Update debug_qf_expand_symtabs_matching to use typedefs.
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "floatformat.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50 #include "gdb_assert.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 static int
123 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
124 {
125 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
126 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
127 return 0;
128
129 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
130 }
131
132 /* Convert a live A-register number to the corresponding AR-register
133 number. */
134 static int
135 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
136 {
137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138 int arreg;
139
140 arreg = a_regnum - tdep->a0_base;
141 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
142 arreg &= tdep->num_aregs - 1;
143
144 return arreg + tdep->ar_base;
145 }
146
147 /* Convert a live AR-register number to the corresponding A-register order
148 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
149 static int
150 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153 int areg;
154
155 areg = ar_regnum - tdep->ar_base;
156 if (areg < 0 || areg >= tdep->num_aregs)
157 return -1;
158 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
159 return (areg > 15) ? -1 : areg;
160 }
161
162 /* Read Xtensa register directly from the hardware. */
163 static unsigned long
164 xtensa_read_register (int regnum)
165 {
166 ULONGEST value;
167
168 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
169 return (unsigned long) value;
170 }
171
172 /* Write Xtensa register directly to the hardware. */
173 static void
174 xtensa_write_register (int regnum, ULONGEST value)
175 {
176 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
177 }
178
179 /* Return the window size of the previous call to the function from which we
180 have just returned.
181
182 This function is used to extract the return value after a called function
183 has returned to the caller. On Xtensa, the register that holds the return
184 value (from the perspective of the caller) depends on what call
185 instruction was used. For now, we are assuming that the call instruction
186 precedes the current address, so we simply analyze the call instruction.
187 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
188 method to call the inferior function. */
189
190 static int
191 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
192 {
193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
194 int winsize = 4;
195 int insn;
196 gdb_byte buf[4];
197
198 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
199
200 /* Read the previous instruction (should be a call[x]{4|8|12}. */
201 read_memory (pc-3, buf, 3);
202 insn = extract_unsigned_integer (buf, 3, byte_order);
203
204 /* Decode call instruction:
205 Little Endian
206 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
207 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
208 Big Endian
209 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
210 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
211
212 if (byte_order == BFD_ENDIAN_LITTLE)
213 {
214 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
215 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
216 }
217 else
218 {
219 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
220 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
221 }
222 return winsize;
223 }
224
225
226 /* REGISTER INFORMATION */
227
228 /* Find register by name. */
229 static int
230 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
231 {
232 int i;
233
234 for (i = 0; i < gdbarch_num_regs (gdbarch)
235 + gdbarch_num_pseudo_regs (gdbarch);
236 i++)
237
238 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
239 return i;
240
241 return -1;
242 }
243
244 /* Returns the name of a register. */
245 static const char *
246 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
247 {
248 /* Return the name stored in the register map. */
249 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
250 + gdbarch_num_pseudo_regs (gdbarch))
251 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
252
253 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
254 return 0;
255 }
256
257 /* Return the type of a register. Create a new type, if necessary. */
258
259 static struct type *
260 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* Return signed integer for ARx and Ax registers. */
265 if ((regnum >= tdep->ar_base
266 && regnum < tdep->ar_base + tdep->num_aregs)
267 || (regnum >= tdep->a0_base
268 && regnum < tdep->a0_base + 16))
269 return builtin_type (gdbarch)->builtin_int;
270
271 if (regnum == gdbarch_pc_regnum (gdbarch)
272 || regnum == tdep->a0_base + 1)
273 return builtin_type (gdbarch)->builtin_data_ptr;
274
275 /* Return the stored type for all other registers. */
276 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
277 + gdbarch_num_pseudo_regs (gdbarch))
278 {
279 xtensa_register_t* reg = &tdep->regmap[regnum];
280
281 /* Set ctype for this register (only the first time). */
282
283 if (reg->ctype == 0)
284 {
285 struct ctype_cache *tp;
286 int size = reg->byte_size;
287
288 /* We always use the memory representation,
289 even if the register width is smaller. */
290 switch (size)
291 {
292 case 1:
293 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
294 break;
295
296 case 2:
297 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
298 break;
299
300 case 4:
301 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
302 break;
303
304 case 8:
305 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
306 break;
307
308 case 16:
309 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
310 break;
311
312 default:
313 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
314 if (tp->size == size)
315 break;
316
317 if (tp == NULL)
318 {
319 char *name = xstrprintf ("int%d", size * 8);
320 tp = xmalloc (sizeof (struct ctype_cache));
321 tp->next = tdep->type_entries;
322 tdep->type_entries = tp;
323 tp->size = size;
324 tp->virtual_type
325 = arch_integer_type (gdbarch, size * 8, 1, name);
326 xfree (name);
327 }
328
329 reg->ctype = tp->virtual_type;
330 }
331 }
332 return reg->ctype;
333 }
334
335 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
336 return 0;
337 }
338
339
340 /* Return the 'local' register number for stubs, dwarf2, etc.
341 The debugging information enumerates registers starting from 0 for A0
342 to n for An. So, we only have to add the base number for A0. */
343
344 static int
345 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
346 {
347 int i;
348
349 if (regnum >= 0 && regnum < 16)
350 return gdbarch_tdep (gdbarch)->a0_base + regnum;
351
352 for (i = 0;
353 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
354 i++)
355 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
356 return i;
357
358 internal_error (__FILE__, __LINE__,
359 _("invalid dwarf/stabs register number %d"), regnum);
360 return 0;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 if (regnum == gdbarch_num_regs (gdbarch)
558 + gdbarch_num_pseudo_regs (gdbarch) - 1)
559 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
560
561 /* Read aliases a0..a15, if this is a Windowed ABI. */
562 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
563 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
564 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
565 {
566 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
567 enum register_status status;
568
569 status = regcache_raw_read (regcache,
570 gdbarch_tdep (gdbarch)->wb_regnum,
571 buf);
572 if (status != REG_VALID)
573 return status;
574 regnum = arreg_number (gdbarch, regnum,
575 extract_unsigned_integer (buf, 4, byte_order));
576 }
577
578 /* We can always read non-pseudo registers. */
579 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
580 return regcache_raw_read (regcache, regnum, buffer);
581
582 /* We have to find out how to deal with priveleged registers.
583 Let's treat them as pseudo-registers, but we cannot read/write them. */
584
585 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
586 {
587 buffer[0] = (gdb_byte)0;
588 buffer[1] = (gdb_byte)0;
589 buffer[2] = (gdb_byte)0;
590 buffer[3] = (gdb_byte)0;
591 return REG_VALID;
592 }
593 /* Pseudo registers. */
594 else if (regnum >= 0
595 && regnum < gdbarch_num_regs (gdbarch)
596 + gdbarch_num_pseudo_regs (gdbarch))
597 {
598 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
599 xtensa_register_type_t type = reg->type;
600 int flags = gdbarch_tdep (gdbarch)->target_flags;
601
602 /* We cannot read Unknown or Unmapped registers. */
603 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
604 {
605 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
606 {
607 warning (_("cannot read register %s"),
608 xtensa_register_name (gdbarch, regnum));
609 return REG_VALID;
610 }
611 }
612
613 /* Some targets cannot read TIE register files. */
614 else if (type == xtRegisterTypeTieRegfile)
615 {
616 /* Use 'fetch' to get register? */
617 if (flags & xtTargetFlagsUseFetchStore)
618 {
619 warning (_("cannot read register"));
620 return REG_VALID;
621 }
622
623 /* On some targets (esp. simulators), we can always read the reg. */
624 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
625 {
626 warning (_("cannot read register"));
627 return REG_VALID;
628 }
629 }
630
631 /* We can always read mapped registers. */
632 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
633 return xtensa_register_read_masked (regcache, reg, buffer);
634
635 /* Assume that we can read the register. */
636 return regcache_raw_read (regcache, regnum, buffer);
637 }
638 else
639 internal_error (__FILE__, __LINE__,
640 _("invalid register number %d"), regnum);
641 }
642
643
644 /* Write pseudo registers. */
645
646 static void
647 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
648 struct regcache *regcache,
649 int regnum,
650 const gdb_byte *buffer)
651 {
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
653
654 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
655 regnum, xtensa_register_name (gdbarch, regnum));
656
657 if (regnum == gdbarch_num_regs (gdbarch)
658 + gdbarch_num_pseudo_regs (gdbarch) -1)
659 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
660
661 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
662 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
663 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
664 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
665 {
666 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
667
668 regcache_raw_read (regcache,
669 gdbarch_tdep (gdbarch)->wb_regnum, buf);
670 regnum = arreg_number (gdbarch, regnum,
671 extract_unsigned_integer (buf, 4, byte_order));
672 }
673
674 /* We can always write 'core' registers.
675 Note: We might have converted Ax->ARy. */
676 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
677 regcache_raw_write (regcache, regnum, buffer);
678
679 /* We have to find out how to deal with priveleged registers.
680 Let's treat them as pseudo-registers, but we cannot read/write them. */
681
682 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
683 {
684 return;
685 }
686 /* Pseudo registers. */
687 else if (regnum >= 0
688 && regnum < gdbarch_num_regs (gdbarch)
689 + gdbarch_num_pseudo_regs (gdbarch))
690 {
691 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
692 xtensa_register_type_t type = reg->type;
693 int flags = gdbarch_tdep (gdbarch)->target_flags;
694
695 /* On most targets, we cannot write registers
696 of type "Unknown" or "Unmapped". */
697 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
698 {
699 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
700 {
701 warning (_("cannot write register %s"),
702 xtensa_register_name (gdbarch, regnum));
703 return;
704 }
705 }
706
707 /* Some targets cannot read TIE register files. */
708 else if (type == xtRegisterTypeTieRegfile)
709 {
710 /* Use 'store' to get register? */
711 if (flags & xtTargetFlagsUseFetchStore)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716
717 /* On some targets (esp. simulators), we can always write
718 the register. */
719 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
720 {
721 warning (_("cannot write register"));
722 return;
723 }
724 }
725
726 /* We can always write mapped registers. */
727 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
728 {
729 xtensa_register_write_masked (regcache, reg, buffer);
730 return;
731 }
732
733 /* Assume that we can write the register. */
734 regcache_raw_write (regcache, regnum, buffer);
735 }
736 else
737 internal_error (__FILE__, __LINE__,
738 _("invalid register number %d"), regnum);
739 }
740
741 static struct reggroup *xtensa_ar_reggroup;
742 static struct reggroup *xtensa_user_reggroup;
743 static struct reggroup *xtensa_vectra_reggroup;
744 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
745
746 static void
747 xtensa_init_reggroups (void)
748 {
749 int i;
750 char cpname[] = "cp0";
751
752 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
753 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
754 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
755
756 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
757 {
758 cpname[2] = '0' + i;
759 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
760 }
761 }
762
763 static void
764 xtensa_add_reggroups (struct gdbarch *gdbarch)
765 {
766 int i;
767
768 /* Predefined groups. */
769 reggroup_add (gdbarch, all_reggroup);
770 reggroup_add (gdbarch, save_reggroup);
771 reggroup_add (gdbarch, restore_reggroup);
772 reggroup_add (gdbarch, system_reggroup);
773 reggroup_add (gdbarch, vector_reggroup);
774 reggroup_add (gdbarch, general_reggroup);
775 reggroup_add (gdbarch, float_reggroup);
776
777 /* Xtensa-specific groups. */
778 reggroup_add (gdbarch, xtensa_ar_reggroup);
779 reggroup_add (gdbarch, xtensa_user_reggroup);
780 reggroup_add (gdbarch, xtensa_vectra_reggroup);
781
782 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
783 reggroup_add (gdbarch, xtensa_cp[i]);
784 }
785
786 static int
787 xtensa_coprocessor_register_group (struct reggroup *group)
788 {
789 int i;
790
791 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
792 if (group == xtensa_cp[i])
793 return i;
794
795 return -1;
796 }
797
798 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
799 | XTENSA_REGISTER_FLAGS_WRITABLE \
800 | XTENSA_REGISTER_FLAGS_VOLATILE)
801
802 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
803 | XTENSA_REGISTER_FLAGS_WRITABLE)
804
805 static int
806 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
807 int regnum,
808 struct reggroup *group)
809 {
810 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
811 xtensa_register_type_t type = reg->type;
812 xtensa_register_group_t rg = reg->group;
813 int cp_number;
814
815 if (group == save_reggroup)
816 /* Every single register should be included into the list of registers
817 to be watched for changes while using -data-list-changed-registers. */
818 return 1;
819
820 /* First, skip registers that are not visible to this target
821 (unknown and unmapped registers when not using ISS). */
822
823 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
824 return 0;
825 if (group == all_reggroup)
826 return 1;
827 if (group == xtensa_ar_reggroup)
828 return rg & xtRegisterGroupAddrReg;
829 if (group == xtensa_user_reggroup)
830 return rg & xtRegisterGroupUser;
831 if (group == float_reggroup)
832 return rg & xtRegisterGroupFloat;
833 if (group == general_reggroup)
834 return rg & xtRegisterGroupGeneral;
835 if (group == system_reggroup)
836 return rg & xtRegisterGroupState;
837 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
838 return rg & xtRegisterGroupVectra;
839 if (group == restore_reggroup)
840 return (regnum < gdbarch_num_regs (gdbarch)
841 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
842 cp_number = xtensa_coprocessor_register_group (group);
843 if (cp_number >= 0)
844 return rg & (xtRegisterGroupCP0 << cp_number);
845 else
846 return 1;
847 }
848
849
850 /* Supply register REGNUM from the buffer specified by GREGS and LEN
851 in the general-purpose register set REGSET to register cache
852 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
853
854 static void
855 xtensa_supply_gregset (const struct regset *regset,
856 struct regcache *rc,
857 int regnum,
858 const void *gregs,
859 size_t len)
860 {
861 const xtensa_elf_gregset_t *regs = gregs;
862 struct gdbarch *gdbarch = get_regcache_arch (rc);
863 int i;
864
865 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
866
867 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
869 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
871 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
872 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
873 (char *) &regs->windowbase);
874 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
875 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
876 (char *) &regs->windowstart);
877 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
878 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
879 (char *) &regs->lbeg);
880 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
881 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
882 (char *) &regs->lend);
883 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
884 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
885 (char *) &regs->lcount);
886 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
887 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
888 (char *) &regs->sar);
889 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
890 && regnum < gdbarch_tdep (gdbarch)->ar_base
891 + gdbarch_tdep (gdbarch)->num_aregs)
892 regcache_raw_supply (rc, regnum,
893 (char *) &regs->ar[regnum - gdbarch_tdep
894 (gdbarch)->ar_base]);
895 else if (regnum == -1)
896 {
897 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
898 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
899 (char *) &regs->ar[i]);
900 }
901 }
902
903
904 /* Xtensa register set. */
905
906 static struct regset
907 xtensa_gregset =
908 {
909 NULL,
910 xtensa_supply_gregset
911 };
912
913
914 /* Return the appropriate register set for the core
915 section identified by SECT_NAME and SECT_SIZE. */
916
917 static const struct regset *
918 xtensa_regset_from_core_section (struct gdbarch *core_arch,
919 const char *sect_name,
920 size_t sect_size)
921 {
922 DEBUGTRACE ("xtensa_regset_from_core_section "
923 "(..., sect_name==\"%s\", sect_size==%x)\n",
924 sect_name, (unsigned int) sect_size);
925
926 if (strcmp (sect_name, ".reg") == 0
927 && sect_size >= sizeof(xtensa_elf_gregset_t))
928 return &xtensa_gregset;
929
930 return NULL;
931 }
932
933
934 /* Handling frames. */
935
936 /* Number of registers to save in case of Windowed ABI. */
937 #define XTENSA_NUM_SAVED_AREGS 12
938
939 /* Frame cache part for Windowed ABI. */
940 typedef struct xtensa_windowed_frame_cache
941 {
942 int wb; /* WINDOWBASE of the previous frame. */
943 int callsize; /* Call size of this frame. */
944 int ws; /* WINDOWSTART of the previous frame. It keeps track of
945 life windows only. If there is no bit set for the
946 window, that means it had been already spilled
947 because of window overflow. */
948
949 /* Addresses of spilled A-registers.
950 AREGS[i] == -1, if corresponding AR is alive. */
951 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
952 } xtensa_windowed_frame_cache_t;
953
954 /* Call0 ABI Definitions. */
955
956 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
957 analysis. */
958 #define C0_NREGS 16 /* Number of A-registers to track. */
959 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
960 #define C0_SP 1 /* Register used as SP. */
961 #define C0_FP 15 /* Register used as FP. */
962 #define C0_RA 0 /* Register used as return address. */
963 #define C0_ARGS 2 /* Register used as first arg/retval. */
964 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
965
966 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
967 A-register where the current content of the reg came from (in terms
968 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
969 mean that the orignal content of the register was saved to the stack.
970 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
971 know where SP will end up until the entire prologue has been analyzed. */
972
973 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
974 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
975 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
976
977 extern xtensa_isa xtensa_default_isa;
978
979 typedef struct xtensa_c0reg
980 {
981 int fr_reg; /* original register from which register content
982 is derived, or C0_CONST, or C0_INEXP. */
983 int fr_ofs; /* constant offset from reg, or immediate value. */
984 int to_stk; /* offset from original SP to register (4-byte aligned),
985 or C0_NOSTK if register has not been saved. */
986 } xtensa_c0reg_t;
987
988 /* Frame cache part for Call0 ABI. */
989 typedef struct xtensa_call0_frame_cache
990 {
991 int c0_frmsz; /* Stack frame size. */
992 int c0_hasfp; /* Current frame uses frame pointer. */
993 int fp_regnum; /* A-register used as FP. */
994 int c0_fp; /* Actual value of frame pointer. */
995 int c0_fpalign; /* Dinamic adjustment for the stack
996 pointer. It's an AND mask. Zero,
997 if alignment was not adjusted. */
998 int c0_old_sp; /* In case of dynamic adjustment, it is
999 a register holding unaligned sp.
1000 C0_INEXP, when undefined. */
1001 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
1002 stack offset. C0_NOSTK otherwise. */
1003
1004 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
1005 } xtensa_call0_frame_cache_t;
1006
1007 typedef struct xtensa_frame_cache
1008 {
1009 CORE_ADDR base; /* Stack pointer of this frame. */
1010 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1011 CORE_ADDR ra; /* The raw return address of this frame. */
1012 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1013 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1014 int call0; /* It's a call0 framework (else windowed). */
1015 union
1016 {
1017 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1018 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1019 };
1020 } xtensa_frame_cache_t;
1021
1022
1023 static struct xtensa_frame_cache *
1024 xtensa_alloc_frame_cache (int windowed)
1025 {
1026 xtensa_frame_cache_t *cache;
1027 int i;
1028
1029 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1030
1031 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1032
1033 cache->base = 0;
1034 cache->pc = 0;
1035 cache->ra = 0;
1036 cache->ps = 0;
1037 cache->prev_sp = 0;
1038 cache->call0 = !windowed;
1039 if (cache->call0)
1040 {
1041 cache->c0.c0_frmsz = -1;
1042 cache->c0.c0_hasfp = 0;
1043 cache->c0.fp_regnum = -1;
1044 cache->c0.c0_fp = -1;
1045 cache->c0.c0_fpalign = 0;
1046 cache->c0.c0_old_sp = C0_INEXP;
1047 cache->c0.c0_sp_ofs = C0_NOSTK;
1048
1049 for (i = 0; i < C0_NREGS; i++)
1050 {
1051 cache->c0.c0_rt[i].fr_reg = i;
1052 cache->c0.c0_rt[i].fr_ofs = 0;
1053 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1054 }
1055 }
1056 else
1057 {
1058 cache->wd.wb = 0;
1059 cache->wd.ws = 0;
1060 cache->wd.callsize = -1;
1061
1062 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1063 cache->wd.aregs[i] = -1;
1064 }
1065 return cache;
1066 }
1067
1068
1069 static CORE_ADDR
1070 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1071 {
1072 return address & ~15;
1073 }
1074
1075
1076 static CORE_ADDR
1077 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1078 {
1079 gdb_byte buf[8];
1080 CORE_ADDR pc;
1081
1082 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1083 host_address_to_string (next_frame));
1084
1085 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1086 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1087
1088 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1089
1090 return pc;
1091 }
1092
1093
1094 static struct frame_id
1095 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1096 {
1097 CORE_ADDR pc, fp;
1098
1099 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1100
1101 pc = get_frame_pc (this_frame);
1102 fp = get_frame_register_unsigned
1103 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1104
1105 /* Make dummy frame ID unique by adding a constant. */
1106 return frame_id_build (fp + SP_ALIGNMENT, pc);
1107 }
1108
1109 /* Returns true, if instruction to execute next is unique to Xtensa Window
1110 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1111
1112 static int
1113 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1114 {
1115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1116 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1117 unsigned int code;
1118
1119 if (byte_order == BFD_ENDIAN_BIG)
1120 {
1121 /* Check, if this is L32E or S32E. */
1122 code = insn & 0xf000ff00;
1123 if ((code == 0x00009000) || (code == 0x00009400))
1124 return 1;
1125 /* Check, if this is RFWU or RFWO. */
1126 code = insn & 0xffffff00;
1127 return ((code == 0x00430000) || (code == 0x00530000));
1128 }
1129 else
1130 {
1131 /* Check, if this is L32E or S32E. */
1132 code = insn & 0x00ff000f;
1133 if ((code == 0x090000) || (code == 0x490000))
1134 return 1;
1135 /* Check, if this is RFWU or RFWO. */
1136 code = insn & 0x00ffffff;
1137 return ((code == 0x00003400) || (code == 0x00003500));
1138 }
1139 }
1140
1141 /* Returns the best guess about which register is a frame pointer
1142 for the function containing CURRENT_PC. */
1143
1144 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1145 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1146
1147 static unsigned int
1148 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1149 {
1150 #define RETURN_FP goto done
1151
1152 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1153 CORE_ADDR start_addr;
1154 xtensa_isa isa;
1155 xtensa_insnbuf ins, slot;
1156 gdb_byte ibuf[XTENSA_ISA_BSZ];
1157 CORE_ADDR ia, bt, ba;
1158 xtensa_format ifmt;
1159 int ilen, islots, is;
1160 xtensa_opcode opc;
1161 const char *opcname;
1162
1163 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1164 if (start_addr == 0)
1165 return fp_regnum;
1166
1167 if (!xtensa_default_isa)
1168 xtensa_default_isa = xtensa_isa_init (0, 0);
1169 isa = xtensa_default_isa;
1170 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1171 ins = xtensa_insnbuf_alloc (isa);
1172 slot = xtensa_insnbuf_alloc (isa);
1173 ba = 0;
1174
1175 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1176 {
1177 if (ia + xtensa_isa_maxlength (isa) > bt)
1178 {
1179 ba = ia;
1180 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1181 ? ba + XTENSA_ISA_BSZ : current_pc;
1182 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1183 RETURN_FP;
1184 }
1185
1186 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1187 ifmt = xtensa_format_decode (isa, ins);
1188 if (ifmt == XTENSA_UNDEFINED)
1189 RETURN_FP;
1190 ilen = xtensa_format_length (isa, ifmt);
1191 if (ilen == XTENSA_UNDEFINED)
1192 RETURN_FP;
1193 islots = xtensa_format_num_slots (isa, ifmt);
1194 if (islots == XTENSA_UNDEFINED)
1195 RETURN_FP;
1196
1197 for (is = 0; is < islots; ++is)
1198 {
1199 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1200 RETURN_FP;
1201
1202 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1203 if (opc == XTENSA_UNDEFINED)
1204 RETURN_FP;
1205
1206 opcname = xtensa_opcode_name (isa, opc);
1207
1208 if (strcasecmp (opcname, "mov.n") == 0
1209 || strcasecmp (opcname, "or") == 0)
1210 {
1211 unsigned int register_operand;
1212
1213 /* Possible candidate for setting frame pointer
1214 from A1. This is what we are looking for. */
1215
1216 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1217 is, slot, &register_operand) != 0)
1218 RETURN_FP;
1219 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1220 RETURN_FP;
1221 if (register_operand == 1) /* Mov{.n} FP A1. */
1222 {
1223 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1224 &register_operand) != 0)
1225 RETURN_FP;
1226 if (xtensa_operand_decode (isa, opc, 0,
1227 &register_operand) != 0)
1228 RETURN_FP;
1229
1230 fp_regnum
1231 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1232 RETURN_FP;
1233 }
1234 }
1235
1236 if (
1237 /* We have problems decoding the memory. */
1238 opcname == NULL
1239 || strcasecmp (opcname, "ill") == 0
1240 || strcasecmp (opcname, "ill.n") == 0
1241 /* Hit planted breakpoint. */
1242 || strcasecmp (opcname, "break") == 0
1243 || strcasecmp (opcname, "break.n") == 0
1244 /* Flow control instructions finish prologue. */
1245 || xtensa_opcode_is_branch (isa, opc) > 0
1246 || xtensa_opcode_is_jump (isa, opc) > 0
1247 || xtensa_opcode_is_loop (isa, opc) > 0
1248 || xtensa_opcode_is_call (isa, opc) > 0
1249 || strcasecmp (opcname, "simcall") == 0
1250 || strcasecmp (opcname, "syscall") == 0)
1251 /* Can not continue analysis. */
1252 RETURN_FP;
1253 }
1254 }
1255 done:
1256 xtensa_insnbuf_free(isa, slot);
1257 xtensa_insnbuf_free(isa, ins);
1258 return fp_regnum;
1259 }
1260
1261 /* The key values to identify the frame using "cache" are
1262
1263 cache->base = SP (or best guess about FP) of this frame;
1264 cache->pc = entry-PC (entry point of the frame function);
1265 cache->prev_sp = SP of the previous frame. */
1266
1267 static void
1268 call0_frame_cache (struct frame_info *this_frame,
1269 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1270
1271 static void
1272 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1273 xtensa_frame_cache_t *cache,
1274 CORE_ADDR pc);
1275
1276 static struct xtensa_frame_cache *
1277 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1278 {
1279 xtensa_frame_cache_t *cache;
1280 CORE_ADDR ra, wb, ws, pc, sp, ps;
1281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1283 unsigned int fp_regnum;
1284 int windowed, ps_regnum;
1285
1286 if (*this_cache)
1287 return *this_cache;
1288
1289 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1290 ps_regnum = gdbarch_ps_regnum (gdbarch);
1291 ps = (ps_regnum >= 0
1292 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1293
1294 windowed = windowing_enabled (gdbarch, ps);
1295
1296 /* Get pristine xtensa-frame. */
1297 cache = xtensa_alloc_frame_cache (windowed);
1298 *this_cache = cache;
1299
1300 if (windowed)
1301 {
1302 char op1;
1303
1304 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1305 wb = get_frame_register_unsigned (this_frame,
1306 gdbarch_tdep (gdbarch)->wb_regnum);
1307 ws = get_frame_register_unsigned (this_frame,
1308 gdbarch_tdep (gdbarch)->ws_regnum);
1309
1310 op1 = read_memory_integer (pc, 1, byte_order);
1311 if (XTENSA_IS_ENTRY (gdbarch, op1))
1312 {
1313 int callinc = CALLINC (ps);
1314 ra = get_frame_register_unsigned
1315 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1316
1317 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1318 cache->wd.callsize = 0;
1319 cache->wd.wb = wb;
1320 cache->wd.ws = ws;
1321 cache->prev_sp = get_frame_register_unsigned
1322 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1323
1324 /* This only can be the outermost frame since we are
1325 just about to execute ENTRY. SP hasn't been set yet.
1326 We can assume any frame size, because it does not
1327 matter, and, let's fake frame base in cache. */
1328 cache->base = cache->prev_sp - 16;
1329
1330 cache->pc = pc;
1331 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1332 cache->ps = (ps & ~PS_CALLINC_MASK)
1333 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1334
1335 return cache;
1336 }
1337 else
1338 {
1339 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1340 ra = get_frame_register_unsigned (this_frame,
1341 gdbarch_tdep (gdbarch)->a0_base);
1342 cache->wd.callsize = WINSIZE (ra);
1343 cache->wd.wb = (wb - cache->wd.callsize / 4)
1344 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1345 cache->wd.ws = ws & ~(1 << wb);
1346
1347 cache->pc = get_frame_func (this_frame);
1348 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1349 cache->ps = (ps & ~PS_CALLINC_MASK)
1350 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1351 }
1352
1353 if (cache->wd.ws == 0)
1354 {
1355 int i;
1356
1357 /* Set A0...A3. */
1358 sp = get_frame_register_unsigned
1359 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1360
1361 for (i = 0; i < 4; i++, sp += 4)
1362 {
1363 cache->wd.aregs[i] = sp;
1364 }
1365
1366 if (cache->wd.callsize > 4)
1367 {
1368 /* Set A4...A7/A11. */
1369 /* Get the SP of the frame previous to the previous one.
1370 To achieve this, we have to dereference SP twice. */
1371 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1372 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1373 sp -= cache->wd.callsize * 4;
1374
1375 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1376 {
1377 cache->wd.aregs[i] = sp;
1378 }
1379 }
1380 }
1381
1382 if ((cache->prev_sp == 0) && ( ra != 0 ))
1383 /* If RA is equal to 0 this frame is an outermost frame. Leave
1384 cache->prev_sp unchanged marking the boundary of the frame stack. */
1385 {
1386 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1387 {
1388 /* Register window overflow already happened.
1389 We can read caller's SP from the proper spill loction. */
1390 sp = get_frame_register_unsigned
1391 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1392 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1393 }
1394 else
1395 {
1396 /* Read caller's frame SP directly from the previous window. */
1397 int regnum = arreg_number
1398 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1399 cache->wd.wb);
1400
1401 cache->prev_sp = xtensa_read_register (regnum);
1402 }
1403 }
1404 }
1405 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1406 {
1407 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1408
1409 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1410 /* Everything was set already, including cache->base. */
1411 return cache;
1412 }
1413 else /* Call0 framework. */
1414 {
1415 call0_frame_cache (this_frame, cache, pc);
1416 fp_regnum = cache->c0.fp_regnum;
1417 }
1418
1419 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1420
1421 return cache;
1422 }
1423
1424 static int xtensa_session_once_reported = 1;
1425
1426 /* Report a problem with prologue analysis while doing backtracing.
1427 But, do it only once to avoid annoyng repeated messages. */
1428
1429 static void
1430 warning_once (void)
1431 {
1432 if (xtensa_session_once_reported == 0)
1433 warning (_("\
1434 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1435 This message will not be repeated in this session.\n"));
1436
1437 xtensa_session_once_reported = 1;
1438 }
1439
1440
1441 static void
1442 xtensa_frame_this_id (struct frame_info *this_frame,
1443 void **this_cache,
1444 struct frame_id *this_id)
1445 {
1446 struct xtensa_frame_cache *cache =
1447 xtensa_frame_cache (this_frame, this_cache);
1448
1449 if (cache->prev_sp == 0)
1450 return;
1451
1452 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1453 }
1454
1455 static struct value *
1456 xtensa_frame_prev_register (struct frame_info *this_frame,
1457 void **this_cache,
1458 int regnum)
1459 {
1460 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1461 struct xtensa_frame_cache *cache;
1462 ULONGEST saved_reg = 0;
1463 int done = 1;
1464
1465 if (*this_cache == NULL)
1466 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1467 cache = *this_cache;
1468
1469 if (regnum ==gdbarch_pc_regnum (gdbarch))
1470 saved_reg = cache->ra;
1471 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1472 saved_reg = cache->prev_sp;
1473 else if (!cache->call0)
1474 {
1475 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1476 saved_reg = cache->wd.ws;
1477 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1478 saved_reg = cache->wd.wb;
1479 else if (regnum == gdbarch_ps_regnum (gdbarch))
1480 saved_reg = cache->ps;
1481 else
1482 done = 0;
1483 }
1484 else
1485 done = 0;
1486
1487 if (done)
1488 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1489
1490 if (!cache->call0) /* Windowed ABI. */
1491 {
1492 /* Convert A-register numbers to AR-register numbers,
1493 if we deal with A-register. */
1494 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1495 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1496 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1497
1498 /* Check, if we deal with AR-register saved on stack. */
1499 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1500 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1501 + gdbarch_tdep (gdbarch)->num_aregs))
1502 {
1503 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1504
1505 if (areg >= 0
1506 && areg < XTENSA_NUM_SAVED_AREGS
1507 && cache->wd.aregs[areg] != -1)
1508 return frame_unwind_got_memory (this_frame, regnum,
1509 cache->wd.aregs[areg]);
1510 }
1511 }
1512 else /* Call0 ABI. */
1513 {
1514 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1515 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1516 + C0_NREGS))
1517 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1518
1519 if (reg < C0_NREGS)
1520 {
1521 CORE_ADDR spe;
1522 int stkofs;
1523
1524 /* If register was saved in the prologue, retrieve it. */
1525 stkofs = cache->c0.c0_rt[reg].to_stk;
1526 if (stkofs != C0_NOSTK)
1527 {
1528 /* Determine SP on entry based on FP. */
1529 spe = cache->c0.c0_fp
1530 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1531
1532 return frame_unwind_got_memory (this_frame, regnum,
1533 spe + stkofs);
1534 }
1535 }
1536 }
1537
1538 /* All other registers have been either saved to
1539 the stack or are still alive in the processor. */
1540
1541 return frame_unwind_got_register (this_frame, regnum, regnum);
1542 }
1543
1544
1545 static const struct frame_unwind
1546 xtensa_unwind =
1547 {
1548 NORMAL_FRAME,
1549 default_frame_unwind_stop_reason,
1550 xtensa_frame_this_id,
1551 xtensa_frame_prev_register,
1552 NULL,
1553 default_frame_sniffer
1554 };
1555
1556 static CORE_ADDR
1557 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1558 {
1559 struct xtensa_frame_cache *cache =
1560 xtensa_frame_cache (this_frame, this_cache);
1561
1562 return cache->base;
1563 }
1564
1565 static const struct frame_base
1566 xtensa_frame_base =
1567 {
1568 &xtensa_unwind,
1569 xtensa_frame_base_address,
1570 xtensa_frame_base_address,
1571 xtensa_frame_base_address
1572 };
1573
1574
1575 static void
1576 xtensa_extract_return_value (struct type *type,
1577 struct regcache *regcache,
1578 void *dst)
1579 {
1580 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1581 bfd_byte *valbuf = dst;
1582 int len = TYPE_LENGTH (type);
1583 ULONGEST pc, wb;
1584 int callsize, areg;
1585 int offset = 0;
1586
1587 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1588
1589 gdb_assert(len > 0);
1590
1591 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1592 {
1593 /* First, we have to find the caller window in the register file. */
1594 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1595 callsize = extract_call_winsize (gdbarch, pc);
1596
1597 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1598 if (len > (callsize > 8 ? 8 : 16))
1599 internal_error (__FILE__, __LINE__,
1600 _("cannot extract return value of %d bytes long"),
1601 len);
1602
1603 /* Get the register offset of the return
1604 register (A2) in the caller window. */
1605 regcache_raw_read_unsigned
1606 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1607 areg = arreg_number (gdbarch,
1608 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1609 }
1610 else
1611 {
1612 /* No windowing hardware - Call0 ABI. */
1613 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1614 }
1615
1616 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1617
1618 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1619 offset = 4 - len;
1620
1621 for (; len > 0; len -= 4, areg++, valbuf += 4)
1622 {
1623 if (len < 4)
1624 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1625 else
1626 regcache_raw_read (regcache, areg, valbuf);
1627 }
1628 }
1629
1630
1631 static void
1632 xtensa_store_return_value (struct type *type,
1633 struct regcache *regcache,
1634 const void *dst)
1635 {
1636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1637 const bfd_byte *valbuf = dst;
1638 unsigned int areg;
1639 ULONGEST pc, wb;
1640 int callsize;
1641 int len = TYPE_LENGTH (type);
1642 int offset = 0;
1643
1644 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1645
1646 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1647 {
1648 regcache_raw_read_unsigned
1649 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1650 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1651 callsize = extract_call_winsize (gdbarch, pc);
1652
1653 if (len > (callsize > 8 ? 8 : 16))
1654 internal_error (__FILE__, __LINE__,
1655 _("unimplemented for this length: %d"),
1656 TYPE_LENGTH (type));
1657 areg = arreg_number (gdbarch,
1658 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1659
1660 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1661 callsize, (int) wb);
1662 }
1663 else
1664 {
1665 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1666 }
1667
1668 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1669 offset = 4 - len;
1670
1671 for (; len > 0; len -= 4, areg++, valbuf += 4)
1672 {
1673 if (len < 4)
1674 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1675 else
1676 regcache_raw_write (regcache, areg, valbuf);
1677 }
1678 }
1679
1680
1681 static enum return_value_convention
1682 xtensa_return_value (struct gdbarch *gdbarch,
1683 struct value *function,
1684 struct type *valtype,
1685 struct regcache *regcache,
1686 gdb_byte *readbuf,
1687 const gdb_byte *writebuf)
1688 {
1689 /* Structures up to 16 bytes are returned in registers. */
1690
1691 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1692 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1693 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1694 && TYPE_LENGTH (valtype) > 16);
1695
1696 if (struct_return)
1697 return RETURN_VALUE_STRUCT_CONVENTION;
1698
1699 DEBUGTRACE ("xtensa_return_value(...)\n");
1700
1701 if (writebuf != NULL)
1702 {
1703 xtensa_store_return_value (valtype, regcache, writebuf);
1704 }
1705
1706 if (readbuf != NULL)
1707 {
1708 gdb_assert (!struct_return);
1709 xtensa_extract_return_value (valtype, regcache, readbuf);
1710 }
1711 return RETURN_VALUE_REGISTER_CONVENTION;
1712 }
1713
1714
1715 /* DUMMY FRAME */
1716
1717 static CORE_ADDR
1718 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1719 struct value *function,
1720 struct regcache *regcache,
1721 CORE_ADDR bp_addr,
1722 int nargs,
1723 struct value **args,
1724 CORE_ADDR sp,
1725 int struct_return,
1726 CORE_ADDR struct_addr)
1727 {
1728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1729 int i;
1730 int size, onstack_size;
1731 gdb_byte *buf = (gdb_byte *) alloca (16);
1732 CORE_ADDR ra, ps;
1733 struct argument_info
1734 {
1735 const bfd_byte *contents;
1736 int length;
1737 int onstack; /* onstack == 0 => in reg */
1738 int align; /* alignment */
1739 union
1740 {
1741 int offset; /* stack offset if on stack. */
1742 int regno; /* regno if in register. */
1743 } u;
1744 };
1745
1746 struct argument_info *arg_info =
1747 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1748
1749 CORE_ADDR osp = sp;
1750
1751 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1752
1753 if (xtensa_debug_level > 3)
1754 {
1755 int i;
1756 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1757 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1758 "struct_addr=0x%x\n",
1759 (int) sp, (int) struct_return, (int) struct_addr);
1760
1761 for (i = 0; i < nargs; i++)
1762 {
1763 struct value *arg = args[i];
1764 struct type *arg_type = check_typedef (value_type (arg));
1765 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1766 host_address_to_string (arg),
1767 TYPE_LENGTH (arg_type));
1768 switch (TYPE_CODE (arg_type))
1769 {
1770 case TYPE_CODE_INT:
1771 fprintf_unfiltered (gdb_stdlog, "int");
1772 break;
1773 case TYPE_CODE_STRUCT:
1774 fprintf_unfiltered (gdb_stdlog, "struct");
1775 break;
1776 default:
1777 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1778 break;
1779 }
1780 fprintf_unfiltered (gdb_stdlog, " %s\n",
1781 host_address_to_string (value_contents (arg)));
1782 }
1783 }
1784
1785 /* First loop: collect information.
1786 Cast into type_long. (This shouldn't happen often for C because
1787 GDB already does this earlier.) It's possible that GDB could
1788 do it all the time but it's harmless to leave this code here. */
1789
1790 size = 0;
1791 onstack_size = 0;
1792 i = 0;
1793
1794 if (struct_return)
1795 size = REGISTER_SIZE;
1796
1797 for (i = 0; i < nargs; i++)
1798 {
1799 struct argument_info *info = &arg_info[i];
1800 struct value *arg = args[i];
1801 struct type *arg_type = check_typedef (value_type (arg));
1802
1803 switch (TYPE_CODE (arg_type))
1804 {
1805 case TYPE_CODE_INT:
1806 case TYPE_CODE_BOOL:
1807 case TYPE_CODE_CHAR:
1808 case TYPE_CODE_RANGE:
1809 case TYPE_CODE_ENUM:
1810
1811 /* Cast argument to long if necessary as the mask does it too. */
1812 if (TYPE_LENGTH (arg_type)
1813 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1814 {
1815 arg_type = builtin_type (gdbarch)->builtin_long;
1816 arg = value_cast (arg_type, arg);
1817 }
1818 /* Aligment is equal to the type length for the basic types. */
1819 info->align = TYPE_LENGTH (arg_type);
1820 break;
1821
1822 case TYPE_CODE_FLT:
1823
1824 /* Align doubles correctly. */
1825 if (TYPE_LENGTH (arg_type)
1826 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1827 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1828 else
1829 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1830 break;
1831
1832 case TYPE_CODE_STRUCT:
1833 default:
1834 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1835 break;
1836 }
1837 info->length = TYPE_LENGTH (arg_type);
1838 info->contents = value_contents (arg);
1839
1840 /* Align size and onstack_size. */
1841 size = (size + info->align - 1) & ~(info->align - 1);
1842 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1843
1844 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1845 {
1846 info->onstack = 1;
1847 info->u.offset = onstack_size;
1848 onstack_size += info->length;
1849 }
1850 else
1851 {
1852 info->onstack = 0;
1853 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1854 }
1855 size += info->length;
1856 }
1857
1858 /* Adjust the stack pointer and align it. */
1859 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1860
1861 /* Simulate MOVSP, if Windowed ABI. */
1862 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1863 && (sp != osp))
1864 {
1865 read_memory (osp - 16, buf, 16);
1866 write_memory (sp - 16, buf, 16);
1867 }
1868
1869 /* Second Loop: Load arguments. */
1870
1871 if (struct_return)
1872 {
1873 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1874 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1875 }
1876
1877 for (i = 0; i < nargs; i++)
1878 {
1879 struct argument_info *info = &arg_info[i];
1880
1881 if (info->onstack)
1882 {
1883 int n = info->length;
1884 CORE_ADDR offset = sp + info->u.offset;
1885
1886 /* Odd-sized structs are aligned to the lower side of a memory
1887 word in big-endian mode and require a shift. This only
1888 applies for structures smaller than one word. */
1889
1890 if (n < REGISTER_SIZE
1891 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1892 offset += (REGISTER_SIZE - n);
1893
1894 write_memory (offset, info->contents, info->length);
1895
1896 }
1897 else
1898 {
1899 int n = info->length;
1900 const bfd_byte *cp = info->contents;
1901 int r = info->u.regno;
1902
1903 /* Odd-sized structs are aligned to the lower side of registers in
1904 big-endian mode and require a shift. The odd-sized leftover will
1905 be at the end. Note that this is only true for structures smaller
1906 than REGISTER_SIZE; for larger odd-sized structures the excess
1907 will be left-aligned in the register on both endiannesses. */
1908
1909 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1910 {
1911 ULONGEST v;
1912 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1913 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1914
1915 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1916 regcache_cooked_write (regcache, r, buf);
1917
1918 cp += REGISTER_SIZE;
1919 n -= REGISTER_SIZE;
1920 r++;
1921 }
1922 else
1923 while (n > 0)
1924 {
1925 regcache_cooked_write (regcache, r, cp);
1926
1927 cp += REGISTER_SIZE;
1928 n -= REGISTER_SIZE;
1929 r++;
1930 }
1931 }
1932 }
1933
1934 /* Set the return address of dummy frame to the dummy address.
1935 The return address for the current function (in A0) is
1936 saved in the dummy frame, so we can savely overwrite A0 here. */
1937
1938 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1939 {
1940 ULONGEST val;
1941
1942 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1943 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1944 ps = (unsigned long) val & ~0x00030000;
1945 regcache_cooked_write_unsigned
1946 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1947 regcache_cooked_write_unsigned (regcache,
1948 gdbarch_ps_regnum (gdbarch),
1949 ps | 0x00010000);
1950
1951 /* All the registers have been saved. After executing
1952 dummy call, they all will be restored. So it's safe
1953 to modify WINDOWSTART register to make it look like there
1954 is only one register window corresponding to WINDOWEBASE. */
1955
1956 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1957 regcache_cooked_write_unsigned
1958 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1959 1 << extract_unsigned_integer (buf, 4, byte_order));
1960 }
1961 else
1962 {
1963 /* Simulate CALL0: write RA into A0 register. */
1964 regcache_cooked_write_unsigned
1965 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1966 }
1967
1968 /* Set new stack pointer and return it. */
1969 regcache_cooked_write_unsigned (regcache,
1970 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1971 /* Make dummy frame ID unique by adding a constant. */
1972 return sp + SP_ALIGNMENT;
1973 }
1974
1975
1976 /* Return a breakpoint for the current location of PC. We always use
1977 the density version if we have density instructions (regardless of the
1978 current instruction at PC), and use regular instructions otherwise. */
1979
1980 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1981 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1982 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1983 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1984
1985 static const unsigned char *
1986 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1987 int *lenptr)
1988 {
1989 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1990 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1991 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1992 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1993
1994 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1995
1996 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1997 {
1998 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1999 {
2000 *lenptr = sizeof (density_big_breakpoint);
2001 return density_big_breakpoint;
2002 }
2003 else
2004 {
2005 *lenptr = sizeof (density_little_breakpoint);
2006 return density_little_breakpoint;
2007 }
2008 }
2009 else
2010 {
2011 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2012 {
2013 *lenptr = sizeof (big_breakpoint);
2014 return big_breakpoint;
2015 }
2016 else
2017 {
2018 *lenptr = sizeof (little_breakpoint);
2019 return little_breakpoint;
2020 }
2021 }
2022 }
2023
2024 /* Call0 ABI support routines. */
2025
2026 /* Return true, if PC points to "ret" or "ret.n". */
2027
2028 static int
2029 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2030 {
2031 #define RETURN_RET goto done
2032 xtensa_isa isa;
2033 xtensa_insnbuf ins, slot;
2034 gdb_byte ibuf[XTENSA_ISA_BSZ];
2035 CORE_ADDR ia, bt, ba;
2036 xtensa_format ifmt;
2037 int ilen, islots, is;
2038 xtensa_opcode opc;
2039 const char *opcname;
2040 int found_ret = 0;
2041
2042 isa = xtensa_default_isa;
2043 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2044 ins = xtensa_insnbuf_alloc (isa);
2045 slot = xtensa_insnbuf_alloc (isa);
2046 ba = 0;
2047
2048 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2049 {
2050 if (ia + xtensa_isa_maxlength (isa) > bt)
2051 {
2052 ba = ia;
2053 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2054 ? ba + XTENSA_ISA_BSZ : finish_pc;
2055 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2056 RETURN_RET;
2057 }
2058
2059 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2060 ifmt = xtensa_format_decode (isa, ins);
2061 if (ifmt == XTENSA_UNDEFINED)
2062 RETURN_RET;
2063 ilen = xtensa_format_length (isa, ifmt);
2064 if (ilen == XTENSA_UNDEFINED)
2065 RETURN_RET;
2066 islots = xtensa_format_num_slots (isa, ifmt);
2067 if (islots == XTENSA_UNDEFINED)
2068 RETURN_RET;
2069
2070 for (is = 0; is < islots; ++is)
2071 {
2072 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2073 RETURN_RET;
2074
2075 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2076 if (opc == XTENSA_UNDEFINED)
2077 RETURN_RET;
2078
2079 opcname = xtensa_opcode_name (isa, opc);
2080
2081 if ((strcasecmp (opcname, "ret.n") == 0)
2082 || (strcasecmp (opcname, "ret") == 0))
2083 {
2084 found_ret = 1;
2085 RETURN_RET;
2086 }
2087 }
2088 }
2089 done:
2090 xtensa_insnbuf_free(isa, slot);
2091 xtensa_insnbuf_free(isa, ins);
2092 return found_ret;
2093 }
2094
2095 /* Call0 opcode class. Opcodes are preclassified according to what they
2096 mean for Call0 prologue analysis, and their number of significant operands.
2097 The purpose of this is to simplify prologue analysis by separating
2098 instruction decoding (libisa) from the semantics of prologue analysis. */
2099
2100 typedef enum
2101 {
2102 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2103 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2104 c0opc_flow, /* Flow control insn. */
2105 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2106 c0opc_break, /* Debugger software breakpoints. */
2107 c0opc_add, /* Adding two registers. */
2108 c0opc_addi, /* Adding a register and an immediate. */
2109 c0opc_and, /* Bitwise "and"-ing two registers. */
2110 c0opc_sub, /* Subtracting a register from a register. */
2111 c0opc_mov, /* Moving a register to a register. */
2112 c0opc_movi, /* Moving an immediate to a register. */
2113 c0opc_l32r, /* Loading a literal. */
2114 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2115 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2116 c0opc_l32e, /* L32E instruction. */
2117 c0opc_s32e, /* S32E instruction. */
2118 c0opc_rfwo, /* RFWO instruction. */
2119 c0opc_rfwu, /* RFWU instruction. */
2120 c0opc_NrOf /* Number of opcode classifications. */
2121 } xtensa_insn_kind;
2122
2123 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2124
2125 static int
2126 rwx_special_register (const char *opcname)
2127 {
2128 char ch = *opcname++;
2129
2130 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2131 return 0;
2132 if (*opcname++ != 's')
2133 return 0;
2134 if (*opcname++ != 'r')
2135 return 0;
2136 if (*opcname++ != '.')
2137 return 0;
2138
2139 return 1;
2140 }
2141
2142 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2143
2144 static xtensa_insn_kind
2145 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2146 {
2147 const char *opcname;
2148 xtensa_insn_kind opclass = c0opc_uninteresting;
2149
2150 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2151
2152 /* Get opcode name and handle special classifications. */
2153
2154 opcname = xtensa_opcode_name (isa, opc);
2155
2156 if (opcname == NULL
2157 || strcasecmp (opcname, "ill") == 0
2158 || strcasecmp (opcname, "ill.n") == 0)
2159 opclass = c0opc_illegal;
2160 else if (strcasecmp (opcname, "break") == 0
2161 || strcasecmp (opcname, "break.n") == 0)
2162 opclass = c0opc_break;
2163 else if (strcasecmp (opcname, "entry") == 0)
2164 opclass = c0opc_entry;
2165 else if (strcasecmp (opcname, "rfwo") == 0)
2166 opclass = c0opc_rfwo;
2167 else if (strcasecmp (opcname, "rfwu") == 0)
2168 opclass = c0opc_rfwu;
2169 else if (xtensa_opcode_is_branch (isa, opc) > 0
2170 || xtensa_opcode_is_jump (isa, opc) > 0
2171 || xtensa_opcode_is_loop (isa, opc) > 0
2172 || xtensa_opcode_is_call (isa, opc) > 0
2173 || strcasecmp (opcname, "simcall") == 0
2174 || strcasecmp (opcname, "syscall") == 0)
2175 opclass = c0opc_flow;
2176
2177 /* Also, classify specific opcodes that need to be tracked. */
2178 else if (strcasecmp (opcname, "add") == 0
2179 || strcasecmp (opcname, "add.n") == 0)
2180 opclass = c0opc_add;
2181 else if (strcasecmp (opcname, "and") == 0)
2182 opclass = c0opc_and;
2183 else if (strcasecmp (opcname, "addi") == 0
2184 || strcasecmp (opcname, "addi.n") == 0
2185 || strcasecmp (opcname, "addmi") == 0)
2186 opclass = c0opc_addi;
2187 else if (strcasecmp (opcname, "sub") == 0)
2188 opclass = c0opc_sub;
2189 else if (strcasecmp (opcname, "mov.n") == 0
2190 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2191 opclass = c0opc_mov;
2192 else if (strcasecmp (opcname, "movi") == 0
2193 || strcasecmp (opcname, "movi.n") == 0)
2194 opclass = c0opc_movi;
2195 else if (strcasecmp (opcname, "l32r") == 0)
2196 opclass = c0opc_l32r;
2197 else if (strcasecmp (opcname, "s32i") == 0
2198 || strcasecmp (opcname, "s32i.n") == 0)
2199 opclass = c0opc_s32i;
2200 else if (strcasecmp (opcname, "l32e") == 0)
2201 opclass = c0opc_l32e;
2202 else if (strcasecmp (opcname, "s32e") == 0)
2203 opclass = c0opc_s32e;
2204 else if (rwx_special_register (opcname))
2205 opclass = c0opc_rwxsr;
2206
2207 return opclass;
2208 }
2209
2210 /* Tracks register movement/mutation for a given operation, which may
2211 be within a bundle. Updates the destination register tracking info
2212 accordingly. The pc is needed only for pc-relative load instructions
2213 (eg. l32r). The SP register number is needed to identify stores to
2214 the stack frame. Returns 0, if analysis was succesfull, non-zero
2215 otherwise. */
2216
2217 static int
2218 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2219 xtensa_insn_kind opclass, int nods, unsigned odv[],
2220 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2221 {
2222 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2223 unsigned litbase, litaddr, litval;
2224
2225 switch (opclass)
2226 {
2227 case c0opc_addi:
2228 /* 3 operands: dst, src, imm. */
2229 gdb_assert (nods == 3);
2230 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2231 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2232 break;
2233 case c0opc_add:
2234 /* 3 operands: dst, src1, src2. */
2235 gdb_assert (nods == 3);
2236 if (src[odv[1]].fr_reg == C0_CONST)
2237 {
2238 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2239 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2240 }
2241 else if (src[odv[2]].fr_reg == C0_CONST)
2242 {
2243 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2244 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2245 }
2246 else dst[odv[0]].fr_reg = C0_INEXP;
2247 break;
2248 case c0opc_and:
2249 /* 3 operands: dst, src1, src2. */
2250 gdb_assert (nods == 3);
2251 if (cache->c0.c0_fpalign == 0)
2252 {
2253 /* Handle dynamic stack alignment. */
2254 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2255 {
2256 if (src[odv[2]].fr_reg == C0_CONST)
2257 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2258 break;
2259 }
2260 else if ((src[odv[0]].fr_reg == spreg)
2261 && (src[odv[2]].fr_reg == spreg))
2262 {
2263 if (src[odv[1]].fr_reg == C0_CONST)
2264 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2265 break;
2266 }
2267 /* else fall through. */
2268 }
2269 if (src[odv[1]].fr_reg == C0_CONST)
2270 {
2271 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2272 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2273 }
2274 else if (src[odv[2]].fr_reg == C0_CONST)
2275 {
2276 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2277 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2278 }
2279 else dst[odv[0]].fr_reg = C0_INEXP;
2280 break;
2281 case c0opc_sub:
2282 /* 3 operands: dst, src1, src2. */
2283 gdb_assert (nods == 3);
2284 if (src[odv[2]].fr_reg == C0_CONST)
2285 {
2286 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2287 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2288 }
2289 else dst[odv[0]].fr_reg = C0_INEXP;
2290 break;
2291 case c0opc_mov:
2292 /* 2 operands: dst, src [, src]. */
2293 gdb_assert (nods == 2);
2294 /* First, check if it's a special case of saving unaligned SP
2295 to a spare register in case of dynamic stack adjustment.
2296 But, only do it one time. The second time could be initializing
2297 frame pointer. We don't want to overwrite the first one. */
2298 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2299 cache->c0.c0_old_sp = odv[0];
2300
2301 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2302 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2303 break;
2304 case c0opc_movi:
2305 /* 2 operands: dst, imm. */
2306 gdb_assert (nods == 2);
2307 dst[odv[0]].fr_reg = C0_CONST;
2308 dst[odv[0]].fr_ofs = odv[1];
2309 break;
2310 case c0opc_l32r:
2311 /* 2 operands: dst, literal offset. */
2312 gdb_assert (nods == 2);
2313 /* litbase = xtensa_get_litbase (pc); can be also used. */
2314 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2315 ? 0 : xtensa_read_register
2316 (gdbarch_tdep (gdbarch)->litbase_regnum);
2317 litaddr = litbase & 1
2318 ? (litbase & ~1) + (signed)odv[1]
2319 : (pc + 3 + (signed)odv[1]) & ~3;
2320 litval = read_memory_integer (litaddr, 4, byte_order);
2321 dst[odv[0]].fr_reg = C0_CONST;
2322 dst[odv[0]].fr_ofs = litval;
2323 break;
2324 case c0opc_s32i:
2325 /* 3 operands: value, base, offset. */
2326 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2327 /* First, check if it's a spill for saved unaligned SP,
2328 when dynamic stack adjustment was applied to this frame. */
2329 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2330 && (odv[1] == spreg) /* SP usage indicates spill. */
2331 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2332 cache->c0.c0_sp_ofs = odv[2];
2333
2334 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2335 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2336 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2337 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2338 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2339 {
2340 /* ISA encoding guarantees alignment. But, check it anyway. */
2341 gdb_assert ((odv[2] & 3) == 0);
2342 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2343 }
2344 break;
2345 /* If we end up inside Window Overflow / Underflow interrupt handler
2346 report an error because these handlers should have been handled
2347 already in a different way. */
2348 case c0opc_l32e:
2349 case c0opc_s32e:
2350 case c0opc_rfwo:
2351 case c0opc_rfwu:
2352 return 1;
2353 default:
2354 return 1;
2355 }
2356 return 0;
2357 }
2358
2359 /* Analyze prologue of the function at start address to determine if it uses
2360 the Call0 ABI, and if so track register moves and linear modifications
2361 in the prologue up to the PC or just beyond the prologue, whichever is
2362 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2363 prologue. The prologue may overlap non-prologue instructions but is
2364 guaranteed to end by the first flow-control instruction (jump, branch,
2365 call or return). Since an optimized function may move information around
2366 and change the stack frame arbitrarily during the prologue, the information
2367 is guaranteed valid only at the point in the function indicated by the PC.
2368 May be used to skip the prologue or identify the ABI, w/o tracking.
2369
2370 Returns: Address of first instruction after prologue, or PC (whichever
2371 is first), or 0, if decoding failed (in libisa).
2372 Input args:
2373 start Start address of function/prologue.
2374 pc Program counter to stop at. Use 0 to continue to end of prologue.
2375 If 0, avoids infinite run-on in corrupt code memory by bounding
2376 the scan to the end of the function if that can be determined.
2377 nregs Number of general registers to track.
2378 InOut args:
2379 cache Xtensa frame cache.
2380
2381 Note that these may produce useful results even if decoding fails
2382 because they begin with default assumptions that analysis may change. */
2383
2384 static CORE_ADDR
2385 call0_analyze_prologue (struct gdbarch *gdbarch,
2386 CORE_ADDR start, CORE_ADDR pc,
2387 int nregs, xtensa_frame_cache_t *cache)
2388 {
2389 CORE_ADDR ia; /* Current insn address in prologue. */
2390 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2391 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2392 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2393 xtensa_isa isa; /* libisa ISA handle. */
2394 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2395 xtensa_format ifmt; /* libisa instruction format. */
2396 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2397 xtensa_opcode opc; /* Opcode in current slot. */
2398 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2399 int nods; /* Opcode number of operands. */
2400 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2401 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2402 int j; /* General loop counter. */
2403 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2404 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2405 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2406
2407 struct symtab_and_line prologue_sal;
2408
2409 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2410 (int)start, (int)pc);
2411
2412 /* Try to limit the scan to the end of the function if a non-zero pc
2413 arg was not supplied to avoid probing beyond the end of valid memory.
2414 If memory is full of garbage that classifies as c0opc_uninteresting.
2415 If this fails (eg. if no symbols) pc ends up 0 as it was.
2416 Intialize the Call0 frame and register tracking info.
2417 Assume it's Call0 until an 'entry' instruction is encountered.
2418 Assume we may be in the prologue until we hit a flow control instr. */
2419
2420 rtmp = NULL;
2421 body_pc = UINT_MAX;
2422 end_pc = 0;
2423
2424 /* Find out, if we have an information about the prologue from DWARF. */
2425 prologue_sal = find_pc_line (start, 0);
2426 if (prologue_sal.line != 0) /* Found debug info. */
2427 body_pc = prologue_sal.end;
2428
2429 /* If we are going to analyze the prologue in general without knowing about
2430 the current PC, make the best assumtion for the end of the prologue. */
2431 if (pc == 0)
2432 {
2433 find_pc_partial_function (start, 0, NULL, &end_pc);
2434 body_pc = min (end_pc, body_pc);
2435 }
2436 else
2437 body_pc = min (pc, body_pc);
2438
2439 cache->call0 = 1;
2440 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2441
2442 if (!xtensa_default_isa)
2443 xtensa_default_isa = xtensa_isa_init (0, 0);
2444 isa = xtensa_default_isa;
2445 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2446 ins = xtensa_insnbuf_alloc (isa);
2447 slot = xtensa_insnbuf_alloc (isa);
2448
2449 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2450 {
2451 /* (Re)fill instruction buffer from memory if necessary, but do not
2452 read memory beyond PC to be sure we stay within text section
2453 (this protection only works if a non-zero pc is supplied). */
2454
2455 if (ia + xtensa_isa_maxlength (isa) > bt)
2456 {
2457 ba = ia;
2458 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2459 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2460 error (_("Unable to read target memory ..."));
2461 }
2462
2463 /* Decode format information. */
2464
2465 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2466 ifmt = xtensa_format_decode (isa, ins);
2467 if (ifmt == XTENSA_UNDEFINED)
2468 {
2469 fail = 1;
2470 goto done;
2471 }
2472 ilen = xtensa_format_length (isa, ifmt);
2473 if (ilen == XTENSA_UNDEFINED)
2474 {
2475 fail = 1;
2476 goto done;
2477 }
2478 islots = xtensa_format_num_slots (isa, ifmt);
2479 if (islots == XTENSA_UNDEFINED)
2480 {
2481 fail = 1;
2482 goto done;
2483 }
2484
2485 /* Analyze a bundle or a single instruction, using a snapshot of
2486 the register tracking info as input for the entire bundle so that
2487 register changes do not take effect within this bundle. */
2488
2489 for (j = 0; j < nregs; ++j)
2490 rtmp[j] = cache->c0.c0_rt[j];
2491
2492 for (is = 0; is < islots; ++is)
2493 {
2494 /* Decode a slot and classify the opcode. */
2495
2496 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2497 if (fail)
2498 goto done;
2499
2500 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2501 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2502 (unsigned)ia, opc);
2503 if (opc == XTENSA_UNDEFINED)
2504 opclass = c0opc_illegal;
2505 else
2506 opclass = call0_classify_opcode (isa, opc);
2507
2508 /* Decide whether to track this opcode, ignore it, or bail out. */
2509
2510 switch (opclass)
2511 {
2512 case c0opc_illegal:
2513 case c0opc_break:
2514 fail = 1;
2515 goto done;
2516
2517 case c0opc_uninteresting:
2518 continue;
2519
2520 case c0opc_flow: /* Flow control instructions stop analysis. */
2521 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2522 goto done;
2523
2524 case c0opc_entry:
2525 cache->call0 = 0;
2526 ia += ilen; /* Skip over 'entry' insn. */
2527 goto done;
2528
2529 default:
2530 cache->call0 = 1;
2531 }
2532
2533 /* Only expected opcodes should get this far. */
2534
2535 /* Extract and decode the operands. */
2536 nods = xtensa_opcode_num_operands (isa, opc);
2537 if (nods == XTENSA_UNDEFINED)
2538 {
2539 fail = 1;
2540 goto done;
2541 }
2542
2543 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2544 {
2545 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2546 is, slot, &odv[j]);
2547 if (fail)
2548 goto done;
2549
2550 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2551 if (fail)
2552 goto done;
2553 }
2554
2555 /* Check operands to verify use of 'mov' assembler macro. */
2556 if (opclass == c0opc_mov && nods == 3)
2557 {
2558 if (odv[2] == odv[1])
2559 {
2560 nods = 2;
2561 if ((odv[0] == 1) && (odv[1] != 1))
2562 /* OR A1, An, An , where n != 1.
2563 This means we are inside epilogue already. */
2564 goto done;
2565 }
2566 else
2567 {
2568 opclass = c0opc_uninteresting;
2569 continue;
2570 }
2571 }
2572
2573 /* Track register movement and modification for this operation. */
2574 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2575 opclass, nods, odv, ia, 1, cache);
2576 if (fail)
2577 goto done;
2578 }
2579 }
2580 done:
2581 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2582 (unsigned)ia, fail ? "failed" : "succeeded");
2583 xtensa_insnbuf_free(isa, slot);
2584 xtensa_insnbuf_free(isa, ins);
2585 return fail ? XTENSA_ISA_BADPC : ia;
2586 }
2587
2588 /* Initialize frame cache for the current frame in CALL0 ABI. */
2589
2590 static void
2591 call0_frame_cache (struct frame_info *this_frame,
2592 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2593 {
2594 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2595 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2596 CORE_ADDR start_pc; /* The beginning of the function. */
2597 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2598 CORE_ADDR sp, fp, ra;
2599 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2600
2601 sp = get_frame_register_unsigned
2602 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2603 fp = sp; /* Assume FP == SP until proven otherwise. */
2604
2605 /* Find the beginning of the prologue of the function containing the PC
2606 and analyze it up to the PC or the end of the prologue. */
2607
2608 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2609 {
2610 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2611
2612 if (body_pc == XTENSA_ISA_BADPC)
2613 {
2614 warning_once ();
2615 ra = 0;
2616 goto finish_frame_analysis;
2617 }
2618 }
2619
2620 /* Get the frame information and FP (if used) at the current PC.
2621 If PC is in the prologue, the prologue analysis is more reliable
2622 than DWARF info. We don't not know for sure, if PC is in the prologue,
2623 but we do know no calls have yet taken place, so we can almost
2624 certainly rely on the prologue analysis. */
2625
2626 if (body_pc <= pc)
2627 {
2628 /* Prologue analysis was successful up to the PC.
2629 It includes the cases when PC == START_PC. */
2630 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2631 /* c0_hasfp == true means there is a frame pointer because
2632 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2633 was derived from SP. Otherwise, it would be C0_FP. */
2634 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2635 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2636 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2637 }
2638 else /* No data from the prologue analysis. */
2639 {
2640 c0_hasfp = 0;
2641 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2642 c0_frmsz = 0;
2643 start_pc = pc;
2644 }
2645
2646 if (cache->c0.c0_fpalign)
2647 {
2648 /* This frame has a special prologue with a dynamic stack adjustment
2649 to force an alignment, which is bigger than standard 16 bytes. */
2650
2651 CORE_ADDR unaligned_sp;
2652
2653 if (cache->c0.c0_old_sp == C0_INEXP)
2654 /* This can't be. Prologue code should be consistent.
2655 Unaligned stack pointer should be saved in a spare register. */
2656 {
2657 warning_once ();
2658 ra = 0;
2659 goto finish_frame_analysis;
2660 }
2661
2662 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2663 /* Saved unaligned value of SP is kept in a register. */
2664 unaligned_sp = get_frame_register_unsigned
2665 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2666 else
2667 /* Get the value from stack. */
2668 unaligned_sp = (CORE_ADDR)
2669 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2670
2671 prev_sp = unaligned_sp + c0_frmsz;
2672 }
2673 else
2674 prev_sp = fp + c0_frmsz;
2675
2676 /* Frame size from debug info or prologue tracking does not account for
2677 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2678 if (c0_hasfp)
2679 {
2680 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2681
2682 /* Update the stack frame size. */
2683 c0_frmsz += fp - sp;
2684 }
2685
2686 /* Get the return address (RA) from the stack if saved,
2687 or try to get it from a register. */
2688
2689 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2690 if (to_stk != C0_NOSTK)
2691 ra = (CORE_ADDR)
2692 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2693 4, byte_order);
2694
2695 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2696 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2697 {
2698 /* Special case for terminating backtrace at a function that wants to
2699 be seen as the outermost one. Such a function will clear it's RA (A0)
2700 register to 0 in the prologue instead of saving its original value. */
2701 ra = 0;
2702 }
2703 else
2704 {
2705 /* RA was copied to another register or (before any function call) may
2706 still be in the original RA register. This is not always reliable:
2707 even in a leaf function, register tracking stops after prologue, and
2708 even in prologue, non-prologue instructions (not tracked) may overwrite
2709 RA or any register it was copied to. If likely in prologue or before
2710 any call, use retracking info and hope for the best (compiler should
2711 have saved RA in stack if not in a leaf function). If not in prologue,
2712 too bad. */
2713
2714 int i;
2715 for (i = 0;
2716 (i < C0_NREGS)
2717 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2718 ++i);
2719 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2720 i = C0_RA;
2721 if (i < C0_NREGS)
2722 {
2723 ra = get_frame_register_unsigned
2724 (this_frame,
2725 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2726 }
2727 else ra = 0;
2728 }
2729
2730 finish_frame_analysis:
2731 cache->pc = start_pc;
2732 cache->ra = ra;
2733 /* RA == 0 marks the outermost frame. Do not go past it. */
2734 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2735 cache->c0.fp_regnum = fp_regnum;
2736 cache->c0.c0_frmsz = c0_frmsz;
2737 cache->c0.c0_hasfp = c0_hasfp;
2738 cache->c0.c0_fp = fp;
2739 }
2740
2741 static CORE_ADDR a0_saved;
2742 static CORE_ADDR a7_saved;
2743 static CORE_ADDR a11_saved;
2744 static int a0_was_saved;
2745 static int a7_was_saved;
2746 static int a11_was_saved;
2747
2748 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2749 static void
2750 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2751 {
2752 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2753 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2754 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2755 unsigned int spilled_value
2756 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2757
2758 if ((at == 0) && !a0_was_saved)
2759 {
2760 a0_saved = xtensa_read_register (atreg);
2761 a0_was_saved = 1;
2762 }
2763 else if ((at == 7) && !a7_was_saved)
2764 {
2765 a7_saved = xtensa_read_register (atreg);
2766 a7_was_saved = 1;
2767 }
2768 else if ((at == 11) && !a11_was_saved)
2769 {
2770 a11_saved = xtensa_read_register (atreg);
2771 a11_was_saved = 1;
2772 }
2773
2774 xtensa_write_register (atreg, spilled_value);
2775 }
2776
2777 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2778 static void
2779 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2780 {
2781 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2782 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2783 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2784 ULONGEST spilled_value = xtensa_read_register (atreg);
2785
2786 write_memory_unsigned_integer (addr, 4,
2787 gdbarch_byte_order (gdbarch),
2788 spilled_value);
2789 }
2790
2791 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2792
2793 typedef enum
2794 {
2795 xtWindowOverflow,
2796 xtWindowUnderflow,
2797 xtNoExceptionHandler
2798 } xtensa_exception_handler_t;
2799
2800 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2801 Return type of Xtensa Window Interrupt Handler on success. */
2802 static xtensa_exception_handler_t
2803 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2804 {
2805 xtensa_isa isa;
2806 xtensa_insnbuf ins, slot;
2807 gdb_byte ibuf[XTENSA_ISA_BSZ];
2808 CORE_ADDR ia, bt, ba;
2809 xtensa_format ifmt;
2810 int ilen, islots, is;
2811 xtensa_opcode opc;
2812 int insn_num = 0;
2813 int fail = 0;
2814 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2815
2816 uint32_t at, as, offset;
2817
2818 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2819 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2820
2821 isa = xtensa_default_isa;
2822 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2823 ins = xtensa_insnbuf_alloc (isa);
2824 slot = xtensa_insnbuf_alloc (isa);
2825 ba = 0;
2826 ia = current_pc;
2827 bt = ia;
2828
2829 a0_was_saved = 0;
2830 a7_was_saved = 0;
2831 a11_was_saved = 0;
2832
2833 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2834 {
2835 if (ia + xtensa_isa_maxlength (isa) > bt)
2836 {
2837 ba = ia;
2838 bt = (ba + XTENSA_ISA_BSZ);
2839 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2840 return xtNoExceptionHandler;
2841 }
2842 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2843 ifmt = xtensa_format_decode (isa, ins);
2844 if (ifmt == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 ilen = xtensa_format_length (isa, ifmt);
2847 if (ilen == XTENSA_UNDEFINED)
2848 return xtNoExceptionHandler;
2849 islots = xtensa_format_num_slots (isa, ifmt);
2850 if (islots == XTENSA_UNDEFINED)
2851 return xtNoExceptionHandler;
2852 for (is = 0; is < islots; ++is)
2853 {
2854 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2855 return xtNoExceptionHandler;
2856 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2857 if (opc == XTENSA_UNDEFINED)
2858 return xtNoExceptionHandler;
2859 switch (call0_classify_opcode (isa, opc))
2860 {
2861 case c0opc_illegal:
2862 case c0opc_flow:
2863 case c0opc_entry:
2864 case c0opc_break:
2865 /* We expect none of them here. */
2866 return xtNoExceptionHandler;
2867 case c0opc_l32e:
2868 func = execute_l32e;
2869 break;
2870 case c0opc_s32e:
2871 func = execute_s32e;
2872 break;
2873 case c0opc_rfwo: /* RFWO. */
2874 /* Here, we return from WindowOverflow handler and,
2875 if we stopped at the very beginning, which means
2876 A0 was saved, we have to restore it now. */
2877 if (a0_was_saved)
2878 {
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base,
2881 wb);
2882 xtensa_write_register (arreg, a0_saved);
2883 }
2884 return xtWindowOverflow;
2885 case c0opc_rfwu: /* RFWU. */
2886 /* Here, we return from WindowUnderflow handler.
2887 Let's see if either A7 or A11 has to be restored. */
2888 if (WindowUnderflow12)
2889 {
2890 if (a11_was_saved)
2891 {
2892 int arreg = arreg_number (gdbarch,
2893 gdbarch_tdep (gdbarch)->a0_base + 11,
2894 wb);
2895 xtensa_write_register (arreg, a11_saved);
2896 }
2897 }
2898 else if (a7_was_saved)
2899 {
2900 int arreg = arreg_number (gdbarch,
2901 gdbarch_tdep (gdbarch)->a0_base + 7,
2902 wb);
2903 xtensa_write_register (arreg, a7_saved);
2904 }
2905 return xtWindowUnderflow;
2906 default: /* Simply skip this insns. */
2907 continue;
2908 }
2909
2910 /* Decode arguments for L32E / S32E and simulate their execution. */
2911 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2912 return xtNoExceptionHandler;
2913 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2914 return xtNoExceptionHandler;
2915 if (xtensa_operand_decode (isa, opc, 0, &at))
2916 return xtNoExceptionHandler;
2917 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2918 return xtNoExceptionHandler;
2919 if (xtensa_operand_decode (isa, opc, 1, &as))
2920 return xtNoExceptionHandler;
2921 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2922 return xtNoExceptionHandler;
2923 if (xtensa_operand_decode (isa, opc, 2, &offset))
2924 return xtNoExceptionHandler;
2925
2926 (*func) (gdbarch, at, as, offset, wb);
2927 }
2928
2929 ia += ilen;
2930 }
2931 return xtNoExceptionHandler;
2932 }
2933
2934 /* Handle Window Overflow / Underflow exception frames. */
2935
2936 static void
2937 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2938 xtensa_frame_cache_t *cache,
2939 CORE_ADDR pc)
2940 {
2941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2942 CORE_ADDR ps, wb, ws, ra;
2943 int epc1_regnum, i, regnum;
2944 xtensa_exception_handler_t eh_type;
2945
2946 /* Read PS, WB, and WS from the hardware. Note that PS register
2947 must be present, if Windowed ABI is supported. */
2948 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2949 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2950 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2951
2952 /* Execute all the remaining instructions from Window Interrupt Handler
2953 by simulating them on the remote protocol level. On return, set the
2954 type of Xtensa Window Interrupt Handler, or report an error. */
2955 eh_type = execute_code (gdbarch, pc, wb);
2956 if (eh_type == xtNoExceptionHandler)
2957 error (_("\
2958 Unable to decode Xtensa Window Interrupt Handler's code."));
2959
2960 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2961 cache->call0 = 0; /* It's Windowed ABI. */
2962
2963 /* All registers for the cached frame will be alive. */
2964 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2965 cache->wd.aregs[i] = -1;
2966
2967 if (eh_type == xtWindowOverflow)
2968 cache->wd.ws = ws ^ (1 << wb);
2969 else /* eh_type == xtWindowUnderflow. */
2970 cache->wd.ws = ws | (1 << wb);
2971
2972 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2973 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2974 cache->wd.wb);
2975 ra = xtensa_read_register (regnum);
2976 cache->wd.callsize = WINSIZE (ra);
2977 cache->prev_sp = xtensa_read_register (regnum + 1);
2978 /* Set regnum to a frame pointer of the frame being cached. */
2979 regnum = xtensa_scan_prologue (gdbarch, pc);
2980 regnum = arreg_number (gdbarch,
2981 gdbarch_tdep (gdbarch)->a0_base + regnum,
2982 cache->wd.wb);
2983 cache->base = get_frame_register_unsigned (this_frame, regnum);
2984
2985 /* Read PC of interrupted function from EPC1 register. */
2986 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2987 if (epc1_regnum < 0)
2988 error(_("Unable to read Xtensa register EPC1"));
2989 cache->ra = xtensa_read_register (epc1_regnum);
2990 cache->pc = get_frame_func (this_frame);
2991 }
2992
2993
2994 /* Skip function prologue.
2995
2996 Return the pc of the first instruction after prologue. GDB calls this to
2997 find the address of the first line of the function or (if there is no line
2998 number information) to skip the prologue for planting breakpoints on
2999 function entries. Use debug info (if present) or prologue analysis to skip
3000 the prologue to achieve reliable debugging behavior. For windowed ABI,
3001 only the 'entry' instruction is skipped. It is not strictly necessary to
3002 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
3003 backtrace at any point in the prologue, however certain potential hazards
3004 are avoided and a more "normal" debugging experience is ensured by
3005 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3006 For example, if we don't skip the prologue:
3007 - Some args may not yet have been saved to the stack where the debug
3008 info expects to find them (true anyway when only 'entry' is skipped);
3009 - Software breakpoints ('break' instrs) may not have been unplanted
3010 when the prologue analysis is done on initializing the frame cache,
3011 and breaks in the prologue will throw off the analysis.
3012
3013 If we have debug info ( line-number info, in particular ) we simply skip
3014 the code associated with the first function line effectively skipping
3015 the prologue code. It works even in cases like
3016
3017 int main()
3018 { int local_var = 1;
3019 ....
3020 }
3021
3022 because, for this source code, both Xtensa compilers will generate two
3023 separate entries ( with the same line number ) in dwarf line-number
3024 section to make sure there is a boundary between the prologue code and
3025 the rest of the function.
3026
3027 If there is no debug info, we need to analyze the code. */
3028
3029 /* #define DONT_SKIP_PROLOGUE */
3030
3031 static CORE_ADDR
3032 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3033 {
3034 struct symtab_and_line prologue_sal;
3035 CORE_ADDR body_pc;
3036
3037 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3038
3039 #if DONT_SKIP_PROLOGUE
3040 return start_pc;
3041 #endif
3042
3043 /* Try to find first body line from debug info. */
3044
3045 prologue_sal = find_pc_line (start_pc, 0);
3046 if (prologue_sal.line != 0) /* Found debug info. */
3047 {
3048 /* In Call0, it is possible to have a function with only one instruction
3049 ('ret') resulting from a one-line optimized function that does nothing.
3050 In that case, prologue_sal.end may actually point to the start of the
3051 next function in the text section, causing a breakpoint to be set at
3052 the wrong place. Check, if the end address is within a different
3053 function, and if so return the start PC. We know we have symbol
3054 information. */
3055
3056 CORE_ADDR end_func;
3057
3058 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3059 && call0_ret (start_pc, prologue_sal.end))
3060 return start_pc;
3061
3062 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3063 if (end_func != start_pc)
3064 return start_pc;
3065
3066 return prologue_sal.end;
3067 }
3068
3069 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3070 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3071 xtensa_alloc_frame_cache (0));
3072 return body_pc != 0 ? body_pc : start_pc;
3073 }
3074
3075 /* Verify the current configuration. */
3076 static void
3077 xtensa_verify_config (struct gdbarch *gdbarch)
3078 {
3079 struct ui_file *log;
3080 struct cleanup *cleanups;
3081 struct gdbarch_tdep *tdep;
3082 long length;
3083 char *buf;
3084
3085 tdep = gdbarch_tdep (gdbarch);
3086 log = mem_fileopen ();
3087 cleanups = make_cleanup_ui_file_delete (log);
3088
3089 /* Verify that we got a reasonable number of AREGS. */
3090 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3091 fprintf_unfiltered (log, _("\
3092 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3093 tdep->num_aregs);
3094
3095 /* Verify that certain registers exist. */
3096
3097 if (tdep->pc_regnum == -1)
3098 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3099 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3100 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3101
3102 if (tdep->isa_use_windowed_registers)
3103 {
3104 if (tdep->wb_regnum == -1)
3105 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3106 if (tdep->ws_regnum == -1)
3107 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3108 if (tdep->ar_base == -1)
3109 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3110 }
3111
3112 if (tdep->a0_base == -1)
3113 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3114
3115 buf = ui_file_xstrdup (log, &length);
3116 make_cleanup (xfree, buf);
3117 if (length > 0)
3118 internal_error (__FILE__, __LINE__,
3119 _("the following are invalid: %s"), buf);
3120 do_cleanups (cleanups);
3121 }
3122
3123
3124 /* Derive specific register numbers from the array of registers. */
3125
3126 static void
3127 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3128 {
3129 xtensa_register_t* rmap;
3130 int n, max_size = 4;
3131
3132 tdep->num_regs = 0;
3133 tdep->num_nopriv_regs = 0;
3134
3135 /* Special registers 0..255 (core). */
3136 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3137
3138 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3139 {
3140 if (rmap->target_number == 0x0020)
3141 tdep->pc_regnum = n;
3142 else if (rmap->target_number == 0x0100)
3143 tdep->ar_base = n;
3144 else if (rmap->target_number == 0x0000)
3145 tdep->a0_base = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3147 tdep->wb_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3149 tdep->ws_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3151 tdep->debugcause_regnum = n;
3152 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3153 tdep->exccause_regnum = n;
3154 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3155 tdep->excvaddr_regnum = n;
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3157 tdep->lbeg_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3159 tdep->lend_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3161 tdep->lcount_regnum = n;
3162 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3163 tdep->sar_regnum = n;
3164 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3165 tdep->litbase_regnum = n;
3166 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3167 tdep->ps_regnum = n;
3168 #if 0
3169 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3170 tdep->interrupt_regnum = n;
3171 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3172 tdep->interrupt2_regnum = n;
3173 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3174 tdep->cpenable_regnum = n;
3175 #endif
3176
3177 if (rmap->byte_size > max_size)
3178 max_size = rmap->byte_size;
3179 if (rmap->mask != 0 && tdep->num_regs == 0)
3180 tdep->num_regs = n;
3181 /* Find out out how to deal with priveleged registers.
3182
3183 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3184 && tdep->num_nopriv_regs == 0)
3185 tdep->num_nopriv_regs = n;
3186 */
3187 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3188 && tdep->num_regs == 0)
3189 tdep->num_regs = n;
3190 }
3191
3192 /* Number of pseudo registers. */
3193 tdep->num_pseudo_regs = n - tdep->num_regs;
3194
3195 /* Empirically determined maximum sizes. */
3196 tdep->max_register_raw_size = max_size;
3197 tdep->max_register_virtual_size = max_size;
3198 }
3199
3200 /* Module "constructor" function. */
3201
3202 extern struct gdbarch_tdep xtensa_tdep;
3203
3204 static struct gdbarch *
3205 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3206 {
3207 struct gdbarch_tdep *tdep;
3208 struct gdbarch *gdbarch;
3209 struct xtensa_abi_handler *abi_handler;
3210
3211 DEBUGTRACE ("gdbarch_init()\n");
3212
3213 /* We have to set the byte order before we call gdbarch_alloc. */
3214 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3215
3216 tdep = &xtensa_tdep;
3217 gdbarch = gdbarch_alloc (&info, tdep);
3218 xtensa_derive_tdep (tdep);
3219
3220 /* Verify our configuration. */
3221 xtensa_verify_config (gdbarch);
3222 xtensa_session_once_reported = 0;
3223
3224 /* Pseudo-Register read/write. */
3225 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3226 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3227
3228 /* Set target information. */
3229 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3230 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3231 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3232 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3233 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3234
3235 /* Renumber registers for known formats (stabs and dwarf2). */
3236 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3237 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3238
3239 /* We provide our own function to get register information. */
3240 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3241 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3242
3243 /* To call functions from GDB using dummy frame. */
3244 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3245
3246 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3247
3248 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3249
3250 /* Advance PC across any prologue instructions to reach "real" code. */
3251 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3252
3253 /* Stack grows downward. */
3254 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3255
3256 /* Set breakpoints. */
3257 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3258
3259 /* After breakpoint instruction or illegal instruction, pc still
3260 points at break instruction, so don't decrement. */
3261 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3262
3263 /* We don't skip args. */
3264 set_gdbarch_frame_args_skip (gdbarch, 0);
3265
3266 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3267
3268 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3269
3270 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3271
3272 /* Frame handling. */
3273 frame_base_set_default (gdbarch, &xtensa_frame_base);
3274 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3275 dwarf2_append_unwinders (gdbarch);
3276
3277 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3278
3279 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3280
3281 xtensa_add_reggroups (gdbarch);
3282 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3283
3284 set_gdbarch_regset_from_core_section (gdbarch,
3285 xtensa_regset_from_core_section);
3286
3287 set_solib_svr4_fetch_link_map_offsets
3288 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3289
3290 return gdbarch;
3291 }
3292
3293 static void
3294 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3295 {
3296 error (_("xtensa_dump_tdep(): not implemented"));
3297 }
3298
3299 /* Provide a prototype to silence -Wmissing-prototypes. */
3300 extern initialize_file_ftype _initialize_xtensa_tdep;
3301
3302 void
3303 _initialize_xtensa_tdep (void)
3304 {
3305 struct cmd_list_element *c;
3306
3307 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3308 xtensa_init_reggroups ();
3309
3310 add_setshow_zuinteger_cmd ("xtensa",
3311 class_maintenance,
3312 &xtensa_debug_level,
3313 _("Set Xtensa debugging."),
3314 _("Show Xtensa debugging."), _("\
3315 When non-zero, Xtensa-specific debugging is enabled. \
3316 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3317 NULL,
3318 NULL,
3319 &setdebuglist, &showdebuglist);
3320 }
This page took 0.106402 seconds and 4 git commands to generate.