2006-11-28 Vladimir Prus <vladimir@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 #include "defs.h"
22 #include "exceptions.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "frame.h"
26 #include "language.h"
27 #include "wrapper.h"
28 #include "gdbcmd.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34
35 /* Non-zero if we want to see trace of varobj level stuff. */
36
37 int varobjdebug = 0;
38 static void
39 show_varobjdebug (struct ui_file *file, int from_tty,
40 struct cmd_list_element *c, const char *value)
41 {
42 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
43 }
44
45 /* String representations of gdb's format codes */
46 char *varobj_format_string[] =
47 { "natural", "binary", "decimal", "hexadecimal", "octal" };
48
49 /* String representations of gdb's known languages */
50 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
51
52 /* Data structures */
53
54 /* Every root variable has one of these structures saved in its
55 varobj. Members which must be free'd are noted. */
56 struct varobj_root
57 {
58
59 /* Alloc'd expression for this parent. */
60 struct expression *exp;
61
62 /* Block for which this expression is valid */
63 struct block *valid_block;
64
65 /* The frame for this expression */
66 struct frame_id frame;
67
68 /* If 1, "update" always recomputes the frame & valid block
69 using the currently selected frame. */
70 int use_selected_frame;
71
72 /* Language info for this variable and its children */
73 struct language_specific *lang;
74
75 /* The varobj for this root node. */
76 struct varobj *rootvar;
77
78 /* Next root variable */
79 struct varobj_root *next;
80 };
81
82 /* Every variable in the system has a structure of this type defined
83 for it. This structure holds all information necessary to manipulate
84 a particular object variable. Members which must be freed are noted. */
85 struct varobj
86 {
87
88 /* Alloc'd name of the variable for this object.. If this variable is a
89 child, then this name will be the child's source name.
90 (bar, not foo.bar) */
91 /* NOTE: This is the "expression" */
92 char *name;
93
94 /* The alloc'd name for this variable's object. This is here for
95 convenience when constructing this object's children. */
96 char *obj_name;
97
98 /* Index of this variable in its parent or -1 */
99 int index;
100
101 /* The type of this variable. This may NEVER be NULL. */
102 struct type *type;
103
104 /* The value of this expression or subexpression. This may be NULL.
105 Invariant: if type_changeable (this) is non-zero, the value is either
106 NULL, or not lazy. */
107 struct value *value;
108
109 /* Did an error occur evaluating the expression or getting its value? */
110 int error;
111
112 /* The number of (immediate) children this variable has */
113 int num_children;
114
115 /* If this object is a child, this points to its immediate parent. */
116 struct varobj *parent;
117
118 /* A list of this object's children */
119 struct varobj_child *children;
120
121 /* Description of the root variable. Points to root variable for children. */
122 struct varobj_root *root;
123
124 /* The format of the output for this object */
125 enum varobj_display_formats format;
126
127 /* Was this variable updated via a varobj_set_value operation */
128 int updated;
129 };
130
131 /* Every variable keeps a linked list of its children, described
132 by the following structure. */
133 /* FIXME: Deprecated. All should use vlist instead */
134
135 struct varobj_child
136 {
137
138 /* Pointer to the child's data */
139 struct varobj *child;
140
141 /* Pointer to the next child */
142 struct varobj_child *next;
143 };
144
145 /* A stack of varobjs */
146 /* FIXME: Deprecated. All should use vlist instead */
147
148 struct vstack
149 {
150 struct varobj *var;
151 struct vstack *next;
152 };
153
154 struct cpstack
155 {
156 char *name;
157 struct cpstack *next;
158 };
159
160 /* A list of varobjs */
161
162 struct vlist
163 {
164 struct varobj *var;
165 struct vlist *next;
166 };
167
168 /* Private function prototypes */
169
170 /* Helper functions for the above subcommands. */
171
172 static int delete_variable (struct cpstack **, struct varobj *, int);
173
174 static void delete_variable_1 (struct cpstack **, int *,
175 struct varobj *, int, int);
176
177 static int install_variable (struct varobj *);
178
179 static void uninstall_variable (struct varobj *);
180
181 static struct varobj *child_exists (struct varobj *, char *);
182
183 static struct varobj *create_child (struct varobj *, int, char *);
184
185 static void save_child_in_parent (struct varobj *, struct varobj *);
186
187 static void remove_child_from_parent (struct varobj *, struct varobj *);
188
189 /* Utility routines */
190
191 static struct varobj *new_variable (void);
192
193 static struct varobj *new_root_variable (void);
194
195 static void free_variable (struct varobj *var);
196
197 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
198
199 static struct type *get_type (struct varobj *var);
200
201 static struct type *get_type_deref (struct varobj *var);
202
203 static struct type *get_target_type (struct type *);
204
205 static enum varobj_display_formats variable_default_display (struct varobj *);
206
207 static void vpush (struct vstack **pstack, struct varobj *var);
208
209 static struct varobj *vpop (struct vstack **pstack);
210
211 static void cppush (struct cpstack **pstack, char *name);
212
213 static char *cppop (struct cpstack **pstack);
214
215 static int install_new_value (struct varobj *var, struct value *value,
216 int initial);
217
218 /* Language-specific routines. */
219
220 static enum varobj_languages variable_language (struct varobj *var);
221
222 static int number_of_children (struct varobj *);
223
224 static char *name_of_variable (struct varobj *);
225
226 static char *name_of_child (struct varobj *, int);
227
228 static struct value *value_of_root (struct varobj **var_handle, int *);
229
230 static struct value *value_of_child (struct varobj *parent, int index);
231
232 static int variable_editable (struct varobj *var);
233
234 static char *my_value_of_variable (struct varobj *var);
235
236 static int type_changeable (struct varobj *var);
237
238 /* C implementation */
239
240 static int c_number_of_children (struct varobj *var);
241
242 static char *c_name_of_variable (struct varobj *parent);
243
244 static char *c_name_of_child (struct varobj *parent, int index);
245
246 static struct value *c_value_of_root (struct varobj **var_handle);
247
248 static struct value *c_value_of_child (struct varobj *parent, int index);
249
250 static struct type *c_type_of_child (struct varobj *parent, int index);
251
252 static int c_variable_editable (struct varobj *var);
253
254 static char *c_value_of_variable (struct varobj *var);
255
256 /* C++ implementation */
257
258 static int cplus_number_of_children (struct varobj *var);
259
260 static void cplus_class_num_children (struct type *type, int children[3]);
261
262 static char *cplus_name_of_variable (struct varobj *parent);
263
264 static char *cplus_name_of_child (struct varobj *parent, int index);
265
266 static struct value *cplus_value_of_root (struct varobj **var_handle);
267
268 static struct value *cplus_value_of_child (struct varobj *parent, int index);
269
270 static struct type *cplus_type_of_child (struct varobj *parent, int index);
271
272 static int cplus_variable_editable (struct varobj *var);
273
274 static char *cplus_value_of_variable (struct varobj *var);
275
276 /* Java implementation */
277
278 static int java_number_of_children (struct varobj *var);
279
280 static char *java_name_of_variable (struct varobj *parent);
281
282 static char *java_name_of_child (struct varobj *parent, int index);
283
284 static struct value *java_value_of_root (struct varobj **var_handle);
285
286 static struct value *java_value_of_child (struct varobj *parent, int index);
287
288 static struct type *java_type_of_child (struct varobj *parent, int index);
289
290 static int java_variable_editable (struct varobj *var);
291
292 static char *java_value_of_variable (struct varobj *var);
293
294 /* The language specific vector */
295
296 struct language_specific
297 {
298
299 /* The language of this variable */
300 enum varobj_languages language;
301
302 /* The number of children of PARENT. */
303 int (*number_of_children) (struct varobj * parent);
304
305 /* The name (expression) of a root varobj. */
306 char *(*name_of_variable) (struct varobj * parent);
307
308 /* The name of the INDEX'th child of PARENT. */
309 char *(*name_of_child) (struct varobj * parent, int index);
310
311 /* The ``struct value *'' of the root variable ROOT. */
312 struct value *(*value_of_root) (struct varobj ** root_handle);
313
314 /* The ``struct value *'' of the INDEX'th child of PARENT. */
315 struct value *(*value_of_child) (struct varobj * parent, int index);
316
317 /* The type of the INDEX'th child of PARENT. */
318 struct type *(*type_of_child) (struct varobj * parent, int index);
319
320 /* Is VAR editable? */
321 int (*variable_editable) (struct varobj * var);
322
323 /* The current value of VAR. */
324 char *(*value_of_variable) (struct varobj * var);
325 };
326
327 /* Array of known source language routines. */
328 static struct language_specific
329 languages[vlang_end][sizeof (struct language_specific)] = {
330 /* Unknown (try treating as C */
331 {
332 vlang_unknown,
333 c_number_of_children,
334 c_name_of_variable,
335 c_name_of_child,
336 c_value_of_root,
337 c_value_of_child,
338 c_type_of_child,
339 c_variable_editable,
340 c_value_of_variable}
341 ,
342 /* C */
343 {
344 vlang_c,
345 c_number_of_children,
346 c_name_of_variable,
347 c_name_of_child,
348 c_value_of_root,
349 c_value_of_child,
350 c_type_of_child,
351 c_variable_editable,
352 c_value_of_variable}
353 ,
354 /* C++ */
355 {
356 vlang_cplus,
357 cplus_number_of_children,
358 cplus_name_of_variable,
359 cplus_name_of_child,
360 cplus_value_of_root,
361 cplus_value_of_child,
362 cplus_type_of_child,
363 cplus_variable_editable,
364 cplus_value_of_variable}
365 ,
366 /* Java */
367 {
368 vlang_java,
369 java_number_of_children,
370 java_name_of_variable,
371 java_name_of_child,
372 java_value_of_root,
373 java_value_of_child,
374 java_type_of_child,
375 java_variable_editable,
376 java_value_of_variable}
377 };
378
379 /* A little convenience enum for dealing with C++/Java */
380 enum vsections
381 {
382 v_public = 0, v_private, v_protected
383 };
384
385 /* Private data */
386
387 /* Mappings of varobj_display_formats enums to gdb's format codes */
388 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
389
390 /* Header of the list of root variable objects */
391 static struct varobj_root *rootlist;
392 static int rootcount = 0; /* number of root varobjs in the list */
393
394 /* Prime number indicating the number of buckets in the hash table */
395 /* A prime large enough to avoid too many colisions */
396 #define VAROBJ_TABLE_SIZE 227
397
398 /* Pointer to the varobj hash table (built at run time) */
399 static struct vlist **varobj_table;
400
401 /* Is the variable X one of our "fake" children? */
402 #define CPLUS_FAKE_CHILD(x) \
403 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
404 \f
405
406 /* API Implementation */
407
408 /* Creates a varobj (not its children) */
409
410 /* Return the full FRAME which corresponds to the given CORE_ADDR
411 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
412
413 static struct frame_info *
414 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
415 {
416 struct frame_info *frame = NULL;
417
418 if (frame_addr == (CORE_ADDR) 0)
419 return NULL;
420
421 while (1)
422 {
423 frame = get_prev_frame (frame);
424 if (frame == NULL)
425 return NULL;
426 if (get_frame_base_address (frame) == frame_addr)
427 return frame;
428 }
429 }
430
431 struct varobj *
432 varobj_create (char *objname,
433 char *expression, CORE_ADDR frame, enum varobj_type type)
434 {
435 struct varobj *var;
436 struct frame_info *fi;
437 struct frame_info *old_fi = NULL;
438 struct block *block;
439 struct cleanup *old_chain;
440
441 /* Fill out a varobj structure for the (root) variable being constructed. */
442 var = new_root_variable ();
443 old_chain = make_cleanup_free_variable (var);
444
445 if (expression != NULL)
446 {
447 char *p;
448 enum varobj_languages lang;
449 struct value *value;
450
451 /* Parse and evaluate the expression, filling in as much
452 of the variable's data as possible */
453
454 /* Allow creator to specify context of variable */
455 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
456 fi = deprecated_selected_frame;
457 else
458 /* FIXME: cagney/2002-11-23: This code should be doing a
459 lookup using the frame ID and not just the frame's
460 ``address''. This, of course, means an interface change.
461 However, with out that interface change ISAs, such as the
462 ia64 with its two stacks, won't work. Similar goes for the
463 case where there is a frameless function. */
464 fi = find_frame_addr_in_frame_chain (frame);
465
466 /* frame = -2 means always use selected frame */
467 if (type == USE_SELECTED_FRAME)
468 var->root->use_selected_frame = 1;
469
470 block = NULL;
471 if (fi != NULL)
472 block = get_frame_block (fi, 0);
473
474 p = expression;
475 innermost_block = NULL;
476 /* Wrap the call to parse expression, so we can
477 return a sensible error. */
478 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
479 {
480 return NULL;
481 }
482
483 /* Don't allow variables to be created for types. */
484 if (var->root->exp->elts[0].opcode == OP_TYPE)
485 {
486 do_cleanups (old_chain);
487 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
488 " as an expression.\n");
489 return NULL;
490 }
491
492 var->format = variable_default_display (var);
493 var->root->valid_block = innermost_block;
494 var->name = savestring (expression, strlen (expression));
495
496 /* When the frame is different from the current frame,
497 we must select the appropriate frame before parsing
498 the expression, otherwise the value will not be current.
499 Since select_frame is so benign, just call it for all cases. */
500 if (fi != NULL)
501 {
502 var->root->frame = get_frame_id (fi);
503 old_fi = deprecated_selected_frame;
504 select_frame (fi);
505 }
506
507 /* We definitively need to catch errors here.
508 If evaluate_expression succeeds we got the value we wanted.
509 But if it fails, we still go on with a call to evaluate_type() */
510 if (!gdb_evaluate_expression (var->root->exp, &value))
511 /* Error getting the value. Try to at least get the
512 right type. */
513 value = evaluate_type (var->root->exp);
514
515 release_value (value);
516
517 var->type = value_type (value);
518
519 install_new_value (var, value, 1 /* Initial assignment */);
520
521 /* Set language info */
522 lang = variable_language (var);
523 var->root->lang = languages[lang];
524
525 /* Set ourselves as our root */
526 var->root->rootvar = var;
527
528 /* Reset the selected frame */
529 if (fi != NULL)
530 select_frame (old_fi);
531 }
532
533 /* If the variable object name is null, that means this
534 is a temporary variable, so don't install it. */
535
536 if ((var != NULL) && (objname != NULL))
537 {
538 var->obj_name = savestring (objname, strlen (objname));
539
540 /* If a varobj name is duplicated, the install will fail so
541 we must clenup */
542 if (!install_variable (var))
543 {
544 do_cleanups (old_chain);
545 return NULL;
546 }
547 }
548
549 discard_cleanups (old_chain);
550 return var;
551 }
552
553 /* Generates an unique name that can be used for a varobj */
554
555 char *
556 varobj_gen_name (void)
557 {
558 static int id = 0;
559 char *obj_name;
560
561 /* generate a name for this object */
562 id++;
563 obj_name = xstrprintf ("var%d", id);
564
565 return obj_name;
566 }
567
568 /* Given an "objname", returns the pointer to the corresponding varobj
569 or NULL if not found */
570
571 struct varobj *
572 varobj_get_handle (char *objname)
573 {
574 struct vlist *cv;
575 const char *chp;
576 unsigned int index = 0;
577 unsigned int i = 1;
578
579 for (chp = objname; *chp; chp++)
580 {
581 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
582 }
583
584 cv = *(varobj_table + index);
585 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
586 cv = cv->next;
587
588 if (cv == NULL)
589 error (_("Variable object not found"));
590
591 return cv->var;
592 }
593
594 /* Given the handle, return the name of the object */
595
596 char *
597 varobj_get_objname (struct varobj *var)
598 {
599 return var->obj_name;
600 }
601
602 /* Given the handle, return the expression represented by the object */
603
604 char *
605 varobj_get_expression (struct varobj *var)
606 {
607 return name_of_variable (var);
608 }
609
610 /* Deletes a varobj and all its children if only_children == 0,
611 otherwise deletes only the children; returns a malloc'ed list of all the
612 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
613
614 int
615 varobj_delete (struct varobj *var, char ***dellist, int only_children)
616 {
617 int delcount;
618 int mycount;
619 struct cpstack *result = NULL;
620 char **cp;
621
622 /* Initialize a stack for temporary results */
623 cppush (&result, NULL);
624
625 if (only_children)
626 /* Delete only the variable children */
627 delcount = delete_variable (&result, var, 1 /* only the children */ );
628 else
629 /* Delete the variable and all its children */
630 delcount = delete_variable (&result, var, 0 /* parent+children */ );
631
632 /* We may have been asked to return a list of what has been deleted */
633 if (dellist != NULL)
634 {
635 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
636
637 cp = *dellist;
638 mycount = delcount;
639 *cp = cppop (&result);
640 while ((*cp != NULL) && (mycount > 0))
641 {
642 mycount--;
643 cp++;
644 *cp = cppop (&result);
645 }
646
647 if (mycount || (*cp != NULL))
648 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
649 mycount);
650 }
651
652 return delcount;
653 }
654
655 /* Set/Get variable object display format */
656
657 enum varobj_display_formats
658 varobj_set_display_format (struct varobj *var,
659 enum varobj_display_formats format)
660 {
661 switch (format)
662 {
663 case FORMAT_NATURAL:
664 case FORMAT_BINARY:
665 case FORMAT_DECIMAL:
666 case FORMAT_HEXADECIMAL:
667 case FORMAT_OCTAL:
668 var->format = format;
669 break;
670
671 default:
672 var->format = variable_default_display (var);
673 }
674
675 return var->format;
676 }
677
678 enum varobj_display_formats
679 varobj_get_display_format (struct varobj *var)
680 {
681 return var->format;
682 }
683
684 int
685 varobj_get_num_children (struct varobj *var)
686 {
687 if (var->num_children == -1)
688 var->num_children = number_of_children (var);
689
690 return var->num_children;
691 }
692
693 /* Creates a list of the immediate children of a variable object;
694 the return code is the number of such children or -1 on error */
695
696 int
697 varobj_list_children (struct varobj *var, struct varobj ***childlist)
698 {
699 struct varobj *child;
700 char *name;
701 int i;
702
703 /* sanity check: have we been passed a pointer? */
704 if (childlist == NULL)
705 return -1;
706
707 *childlist = NULL;
708
709 if (var->num_children == -1)
710 var->num_children = number_of_children (var);
711
712 /* List of children */
713 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
714
715 for (i = 0; i < var->num_children; i++)
716 {
717 /* Mark as the end in case we bail out */
718 *((*childlist) + i) = NULL;
719
720 /* check if child exists, if not create */
721 name = name_of_child (var, i);
722 child = child_exists (var, name);
723 if (child == NULL)
724 child = create_child (var, i, name);
725
726 *((*childlist) + i) = child;
727 }
728
729 /* End of list is marked by a NULL pointer */
730 *((*childlist) + i) = NULL;
731
732 return var->num_children;
733 }
734
735 /* Obtain the type of an object Variable as a string similar to the one gdb
736 prints on the console */
737
738 char *
739 varobj_get_type (struct varobj *var)
740 {
741 struct value *val;
742 struct cleanup *old_chain;
743 struct ui_file *stb;
744 char *thetype;
745 long length;
746
747 /* For the "fake" variables, do not return a type. (It's type is
748 NULL, too.) */
749 if (CPLUS_FAKE_CHILD (var))
750 return NULL;
751
752 stb = mem_fileopen ();
753 old_chain = make_cleanup_ui_file_delete (stb);
754
755 /* To print the type, we simply create a zero ``struct value *'' and
756 cast it to our type. We then typeprint this variable. */
757 val = value_zero (var->type, not_lval);
758 type_print (value_type (val), "", stb, -1);
759
760 thetype = ui_file_xstrdup (stb, &length);
761 do_cleanups (old_chain);
762 return thetype;
763 }
764
765 /* Obtain the type of an object variable. */
766
767 struct type *
768 varobj_get_gdb_type (struct varobj *var)
769 {
770 return var->type;
771 }
772
773 enum varobj_languages
774 varobj_get_language (struct varobj *var)
775 {
776 return variable_language (var);
777 }
778
779 int
780 varobj_get_attributes (struct varobj *var)
781 {
782 int attributes = 0;
783
784 if (variable_editable (var))
785 /* FIXME: define masks for attributes */
786 attributes |= 0x00000001; /* Editable */
787
788 return attributes;
789 }
790
791 char *
792 varobj_get_value (struct varobj *var)
793 {
794 return my_value_of_variable (var);
795 }
796
797 /* Set the value of an object variable (if it is editable) to the
798 value of the given expression */
799 /* Note: Invokes functions that can call error() */
800
801 int
802 varobj_set_value (struct varobj *var, char *expression)
803 {
804 struct value *val;
805 int offset = 0;
806 int error = 0;
807
808 /* The argument "expression" contains the variable's new value.
809 We need to first construct a legal expression for this -- ugh! */
810 /* Does this cover all the bases? */
811 struct expression *exp;
812 struct value *value;
813 int saved_input_radix = input_radix;
814
815 if (var->value != NULL && variable_editable (var) && !var->error)
816 {
817 char *s = expression;
818 int i;
819
820 input_radix = 10; /* ALWAYS reset to decimal temporarily */
821 exp = parse_exp_1 (&s, 0, 0);
822 if (!gdb_evaluate_expression (exp, &value))
823 {
824 /* We cannot proceed without a valid expression. */
825 xfree (exp);
826 return 0;
827 }
828
829 /* All types that are editable must also be changeable. */
830 gdb_assert (type_changeable (var));
831
832 /* The value of a changeable variable object must not be lazy. */
833 gdb_assert (!value_lazy (var->value));
834
835 /* Need to coerce the input. We want to check if the
836 value of the variable object will be different
837 after assignment, and the first thing value_assign
838 does is coerce the input.
839 For example, if we are assigning an array to a pointer variable we
840 should compare the pointer with the the array's address, not with the
841 array's content. */
842 value = coerce_array (value);
843
844 if (!value_contents_equal (var->value, value))
845 var->updated = 1;
846
847 /* The new value may be lazy. gdb_value_assign, or
848 rather value_contents, will take care of this.
849 If fetching of the new value will fail, gdb_value_assign
850 with catch the exception. */
851 if (!gdb_value_assign (var->value, value, &val))
852 return 0;
853 value_free (var->value);
854 release_value (val);
855 var->value = val;
856 input_radix = saved_input_radix;
857 return 1;
858 }
859
860 return 0;
861 }
862
863 /* Returns a malloc'ed list with all root variable objects */
864 int
865 varobj_list (struct varobj ***varlist)
866 {
867 struct varobj **cv;
868 struct varobj_root *croot;
869 int mycount = rootcount;
870
871 /* Alloc (rootcount + 1) entries for the result */
872 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
873
874 cv = *varlist;
875 croot = rootlist;
876 while ((croot != NULL) && (mycount > 0))
877 {
878 *cv = croot->rootvar;
879 mycount--;
880 cv++;
881 croot = croot->next;
882 }
883 /* Mark the end of the list */
884 *cv = NULL;
885
886 if (mycount || (croot != NULL))
887 warning
888 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
889 rootcount, mycount);
890
891 return rootcount;
892 }
893
894 /* Assign a new value to a variable object. If INITIAL is non-zero,
895 this is the first assignement after the variable object was just
896 created, or changed type. In that case, just assign the value
897 and return 0.
898 Otherwise, assign the value and if type_changeable returns non-zero,
899 find if the new value is different from the current value.
900 Return 1 if so, and 0 if the values are equal. */
901 static int
902 install_new_value (struct varobj *var, struct value *value, int initial)
903 {
904 int changeable;
905 int need_to_fetch;
906 int changed = 0;
907
908 var->error = 0;
909 /* We need to know the varobj's type to decide if the value should
910 be fetched or not. C++ fake children (public/protected/private) don't have
911 a type. */
912 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
913 changeable = type_changeable (var);
914 need_to_fetch = changeable;
915
916 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
917 /* For unions, we need to fetch the value implicitly because
918 of implementation of union member fetch. When gdb
919 creates a value for a field and the value of the enclosing
920 structure is not lazy, it immediately copies the necessary
921 bytes from the enclosing values. If the enclosing value is
922 lazy, the call to value_fetch_lazy on the field will read
923 the data from memory. For unions, that means we'll read the
924 same memory more than once, which is not desirable. So
925 fetch now. */
926 need_to_fetch = 1;
927
928 /* The new value might be lazy. If the type is changeable,
929 that is we'll be comparing values of this type, fetch the
930 value now. Otherwise, on the next update the old value
931 will be lazy, which means we've lost that old value. */
932 if (need_to_fetch && value && value_lazy (value))
933 {
934 if (!gdb_value_fetch_lazy (value))
935 {
936 var->error = 1;
937 /* Set the value to NULL, so that for the next -var-update,
938 we don't try to compare the new value with this value,
939 that we couldn't even read. */
940 value = NULL;
941 }
942 else
943 var->error = 0;
944 }
945
946 /* If the type is changeable, compare the old and the new values.
947 If this is the initial assignment, we don't have any old value
948 to compare with. */
949 if (!initial && changeable)
950 {
951 /* If the value of the varobj was changed by -var-set-value, then the
952 value in the varobj and in the target is the same. However, that value
953 is different from the value that the varobj had after the previous
954 -var-update. So need to the varobj as changed. */
955 if (var->updated)
956 changed = 1;
957 else
958 {
959 /* Try to compare the values. That requires that both
960 values are non-lazy. */
961
962 /* Quick comparison of NULL values. */
963 if (var->value == NULL && value == NULL)
964 /* Equal. */
965 ;
966 else if (var->value == NULL || value == NULL)
967 changed = 1;
968 else
969 {
970 gdb_assert (!value_lazy (var->value));
971 gdb_assert (!value_lazy (value));
972
973 if (!value_contents_equal (var->value, value))
974 changed = 1;
975 }
976 }
977 }
978
979 /* We must always keep the new value, since children depend on it. */
980 if (var->value != NULL)
981 value_free (var->value);
982 var->value = value;
983 var->updated = 0;
984
985 return changed;
986 }
987
988
989 /* Update the values for a variable and its children. This is a
990 two-pronged attack. First, re-parse the value for the root's
991 expression to see if it's changed. Then go all the way
992 through its children, reconstructing them and noting if they've
993 changed.
994 Return value:
995 -1 if there was an error updating the varobj
996 -2 if the type changed
997 Otherwise it is the number of children + parent changed
998
999 Only root variables can be updated...
1000
1001 NOTE: This function may delete the caller's varobj. If it
1002 returns -2, then it has done this and VARP will be modified
1003 to point to the new varobj. */
1004
1005 int
1006 varobj_update (struct varobj **varp, struct varobj ***changelist)
1007 {
1008 int changed = 0;
1009 int error = 0;
1010 int type_changed;
1011 int i;
1012 int vleft;
1013 struct varobj *v;
1014 struct varobj **cv;
1015 struct varobj **templist = NULL;
1016 struct value *new;
1017 struct vstack *stack = NULL;
1018 struct vstack *result = NULL;
1019 struct frame_id old_fid;
1020 struct frame_info *fi;
1021
1022 /* sanity check: have we been passed a pointer? */
1023 if (changelist == NULL)
1024 return -1;
1025
1026 /* Only root variables can be updated... */
1027 if ((*varp)->root->rootvar != *varp)
1028 /* Not a root var */
1029 return -1;
1030
1031 /* Save the selected stack frame, since we will need to change it
1032 in order to evaluate expressions. */
1033 old_fid = get_frame_id (deprecated_selected_frame);
1034
1035 /* Update the root variable. value_of_root can return NULL
1036 if the variable is no longer around, i.e. we stepped out of
1037 the frame in which a local existed. We are letting the
1038 value_of_root variable dispose of the varobj if the type
1039 has changed. */
1040 type_changed = 1;
1041 new = value_of_root (varp, &type_changed);
1042 if (new == NULL)
1043 {
1044 (*varp)->error = 1;
1045 return -1;
1046 }
1047
1048 /* Initialize a stack for temporary results */
1049 vpush (&result, NULL);
1050
1051 /* If this is a "use_selected_frame" varobj, and its type has changed,
1052 them note that it's changed. */
1053 if (type_changed)
1054 {
1055 vpush (&result, *varp);
1056 changed++;
1057 }
1058
1059 if (install_new_value ((*varp), new, type_changed))
1060 {
1061 /* If type_changed is 1, install_new_value will never return
1062 non-zero, so we'll never report the same variable twice. */
1063 gdb_assert (!type_changed);
1064 vpush (&result, (*varp));
1065 changed++;
1066 }
1067
1068 /* Initialize a stack */
1069 vpush (&stack, NULL);
1070
1071 /* Push the root's children */
1072 if ((*varp)->children != NULL)
1073 {
1074 struct varobj_child *c;
1075 for (c = (*varp)->children; c != NULL; c = c->next)
1076 vpush (&stack, c->child);
1077 }
1078
1079 /* Walk through the children, reconstructing them all. */
1080 v = vpop (&stack);
1081 while (v != NULL)
1082 {
1083 /* Push any children */
1084 if (v->children != NULL)
1085 {
1086 struct varobj_child *c;
1087 for (c = v->children; c != NULL; c = c->next)
1088 vpush (&stack, c->child);
1089 }
1090
1091 /* Update this variable */
1092 new = value_of_child (v->parent, v->index);
1093 if (install_new_value (v, new, 0 /* type not changed */))
1094 {
1095 /* Note that it's changed */
1096 vpush (&result, v);
1097 v->updated = 0;
1098 changed++;
1099 }
1100
1101 /* Get next child */
1102 v = vpop (&stack);
1103 }
1104
1105 /* Alloc (changed + 1) list entries */
1106 /* FIXME: add a cleanup for the allocated list(s)
1107 because one day the select_frame called below can longjump */
1108 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1109 if (changed > 1)
1110 {
1111 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1112 cv = templist;
1113 }
1114 else
1115 cv = *changelist;
1116
1117 /* Copy from result stack to list */
1118 vleft = changed;
1119 *cv = vpop (&result);
1120 while ((*cv != NULL) && (vleft > 0))
1121 {
1122 vleft--;
1123 cv++;
1124 *cv = vpop (&result);
1125 }
1126 if (vleft)
1127 warning (_("varobj_update: assertion failed - vleft <> 0"));
1128
1129 if (changed > 1)
1130 {
1131 /* Now we revert the order. */
1132 for (i = 0; i < changed; i++)
1133 *(*changelist + i) = *(templist + changed - 1 - i);
1134 *(*changelist + changed) = NULL;
1135 }
1136
1137 /* Restore selected frame */
1138 fi = frame_find_by_id (old_fid);
1139 if (fi)
1140 select_frame (fi);
1141
1142 if (type_changed)
1143 return -2;
1144 else
1145 return changed;
1146 }
1147 \f
1148
1149 /* Helper functions */
1150
1151 /*
1152 * Variable object construction/destruction
1153 */
1154
1155 static int
1156 delete_variable (struct cpstack **resultp, struct varobj *var,
1157 int only_children_p)
1158 {
1159 int delcount = 0;
1160
1161 delete_variable_1 (resultp, &delcount, var,
1162 only_children_p, 1 /* remove_from_parent_p */ );
1163
1164 return delcount;
1165 }
1166
1167 /* Delete the variable object VAR and its children */
1168 /* IMPORTANT NOTE: If we delete a variable which is a child
1169 and the parent is not removed we dump core. It must be always
1170 initially called with remove_from_parent_p set */
1171 static void
1172 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1173 struct varobj *var, int only_children_p,
1174 int remove_from_parent_p)
1175 {
1176 struct varobj_child *vc;
1177 struct varobj_child *next;
1178
1179 /* Delete any children of this variable, too. */
1180 for (vc = var->children; vc != NULL; vc = next)
1181 {
1182 if (!remove_from_parent_p)
1183 vc->child->parent = NULL;
1184 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1185 next = vc->next;
1186 xfree (vc);
1187 }
1188
1189 /* if we were called to delete only the children we are done here */
1190 if (only_children_p)
1191 return;
1192
1193 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1194 /* If the name is null, this is a temporary variable, that has not
1195 yet been installed, don't report it, it belongs to the caller... */
1196 if (var->obj_name != NULL)
1197 {
1198 cppush (resultp, xstrdup (var->obj_name));
1199 *delcountp = *delcountp + 1;
1200 }
1201
1202 /* If this variable has a parent, remove it from its parent's list */
1203 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1204 (as indicated by remove_from_parent_p) we don't bother doing an
1205 expensive list search to find the element to remove when we are
1206 discarding the list afterwards */
1207 if ((remove_from_parent_p) && (var->parent != NULL))
1208 {
1209 remove_child_from_parent (var->parent, var);
1210 }
1211
1212 if (var->obj_name != NULL)
1213 uninstall_variable (var);
1214
1215 /* Free memory associated with this variable */
1216 free_variable (var);
1217 }
1218
1219 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1220 static int
1221 install_variable (struct varobj *var)
1222 {
1223 struct vlist *cv;
1224 struct vlist *newvl;
1225 const char *chp;
1226 unsigned int index = 0;
1227 unsigned int i = 1;
1228
1229 for (chp = var->obj_name; *chp; chp++)
1230 {
1231 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1232 }
1233
1234 cv = *(varobj_table + index);
1235 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1236 cv = cv->next;
1237
1238 if (cv != NULL)
1239 error (_("Duplicate variable object name"));
1240
1241 /* Add varobj to hash table */
1242 newvl = xmalloc (sizeof (struct vlist));
1243 newvl->next = *(varobj_table + index);
1244 newvl->var = var;
1245 *(varobj_table + index) = newvl;
1246
1247 /* If root, add varobj to root list */
1248 if (var->root->rootvar == var)
1249 {
1250 /* Add to list of root variables */
1251 if (rootlist == NULL)
1252 var->root->next = NULL;
1253 else
1254 var->root->next = rootlist;
1255 rootlist = var->root;
1256 rootcount++;
1257 }
1258
1259 return 1; /* OK */
1260 }
1261
1262 /* Unistall the object VAR. */
1263 static void
1264 uninstall_variable (struct varobj *var)
1265 {
1266 struct vlist *cv;
1267 struct vlist *prev;
1268 struct varobj_root *cr;
1269 struct varobj_root *prer;
1270 const char *chp;
1271 unsigned int index = 0;
1272 unsigned int i = 1;
1273
1274 /* Remove varobj from hash table */
1275 for (chp = var->obj_name; *chp; chp++)
1276 {
1277 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1278 }
1279
1280 cv = *(varobj_table + index);
1281 prev = NULL;
1282 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1283 {
1284 prev = cv;
1285 cv = cv->next;
1286 }
1287
1288 if (varobjdebug)
1289 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1290
1291 if (cv == NULL)
1292 {
1293 warning
1294 ("Assertion failed: Could not find variable object \"%s\" to delete",
1295 var->obj_name);
1296 return;
1297 }
1298
1299 if (prev == NULL)
1300 *(varobj_table + index) = cv->next;
1301 else
1302 prev->next = cv->next;
1303
1304 xfree (cv);
1305
1306 /* If root, remove varobj from root list */
1307 if (var->root->rootvar == var)
1308 {
1309 /* Remove from list of root variables */
1310 if (rootlist == var->root)
1311 rootlist = var->root->next;
1312 else
1313 {
1314 prer = NULL;
1315 cr = rootlist;
1316 while ((cr != NULL) && (cr->rootvar != var))
1317 {
1318 prer = cr;
1319 cr = cr->next;
1320 }
1321 if (cr == NULL)
1322 {
1323 warning
1324 ("Assertion failed: Could not find varobj \"%s\" in root list",
1325 var->obj_name);
1326 return;
1327 }
1328 if (prer == NULL)
1329 rootlist = NULL;
1330 else
1331 prer->next = cr->next;
1332 }
1333 rootcount--;
1334 }
1335
1336 }
1337
1338 /* Does a child with the name NAME exist in VAR? If so, return its data.
1339 If not, return NULL. */
1340 static struct varobj *
1341 child_exists (struct varobj *var, char *name)
1342 {
1343 struct varobj_child *vc;
1344
1345 for (vc = var->children; vc != NULL; vc = vc->next)
1346 {
1347 if (strcmp (vc->child->name, name) == 0)
1348 return vc->child;
1349 }
1350
1351 return NULL;
1352 }
1353
1354 /* Create and install a child of the parent of the given name */
1355 static struct varobj *
1356 create_child (struct varobj *parent, int index, char *name)
1357 {
1358 struct varobj *child;
1359 char *childs_name;
1360 struct value *value;
1361
1362 child = new_variable ();
1363
1364 /* name is allocated by name_of_child */
1365 child->name = name;
1366 child->index = index;
1367 value = value_of_child (parent, index);
1368 child->parent = parent;
1369 child->root = parent->root;
1370 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1371 child->obj_name = childs_name;
1372 install_variable (child);
1373
1374 /* Save a pointer to this child in the parent */
1375 save_child_in_parent (parent, child);
1376
1377 /* Compute the type of the child. Must do this before
1378 calling install_new_value. */
1379 if (value != NULL)
1380 /* If the child had no evaluation errors, var->value
1381 will be non-NULL and contain a valid type. */
1382 child->type = value_type (value);
1383 else
1384 /* Otherwise, we must compute the type. */
1385 child->type = (*child->root->lang->type_of_child) (child->parent,
1386 child->index);
1387 install_new_value (child, value, 1);
1388
1389 if ((!CPLUS_FAKE_CHILD (child) && child->value == NULL) || parent->error)
1390 child->error = 1;
1391
1392 return child;
1393 }
1394
1395 /* FIXME: This should be a generic add to list */
1396 /* Save CHILD in the PARENT's data. */
1397 static void
1398 save_child_in_parent (struct varobj *parent, struct varobj *child)
1399 {
1400 struct varobj_child *vc;
1401
1402 /* Insert the child at the top */
1403 vc = parent->children;
1404 parent->children =
1405 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1406
1407 parent->children->next = vc;
1408 parent->children->child = child;
1409 }
1410
1411 /* FIXME: This should be a generic remove from list */
1412 /* Remove the CHILD from the PARENT's list of children. */
1413 static void
1414 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1415 {
1416 struct varobj_child *vc, *prev;
1417
1418 /* Find the child in the parent's list */
1419 prev = NULL;
1420 for (vc = parent->children; vc != NULL;)
1421 {
1422 if (vc->child == child)
1423 break;
1424 prev = vc;
1425 vc = vc->next;
1426 }
1427
1428 if (prev == NULL)
1429 parent->children = vc->next;
1430 else
1431 prev->next = vc->next;
1432
1433 }
1434 \f
1435
1436 /*
1437 * Miscellaneous utility functions.
1438 */
1439
1440 /* Allocate memory and initialize a new variable */
1441 static struct varobj *
1442 new_variable (void)
1443 {
1444 struct varobj *var;
1445
1446 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1447 var->name = NULL;
1448 var->obj_name = NULL;
1449 var->index = -1;
1450 var->type = NULL;
1451 var->value = NULL;
1452 var->error = 0;
1453 var->num_children = -1;
1454 var->parent = NULL;
1455 var->children = NULL;
1456 var->format = 0;
1457 var->root = NULL;
1458 var->updated = 0;
1459
1460 return var;
1461 }
1462
1463 /* Allocate memory and initialize a new root variable */
1464 static struct varobj *
1465 new_root_variable (void)
1466 {
1467 struct varobj *var = new_variable ();
1468 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1469 var->root->lang = NULL;
1470 var->root->exp = NULL;
1471 var->root->valid_block = NULL;
1472 var->root->frame = null_frame_id;
1473 var->root->use_selected_frame = 0;
1474 var->root->rootvar = NULL;
1475
1476 return var;
1477 }
1478
1479 /* Free any allocated memory associated with VAR. */
1480 static void
1481 free_variable (struct varobj *var)
1482 {
1483 /* Free the expression if this is a root variable. */
1484 if (var->root->rootvar == var)
1485 {
1486 free_current_contents (&var->root->exp);
1487 xfree (var->root);
1488 }
1489
1490 xfree (var->name);
1491 xfree (var->obj_name);
1492 xfree (var);
1493 }
1494
1495 static void
1496 do_free_variable_cleanup (void *var)
1497 {
1498 free_variable (var);
1499 }
1500
1501 static struct cleanup *
1502 make_cleanup_free_variable (struct varobj *var)
1503 {
1504 return make_cleanup (do_free_variable_cleanup, var);
1505 }
1506
1507 /* This returns the type of the variable. It also skips past typedefs
1508 to return the real type of the variable.
1509
1510 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1511 except within get_target_type and get_type. */
1512 static struct type *
1513 get_type (struct varobj *var)
1514 {
1515 struct type *type;
1516 type = var->type;
1517
1518 if (type != NULL)
1519 type = check_typedef (type);
1520
1521 return type;
1522 }
1523
1524 /* This returns the type of the variable, dereferencing pointers, too. */
1525 static struct type *
1526 get_type_deref (struct varobj *var)
1527 {
1528 struct type *type;
1529
1530 type = get_type (var);
1531
1532 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1533 || TYPE_CODE (type) == TYPE_CODE_REF))
1534 type = get_target_type (type);
1535
1536 return type;
1537 }
1538
1539 /* This returns the target type (or NULL) of TYPE, also skipping
1540 past typedefs, just like get_type ().
1541
1542 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1543 except within get_target_type and get_type. */
1544 static struct type *
1545 get_target_type (struct type *type)
1546 {
1547 if (type != NULL)
1548 {
1549 type = TYPE_TARGET_TYPE (type);
1550 if (type != NULL)
1551 type = check_typedef (type);
1552 }
1553
1554 return type;
1555 }
1556
1557 /* What is the default display for this variable? We assume that
1558 everything is "natural". Any exceptions? */
1559 static enum varobj_display_formats
1560 variable_default_display (struct varobj *var)
1561 {
1562 return FORMAT_NATURAL;
1563 }
1564
1565 /* FIXME: The following should be generic for any pointer */
1566 static void
1567 vpush (struct vstack **pstack, struct varobj *var)
1568 {
1569 struct vstack *s;
1570
1571 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1572 s->var = var;
1573 s->next = *pstack;
1574 *pstack = s;
1575 }
1576
1577 /* FIXME: The following should be generic for any pointer */
1578 static struct varobj *
1579 vpop (struct vstack **pstack)
1580 {
1581 struct vstack *s;
1582 struct varobj *v;
1583
1584 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1585 return NULL;
1586
1587 s = *pstack;
1588 v = s->var;
1589 *pstack = (*pstack)->next;
1590 xfree (s);
1591
1592 return v;
1593 }
1594
1595 /* FIXME: The following should be generic for any pointer */
1596 static void
1597 cppush (struct cpstack **pstack, char *name)
1598 {
1599 struct cpstack *s;
1600
1601 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1602 s->name = name;
1603 s->next = *pstack;
1604 *pstack = s;
1605 }
1606
1607 /* FIXME: The following should be generic for any pointer */
1608 static char *
1609 cppop (struct cpstack **pstack)
1610 {
1611 struct cpstack *s;
1612 char *v;
1613
1614 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1615 return NULL;
1616
1617 s = *pstack;
1618 v = s->name;
1619 *pstack = (*pstack)->next;
1620 xfree (s);
1621
1622 return v;
1623 }
1624 \f
1625 /*
1626 * Language-dependencies
1627 */
1628
1629 /* Common entry points */
1630
1631 /* Get the language of variable VAR. */
1632 static enum varobj_languages
1633 variable_language (struct varobj *var)
1634 {
1635 enum varobj_languages lang;
1636
1637 switch (var->root->exp->language_defn->la_language)
1638 {
1639 default:
1640 case language_c:
1641 lang = vlang_c;
1642 break;
1643 case language_cplus:
1644 lang = vlang_cplus;
1645 break;
1646 case language_java:
1647 lang = vlang_java;
1648 break;
1649 }
1650
1651 return lang;
1652 }
1653
1654 /* Return the number of children for a given variable.
1655 The result of this function is defined by the language
1656 implementation. The number of children returned by this function
1657 is the number of children that the user will see in the variable
1658 display. */
1659 static int
1660 number_of_children (struct varobj *var)
1661 {
1662 return (*var->root->lang->number_of_children) (var);;
1663 }
1664
1665 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1666 static char *
1667 name_of_variable (struct varobj *var)
1668 {
1669 return (*var->root->lang->name_of_variable) (var);
1670 }
1671
1672 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1673 static char *
1674 name_of_child (struct varobj *var, int index)
1675 {
1676 return (*var->root->lang->name_of_child) (var, index);
1677 }
1678
1679 /* What is the ``struct value *'' of the root variable VAR?
1680 TYPE_CHANGED controls what to do if the type of a
1681 use_selected_frame = 1 variable changes. On input,
1682 TYPE_CHANGED = 1 means discard the old varobj, and replace
1683 it with this one. TYPE_CHANGED = 0 means leave it around.
1684 NB: In both cases, var_handle will point to the new varobj,
1685 so if you use TYPE_CHANGED = 0, you will have to stash the
1686 old varobj pointer away somewhere before calling this.
1687 On return, TYPE_CHANGED will be 1 if the type has changed, and
1688 0 otherwise. */
1689 static struct value *
1690 value_of_root (struct varobj **var_handle, int *type_changed)
1691 {
1692 struct varobj *var;
1693
1694 if (var_handle == NULL)
1695 return NULL;
1696
1697 var = *var_handle;
1698
1699 /* This should really be an exception, since this should
1700 only get called with a root variable. */
1701
1702 if (var->root->rootvar != var)
1703 return NULL;
1704
1705 if (var->root->use_selected_frame)
1706 {
1707 struct varobj *tmp_var;
1708 char *old_type, *new_type;
1709 old_type = varobj_get_type (var);
1710 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1711 USE_SELECTED_FRAME);
1712 if (tmp_var == NULL)
1713 {
1714 return NULL;
1715 }
1716 new_type = varobj_get_type (tmp_var);
1717 if (strcmp (old_type, new_type) == 0)
1718 {
1719 varobj_delete (tmp_var, NULL, 0);
1720 *type_changed = 0;
1721 }
1722 else
1723 {
1724 if (*type_changed)
1725 {
1726 tmp_var->obj_name =
1727 savestring (var->obj_name, strlen (var->obj_name));
1728 varobj_delete (var, NULL, 0);
1729 }
1730 else
1731 {
1732 tmp_var->obj_name = varobj_gen_name ();
1733 }
1734 install_variable (tmp_var);
1735 *var_handle = tmp_var;
1736 var = *var_handle;
1737 *type_changed = 1;
1738 }
1739 }
1740 else
1741 {
1742 *type_changed = 0;
1743 }
1744
1745 return (*var->root->lang->value_of_root) (var_handle);
1746 }
1747
1748 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1749 static struct value *
1750 value_of_child (struct varobj *parent, int index)
1751 {
1752 struct value *value;
1753
1754 value = (*parent->root->lang->value_of_child) (parent, index);
1755
1756 return value;
1757 }
1758
1759 /* Is this variable editable? Use the variable's type to make
1760 this determination. */
1761 static int
1762 variable_editable (struct varobj *var)
1763 {
1764 return (*var->root->lang->variable_editable) (var);
1765 }
1766
1767 /* GDB already has a command called "value_of_variable". Sigh. */
1768 static char *
1769 my_value_of_variable (struct varobj *var)
1770 {
1771 return (*var->root->lang->value_of_variable) (var);
1772 }
1773
1774 /* Return non-zero if changes in value of VAR
1775 must be detected and reported by -var-update.
1776 Return zero is -var-update should never report
1777 changes of such values. This makes sense for structures
1778 (since the changes in children values will be reported separately),
1779 or for artifical objects (like 'public' pseudo-field in C++).
1780
1781 Return value of 0 means that gdb need not call value_fetch_lazy
1782 for the value of this variable object. */
1783 static int
1784 type_changeable (struct varobj *var)
1785 {
1786 int r;
1787 struct type *type;
1788
1789 if (CPLUS_FAKE_CHILD (var))
1790 return 0;
1791
1792 type = get_type (var);
1793
1794 switch (TYPE_CODE (type))
1795 {
1796 case TYPE_CODE_STRUCT:
1797 case TYPE_CODE_UNION:
1798 case TYPE_CODE_ARRAY:
1799 r = 0;
1800 break;
1801
1802 default:
1803 r = 1;
1804 }
1805
1806 return r;
1807 }
1808
1809 /* C */
1810 static int
1811 c_number_of_children (struct varobj *var)
1812 {
1813 struct type *type;
1814 struct type *target;
1815 int children;
1816
1817 type = get_type (var);
1818 target = get_target_type (type);
1819 children = 0;
1820
1821 switch (TYPE_CODE (type))
1822 {
1823 case TYPE_CODE_ARRAY:
1824 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1825 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1826 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1827 else
1828 children = -1;
1829 break;
1830
1831 case TYPE_CODE_STRUCT:
1832 case TYPE_CODE_UNION:
1833 children = TYPE_NFIELDS (type);
1834 break;
1835
1836 case TYPE_CODE_PTR:
1837 /* This is where things get compilcated. All pointers have one child.
1838 Except, of course, for struct and union ptr, which we automagically
1839 dereference for the user and function ptrs, which have no children.
1840 We also don't dereference void* as we don't know what to show.
1841 We can show char* so we allow it to be dereferenced. If you decide
1842 to test for it, please mind that a little magic is necessary to
1843 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1844 TYPE_NAME == "char" */
1845
1846 switch (TYPE_CODE (target))
1847 {
1848 case TYPE_CODE_STRUCT:
1849 case TYPE_CODE_UNION:
1850 children = TYPE_NFIELDS (target);
1851 break;
1852
1853 case TYPE_CODE_FUNC:
1854 case TYPE_CODE_VOID:
1855 children = 0;
1856 break;
1857
1858 default:
1859 children = 1;
1860 }
1861 break;
1862
1863 default:
1864 /* Other types have no children */
1865 break;
1866 }
1867
1868 return children;
1869 }
1870
1871 static char *
1872 c_name_of_variable (struct varobj *parent)
1873 {
1874 return savestring (parent->name, strlen (parent->name));
1875 }
1876
1877 static char *
1878 c_name_of_child (struct varobj *parent, int index)
1879 {
1880 struct type *type;
1881 struct type *target;
1882 char *name;
1883 char *string;
1884
1885 type = get_type (parent);
1886 target = get_target_type (type);
1887
1888 switch (TYPE_CODE (type))
1889 {
1890 case TYPE_CODE_ARRAY:
1891 name = xstrprintf ("%d", index
1892 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
1893 break;
1894
1895 case TYPE_CODE_STRUCT:
1896 case TYPE_CODE_UNION:
1897 string = TYPE_FIELD_NAME (type, index);
1898 name = savestring (string, strlen (string));
1899 break;
1900
1901 case TYPE_CODE_PTR:
1902 switch (TYPE_CODE (target))
1903 {
1904 case TYPE_CODE_STRUCT:
1905 case TYPE_CODE_UNION:
1906 string = TYPE_FIELD_NAME (target, index);
1907 name = savestring (string, strlen (string));
1908 break;
1909
1910 default:
1911 name = xstrprintf ("*%s", parent->name);
1912 break;
1913 }
1914 break;
1915
1916 default:
1917 /* This should not happen */
1918 name = xstrdup ("???");
1919 }
1920
1921 return name;
1922 }
1923
1924 static struct value *
1925 c_value_of_root (struct varobj **var_handle)
1926 {
1927 struct value *new_val;
1928 struct varobj *var = *var_handle;
1929 struct frame_info *fi;
1930 int within_scope;
1931
1932 /* Only root variables can be updated... */
1933 if (var->root->rootvar != var)
1934 /* Not a root var */
1935 return NULL;
1936
1937
1938 /* Determine whether the variable is still around. */
1939 if (var->root->valid_block == NULL)
1940 within_scope = 1;
1941 else
1942 {
1943 reinit_frame_cache ();
1944 fi = frame_find_by_id (var->root->frame);
1945 within_scope = fi != NULL;
1946 /* FIXME: select_frame could fail */
1947 if (within_scope)
1948 select_frame (fi);
1949 }
1950
1951 if (within_scope)
1952 {
1953 /* We need to catch errors here, because if evaluate
1954 expression fails we just want to make val->error = 1 and
1955 go on */
1956 if (gdb_evaluate_expression (var->root->exp, &new_val))
1957 {
1958 var->error = 0;
1959 release_value (new_val);
1960 }
1961 else
1962 var->error = 1;
1963
1964 return new_val;
1965 }
1966
1967 return NULL;
1968 }
1969
1970 static struct value *
1971 c_value_of_child (struct varobj *parent, int index)
1972 {
1973 struct value *value;
1974 struct value *temp;
1975 struct value *indval;
1976 struct type *type, *target;
1977 char *name;
1978 int real_index;
1979
1980 type = get_type (parent);
1981 target = get_target_type (type);
1982 name = name_of_child (parent, index);
1983 temp = parent->value;
1984 value = NULL;
1985
1986 if (temp != NULL)
1987 {
1988 switch (TYPE_CODE (type))
1989 {
1990 case TYPE_CODE_ARRAY:
1991 real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
1992 #if 0
1993 /* This breaks if the array lives in a (vector) register. */
1994 value = value_slice (temp, real_index, 1);
1995 temp = value_coerce_array (value);
1996 gdb_value_ind (temp, &value);
1997 #else
1998 indval = value_from_longest (builtin_type_int, (LONGEST) real_index);
1999 gdb_value_subscript (temp, indval, &value);
2000 #endif
2001 break;
2002
2003 case TYPE_CODE_STRUCT:
2004 case TYPE_CODE_UNION:
2005 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2006 "vstructure");
2007 break;
2008
2009 case TYPE_CODE_PTR:
2010 switch (TYPE_CODE (target))
2011 {
2012 case TYPE_CODE_STRUCT:
2013 case TYPE_CODE_UNION:
2014 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2015 "vstructure");
2016 break;
2017
2018 default:
2019 gdb_value_ind (temp, &value);
2020 break;
2021 }
2022 break;
2023
2024 default:
2025 break;
2026 }
2027 }
2028
2029 if (value != NULL)
2030 release_value (value);
2031
2032 xfree (name);
2033 return value;
2034 }
2035
2036 static struct type *
2037 c_type_of_child (struct varobj *parent, int index)
2038 {
2039 struct type *type;
2040 char *name = name_of_child (parent, index);
2041
2042 switch (TYPE_CODE (parent->type))
2043 {
2044 case TYPE_CODE_ARRAY:
2045 type = get_target_type (parent->type);
2046 break;
2047
2048 case TYPE_CODE_STRUCT:
2049 case TYPE_CODE_UNION:
2050 type = lookup_struct_elt_type (parent->type, name, 0);
2051 break;
2052
2053 case TYPE_CODE_PTR:
2054 switch (TYPE_CODE (get_target_type (parent->type)))
2055 {
2056 case TYPE_CODE_STRUCT:
2057 case TYPE_CODE_UNION:
2058 type = lookup_struct_elt_type (parent->type, name, 0);
2059 break;
2060
2061 default:
2062 type = get_target_type (parent->type);
2063 break;
2064 }
2065 break;
2066
2067 default:
2068 /* This should not happen as only the above types have children */
2069 warning (_("Child of parent whose type does not allow children"));
2070 /* FIXME: Can we still go on? */
2071 type = NULL;
2072 break;
2073 }
2074
2075 xfree (name);
2076 return type;
2077 }
2078
2079 static int
2080 c_variable_editable (struct varobj *var)
2081 {
2082 switch (TYPE_CODE (get_type (var)))
2083 {
2084 case TYPE_CODE_STRUCT:
2085 case TYPE_CODE_UNION:
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_FUNC:
2088 case TYPE_CODE_MEMBER:
2089 case TYPE_CODE_METHOD:
2090 return 0;
2091 break;
2092
2093 default:
2094 return 1;
2095 break;
2096 }
2097 }
2098
2099 static char *
2100 c_value_of_variable (struct varobj *var)
2101 {
2102 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2103 it will print out its children instead of "{...}". So we need to
2104 catch that case explicitly. */
2105 struct type *type = get_type (var);
2106
2107 /* Strip top-level references. */
2108 while (TYPE_CODE (type) == TYPE_CODE_REF)
2109 type = check_typedef (TYPE_TARGET_TYPE (type));
2110
2111 switch (TYPE_CODE (type))
2112 {
2113 case TYPE_CODE_STRUCT:
2114 case TYPE_CODE_UNION:
2115 return xstrdup ("{...}");
2116 /* break; */
2117
2118 case TYPE_CODE_ARRAY:
2119 {
2120 char *number;
2121 number = xstrprintf ("[%d]", var->num_children);
2122 return (number);
2123 }
2124 /* break; */
2125
2126 default:
2127 {
2128 if (var->value == NULL)
2129 {
2130 /* This can happen if we attempt to get the value of a struct
2131 member when the parent is an invalid pointer. This is an
2132 error condition, so we should tell the caller. */
2133 return NULL;
2134 }
2135 else
2136 {
2137 long dummy;
2138 struct ui_file *stb = mem_fileopen ();
2139 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2140 char *thevalue;
2141
2142 gdb_assert (type_changeable (var));
2143 gdb_assert (!value_lazy (var->value));
2144 common_val_print (var->value, stb,
2145 format_code[(int) var->format], 1, 0, 0);
2146 thevalue = ui_file_xstrdup (stb, &dummy);
2147 do_cleanups (old_chain);
2148 return thevalue;
2149 }
2150 }
2151 }
2152 }
2153 \f
2154
2155 /* C++ */
2156
2157 static int
2158 cplus_number_of_children (struct varobj *var)
2159 {
2160 struct type *type;
2161 int children, dont_know;
2162
2163 dont_know = 1;
2164 children = 0;
2165
2166 if (!CPLUS_FAKE_CHILD (var))
2167 {
2168 type = get_type_deref (var);
2169
2170 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2171 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2172 {
2173 int kids[3];
2174
2175 cplus_class_num_children (type, kids);
2176 if (kids[v_public] != 0)
2177 children++;
2178 if (kids[v_private] != 0)
2179 children++;
2180 if (kids[v_protected] != 0)
2181 children++;
2182
2183 /* Add any baseclasses */
2184 children += TYPE_N_BASECLASSES (type);
2185 dont_know = 0;
2186
2187 /* FIXME: save children in var */
2188 }
2189 }
2190 else
2191 {
2192 int kids[3];
2193
2194 type = get_type_deref (var->parent);
2195
2196 cplus_class_num_children (type, kids);
2197 if (strcmp (var->name, "public") == 0)
2198 children = kids[v_public];
2199 else if (strcmp (var->name, "private") == 0)
2200 children = kids[v_private];
2201 else
2202 children = kids[v_protected];
2203 dont_know = 0;
2204 }
2205
2206 if (dont_know)
2207 children = c_number_of_children (var);
2208
2209 return children;
2210 }
2211
2212 /* Compute # of public, private, and protected variables in this class.
2213 That means we need to descend into all baseclasses and find out
2214 how many are there, too. */
2215 static void
2216 cplus_class_num_children (struct type *type, int children[3])
2217 {
2218 int i;
2219
2220 children[v_public] = 0;
2221 children[v_private] = 0;
2222 children[v_protected] = 0;
2223
2224 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2225 {
2226 /* If we have a virtual table pointer, omit it. */
2227 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2228 continue;
2229
2230 if (TYPE_FIELD_PROTECTED (type, i))
2231 children[v_protected]++;
2232 else if (TYPE_FIELD_PRIVATE (type, i))
2233 children[v_private]++;
2234 else
2235 children[v_public]++;
2236 }
2237 }
2238
2239 static char *
2240 cplus_name_of_variable (struct varobj *parent)
2241 {
2242 return c_name_of_variable (parent);
2243 }
2244
2245 static char *
2246 cplus_name_of_child (struct varobj *parent, int index)
2247 {
2248 char *name;
2249 struct type *type;
2250
2251 if (CPLUS_FAKE_CHILD (parent))
2252 {
2253 /* Looking for children of public, private, or protected. */
2254 type = get_type_deref (parent->parent);
2255 }
2256 else
2257 type = get_type_deref (parent);
2258
2259 name = NULL;
2260 switch (TYPE_CODE (type))
2261 {
2262 case TYPE_CODE_STRUCT:
2263 case TYPE_CODE_UNION:
2264 if (CPLUS_FAKE_CHILD (parent))
2265 {
2266 /* The fields of the class type are ordered as they
2267 appear in the class. We are given an index for a
2268 particular access control type ("public","protected",
2269 or "private"). We must skip over fields that don't
2270 have the access control we are looking for to properly
2271 find the indexed field. */
2272 int type_index = TYPE_N_BASECLASSES (type);
2273 if (strcmp (parent->name, "private") == 0)
2274 {
2275 while (index >= 0)
2276 {
2277 if (TYPE_VPTR_BASETYPE (type) == type
2278 && type_index == TYPE_VPTR_FIELDNO (type))
2279 ; /* ignore vptr */
2280 else if (TYPE_FIELD_PRIVATE (type, type_index))
2281 --index;
2282 ++type_index;
2283 }
2284 --type_index;
2285 }
2286 else if (strcmp (parent->name, "protected") == 0)
2287 {
2288 while (index >= 0)
2289 {
2290 if (TYPE_VPTR_BASETYPE (type) == type
2291 && type_index == TYPE_VPTR_FIELDNO (type))
2292 ; /* ignore vptr */
2293 else if (TYPE_FIELD_PROTECTED (type, type_index))
2294 --index;
2295 ++type_index;
2296 }
2297 --type_index;
2298 }
2299 else
2300 {
2301 while (index >= 0)
2302 {
2303 if (TYPE_VPTR_BASETYPE (type) == type
2304 && type_index == TYPE_VPTR_FIELDNO (type))
2305 ; /* ignore vptr */
2306 else if (!TYPE_FIELD_PRIVATE (type, type_index) &&
2307 !TYPE_FIELD_PROTECTED (type, type_index))
2308 --index;
2309 ++type_index;
2310 }
2311 --type_index;
2312 }
2313
2314 name = TYPE_FIELD_NAME (type, type_index);
2315 }
2316 else if (index < TYPE_N_BASECLASSES (type))
2317 /* We are looking up the name of a base class */
2318 name = TYPE_FIELD_NAME (type, index);
2319 else
2320 {
2321 int children[3];
2322 cplus_class_num_children(type, children);
2323
2324 /* Everything beyond the baseclasses can
2325 only be "public", "private", or "protected"
2326
2327 The special "fake" children are always output by varobj in
2328 this order. So if INDEX == 2, it MUST be "protected". */
2329 index -= TYPE_N_BASECLASSES (type);
2330 switch (index)
2331 {
2332 case 0:
2333 if (children[v_public] > 0)
2334 name = "public";
2335 else if (children[v_private] > 0)
2336 name = "private";
2337 else
2338 name = "protected";
2339 break;
2340 case 1:
2341 if (children[v_public] > 0)
2342 {
2343 if (children[v_private] > 0)
2344 name = "private";
2345 else
2346 name = "protected";
2347 }
2348 else if (children[v_private] > 0)
2349 name = "protected";
2350 break;
2351 case 2:
2352 /* Must be protected */
2353 name = "protected";
2354 break;
2355 default:
2356 /* error! */
2357 break;
2358 }
2359 }
2360 break;
2361
2362 default:
2363 break;
2364 }
2365
2366 if (name == NULL)
2367 return c_name_of_child (parent, index);
2368 else
2369 {
2370 if (name != NULL)
2371 name = savestring (name, strlen (name));
2372 }
2373
2374 return name;
2375 }
2376
2377 static struct value *
2378 cplus_value_of_root (struct varobj **var_handle)
2379 {
2380 return c_value_of_root (var_handle);
2381 }
2382
2383 static struct value *
2384 cplus_value_of_child (struct varobj *parent, int index)
2385 {
2386 struct type *type;
2387 struct value *value;
2388
2389 if (CPLUS_FAKE_CHILD (parent))
2390 type = get_type_deref (parent->parent);
2391 else
2392 type = get_type_deref (parent);
2393
2394 value = NULL;
2395
2396 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2397 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2398 {
2399 if (CPLUS_FAKE_CHILD (parent))
2400 {
2401 char *name;
2402 struct value *temp = parent->parent->value;
2403
2404 if (temp == NULL)
2405 return NULL;
2406
2407 name = name_of_child (parent, index);
2408 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2409 "cplus_structure");
2410 if (value != NULL)
2411 release_value (value);
2412
2413 xfree (name);
2414 }
2415 else if (index >= TYPE_N_BASECLASSES (type))
2416 {
2417 /* public, private, or protected */
2418 return NULL;
2419 }
2420 else
2421 {
2422 /* Baseclass */
2423 if (parent->value != NULL)
2424 {
2425 struct value *temp = NULL;
2426
2427 if (TYPE_CODE (value_type (parent->value)) == TYPE_CODE_PTR
2428 || TYPE_CODE (value_type (parent->value)) == TYPE_CODE_REF)
2429 {
2430 if (!gdb_value_ind (parent->value, &temp))
2431 return NULL;
2432 }
2433 else
2434 temp = parent->value;
2435
2436 if (temp != NULL)
2437 {
2438 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2439 release_value (value);
2440 }
2441 else
2442 {
2443 /* We failed to evaluate the parent's value, so don't even
2444 bother trying to evaluate this child. */
2445 return NULL;
2446 }
2447 }
2448 }
2449 }
2450
2451 if (value == NULL)
2452 return c_value_of_child (parent, index);
2453
2454 return value;
2455 }
2456
2457 static struct type *
2458 cplus_type_of_child (struct varobj *parent, int index)
2459 {
2460 struct type *type, *t;
2461
2462 if (CPLUS_FAKE_CHILD (parent))
2463 {
2464 /* Looking for the type of a child of public, private, or protected. */
2465 t = get_type_deref (parent->parent);
2466 }
2467 else
2468 t = get_type_deref (parent);
2469
2470 type = NULL;
2471 switch (TYPE_CODE (t))
2472 {
2473 case TYPE_CODE_STRUCT:
2474 case TYPE_CODE_UNION:
2475 if (CPLUS_FAKE_CHILD (parent))
2476 {
2477 char *name = cplus_name_of_child (parent, index);
2478 type = lookup_struct_elt_type (t, name, 0);
2479 xfree (name);
2480 }
2481 else if (index < TYPE_N_BASECLASSES (t))
2482 type = TYPE_FIELD_TYPE (t, index);
2483 else
2484 {
2485 /* special */
2486 return NULL;
2487 }
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 if (type == NULL)
2495 return c_type_of_child (parent, index);
2496
2497 return type;
2498 }
2499
2500 static int
2501 cplus_variable_editable (struct varobj *var)
2502 {
2503 if (CPLUS_FAKE_CHILD (var))
2504 return 0;
2505
2506 return c_variable_editable (var);
2507 }
2508
2509 static char *
2510 cplus_value_of_variable (struct varobj *var)
2511 {
2512
2513 /* If we have one of our special types, don't print out
2514 any value. */
2515 if (CPLUS_FAKE_CHILD (var))
2516 return xstrdup ("");
2517
2518 return c_value_of_variable (var);
2519 }
2520 \f
2521 /* Java */
2522
2523 static int
2524 java_number_of_children (struct varobj *var)
2525 {
2526 return cplus_number_of_children (var);
2527 }
2528
2529 static char *
2530 java_name_of_variable (struct varobj *parent)
2531 {
2532 char *p, *name;
2533
2534 name = cplus_name_of_variable (parent);
2535 /* If the name has "-" in it, it is because we
2536 needed to escape periods in the name... */
2537 p = name;
2538
2539 while (*p != '\000')
2540 {
2541 if (*p == '-')
2542 *p = '.';
2543 p++;
2544 }
2545
2546 return name;
2547 }
2548
2549 static char *
2550 java_name_of_child (struct varobj *parent, int index)
2551 {
2552 char *name, *p;
2553
2554 name = cplus_name_of_child (parent, index);
2555 /* Escape any periods in the name... */
2556 p = name;
2557
2558 while (*p != '\000')
2559 {
2560 if (*p == '.')
2561 *p = '-';
2562 p++;
2563 }
2564
2565 return name;
2566 }
2567
2568 static struct value *
2569 java_value_of_root (struct varobj **var_handle)
2570 {
2571 return cplus_value_of_root (var_handle);
2572 }
2573
2574 static struct value *
2575 java_value_of_child (struct varobj *parent, int index)
2576 {
2577 return cplus_value_of_child (parent, index);
2578 }
2579
2580 static struct type *
2581 java_type_of_child (struct varobj *parent, int index)
2582 {
2583 return cplus_type_of_child (parent, index);
2584 }
2585
2586 static int
2587 java_variable_editable (struct varobj *var)
2588 {
2589 return cplus_variable_editable (var);
2590 }
2591
2592 static char *
2593 java_value_of_variable (struct varobj *var)
2594 {
2595 return cplus_value_of_variable (var);
2596 }
2597 \f
2598 extern void _initialize_varobj (void);
2599 void
2600 _initialize_varobj (void)
2601 {
2602 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2603
2604 varobj_table = xmalloc (sizeof_table);
2605 memset (varobj_table, 0, sizeof_table);
2606
2607 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2608 &varobjdebug, _("\
2609 Set varobj debugging."), _("\
2610 Show varobj debugging."), _("\
2611 When non-zero, varobj debugging is enabled."),
2612 NULL,
2613 show_varobjdebug,
2614 &setlist, &showlist);
2615 }
This page took 0.117991 seconds and 5 git commands to generate.