* xstormy16-tdep.c (xstormy16_push_dummy_call): Add local
[deliverable/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "inferior.h"
33 #include "gdb_string.h"
34 #include "gdb_assert.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "objfiles.h"
41
42 enum gdb_regnum
43 {
44 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
45 Functions will return their values in register R2-R7 as they fit.
46 Otherwise a hidden pointer to an big enough area is given as argument
47 to the function in r2. Further arguments are beginning in r3 then.
48 R13 is used as frame pointer when GCC compiles w/o optimization
49 R14 is used as "PSW", displaying the CPU status.
50 R15 is used implicitely as stack pointer. */
51 E_R0_REGNUM,
52 E_R1_REGNUM,
53 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
54 E_R3_REGNUM,
55 E_R4_REGNUM,
56 E_R5_REGNUM,
57 E_R6_REGNUM,
58 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
59 E_R8_REGNUM,
60 E_R9_REGNUM,
61 E_R10_REGNUM,
62 E_R11_REGNUM,
63 E_R12_REGNUM,
64 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
65 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
66 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
67 E_PC_REGNUM,
68 E_NUM_REGS
69 };
70
71 /* Use an invalid address value as 'not available' marker. */
72 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
73
74 struct xstormy16_frame_cache
75 {
76 /* Base address. */
77 CORE_ADDR base;
78 CORE_ADDR pc;
79 LONGEST framesize;
80 int uses_fp;
81 CORE_ADDR saved_regs[E_NUM_REGS];
82 CORE_ADDR saved_sp;
83 };
84
85 /* Size of instructions, registers, etc. */
86 enum
87 {
88 xstormy16_inst_size = 2,
89 xstormy16_reg_size = 2,
90 xstormy16_pc_size = 4
91 };
92
93 /* Size of return datatype which fits into the remaining return registers. */
94 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
95 * xstormy16_reg_size)
96
97 /* Size of return datatype which fits into all return registers. */
98 enum
99 {
100 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
101 };
102
103 /* Function: xstormy16_register_name
104 Returns the name of the standard Xstormy16 register N. */
105
106 static const char *
107 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
108 {
109 static char *register_names[] = {
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "r8", "r9", "r10", "r11", "r12", "r13",
112 "psw", "sp", "pc"
113 };
114
115 if (regnum < 0 || regnum >= E_NUM_REGS)
116 internal_error (__FILE__, __LINE__,
117 _("xstormy16_register_name: illegal register number %d"),
118 regnum);
119 else
120 return register_names[regnum];
121
122 }
123
124 static struct type *
125 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
126 {
127 if (regnum == E_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_uint32;
129 else
130 return builtin_type (gdbarch)->builtin_uint16;
131 }
132
133 /* Function: xstormy16_type_is_scalar
134 Makes the decision if a given type is a scalar types. Scalar
135 types are returned in the registers r2-r7 as they fit. */
136
137 static int
138 xstormy16_type_is_scalar (struct type *t)
139 {
140 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
141 && TYPE_CODE(t) != TYPE_CODE_UNION
142 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
143 }
144
145 /* Function: xstormy16_use_struct_convention
146 Returns non-zero if the given struct type will be returned using
147 a special convention, rather than the normal function return method.
148 7sed in the contexts of the "return" command, and of
149 target function calls from the debugger. */
150
151 static int
152 xstormy16_use_struct_convention (struct type *type)
153 {
154 return !xstormy16_type_is_scalar (type)
155 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
156 }
157
158 /* Function: xstormy16_extract_return_value
159 Find a function's return value in the appropriate registers (in
160 regbuf), and copy it into valbuf. */
161
162 static void
163 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
164 void *valbuf)
165 {
166 int len = TYPE_LENGTH (type);
167 int i, regnum = E_1ST_ARG_REGNUM;
168
169 for (i = 0; i < len; i += xstormy16_reg_size)
170 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
171 }
172
173 /* Function: xstormy16_store_return_value
174 Copy the function return value from VALBUF into the
175 proper location for a function return.
176 Called only in the context of the "return" command. */
177
178 static void
179 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
180 const void *valbuf)
181 {
182 if (TYPE_LENGTH (type) == 1)
183 {
184 /* Add leading zeros to the value. */
185 char buf[xstormy16_reg_size];
186 memset (buf, 0, xstormy16_reg_size);
187 memcpy (buf, valbuf, 1);
188 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
189 }
190 else
191 {
192 int len = TYPE_LENGTH (type);
193 int i, regnum = E_1ST_ARG_REGNUM;
194
195 for (i = 0; i < len; i += xstormy16_reg_size)
196 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
197 }
198 }
199
200 static enum return_value_convention
201 xstormy16_return_value (struct gdbarch *gdbarch, struct type *func_type,
202 struct type *type, struct regcache *regcache,
203 gdb_byte *readbuf, const gdb_byte *writebuf)
204 {
205 if (xstormy16_use_struct_convention (type))
206 return RETURN_VALUE_STRUCT_CONVENTION;
207 if (writebuf)
208 xstormy16_store_return_value (type, regcache, writebuf);
209 else if (readbuf)
210 xstormy16_extract_return_value (type, regcache, readbuf);
211 return RETURN_VALUE_REGISTER_CONVENTION;
212 }
213
214 static CORE_ADDR
215 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
216 {
217 if (addr & 1)
218 ++addr;
219 return addr;
220 }
221
222 /* Function: xstormy16_push_dummy_call
223 Setup the function arguments for GDB to call a function in the inferior.
224 Called only in the context of a target function call from the debugger.
225 Returns the value of the SP register after the args are pushed. */
226
227 static CORE_ADDR
228 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
229 struct value *function,
230 struct regcache *regcache,
231 CORE_ADDR bp_addr, int nargs,
232 struct value **args,
233 CORE_ADDR sp, int struct_return,
234 CORE_ADDR struct_addr)
235 {
236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
237 CORE_ADDR stack_dest = sp;
238 int argreg = E_1ST_ARG_REGNUM;
239 int i, j;
240 int typelen, slacklen;
241 const gdb_byte *val;
242 char buf[xstormy16_pc_size];
243
244 /* If struct_return is true, then the struct return address will
245 consume one argument-passing register. */
246 if (struct_return)
247 {
248 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
249 argreg++;
250 }
251
252 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
253 fit in the remaining registers we're switching over to the stack.
254 No argument is put on stack partially and as soon as we switched
255 over to stack no further argument is put in a register even if it
256 would fit in the remaining unused registers. */
257 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
258 {
259 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
260 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
261 break;
262
263 /* Put argument into registers wordwise. */
264 val = value_contents (args[i]);
265 for (j = 0; j < typelen; j += xstormy16_reg_size)
266 {
267 ULONGEST regval;
268 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
269
270 regval = extract_unsigned_integer (val + j, size, byte_order);
271 regcache_cooked_write_unsigned (regcache, argreg++, regval);
272 }
273 }
274
275 /* Align SP */
276 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
277
278 /* Loop backwards through remaining arguments and push them on the stack,
279 wordaligned. */
280 for (j = nargs - 1; j >= i; j--)
281 {
282 char *val;
283
284 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
285 slacklen = typelen & 1;
286 val = alloca (typelen + slacklen);
287 memcpy (val, value_contents (args[j]), typelen);
288 memset (val + typelen, 0, slacklen);
289
290 /* Now write this data to the stack. The stack grows upwards. */
291 write_memory (stack_dest, val, typelen + slacklen);
292 stack_dest += typelen + slacklen;
293 }
294
295 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
296 write_memory (stack_dest, buf, xstormy16_pc_size);
297 stack_dest += xstormy16_pc_size;
298
299 /* Update stack pointer. */
300 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
301
302 /* Return the new stack pointer minus the return address slot since
303 that's what DWARF2/GCC uses as the frame's CFA. */
304 return stack_dest - xstormy16_pc_size;
305 }
306
307 /* Function: xstormy16_scan_prologue
308 Decode the instructions within the given address range.
309 Decide when we must have reached the end of the function prologue.
310 If a frame_info pointer is provided, fill in its saved_regs etc.
311
312 Returns the address of the first instruction after the prologue. */
313
314 static CORE_ADDR
315 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
316 CORE_ADDR start_addr, CORE_ADDR end_addr,
317 struct xstormy16_frame_cache *cache,
318 struct frame_info *this_frame)
319 {
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR next_addr;
322 ULONGEST inst, inst2;
323 LONGEST offset;
324 int regnum;
325
326 /* Initialize framesize with size of PC put on stack by CALLF inst. */
327 cache->saved_regs[E_PC_REGNUM] = 0;
328 cache->framesize = xstormy16_pc_size;
329
330 if (start_addr >= end_addr)
331 return end_addr;
332
333 for (next_addr = start_addr;
334 next_addr < end_addr; next_addr += xstormy16_inst_size)
335 {
336 inst = read_memory_unsigned_integer (next_addr,
337 xstormy16_inst_size, byte_order);
338 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
339 xstormy16_inst_size, byte_order);
340
341 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
342 {
343 regnum = inst & 0x000f;
344 cache->saved_regs[regnum] = cache->framesize;
345 cache->framesize += xstormy16_reg_size;
346 }
347
348 /* Optional stack allocation for args and local vars <= 4 byte. */
349 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
350 {
351 cache->framesize += ((inst & 0x0030) >> 4) + 1;
352 }
353
354 /* optional stack allocation for args and local vars > 4 && < 16 byte */
355 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
356 {
357 cache->framesize += (inst & 0x00f0) >> 4;
358 }
359
360 /* Optional stack allocation for args and local vars >= 16 byte. */
361 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
362 {
363 cache->framesize += inst2;
364 next_addr += xstormy16_inst_size;
365 }
366
367 else if (inst == 0x46fd) /* mov r13, r15 */
368 {
369 cache->uses_fp = 1;
370 }
371
372 /* optional copying of args in r2-r7 to r10-r13. */
373 /* Probably only in optimized case but legal action for prologue. */
374 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
375 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
376 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
377 ;
378
379 /* Optional copying of args in r2-r7 to stack. */
380 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
381 (bit3 always 1, bit2-0 = reg) */
382 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
383 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
384 {
385 regnum = inst & 0x0007;
386 /* Only 12 of 16 bits of the argument are used for the
387 signed offset. */
388 offset = (LONGEST) (inst2 & 0x0fff);
389 if (offset & 0x0800)
390 offset -= 0x1000;
391
392 cache->saved_regs[regnum] = cache->framesize + offset;
393 next_addr += xstormy16_inst_size;
394 }
395
396 else /* Not a prologue instruction. */
397 break;
398 }
399
400 return next_addr;
401 }
402
403 /* Function: xstormy16_skip_prologue
404 If the input address is in a function prologue,
405 returns the address of the end of the prologue;
406 else returns the input address.
407
408 Note: the input address is likely to be the function start,
409 since this function is mainly used for advancing a breakpoint
410 to the first line, or stepping to the first line when we have
411 stepped into a function call. */
412
413 static CORE_ADDR
414 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
415 {
416 CORE_ADDR func_addr = 0, func_end = 0;
417 char *func_name;
418
419 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
420 {
421 struct symtab_and_line sal;
422 struct symbol *sym;
423 struct xstormy16_frame_cache cache;
424 CORE_ADDR plg_end;
425
426 memset (&cache, 0, sizeof cache);
427
428 /* Don't trust line number debug info in frameless functions. */
429 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
430 &cache, NULL);
431 if (!cache.uses_fp)
432 return plg_end;
433
434 /* Found a function. */
435 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
436 /* Don't use line number debug info for assembly source files. */
437 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
438 {
439 sal = find_pc_line (func_addr, 0);
440 if (sal.end && sal.end < func_end)
441 {
442 /* Found a line number, use it as end of prologue. */
443 return sal.end;
444 }
445 }
446 /* No useable line symbol. Use result of prologue parsing method. */
447 return plg_end;
448 }
449
450 /* No function symbol -- just return the PC. */
451
452 return (CORE_ADDR) pc;
453 }
454
455 /* The epilogue is defined here as the area at the end of a function,
456 either on the `ret' instruction itself or after an instruction which
457 destroys the function's stack frame. */
458 static int
459 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
460 {
461 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
462 CORE_ADDR func_addr = 0, func_end = 0;
463
464 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
465 {
466 ULONGEST inst, inst2;
467 CORE_ADDR addr = func_end - xstormy16_inst_size;
468
469 /* The Xstormy16 epilogue is max. 14 bytes long. */
470 if (pc < func_end - 7 * xstormy16_inst_size)
471 return 0;
472
473 /* Check if we're on a `ret' instruction. Otherwise it's
474 too dangerous to proceed. */
475 inst = read_memory_unsigned_integer (addr,
476 xstormy16_inst_size, byte_order);
477 if (inst != 0x0003)
478 return 0;
479
480 while ((addr -= xstormy16_inst_size) >= func_addr)
481 {
482 inst = read_memory_unsigned_integer (addr,
483 xstormy16_inst_size,
484 byte_order);
485 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
486 continue;
487 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
488 break;
489 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
490 xstormy16_inst_size,
491 byte_order);
492 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
493 {
494 addr -= xstormy16_inst_size;
495 break;
496 }
497 return 0;
498 }
499 if (pc > addr)
500 return 1;
501 }
502 return 0;
503 }
504
505 const static unsigned char *
506 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
507 int *lenptr)
508 {
509 static unsigned char breakpoint[] = { 0x06, 0x0 };
510 *lenptr = sizeof (breakpoint);
511 return breakpoint;
512 }
513
514 /* Given a pointer to a jump table entry, return the address
515 of the function it jumps to. Return 0 if not found. */
516 static CORE_ADDR
517 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
518 {
519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
520 struct obj_section *faddr_sect = find_pc_section (faddr);
521
522 if (faddr_sect)
523 {
524 LONGEST inst, inst2, addr;
525 char buf[2 * xstormy16_inst_size];
526
527 /* Return faddr if it's not pointing into the jump table. */
528 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
529 return faddr;
530
531 if (!target_read_memory (faddr, buf, sizeof buf))
532 {
533 inst = extract_unsigned_integer (buf,
534 xstormy16_inst_size, byte_order);
535 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
536 xstormy16_inst_size, byte_order);
537 addr = inst2 << 8 | (inst & 0xff);
538 return addr;
539 }
540 }
541 return 0;
542 }
543
544 /* Given a function's address, attempt to find (and return) the
545 address of the corresponding jump table entry. Return 0 if
546 not found. */
547 static CORE_ADDR
548 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
549 {
550 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
551 struct obj_section *faddr_sect = find_pc_section (faddr);
552
553 if (faddr_sect)
554 {
555 struct obj_section *osect;
556
557 /* Return faddr if it's already a pointer to a jump table entry. */
558 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
559 return faddr;
560
561 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
562 {
563 if (!strcmp (osect->the_bfd_section->name, ".plt"))
564 break;
565 }
566
567 if (osect < faddr_sect->objfile->sections_end)
568 {
569 CORE_ADDR addr, endaddr;
570
571 addr = obj_section_addr (osect);
572 endaddr = obj_section_endaddr (osect);
573
574 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
575 {
576 LONGEST inst, inst2, faddr2;
577 char buf[2 * xstormy16_inst_size];
578
579 if (target_read_memory (addr, buf, sizeof buf))
580 return 0;
581 inst = extract_unsigned_integer (buf,
582 xstormy16_inst_size,
583 byte_order);
584 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
585 xstormy16_inst_size,
586 byte_order);
587 faddr2 = inst2 << 8 | (inst & 0xff);
588 if (faddr == faddr2)
589 return addr;
590 }
591 }
592 }
593 return 0;
594 }
595
596 static CORE_ADDR
597 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
598 {
599 struct gdbarch *gdbarch = get_frame_arch (frame);
600 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
601
602 if (tmp && tmp != pc)
603 return tmp;
604 return 0;
605 }
606
607 /* Function pointers are 16 bit. The address space is 24 bit, using
608 32 bit addresses. Pointers to functions on the XStormy16 are implemented
609 by using 16 bit pointers, which are either direct pointers in case the
610 function begins below 0x10000, or indirect pointers into a jump table.
611 The next two functions convert 16 bit pointers into 24 (32) bit addresses
612 and vice versa. */
613
614 static CORE_ADDR
615 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
616 struct type *type, const gdb_byte *buf)
617 {
618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
619 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
620 CORE_ADDR addr
621 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
622
623 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
624 {
625 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
626 if (addr2)
627 addr = addr2;
628 }
629
630 return addr;
631 }
632
633 static void
634 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
635 struct type *type, gdb_byte *buf, CORE_ADDR addr)
636 {
637 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
638 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
639
640 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
641 {
642 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
643 if (addr2)
644 addr = addr2;
645 }
646 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
647 }
648
649 static struct xstormy16_frame_cache *
650 xstormy16_alloc_frame_cache (void)
651 {
652 struct xstormy16_frame_cache *cache;
653 int i;
654
655 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
656
657 cache->base = 0;
658 cache->saved_sp = 0;
659 cache->pc = 0;
660 cache->uses_fp = 0;
661 cache->framesize = 0;
662 for (i = 0; i < E_NUM_REGS; ++i)
663 cache->saved_regs[i] = REG_UNAVAIL;
664
665 return cache;
666 }
667
668 static struct xstormy16_frame_cache *
669 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
670 {
671 struct gdbarch *gdbarch = get_frame_arch (this_frame);
672 struct xstormy16_frame_cache *cache;
673 CORE_ADDR current_pc;
674 int i;
675
676 if (*this_cache)
677 return *this_cache;
678
679 cache = xstormy16_alloc_frame_cache ();
680 *this_cache = cache;
681
682 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
683 if (cache->base == 0)
684 return cache;
685
686 cache->pc = get_frame_func (this_frame);
687 current_pc = get_frame_pc (this_frame);
688 if (cache->pc)
689 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
690 cache, this_frame);
691
692 if (!cache->uses_fp)
693 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
694
695 cache->saved_sp = cache->base - cache->framesize;
696
697 for (i = 0; i < E_NUM_REGS; ++i)
698 if (cache->saved_regs[i] != REG_UNAVAIL)
699 cache->saved_regs[i] += cache->saved_sp;
700
701 return cache;
702 }
703
704 static struct value *
705 xstormy16_frame_prev_register (struct frame_info *this_frame,
706 void **this_cache, int regnum)
707 {
708 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
709 this_cache);
710 gdb_assert (regnum >= 0);
711
712 if (regnum == E_SP_REGNUM && cache->saved_sp)
713 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
714
715 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
716 return frame_unwind_got_memory (this_frame, regnum,
717 cache->saved_regs[regnum]);
718
719 return frame_unwind_got_register (this_frame, regnum, regnum);
720 }
721
722 static void
723 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
724 struct frame_id *this_id)
725 {
726 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
727 this_cache);
728
729 /* This marks the outermost frame. */
730 if (cache->base == 0)
731 return;
732
733 *this_id = frame_id_build (cache->saved_sp, cache->pc);
734 }
735
736 static CORE_ADDR
737 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
738 {
739 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
740 this_cache);
741 return cache->base;
742 }
743
744 static const struct frame_unwind xstormy16_frame_unwind = {
745 NORMAL_FRAME,
746 default_frame_unwind_stop_reason,
747 xstormy16_frame_this_id,
748 xstormy16_frame_prev_register,
749 NULL,
750 default_frame_sniffer
751 };
752
753 static const struct frame_base xstormy16_frame_base = {
754 &xstormy16_frame_unwind,
755 xstormy16_frame_base_address,
756 xstormy16_frame_base_address,
757 xstormy16_frame_base_address
758 };
759
760 static CORE_ADDR
761 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
762 {
763 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
764 }
765
766 static CORE_ADDR
767 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
768 {
769 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
770 }
771
772 static struct frame_id
773 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
774 {
775 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
776 return frame_id_build (sp, get_frame_pc (this_frame));
777 }
778
779
780 /* Function: xstormy16_gdbarch_init
781 Initializer function for the xstormy16 gdbarch vector.
782 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
783
784 static struct gdbarch *
785 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
786 {
787 struct gdbarch *gdbarch;
788
789 /* find a candidate among the list of pre-declared architectures. */
790 arches = gdbarch_list_lookup_by_info (arches, &info);
791 if (arches != NULL)
792 return (arches->gdbarch);
793
794 gdbarch = gdbarch_alloc (&info, NULL);
795
796 /*
797 * Basic register fields and methods, datatype sizes and stuff.
798 */
799
800 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
801 set_gdbarch_num_pseudo_regs (gdbarch, 0);
802 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
803 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
804 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
805 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
806
807 set_gdbarch_char_signed (gdbarch, 0);
808 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
809 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
810 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
811 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
812
813 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
814 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
815 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
816
817 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
818 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
819 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
820
821 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
822 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
823
824 /* Stack grows up. */
825 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
826
827 /*
828 * Frame Info
829 */
830 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
831 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
832 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
833 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
834 frame_base_set_default (gdbarch, &xstormy16_frame_base);
835
836 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
837 set_gdbarch_in_function_epilogue_p (gdbarch,
838 xstormy16_in_function_epilogue_p);
839
840 /* These values and methods are used when gdb calls a target function. */
841 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
842 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
843 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
844
845 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
846
847 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
848
849 gdbarch_init_osabi (info, gdbarch);
850
851 dwarf2_append_unwinders (gdbarch);
852 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
853
854 return gdbarch;
855 }
856
857 /* Function: _initialize_xstormy16_tdep
858 Initializer function for the Sanyo Xstormy16a module.
859 Called by gdb at start-up. */
860
861 /* -Wmissing-prototypes */
862 extern initialize_file_ftype _initialize_xstormy16_tdep;
863
864 void
865 _initialize_xstormy16_tdep (void)
866 {
867 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
868 }
This page took 0.049625 seconds and 5 git commands to generate.