gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
519 return frame;
520 }
521
522 return NULL;
523 }
524
525 struct varobj *
526 varobj_create (char *objname,
527 char *expression, CORE_ADDR frame, enum varobj_type type)
528 {
529 struct varobj *var;
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
543 struct value *value = NULL;
544
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
563 else
564 fi = NULL;
565
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
568 var->root->floating = 1;
569
570 block = NULL;
571 if (fi != NULL)
572 block = get_frame_block (fi, 0);
573
574 p = expression;
575 innermost_block = NULL;
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
594 var->name = xstrdup (expression);
595 /* For a root var, the name and the expr are the same. */
596 var->path_expr = xstrdup (expression);
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
602 if (innermost_block)
603 {
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
611 var->root->frame = get_frame_id (fi);
612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
613 old_fi = get_selected_frame (NULL);
614 select_frame (fi);
615 }
616
617 /* We definitely need to catch errors here.
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
620 if (!gdb_evaluate_expression (var->root->exp, &value))
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
629
630 install_new_value (var, value, 1 /* Initial assignment */);
631
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
640 if (old_fi != NULL)
641 select_frame (old_fi);
642 }
643
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
648 {
649 var->obj_name = xstrdup (objname);
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662 }
663
664 /* Generates an unique name that can be used for a varobj */
665
666 char *
667 varobj_gen_name (void)
668 {
669 static int id = 0;
670 char *obj_name;
671
672 /* generate a name for this object */
673 id++;
674 obj_name = xstrprintf ("var%d", id);
675
676 return obj_name;
677 }
678
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
681
682 struct varobj *
683 varobj_get_handle (char *objname)
684 {
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
700 error (_("Variable object not found"));
701
702 return cv->var;
703 }
704
705 /* Given the handle, return the name of the object */
706
707 char *
708 varobj_get_objname (struct varobj *var)
709 {
710 return var->obj_name;
711 }
712
713 /* Given the handle, return the expression represented by the object */
714
715 char *
716 varobj_get_expression (struct varobj *var)
717 {
718 return name_of_variable (var);
719 }
720
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725 int
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
727 {
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
760 mycount);
761 }
762
763 return delcount;
764 }
765
766 #if HAVE_PYTHON
767
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770 static PyObject *
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
772 {
773 PyObject *val_obj = NULL;
774 PyObject *printer;
775
776 val_obj = value_to_value_object (value);
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
783 return NULL;
784 }
785
786 #endif
787
788 /* Set/Get variable object display format */
789
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793 {
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
813 }
814
815 return var->format;
816 }
817
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
820 {
821 return var->format;
822 }
823
824 char *
825 varobj_get_display_hint (struct varobj *var)
826 {
827 char *result = NULL;
828
829 #if HAVE_PYTHON
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
834
835 do_cleanups (back_to);
836 #endif
837
838 return result;
839 }
840
841 /* Return true if the varobj has items after TO, false otherwise. */
842
843 int
844 varobj_has_more (struct varobj *var, int to)
845 {
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850 }
851
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856 int
857 varobj_get_thread_id (struct varobj *var)
858 {
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863 }
864
865 void
866 varobj_set_frozen (struct varobj *var, int frozen)
867 {
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876 }
877
878 int
879 varobj_get_frozen (struct varobj *var)
880 {
881 return var->frozen;
882 }
883
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889 static void
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
891 {
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906 }
907
908 #if HAVE_PYTHON
909
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913 static void
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922 {
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944 }
945
946 static int
947 dynamic_varobj_has_child_method (struct varobj *var)
948 {
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957 }
958
959 #endif
960
961 static int
962 update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
970 {
971 #if HAVE_PYTHON
972 struct cleanup *back_to;
973 PyObject *children;
974 int i;
975 PyObject *printer = var->pretty_printer;
976
977 back_to = varobj_ensure_python_env (var);
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
986 if (update_children || !var->child_iter)
987 {
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
990
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
996
997 make_cleanup_py_decref (children);
998
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
1014 }
1015 else
1016 i = VEC_length (varobj_p, var->children);
1017
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
1021 {
1022 PyObject *item;
1023
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
1032
1033 if (!item)
1034 break;
1035
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
1038 {
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
1056 }
1057 else
1058 {
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
1061
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
1075 }
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
1086 return 1;
1087 #else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089 #endif
1090 }
1091
1092 int
1093 varobj_get_num_children (struct varobj *var)
1094 {
1095 if (var->num_children == -1)
1096 {
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
1107 var->num_children = number_of_children (var);
1108 }
1109
1110 return var->num_children >= 0 ? var->num_children : 0;
1111 }
1112
1113 /* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
1116 VEC (varobj_p)*
1117 varobj_list_children (struct varobj *var, int *from, int *to)
1118 {
1119 struct varobj *child;
1120 char *name;
1121 int i, children_changed;
1122
1123 var->children_requested = 1;
1124
1125 if (var->pretty_printer)
1126 {
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1131 0, 0, *to);
1132 restrict_range (var->children, from, to);
1133 return var->children;
1134 }
1135
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1138
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
1141 return var->children;
1142
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1147
1148 for (i = 0; i < var->num_children; i++)
1149 {
1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
1151
1152 if (existing == NULL)
1153 {
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1160 }
1161 }
1162
1163 restrict_range (var->children, from, to);
1164 return var->children;
1165 }
1166
1167 #if HAVE_PYTHON
1168
1169 static struct varobj *
1170 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1171 {
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1174 name, value);
1175 VEC_safe_push (varobj_p, var->children, v);
1176 return v;
1177 }
1178
1179 #endif /* HAVE_PYTHON */
1180
1181 /* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1183
1184 char *
1185 varobj_get_type (struct varobj *var)
1186 {
1187 /* For the "fake" variables, do not return a type. (It's type is
1188 NULL, too.)
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1191 return NULL;
1192
1193 return type_to_string (var->type);
1194 }
1195
1196 /* Obtain the type of an object variable. */
1197
1198 struct type *
1199 varobj_get_gdb_type (struct varobj *var)
1200 {
1201 return var->type;
1202 }
1203
1204 /* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1206 char *
1207 varobj_get_path_expr (struct varobj *var)
1208 {
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1211 else
1212 {
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1215 child varobj. */
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1218 }
1219 }
1220
1221 enum varobj_languages
1222 varobj_get_language (struct varobj *var)
1223 {
1224 return variable_language (var);
1225 }
1226
1227 int
1228 varobj_get_attributes (struct varobj *var)
1229 {
1230 int attributes = 0;
1231
1232 if (varobj_editable_p (var))
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1235
1236 return attributes;
1237 }
1238
1239 int
1240 varobj_pretty_printed_p (struct varobj *var)
1241 {
1242 return var->pretty_printer != NULL;
1243 }
1244
1245 char *
1246 varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1248 {
1249 return my_value_of_variable (var, format);
1250 }
1251
1252 char *
1253 varobj_get_value (struct varobj *var)
1254 {
1255 return my_value_of_variable (var, var->format);
1256 }
1257
1258 /* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260 /* Note: Invokes functions that can call error() */
1261
1262 int
1263 varobj_set_value (struct varobj *var, char *expression)
1264 {
1265 struct value *val;
1266 int offset = 0;
1267 int error = 0;
1268
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
1273 struct value *value;
1274 int saved_input_radix = input_radix;
1275 char *s = expression;
1276 int i;
1277
1278 gdb_assert (varobj_editable_p (var));
1279
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1283 {
1284 /* We cannot proceed without a valid expression. */
1285 xfree (exp);
1286 return 0;
1287 }
1288
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1291
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1294
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1301 array's content. */
1302 value = coerce_array (value);
1303
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1309 return 0;
1310
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1319 return 1;
1320 }
1321
1322 #if HAVE_PYTHON
1323
1324 /* A helper function to install a constructor function and visualizer
1325 in a varobj. */
1326
1327 static void
1328 install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1330 {
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1333
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1336
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1339 }
1340
1341 /* Install the default visualizer for VAR. */
1342
1343 static void
1344 install_default_visualizer (struct varobj *var)
1345 {
1346 if (pretty_printing)
1347 {
1348 PyObject *pretty_printer = NULL;
1349
1350 if (var->value)
1351 {
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1354 {
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1357 }
1358 }
1359
1360 if (pretty_printer == Py_None)
1361 {
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1364 }
1365
1366 install_visualizer (var, NULL, pretty_printer);
1367 }
1368 }
1369
1370 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1372
1373 static void
1374 construct_visualizer (struct varobj *var, PyObject *constructor)
1375 {
1376 PyObject *pretty_printer;
1377
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1381 else
1382 {
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1385 {
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1390 }
1391
1392 if (pretty_printer == Py_None)
1393 {
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1396 }
1397 }
1398
1399 install_visualizer (var, constructor, pretty_printer);
1400 }
1401
1402 #endif /* HAVE_PYTHON */
1403
1404 /* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1406
1407 static void
1408 install_new_value_visualizer (struct varobj *var)
1409 {
1410 #if HAVE_PYTHON
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1414 {
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1417
1418 cleanup = varobj_ensure_python_env (var);
1419
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1422 else
1423 construct_visualizer (var, var->constructor);
1424
1425 do_cleanups (cleanup);
1426 }
1427 #else
1428 /* Do nothing. */
1429 #endif
1430 }
1431
1432 /* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1435 and return 0.
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1441 we always return 1.
1442
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
1445 static int
1446 install_new_value (struct varobj *var, struct value *value, int initial)
1447 {
1448 int changeable;
1449 int need_to_fetch;
1450 int changed = 0;
1451 int intentionally_not_fetched = 0;
1452 char *print_value = NULL;
1453
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1456 a type. */
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1458 changeable = varobj_value_is_changeable_p (var);
1459
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1464 changeable = 1;
1465
1466 need_to_fetch = changeable;
1467
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1471 if (value)
1472 value = coerce_ref (value);
1473
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1483 fetch now. */
1484 need_to_fetch = 1;
1485
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1491 {
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1496
1497 if (frozen && initial)
1498 {
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1504 }
1505 else if (!gdb_value_fetch_lazy (value))
1506 {
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1510 value = NULL;
1511 }
1512 }
1513
1514
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
1519 if (value && !value_lazy (value) && !var->pretty_printer)
1520 print_value = value_get_print_value (value, var->format, var);
1521
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1524 to compare with. */
1525 if (!initial && changeable)
1526 {
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
1530 -var-update. So need to the varobj as changed. */
1531 if (var->updated)
1532 {
1533 changed = 1;
1534 }
1535 else if (! var->pretty_printer)
1536 {
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
1539 if (var->not_fetched && value_lazy (var->value))
1540 {
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1545 value. */
1546 changed = 1;
1547 }
1548 else if (var->value == NULL && value == NULL)
1549 /* Equal. */
1550 ;
1551 else if (var->value == NULL || value == NULL)
1552 {
1553 changed = 1;
1554 }
1555 else
1556 {
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
1559
1560 gdb_assert (var->print_value != NULL && print_value != NULL);
1561 if (strcmp (var->print_value, print_value) != 0)
1562 changed = 1;
1563 }
1564 }
1565 }
1566
1567 if (!initial && !changeable)
1568 {
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1574 }
1575
1576 /* We must always keep the new value, since children depend on it. */
1577 if (var->value != NULL && var->value != value)
1578 value_free (var->value);
1579 var->value = value;
1580 if (value != NULL)
1581 value_incref (value);
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1584 else
1585 var->not_fetched = 0;
1586 var->updated = 0;
1587
1588 install_new_value_visualizer (var);
1589
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1593 {
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1597 changed = 1;
1598 }
1599 if (var->print_value)
1600 xfree (var->print_value);
1601 var->print_value = print_value;
1602
1603 gdb_assert (!var->value || value_type (var->value));
1604
1605 return changed;
1606 }
1607
1608 /* Return the requested range for a varobj. VAR is the varobj. FROM
1609 and TO are out parameters; *FROM and *TO will be set to the
1610 selected sub-range of VAR. If no range was selected using
1611 -var-set-update-range, then both will be -1. */
1612 void
1613 varobj_get_child_range (struct varobj *var, int *from, int *to)
1614 {
1615 *from = var->from;
1616 *to = var->to;
1617 }
1618
1619 /* Set the selected sub-range of children of VAR to start at index
1620 FROM and end at index TO. If either FROM or TO is less than zero,
1621 this is interpreted as a request for all children. */
1622 void
1623 varobj_set_child_range (struct varobj *var, int from, int to)
1624 {
1625 var->from = from;
1626 var->to = to;
1627 }
1628
1629 void
1630 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1631 {
1632 #if HAVE_PYTHON
1633 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1634 struct cleanup *back_to, *value;
1635
1636 back_to = varobj_ensure_python_env (var);
1637
1638 mainmod = PyImport_AddModule ("__main__");
1639 globals = PyModule_GetDict (mainmod);
1640 Py_INCREF (globals);
1641 make_cleanup_py_decref (globals);
1642
1643 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1644
1645 if (! constructor)
1646 {
1647 gdbpy_print_stack ();
1648 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1649 }
1650
1651 construct_visualizer (var, constructor);
1652 Py_XDECREF (constructor);
1653
1654 /* If there are any children now, wipe them. */
1655 varobj_delete (var, NULL, 1 /* children only */);
1656 var->num_children = -1;
1657
1658 do_cleanups (back_to);
1659 #else
1660 error (_("Python support required"));
1661 #endif
1662 }
1663
1664 /* Update the values for a variable and its children. This is a
1665 two-pronged attack. First, re-parse the value for the root's
1666 expression to see if it's changed. Then go all the way
1667 through its children, reconstructing them and noting if they've
1668 changed.
1669
1670 The EXPLICIT parameter specifies if this call is result
1671 of MI request to update this specific variable, or
1672 result of implicit -var-update *. For implicit request, we don't
1673 update frozen variables.
1674
1675 NOTE: This function may delete the caller's varobj. If it
1676 returns TYPE_CHANGED, then it has done this and VARP will be modified
1677 to point to the new varobj. */
1678
1679 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1680 {
1681 int changed = 0;
1682 int type_changed = 0;
1683 int i;
1684 int vleft;
1685 struct varobj *v;
1686 struct varobj **cv;
1687 struct varobj **templist = NULL;
1688 struct value *new;
1689 VEC (varobj_update_result) *stack = NULL;
1690 VEC (varobj_update_result) *result = NULL;
1691 struct frame_info *fi;
1692
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
1699 return result;
1700
1701 if (!(*varp)->root->is_valid)
1702 {
1703 varobj_update_result r = {*varp};
1704 r.status = VAROBJ_INVALID;
1705 VEC_safe_push (varobj_update_result, result, &r);
1706 return result;
1707 }
1708
1709 if ((*varp)->root->rootvar == *varp)
1710 {
1711 varobj_update_result r = {*varp};
1712 r.status = VAROBJ_IN_SCOPE;
1713
1714 /* Update the root variable. value_of_root can return NULL
1715 if the variable is no longer around, i.e. we stepped out of
1716 the frame in which a local existed. We are letting the
1717 value_of_root variable dispose of the varobj if the type
1718 has changed. */
1719 new = value_of_root (varp, &type_changed);
1720 r.varobj = *varp;
1721
1722 r.type_changed = type_changed;
1723 if (install_new_value ((*varp), new, type_changed))
1724 r.changed = 1;
1725
1726 if (new == NULL)
1727 r.status = VAROBJ_NOT_IN_SCOPE;
1728 r.value_installed = 1;
1729
1730 if (r.status == VAROBJ_NOT_IN_SCOPE)
1731 {
1732 if (r.type_changed || r.changed)
1733 VEC_safe_push (varobj_update_result, result, &r);
1734 return result;
1735 }
1736
1737 VEC_safe_push (varobj_update_result, stack, &r);
1738 }
1739 else
1740 {
1741 varobj_update_result r = {*varp};
1742 VEC_safe_push (varobj_update_result, stack, &r);
1743 }
1744
1745 /* Walk through the children, reconstructing them all. */
1746 while (!VEC_empty (varobj_update_result, stack))
1747 {
1748 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1749 struct varobj *v = r.varobj;
1750
1751 VEC_pop (varobj_update_result, stack);
1752
1753 /* Update this variable, unless it's a root, which is already
1754 updated. */
1755 if (!r.value_installed)
1756 {
1757 new = value_of_child (v->parent, v->index);
1758 if (install_new_value (v, new, 0 /* type not changed */))
1759 {
1760 r.changed = 1;
1761 v->updated = 0;
1762 }
1763 }
1764
1765 /* We probably should not get children of a varobj that has a
1766 pretty-printer, but for which -var-list-children was never
1767 invoked. */
1768 if (v->pretty_printer)
1769 {
1770 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1771 int i, children_changed = 0;
1772
1773 if (v->frozen)
1774 continue;
1775
1776 if (!v->children_requested)
1777 {
1778 int dummy;
1779
1780 /* If we initially did not have potential children, but
1781 now we do, consider the varobj as changed.
1782 Otherwise, if children were never requested, consider
1783 it as unchanged -- presumably, such varobj is not yet
1784 expanded in the UI, so we need not bother getting
1785 it. */
1786 if (!varobj_has_more (v, 0))
1787 {
1788 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1789 &dummy, 0, 0, 0);
1790 if (varobj_has_more (v, 0))
1791 r.changed = 1;
1792 }
1793
1794 if (r.changed)
1795 VEC_safe_push (varobj_update_result, result, &r);
1796
1797 continue;
1798 }
1799
1800 /* If update_dynamic_varobj_children returns 0, then we have
1801 a non-conforming pretty-printer, so we skip it. */
1802 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1803 &children_changed, 1,
1804 v->from, v->to))
1805 {
1806 if (children_changed || new)
1807 {
1808 r.children_changed = 1;
1809 r.new = new;
1810 }
1811 /* Push in reverse order so that the first child is
1812 popped from the work stack first, and so will be
1813 added to result first. This does not affect
1814 correctness, just "nicer". */
1815 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1816 {
1817 varobj_p tmp = VEC_index (varobj_p, changed, i);
1818 varobj_update_result r = {tmp};
1819 r.changed = 1;
1820 r.value_installed = 1;
1821 VEC_safe_push (varobj_update_result, stack, &r);
1822 }
1823 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1824 {
1825 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1826 if (!tmp->frozen)
1827 {
1828 varobj_update_result r = {tmp};
1829 r.value_installed = 1;
1830 VEC_safe_push (varobj_update_result, stack, &r);
1831 }
1832 }
1833 if (r.changed || r.children_changed)
1834 VEC_safe_push (varobj_update_result, result, &r);
1835
1836 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1837 has been put into the result vector. */
1838 VEC_free (varobj_p, changed);
1839 VEC_free (varobj_p, unchanged);
1840
1841 continue;
1842 }
1843 }
1844
1845 /* Push any children. Use reverse order so that the first
1846 child is popped from the work stack first, and so
1847 will be added to result first. This does not
1848 affect correctness, just "nicer". */
1849 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1850 {
1851 varobj_p c = VEC_index (varobj_p, v->children, i);
1852 /* Child may be NULL if explicitly deleted by -var-delete. */
1853 if (c != NULL && !c->frozen)
1854 {
1855 varobj_update_result r = {c};
1856 VEC_safe_push (varobj_update_result, stack, &r);
1857 }
1858 }
1859
1860 if (r.changed || r.type_changed)
1861 VEC_safe_push (varobj_update_result, result, &r);
1862 }
1863
1864 VEC_free (varobj_update_result, stack);
1865
1866 return result;
1867 }
1868 \f
1869
1870 /* Helper functions */
1871
1872 /*
1873 * Variable object construction/destruction
1874 */
1875
1876 static int
1877 delete_variable (struct cpstack **resultp, struct varobj *var,
1878 int only_children_p)
1879 {
1880 int delcount = 0;
1881
1882 delete_variable_1 (resultp, &delcount, var,
1883 only_children_p, 1 /* remove_from_parent_p */ );
1884
1885 return delcount;
1886 }
1887
1888 /* Delete the variable object VAR and its children */
1889 /* IMPORTANT NOTE: If we delete a variable which is a child
1890 and the parent is not removed we dump core. It must be always
1891 initially called with remove_from_parent_p set */
1892 static void
1893 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1894 struct varobj *var, int only_children_p,
1895 int remove_from_parent_p)
1896 {
1897 int i;
1898
1899 /* Delete any children of this variable, too. */
1900 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1901 {
1902 varobj_p child = VEC_index (varobj_p, var->children, i);
1903 if (!child)
1904 continue;
1905 if (!remove_from_parent_p)
1906 child->parent = NULL;
1907 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1908 }
1909 VEC_free (varobj_p, var->children);
1910
1911 /* if we were called to delete only the children we are done here */
1912 if (only_children_p)
1913 return;
1914
1915 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1916 /* If the name is null, this is a temporary variable, that has not
1917 yet been installed, don't report it, it belongs to the caller... */
1918 if (var->obj_name != NULL)
1919 {
1920 cppush (resultp, xstrdup (var->obj_name));
1921 *delcountp = *delcountp + 1;
1922 }
1923
1924 /* If this variable has a parent, remove it from its parent's list */
1925 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1926 (as indicated by remove_from_parent_p) we don't bother doing an
1927 expensive list search to find the element to remove when we are
1928 discarding the list afterwards */
1929 if ((remove_from_parent_p) && (var->parent != NULL))
1930 {
1931 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1932 }
1933
1934 if (var->obj_name != NULL)
1935 uninstall_variable (var);
1936
1937 /* Free memory associated with this variable */
1938 free_variable (var);
1939 }
1940
1941 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1942 static int
1943 install_variable (struct varobj *var)
1944 {
1945 struct vlist *cv;
1946 struct vlist *newvl;
1947 const char *chp;
1948 unsigned int index = 0;
1949 unsigned int i = 1;
1950
1951 for (chp = var->obj_name; *chp; chp++)
1952 {
1953 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1954 }
1955
1956 cv = *(varobj_table + index);
1957 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1958 cv = cv->next;
1959
1960 if (cv != NULL)
1961 error (_("Duplicate variable object name"));
1962
1963 /* Add varobj to hash table */
1964 newvl = xmalloc (sizeof (struct vlist));
1965 newvl->next = *(varobj_table + index);
1966 newvl->var = var;
1967 *(varobj_table + index) = newvl;
1968
1969 /* If root, add varobj to root list */
1970 if (is_root_p (var))
1971 {
1972 /* Add to list of root variables */
1973 if (rootlist == NULL)
1974 var->root->next = NULL;
1975 else
1976 var->root->next = rootlist;
1977 rootlist = var->root;
1978 }
1979
1980 return 1; /* OK */
1981 }
1982
1983 /* Unistall the object VAR. */
1984 static void
1985 uninstall_variable (struct varobj *var)
1986 {
1987 struct vlist *cv;
1988 struct vlist *prev;
1989 struct varobj_root *cr;
1990 struct varobj_root *prer;
1991 const char *chp;
1992 unsigned int index = 0;
1993 unsigned int i = 1;
1994
1995 /* Remove varobj from hash table */
1996 for (chp = var->obj_name; *chp; chp++)
1997 {
1998 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1999 }
2000
2001 cv = *(varobj_table + index);
2002 prev = NULL;
2003 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2004 {
2005 prev = cv;
2006 cv = cv->next;
2007 }
2008
2009 if (varobjdebug)
2010 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2011
2012 if (cv == NULL)
2013 {
2014 warning
2015 ("Assertion failed: Could not find variable object \"%s\" to delete",
2016 var->obj_name);
2017 return;
2018 }
2019
2020 if (prev == NULL)
2021 *(varobj_table + index) = cv->next;
2022 else
2023 prev->next = cv->next;
2024
2025 xfree (cv);
2026
2027 /* If root, remove varobj from root list */
2028 if (is_root_p (var))
2029 {
2030 /* Remove from list of root variables */
2031 if (rootlist == var->root)
2032 rootlist = var->root->next;
2033 else
2034 {
2035 prer = NULL;
2036 cr = rootlist;
2037 while ((cr != NULL) && (cr->rootvar != var))
2038 {
2039 prer = cr;
2040 cr = cr->next;
2041 }
2042 if (cr == NULL)
2043 {
2044 warning
2045 ("Assertion failed: Could not find varobj \"%s\" in root list",
2046 var->obj_name);
2047 return;
2048 }
2049 if (prer == NULL)
2050 rootlist = NULL;
2051 else
2052 prer->next = cr->next;
2053 }
2054 }
2055
2056 }
2057
2058 /* Create and install a child of the parent of the given name */
2059 static struct varobj *
2060 create_child (struct varobj *parent, int index, char *name)
2061 {
2062 return create_child_with_value (parent, index, name,
2063 value_of_child (parent, index));
2064 }
2065
2066 static struct varobj *
2067 create_child_with_value (struct varobj *parent, int index, const char *name,
2068 struct value *value)
2069 {
2070 struct varobj *child;
2071 char *childs_name;
2072
2073 child = new_variable ();
2074
2075 /* name is allocated by name_of_child */
2076 /* FIXME: xstrdup should not be here. */
2077 child->name = xstrdup (name);
2078 child->index = index;
2079 child->parent = parent;
2080 child->root = parent->root;
2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2082 child->obj_name = childs_name;
2083 install_variable (child);
2084
2085 /* Compute the type of the child. Must do this before
2086 calling install_new_value. */
2087 if (value != NULL)
2088 /* If the child had no evaluation errors, var->value
2089 will be non-NULL and contain a valid type. */
2090 child->type = value_type (value);
2091 else
2092 /* Otherwise, we must compute the type. */
2093 child->type = (*child->root->lang->type_of_child) (child->parent,
2094 child->index);
2095 install_new_value (child, value, 1);
2096
2097 return child;
2098 }
2099 \f
2100
2101 /*
2102 * Miscellaneous utility functions.
2103 */
2104
2105 /* Allocate memory and initialize a new variable */
2106 static struct varobj *
2107 new_variable (void)
2108 {
2109 struct varobj *var;
2110
2111 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2112 var->name = NULL;
2113 var->path_expr = NULL;
2114 var->obj_name = NULL;
2115 var->index = -1;
2116 var->type = NULL;
2117 var->value = NULL;
2118 var->num_children = -1;
2119 var->parent = NULL;
2120 var->children = NULL;
2121 var->format = 0;
2122 var->root = NULL;
2123 var->updated = 0;
2124 var->print_value = NULL;
2125 var->frozen = 0;
2126 var->not_fetched = 0;
2127 var->children_requested = 0;
2128 var->from = -1;
2129 var->to = -1;
2130 var->constructor = 0;
2131 var->pretty_printer = 0;
2132 var->child_iter = 0;
2133 var->saved_item = 0;
2134
2135 return var;
2136 }
2137
2138 /* Allocate memory and initialize a new root variable */
2139 static struct varobj *
2140 new_root_variable (void)
2141 {
2142 struct varobj *var = new_variable ();
2143 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2144 var->root->lang = NULL;
2145 var->root->exp = NULL;
2146 var->root->valid_block = NULL;
2147 var->root->frame = null_frame_id;
2148 var->root->floating = 0;
2149 var->root->rootvar = NULL;
2150 var->root->is_valid = 1;
2151
2152 return var;
2153 }
2154
2155 /* Free any allocated memory associated with VAR. */
2156 static void
2157 free_variable (struct varobj *var)
2158 {
2159 #if HAVE_PYTHON
2160 if (var->pretty_printer)
2161 {
2162 struct cleanup *cleanup = varobj_ensure_python_env (var);
2163 Py_XDECREF (var->constructor);
2164 Py_XDECREF (var->pretty_printer);
2165 Py_XDECREF (var->child_iter);
2166 Py_XDECREF (var->saved_item);
2167 do_cleanups (cleanup);
2168 }
2169 #endif
2170
2171 value_free (var->value);
2172
2173 /* Free the expression if this is a root variable. */
2174 if (is_root_p (var))
2175 {
2176 xfree (var->root->exp);
2177 xfree (var->root);
2178 }
2179
2180 xfree (var->name);
2181 xfree (var->obj_name);
2182 xfree (var->print_value);
2183 xfree (var->path_expr);
2184 xfree (var);
2185 }
2186
2187 static void
2188 do_free_variable_cleanup (void *var)
2189 {
2190 free_variable (var);
2191 }
2192
2193 static struct cleanup *
2194 make_cleanup_free_variable (struct varobj *var)
2195 {
2196 return make_cleanup (do_free_variable_cleanup, var);
2197 }
2198
2199 /* This returns the type of the variable. It also skips past typedefs
2200 to return the real type of the variable.
2201
2202 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2203 except within get_target_type and get_type. */
2204 static struct type *
2205 get_type (struct varobj *var)
2206 {
2207 struct type *type;
2208 type = var->type;
2209
2210 if (type != NULL)
2211 type = check_typedef (type);
2212
2213 return type;
2214 }
2215
2216 /* Return the type of the value that's stored in VAR,
2217 or that would have being stored there if the
2218 value were accessible.
2219
2220 This differs from VAR->type in that VAR->type is always
2221 the true type of the expession in the source language.
2222 The return value of this function is the type we're
2223 actually storing in varobj, and using for displaying
2224 the values and for comparing previous and new values.
2225
2226 For example, top-level references are always stripped. */
2227 static struct type *
2228 get_value_type (struct varobj *var)
2229 {
2230 struct type *type;
2231
2232 if (var->value)
2233 type = value_type (var->value);
2234 else
2235 type = var->type;
2236
2237 type = check_typedef (type);
2238
2239 if (TYPE_CODE (type) == TYPE_CODE_REF)
2240 type = get_target_type (type);
2241
2242 type = check_typedef (type);
2243
2244 return type;
2245 }
2246
2247 /* This returns the target type (or NULL) of TYPE, also skipping
2248 past typedefs, just like get_type ().
2249
2250 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2251 except within get_target_type and get_type. */
2252 static struct type *
2253 get_target_type (struct type *type)
2254 {
2255 if (type != NULL)
2256 {
2257 type = TYPE_TARGET_TYPE (type);
2258 if (type != NULL)
2259 type = check_typedef (type);
2260 }
2261
2262 return type;
2263 }
2264
2265 /* What is the default display for this variable? We assume that
2266 everything is "natural". Any exceptions? */
2267 static enum varobj_display_formats
2268 variable_default_display (struct varobj *var)
2269 {
2270 return FORMAT_NATURAL;
2271 }
2272
2273 /* FIXME: The following should be generic for any pointer */
2274 static void
2275 cppush (struct cpstack **pstack, char *name)
2276 {
2277 struct cpstack *s;
2278
2279 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2280 s->name = name;
2281 s->next = *pstack;
2282 *pstack = s;
2283 }
2284
2285 /* FIXME: The following should be generic for any pointer */
2286 static char *
2287 cppop (struct cpstack **pstack)
2288 {
2289 struct cpstack *s;
2290 char *v;
2291
2292 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2293 return NULL;
2294
2295 s = *pstack;
2296 v = s->name;
2297 *pstack = (*pstack)->next;
2298 xfree (s);
2299
2300 return v;
2301 }
2302 \f
2303 /*
2304 * Language-dependencies
2305 */
2306
2307 /* Common entry points */
2308
2309 /* Get the language of variable VAR. */
2310 static enum varobj_languages
2311 variable_language (struct varobj *var)
2312 {
2313 enum varobj_languages lang;
2314
2315 switch (var->root->exp->language_defn->la_language)
2316 {
2317 default:
2318 case language_c:
2319 lang = vlang_c;
2320 break;
2321 case language_cplus:
2322 lang = vlang_cplus;
2323 break;
2324 case language_java:
2325 lang = vlang_java;
2326 break;
2327 }
2328
2329 return lang;
2330 }
2331
2332 /* Return the number of children for a given variable.
2333 The result of this function is defined by the language
2334 implementation. The number of children returned by this function
2335 is the number of children that the user will see in the variable
2336 display. */
2337 static int
2338 number_of_children (struct varobj *var)
2339 {
2340 return (*var->root->lang->number_of_children) (var);;
2341 }
2342
2343 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2344 static char *
2345 name_of_variable (struct varobj *var)
2346 {
2347 return (*var->root->lang->name_of_variable) (var);
2348 }
2349
2350 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2351 static char *
2352 name_of_child (struct varobj *var, int index)
2353 {
2354 return (*var->root->lang->name_of_child) (var, index);
2355 }
2356
2357 /* What is the ``struct value *'' of the root variable VAR?
2358 For floating variable object, evaluation can get us a value
2359 of different type from what is stored in varobj already. In
2360 that case:
2361 - *type_changed will be set to 1
2362 - old varobj will be freed, and new one will be
2363 created, with the same name.
2364 - *var_handle will be set to the new varobj
2365 Otherwise, *type_changed will be set to 0. */
2366 static struct value *
2367 value_of_root (struct varobj **var_handle, int *type_changed)
2368 {
2369 struct varobj *var;
2370
2371 if (var_handle == NULL)
2372 return NULL;
2373
2374 var = *var_handle;
2375
2376 /* This should really be an exception, since this should
2377 only get called with a root variable. */
2378
2379 if (!is_root_p (var))
2380 return NULL;
2381
2382 if (var->root->floating)
2383 {
2384 struct varobj *tmp_var;
2385 char *old_type, *new_type;
2386
2387 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2388 USE_SELECTED_FRAME);
2389 if (tmp_var == NULL)
2390 {
2391 return NULL;
2392 }
2393 old_type = varobj_get_type (var);
2394 new_type = varobj_get_type (tmp_var);
2395 if (strcmp (old_type, new_type) == 0)
2396 {
2397 /* The expression presently stored inside var->root->exp
2398 remembers the locations of local variables relatively to
2399 the frame where the expression was created (in DWARF location
2400 button, for example). Naturally, those locations are not
2401 correct in other frames, so update the expression. */
2402
2403 struct expression *tmp_exp = var->root->exp;
2404 var->root->exp = tmp_var->root->exp;
2405 tmp_var->root->exp = tmp_exp;
2406
2407 varobj_delete (tmp_var, NULL, 0);
2408 *type_changed = 0;
2409 }
2410 else
2411 {
2412 tmp_var->obj_name = xstrdup (var->obj_name);
2413 tmp_var->from = var->from;
2414 tmp_var->to = var->to;
2415 varobj_delete (var, NULL, 0);
2416
2417 install_variable (tmp_var);
2418 *var_handle = tmp_var;
2419 var = *var_handle;
2420 *type_changed = 1;
2421 }
2422 xfree (old_type);
2423 xfree (new_type);
2424 }
2425 else
2426 {
2427 *type_changed = 0;
2428 }
2429
2430 return (*var->root->lang->value_of_root) (var_handle);
2431 }
2432
2433 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2434 static struct value *
2435 value_of_child (struct varobj *parent, int index)
2436 {
2437 struct value *value;
2438
2439 value = (*parent->root->lang->value_of_child) (parent, index);
2440
2441 return value;
2442 }
2443
2444 /* GDB already has a command called "value_of_variable". Sigh. */
2445 static char *
2446 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2447 {
2448 if (var->root->is_valid)
2449 {
2450 if (var->pretty_printer)
2451 return value_get_print_value (var->value, var->format, var);
2452 return (*var->root->lang->value_of_variable) (var, format);
2453 }
2454 else
2455 return NULL;
2456 }
2457
2458 static char *
2459 value_get_print_value (struct value *value, enum varobj_display_formats format,
2460 struct varobj *var)
2461 {
2462 struct ui_file *stb;
2463 struct cleanup *old_chain;
2464 gdb_byte *thevalue = NULL;
2465 struct value_print_options opts;
2466 struct type *type = NULL;
2467 long len = 0;
2468 char *encoding = NULL;
2469 struct gdbarch *gdbarch = NULL;
2470
2471 if (value == NULL)
2472 return NULL;
2473
2474 gdbarch = get_type_arch (value_type (value));
2475 #if HAVE_PYTHON
2476 {
2477 struct cleanup *back_to = varobj_ensure_python_env (var);
2478 PyObject *value_formatter = var->pretty_printer;
2479
2480 if (value_formatter)
2481 {
2482 /* First check to see if we have any children at all. If so,
2483 we simply return {...}. */
2484 if (dynamic_varobj_has_child_method (var))
2485 return xstrdup ("{...}");
2486
2487 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2488 {
2489 char *hint;
2490 struct value *replacement;
2491 int string_print = 0;
2492 PyObject *output = NULL;
2493
2494 hint = gdbpy_get_display_hint (value_formatter);
2495 if (hint)
2496 {
2497 if (!strcmp (hint, "string"))
2498 string_print = 1;
2499 xfree (hint);
2500 }
2501
2502 output = apply_varobj_pretty_printer (value_formatter,
2503 &replacement);
2504 if (output)
2505 {
2506 if (gdbpy_is_lazy_string (output))
2507 {
2508 thevalue = gdbpy_extract_lazy_string (output, &type,
2509 &len, &encoding);
2510 string_print = 1;
2511 }
2512 else
2513 {
2514 PyObject *py_str
2515 = python_string_to_target_python_string (output);
2516 if (py_str)
2517 {
2518 char *s = PyString_AsString (py_str);
2519 len = PyString_Size (py_str);
2520 thevalue = xmemdup (s, len + 1, len + 1);
2521 type = builtin_type (gdbarch)->builtin_char;
2522 Py_DECREF (py_str);
2523 }
2524 }
2525 Py_DECREF (output);
2526 }
2527 if (thevalue && !string_print)
2528 {
2529 do_cleanups (back_to);
2530 xfree (encoding);
2531 return thevalue;
2532 }
2533 if (replacement)
2534 value = replacement;
2535 }
2536 }
2537 do_cleanups (back_to);
2538 }
2539 #endif
2540
2541 stb = mem_fileopen ();
2542 old_chain = make_cleanup_ui_file_delete (stb);
2543
2544 get_formatted_print_options (&opts, format_code[(int) format]);
2545 opts.deref_ref = 0;
2546 opts.raw = 1;
2547 if (thevalue)
2548 {
2549 make_cleanup (xfree, thevalue);
2550 make_cleanup (xfree, encoding);
2551 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2552 }
2553 else
2554 common_val_print (value, stb, 0, &opts, current_language);
2555 thevalue = ui_file_xstrdup (stb, NULL);
2556
2557 do_cleanups (old_chain);
2558 return thevalue;
2559 }
2560
2561 int
2562 varobj_editable_p (struct varobj *var)
2563 {
2564 struct type *type;
2565 struct value *value;
2566
2567 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2568 return 0;
2569
2570 type = get_value_type (var);
2571
2572 switch (TYPE_CODE (type))
2573 {
2574 case TYPE_CODE_STRUCT:
2575 case TYPE_CODE_UNION:
2576 case TYPE_CODE_ARRAY:
2577 case TYPE_CODE_FUNC:
2578 case TYPE_CODE_METHOD:
2579 return 0;
2580 break;
2581
2582 default:
2583 return 1;
2584 break;
2585 }
2586 }
2587
2588 /* Return non-zero if changes in value of VAR
2589 must be detected and reported by -var-update.
2590 Return zero is -var-update should never report
2591 changes of such values. This makes sense for structures
2592 (since the changes in children values will be reported separately),
2593 or for artifical objects (like 'public' pseudo-field in C++).
2594
2595 Return value of 0 means that gdb need not call value_fetch_lazy
2596 for the value of this variable object. */
2597 static int
2598 varobj_value_is_changeable_p (struct varobj *var)
2599 {
2600 int r;
2601 struct type *type;
2602
2603 if (CPLUS_FAKE_CHILD (var))
2604 return 0;
2605
2606 type = get_value_type (var);
2607
2608 switch (TYPE_CODE (type))
2609 {
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_ARRAY:
2613 r = 0;
2614 break;
2615
2616 default:
2617 r = 1;
2618 }
2619
2620 return r;
2621 }
2622
2623 /* Return 1 if that varobj is floating, that is is always evaluated in the
2624 selected frame, and not bound to thread/frame. Such variable objects
2625 are created using '@' as frame specifier to -var-create. */
2626 int
2627 varobj_floating_p (struct varobj *var)
2628 {
2629 return var->root->floating;
2630 }
2631
2632 /* Given the value and the type of a variable object,
2633 adjust the value and type to those necessary
2634 for getting children of the variable object.
2635 This includes dereferencing top-level references
2636 to all types and dereferencing pointers to
2637 structures.
2638
2639 Both TYPE and *TYPE should be non-null. VALUE
2640 can be null if we want to only translate type.
2641 *VALUE can be null as well -- if the parent
2642 value is not known.
2643
2644 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2645 depending on whether pointer was dereferenced
2646 in this function. */
2647 static void
2648 adjust_value_for_child_access (struct value **value,
2649 struct type **type,
2650 int *was_ptr)
2651 {
2652 gdb_assert (type && *type);
2653
2654 if (was_ptr)
2655 *was_ptr = 0;
2656
2657 *type = check_typedef (*type);
2658
2659 /* The type of value stored in varobj, that is passed
2660 to us, is already supposed to be
2661 reference-stripped. */
2662
2663 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2664
2665 /* Pointers to structures are treated just like
2666 structures when accessing children. Don't
2667 dererences pointers to other types. */
2668 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2669 {
2670 struct type *target_type = get_target_type (*type);
2671 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2672 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2673 {
2674 if (value && *value)
2675 {
2676 int success = gdb_value_ind (*value, value);
2677 if (!success)
2678 *value = NULL;
2679 }
2680 *type = target_type;
2681 if (was_ptr)
2682 *was_ptr = 1;
2683 }
2684 }
2685
2686 /* The 'get_target_type' function calls check_typedef on
2687 result, so we can immediately check type code. No
2688 need to call check_typedef here. */
2689 }
2690
2691 /* C */
2692 static int
2693 c_number_of_children (struct varobj *var)
2694 {
2695 struct type *type = get_value_type (var);
2696 int children = 0;
2697 struct type *target;
2698
2699 adjust_value_for_child_access (NULL, &type, NULL);
2700 target = get_target_type (type);
2701
2702 switch (TYPE_CODE (type))
2703 {
2704 case TYPE_CODE_ARRAY:
2705 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2706 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2707 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2708 else
2709 /* If we don't know how many elements there are, don't display
2710 any. */
2711 children = 0;
2712 break;
2713
2714 case TYPE_CODE_STRUCT:
2715 case TYPE_CODE_UNION:
2716 children = TYPE_NFIELDS (type);
2717 break;
2718
2719 case TYPE_CODE_PTR:
2720 /* The type here is a pointer to non-struct. Typically, pointers
2721 have one child, except for function ptrs, which have no children,
2722 and except for void*, as we don't know what to show.
2723
2724 We can show char* so we allow it to be dereferenced. If you decide
2725 to test for it, please mind that a little magic is necessary to
2726 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2727 TYPE_NAME == "char" */
2728 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2729 || TYPE_CODE (target) == TYPE_CODE_VOID)
2730 children = 0;
2731 else
2732 children = 1;
2733 break;
2734
2735 default:
2736 /* Other types have no children */
2737 break;
2738 }
2739
2740 return children;
2741 }
2742
2743 static char *
2744 c_name_of_variable (struct varobj *parent)
2745 {
2746 return xstrdup (parent->name);
2747 }
2748
2749 /* Return the value of element TYPE_INDEX of a structure
2750 value VALUE. VALUE's type should be a structure,
2751 or union, or a typedef to struct/union.
2752
2753 Returns NULL if getting the value fails. Never throws. */
2754 static struct value *
2755 value_struct_element_index (struct value *value, int type_index)
2756 {
2757 struct value *result = NULL;
2758 volatile struct gdb_exception e;
2759
2760 struct type *type = value_type (value);
2761 type = check_typedef (type);
2762
2763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (type) == TYPE_CODE_UNION);
2765
2766 TRY_CATCH (e, RETURN_MASK_ERROR)
2767 {
2768 if (field_is_static (&TYPE_FIELD (type, type_index)))
2769 result = value_static_field (type, type_index);
2770 else
2771 result = value_primitive_field (value, 0, type_index, type);
2772 }
2773 if (e.reason < 0)
2774 {
2775 return NULL;
2776 }
2777 else
2778 {
2779 return result;
2780 }
2781 }
2782
2783 /* Obtain the information about child INDEX of the variable
2784 object PARENT.
2785 If CNAME is not null, sets *CNAME to the name of the child relative
2786 to the parent.
2787 If CVALUE is not null, sets *CVALUE to the value of the child.
2788 If CTYPE is not null, sets *CTYPE to the type of the child.
2789
2790 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2791 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2792 to NULL. */
2793 static void
2794 c_describe_child (struct varobj *parent, int index,
2795 char **cname, struct value **cvalue, struct type **ctype,
2796 char **cfull_expression)
2797 {
2798 struct value *value = parent->value;
2799 struct type *type = get_value_type (parent);
2800 char *parent_expression = NULL;
2801 int was_ptr;
2802
2803 if (cname)
2804 *cname = NULL;
2805 if (cvalue)
2806 *cvalue = NULL;
2807 if (ctype)
2808 *ctype = NULL;
2809 if (cfull_expression)
2810 {
2811 *cfull_expression = NULL;
2812 parent_expression = varobj_get_path_expr (parent);
2813 }
2814 adjust_value_for_child_access (&value, &type, &was_ptr);
2815
2816 switch (TYPE_CODE (type))
2817 {
2818 case TYPE_CODE_ARRAY:
2819 if (cname)
2820 *cname = xstrdup (int_string (index
2821 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2822 10, 1, 0, 0));
2823
2824 if (cvalue && value)
2825 {
2826 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2827 gdb_value_subscript (value, real_index, cvalue);
2828 }
2829
2830 if (ctype)
2831 *ctype = get_target_type (type);
2832
2833 if (cfull_expression)
2834 *cfull_expression =
2835 xstrprintf ("(%s)[%s]", parent_expression,
2836 int_string (index
2837 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2838 10, 1, 0, 0));
2839
2840
2841 break;
2842
2843 case TYPE_CODE_STRUCT:
2844 case TYPE_CODE_UNION:
2845 if (cname)
2846 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2847
2848 if (cvalue && value)
2849 {
2850 /* For C, varobj index is the same as type index. */
2851 *cvalue = value_struct_element_index (value, index);
2852 }
2853
2854 if (ctype)
2855 *ctype = TYPE_FIELD_TYPE (type, index);
2856
2857 if (cfull_expression)
2858 {
2859 char *join = was_ptr ? "->" : ".";
2860 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2861 TYPE_FIELD_NAME (type, index));
2862 }
2863
2864 break;
2865
2866 case TYPE_CODE_PTR:
2867 if (cname)
2868 *cname = xstrprintf ("*%s", parent->name);
2869
2870 if (cvalue && value)
2871 {
2872 int success = gdb_value_ind (value, cvalue);
2873 if (!success)
2874 *cvalue = NULL;
2875 }
2876
2877 /* Don't use get_target_type because it calls
2878 check_typedef and here, we want to show the true
2879 declared type of the variable. */
2880 if (ctype)
2881 *ctype = TYPE_TARGET_TYPE (type);
2882
2883 if (cfull_expression)
2884 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2885
2886 break;
2887
2888 default:
2889 /* This should not happen */
2890 if (cname)
2891 *cname = xstrdup ("???");
2892 if (cfull_expression)
2893 *cfull_expression = xstrdup ("???");
2894 /* Don't set value and type, we don't know then. */
2895 }
2896 }
2897
2898 static char *
2899 c_name_of_child (struct varobj *parent, int index)
2900 {
2901 char *name;
2902 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2903 return name;
2904 }
2905
2906 static char *
2907 c_path_expr_of_child (struct varobj *child)
2908 {
2909 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2910 &child->path_expr);
2911 return child->path_expr;
2912 }
2913
2914 /* If frame associated with VAR can be found, switch
2915 to it and return 1. Otherwise, return 0. */
2916 static int
2917 check_scope (struct varobj *var)
2918 {
2919 struct frame_info *fi;
2920 int scope;
2921
2922 fi = frame_find_by_id (var->root->frame);
2923 scope = fi != NULL;
2924
2925 if (fi)
2926 {
2927 CORE_ADDR pc = get_frame_pc (fi);
2928 if (pc < BLOCK_START (var->root->valid_block) ||
2929 pc >= BLOCK_END (var->root->valid_block))
2930 scope = 0;
2931 else
2932 select_frame (fi);
2933 }
2934 return scope;
2935 }
2936
2937 static struct value *
2938 c_value_of_root (struct varobj **var_handle)
2939 {
2940 struct value *new_val = NULL;
2941 struct varobj *var = *var_handle;
2942 struct frame_info *fi;
2943 int within_scope = 0;
2944 struct cleanup *back_to;
2945
2946 /* Only root variables can be updated... */
2947 if (!is_root_p (var))
2948 /* Not a root var */
2949 return NULL;
2950
2951 back_to = make_cleanup_restore_current_thread ();
2952
2953 /* Determine whether the variable is still around. */
2954 if (var->root->valid_block == NULL || var->root->floating)
2955 within_scope = 1;
2956 else if (var->root->thread_id == 0)
2957 {
2958 /* The program was single-threaded when the variable object was
2959 created. Technically, it's possible that the program became
2960 multi-threaded since then, but we don't support such
2961 scenario yet. */
2962 within_scope = check_scope (var);
2963 }
2964 else
2965 {
2966 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2967 if (in_thread_list (ptid))
2968 {
2969 switch_to_thread (ptid);
2970 within_scope = check_scope (var);
2971 }
2972 }
2973
2974 if (within_scope)
2975 {
2976 /* We need to catch errors here, because if evaluate
2977 expression fails we want to just return NULL. */
2978 gdb_evaluate_expression (var->root->exp, &new_val);
2979 return new_val;
2980 }
2981
2982 do_cleanups (back_to);
2983
2984 return NULL;
2985 }
2986
2987 static struct value *
2988 c_value_of_child (struct varobj *parent, int index)
2989 {
2990 struct value *value = NULL;
2991 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2992
2993 return value;
2994 }
2995
2996 static struct type *
2997 c_type_of_child (struct varobj *parent, int index)
2998 {
2999 struct type *type = NULL;
3000 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3001 return type;
3002 }
3003
3004 static char *
3005 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3006 {
3007 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3008 it will print out its children instead of "{...}". So we need to
3009 catch that case explicitly. */
3010 struct type *type = get_type (var);
3011
3012 /* If we have a custom formatter, return whatever string it has
3013 produced. */
3014 if (var->pretty_printer && var->print_value)
3015 return xstrdup (var->print_value);
3016
3017 /* Strip top-level references. */
3018 while (TYPE_CODE (type) == TYPE_CODE_REF)
3019 type = check_typedef (TYPE_TARGET_TYPE (type));
3020
3021 switch (TYPE_CODE (type))
3022 {
3023 case TYPE_CODE_STRUCT:
3024 case TYPE_CODE_UNION:
3025 return xstrdup ("{...}");
3026 /* break; */
3027
3028 case TYPE_CODE_ARRAY:
3029 {
3030 char *number;
3031 number = xstrprintf ("[%d]", var->num_children);
3032 return (number);
3033 }
3034 /* break; */
3035
3036 default:
3037 {
3038 if (var->value == NULL)
3039 {
3040 /* This can happen if we attempt to get the value of a struct
3041 member when the parent is an invalid pointer. This is an
3042 error condition, so we should tell the caller. */
3043 return NULL;
3044 }
3045 else
3046 {
3047 if (var->not_fetched && value_lazy (var->value))
3048 /* Frozen variable and no value yet. We don't
3049 implicitly fetch the value. MI response will
3050 use empty string for the value, which is OK. */
3051 return NULL;
3052
3053 gdb_assert (varobj_value_is_changeable_p (var));
3054 gdb_assert (!value_lazy (var->value));
3055
3056 /* If the specified format is the current one,
3057 we can reuse print_value */
3058 if (format == var->format)
3059 return xstrdup (var->print_value);
3060 else
3061 return value_get_print_value (var->value, format, var);
3062 }
3063 }
3064 }
3065 }
3066 \f
3067
3068 /* C++ */
3069
3070 static int
3071 cplus_number_of_children (struct varobj *var)
3072 {
3073 struct type *type;
3074 int children, dont_know;
3075
3076 dont_know = 1;
3077 children = 0;
3078
3079 if (!CPLUS_FAKE_CHILD (var))
3080 {
3081 type = get_value_type (var);
3082 adjust_value_for_child_access (NULL, &type, NULL);
3083
3084 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3085 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3086 {
3087 int kids[3];
3088
3089 cplus_class_num_children (type, kids);
3090 if (kids[v_public] != 0)
3091 children++;
3092 if (kids[v_private] != 0)
3093 children++;
3094 if (kids[v_protected] != 0)
3095 children++;
3096
3097 /* Add any baseclasses */
3098 children += TYPE_N_BASECLASSES (type);
3099 dont_know = 0;
3100
3101 /* FIXME: save children in var */
3102 }
3103 }
3104 else
3105 {
3106 int kids[3];
3107
3108 type = get_value_type (var->parent);
3109 adjust_value_for_child_access (NULL, &type, NULL);
3110
3111 cplus_class_num_children (type, kids);
3112 if (strcmp (var->name, "public") == 0)
3113 children = kids[v_public];
3114 else if (strcmp (var->name, "private") == 0)
3115 children = kids[v_private];
3116 else
3117 children = kids[v_protected];
3118 dont_know = 0;
3119 }
3120
3121 if (dont_know)
3122 children = c_number_of_children (var);
3123
3124 return children;
3125 }
3126
3127 /* Compute # of public, private, and protected variables in this class.
3128 That means we need to descend into all baseclasses and find out
3129 how many are there, too. */
3130 static void
3131 cplus_class_num_children (struct type *type, int children[3])
3132 {
3133 int i, vptr_fieldno;
3134 struct type *basetype = NULL;
3135
3136 children[v_public] = 0;
3137 children[v_private] = 0;
3138 children[v_protected] = 0;
3139
3140 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3141 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3142 {
3143 /* If we have a virtual table pointer, omit it. Even if virtual
3144 table pointers are not specifically marked in the debug info,
3145 they should be artificial. */
3146 if ((type == basetype && i == vptr_fieldno)
3147 || TYPE_FIELD_ARTIFICIAL (type, i))
3148 continue;
3149
3150 if (TYPE_FIELD_PROTECTED (type, i))
3151 children[v_protected]++;
3152 else if (TYPE_FIELD_PRIVATE (type, i))
3153 children[v_private]++;
3154 else
3155 children[v_public]++;
3156 }
3157 }
3158
3159 static char *
3160 cplus_name_of_variable (struct varobj *parent)
3161 {
3162 return c_name_of_variable (parent);
3163 }
3164
3165 enum accessibility { private_field, protected_field, public_field };
3166
3167 /* Check if field INDEX of TYPE has the specified accessibility.
3168 Return 0 if so and 1 otherwise. */
3169 static int
3170 match_accessibility (struct type *type, int index, enum accessibility acc)
3171 {
3172 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3173 return 1;
3174 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3175 return 1;
3176 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3177 && !TYPE_FIELD_PROTECTED (type, index))
3178 return 1;
3179 else
3180 return 0;
3181 }
3182
3183 static void
3184 cplus_describe_child (struct varobj *parent, int index,
3185 char **cname, struct value **cvalue, struct type **ctype,
3186 char **cfull_expression)
3187 {
3188 char *name = NULL;
3189 struct value *value;
3190 struct type *type;
3191 int was_ptr;
3192 char *parent_expression = NULL;
3193
3194 if (cname)
3195 *cname = NULL;
3196 if (cvalue)
3197 *cvalue = NULL;
3198 if (ctype)
3199 *ctype = NULL;
3200 if (cfull_expression)
3201 *cfull_expression = NULL;
3202
3203 if (CPLUS_FAKE_CHILD (parent))
3204 {
3205 value = parent->parent->value;
3206 type = get_value_type (parent->parent);
3207 if (cfull_expression)
3208 parent_expression = varobj_get_path_expr (parent->parent);
3209 }
3210 else
3211 {
3212 value = parent->value;
3213 type = get_value_type (parent);
3214 if (cfull_expression)
3215 parent_expression = varobj_get_path_expr (parent);
3216 }
3217
3218 adjust_value_for_child_access (&value, &type, &was_ptr);
3219
3220 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3221 || TYPE_CODE (type) == TYPE_CODE_UNION)
3222 {
3223 char *join = was_ptr ? "->" : ".";
3224 if (CPLUS_FAKE_CHILD (parent))
3225 {
3226 /* The fields of the class type are ordered as they
3227 appear in the class. We are given an index for a
3228 particular access control type ("public","protected",
3229 or "private"). We must skip over fields that don't
3230 have the access control we are looking for to properly
3231 find the indexed field. */
3232 int type_index = TYPE_N_BASECLASSES (type);
3233 enum accessibility acc = public_field;
3234 int vptr_fieldno;
3235 struct type *basetype = NULL;
3236
3237 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3238 if (strcmp (parent->name, "private") == 0)
3239 acc = private_field;
3240 else if (strcmp (parent->name, "protected") == 0)
3241 acc = protected_field;
3242
3243 while (index >= 0)
3244 {
3245 if ((type == basetype && type_index == vptr_fieldno)
3246 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3247 ; /* ignore vptr */
3248 else if (match_accessibility (type, type_index, acc))
3249 --index;
3250 ++type_index;
3251 }
3252 --type_index;
3253
3254 if (cname)
3255 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3256
3257 if (cvalue && value)
3258 *cvalue = value_struct_element_index (value, type_index);
3259
3260 if (ctype)
3261 *ctype = TYPE_FIELD_TYPE (type, type_index);
3262
3263 if (cfull_expression)
3264 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3265 join,
3266 TYPE_FIELD_NAME (type, type_index));
3267 }
3268 else if (index < TYPE_N_BASECLASSES (type))
3269 {
3270 /* This is a baseclass. */
3271 if (cname)
3272 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3273
3274 if (cvalue && value)
3275 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3276
3277 if (ctype)
3278 {
3279 *ctype = TYPE_FIELD_TYPE (type, index);
3280 }
3281
3282 if (cfull_expression)
3283 {
3284 char *ptr = was_ptr ? "*" : "";
3285 /* Cast the parent to the base' type. Note that in gdb,
3286 expression like
3287 (Base1)d
3288 will create an lvalue, for all appearences, so we don't
3289 need to use more fancy:
3290 *(Base1*)(&d)
3291 construct. */
3292 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3293 ptr,
3294 TYPE_FIELD_NAME (type, index),
3295 ptr,
3296 parent_expression);
3297 }
3298 }
3299 else
3300 {
3301 char *access = NULL;
3302 int children[3];
3303 cplus_class_num_children (type, children);
3304
3305 /* Everything beyond the baseclasses can
3306 only be "public", "private", or "protected"
3307
3308 The special "fake" children are always output by varobj in
3309 this order. So if INDEX == 2, it MUST be "protected". */
3310 index -= TYPE_N_BASECLASSES (type);
3311 switch (index)
3312 {
3313 case 0:
3314 if (children[v_public] > 0)
3315 access = "public";
3316 else if (children[v_private] > 0)
3317 access = "private";
3318 else
3319 access = "protected";
3320 break;
3321 case 1:
3322 if (children[v_public] > 0)
3323 {
3324 if (children[v_private] > 0)
3325 access = "private";
3326 else
3327 access = "protected";
3328 }
3329 else if (children[v_private] > 0)
3330 access = "protected";
3331 break;
3332 case 2:
3333 /* Must be protected */
3334 access = "protected";
3335 break;
3336 default:
3337 /* error! */
3338 break;
3339 }
3340
3341 gdb_assert (access);
3342 if (cname)
3343 *cname = xstrdup (access);
3344
3345 /* Value and type and full expression are null here. */
3346 }
3347 }
3348 else
3349 {
3350 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3351 }
3352 }
3353
3354 static char *
3355 cplus_name_of_child (struct varobj *parent, int index)
3356 {
3357 char *name = NULL;
3358 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3359 return name;
3360 }
3361
3362 static char *
3363 cplus_path_expr_of_child (struct varobj *child)
3364 {
3365 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3366 &child->path_expr);
3367 return child->path_expr;
3368 }
3369
3370 static struct value *
3371 cplus_value_of_root (struct varobj **var_handle)
3372 {
3373 return c_value_of_root (var_handle);
3374 }
3375
3376 static struct value *
3377 cplus_value_of_child (struct varobj *parent, int index)
3378 {
3379 struct value *value = NULL;
3380 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3381 return value;
3382 }
3383
3384 static struct type *
3385 cplus_type_of_child (struct varobj *parent, int index)
3386 {
3387 struct type *type = NULL;
3388 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3389 return type;
3390 }
3391
3392 static char *
3393 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3394 {
3395
3396 /* If we have one of our special types, don't print out
3397 any value. */
3398 if (CPLUS_FAKE_CHILD (var))
3399 return xstrdup ("");
3400
3401 return c_value_of_variable (var, format);
3402 }
3403 \f
3404 /* Java */
3405
3406 static int
3407 java_number_of_children (struct varobj *var)
3408 {
3409 return cplus_number_of_children (var);
3410 }
3411
3412 static char *
3413 java_name_of_variable (struct varobj *parent)
3414 {
3415 char *p, *name;
3416
3417 name = cplus_name_of_variable (parent);
3418 /* If the name has "-" in it, it is because we
3419 needed to escape periods in the name... */
3420 p = name;
3421
3422 while (*p != '\000')
3423 {
3424 if (*p == '-')
3425 *p = '.';
3426 p++;
3427 }
3428
3429 return name;
3430 }
3431
3432 static char *
3433 java_name_of_child (struct varobj *parent, int index)
3434 {
3435 char *name, *p;
3436
3437 name = cplus_name_of_child (parent, index);
3438 /* Escape any periods in the name... */
3439 p = name;
3440
3441 while (*p != '\000')
3442 {
3443 if (*p == '.')
3444 *p = '-';
3445 p++;
3446 }
3447
3448 return name;
3449 }
3450
3451 static char *
3452 java_path_expr_of_child (struct varobj *child)
3453 {
3454 return NULL;
3455 }
3456
3457 static struct value *
3458 java_value_of_root (struct varobj **var_handle)
3459 {
3460 return cplus_value_of_root (var_handle);
3461 }
3462
3463 static struct value *
3464 java_value_of_child (struct varobj *parent, int index)
3465 {
3466 return cplus_value_of_child (parent, index);
3467 }
3468
3469 static struct type *
3470 java_type_of_child (struct varobj *parent, int index)
3471 {
3472 return cplus_type_of_child (parent, index);
3473 }
3474
3475 static char *
3476 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3477 {
3478 return cplus_value_of_variable (var, format);
3479 }
3480
3481 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3482 with an arbitrary caller supplied DATA pointer. */
3483
3484 void
3485 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3486 {
3487 struct varobj_root *var_root, *var_root_next;
3488
3489 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3490
3491 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3492 {
3493 var_root_next = var_root->next;
3494
3495 (*func) (var_root->rootvar, data);
3496 }
3497 }
3498 \f
3499 extern void _initialize_varobj (void);
3500 void
3501 _initialize_varobj (void)
3502 {
3503 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3504
3505 varobj_table = xmalloc (sizeof_table);
3506 memset (varobj_table, 0, sizeof_table);
3507
3508 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3509 &varobjdebug, _("\
3510 Set varobj debugging."), _("\
3511 Show varobj debugging."), _("\
3512 When non-zero, varobj debugging is enabled."),
3513 NULL,
3514 show_varobjdebug,
3515 &setlist, &showlist);
3516 }
3517
3518 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3519 defined on globals. It is a helper for varobj_invalidate. */
3520
3521 static void
3522 varobj_invalidate_iter (struct varobj *var, void *unused)
3523 {
3524 /* Floating varobjs are reparsed on each stop, so we don't care if the
3525 presently parsed expression refers to something that's gone. */
3526 if (var->root->floating)
3527 return;
3528
3529 /* global var must be re-evaluated. */
3530 if (var->root->valid_block == NULL)
3531 {
3532 struct varobj *tmp_var;
3533
3534 /* Try to create a varobj with same expression. If we succeed
3535 replace the old varobj, otherwise invalidate it. */
3536 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3537 USE_CURRENT_FRAME);
3538 if (tmp_var != NULL)
3539 {
3540 tmp_var->obj_name = xstrdup (var->obj_name);
3541 varobj_delete (var, NULL, 0);
3542 install_variable (tmp_var);
3543 }
3544 else
3545 var->root->is_valid = 0;
3546 }
3547 else /* locals must be invalidated. */
3548 var->root->is_valid = 0;
3549 }
3550
3551 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3552 are defined on globals.
3553 Invalidated varobjs will be always printed in_scope="invalid". */
3554
3555 void
3556 varobj_invalidate (void)
3557 {
3558 all_root_varobjs (varobj_invalidate_iter, NULL);
3559 }
This page took 0.148523 seconds and 5 git commands to generate.