Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "floatformat.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "osabi.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "value.h"
34
35 #include "vax-tdep.h"
36
37 /* Return the name of register REGNUM. */
38
39 static const char *
40 vax_register_name (struct gdbarch *gdbarch, int regnum)
41 {
42 static char *register_names[] =
43 {
44 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
45 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
46 "ps",
47 };
48
49 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
50 return register_names[regnum];
51
52 return NULL;
53 }
54
55 /* Return the GDB type object for the "standard" data type of data in
56 register REGNUM. */
57
58 static struct type *
59 vax_register_type (struct gdbarch *gdbarch, int regnum)
60 {
61 return builtin_type (gdbarch)->builtin_int;
62 }
63 \f
64 /* Core file support. */
65
66 /* Supply register REGNUM from the buffer specified by GREGS and LEN
67 in the general-purpose register set REGSET to register cache
68 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
69
70 static void
71 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
72 int regnum, const void *gregs, size_t len)
73 {
74 const gdb_byte *regs = gregs;
75 int i;
76
77 for (i = 0; i < VAX_NUM_REGS; i++)
78 {
79 if (regnum == i || regnum == -1)
80 regcache_raw_supply (regcache, i, regs + i * 4);
81 }
82 }
83
84 /* VAX register set. */
85
86 static const struct regset vax_gregset =
87 {
88 NULL,
89 vax_supply_gregset
90 };
91
92 /* Iterate over core file register note sections. */
93
94 static void
95 vax_iterate_over_regset_sections (struct gdbarch *gdbarch,
96 iterate_over_regset_sections_cb *cb,
97 void *cb_data,
98 const struct regcache *regcache)
99 {
100 cb (".reg", VAX_NUM_REGS * 4, &vax_gregset, NULL, cb_data);
101 }
102 \f
103 /* The VAX UNIX calling convention uses R1 to pass a structure return
104 value address instead of passing it as a first (hidden) argument as
105 the VMS calling convention suggests. */
106
107 static CORE_ADDR
108 vax_store_arguments (struct regcache *regcache, int nargs,
109 struct value **args, CORE_ADDR sp)
110 {
111 struct gdbarch *gdbarch = get_regcache_arch (regcache);
112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
113 gdb_byte buf[4];
114 int count = 0;
115 int i;
116
117 /* We create an argument list on the stack, and make the argument
118 pointer to it. */
119
120 /* Push arguments in reverse order. */
121 for (i = nargs - 1; i >= 0; i--)
122 {
123 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
124
125 sp -= (len + 3) & ~3;
126 count += (len + 3) / 4;
127 write_memory (sp, value_contents_all (args[i]), len);
128 }
129
130 /* Push argument count. */
131 sp -= 4;
132 store_unsigned_integer (buf, 4, byte_order, count);
133 write_memory (sp, buf, 4);
134
135 /* Update the argument pointer. */
136 store_unsigned_integer (buf, 4, byte_order, sp);
137 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
138
139 return sp;
140 }
141
142 static CORE_ADDR
143 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
144 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
145 struct value **args, CORE_ADDR sp, int struct_return,
146 CORE_ADDR struct_addr)
147 {
148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
149 CORE_ADDR fp = sp;
150 gdb_byte buf[4];
151
152 /* Set up the function arguments. */
153 sp = vax_store_arguments (regcache, nargs, args, sp);
154
155 /* Store return value address. */
156 if (struct_return)
157 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
158
159 /* Store return address in the PC slot. */
160 sp -= 4;
161 store_unsigned_integer (buf, 4, byte_order, bp_addr);
162 write_memory (sp, buf, 4);
163
164 /* Store the (fake) frame pointer in the FP slot. */
165 sp -= 4;
166 store_unsigned_integer (buf, 4, byte_order, fp);
167 write_memory (sp, buf, 4);
168
169 /* Skip the AP slot. */
170 sp -= 4;
171
172 /* Store register save mask and control bits. */
173 sp -= 4;
174 store_unsigned_integer (buf, 4, byte_order, 0);
175 write_memory (sp, buf, 4);
176
177 /* Store condition handler. */
178 sp -= 4;
179 store_unsigned_integer (buf, 4, byte_order, 0);
180 write_memory (sp, buf, 4);
181
182 /* Update the stack pointer and frame pointer. */
183 store_unsigned_integer (buf, 4, byte_order, sp);
184 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
185 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
186
187 /* Return the saved (fake) frame pointer. */
188 return fp;
189 }
190
191 static struct frame_id
192 vax_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
193 {
194 CORE_ADDR fp;
195
196 fp = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
197 return frame_id_build (fp, get_frame_pc (this_frame));
198 }
199 \f
200
201 static enum return_value_convention
202 vax_return_value (struct gdbarch *gdbarch, struct value *function,
203 struct type *type, struct regcache *regcache,
204 gdb_byte *readbuf, const gdb_byte *writebuf)
205 {
206 int len = TYPE_LENGTH (type);
207 gdb_byte buf[8];
208
209 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
210 || TYPE_CODE (type) == TYPE_CODE_UNION
211 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
212 {
213 /* The default on VAX is to return structures in static memory.
214 Consequently a function must return the address where we can
215 find the return value. */
216
217 if (readbuf)
218 {
219 ULONGEST addr;
220
221 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
222 read_memory (addr, readbuf, len);
223 }
224
225 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
226 }
227
228 if (readbuf)
229 {
230 /* Read the contents of R0 and (if necessary) R1. */
231 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
232 if (len > 4)
233 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
234 memcpy (readbuf, buf, len);
235 }
236 if (writebuf)
237 {
238 /* Read the contents to R0 and (if necessary) R1. */
239 memcpy (buf, writebuf, len);
240 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
241 if (len > 4)
242 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
243 }
244
245 return RETURN_VALUE_REGISTER_CONVENTION;
246 }
247 \f
248
249 /* Use the program counter to determine the contents and size of a
250 breakpoint instruction. Return a pointer to a string of bytes that
251 encode a breakpoint instruction, store the length of the string in
252 *LEN and optionally adjust *PC to point to the correct memory
253 location for inserting the breakpoint. */
254
255 static const gdb_byte *
256 vax_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
257 {
258 static gdb_byte break_insn[] = { 3 };
259
260 *len = sizeof (break_insn);
261 return break_insn;
262 }
263 \f
264 /* Advance PC across any function entry prologue instructions
265 to reach some "real" code. */
266
267 static CORE_ADDR
268 vax_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
269 {
270 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
271 gdb_byte op = read_memory_unsigned_integer (pc, 1, byte_order);
272
273 if (op == 0x11)
274 pc += 2; /* skip brb */
275 if (op == 0x31)
276 pc += 3; /* skip brw */
277 if (op == 0xC2
278 && read_memory_unsigned_integer (pc + 2, 1, byte_order) == 0x5E)
279 pc += 3; /* skip subl2 */
280 if (op == 0x9E
281 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xAE
282 && read_memory_unsigned_integer (pc + 3, 1, byte_order) == 0x5E)
283 pc += 4; /* skip movab */
284 if (op == 0x9E
285 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xCE
286 && read_memory_unsigned_integer (pc + 4, 1, byte_order) == 0x5E)
287 pc += 5; /* skip movab */
288 if (op == 0x9E
289 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xEE
290 && read_memory_unsigned_integer (pc + 6, 1, byte_order) == 0x5E)
291 pc += 7; /* skip movab */
292
293 return pc;
294 }
295 \f
296
297 /* Unwinding the stack is relatively easy since the VAX has a
298 dedicated frame pointer, and frames are set up automatically as the
299 result of a function call. Most of the relevant information can be
300 inferred from the documentation of the Procedure Call Instructions
301 in the VAX MACRO and Instruction Set Reference Manual. */
302
303 struct vax_frame_cache
304 {
305 /* Base address. */
306 CORE_ADDR base;
307
308 /* Table of saved registers. */
309 struct trad_frame_saved_reg *saved_regs;
310 };
311
312 static struct vax_frame_cache *
313 vax_frame_cache (struct frame_info *this_frame, void **this_cache)
314 {
315 struct vax_frame_cache *cache;
316 CORE_ADDR addr;
317 ULONGEST mask;
318 int regnum;
319
320 if (*this_cache)
321 return *this_cache;
322
323 /* Allocate a new cache. */
324 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
325 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
326
327 /* The frame pointer is used as the base for the frame. */
328 cache->base = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
329 if (cache->base == 0)
330 return cache;
331
332 /* The register save mask and control bits determine the layout of
333 the stack frame. */
334 mask = get_frame_memory_unsigned (this_frame, cache->base + 4, 4) >> 16;
335
336 /* These are always saved. */
337 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
338 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
339 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
340 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
341
342 /* Scan the register save mask and record the location of the saved
343 registers. */
344 addr = cache->base + 20;
345 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
346 {
347 if (mask & (1 << regnum))
348 {
349 cache->saved_regs[regnum].addr = addr;
350 addr += 4;
351 }
352 }
353
354 /* The CALLS/CALLG flag determines whether this frame has a General
355 Argument List or a Stack Argument List. */
356 if (mask & (1 << 13))
357 {
358 ULONGEST numarg;
359
360 /* This is a procedure with Stack Argument List. Adjust the
361 stack address for the arguments that were pushed onto the
362 stack. The return instruction will automatically pop the
363 arguments from the stack. */
364 numarg = get_frame_memory_unsigned (this_frame, addr, 1);
365 addr += 4 + numarg * 4;
366 }
367
368 /* Bits 1:0 of the stack pointer were saved in the control bits. */
369 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
370
371 return cache;
372 }
373
374 static void
375 vax_frame_this_id (struct frame_info *this_frame, void **this_cache,
376 struct frame_id *this_id)
377 {
378 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
379
380 /* This marks the outermost frame. */
381 if (cache->base == 0)
382 return;
383
384 (*this_id) = frame_id_build (cache->base, get_frame_func (this_frame));
385 }
386
387 static struct value *
388 vax_frame_prev_register (struct frame_info *this_frame,
389 void **this_cache, int regnum)
390 {
391 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
392
393 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
394 }
395
396 static const struct frame_unwind vax_frame_unwind =
397 {
398 NORMAL_FRAME,
399 default_frame_unwind_stop_reason,
400 vax_frame_this_id,
401 vax_frame_prev_register,
402 NULL,
403 default_frame_sniffer
404 };
405 \f
406
407 static CORE_ADDR
408 vax_frame_base_address (struct frame_info *this_frame, void **this_cache)
409 {
410 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
411
412 return cache->base;
413 }
414
415 static CORE_ADDR
416 vax_frame_args_address (struct frame_info *this_frame, void **this_cache)
417 {
418 return get_frame_register_unsigned (this_frame, VAX_AP_REGNUM);
419 }
420
421 static const struct frame_base vax_frame_base =
422 {
423 &vax_frame_unwind,
424 vax_frame_base_address,
425 vax_frame_base_address,
426 vax_frame_args_address
427 };
428
429 /* Return number of arguments for FRAME. */
430
431 static int
432 vax_frame_num_args (struct frame_info *frame)
433 {
434 CORE_ADDR args;
435
436 /* Assume that the argument pointer for the outermost frame is
437 hosed, as is the case on NetBSD/vax ELF. */
438 if (get_frame_base_address (frame) == 0)
439 return 0;
440
441 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
442 return get_frame_memory_unsigned (frame, args, 1);
443 }
444
445 static CORE_ADDR
446 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
447 {
448 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
449 }
450 \f
451
452 /* Initialize the current architecture based on INFO. If possible, re-use an
453 architecture from ARCHES, which is a list of architectures already created
454 during this debugging session.
455
456 Called e.g. at program startup, when reading a core file, and when reading
457 a binary file. */
458
459 static struct gdbarch *
460 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
461 {
462 struct gdbarch *gdbarch;
463
464 /* If there is already a candidate, use it. */
465 arches = gdbarch_list_lookup_by_info (arches, &info);
466 if (arches != NULL)
467 return arches->gdbarch;
468
469 gdbarch = gdbarch_alloc (&info, NULL);
470
471 set_gdbarch_float_format (gdbarch, floatformats_vax_f);
472 set_gdbarch_double_format (gdbarch, floatformats_vax_d);
473 set_gdbarch_long_double_format (gdbarch, floatformats_vax_d);
474 set_gdbarch_long_double_bit (gdbarch, 64);
475
476 /* Register info */
477 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
478 set_gdbarch_register_name (gdbarch, vax_register_name);
479 set_gdbarch_register_type (gdbarch, vax_register_type);
480 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
481 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
482 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
483
484 set_gdbarch_iterate_over_regset_sections
485 (gdbarch, vax_iterate_over_regset_sections);
486
487 /* Frame and stack info */
488 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
489 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
490 set_gdbarch_frame_args_skip (gdbarch, 4);
491
492 /* Stack grows downward. */
493 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
494
495 /* Return value info */
496 set_gdbarch_return_value (gdbarch, vax_return_value);
497
498 /* Call dummy code. */
499 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
500 set_gdbarch_dummy_id (gdbarch, vax_dummy_id);
501
502 /* Breakpoint info */
503 set_gdbarch_breakpoint_from_pc (gdbarch, vax_breakpoint_from_pc);
504
505 /* Misc info */
506 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
507 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
508
509 set_gdbarch_print_insn (gdbarch, print_insn_vax);
510
511 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
512
513 frame_base_set_default (gdbarch, &vax_frame_base);
514
515 /* Hook in ABI-specific overrides, if they have been registered. */
516 gdbarch_init_osabi (info, gdbarch);
517
518 frame_unwind_append_unwinder (gdbarch, &vax_frame_unwind);
519
520 return (gdbarch);
521 }
522
523 /* Provide a prototype to silence -Wmissing-prototypes. */
524 void _initialize_vax_tdep (void);
525
526 void
527 _initialize_vax_tdep (void)
528 {
529 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
530 }
This page took 0.054339 seconds and 4 git commands to generate.