frame = NULL;
262
263 if (frame_addr == (CORE_ADDR) 0)
264 return NULL;
265
266 for (frame = get_current_frame ();
267 frame != NULL;
268 frame = get_prev_frame (frame))
269 {
270 /* The CORE_ADDR we get as argument was parsed from a string GDB
271 output as $fp. This output got truncated to gdbarch_addr_bit.
272 Truncate the frame base address in the same manner before
273 comparing it against our argument. */
274 CORE_ADDR frame_base = get_frame_base_address (frame);
275 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
276
277 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
278 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
279
280 if (frame_base == frame_addr)
281 return frame;
282 }
283
284 return NULL;
285 }
286
287 struct varobj *
288 varobj_create (char *objname,
289 char *expression, CORE_ADDR frame, enum varobj_type type)
290 {
291 struct varobj *var;
292 struct cleanup *old_chain;
293
294 /* Fill out a varobj structure for the (root) variable being constructed. */
295 var = new_root_variable ();
296 old_chain = make_cleanup_free_variable (var);
297
298 if (expression != NULL)
299 {
300 struct frame_info *fi;
301 struct frame_id old_id = null_frame_id;
302 const struct block *block;
303 const char *p;
304 struct value *value = NULL;
305 volatile struct gdb_exception except;
306 CORE_ADDR pc;
307
308 /* Parse and evaluate the expression, filling in as much of the
309 variable's data as possible. */
310
311 if (has_stack_frames ())
312 {
313 /* Allow creator to specify context of variable. */
314 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
315 fi = get_selected_frame (NULL);
316 else
317 /* FIXME: cagney/2002-11-23: This code should be doing a
318 lookup using the frame ID and not just the frame's
319 ``address''. This, of course, means an interface
320 change. However, with out that interface change ISAs,
321 such as the ia64 with its two stacks, won't work.
322 Similar goes for the case where there is a frameless
323 function. */
324 fi = find_frame_addr_in_frame_chain (frame);
325 }
326 else
327 fi = NULL;
328
329 /* frame = -2 means always use selected frame. */
330 if (type == USE_SELECTED_FRAME)
331 var->root->floating = 1;
332
333 pc = 0;
334 block = NULL;
335 if (fi != NULL)
336 {
337 block = get_frame_block (fi, 0);
338 pc = get_frame_pc (fi);
339 }
340
341 p = expression;
342 innermost_block = NULL;
343 /* Wrap the call to parse expression, so we can
344 return a sensible error. */
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
347 var->root->exp = parse_exp_1 (&p, pc, block, 0);
348 }
349
350 if (except.reason < 0)
351 {
352 do_cleanups (old_chain);
353 return NULL;
354 }
355
356 /* Don't allow variables to be created for types. */
357 if (var->root->exp->elts[0].opcode == OP_TYPE
358 || var->root->exp->elts[0].opcode == OP_TYPEOF
359 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
360 {
361 do_cleanups (old_chain);
362 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
363 " as an expression.\n");
364 return NULL;
365 }
366
367 var->format = variable_default_display (var);
368 var->root->valid_block = innermost_block;
369 var->name = xstrdup (expression);
370 /* For a root var, the name and the expr are the same. */
371 var->path_expr = xstrdup (expression);
372
373 /* When the frame is different from the current frame,
374 we must select the appropriate frame before parsing
375 the expression, otherwise the value will not be current.
376 Since select_frame is so benign, just call it for all cases. */
377 if (innermost_block)
378 {
379 /* User could specify explicit FRAME-ADDR which was not found but
380 EXPRESSION is frame specific and we would not be able to evaluate
381 it correctly next time. With VALID_BLOCK set we must also set
382 FRAME and THREAD_ID. */
383 if (fi == NULL)
384 error (_("Failed to find the specified frame"));
385
386 var->root->frame = get_frame_id (fi);
387 var->root->thread_id = pid_to_thread_id (inferior_ptid);
388 old_id = get_frame_id (get_selected_frame (NULL));
389 select_frame (fi);
390 }
391
392 /* We definitely need to catch errors here.
393 If evaluate_expression succeeds we got the value we wanted.
394 But if it fails, we still go on with a call to evaluate_type(). */
395 TRY_CATCH (except, RETURN_MASK_ERROR)
396 {
397 value = evaluate_expression (var->root->exp);
398 }
399
400 if (except.reason < 0)
401 {
402 /* Error getting the value. Try to at least get the
403 right type. */
404 struct value *type_only_value = evaluate_type (var->root->exp);
405
406 var->type = value_type (type_only_value);
407 }
408 else
409 {
410 int real_type_found = 0;
411
412 var->type = value_actual_type (value, 0, &real_type_found);
413 if (real_type_found)
414 value = value_cast (var->type, value);
415 }
416
417 /* Set language info */
418 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
419
420 install_new_value (var, value, 1 /* Initial assignment */);
421
422 /* Set ourselves as our root. */
423 var->root->rootvar = var;
424
425 /* Reset the selected frame. */
426 if (frame_id_p (old_id))
427 select_frame (frame_find_by_id (old_id));
428 }
429
430 /* If the variable object name is null, that means this
431 is a temporary variable, so don't install it. */
432
433 if ((var != NULL) && (objname != NULL))
434 {
435 var->obj_name = xstrdup (objname);
436
437 /* If a varobj name is duplicated, the install will fail so
438 we must cleanup. */
439 if (!install_variable (var))
440 {
441 do_cleanups (old_chain);
442 return NULL;
443 }
444 }
445
446 discard_cleanups (old_chain);
447 return var;
448 }
449
450 /* Generates an unique name that can be used for a varobj. */
451
452 char *
453 varobj_gen_name (void)
454 {
455 static int id = 0;
456 char *obj_name;
457
458 /* Generate a name for this object. */
459 id++;
460 obj_name = xstrprintf ("var%d", id);
461
462 return obj_name;
463 }
464
465 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
466 error if OBJNAME cannot be found. */
467
468 struct varobj *
469 varobj_get_handle (char *objname)
470 {
471 struct vlist *cv;
472 const char *chp;
473 unsigned int index = 0;
474 unsigned int i = 1;
475
476 for (chp = objname; *chp; chp++)
477 {
478 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
479 }
480
481 cv = *(varobj_table + index);
482 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
483 cv = cv->next;
484
485 if (cv == NULL)
486 error (_("Variable object not found"));
487
488 return cv->var;
489 }
490
491 /* Given the handle, return the name of the object. */
492
493 char *
494 varobj_get_objname (struct varobj *var)
495 {
496 return var->obj_name;
497 }
498
499 /* Given the handle, return the expression represented by the object. */
500
501 char *
502 varobj_get_expression (struct varobj *var)
503 {
504 return name_of_variable (var);
505 }
506
507 /* Deletes a varobj and all its children if only_children == 0,
508 otherwise deletes only the children; returns a malloc'ed list of
509 all the (malloc'ed) names of the variables that have been deleted
510 (NULL terminated). */
511
512 int
513 varobj_delete (struct varobj *var, char ***dellist, int only_children)
514 {
515 int delcount;
516 int mycount;
517 struct cpstack *result = NULL;
518 char **cp;
519
520 /* Initialize a stack for temporary results. */
521 cppush (&result, NULL);
522
523 if (only_children)
524 /* Delete only the variable children. */
525 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 else
527 /* Delete the variable and all its children. */
528 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529
530 /* We may have been asked to return a list of what has been deleted. */
531 if (dellist != NULL)
532 {
533 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
534
535 cp = *dellist;
536 mycount = delcount;
537 *cp = cppop (&result);
538 while ((*cp != NULL) && (mycount > 0))
539 {
540 mycount--;
541 cp++;
542 *cp = cppop (&result);
543 }
544
545 if (mycount || (*cp != NULL))
546 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
547 mycount);
548 }
549
550 return delcount;
551 }
552
553 #if HAVE_PYTHON
554
555 /* Convenience function for varobj_set_visualizer. Instantiate a
556 pretty-printer for a given value. */
557 static PyObject *
558 instantiate_pretty_printer (PyObject *constructor, struct value *value)
559 {
560 PyObject *val_obj = NULL;
561 PyObject *printer;
562
563 val_obj = value_to_value_object (value);
564 if (! val_obj)
565 return NULL;
566
567 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
568 Py_DECREF (val_obj);
569 return printer;
570 }
571
572 #endif
573
574 /* Set/Get variable object display format. */
575
576 enum varobj_display_formats
577 varobj_set_display_format (struct varobj *var,
578 enum varobj_display_formats format)
579 {
580 switch (format)
581 {
582 case FORMAT_NATURAL:
583 case FORMAT_BINARY:
584 case FORMAT_DECIMAL:
585 case FORMAT_HEXADECIMAL:
586 case FORMAT_OCTAL:
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
597 xfree (var->print_value);
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
600 }
601
602 return var->format;
603 }
604
605 enum varobj_display_formats
606 varobj_get_display_format (struct varobj *var)
607 {
608 return var->format;
609 }
610
611 char *
612 varobj_get_display_hint (struct varobj *var)
613 {
614 char *result = NULL;
615
616 #if HAVE_PYTHON
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
623
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
626
627 do_cleanups (back_to);
628 #endif
629
630 return result;
631 }
632
633 /* Return true if the varobj has items after TO, false otherwise. */
634
635 int
636 varobj_has_more (struct varobj *var, int to)
637 {
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
641 && (var->dynamic->saved_item != NULL));
642 }
643
644 /* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
647 is always positive. Otherwise, returns -1. */
648 int
649 varobj_get_thread_id (struct varobj *var)
650 {
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655 }
656
657 void
658 varobj_set_frozen (struct varobj *var, int frozen)
659 {
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668 }
669
670 int
671 varobj_get_frozen (struct varobj *var)
672 {
673 return var->frozen;
674 }
675
676 /* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
681 void
682 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
683 {
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698 }
699
700 /* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703 static void
704 install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
706 VEC (varobj_p) **type_changed,
707 VEC (varobj_p) **new,
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
711 struct varobj_item *item)
712 {
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
716 struct varobj *child = varobj_add_child (var, item);
717
718 if (new)
719 {
720 VEC_safe_push (varobj_p, *new, child);
721 *cchanged = 1;
722 }
723 }
724 else
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
727 int type_updated = update_type_if_necessary (existing, item->value);
728
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
734 if (install_new_value (existing, item->value, 0))
735 {
736 if (!type_updated && changed)
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
739 else if (!type_updated && unchanged)
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742 }
743
744 #if HAVE_PYTHON
745
746 static int
747 dynamic_varobj_has_child_method (struct varobj *var)
748 {
749 struct cleanup *back_to;
750 PyObject *printer = var->dynamic->pretty_printer;
751 int result;
752
753 if (!gdb_python_initialized)
754 return 0;
755
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760 }
761 #endif
762
763 /* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766 static struct varobj_iter *
767 varobj_get_iterator (struct varobj *var)
768 {
769 #if HAVE_PYTHON
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
772 #endif
773
774 gdb_assert_not_reached (_("\
775 requested an iterator from a non-dynamic varobj"));
776 }
777
778 /* Release and clear VAR's saved item, if any. */
779
780 static void
781 varobj_clear_saved_item (struct varobj_dynamic *var)
782 {
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789 }
790
791 static int
792 update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
794 VEC (varobj_p) **type_changed,
795 VEC (varobj_p) **new,
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
801 {
802 int i;
803
804 *cchanged = 0;
805
806 if (update_children || var->dynamic->child_iter == NULL)
807 {
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
810
811 varobj_clear_saved_item (var->dynamic);
812
813 i = 0;
814
815 if (var->dynamic->child_iter == NULL)
816 return 0;
817 }
818 else
819 i = VEC_length (varobj_p, var->children);
820
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
824 {
825 varobj_item *item;
826
827 /* See if there was a leftover from last time. */
828 if (var->dynamic->saved_item != NULL)
829 {
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
832 }
833 else
834 {
835 item = varobj_iter_next (var->dynamic->child_iter);
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
840 }
841
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
851 {
852 int can_mention = from < 0 || i >= from;
853
854 install_dynamic_child (var, can_mention ? changed : NULL,
855 can_mention ? type_changed : NULL,
856 can_mention ? new : NULL,
857 can_mention ? unchanged : NULL,
858 can_mention ? cchanged : NULL, i,
859 item);
860
861 xfree (item);
862 }
863 else
864 {
865 var->dynamic->saved_item = item;
866
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
875 int j;
876
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
881 }
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
888 var->num_children = VEC_length (varobj_p, var->children);
889
890 return 1;
891 }
892
893 int
894 varobj_get_num_children (struct varobj *var)
895 {
896 if (var->num_children == -1)
897 {
898 if (varobj_is_dynamic_p (var))
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
905 0, 0, 0);
906 }
907 else
908 var->num_children = number_of_children (var);
909 }
910
911 return var->num_children >= 0 ? var->num_children : 0;
912 }
913
914 /* Creates a list of the immediate children of a variable object;
915 the return code is the number of such children or -1 on error. */
916
917 VEC (varobj_p)*
918 varobj_list_children (struct varobj *var, int *from, int *to)
919 {
920 char *name;
921 int i, children_changed;
922
923 var->dynamic->children_requested = 1;
924
925 if (varobj_is_dynamic_p (var))
926 {
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
932 varobj_restrict_range (var->children, from, to);
933 return var->children;
934 }
935
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
939 /* If that failed, give up. */
940 if (var->num_children == -1)
941 return var->children;
942
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
948 for (i = 0; i < var->num_children; i++)
949 {
950 varobj_p existing = VEC_index (varobj_p, var->children, i);
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
961 }
962
963 varobj_restrict_range (var->children, from, to);
964 return var->children;
965 }
966
967 static struct varobj *
968 varobj_add_child (struct varobj *var, struct varobj_item *item)
969 {
970 varobj_p v = create_child_with_value (var,
971 VEC_length (varobj_p, var->children),
972 item);
973
974 VEC_safe_push (varobj_p, var->children, v);
975 return v;
976 }
977
978 /* Obtain the type of an object Variable as a string similar to the one gdb
979 prints on the console. */
980
981 char *
982 varobj_get_type (struct varobj *var)
983 {
984 /* For the "fake" variables, do not return a type. (Its type is
985 NULL, too.)
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
988 return NULL;
989
990 return type_to_string (var->type);
991 }
992
993 /* Obtain the type of an object variable. */
994
995 struct type *
996 varobj_get_gdb_type (struct varobj *var)
997 {
998 return var->type;
999 }
1000
1001 /* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1003
1004 static int
1005 is_path_expr_parent (struct varobj *var)
1006 {
1007 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1008 return var->root->lang_ops->is_path_expr_parent (var);
1009 }
1010
1011 /* Is VAR a path expression parent, i.e., can it be used to construct
1012 a valid path expression? By default we assume any VAR can be a path
1013 parent. */
1014
1015 int
1016 varobj_default_is_path_expr_parent (struct varobj *var)
1017 {
1018 return 1;
1019 }
1020
1021 /* Return the path expression parent for VAR. */
1022
1023 struct varobj *
1024 varobj_get_path_expr_parent (struct varobj *var)
1025 {
1026 struct varobj *parent = var;
1027
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1030
1031 return parent;
1032 }
1033
1034 /* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1036 char *
1037 varobj_get_path_expr (struct varobj *var)
1038 {
1039 if (var->path_expr != NULL)
1040 return var->path_expr;
1041 else
1042 {
1043 /* For root varobjs, we initialize path_expr
1044 when creating varobj, so here it should be
1045 child varobj. */
1046 gdb_assert (!is_root_p (var));
1047 return (*var->root->lang_ops->path_expr_of_child) (var);
1048 }
1049 }
1050
1051 const struct language_defn *
1052 varobj_get_language (struct varobj *var)
1053 {
1054 return var->root->exp->language_defn;
1055 }
1056
1057 int
1058 varobj_get_attributes (struct varobj *var)
1059 {
1060 int attributes = 0;
1061
1062 if (varobj_editable_p (var))
1063 /* FIXME: define masks for attributes. */
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067 }
1068
1069 /* Return true if VAR is a dynamic varobj. */
1070
1071 int
1072 varobj_is_dynamic_p (struct varobj *var)
1073 {
1074 return var->dynamic->pretty_printer != NULL;
1075 }
1076
1077 char *
1078 varobj_get_formatted_value (struct varobj *var,
1079 enum varobj_display_formats format)
1080 {
1081 return my_value_of_variable (var, format);
1082 }
1083
1084 char *
1085 varobj_get_value (struct varobj *var)
1086 {
1087 return my_value_of_variable (var, var->format);
1088 }
1089
1090 /* Set the value of an object variable (if it is editable) to the
1091 value of the given expression. */
1092 /* Note: Invokes functions that can call error(). */
1093
1094 int
1095 varobj_set_value (struct varobj *var, char *expression)
1096 {
1097 struct value *val = NULL; /* Initialize to keep gcc happy. */
1098 /* The argument "expression" contains the variable's new value.
1099 We need to first construct a legal expression for this -- ugh! */
1100 /* Does this cover all the bases? */
1101 struct expression *exp;
1102 struct value *value = NULL; /* Initialize to keep gcc happy. */
1103 int saved_input_radix = input_radix;
1104 const char *s = expression;
1105 volatile struct gdb_exception except;
1106
1107 gdb_assert (varobj_editable_p (var));
1108
1109 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1110 exp = parse_exp_1 (&s, 0, 0, 0);
1111 TRY_CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 value = evaluate_expression (exp);
1114 }
1115
1116 if (except.reason < 0)
1117 {
1118 /* We cannot proceed without a valid expression. */
1119 xfree (exp);
1120 return 0;
1121 }
1122
1123 /* All types that are editable must also be changeable. */
1124 gdb_assert (varobj_value_is_changeable_p (var));
1125
1126 /* The value of a changeable variable object must not be lazy. */
1127 gdb_assert (!value_lazy (var->value));
1128
1129 /* Need to coerce the input. We want to check if the
1130 value of the variable object will be different
1131 after assignment, and the first thing value_assign
1132 does is coerce the input.
1133 For example, if we are assigning an array to a pointer variable we
1134 should compare the pointer with the array's address, not with the
1135 array's content. */
1136 value = coerce_array (value);
1137
1138 /* The new value may be lazy. value_assign, or
1139 rather value_contents, will take care of this. */
1140 TRY_CATCH (except, RETURN_MASK_ERROR)
1141 {
1142 val = value_assign (var->value, value);
1143 }
1144
1145 if (except.reason < 0)
1146 return 0;
1147
1148 /* If the value has changed, record it, so that next -var-update can
1149 report this change. If a variable had a value of '1', we've set it
1150 to '333' and then set again to '1', when -var-update will report this
1151 variable as changed -- because the first assignment has set the
1152 'updated' flag. There's no need to optimize that, because return value
1153 of -var-update should be considered an approximation. */
1154 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1155 input_radix = saved_input_radix;
1156 return 1;
1157 }
1158
1159 #if HAVE_PYTHON
1160
1161 /* A helper function to install a constructor function and visualizer
1162 in a varobj_dynamic. */
1163
1164 static void
1165 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1166 PyObject *visualizer)
1167 {
1168 Py_XDECREF (var->constructor);
1169 var->constructor = constructor;
1170
1171 Py_XDECREF (var->pretty_printer);
1172 var->pretty_printer = visualizer;
1173
1174 varobj_iter_delete (var->child_iter);
1175 var->child_iter = NULL;
1176 }
1177
1178 /* Install the default visualizer for VAR. */
1179
1180 static void
1181 install_default_visualizer (struct varobj *var)
1182 {
1183 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1184 if (CPLUS_FAKE_CHILD (var))
1185 return;
1186
1187 if (pretty_printing)
1188 {
1189 PyObject *pretty_printer = NULL;
1190
1191 if (var->value)
1192 {
1193 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1194 if (! pretty_printer)
1195 {
1196 gdbpy_print_stack ();
1197 error (_("Cannot instantiate printer for default visualizer"));
1198 }
1199 }
1200
1201 if (pretty_printer == Py_None)
1202 {
1203 Py_DECREF (pretty_printer);
1204 pretty_printer = NULL;
1205 }
1206
1207 install_visualizer (var->dynamic, NULL, pretty_printer);
1208 }
1209 }
1210
1211 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1212 make a new object. */
1213
1214 static void
1215 construct_visualizer (struct varobj *var, PyObject *constructor)
1216 {
1217 PyObject *pretty_printer;
1218
1219 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1220 if (CPLUS_FAKE_CHILD (var))
1221 return;
1222
1223 Py_INCREF (constructor);
1224 if (constructor == Py_None)
1225 pretty_printer = NULL;
1226 else
1227 {
1228 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1229 if (! pretty_printer)
1230 {
1231 gdbpy_print_stack ();
1232 Py_DECREF (constructor);
1233 constructor = Py_None;
1234 Py_INCREF (constructor);
1235 }
1236
1237 if (pretty_printer == Py_None)
1238 {
1239 Py_DECREF (pretty_printer);
1240 pretty_printer = NULL;
1241 }
1242 }
1243
1244 install_visualizer (var->dynamic, constructor, pretty_printer);
1245 }
1246
1247 #endif /* HAVE_PYTHON */
1248
1249 /* A helper function for install_new_value. This creates and installs
1250 a visualizer for VAR, if appropriate. */
1251
1252 static void
1253 install_new_value_visualizer (struct varobj *var)
1254 {
1255 #if HAVE_PYTHON
1256 /* If the constructor is None, then we want the raw value. If VAR
1257 does not have a value, just skip this. */
1258 if (!gdb_python_initialized)
1259 return;
1260
1261 if (var->dynamic->constructor != Py_None && var->value != NULL)
1262 {
1263 struct cleanup *cleanup;
1264
1265 cleanup = varobj_ensure_python_env (var);
1266
1267 if (var->dynamic->constructor == NULL)
1268 install_default_visualizer (var);
1269 else
1270 construct_visualizer (var, var->dynamic->constructor);
1271
1272 do_cleanups (cleanup);
1273 }
1274 #else
1275 /* Do nothing. */
1276 #endif
1277 }
1278
1279 /* When using RTTI to determine variable type it may be changed in runtime when
1280 the variable value is changed. This function checks whether type of varobj
1281 VAR will change when a new value NEW_VALUE is assigned and if it is so
1282 updates the type of VAR. */
1283
1284 static int
1285 update_type_if_necessary (struct varobj *var, struct value *new_value)
1286 {
1287 if (new_value)
1288 {
1289 struct value_print_options opts;
1290
1291 get_user_print_options (&opts);
1292 if (opts.objectprint)
1293 {
1294 struct type *new_type;
1295 char *curr_type_str, *new_type_str;
1296
1297 new_type = value_actual_type (new_value, 0, 0);
1298 new_type_str = type_to_string (new_type);
1299 curr_type_str = varobj_get_type (var);
1300 if (strcmp (curr_type_str, new_type_str) != 0)
1301 {
1302 var->type = new_type;
1303
1304 /* This information may be not valid for a new type. */
1305 varobj_delete (var, NULL, 1);
1306 VEC_free (varobj_p, var->children);
1307 var->num_children = -1;
1308 return 1;
1309 }
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
1316 /* Assign a new value to a variable object. If INITIAL is non-zero,
1317 this is the first assignement after the variable object was just
1318 created, or changed type. In that case, just assign the value
1319 and return 0.
1320 Otherwise, assign the new value, and return 1 if the value is
1321 different from the current one, 0 otherwise. The comparison is
1322 done on textual representation of value. Therefore, some types
1323 need not be compared. E.g. for structures the reported value is
1324 always "{...}", so no comparison is necessary here. If the old
1325 value was NULL and new one is not, or vice versa, we always return 1.
1326
1327 The VALUE parameter should not be released -- the function will
1328 take care of releasing it when needed. */
1329 static int
1330 install_new_value (struct varobj *var, struct value *value, int initial)
1331 {
1332 int changeable;
1333 int need_to_fetch;
1334 int changed = 0;
1335 int intentionally_not_fetched = 0;
1336 char *print_value = NULL;
1337
1338 /* We need to know the varobj's type to decide if the value should
1339 be fetched or not. C++ fake children (public/protected/private)
1340 don't have a type. */
1341 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1342 changeable = varobj_value_is_changeable_p (var);
1343
1344 /* If the type has custom visualizer, we consider it to be always
1345 changeable. FIXME: need to make sure this behaviour will not
1346 mess up read-sensitive values. */
1347 if (var->dynamic->pretty_printer != NULL)
1348 changeable = 1;
1349
1350 need_to_fetch = changeable;
1351
1352 /* We are not interested in the address of references, and given
1353 that in C++ a reference is not rebindable, it cannot
1354 meaningfully change. So, get hold of the real value. */
1355 if (value)
1356 value = coerce_ref (value);
1357
1358 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1359 /* For unions, we need to fetch the value implicitly because
1360 of implementation of union member fetch. When gdb
1361 creates a value for a field and the value of the enclosing
1362 structure is not lazy, it immediately copies the necessary
1363 bytes from the enclosing values. If the enclosing value is
1364 lazy, the call to value_fetch_lazy on the field will read
1365 the data from memory. For unions, that means we'll read the
1366 same memory more than once, which is not desirable. So
1367 fetch now. */
1368 need_to_fetch = 1;
1369
1370 /* The new value might be lazy. If the type is changeable,
1371 that is we'll be comparing values of this type, fetch the
1372 value now. Otherwise, on the next update the old value
1373 will be lazy, which means we've lost that old value. */
1374 if (need_to_fetch && value && value_lazy (value))
1375 {
1376 struct varobj *parent = var->parent;
1377 int frozen = var->frozen;
1378
1379 for (; !frozen && parent; parent = parent->parent)
1380 frozen |= parent->frozen;
1381
1382 if (frozen && initial)
1383 {
1384 /* For variables that are frozen, or are children of frozen
1385 variables, we don't do fetch on initial assignment.
1386 For non-initial assignemnt we do the fetch, since it means we're
1387 explicitly asked to compare the new value with the old one. */
1388 intentionally_not_fetched = 1;
1389 }
1390 else
1391 {
1392 volatile struct gdb_exception except;
1393
1394 TRY_CATCH (except, RETURN_MASK_ERROR)
1395 {
1396 value_fetch_lazy (value);
1397 }
1398
1399 if (except.reason < 0)
1400 {
1401 /* Set the value to NULL, so that for the next -var-update,
1402 we don't try to compare the new value with this value,
1403 that we couldn't even read. */
1404 value = NULL;
1405 }
1406 }
1407 }
1408
1409 /* Get a reference now, before possibly passing it to any Python
1410 code that might release it. */
1411 if (value != NULL)
1412 value_incref (value);
1413
1414 /* Below, we'll be comparing string rendering of old and new
1415 values. Don't get string rendering if the value is
1416 lazy -- if it is, the code above has decided that the value
1417 should not be fetched. */
1418 if (value != NULL && !value_lazy (value)
1419 && var->dynamic->pretty_printer == NULL)
1420 print_value = varobj_value_get_print_value (value, var->format, var);
1421
1422 /* If the type is changeable, compare the old and the new values.
1423 If this is the initial assignment, we don't have any old value
1424 to compare with. */
1425 if (!initial && changeable)
1426 {
1427 /* If the value of the varobj was changed by -var-set-value,
1428 then the value in the varobj and in the target is the same.
1429 However, that value is different from the value that the
1430 varobj had after the previous -var-update. So need to the
1431 varobj as changed. */
1432 if (var->updated)
1433 {
1434 changed = 1;
1435 }
1436 else if (var->dynamic->pretty_printer == NULL)
1437 {
1438 /* Try to compare the values. That requires that both
1439 values are non-lazy. */
1440 if (var->not_fetched && value_lazy (var->value))
1441 {
1442 /* This is a frozen varobj and the value was never read.
1443 Presumably, UI shows some "never read" indicator.
1444 Now that we've fetched the real value, we need to report
1445 this varobj as changed so that UI can show the real
1446 value. */
1447 changed = 1;
1448 }
1449 else if (var->value == NULL && value == NULL)
1450 /* Equal. */
1451 ;
1452 else if (var->value == NULL || value == NULL)
1453 {
1454 changed = 1;
1455 }
1456 else
1457 {
1458 gdb_assert (!value_lazy (var->value));
1459 gdb_assert (!value_lazy (value));
1460
1461 gdb_assert (var->print_value != NULL && print_value != NULL);
1462 if (strcmp (var->print_value, print_value) != 0)
1463 changed = 1;
1464 }
1465 }
1466 }
1467
1468 if (!initial && !changeable)
1469 {
1470 /* For values that are not changeable, we don't compare the values.
1471 However, we want to notice if a value was not NULL and now is NULL,
1472 or vise versa, so that we report when top-level varobjs come in scope
1473 and leave the scope. */
1474 changed = (var->value != NULL) != (value != NULL);
1475 }
1476
1477 /* We must always keep the new value, since children depend on it. */
1478 if (var->value != NULL && var->value != value)
1479 value_free (var->value);
1480 var->value = value;
1481 if (value && value_lazy (value) && intentionally_not_fetched)
1482 var->not_fetched = 1;
1483 else
1484 var->not_fetched = 0;
1485 var->updated = 0;
1486
1487 install_new_value_visualizer (var);
1488
1489 /* If we installed a pretty-printer, re-compare the printed version
1490 to see if the variable changed. */
1491 if (var->dynamic->pretty_printer != NULL)
1492 {
1493 xfree (print_value);
1494 print_value = varobj_value_get_print_value (var->value, var->format,
1495 var);
1496 if ((var->print_value == NULL && print_value != NULL)
1497 || (var->print_value != NULL && print_value == NULL)
1498 || (var->print_value != NULL && print_value != NULL
1499 && strcmp (var->print_value, print_value) != 0))
1500 changed = 1;
1501 }
1502 if (var->print_value)
1503 xfree (var->print_value);
1504 var->print_value = print_value;
1505
1506 gdb_assert (!var->value || value_type (var->value));
1507
1508 return changed;
1509 }
1510
1511 /* Return the requested range for a varobj. VAR is the varobj. FROM
1512 and TO are out parameters; *FROM and *TO will be set to the
1513 selected sub-range of VAR. If no range was selected using
1514 -var-set-update-range, then both will be -1. */
1515 void
1516 varobj_get_child_range (struct varobj *var, int *from, int *to)
1517 {
1518 *from = var->from;
1519 *to = var->to;
1520 }
1521
1522 /* Set the selected sub-range of children of VAR to start at index
1523 FROM and end at index TO. If either FROM or TO is less than zero,
1524 this is interpreted as a request for all children. */
1525 void
1526 varobj_set_child_range (struct varobj *var, int from, int to)
1527 {
1528 var->from = from;
1529 var->to = to;
1530 }
1531
1532 void
1533 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1534 {
1535 #if HAVE_PYTHON
1536 PyObject *mainmod, *globals, *constructor;
1537 struct cleanup *back_to;
1538
1539 if (!gdb_python_initialized)
1540 return;
1541
1542 back_to = varobj_ensure_python_env (var);
1543
1544 mainmod = PyImport_AddModule ("__main__");
1545 globals = PyModule_GetDict (mainmod);
1546 Py_INCREF (globals);
1547 make_cleanup_py_decref (globals);
1548
1549 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1550
1551 if (! constructor)
1552 {
1553 gdbpy_print_stack ();
1554 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1555 }
1556
1557 construct_visualizer (var, constructor);
1558 Py_XDECREF (constructor);
1559
1560 /* If there are any children now, wipe them. */
1561 varobj_delete (var, NULL, 1 /* children only */);
1562 var->num_children = -1;
1563
1564 do_cleanups (back_to);
1565 #else
1566 error (_("Python support required"));
1567 #endif
1568 }
1569
1570 /* If NEW_VALUE is the new value of the given varobj (var), return
1571 non-zero if var has mutated. In other words, if the type of
1572 the new value is different from the type of the varobj's old
1573 value.
1574
1575 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1576
1577 static int
1578 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1579 struct type *new_type)
1580 {
1581 /* If we haven't previously computed the number of children in var,
1582 it does not matter from the front-end's perspective whether
1583 the type has mutated or not. For all intents and purposes,
1584 it has not mutated. */
1585 if (var->num_children < 0)
1586 return 0;
1587
1588 if (var->root->lang_ops->value_has_mutated)
1589 {
1590 /* The varobj module, when installing new values, explicitly strips
1591 references, saying that we're not interested in those addresses.
1592 But detection of mutation happens before installing the new
1593 value, so our value may be a reference that we need to strip
1594 in order to remain consistent. */
1595 if (new_value != NULL)
1596 new_value = coerce_ref (new_value);
1597 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1598 }
1599 else
1600 return 0;
1601 }
1602
1603 /* Update the values for a variable and its children. This is a
1604 two-pronged attack. First, re-parse the value for the root's
1605 expression to see if it's changed. Then go all the way
1606 through its children, reconstructing them and noting if they've
1607 changed.
1608
1609 The EXPLICIT parameter specifies if this call is result
1610 of MI request to update this specific variable, or
1611 result of implicit -var-update *. For implicit request, we don't
1612 update frozen variables.
1613
1614 NOTE: This function may delete the caller's varobj. If it
1615 returns TYPE_CHANGED, then it has done this and VARP will be modified
1616 to point to the new varobj. */
1617
1618 VEC(varobj_update_result) *
1619 varobj_update (struct varobj **varp, int explicit)
1620 {
1621 int type_changed = 0;
1622 int i;
1623 struct value *new;
1624 VEC (varobj_update_result) *stack = NULL;
1625 VEC (varobj_update_result) *result = NULL;
1626
1627 /* Frozen means frozen -- we don't check for any change in
1628 this varobj, including its going out of scope, or
1629 changing type. One use case for frozen varobjs is
1630 retaining previously evaluated expressions, and we don't
1631 want them to be reevaluated at all. */
1632 if (!explicit && (*varp)->frozen)
1633 return result;
1634
1635 if (!(*varp)->root->is_valid)
1636 {
1637 varobj_update_result r = {0};
1638
1639 r.varobj = *varp;
1640 r.status = VAROBJ_INVALID;
1641 VEC_safe_push (varobj_update_result, result, &r);
1642 return result;
1643 }
1644
1645 if ((*varp)->root->rootvar == *varp)
1646 {
1647 varobj_update_result r = {0};
1648
1649 r.varobj = *varp;
1650 r.status = VAROBJ_IN_SCOPE;
1651
1652 /* Update the root variable. value_of_root can return NULL
1653 if the variable is no longer around, i.e. we stepped out of
1654 the frame in which a local existed. We are letting the
1655 value_of_root variable dispose of the varobj if the type
1656 has changed. */
1657 new = value_of_root (varp, &type_changed);
1658 if (update_type_if_necessary(*varp, new))
1659 type_changed = 1;
1660 r.varobj = *varp;
1661 r.type_changed = type_changed;
1662 if (install_new_value ((*varp), new, type_changed))
1663 r.changed = 1;
1664
1665 if (new == NULL)
1666 r.status = VAROBJ_NOT_IN_SCOPE;
1667 r.value_installed = 1;
1668
1669 if (r.status == VAROBJ_NOT_IN_SCOPE)
1670 {
1671 if (r.type_changed || r.changed)
1672 VEC_safe_push (varobj_update_result, result, &r);
1673 return result;
1674 }
1675
1676 VEC_safe_push (varobj_update_result, stack, &r);
1677 }
1678 else
1679 {
1680 varobj_update_result r = {0};
1681
1682 r.varobj = *varp;
1683 VEC_safe_push (varobj_update_result, stack, &r);
1684 }
1685
1686 /* Walk through the children, reconstructing them all. */
1687 while (!VEC_empty (varobj_update_result, stack))
1688 {
1689 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1690 struct varobj *v = r.varobj;
1691
1692 VEC_pop (varobj_update_result, stack);
1693
1694 /* Update this variable, unless it's a root, which is already
1695 updated. */
1696 if (!r.value_installed)
1697 {
1698 struct type *new_type;
1699
1700 new = value_of_child (v->parent, v->index);
1701 if (update_type_if_necessary(v, new))
1702 r.type_changed = 1;
1703 if (new)
1704 new_type = value_type (new);
1705 else
1706 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1707
1708 if (varobj_value_has_mutated (v, new, new_type))
1709 {
1710 /* The children are no longer valid; delete them now.
1711 Report the fact that its type changed as well. */
1712 varobj_delete (v, NULL, 1 /* only_children */);
1713 v->num_children = -1;
1714 v->to = -1;
1715 v->from = -1;
1716 v->type = new_type;
1717 r.type_changed = 1;
1718 }
1719
1720 if (install_new_value (v, new, r.type_changed))
1721 {
1722 r.changed = 1;
1723 v->updated = 0;
1724 }
1725 }
1726
1727 /* We probably should not get children of a dynamic varobj, but
1728 for which -var-list-children was never invoked. */
1729 if (varobj_is_dynamic_p (v))
1730 {
1731 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1732 VEC (varobj_p) *new = 0;
1733 int i, children_changed = 0;
1734
1735 if (v->frozen)
1736 continue;
1737
1738 if (!v->dynamic->children_requested)
1739 {
1740 int dummy;
1741
1742 /* If we initially did not have potential children, but
1743 now we do, consider the varobj as changed.
1744 Otherwise, if children were never requested, consider
1745 it as unchanged -- presumably, such varobj is not yet
1746 expanded in the UI, so we need not bother getting
1747 it. */
1748 if (!varobj_has_more (v, 0))
1749 {
1750 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1751 &dummy, 0, 0, 0);
1752 if (varobj_has_more (v, 0))
1753 r.changed = 1;
1754 }
1755
1756 if (r.changed)
1757 VEC_safe_push (varobj_update_result, result, &r);
1758
1759 continue;
1760 }
1761
1762 /* If update_dynamic_varobj_children returns 0, then we have
1763 a non-conforming pretty-printer, so we skip it. */
1764 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1765 &unchanged, &children_changed, 1,
1766 v->from, v->to))
1767 {
1768 if (children_changed || new)
1769 {
1770 r.children_changed = 1;
1771 r.new = new;
1772 }
1773 /* Push in reverse order so that the first child is
1774 popped from the work stack first, and so will be
1775 added to result first. This does not affect
1776 correctness, just "nicer". */
1777 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1778 {
1779 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1780 varobj_update_result r = {0};
1781
1782 /* Type may change only if value was changed. */
1783 r.varobj = tmp;
1784 r.changed = 1;
1785 r.type_changed = 1;
1786 r.value_installed = 1;
1787 VEC_safe_push (varobj_update_result, stack, &r);
1788 }
1789 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1790 {
1791 varobj_p tmp = VEC_index (varobj_p, changed, i);
1792 varobj_update_result r = {0};
1793
1794 r.varobj = tmp;
1795 r.changed = 1;
1796 r.value_installed = 1;
1797 VEC_safe_push (varobj_update_result, stack, &r);
1798 }
1799 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1800 {
1801 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1802
1803 if (!tmp->frozen)
1804 {
1805 varobj_update_result r = {0};
1806
1807 r.varobj = tmp;
1808 r.value_installed = 1;
1809 VEC_safe_push (varobj_update_result, stack, &r);
1810 }
1811 }
1812 if (r.changed || r.children_changed)
1813 VEC_safe_push (varobj_update_result, result, &r);
1814
1815 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1816 because NEW has been put into the result vector. */
1817 VEC_free (varobj_p, changed);
1818 VEC_free (varobj_p, type_changed);
1819 VEC_free (varobj_p, unchanged);
1820
1821 continue;
1822 }
1823 }
1824
1825 /* Push any children. Use reverse order so that the first
1826 child is popped from the work stack first, and so
1827 will be added to result first. This does not
1828 affect correctness, just "nicer". */
1829 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1830 {
1831 varobj_p c = VEC_index (varobj_p, v->children, i);
1832
1833 /* Child may be NULL if explicitly deleted by -var-delete. */
1834 if (c != NULL && !c->frozen)
1835 {
1836 varobj_update_result r = {0};
1837
1838 r.varobj = c;
1839 VEC_safe_push (varobj_update_result, stack, &r);
1840 }
1841 }
1842
1843 if (r.changed || r.type_changed)
1844 VEC_safe_push (varobj_update_result, result, &r);
1845 }
1846
1847 VEC_free (varobj_update_result, stack);
1848
1849 return result;
1850 }
1851 \f
1852
1853 /* Helper functions */
1854
1855 /*
1856 * Variable object construction/destruction
1857 */
1858
1859 static int
1860 delete_variable (struct cpstack **resultp, struct varobj *var,
1861 int only_children_p)
1862 {
1863 int delcount = 0;
1864
1865 delete_variable_1 (resultp, &delcount, var,
1866 only_children_p, 1 /* remove_from_parent_p */ );
1867
1868 return delcount;
1869 }
1870
1871 /* Delete the variable object VAR and its children. */
1872 /* IMPORTANT NOTE: If we delete a variable which is a child
1873 and the parent is not removed we dump core. It must be always
1874 initially called with remove_from_parent_p set. */
1875 static void
1876 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1877 struct varobj *var, int only_children_p,
1878 int remove_from_parent_p)
1879 {
1880 int i;
1881
1882 /* Delete any children of this variable, too. */
1883 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1884 {
1885 varobj_p child = VEC_index (varobj_p, var->children, i);
1886
1887 if (!child)
1888 continue;
1889 if (!remove_from_parent_p)
1890 child->parent = NULL;
1891 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1892 }
1893 VEC_free (varobj_p, var->children);
1894
1895 /* if we were called to delete only the children we are done here. */
1896 if (only_children_p)
1897 return;
1898
1899 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1900 /* If the name is null, this is a temporary variable, that has not
1901 yet been installed, don't report it, it belongs to the caller... */
1902 if (var->obj_name != NULL)
1903 {
1904 cppush (resultp, xstrdup (var->obj_name));
1905 *delcountp = *delcountp + 1;
1906 }
1907
1908 /* If this variable has a parent, remove it from its parent's list. */
1909 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1910 (as indicated by remove_from_parent_p) we don't bother doing an
1911 expensive list search to find the element to remove when we are
1912 discarding the list afterwards. */
1913 if ((remove_from_parent_p) && (var->parent != NULL))
1914 {
1915 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1916 }
1917
1918 if (var->obj_name != NULL)
1919 uninstall_variable (var);
1920
1921 /* Free memory associated with this variable. */
1922 free_variable (var);
1923 }
1924
1925 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1926 static int
1927 install_variable (struct varobj *var)
1928 {
1929 struct vlist *cv;
1930 struct vlist *newvl;
1931 const char *chp;
1932 unsigned int index = 0;
1933 unsigned int i = 1;
1934
1935 for (chp = var->obj_name; *chp; chp++)
1936 {
1937 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1938 }
1939
1940 cv = *(varobj_table + index);
1941 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1942 cv = cv->next;
1943
1944 if (cv != NULL)
1945 error (_("Duplicate variable object name"));
1946
1947 /* Add varobj to hash table. */
1948 newvl = xmalloc (sizeof (struct vlist));
1949 newvl->next = *(varobj_table + index);
1950 newvl->var = var;
1951 *(varobj_table + index) = newvl;
1952
1953 /* If root, add varobj to root list. */
1954 if (is_root_p (var))
1955 {
1956 /* Add to list of root variables. */
1957 if (rootlist == NULL)
1958 var->root->next = NULL;
1959 else
1960 var->root->next = rootlist;
1961 rootlist = var->root;
1962 }
1963
1964 return 1; /* OK */
1965 }
1966
1967 /* Unistall the object VAR. */
1968 static void
1969 uninstall_variable (struct varobj *var)
1970 {
1971 struct vlist *cv;
1972 struct vlist *prev;
1973 struct varobj_root *cr;
1974 struct varobj_root *prer;
1975 const char *chp;
1976 unsigned int index = 0;
1977 unsigned int i = 1;
1978
1979 /* Remove varobj from hash table. */
1980 for (chp = var->obj_name; *chp; chp++)
1981 {
1982 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1983 }
1984
1985 cv = *(varobj_table + index);
1986 prev = NULL;
1987 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1988 {
1989 prev = cv;
1990 cv = cv->next;
1991 }
1992
1993 if (varobjdebug)
1994 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1995
1996 if (cv == NULL)
1997 {
1998 warning
1999 ("Assertion failed: Could not find variable object \"%s\" to delete",
2000 var->obj_name);
2001 return;
2002 }
2003
2004 if (prev == NULL)
2005 *(varobj_table + index) = cv->next;
2006 else
2007 prev->next = cv->next;
2008
2009 xfree (cv);
2010
2011 /* If root, remove varobj from root list. */
2012 if (is_root_p (var))
2013 {
2014 /* Remove from list of root variables. */
2015 if (rootlist == var->root)
2016 rootlist = var->root->next;
2017 else
2018 {
2019 prer = NULL;
2020 cr = rootlist;
2021 while ((cr != NULL) && (cr->rootvar != var))
2022 {
2023 prer = cr;
2024 cr = cr->next;
2025 }
2026 if (cr == NULL)
2027 {
2028 warning (_("Assertion failed: Could not find "
2029 "varobj \"%s\" in root list"),
2030 var->obj_name);
2031 return;
2032 }
2033 if (prer == NULL)
2034 rootlist = NULL;
2035 else
2036 prer->next = cr->next;
2037 }
2038 }
2039
2040 }
2041
2042 /* Create and install a child of the parent of the given name. */
2043 static struct varobj *
2044 create_child (struct varobj *parent, int index, char *name)
2045 {
2046 struct varobj_item item;
2047
2048 item.name = name;
2049 item.value = value_of_child (parent, index);
2050
2051 return create_child_with_value (parent, index, &item);
2052 }
2053
2054 static struct varobj *
2055 create_child_with_value (struct varobj *parent, int index,
2056 struct varobj_item *item)
2057 {
2058 struct varobj *child;
2059 char *childs_name;
2060
2061 child = new_variable ();
2062
2063 /* NAME is allocated by caller. */
2064 child->name = item->name;
2065 child->index = index;
2066 child->parent = parent;
2067 child->root = parent->root;
2068
2069 if (varobj_is_anonymous_child (child))
2070 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2071 else
2072 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2073 child->obj_name = childs_name;
2074
2075 install_variable (child);
2076
2077 /* Compute the type of the child. Must do this before
2078 calling install_new_value. */
2079 if (item->value != NULL)
2080 /* If the child had no evaluation errors, var->value
2081 will be non-NULL and contain a valid type. */
2082 child->type = value_actual_type (item->value, 0, NULL);
2083 else
2084 /* Otherwise, we must compute the type. */
2085 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2086 child->index);
2087 install_new_value (child, item->value, 1);
2088
2089 return child;
2090 }
2091 \f
2092
2093 /*
2094 * Miscellaneous utility functions.
2095 */
2096
2097 /* Allocate memory and initialize a new variable. */
2098 static struct varobj *
2099 new_variable (void)
2100 {
2101 struct varobj *var;
2102
2103 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2104 var->name = NULL;
2105 var->path_expr = NULL;
2106 var->obj_name = NULL;
2107 var->index = -1;
2108 var->type = NULL;
2109 var->value = NULL;
2110 var->num_children = -1;
2111 var->parent = NULL;
2112 var->children = NULL;
2113 var->format = 0;
2114 var->root = NULL;
2115 var->updated = 0;
2116 var->print_value = NULL;
2117 var->frozen = 0;
2118 var->not_fetched = 0;
2119 var->dynamic
2120 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2121 var->dynamic->children_requested = 0;
2122 var->from = -1;
2123 var->to = -1;
2124 var->dynamic->constructor = 0;
2125 var->dynamic->pretty_printer = 0;
2126 var->dynamic->child_iter = 0;
2127 var->dynamic->saved_item = 0;
2128
2129 return var;
2130 }
2131
2132 /* Allocate memory and initialize a new root variable. */
2133 static struct varobj *
2134 new_root_variable (void)
2135 {
2136 struct varobj *var = new_variable ();
2137
2138 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2139 var->root->lang_ops = NULL;
2140 var->root->exp = NULL;
2141 var->root->valid_block = NULL;
2142 var->root->frame = null_frame_id;
2143 var->root->floating = 0;
2144 var->root->rootvar = NULL;
2145 var->root->is_valid = 1;
2146
2147 return var;
2148 }
2149
2150 /* Free any allocated memory associated with VAR. */
2151 static void
2152 free_variable (struct varobj *var)
2153 {
2154 #if HAVE_PYTHON
2155 if (var->dynamic->pretty_printer != NULL)
2156 {
2157 struct cleanup *cleanup = varobj_ensure_python_env (var);
2158
2159 Py_XDECREF (var->dynamic->constructor);
2160 Py_XDECREF (var->dynamic->pretty_printer);
2161 do_cleanups (cleanup);
2162 }
2163 #endif
2164
2165 varobj_iter_delete (var->dynamic->child_iter);
2166 varobj_clear_saved_item (var->dynamic);
2167 value_free (var->value);
2168
2169 /* Free the expression if this is a root variable. */
2170 if (is_root_p (var))
2171 {
2172 xfree (var->root->exp);
2173 xfree (var->root);
2174 }
2175
2176 xfree (var->name);
2177 xfree (var->obj_name);
2178 xfree (var->print_value);
2179 xfree (var->path_expr);
2180 xfree (var->dynamic);
2181 xfree (var);
2182 }
2183
2184 static void
2185 do_free_variable_cleanup (void *var)
2186 {
2187 free_variable (var);
2188 }
2189
2190 static struct cleanup *
2191 make_cleanup_free_variable (struct varobj *var)
2192 {
2193 return make_cleanup (do_free_variable_cleanup, var);
2194 }
2195
2196 /* Return the type of the value that's stored in VAR,
2197 or that would have being stored there if the
2198 value were accessible.
2199
2200 This differs from VAR->type in that VAR->type is always
2201 the true type of the expession in the source language.
2202 The return value of this function is the type we're
2203 actually storing in varobj, and using for displaying
2204 the values and for comparing previous and new values.
2205
2206 For example, top-level references are always stripped. */
2207 struct type *
2208 varobj_get_value_type (struct varobj *var)
2209 {
2210 struct type *type;
2211
2212 if (var->value)
2213 type = value_type (var->value);
2214 else
2215 type = var->type;
2216
2217 type = check_typedef (type);
2218
2219 if (TYPE_CODE (type) == TYPE_CODE_REF)
2220 type = get_target_type (type);
2221
2222 type = check_typedef (type);
2223
2224 return type;
2225 }
2226
2227 /* What is the default display for this variable? We assume that
2228 everything is "natural". Any exceptions? */
2229 static enum varobj_display_formats
2230 variable_default_display (struct varobj *var)
2231 {
2232 return FORMAT_NATURAL;
2233 }
2234
2235 /* FIXME: The following should be generic for any pointer. */
2236 static void
2237 cppush (struct cpstack **pstack, char *name)
2238 {
2239 struct cpstack *s;
2240
2241 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2242 s->name = name;
2243 s->next = *pstack;
2244 *pstack = s;
2245 }
2246
2247 /* FIXME: The following should be generic for any pointer. */
2248 static char *
2249 cppop (struct cpstack **pstack)
2250 {
2251 struct cpstack *s;
2252 char *v;
2253
2254 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2255 return NULL;
2256
2257 s = *pstack;
2258 v = s->name;
2259 *pstack = (*pstack)->next;
2260 xfree (s);
2261
2262 return v;
2263 }
2264 \f
2265 /*
2266 * Language-dependencies
2267 */
2268
2269 /* Common entry points */
2270
2271 /* Return the number of children for a given variable.
2272 The result of this function is defined by the language
2273 implementation. The number of children returned by this function
2274 is the number of children that the user will see in the variable
2275 display. */
2276 static int
2277 number_of_children (struct varobj *var)
2278 {
2279 return (*var->root->lang_ops->number_of_children) (var);
2280 }
2281
2282 /* What is the expression for the root varobj VAR? Returns a malloc'd
2283 string. */
2284 static char *
2285 name_of_variable (struct varobj *var)
2286 {
2287 return (*var->root->lang_ops->name_of_variable) (var);
2288 }
2289
2290 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2291 string. */
2292 static char *
2293 name_of_child (struct varobj *var, int index)
2294 {
2295 return (*var->root->lang_ops->name_of_child) (var, index);
2296 }
2297
2298 /* If frame associated with VAR can be found, switch
2299 to it and return 1. Otherwise, return 0. */
2300
2301 static int
2302 check_scope (struct varobj *var)
2303 {
2304 struct frame_info *fi;
2305 int scope;
2306
2307 fi = frame_find_by_id (var->root->frame);
2308 scope = fi != NULL;
2309
2310 if (fi)
2311 {
2312 CORE_ADDR pc = get_frame_pc (fi);
2313
2314 if (pc < BLOCK_START (var->root->valid_block) ||
2315 pc >= BLOCK_END (var->root->valid_block))
2316 scope = 0;
2317 else
2318 select_frame (fi);
2319 }
2320 return scope;
2321 }
2322
2323 /* Helper function to value_of_root. */
2324
2325 static struct value *
2326 value_of_root_1 (struct varobj **var_handle)
2327 {
2328 struct value *new_val = NULL;
2329 struct varobj *var = *var_handle;
2330 int within_scope = 0;
2331 struct cleanup *back_to;
2332
2333 /* Only root variables can be updated... */
2334 if (!is_root_p (var))
2335 /* Not a root var. */
2336 return NULL;
2337
2338 back_to = make_cleanup_restore_current_thread ();
2339
2340 /* Determine whether the variable is still around. */
2341 if (var->root->valid_block == NULL || var->root->floating)
2342 within_scope = 1;
2343 else if (var->root->thread_id == 0)
2344 {
2345 /* The program was single-threaded when the variable object was
2346 created. Technically, it's possible that the program became
2347 multi-threaded since then, but we don't support such
2348 scenario yet. */
2349 within_scope = check_scope (var);
2350 }
2351 else
2352 {
2353 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2354 if (in_thread_list (ptid))
2355 {
2356 switch_to_thread (ptid);
2357 within_scope = check_scope (var);
2358 }
2359 }
2360
2361 if (within_scope)
2362 {
2363 volatile struct gdb_exception except;
2364
2365 /* We need to catch errors here, because if evaluate
2366 expression fails we want to just return NULL. */
2367 TRY_CATCH (except, RETURN_MASK_ERROR)
2368 {
2369 new_val = evaluate_expression (var->root->exp);
2370 }
2371 }
2372
2373 do_cleanups (back_to);
2374
2375 return new_val;
2376 }
2377
2378 /* What is the ``struct value *'' of the root variable VAR?
2379 For floating variable object, evaluation can get us a value
2380 of different type from what is stored in varobj already. In
2381 that case:
2382 - *type_changed will be set to 1
2383 - old varobj will be freed, and new one will be
2384 created, with the same name.
2385 - *var_handle will be set to the new varobj
2386 Otherwise, *type_changed will be set to 0. */
2387 static struct value *
2388 value_of_root (struct varobj **var_handle, int *type_changed)
2389 {
2390 struct varobj *var;
2391
2392 if (var_handle == NULL)
2393 return NULL;
2394
2395 var = *var_handle;
2396
2397 /* This should really be an exception, since this should
2398 only get called with a root variable. */
2399
2400 if (!is_root_p (var))
2401 return NULL;
2402
2403 if (var->root->floating)
2404 {
2405 struct varobj *tmp_var;
2406 char *old_type, *new_type;
2407
2408 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2409 USE_SELECTED_FRAME);
2410 if (tmp_var == NULL)
2411 {
2412 return NULL;
2413 }
2414 old_type = varobj_get_type (var);
2415 new_type = varobj_get_type (tmp_var);
2416 if (strcmp (old_type, new_type) == 0)
2417 {
2418 /* The expression presently stored inside var->root->exp
2419 remembers the locations of local variables relatively to
2420 the frame where the expression was created (in DWARF location
2421 button, for example). Naturally, those locations are not
2422 correct in other frames, so update the expression. */
2423
2424 struct expression *tmp_exp = var->root->exp;
2425
2426 var->root->exp = tmp_var->root->exp;
2427 tmp_var->root->exp = tmp_exp;
2428
2429 varobj_delete (tmp_var, NULL, 0);
2430 *type_changed = 0;
2431 }
2432 else
2433 {
2434 tmp_var->obj_name = xstrdup (var->obj_name);
2435 tmp_var->from = var->from;
2436 tmp_var->to = var->to;
2437 varobj_delete (var, NULL, 0);
2438
2439 install_variable (tmp_var);
2440 *var_handle = tmp_var;
2441 var = *var_handle;
2442 *type_changed = 1;
2443 }
2444 xfree (old_type);
2445 xfree (new_type);
2446 }
2447 else
2448 {
2449 *type_changed = 0;
2450 }
2451
2452 {
2453 struct value *value;
2454
2455 value = value_of_root_1 (var_handle);
2456 if (var->value == NULL || value == NULL)
2457 {
2458 /* For root varobj-s, a NULL value indicates a scoping issue.
2459 So, nothing to do in terms of checking for mutations. */
2460 }
2461 else if (varobj_value_has_mutated (var, value, value_type (value)))
2462 {
2463 /* The type has mutated, so the children are no longer valid.
2464 Just delete them, and tell our caller that the type has
2465 changed. */
2466 varobj_delete (var, NULL, 1 /* only_children */);
2467 var->num_children = -1;
2468 var->to = -1;
2469 var->from = -1;
2470 *type_changed = 1;
2471 }
2472 return value;
2473 }
2474 }
2475
2476 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2477 static struct value *
2478 value_of_child (struct varobj *parent, int index)
2479 {
2480 struct value *value;
2481
2482 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2483
2484 return value;
2485 }
2486
2487 /* GDB already has a command called "value_of_variable". Sigh. */
2488 static char *
2489 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2490 {
2491 if (var->root->is_valid)
2492 {
2493 if (var->dynamic->pretty_printer != NULL)
2494 return varobj_value_get_print_value (var->value, var->format, var);
2495 return (*var->root->lang_ops->value_of_variable) (var, format);
2496 }
2497 else
2498 return NULL;
2499 }
2500
2501 void
2502 varobj_formatted_print_options (struct value_print_options *opts,
2503 enum varobj_display_formats format)
2504 {
2505 get_formatted_print_options (opts, format_code[(int) format]);
2506 opts->deref_ref = 0;
2507 opts->raw = 1;
2508 }
2509
2510 char *
2511 varobj_value_get_print_value (struct value *value,
2512 enum varobj_display_formats format,
2513 struct varobj *var)
2514 {
2515 struct ui_file *stb;
2516 struct cleanup *old_chain;
2517 char *thevalue = NULL;
2518 struct value_print_options opts;
2519 struct type *type = NULL;
2520 long len = 0;
2521 char *encoding = NULL;
2522 struct gdbarch *gdbarch = NULL;
2523 /* Initialize it just to avoid a GCC false warning. */
2524 CORE_ADDR str_addr = 0;
2525 int string_print = 0;
2526
2527 if (value == NULL)
2528 return NULL;
2529
2530 stb = mem_fileopen ();
2531 old_chain = make_cleanup_ui_file_delete (stb);
2532
2533 gdbarch = get_type_arch (value_type (value));
2534 #if HAVE_PYTHON
2535 if (gdb_python_initialized)
2536 {
2537 PyObject *value_formatter = var->dynamic->pretty_printer;
2538
2539 varobj_ensure_python_env (var);
2540
2541 if (value_formatter)
2542 {
2543 /* First check to see if we have any children at all. If so,
2544 we simply return {...}. */
2545 if (dynamic_varobj_has_child_method (var))
2546 {
2547 do_cleanups (old_chain);
2548 return xstrdup ("{...}");
2549 }
2550
2551 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2552 {
2553 struct value *replacement;
2554 PyObject *output = NULL;
2555
2556 output = apply_varobj_pretty_printer (value_formatter,
2557 &replacement,
2558 stb);
2559
2560 /* If we have string like output ... */
2561 if (output)
2562 {
2563 make_cleanup_py_decref (output);
2564
2565 /* If this is a lazy string, extract it. For lazy
2566 strings we always print as a string, so set
2567 string_print. */
2568 if (gdbpy_is_lazy_string (output))
2569 {
2570 gdbpy_extract_lazy_string (output, &str_addr, &type,
2571 &len, &encoding);
2572 make_cleanup (free_current_contents, &encoding);
2573 string_print = 1;
2574 }
2575 else
2576 {
2577 /* If it is a regular (non-lazy) string, extract
2578 it and copy the contents into THEVALUE. If the
2579 hint says to print it as a string, set
2580 string_print. Otherwise just return the extracted
2581 string as a value. */
2582
2583 char *s = python_string_to_target_string (output);
2584
2585 if (s)
2586 {
2587 char *hint;
2588
2589 hint = gdbpy_get_display_hint (value_formatter);
2590 if (hint)
2591 {
2592 if (!strcmp (hint, "string"))
2593 string_print = 1;
2594 xfree (hint);
2595 }
2596
2597 len = strlen (s);
2598 thevalue = xmemdup (s, len + 1, len + 1);
2599 type = builtin_type (gdbarch)->builtin_char;
2600 xfree (s);
2601
2602 if (!string_print)
2603 {
2604 do_cleanups (old_chain);
2605 return thevalue;
2606 }
2607
2608 make_cleanup (xfree, thevalue);
2609 }
2610 else
2611 gdbpy_print_stack ();
2612 }
2613 }
2614 /* If the printer returned a replacement value, set VALUE
2615 to REPLACEMENT. If there is not a replacement value,
2616 just use the value passed to this function. */
2617 if (replacement)
2618 value = replacement;
2619 }
2620 }
2621 }
2622 #endif
2623
2624 varobj_formatted_print_options (&opts, format);
2625
2626 /* If the THEVALUE has contents, it is a regular string. */
2627 if (thevalue)
2628 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2629 else if (string_print)
2630 /* Otherwise, if string_print is set, and it is not a regular
2631 string, it is a lazy string. */
2632 val_print_string (type, encoding, str_addr, len, stb, &opts);
2633 else
2634 /* All other cases. */
2635 common_val_print (value, stb, 0, &opts, current_language);
2636
2637 thevalue = ui_file_xstrdup (stb, NULL);
2638
2639 do_cleanups (old_chain);
2640 return thevalue;
2641 }
2642
2643 int
2644 varobj_editable_p (struct varobj *var)
2645 {
2646 struct type *type;
2647
2648 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2649 return 0;
2650
2651 type = varobj_get_value_type (var);
2652
2653 switch (TYPE_CODE (type))
2654 {
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 case TYPE_CODE_ARRAY:
2658 case TYPE_CODE_FUNC:
2659 case TYPE_CODE_METHOD:
2660 return 0;
2661 break;
2662
2663 default:
2664 return 1;
2665 break;
2666 }
2667 }
2668
2669 /* Call VAR's value_is_changeable_p language-specific callback. */
2670
2671 int
2672 varobj_value_is_changeable_p (struct varobj *var)
2673 {
2674 return var->root->lang_ops->value_is_changeable_p (var);
2675 }
2676
2677 /* Return 1 if that varobj is floating, that is is always evaluated in the
2678 selected frame, and not bound to thread/frame. Such variable objects
2679 are created using '@' as frame specifier to -var-create. */
2680 int
2681 varobj_floating_p (struct varobj *var)
2682 {
2683 return var->root->floating;
2684 }
2685
2686 /* Implement the "value_is_changeable_p" varobj callback for most
2687 languages. */
2688
2689 int
2690 varobj_default_value_is_changeable_p (struct varobj *var)
2691 {
2692 int r;
2693 struct type *type;
2694
2695 if (CPLUS_FAKE_CHILD (var))
2696 return 0;
2697
2698 type = varobj_get_value_type (var);
2699
2700 switch (TYPE_CODE (type))
2701 {
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2705 r = 0;
2706 break;
2707
2708 default:
2709 r = 1;
2710 }
2711
2712 return r;
2713 }
2714
2715 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2716 with an arbitrary caller supplied DATA pointer. */
2717
2718 void
2719 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2720 {
2721 struct varobj_root *var_root, *var_root_next;
2722
2723 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2724
2725 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2726 {
2727 var_root_next = var_root->next;
2728
2729 (*func) (var_root->rootvar, data);
2730 }
2731 }
2732 \f
2733 extern void _initialize_varobj (void);
2734 void
2735 _initialize_varobj (void)
2736 {
2737 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2738
2739 varobj_table = xmalloc (sizeof_table);
2740 memset (varobj_table, 0, sizeof_table);
2741
2742 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2743 &varobjdebug,
2744 _("Set varobj debugging."),
2745 _("Show varobj debugging."),
2746 _("When non-zero, varobj debugging is enabled."),
2747 NULL, show_varobjdebug,
2748 &setdebuglist, &showdebuglist);
2749 }
2750
2751 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2752 defined on globals. It is a helper for varobj_invalidate.
2753
2754 This function is called after changing the symbol file, in this case the
2755 pointers to "struct type" stored by the varobj are no longer valid. All
2756 varobj must be either re-evaluated, or marked as invalid here. */
2757
2758 static void
2759 varobj_invalidate_iter (struct varobj *var, void *unused)
2760 {
2761 /* global and floating var must be re-evaluated. */
2762 if (var->root->floating || var->root->valid_block == NULL)
2763 {
2764 struct varobj *tmp_var;
2765
2766 /* Try to create a varobj with same expression. If we succeed
2767 replace the old varobj, otherwise invalidate it. */
2768 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2769 USE_CURRENT_FRAME);
2770 if (tmp_var != NULL)
2771 {
2772 tmp_var->obj_name = xstrdup (var->obj_name);
2773 varobj_delete (var, NULL, 0);
2774 install_variable (tmp_var);
2775 }
2776 else
2777 var->root->is_valid = 0;
2778 }
2779 else /* locals must be invalidated. */
2780 var->root->is_valid = 0;
2781 }
2782
2783 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2784 are defined on globals.
2785 Invalidated varobjs will be always printed in_scope="invalid". */
2786
2787 void
2788 varobj_invalidate (void)
2789 {
2790 all_root_varobjs (varobj_invalidate_iter, NULL);
2791 }
This page took 0.10175 seconds and 5 git commands to generate.