testsuite: i386 regression for funcargs.exp
[deliverable/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "arch-utils.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "osabi.h"
37 #include "objfiles.h"
38
39 enum gdb_regnum
40 {
41 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
42 Functions will return their values in register R2-R7 as they fit.
43 Otherwise a hidden pointer to an big enough area is given as argument
44 to the function in r2. Further arguments are beginning in r3 then.
45 R13 is used as frame pointer when GCC compiles w/o optimization
46 R14 is used as "PSW", displaying the CPU status.
47 R15 is used implicitely as stack pointer. */
48 E_R0_REGNUM,
49 E_R1_REGNUM,
50 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
51 E_R3_REGNUM,
52 E_R4_REGNUM,
53 E_R5_REGNUM,
54 E_R6_REGNUM,
55 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
56 E_R8_REGNUM,
57 E_R9_REGNUM,
58 E_R10_REGNUM,
59 E_R11_REGNUM,
60 E_R12_REGNUM,
61 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
62 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
63 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
64 E_PC_REGNUM,
65 E_NUM_REGS
66 };
67
68 /* Use an invalid address value as 'not available' marker. */
69 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
70
71 struct xstormy16_frame_cache
72 {
73 /* Base address. */
74 CORE_ADDR base;
75 CORE_ADDR pc;
76 LONGEST framesize;
77 int uses_fp;
78 CORE_ADDR saved_regs[E_NUM_REGS];
79 CORE_ADDR saved_sp;
80 };
81
82 /* Size of instructions, registers, etc. */
83 enum
84 {
85 xstormy16_inst_size = 2,
86 xstormy16_reg_size = 2,
87 xstormy16_pc_size = 4
88 };
89
90 /* Size of return datatype which fits into the remaining return registers. */
91 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
92 * xstormy16_reg_size)
93
94 /* Size of return datatype which fits into all return registers. */
95 enum
96 {
97 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
98 };
99
100 /* Function: xstormy16_register_name
101 Returns the name of the standard Xstormy16 register N. */
102
103 static const char *
104 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
105 {
106 static char *register_names[] = {
107 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
108 "r8", "r9", "r10", "r11", "r12", "r13",
109 "psw", "sp", "pc"
110 };
111
112 if (regnum < 0 || regnum >= E_NUM_REGS)
113 internal_error (__FILE__, __LINE__,
114 _("xstormy16_register_name: illegal register number %d"),
115 regnum);
116 else
117 return register_names[regnum];
118
119 }
120
121 static struct type *
122 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
123 {
124 if (regnum == E_PC_REGNUM)
125 return builtin_type (gdbarch)->builtin_uint32;
126 else
127 return builtin_type (gdbarch)->builtin_uint16;
128 }
129
130 /* Function: xstormy16_type_is_scalar
131 Makes the decision if a given type is a scalar types. Scalar
132 types are returned in the registers r2-r7 as they fit. */
133
134 static int
135 xstormy16_type_is_scalar (struct type *t)
136 {
137 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
138 && TYPE_CODE(t) != TYPE_CODE_UNION
139 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
140 }
141
142 /* Function: xstormy16_use_struct_convention
143 Returns non-zero if the given struct type will be returned using
144 a special convention, rather than the normal function return method.
145 7sed in the contexts of the "return" command, and of
146 target function calls from the debugger. */
147
148 static int
149 xstormy16_use_struct_convention (struct type *type)
150 {
151 return !xstormy16_type_is_scalar (type)
152 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
153 }
154
155 /* Function: xstormy16_extract_return_value
156 Find a function's return value in the appropriate registers (in
157 regbuf), and copy it into valbuf. */
158
159 static void
160 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
161 gdb_byte *valbuf)
162 {
163 int len = TYPE_LENGTH (type);
164 int i, regnum = E_1ST_ARG_REGNUM;
165
166 for (i = 0; i < len; i += xstormy16_reg_size)
167 regcache_raw_read (regcache, regnum++, valbuf + i);
168 }
169
170 /* Function: xstormy16_store_return_value
171 Copy the function return value from VALBUF into the
172 proper location for a function return.
173 Called only in the context of the "return" command. */
174
175 static void
176 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
177 const gdb_byte *valbuf)
178 {
179 if (TYPE_LENGTH (type) == 1)
180 {
181 /* Add leading zeros to the value. */
182 gdb_byte buf[xstormy16_reg_size];
183 memset (buf, 0, xstormy16_reg_size);
184 memcpy (buf, valbuf, 1);
185 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
186 }
187 else
188 {
189 int len = TYPE_LENGTH (type);
190 int i, regnum = E_1ST_ARG_REGNUM;
191
192 for (i = 0; i < len; i += xstormy16_reg_size)
193 regcache_raw_write (regcache, regnum++, valbuf + i);
194 }
195 }
196
197 static enum return_value_convention
198 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
199 struct type *type, struct regcache *regcache,
200 gdb_byte *readbuf, const gdb_byte *writebuf)
201 {
202 if (xstormy16_use_struct_convention (type))
203 return RETURN_VALUE_STRUCT_CONVENTION;
204 if (writebuf)
205 xstormy16_store_return_value (type, regcache, writebuf);
206 else if (readbuf)
207 xstormy16_extract_return_value (type, regcache, readbuf);
208 return RETURN_VALUE_REGISTER_CONVENTION;
209 }
210
211 static CORE_ADDR
212 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
213 {
214 if (addr & 1)
215 ++addr;
216 return addr;
217 }
218
219 /* Function: xstormy16_push_dummy_call
220 Setup the function arguments for GDB to call a function in the inferior.
221 Called only in the context of a target function call from the debugger.
222 Returns the value of the SP register after the args are pushed. */
223
224 static CORE_ADDR
225 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
226 struct value *function,
227 struct regcache *regcache,
228 CORE_ADDR bp_addr, int nargs,
229 struct value **args,
230 CORE_ADDR sp, int struct_return,
231 CORE_ADDR struct_addr)
232 {
233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234 CORE_ADDR stack_dest = sp;
235 int argreg = E_1ST_ARG_REGNUM;
236 int i, j;
237 int typelen, slacklen;
238 const gdb_byte *val;
239 gdb_byte buf[xstormy16_pc_size];
240
241 /* If struct_return is true, then the struct return address will
242 consume one argument-passing register. */
243 if (struct_return)
244 {
245 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
246 argreg++;
247 }
248
249 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
250 fit in the remaining registers we're switching over to the stack.
251 No argument is put on stack partially and as soon as we switched
252 over to stack no further argument is put in a register even if it
253 would fit in the remaining unused registers. */
254 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
255 {
256 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
257 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
258 break;
259
260 /* Put argument into registers wordwise. */
261 val = value_contents (args[i]);
262 for (j = 0; j < typelen; j += xstormy16_reg_size)
263 {
264 ULONGEST regval;
265 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
266
267 regval = extract_unsigned_integer (val + j, size, byte_order);
268 regcache_cooked_write_unsigned (regcache, argreg++, regval);
269 }
270 }
271
272 /* Align SP */
273 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
274
275 /* Loop backwards through remaining arguments and push them on the stack,
276 wordaligned. */
277 for (j = nargs - 1; j >= i; j--)
278 {
279 gdb_byte *val;
280 struct cleanup *back_to;
281 const gdb_byte *bytes = value_contents (args[j]);
282
283 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284 slacklen = typelen & 1;
285 val = (gdb_byte *) xmalloc (typelen + slacklen);
286 back_to = make_cleanup (xfree, val);
287 memcpy (val, bytes, typelen);
288 memset (val + typelen, 0, slacklen);
289
290 /* Now write this data to the stack. The stack grows upwards. */
291 write_memory (stack_dest, val, typelen + slacklen);
292 stack_dest += typelen + slacklen;
293 do_cleanups (back_to);
294 }
295
296 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
297 write_memory (stack_dest, buf, xstormy16_pc_size);
298 stack_dest += xstormy16_pc_size;
299
300 /* Update stack pointer. */
301 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
302
303 /* Return the new stack pointer minus the return address slot since
304 that's what DWARF2/GCC uses as the frame's CFA. */
305 return stack_dest - xstormy16_pc_size;
306 }
307
308 /* Function: xstormy16_scan_prologue
309 Decode the instructions within the given address range.
310 Decide when we must have reached the end of the function prologue.
311 If a frame_info pointer is provided, fill in its saved_regs etc.
312
313 Returns the address of the first instruction after the prologue. */
314
315 static CORE_ADDR
316 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
317 CORE_ADDR start_addr, CORE_ADDR end_addr,
318 struct xstormy16_frame_cache *cache,
319 struct frame_info *this_frame)
320 {
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR next_addr;
323 ULONGEST inst, inst2;
324 LONGEST offset;
325 int regnum;
326
327 /* Initialize framesize with size of PC put on stack by CALLF inst. */
328 cache->saved_regs[E_PC_REGNUM] = 0;
329 cache->framesize = xstormy16_pc_size;
330
331 if (start_addr >= end_addr)
332 return end_addr;
333
334 for (next_addr = start_addr;
335 next_addr < end_addr; next_addr += xstormy16_inst_size)
336 {
337 inst = read_memory_unsigned_integer (next_addr,
338 xstormy16_inst_size, byte_order);
339 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
340 xstormy16_inst_size, byte_order);
341
342 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
343 {
344 regnum = inst & 0x000f;
345 cache->saved_regs[regnum] = cache->framesize;
346 cache->framesize += xstormy16_reg_size;
347 }
348
349 /* Optional stack allocation for args and local vars <= 4 byte. */
350 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
351 {
352 cache->framesize += ((inst & 0x0030) >> 4) + 1;
353 }
354
355 /* optional stack allocation for args and local vars > 4 && < 16 byte */
356 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
357 {
358 cache->framesize += (inst & 0x00f0) >> 4;
359 }
360
361 /* Optional stack allocation for args and local vars >= 16 byte. */
362 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
363 {
364 cache->framesize += inst2;
365 next_addr += xstormy16_inst_size;
366 }
367
368 else if (inst == 0x46fd) /* mov r13, r15 */
369 {
370 cache->uses_fp = 1;
371 }
372
373 /* optional copying of args in r2-r7 to r10-r13. */
374 /* Probably only in optimized case but legal action for prologue. */
375 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
376 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
377 && (inst & 0x000f) >= 0x000a && (inst & 0x000f) <= 0x000d)
378 ;
379
380 /* Optional copying of args in r2-r7 to stack. */
381 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
382 (bit3 always 1, bit2-0 = reg) */
383 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
384 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
385 {
386 regnum = inst & 0x0007;
387 /* Only 12 of 16 bits of the argument are used for the
388 signed offset. */
389 offset = (LONGEST) (inst2 & 0x0fff);
390 if (offset & 0x0800)
391 offset -= 0x1000;
392
393 cache->saved_regs[regnum] = cache->framesize + offset;
394 next_addr += xstormy16_inst_size;
395 }
396
397 else /* Not a prologue instruction. */
398 break;
399 }
400
401 return next_addr;
402 }
403
404 /* Function: xstormy16_skip_prologue
405 If the input address is in a function prologue,
406 returns the address of the end of the prologue;
407 else returns the input address.
408
409 Note: the input address is likely to be the function start,
410 since this function is mainly used for advancing a breakpoint
411 to the first line, or stepping to the first line when we have
412 stepped into a function call. */
413
414 static CORE_ADDR
415 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
416 {
417 CORE_ADDR func_addr = 0, func_end = 0;
418 const char *func_name;
419
420 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
421 {
422 struct symtab_and_line sal;
423 struct symbol *sym;
424 struct xstormy16_frame_cache cache;
425 CORE_ADDR plg_end;
426
427 memset (&cache, 0, sizeof cache);
428
429 /* Don't trust line number debug info in frameless functions. */
430 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
431 &cache, NULL);
432 if (!cache.uses_fp)
433 return plg_end;
434
435 /* Found a function. */
436 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
437 /* Don't use line number debug info for assembly source files. */
438 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
439 {
440 sal = find_pc_line (func_addr, 0);
441 if (sal.end && sal.end < func_end)
442 {
443 /* Found a line number, use it as end of prologue. */
444 return sal.end;
445 }
446 }
447 /* No useable line symbol. Use result of prologue parsing method. */
448 return plg_end;
449 }
450
451 /* No function symbol -- just return the PC. */
452
453 return (CORE_ADDR) pc;
454 }
455
456 /* Implement the stack_frame_destroyed_p gdbarch method.
457
458 The epilogue is defined here as the area at the end of a function,
459 either on the `ret' instruction itself or after an instruction which
460 destroys the function's stack frame. */
461
462 static int
463 xstormy16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 CORE_ADDR func_addr = 0, func_end = 0;
467
468 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
469 {
470 ULONGEST inst, inst2;
471 CORE_ADDR addr = func_end - xstormy16_inst_size;
472
473 /* The Xstormy16 epilogue is max. 14 bytes long. */
474 if (pc < func_end - 7 * xstormy16_inst_size)
475 return 0;
476
477 /* Check if we're on a `ret' instruction. Otherwise it's
478 too dangerous to proceed. */
479 inst = read_memory_unsigned_integer (addr,
480 xstormy16_inst_size, byte_order);
481 if (inst != 0x0003)
482 return 0;
483
484 while ((addr -= xstormy16_inst_size) >= func_addr)
485 {
486 inst = read_memory_unsigned_integer (addr,
487 xstormy16_inst_size,
488 byte_order);
489 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
490 continue;
491 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
492 break;
493 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
494 xstormy16_inst_size,
495 byte_order);
496 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
497 {
498 addr -= xstormy16_inst_size;
499 break;
500 }
501 return 0;
502 }
503 if (pc > addr)
504 return 1;
505 }
506 return 0;
507 }
508
509 static const unsigned char *
510 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
511 int *lenptr)
512 {
513 static unsigned char breakpoint[] = { 0x06, 0x0 };
514 *lenptr = sizeof (breakpoint);
515 return breakpoint;
516 }
517
518 /* Given a pointer to a jump table entry, return the address
519 of the function it jumps to. Return 0 if not found. */
520 static CORE_ADDR
521 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
522 {
523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
524 struct obj_section *faddr_sect = find_pc_section (faddr);
525
526 if (faddr_sect)
527 {
528 LONGEST inst, inst2, addr;
529 gdb_byte buf[2 * xstormy16_inst_size];
530
531 /* Return faddr if it's not pointing into the jump table. */
532 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
533 return faddr;
534
535 if (!target_read_memory (faddr, buf, sizeof buf))
536 {
537 inst = extract_unsigned_integer (buf,
538 xstormy16_inst_size, byte_order);
539 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
540 xstormy16_inst_size, byte_order);
541 addr = inst2 << 8 | (inst & 0xff);
542 return addr;
543 }
544 }
545 return 0;
546 }
547
548 /* Given a function's address, attempt to find (and return) the
549 address of the corresponding jump table entry. Return 0 if
550 not found. */
551 static CORE_ADDR
552 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
553 {
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555 struct obj_section *faddr_sect = find_pc_section (faddr);
556
557 if (faddr_sect)
558 {
559 struct obj_section *osect;
560
561 /* Return faddr if it's already a pointer to a jump table entry. */
562 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
563 return faddr;
564
565 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
566 {
567 if (!strcmp (osect->the_bfd_section->name, ".plt"))
568 break;
569 }
570
571 if (osect < faddr_sect->objfile->sections_end)
572 {
573 CORE_ADDR addr, endaddr;
574
575 addr = obj_section_addr (osect);
576 endaddr = obj_section_endaddr (osect);
577
578 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
579 {
580 LONGEST inst, inst2, faddr2;
581 gdb_byte buf[2 * xstormy16_inst_size];
582
583 if (target_read_memory (addr, buf, sizeof buf))
584 return 0;
585 inst = extract_unsigned_integer (buf,
586 xstormy16_inst_size,
587 byte_order);
588 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
589 xstormy16_inst_size,
590 byte_order);
591 faddr2 = inst2 << 8 | (inst & 0xff);
592 if (faddr == faddr2)
593 return addr;
594 }
595 }
596 }
597 return 0;
598 }
599
600 static CORE_ADDR
601 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
602 {
603 struct gdbarch *gdbarch = get_frame_arch (frame);
604 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
605
606 if (tmp && tmp != pc)
607 return tmp;
608 return 0;
609 }
610
611 /* Function pointers are 16 bit. The address space is 24 bit, using
612 32 bit addresses. Pointers to functions on the XStormy16 are implemented
613 by using 16 bit pointers, which are either direct pointers in case the
614 function begins below 0x10000, or indirect pointers into a jump table.
615 The next two functions convert 16 bit pointers into 24 (32) bit addresses
616 and vice versa. */
617
618 static CORE_ADDR
619 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
620 struct type *type, const gdb_byte *buf)
621 {
622 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
623 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
624 CORE_ADDR addr
625 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
626
627 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
628 {
629 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
630 if (addr2)
631 addr = addr2;
632 }
633
634 return addr;
635 }
636
637 static void
638 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
639 struct type *type, gdb_byte *buf, CORE_ADDR addr)
640 {
641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
643
644 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
645 {
646 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
647 if (addr2)
648 addr = addr2;
649 }
650 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
651 }
652
653 static struct xstormy16_frame_cache *
654 xstormy16_alloc_frame_cache (void)
655 {
656 struct xstormy16_frame_cache *cache;
657 int i;
658
659 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
660
661 cache->base = 0;
662 cache->saved_sp = 0;
663 cache->pc = 0;
664 cache->uses_fp = 0;
665 cache->framesize = 0;
666 for (i = 0; i < E_NUM_REGS; ++i)
667 cache->saved_regs[i] = REG_UNAVAIL;
668
669 return cache;
670 }
671
672 static struct xstormy16_frame_cache *
673 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
674 {
675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
676 struct xstormy16_frame_cache *cache;
677 CORE_ADDR current_pc;
678 int i;
679
680 if (*this_cache)
681 return (struct xstormy16_frame_cache *) *this_cache;
682
683 cache = xstormy16_alloc_frame_cache ();
684 *this_cache = cache;
685
686 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
687 if (cache->base == 0)
688 return cache;
689
690 cache->pc = get_frame_func (this_frame);
691 current_pc = get_frame_pc (this_frame);
692 if (cache->pc)
693 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
694 cache, this_frame);
695
696 if (!cache->uses_fp)
697 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
698
699 cache->saved_sp = cache->base - cache->framesize;
700
701 for (i = 0; i < E_NUM_REGS; ++i)
702 if (cache->saved_regs[i] != REG_UNAVAIL)
703 cache->saved_regs[i] += cache->saved_sp;
704
705 return cache;
706 }
707
708 static struct value *
709 xstormy16_frame_prev_register (struct frame_info *this_frame,
710 void **this_cache, int regnum)
711 {
712 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
713 this_cache);
714 gdb_assert (regnum >= 0);
715
716 if (regnum == E_SP_REGNUM && cache->saved_sp)
717 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
718
719 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
720 return frame_unwind_got_memory (this_frame, regnum,
721 cache->saved_regs[regnum]);
722
723 return frame_unwind_got_register (this_frame, regnum, regnum);
724 }
725
726 static void
727 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
728 struct frame_id *this_id)
729 {
730 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
731 this_cache);
732
733 /* This marks the outermost frame. */
734 if (cache->base == 0)
735 return;
736
737 *this_id = frame_id_build (cache->saved_sp, cache->pc);
738 }
739
740 static CORE_ADDR
741 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
742 {
743 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
744 this_cache);
745 return cache->base;
746 }
747
748 static const struct frame_unwind xstormy16_frame_unwind = {
749 NORMAL_FRAME,
750 default_frame_unwind_stop_reason,
751 xstormy16_frame_this_id,
752 xstormy16_frame_prev_register,
753 NULL,
754 default_frame_sniffer
755 };
756
757 static const struct frame_base xstormy16_frame_base = {
758 &xstormy16_frame_unwind,
759 xstormy16_frame_base_address,
760 xstormy16_frame_base_address,
761 xstormy16_frame_base_address
762 };
763
764 static CORE_ADDR
765 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
766 {
767 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
768 }
769
770 static CORE_ADDR
771 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772 {
773 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
774 }
775
776 static struct frame_id
777 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
778 {
779 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
780 return frame_id_build (sp, get_frame_pc (this_frame));
781 }
782
783
784 /* Function: xstormy16_gdbarch_init
785 Initializer function for the xstormy16 gdbarch vector.
786 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
787
788 static struct gdbarch *
789 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
790 {
791 struct gdbarch *gdbarch;
792
793 /* find a candidate among the list of pre-declared architectures. */
794 arches = gdbarch_list_lookup_by_info (arches, &info);
795 if (arches != NULL)
796 return (arches->gdbarch);
797
798 gdbarch = gdbarch_alloc (&info, NULL);
799
800 /*
801 * Basic register fields and methods, datatype sizes and stuff.
802 */
803
804 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
805 set_gdbarch_num_pseudo_regs (gdbarch, 0);
806 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
807 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
808 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
809 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
810
811 set_gdbarch_char_signed (gdbarch, 0);
812 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
813 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
814 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
815 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
816
817 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
818 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
819 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
820
821 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
822 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
823 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
824
825 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
826 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
827
828 /* Stack grows up. */
829 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
830
831 /*
832 * Frame Info
833 */
834 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
835 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
836 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
837 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
838 frame_base_set_default (gdbarch, &xstormy16_frame_base);
839
840 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
841 set_gdbarch_stack_frame_destroyed_p (gdbarch,
842 xstormy16_stack_frame_destroyed_p);
843
844 /* These values and methods are used when gdb calls a target function. */
845 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
846 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
847 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
848
849 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
850
851 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
852
853 gdbarch_init_osabi (info, gdbarch);
854
855 dwarf2_append_unwinders (gdbarch);
856 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
857
858 return gdbarch;
859 }
860
861 /* Function: _initialize_xstormy16_tdep
862 Initializer function for the Sanyo Xstormy16a module.
863 Called by gdb at start-up. */
864
865 /* -Wmissing-prototypes */
866 extern initialize_file_ftype _initialize_xstormy16_tdep;
867
868 void
869 _initialize_xstormy16_tdep (void)
870 {
871 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
872 }
This page took 0.049494 seconds and 4 git commands to generate.