*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / x86-64-tdep.c
1 /* Target-dependent code for the x86-64 for GDB, the GNU debugger.
2
3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Jiri Smid, SuSE Labs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "x86-64-tdep.h"
32 #include "dwarf2cfi.h"
33 #include "gdb_assert.h"
34
35 /* Register numbers of various important registers. */
36 #define RAX_REGNUM 0
37 #define RDX_REGNUM 3
38 #define RDI_REGNUM 5
39 #define EFLAGS_REGNUM 17
40 #define ST0_REGNUM 22
41 #define XMM1_REGNUM 39
42
43 struct register_info
44 {
45 int size;
46 char *name;
47 struct type **type;
48 };
49
50 /* x86_64_register_raw_size_table[i] is the number of bytes of storage in
51 GDB's register array occupied by register i. */
52 static struct register_info x86_64_register_info_table[] = {
53 /* 0 */ {8, "rax", &builtin_type_int64},
54 /* 1 */ {8, "rbx", &builtin_type_int64},
55 /* 2 */ {8, "rcx", &builtin_type_int64},
56 /* 3 */ {8, "rdx", &builtin_type_int64},
57 /* 4 */ {8, "rsi", &builtin_type_int64},
58 /* 5 */ {8, "rdi", &builtin_type_int64},
59 /* 6 */ {8, "rbp", &builtin_type_void_func_ptr},
60 /* 7 */ {8, "rsp", &builtin_type_void_func_ptr},
61 /* 8 */ {8, "r8", &builtin_type_int64},
62 /* 9 */ {8, "r9", &builtin_type_int64},
63 /* 10 */ {8, "r10", &builtin_type_int64},
64 /* 11 */ {8, "r11", &builtin_type_int64},
65 /* 12 */ {8, "r12", &builtin_type_int64},
66 /* 13 */ {8, "r13", &builtin_type_int64},
67 /* 14 */ {8, "r14", &builtin_type_int64},
68 /* 15 */ {8, "r15", &builtin_type_int64},
69 /* 16 */ {8, "rip", &builtin_type_void_func_ptr},
70 /* 17 */ {4, "eflags", &builtin_type_int32},
71 /* 18 */ {4, "ds", &builtin_type_int32},
72 /* 19 */ {4, "es", &builtin_type_int32},
73 /* 20 */ {4, "fs", &builtin_type_int32},
74 /* 21 */ {4, "gs", &builtin_type_int32},
75 /* 22 */ {10, "st0", &builtin_type_i387_ext},
76 /* 23 */ {10, "st1", &builtin_type_i387_ext},
77 /* 24 */ {10, "st2", &builtin_type_i387_ext},
78 /* 25 */ {10, "st3", &builtin_type_i387_ext},
79 /* 26 */ {10, "st4", &builtin_type_i387_ext},
80 /* 27 */ {10, "st5", &builtin_type_i387_ext},
81 /* 28 */ {10, "st6", &builtin_type_i387_ext},
82 /* 29 */ {10, "st7", &builtin_type_i387_ext},
83 /* 30 */ {4, "fctrl", &builtin_type_int32},
84 /* 31 */ {4, "fstat", &builtin_type_int32},
85 /* 32 */ {4, "ftag", &builtin_type_int32},
86 /* 33 */ {4, "fiseg", &builtin_type_int32},
87 /* 34 */ {4, "fioff", &builtin_type_int32},
88 /* 35 */ {4, "foseg", &builtin_type_int32},
89 /* 36 */ {4, "fooff", &builtin_type_int32},
90 /* 37 */ {4, "fop", &builtin_type_int32},
91 /* 38 */ {16, "xmm0", &builtin_type_v4sf},
92 /* 39 */ {16, "xmm1", &builtin_type_v4sf},
93 /* 40 */ {16, "xmm2", &builtin_type_v4sf},
94 /* 41 */ {16, "xmm3", &builtin_type_v4sf},
95 /* 42 */ {16, "xmm4", &builtin_type_v4sf},
96 /* 43 */ {16, "xmm5", &builtin_type_v4sf},
97 /* 44 */ {16, "xmm6", &builtin_type_v4sf},
98 /* 45 */ {16, "xmm7", &builtin_type_v4sf},
99 /* 46 */ {16, "xmm8", &builtin_type_v4sf},
100 /* 47 */ {16, "xmm9", &builtin_type_v4sf},
101 /* 48 */ {16, "xmm10", &builtin_type_v4sf},
102 /* 49 */ {16, "xmm11", &builtin_type_v4sf},
103 /* 50 */ {16, "xmm12", &builtin_type_v4sf},
104 /* 51 */ {16, "xmm13", &builtin_type_v4sf},
105 /* 52 */ {16, "xmm14", &builtin_type_v4sf},
106 /* 53 */ {16, "xmm15", &builtin_type_v4sf},
107 /* 54 */ {4, "mxcsr", &builtin_type_int32}
108 };
109
110 /* This array is a mapping from Dwarf-2 register
111 numbering to GDB's one. Dwarf-2 numbering is
112 defined in x86-64 ABI, section 3.6. */
113 static int x86_64_dwarf2gdb_regno_map[] = {
114 0, 1, 2, 3, /* RAX - RDX */
115 4, 5, 6, 7, /* RSI, RDI, RBP, RSP */
116 8, 9, 10, 11, /* R8 - R11 */
117 12, 13, 14, 15, /* R12 - R15 */
118 -1, /* RA - not mapped */
119 XMM1_REGNUM - 1, XMM1_REGNUM, /* XMM0 ... */
120 XMM1_REGNUM + 1, XMM1_REGNUM + 2,
121 XMM1_REGNUM + 3, XMM1_REGNUM + 4,
122 XMM1_REGNUM + 5, XMM1_REGNUM + 6,
123 XMM1_REGNUM + 7, XMM1_REGNUM + 8,
124 XMM1_REGNUM + 9, XMM1_REGNUM + 10,
125 XMM1_REGNUM + 11, XMM1_REGNUM + 12,
126 XMM1_REGNUM + 13, XMM1_REGNUM + 14, /* ... XMM15 */
127 ST0_REGNUM + 0, ST0_REGNUM + 1, /* ST0 ... */
128 ST0_REGNUM + 2, ST0_REGNUM + 3,
129 ST0_REGNUM + 4, ST0_REGNUM + 5,
130 ST0_REGNUM + 6, ST0_REGNUM + 7 /* ... ST7 */
131 };
132
133 static int x86_64_dwarf2gdb_regno_map_length =
134 sizeof (x86_64_dwarf2gdb_regno_map) /
135 sizeof (x86_64_dwarf2gdb_regno_map[0]);
136
137 /* Number of all registers */
138 #define X86_64_NUM_REGS (sizeof (x86_64_register_info_table) / \
139 sizeof (x86_64_register_info_table[0]))
140
141 /* Number of general registers. */
142 #define X86_64_NUM_GREGS (22)
143
144 int x86_64_num_regs = X86_64_NUM_REGS;
145 int x86_64_num_gregs = X86_64_NUM_GREGS;
146
147 /* Did we already print a note about frame pointer? */
148 int omit_fp_note_printed = 0;
149
150 /* Number of bytes of storage in the actual machine representation for
151 register REGNO. */
152 int
153 x86_64_register_raw_size (int regno)
154 {
155 return x86_64_register_info_table[regno].size;
156 }
157
158 /* x86_64_register_byte_table[i] is the offset into the register file of the
159 start of register number i. We initialize this from
160 x86_64_register_info_table. */
161 int x86_64_register_byte_table[X86_64_NUM_REGS];
162
163 /* Index within `registers' of the first byte of the space for register REGNO. */
164 int
165 x86_64_register_byte (int regno)
166 {
167 return x86_64_register_byte_table[regno];
168 }
169
170 /* Return the GDB type object for the "standard" data type of data in
171 register N. */
172 static struct type *
173 x86_64_register_virtual_type (int regno)
174 {
175 return *x86_64_register_info_table[regno].type;
176 }
177
178 /* x86_64_register_convertible is true if register N's virtual format is
179 different from its raw format. Note that this definition assumes
180 that the host supports IEEE 32-bit floats, since it doesn't say
181 that SSE registers need conversion. Even if we can't find a
182 counterexample, this is still sloppy. */
183 int
184 x86_64_register_convertible (int regno)
185 {
186 return IS_FP_REGNUM (regno);
187 }
188
189 /* Convert data from raw format for register REGNUM in buffer FROM to
190 virtual format with type TYPE in buffer TO. In principle both
191 formats are identical except that the virtual format has two extra
192 bytes appended that aren't used. We set these to zero. */
193 void
194 x86_64_register_convert_to_virtual (int regnum, struct type *type,
195 char *from, char *to)
196 {
197 char buf[12];
198
199 /* We only support floating-point values. */
200 if (TYPE_CODE (type) != TYPE_CODE_FLT)
201 {
202 warning ("Cannot convert floating-point register value "
203 "to non-floating-point type.");
204 memset (to, 0, TYPE_LENGTH (type));
205 return;
206 }
207 /* First add the necessary padding. */
208 memcpy (buf, from, FPU_REG_RAW_SIZE);
209 memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
210 /* Convert to TYPE. This should be a no-op, if TYPE is equivalent
211 to the extended floating-point format used by the FPU. */
212 convert_typed_floating (to, type, buf,
213 x86_64_register_virtual_type (regnum));
214 }
215
216 /* Convert data from virtual format with type TYPE in buffer FROM to
217 raw format for register REGNUM in buffer TO. Simply omit the two
218 unused bytes. */
219
220 void
221 x86_64_register_convert_to_raw (struct type *type, int regnum,
222 char *from, char *to)
223 {
224 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12);
225 /* Simply omit the two unused bytes. */
226 memcpy (to, from, FPU_REG_RAW_SIZE);
227 }
228
229 /* Dwarf-2 <-> GDB register numbers mapping. */
230 int
231 x86_64_dwarf2_reg_to_regnum (int dw_reg)
232 {
233 if (dw_reg < 0 || dw_reg > x86_64_dwarf2gdb_regno_map_length)
234 {
235 warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg);
236 return dw_reg;
237 }
238
239 return x86_64_dwarf2gdb_regno_map[dw_reg];
240 }
241
242 /* This is the variable that is set with "set disassembly-flavour", and
243 its legitimate values. */
244 static const char att_flavour[] = "att";
245 static const char intel_flavour[] = "intel";
246 static const char *valid_flavours[] = {
247 att_flavour,
248 intel_flavour,
249 NULL
250 };
251 static const char *disassembly_flavour = att_flavour;
252
253 /* Push the return address (pointing to the call dummy) onto the stack
254 and return the new value for the stack pointer. */
255
256 static CORE_ADDR
257 x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
258 {
259 char buf[8];
260
261 store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());
262 write_memory (sp - 8, buf, 8);
263 return sp - 8;
264 }
265
266 static void
267 x86_64_pop_frame (void)
268 {
269 generic_pop_current_frame (cfi_pop_frame);
270 }
271 \f
272
273 /* The returning of values is done according to the special algorithm.
274 Some types are returned in registers an some (big structures) in memory.
275 See ABI for details.
276 */
277
278 #define MAX_CLASSES 4
279
280 enum x86_64_reg_class
281 {
282 X86_64_NO_CLASS,
283 X86_64_INTEGER_CLASS,
284 X86_64_INTEGERSI_CLASS,
285 X86_64_SSE_CLASS,
286 X86_64_SSESF_CLASS,
287 X86_64_SSEDF_CLASS,
288 X86_64_SSEUP_CLASS,
289 X86_64_X87_CLASS,
290 X86_64_X87UP_CLASS,
291 X86_64_MEMORY_CLASS
292 };
293
294 /* Return the union class of CLASS1 and CLASS2.
295 See the x86-64 ABI for details. */
296
297 static enum x86_64_reg_class
298 merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
299 {
300 /* Rule #1: If both classes are equal, this is the resulting class. */
301 if (class1 == class2)
302 return class1;
303
304 /* Rule #2: If one of the classes is NO_CLASS, the resulting class
305 is the other class. */
306 if (class1 == X86_64_NO_CLASS)
307 return class2;
308 if (class2 == X86_64_NO_CLASS)
309 return class1;
310
311 /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
312 if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
313 return X86_64_MEMORY_CLASS;
314
315 /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
316 if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
317 || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
318 return X86_64_INTEGERSI_CLASS;
319 if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
320 || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
321 return X86_64_INTEGER_CLASS;
322
323 /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
324 if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
325 || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
326 return X86_64_MEMORY_CLASS;
327
328 /* Rule #6: Otherwise class SSE is used. */
329 return X86_64_SSE_CLASS;
330 }
331
332 /* Classify the argument type. CLASSES will be filled by the register
333 class used to pass each word of the operand. The number of words
334 is returned. In case the parameter should be passed in memory, 0
335 is returned. As a special case for zero sized containers,
336 classes[0] will be NO_CLASS and 1 is returned.
337
338 See the x86-64 psABI for details. */
339
340 static int
341 classify_argument (struct type *type,
342 enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
343 {
344 int bytes = TYPE_LENGTH (type);
345 int words = (bytes + 8 - 1) / 8;
346
347 switch (TYPE_CODE (type))
348 {
349 case TYPE_CODE_ARRAY:
350 case TYPE_CODE_STRUCT:
351 case TYPE_CODE_UNION:
352 {
353 int i;
354 enum x86_64_reg_class subclasses[MAX_CLASSES];
355
356 /* On x86-64 we pass structures larger than 16 bytes on the stack. */
357 if (bytes > 16)
358 return 0;
359
360 for (i = 0; i < words; i++)
361 classes[i] = X86_64_NO_CLASS;
362
363 /* Zero sized arrays or structures are NO_CLASS. We return 0
364 to signalize memory class, so handle it as special case. */
365 if (!words)
366 {
367 classes[0] = X86_64_NO_CLASS;
368 return 1;
369 }
370 switch (TYPE_CODE (type))
371 {
372 case TYPE_CODE_STRUCT:
373 {
374 int j;
375 for (j = 0; j < TYPE_NFIELDS (type); ++j)
376 {
377 int num = classify_argument (TYPE_FIELDS (type)[j].type,
378 subclasses,
379 (TYPE_FIELDS (type)[j].loc.
380 bitpos + bit_offset) % 256);
381 if (!num)
382 return 0;
383 for (i = 0; i < num; i++)
384 {
385 int pos =
386 (TYPE_FIELDS (type)[j].loc.bitpos +
387 bit_offset) / 8 / 8;
388 classes[i + pos] =
389 merge_classes (subclasses[i], classes[i + pos]);
390 }
391 }
392 }
393 break;
394 case TYPE_CODE_ARRAY:
395 {
396 int num;
397
398 num = classify_argument (TYPE_TARGET_TYPE (type),
399 subclasses, bit_offset);
400 if (!num)
401 return 0;
402
403 /* The partial classes are now full classes. */
404 if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
405 subclasses[0] = X86_64_SSE_CLASS;
406 if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
407 subclasses[0] = X86_64_INTEGER_CLASS;
408
409 for (i = 0; i < words; i++)
410 classes[i] = subclasses[i % num];
411 }
412 break;
413 case TYPE_CODE_UNION:
414 {
415 int j;
416 {
417 for (j = 0; j < TYPE_NFIELDS (type); ++j)
418 {
419 int num;
420 num = classify_argument (TYPE_FIELDS (type)[j].type,
421 subclasses, bit_offset);
422 if (!num)
423 return 0;
424 for (i = 0; i < num; i++)
425 classes[i] = merge_classes (subclasses[i], classes[i]);
426 }
427 }
428 }
429 break;
430 default:
431 break;
432 }
433 /* Final merger cleanup. */
434 for (i = 0; i < words; i++)
435 {
436 /* If one class is MEMORY, everything should be passed in
437 memory. */
438 if (classes[i] == X86_64_MEMORY_CLASS)
439 return 0;
440
441 /* The X86_64_SSEUP_CLASS should be always preceeded by
442 X86_64_SSE_CLASS. */
443 if (classes[i] == X86_64_SSEUP_CLASS
444 && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
445 classes[i] = X86_64_SSE_CLASS;
446
447 /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
448 if (classes[i] == X86_64_X87UP_CLASS
449 && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
450 classes[i] = X86_64_SSE_CLASS;
451 }
452 return words;
453 }
454 break;
455 case TYPE_CODE_FLT:
456 switch (bytes)
457 {
458 case 4:
459 if (!(bit_offset % 64))
460 classes[0] = X86_64_SSESF_CLASS;
461 else
462 classes[0] = X86_64_SSE_CLASS;
463 return 1;
464 case 8:
465 classes[0] = X86_64_SSEDF_CLASS;
466 return 1;
467 case 16:
468 classes[0] = X86_64_X87_CLASS;
469 classes[1] = X86_64_X87UP_CLASS;
470 return 2;
471 }
472 break;
473 case TYPE_CODE_INT:
474 case TYPE_CODE_PTR:
475 switch (bytes)
476 {
477 case 1:
478 case 2:
479 case 4:
480 case 8:
481 if (bytes * 8 + bit_offset <= 32)
482 classes[0] = X86_64_INTEGERSI_CLASS;
483 else
484 classes[0] = X86_64_INTEGER_CLASS;
485 return 1;
486 case 16:
487 classes[0] = classes[1] = X86_64_INTEGER_CLASS;
488 return 2;
489 default:
490 break;
491 }
492 case TYPE_CODE_VOID:
493 return 0;
494 default: /* Avoid warning. */
495 break;
496 }
497 internal_error (__FILE__, __LINE__,
498 "classify_argument: unknown argument type");
499 }
500
501 /* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
502 number of registers required based on the information passed in
503 CLASSES. Return 0 if parameter should be passed in memory. */
504
505 static int
506 examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
507 int n, int *int_nregs, int *sse_nregs)
508 {
509 *int_nregs = 0;
510 *sse_nregs = 0;
511 if (!n)
512 return 0;
513 for (n--; n >= 0; n--)
514 switch (classes[n])
515 {
516 case X86_64_INTEGER_CLASS:
517 case X86_64_INTEGERSI_CLASS:
518 (*int_nregs)++;
519 break;
520 case X86_64_SSE_CLASS:
521 case X86_64_SSESF_CLASS:
522 case X86_64_SSEDF_CLASS:
523 (*sse_nregs)++;
524 break;
525 case X86_64_NO_CLASS:
526 case X86_64_SSEUP_CLASS:
527 case X86_64_X87_CLASS:
528 case X86_64_X87UP_CLASS:
529 break;
530 case X86_64_MEMORY_CLASS:
531 internal_error (__FILE__, __LINE__,
532 "examine_argument: unexpected memory class");
533 }
534 return 1;
535 }
536
537 #define RET_INT_REGS 2
538 #define RET_SSE_REGS 2
539
540 /* Check if the structure in value_type is returned in registers or in
541 memory. If this function returns 1, GDB will call
542 STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
543 STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
544 int
545 x86_64_use_struct_convention (int gcc_p, struct type *value_type)
546 {
547 enum x86_64_reg_class class[MAX_CLASSES];
548 int n = classify_argument (value_type, class, 0);
549 int needed_intregs;
550 int needed_sseregs;
551
552 return (!n ||
553 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
554 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
555 }
556
557 /* Extract from an array REGBUF containing the (raw) register state, a
558 function return value of TYPE, and copy that, in virtual format,
559 into VALBUF. */
560
561 void
562 x86_64_extract_return_value (struct type *type, struct regcache *regcache,
563 void *valbuf)
564 {
565 enum x86_64_reg_class class[MAX_CLASSES];
566 int n = classify_argument (type, class, 0);
567 int needed_intregs;
568 int needed_sseregs;
569 int intreg = 0;
570 int ssereg = 0;
571 int offset = 0;
572 int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
573 int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };
574
575 if (!n ||
576 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
577 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
578 { /* memory class */
579 CORE_ADDR addr;
580 regcache_cooked_read (regcache, RAX_REGNUM, &addr);
581 read_memory (addr, valbuf, TYPE_LENGTH (type));
582 return;
583 }
584 else
585 {
586 int i;
587 for (i = 0; i < n; i++)
588 {
589 switch (class[i])
590 {
591 case X86_64_NO_CLASS:
592 break;
593 case X86_64_INTEGER_CLASS:
594 regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
595 (char *) valbuf + offset);
596 offset += 8;
597 intreg += 2;
598 break;
599 case X86_64_INTEGERSI_CLASS:
600 regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
601 0, 4, (char *) valbuf + offset);
602 offset += 8;
603 intreg++;
604 break;
605 case X86_64_SSEDF_CLASS:
606 case X86_64_SSESF_CLASS:
607 case X86_64_SSE_CLASS:
608 regcache_cooked_read_part (regcache,
609 ret_sse_r[(ssereg + 1) / 2], 0, 8,
610 (char *) valbuf + offset);
611 offset += 8;
612 ssereg += 2;
613 break;
614 case X86_64_SSEUP_CLASS:
615 regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
616 0, 8, (char *) valbuf + offset);
617 offset += 8;
618 ssereg++;
619 break;
620 case X86_64_X87_CLASS:
621 regcache_cooked_read_part (regcache, FP0_REGNUM,
622 0, 8, (char *) valbuf + offset);
623 offset += 8;
624 break;
625 case X86_64_X87UP_CLASS:
626 regcache_cooked_read_part (regcache, FP0_REGNUM,
627 8, 2, (char *) valbuf + offset);
628 offset += 8;
629 break;
630 case X86_64_MEMORY_CLASS:
631 default:
632 internal_error (__FILE__, __LINE__,
633 "Unexpected argument class");
634 }
635 }
636 }
637 }
638
639 static void
640 x86_64_frame_init_saved_regs (struct frame_info *fi)
641 {
642 /* Do nothing. Everything is handled by the stack unwinding code. */
643 }
644
645 #define INT_REGS 6
646 #define SSE_REGS 16
647
648 CORE_ADDR
649 x86_64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
650 int struct_return, CORE_ADDR struct_addr)
651 {
652 int intreg = 0;
653 int ssereg = 0;
654 int i;
655 static int int_parameter_registers[INT_REGS] = {
656 5 /* RDI */ , 4 /* RSI */ ,
657 3 /* RDX */ , 2 /* RCX */ ,
658 8 /* R8 */ , 9 /* R9 */
659 };
660 /* XMM0 - XMM15 */
661 static int sse_parameter_registers[SSE_REGS] = {
662 XMM1_REGNUM - 1, XMM1_REGNUM, XMM1_REGNUM + 1, XMM1_REGNUM + 2,
663 XMM1_REGNUM + 3, XMM1_REGNUM + 4, XMM1_REGNUM + 5, XMM1_REGNUM + 6,
664 XMM1_REGNUM + 7, XMM1_REGNUM + 8, XMM1_REGNUM + 9, XMM1_REGNUM + 10,
665 XMM1_REGNUM + 11, XMM1_REGNUM + 12, XMM1_REGNUM + 13, XMM1_REGNUM + 14
666 };
667 int stack_values_count = 0;
668 int *stack_values;
669 stack_values = alloca (nargs * sizeof (int));
670 for (i = 0; i < nargs; i++)
671 {
672 enum x86_64_reg_class class[MAX_CLASSES];
673 int n = classify_argument (args[i]->type, class, 0);
674 int needed_intregs;
675 int needed_sseregs;
676
677 if (!n ||
678 !examine_argument (class, n, &needed_intregs, &needed_sseregs)
679 || intreg / 2 + needed_intregs > INT_REGS
680 || ssereg / 2 + needed_sseregs > SSE_REGS)
681 { /* memory class */
682 stack_values[stack_values_count++] = i;
683 }
684 else
685 {
686 int j;
687 for (j = 0; j < n; j++)
688 {
689 int offset = 0;
690 switch (class[j])
691 {
692 case X86_64_NO_CLASS:
693 break;
694 case X86_64_INTEGER_CLASS:
695 deprecated_write_register_gen (int_parameter_registers
696 [(intreg + 1) / 2],
697 VALUE_CONTENTS_ALL (args[i]) + offset);
698 offset += 8;
699 intreg += 2;
700 break;
701 case X86_64_INTEGERSI_CLASS:
702 deprecated_write_register_gen (int_parameter_registers[intreg / 2],
703 VALUE_CONTENTS_ALL (args[i]) + offset);
704 offset += 8;
705 intreg++;
706 break;
707 case X86_64_SSEDF_CLASS:
708 case X86_64_SSESF_CLASS:
709 case X86_64_SSE_CLASS:
710 deprecated_write_register_gen (sse_parameter_registers
711 [(ssereg + 1) / 2],
712 VALUE_CONTENTS_ALL (args[i]) + offset);
713 offset += 8;
714 ssereg += 2;
715 break;
716 case X86_64_SSEUP_CLASS:
717 deprecated_write_register_gen (sse_parameter_registers[ssereg / 2],
718 VALUE_CONTENTS_ALL (args[i]) + offset);
719 offset += 8;
720 ssereg++;
721 break;
722 case X86_64_X87_CLASS:
723 case X86_64_MEMORY_CLASS:
724 stack_values[stack_values_count++] = i;
725 break;
726 case X86_64_X87UP_CLASS:
727 break;
728 default:
729 internal_error (__FILE__, __LINE__,
730 "Unexpected argument class");
731 }
732 intreg += intreg % 2;
733 ssereg += ssereg % 2;
734 }
735 }
736 }
737 while (--stack_values_count >= 0)
738 {
739 struct value *arg = args[stack_values[stack_values_count]];
740 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
741 len += 7;
742 len -= len % 8;
743 sp -= len;
744 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
745 }
746 return sp;
747 }
748
749 /* Write into the appropriate registers a function return value stored
750 in VALBUF of type TYPE, given in virtual format. */
751 void
752 x86_64_store_return_value (struct type *type, struct regcache *regcache,
753 const void *valbuf)
754 {
755 int len = TYPE_LENGTH (type);
756
757 if (TYPE_CODE_FLT == TYPE_CODE (type))
758 {
759 /* Floating-point return values can be found in %st(0). */
760 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
761 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
762 {
763 /* Copy straight over. */
764 regcache_cooked_write (regcache, FP0_REGNUM, valbuf);
765 }
766 else
767 {
768 char buf[FPU_REG_RAW_SIZE];
769 DOUBLEST val;
770
771 /* Convert the value found in VALBUF to the extended
772 floating point format used by the FPU. This is probably
773 not exactly how it would happen on the target itself, but
774 it is the best we can do. */
775 val = extract_floating (valbuf, TYPE_LENGTH (type));
776 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
777 regcache_cooked_write_part (regcache, FP0_REGNUM,
778 0, FPU_REG_RAW_SIZE, buf);
779 }
780 }
781 else
782 {
783 int low_size = REGISTER_RAW_SIZE (0);
784 int high_size = REGISTER_RAW_SIZE (1);
785
786 if (len <= low_size)
787 regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
788 else if (len <= (low_size + high_size))
789 {
790 regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
791 regcache_cooked_write_part (regcache, 1, 0,
792 len - low_size,
793 (const char *) valbuf + low_size);
794 }
795 else
796 internal_error (__FILE__, __LINE__,
797 "Cannot store return value of %d bytes long.", len);
798 }
799 }
800 \f
801
802 const char *
803 x86_64_register_name (int reg_nr)
804 {
805 if (reg_nr < 0 || reg_nr >= X86_64_NUM_REGS)
806 return NULL;
807 return x86_64_register_info_table[reg_nr].name;
808 }
809
810 int
811 x86_64_register_number (const char *name)
812 {
813 int reg_nr;
814
815 for (reg_nr = 0; reg_nr < X86_64_NUM_REGS; reg_nr++)
816 if (strcmp (name, x86_64_register_info_table[reg_nr].name) == 0)
817 return reg_nr;
818 return -1;
819 }
820 \f
821
822
823 /* We have two flavours of disassembly. The machinery on this page
824 deals with switching between those. */
825
826 static int
827 gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
828 {
829 if (disassembly_flavour == att_flavour)
830 return print_insn_i386_att (memaddr, info);
831 else if (disassembly_flavour == intel_flavour)
832 return print_insn_i386_intel (memaddr, info);
833 /* Never reached -- disassembly_flavour is always either att_flavour
834 or intel_flavour. */
835 internal_error (__FILE__, __LINE__, "failed internal consistency check");
836 }
837 \f
838
839 /* Store the address of the place in which to copy the structure the
840 subroutine will return. This is called from call_function. */
841 void
842 x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
843 {
844 write_register (RDI_REGNUM, addr);
845 }
846
847 int
848 x86_64_frameless_function_invocation (struct frame_info *frame)
849 {
850 return 0;
851 }
852
853 /* If a function with debugging information and known beginning
854 is detected, we will return pc of the next line in the source
855 code. With this approach we effectively skip the prolog. */
856
857 #define PROLOG_BUFSIZE 4
858 CORE_ADDR
859 x86_64_skip_prologue (CORE_ADDR pc)
860 {
861 int i;
862 struct symtab_and_line v_sal;
863 struct symbol *v_function;
864 CORE_ADDR endaddr;
865 unsigned char prolog_buf[PROLOG_BUFSIZE];
866
867 /* We will handle only functions starting with: */
868 static unsigned char prolog_expect[PROLOG_BUFSIZE] =
869 {
870 0x55, /* pushq %rbp */
871 0x48, 0x89, 0xe5 /* movq %rsp, %rbp */
872 };
873
874 read_memory (pc, (char *) prolog_buf, PROLOG_BUFSIZE);
875
876 /* First check, whether pc points to pushq %rbp, movq %rsp, %rbp. */
877 for (i = 0; i < PROLOG_BUFSIZE; i++)
878 if (prolog_expect[i] != prolog_buf[i])
879 return pc; /* ... no, it doesn't. Nothing to skip. */
880
881 /* OK, we have found the prologue and want PC of the first
882 non-prologue instruction. */
883 pc += PROLOG_BUFSIZE;
884
885 v_function = find_pc_function (pc);
886 v_sal = find_pc_line (pc, 0);
887
888 /* If pc doesn't point to a function with debuginfo, some of the
889 following may be NULL. */
890 if (!v_function || !v_function->ginfo.value.block || !v_sal.symtab)
891 return pc;
892
893 endaddr = BLOCK_END (SYMBOL_BLOCK_VALUE (v_function));
894
895 for (i = 0; i < v_sal.symtab->linetable->nitems; i++)
896 if (v_sal.symtab->linetable->item[i].pc >= pc
897 && v_sal.symtab->linetable->item[i].pc < endaddr)
898 {
899 pc = v_sal.symtab->linetable->item[i].pc;
900 break;
901 }
902
903 return pc;
904 }
905
906 /* Sequence of bytes for breakpoint instruction. */
907 static const unsigned char *
908 x86_64_breakpoint_from_pc (CORE_ADDR *pc, int *lenptr)
909 {
910 static unsigned char breakpoint[] = { 0xcc };
911 *lenptr = 1;
912 return breakpoint;
913 }
914
915 void
916 x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
917 {
918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
919 int i, sum;
920
921 /* The x86-64 has 16 SSE registers. */
922 tdep->num_xmm_regs = 16;
923
924 /* This is what all the fuss is about. */
925 set_gdbarch_long_bit (gdbarch, 64);
926 set_gdbarch_long_long_bit (gdbarch, 64);
927 set_gdbarch_ptr_bit (gdbarch, 64);
928
929 /* In contrast to the i386, on the x86-64 a `long double' actually
930 takes up 128 bits, even though it's still based on the i387
931 extended floating-point format which has only 80 significant bits. */
932 set_gdbarch_long_double_bit (gdbarch, 128);
933
934 set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
935
936 /* Register numbers of various important registers. */
937 set_gdbarch_sp_regnum (gdbarch, 7); /* %rsp */
938 set_gdbarch_fp_regnum (gdbarch, 6); /* %rbp */
939 set_gdbarch_pc_regnum (gdbarch, 16); /* %rip */
940 set_gdbarch_ps_regnum (gdbarch, 17); /* %eflags */
941 set_gdbarch_fp0_regnum (gdbarch, X86_64_NUM_GREGS); /* %st(0) */
942
943 /* The "default" register numbering scheme for the x86-64 is
944 referred to as the "DWARF register number mapping" in the psABI.
945 The preferred debugging format for all known x86-64 targets is
946 actually DWARF2, and GCC doesn't seem to support DWARF (that is
947 DWARF-1), but we provide the same mapping just in case. This
948 mapping is also used for stabs, which GCC does support. */
949 set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
950 set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
951 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
952
953 /* We don't override SDB_REG_RO_REGNUM, sice COFF doesn't seem to be
954 in use on any of the supported x86-64 targets. */
955
956 set_gdbarch_register_name (gdbarch, x86_64_register_name);
957 set_gdbarch_register_size (gdbarch, 8);
958
959 /* Total amount of space needed to store our copies of the machine's
960 register (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS +
961 SIZEOF_SSE_REGS) */
962 for (i = 0, sum = 0; i < X86_64_NUM_REGS; i++)
963 sum += x86_64_register_info_table[i].size;
964 set_gdbarch_register_bytes (gdbarch, sum);
965
966 set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
967 set_gdbarch_register_byte (gdbarch, x86_64_register_byte);
968 set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);
969
970 set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
971 set_gdbarch_register_convert_to_virtual (gdbarch,
972 x86_64_register_convert_to_virtual);
973 set_gdbarch_register_convert_to_raw (gdbarch,
974 x86_64_register_convert_to_raw);
975
976 /* Getting saved registers is handled by unwind information. */
977 set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);
978
979 /* FIXME: kettenis/20021026: Should we set parm_boundary to 64 here? */
980 set_gdbarch_read_fp (gdbarch, cfi_read_fp);
981
982 set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
983
984 set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);
985 set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
986 set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);
987 set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);
988 set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
989 /* Override, since this is handled by x86_64_extract_return_value. */
990 set_gdbarch_extract_struct_value_address (gdbarch, NULL);
991 set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
992
993 set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
994 set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
995
996 set_gdbarch_frame_chain (gdbarch, x86_64_linux_frame_chain);
997 set_gdbarch_frameless_function_invocation (gdbarch,
998 x86_64_frameless_function_invocation);
999 /* FIXME: kettenis/20021026: These two are GNU/Linux-specific and
1000 should be moved elsewhere. */
1001 set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);
1002 set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);
1003 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1004 /* FIXME: kettenis/20021026: This one is GNU/Linux-specific too. */
1005 set_gdbarch_pc_in_sigtramp (gdbarch, x86_64_linux_in_sigtramp);
1006
1007 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1008
1009 /* Build call frame information (CFI) from DWARF2 frame debug info. */
1010 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1011
1012 /* Initialization of per-frame CFI. */
1013 set_gdbarch_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);
1014
1015 /* Frame PC initialization is handled by using CFI. */
1016 set_gdbarch_deprecated_init_frame_pc (gdbarch, x86_64_init_frame_pc);
1017
1018 /* Cons up virtual frame pointer for trace. */
1019 set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);
1020
1021 /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
1022 since all supported x86-64 targets are ELF, but that might change
1023 in the future. */
1024 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1025 }
1026
1027 void
1028 _initialize_x86_64_tdep (void)
1029 {
1030 /* Initialize the table saying where each register starts in the
1031 register file. */
1032 {
1033 int i, offset;
1034
1035 offset = 0;
1036 for (i = 0; i < X86_64_NUM_REGS; i++)
1037 {
1038 x86_64_register_byte_table[i] = offset;
1039 offset += x86_64_register_info_table[i].size;
1040 }
1041 }
1042 }
This page took 0.051064 seconds and 4 git commands to generate.