Simple -Wshadow=local fixes
[deliverable/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "osabi.h"
35 #include "objfiles.h"
36 #include "common/byte-vector.h"
37
38 enum gdb_regnum
39 {
40 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
41 Functions will return their values in register R2-R7 as they fit.
42 Otherwise a hidden pointer to an big enough area is given as argument
43 to the function in r2. Further arguments are beginning in r3 then.
44 R13 is used as frame pointer when GCC compiles w/o optimization
45 R14 is used as "PSW", displaying the CPU status.
46 R15 is used implicitely as stack pointer. */
47 E_R0_REGNUM,
48 E_R1_REGNUM,
49 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
50 E_R3_REGNUM,
51 E_R4_REGNUM,
52 E_R5_REGNUM,
53 E_R6_REGNUM,
54 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
55 E_R8_REGNUM,
56 E_R9_REGNUM,
57 E_R10_REGNUM,
58 E_R11_REGNUM,
59 E_R12_REGNUM,
60 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
61 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
62 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
63 E_PC_REGNUM,
64 E_NUM_REGS
65 };
66
67 /* Use an invalid address value as 'not available' marker. */
68 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
69
70 struct xstormy16_frame_cache
71 {
72 /* Base address. */
73 CORE_ADDR base;
74 CORE_ADDR pc;
75 LONGEST framesize;
76 int uses_fp;
77 CORE_ADDR saved_regs[E_NUM_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 /* Size of instructions, registers, etc. */
82 enum
83 {
84 xstormy16_inst_size = 2,
85 xstormy16_reg_size = 2,
86 xstormy16_pc_size = 4
87 };
88
89 /* Size of return datatype which fits into the remaining return registers. */
90 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
91 * xstormy16_reg_size)
92
93 /* Size of return datatype which fits into all return registers. */
94 enum
95 {
96 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
97 };
98
99 /* Function: xstormy16_register_name
100 Returns the name of the standard Xstormy16 register N. */
101
102 static const char *
103 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
104 {
105 static const char *register_names[] = {
106 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
107 "r8", "r9", "r10", "r11", "r12", "r13",
108 "psw", "sp", "pc"
109 };
110
111 if (regnum < 0 || regnum >= E_NUM_REGS)
112 internal_error (__FILE__, __LINE__,
113 _("xstormy16_register_name: illegal register number %d"),
114 regnum);
115 else
116 return register_names[regnum];
117
118 }
119
120 static struct type *
121 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
122 {
123 if (regnum == E_PC_REGNUM)
124 return builtin_type (gdbarch)->builtin_uint32;
125 else
126 return builtin_type (gdbarch)->builtin_uint16;
127 }
128
129 /* Function: xstormy16_type_is_scalar
130 Makes the decision if a given type is a scalar types. Scalar
131 types are returned in the registers r2-r7 as they fit. */
132
133 static int
134 xstormy16_type_is_scalar (struct type *t)
135 {
136 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
137 && TYPE_CODE(t) != TYPE_CODE_UNION
138 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
139 }
140
141 /* Function: xstormy16_use_struct_convention
142 Returns non-zero if the given struct type will be returned using
143 a special convention, rather than the normal function return method.
144 7sed in the contexts of the "return" command, and of
145 target function calls from the debugger. */
146
147 static int
148 xstormy16_use_struct_convention (struct type *type)
149 {
150 return !xstormy16_type_is_scalar (type)
151 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
152 }
153
154 /* Function: xstormy16_extract_return_value
155 Find a function's return value in the appropriate registers (in
156 regbuf), and copy it into valbuf. */
157
158 static void
159 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
160 gdb_byte *valbuf)
161 {
162 int len = TYPE_LENGTH (type);
163 int i, regnum = E_1ST_ARG_REGNUM;
164
165 for (i = 0; i < len; i += xstormy16_reg_size)
166 regcache->raw_read (regnum++, valbuf + i);
167 }
168
169 /* Function: xstormy16_store_return_value
170 Copy the function return value from VALBUF into the
171 proper location for a function return.
172 Called only in the context of the "return" command. */
173
174 static void
175 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
176 const gdb_byte *valbuf)
177 {
178 if (TYPE_LENGTH (type) == 1)
179 {
180 /* Add leading zeros to the value. */
181 gdb_byte buf[xstormy16_reg_size];
182 memset (buf, 0, xstormy16_reg_size);
183 memcpy (buf, valbuf, 1);
184 regcache->raw_write (E_1ST_ARG_REGNUM, buf);
185 }
186 else
187 {
188 int len = TYPE_LENGTH (type);
189 int i, regnum = E_1ST_ARG_REGNUM;
190
191 for (i = 0; i < len; i += xstormy16_reg_size)
192 regcache->raw_write (regnum++, valbuf + i);
193 }
194 }
195
196 static enum return_value_convention
197 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
198 struct type *type, struct regcache *regcache,
199 gdb_byte *readbuf, const gdb_byte *writebuf)
200 {
201 if (xstormy16_use_struct_convention (type))
202 return RETURN_VALUE_STRUCT_CONVENTION;
203 if (writebuf)
204 xstormy16_store_return_value (type, regcache, writebuf);
205 else if (readbuf)
206 xstormy16_extract_return_value (type, regcache, readbuf);
207 return RETURN_VALUE_REGISTER_CONVENTION;
208 }
209
210 static CORE_ADDR
211 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
212 {
213 if (addr & 1)
214 ++addr;
215 return addr;
216 }
217
218 /* Function: xstormy16_push_dummy_call
219 Setup the function arguments for GDB to call a function in the inferior.
220 Called only in the context of a target function call from the debugger.
221 Returns the value of the SP register after the args are pushed. */
222
223 static CORE_ADDR
224 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
225 struct value *function,
226 struct regcache *regcache,
227 CORE_ADDR bp_addr, int nargs,
228 struct value **args,
229 CORE_ADDR sp, int struct_return,
230 CORE_ADDR struct_addr)
231 {
232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
233 CORE_ADDR stack_dest = sp;
234 int argreg = E_1ST_ARG_REGNUM;
235 int i, j;
236 int typelen, slacklen;
237 gdb_byte buf[xstormy16_pc_size];
238
239 /* If struct_return is true, then the struct return address will
240 consume one argument-passing register. */
241 if (struct_return)
242 {
243 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
244 argreg++;
245 }
246
247 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
248 fit in the remaining registers we're switching over to the stack.
249 No argument is put on stack partially and as soon as we switched
250 over to stack no further argument is put in a register even if it
251 would fit in the remaining unused registers. */
252 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
253 {
254 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
255 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
256 break;
257
258 /* Put argument into registers wordwise. */
259 const gdb_byte *val = value_contents (args[i]);
260 for (j = 0; j < typelen; j += xstormy16_reg_size)
261 {
262 ULONGEST regval;
263 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
264
265 regval = extract_unsigned_integer (val + j, size, byte_order);
266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
267 }
268 }
269
270 /* Align SP */
271 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
272
273 /* Loop backwards through remaining arguments and push them on the stack,
274 wordaligned. */
275 for (j = nargs - 1; j >= i; j--)
276 {
277 const gdb_byte *bytes = value_contents (args[j]);
278
279 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
280 slacklen = typelen & 1;
281 gdb::byte_vector val (typelen + slacklen);
282 memcpy (val.data (), bytes, typelen);
283 memset (val.data () + typelen, 0, slacklen);
284
285 /* Now write this data to the stack. The stack grows upwards. */
286 write_memory (stack_dest, val.data (), typelen + slacklen);
287 stack_dest += typelen + slacklen;
288 }
289
290 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
291 write_memory (stack_dest, buf, xstormy16_pc_size);
292 stack_dest += xstormy16_pc_size;
293
294 /* Update stack pointer. */
295 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
296
297 /* Return the new stack pointer minus the return address slot since
298 that's what DWARF2/GCC uses as the frame's CFA. */
299 return stack_dest - xstormy16_pc_size;
300 }
301
302 /* Function: xstormy16_scan_prologue
303 Decode the instructions within the given address range.
304 Decide when we must have reached the end of the function prologue.
305 If a frame_info pointer is provided, fill in its saved_regs etc.
306
307 Returns the address of the first instruction after the prologue. */
308
309 static CORE_ADDR
310 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
311 CORE_ADDR start_addr, CORE_ADDR end_addr,
312 struct xstormy16_frame_cache *cache,
313 struct frame_info *this_frame)
314 {
315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
316 CORE_ADDR next_addr;
317 ULONGEST inst, inst2;
318 LONGEST offset;
319 int regnum;
320
321 /* Initialize framesize with size of PC put on stack by CALLF inst. */
322 cache->saved_regs[E_PC_REGNUM] = 0;
323 cache->framesize = xstormy16_pc_size;
324
325 if (start_addr >= end_addr)
326 return end_addr;
327
328 for (next_addr = start_addr;
329 next_addr < end_addr; next_addr += xstormy16_inst_size)
330 {
331 inst = read_memory_unsigned_integer (next_addr,
332 xstormy16_inst_size, byte_order);
333 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
334 xstormy16_inst_size, byte_order);
335
336 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
337 {
338 regnum = inst & 0x000f;
339 cache->saved_regs[regnum] = cache->framesize;
340 cache->framesize += xstormy16_reg_size;
341 }
342
343 /* Optional stack allocation for args and local vars <= 4 byte. */
344 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
345 {
346 cache->framesize += ((inst & 0x0030) >> 4) + 1;
347 }
348
349 /* optional stack allocation for args and local vars > 4 && < 16 byte */
350 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
351 {
352 cache->framesize += (inst & 0x00f0) >> 4;
353 }
354
355 /* Optional stack allocation for args and local vars >= 16 byte. */
356 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
357 {
358 cache->framesize += inst2;
359 next_addr += xstormy16_inst_size;
360 }
361
362 else if (inst == 0x46fd) /* mov r13, r15 */
363 {
364 cache->uses_fp = 1;
365 }
366
367 /* optional copying of args in r2-r7 to r10-r13. */
368 /* Probably only in optimized case but legal action for prologue. */
369 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
370 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
371 && (inst & 0x000f) >= 0x000a && (inst & 0x000f) <= 0x000d)
372 ;
373
374 /* Optional copying of args in r2-r7 to stack. */
375 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
376 (bit3 always 1, bit2-0 = reg) */
377 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
378 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
379 {
380 regnum = inst & 0x0007;
381 /* Only 12 of 16 bits of the argument are used for the
382 signed offset. */
383 offset = (LONGEST) (inst2 & 0x0fff);
384 if (offset & 0x0800)
385 offset -= 0x1000;
386
387 cache->saved_regs[regnum] = cache->framesize + offset;
388 next_addr += xstormy16_inst_size;
389 }
390
391 else /* Not a prologue instruction. */
392 break;
393 }
394
395 return next_addr;
396 }
397
398 /* Function: xstormy16_skip_prologue
399 If the input address is in a function prologue,
400 returns the address of the end of the prologue;
401 else returns the input address.
402
403 Note: the input address is likely to be the function start,
404 since this function is mainly used for advancing a breakpoint
405 to the first line, or stepping to the first line when we have
406 stepped into a function call. */
407
408 static CORE_ADDR
409 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
410 {
411 CORE_ADDR func_addr = 0, func_end = 0;
412 const char *func_name;
413
414 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
415 {
416 struct symtab_and_line sal;
417 struct symbol *sym;
418 struct xstormy16_frame_cache cache;
419 CORE_ADDR plg_end;
420
421 memset (&cache, 0, sizeof cache);
422
423 /* Don't trust line number debug info in frameless functions. */
424 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
425 &cache, NULL);
426 if (!cache.uses_fp)
427 return plg_end;
428
429 /* Found a function. */
430 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
431 /* Don't use line number debug info for assembly source files. */
432 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
433 {
434 sal = find_pc_line (func_addr, 0);
435 if (sal.end && sal.end < func_end)
436 {
437 /* Found a line number, use it as end of prologue. */
438 return sal.end;
439 }
440 }
441 /* No useable line symbol. Use result of prologue parsing method. */
442 return plg_end;
443 }
444
445 /* No function symbol -- just return the PC. */
446
447 return (CORE_ADDR) pc;
448 }
449
450 /* Implement the stack_frame_destroyed_p gdbarch method.
451
452 The epilogue is defined here as the area at the end of a function,
453 either on the `ret' instruction itself or after an instruction which
454 destroys the function's stack frame. */
455
456 static int
457 xstormy16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
458 {
459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
460 CORE_ADDR func_addr = 0, func_end = 0;
461
462 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
463 {
464 ULONGEST inst, inst2;
465 CORE_ADDR addr = func_end - xstormy16_inst_size;
466
467 /* The Xstormy16 epilogue is max. 14 bytes long. */
468 if (pc < func_end - 7 * xstormy16_inst_size)
469 return 0;
470
471 /* Check if we're on a `ret' instruction. Otherwise it's
472 too dangerous to proceed. */
473 inst = read_memory_unsigned_integer (addr,
474 xstormy16_inst_size, byte_order);
475 if (inst != 0x0003)
476 return 0;
477
478 while ((addr -= xstormy16_inst_size) >= func_addr)
479 {
480 inst = read_memory_unsigned_integer (addr,
481 xstormy16_inst_size,
482 byte_order);
483 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
484 continue;
485 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
486 break;
487 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
488 xstormy16_inst_size,
489 byte_order);
490 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
491 {
492 addr -= xstormy16_inst_size;
493 break;
494 }
495 return 0;
496 }
497 if (pc > addr)
498 return 1;
499 }
500 return 0;
501 }
502
503 constexpr gdb_byte xstormy16_break_insn[] = { 0x06, 0x0 };
504
505 typedef BP_MANIPULATION (xstormy16_break_insn) xstormy16_breakpoint;
506
507 /* Given a pointer to a jump table entry, return the address
508 of the function it jumps to. Return 0 if not found. */
509 static CORE_ADDR
510 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
511 {
512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
513 struct obj_section *faddr_sect = find_pc_section (faddr);
514
515 if (faddr_sect)
516 {
517 LONGEST inst, inst2, addr;
518 gdb_byte buf[2 * xstormy16_inst_size];
519
520 /* Return faddr if it's not pointing into the jump table. */
521 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
522 return faddr;
523
524 if (!target_read_memory (faddr, buf, sizeof buf))
525 {
526 inst = extract_unsigned_integer (buf,
527 xstormy16_inst_size, byte_order);
528 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
529 xstormy16_inst_size, byte_order);
530 addr = inst2 << 8 | (inst & 0xff);
531 return addr;
532 }
533 }
534 return 0;
535 }
536
537 /* Given a function's address, attempt to find (and return) the
538 address of the corresponding jump table entry. Return 0 if
539 not found. */
540 static CORE_ADDR
541 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
542 {
543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
544 struct obj_section *faddr_sect = find_pc_section (faddr);
545
546 if (faddr_sect)
547 {
548 struct obj_section *osect;
549
550 /* Return faddr if it's already a pointer to a jump table entry. */
551 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
552 return faddr;
553
554 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
555 {
556 if (!strcmp (osect->the_bfd_section->name, ".plt"))
557 break;
558 }
559
560 if (osect < faddr_sect->objfile->sections_end)
561 {
562 CORE_ADDR addr, endaddr;
563
564 addr = obj_section_addr (osect);
565 endaddr = obj_section_endaddr (osect);
566
567 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
568 {
569 LONGEST inst, inst2, faddr2;
570 gdb_byte buf[2 * xstormy16_inst_size];
571
572 if (target_read_memory (addr, buf, sizeof buf))
573 return 0;
574 inst = extract_unsigned_integer (buf,
575 xstormy16_inst_size,
576 byte_order);
577 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
578 xstormy16_inst_size,
579 byte_order);
580 faddr2 = inst2 << 8 | (inst & 0xff);
581 if (faddr == faddr2)
582 return addr;
583 }
584 }
585 }
586 return 0;
587 }
588
589 static CORE_ADDR
590 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
591 {
592 struct gdbarch *gdbarch = get_frame_arch (frame);
593 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
594
595 if (tmp && tmp != pc)
596 return tmp;
597 return 0;
598 }
599
600 /* Function pointers are 16 bit. The address space is 24 bit, using
601 32 bit addresses. Pointers to functions on the XStormy16 are implemented
602 by using 16 bit pointers, which are either direct pointers in case the
603 function begins below 0x10000, or indirect pointers into a jump table.
604 The next two functions convert 16 bit pointers into 24 (32) bit addresses
605 and vice versa. */
606
607 static CORE_ADDR
608 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
609 struct type *type, const gdb_byte *buf)
610 {
611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
612 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
613 CORE_ADDR addr
614 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
615
616 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
617 {
618 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
619 if (addr2)
620 addr = addr2;
621 }
622
623 return addr;
624 }
625
626 static void
627 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
628 struct type *type, gdb_byte *buf, CORE_ADDR addr)
629 {
630 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
631 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
632
633 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
634 {
635 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
636 if (addr2)
637 addr = addr2;
638 }
639 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
640 }
641
642 static struct xstormy16_frame_cache *
643 xstormy16_alloc_frame_cache (void)
644 {
645 struct xstormy16_frame_cache *cache;
646 int i;
647
648 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
649
650 cache->base = 0;
651 cache->saved_sp = 0;
652 cache->pc = 0;
653 cache->uses_fp = 0;
654 cache->framesize = 0;
655 for (i = 0; i < E_NUM_REGS; ++i)
656 cache->saved_regs[i] = REG_UNAVAIL;
657
658 return cache;
659 }
660
661 static struct xstormy16_frame_cache *
662 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
663 {
664 struct gdbarch *gdbarch = get_frame_arch (this_frame);
665 struct xstormy16_frame_cache *cache;
666 CORE_ADDR current_pc;
667 int i;
668
669 if (*this_cache)
670 return (struct xstormy16_frame_cache *) *this_cache;
671
672 cache = xstormy16_alloc_frame_cache ();
673 *this_cache = cache;
674
675 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
676 if (cache->base == 0)
677 return cache;
678
679 cache->pc = get_frame_func (this_frame);
680 current_pc = get_frame_pc (this_frame);
681 if (cache->pc)
682 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
683 cache, this_frame);
684
685 if (!cache->uses_fp)
686 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
687
688 cache->saved_sp = cache->base - cache->framesize;
689
690 for (i = 0; i < E_NUM_REGS; ++i)
691 if (cache->saved_regs[i] != REG_UNAVAIL)
692 cache->saved_regs[i] += cache->saved_sp;
693
694 return cache;
695 }
696
697 static struct value *
698 xstormy16_frame_prev_register (struct frame_info *this_frame,
699 void **this_cache, int regnum)
700 {
701 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
702 this_cache);
703 gdb_assert (regnum >= 0);
704
705 if (regnum == E_SP_REGNUM && cache->saved_sp)
706 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
707
708 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
709 return frame_unwind_got_memory (this_frame, regnum,
710 cache->saved_regs[regnum]);
711
712 return frame_unwind_got_register (this_frame, regnum, regnum);
713 }
714
715 static void
716 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
717 struct frame_id *this_id)
718 {
719 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
720 this_cache);
721
722 /* This marks the outermost frame. */
723 if (cache->base == 0)
724 return;
725
726 *this_id = frame_id_build (cache->saved_sp, cache->pc);
727 }
728
729 static CORE_ADDR
730 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
731 {
732 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
733 this_cache);
734 return cache->base;
735 }
736
737 static const struct frame_unwind xstormy16_frame_unwind = {
738 NORMAL_FRAME,
739 default_frame_unwind_stop_reason,
740 xstormy16_frame_this_id,
741 xstormy16_frame_prev_register,
742 NULL,
743 default_frame_sniffer
744 };
745
746 static const struct frame_base xstormy16_frame_base = {
747 &xstormy16_frame_unwind,
748 xstormy16_frame_base_address,
749 xstormy16_frame_base_address,
750 xstormy16_frame_base_address
751 };
752
753 static CORE_ADDR
754 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
755 {
756 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
757 }
758
759 static CORE_ADDR
760 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
761 {
762 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
763 }
764
765 static struct frame_id
766 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
767 {
768 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
769 return frame_id_build (sp, get_frame_pc (this_frame));
770 }
771
772
773 /* Function: xstormy16_gdbarch_init
774 Initializer function for the xstormy16 gdbarch vector.
775 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
776
777 static struct gdbarch *
778 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
779 {
780 struct gdbarch *gdbarch;
781
782 /* find a candidate among the list of pre-declared architectures. */
783 arches = gdbarch_list_lookup_by_info (arches, &info);
784 if (arches != NULL)
785 return (arches->gdbarch);
786
787 gdbarch = gdbarch_alloc (&info, NULL);
788
789 /*
790 * Basic register fields and methods, datatype sizes and stuff.
791 */
792
793 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
794 set_gdbarch_num_pseudo_regs (gdbarch, 0);
795 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
796 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
797 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
798 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
799
800 set_gdbarch_char_signed (gdbarch, 0);
801 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
802 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
803 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
804 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
805
806 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
807 set_gdbarch_wchar_signed (gdbarch, 1);
808
809 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
811 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
812
813 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
814 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
815 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
816
817 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
818 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
819
820 /* Stack grows up. */
821 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
822
823 /*
824 * Frame Info
825 */
826 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
827 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
828 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
829 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
830 frame_base_set_default (gdbarch, &xstormy16_frame_base);
831
832 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
833 set_gdbarch_stack_frame_destroyed_p (gdbarch,
834 xstormy16_stack_frame_destroyed_p);
835
836 /* These values and methods are used when gdb calls a target function. */
837 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
838 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
839 xstormy16_breakpoint::kind_from_pc);
840 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
841 xstormy16_breakpoint::bp_from_kind);
842 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
843
844 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
845
846 gdbarch_init_osabi (info, gdbarch);
847
848 dwarf2_append_unwinders (gdbarch);
849 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
850
851 return gdbarch;
852 }
853
854 /* Function: _initialize_xstormy16_tdep
855 Initializer function for the Sanyo Xstormy16a module.
856 Called by gdb at start-up. */
857
858 void
859 _initialize_xstormy16_tdep (void)
860 {
861 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
862 }
This page took 0.047352 seconds and 4 git commands to generate.