xtensa: implement NPTL helpers
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 static int
123 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
124 {
125 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
126 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
127 return 0;
128
129 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
130 }
131
132 /* Convert a live A-register number to the corresponding AR-register
133 number. */
134 static int
135 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
136 {
137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138 int arreg;
139
140 arreg = a_regnum - tdep->a0_base;
141 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
142 arreg &= tdep->num_aregs - 1;
143
144 return arreg + tdep->ar_base;
145 }
146
147 /* Convert a live AR-register number to the corresponding A-register order
148 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
149 static int
150 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153 int areg;
154
155 areg = ar_regnum - tdep->ar_base;
156 if (areg < 0 || areg >= tdep->num_aregs)
157 return -1;
158 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
159 return (areg > 15) ? -1 : areg;
160 }
161
162 /* Read Xtensa register directly from the hardware. */
163 static unsigned long
164 xtensa_read_register (int regnum)
165 {
166 ULONGEST value;
167
168 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
169 return (unsigned long) value;
170 }
171
172 /* Write Xtensa register directly to the hardware. */
173 static void
174 xtensa_write_register (int regnum, ULONGEST value)
175 {
176 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
177 }
178
179 /* Return the window size of the previous call to the function from which we
180 have just returned.
181
182 This function is used to extract the return value after a called function
183 has returned to the caller. On Xtensa, the register that holds the return
184 value (from the perspective of the caller) depends on what call
185 instruction was used. For now, we are assuming that the call instruction
186 precedes the current address, so we simply analyze the call instruction.
187 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
188 method to call the inferior function. */
189
190 static int
191 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
192 {
193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
194 int winsize = 4;
195 int insn;
196 gdb_byte buf[4];
197
198 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
199
200 /* Read the previous instruction (should be a call[x]{4|8|12}. */
201 read_memory (pc-3, buf, 3);
202 insn = extract_unsigned_integer (buf, 3, byte_order);
203
204 /* Decode call instruction:
205 Little Endian
206 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
207 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
208 Big Endian
209 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
210 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
211
212 if (byte_order == BFD_ENDIAN_LITTLE)
213 {
214 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
215 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
216 }
217 else
218 {
219 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
220 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
221 }
222 return winsize;
223 }
224
225
226 /* REGISTER INFORMATION */
227
228 /* Find register by name. */
229 static int
230 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
231 {
232 int i;
233
234 for (i = 0; i < gdbarch_num_regs (gdbarch)
235 + gdbarch_num_pseudo_regs (gdbarch);
236 i++)
237
238 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
239 return i;
240
241 return -1;
242 }
243
244 /* Returns the name of a register. */
245 static const char *
246 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
247 {
248 /* Return the name stored in the register map. */
249 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
250 + gdbarch_num_pseudo_regs (gdbarch))
251 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
252
253 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
254 return 0;
255 }
256
257 /* Return the type of a register. Create a new type, if necessary. */
258
259 static struct type *
260 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* Return signed integer for ARx and Ax registers. */
265 if ((regnum >= tdep->ar_base
266 && regnum < tdep->ar_base + tdep->num_aregs)
267 || (regnum >= tdep->a0_base
268 && regnum < tdep->a0_base + 16))
269 return builtin_type (gdbarch)->builtin_int;
270
271 if (regnum == gdbarch_pc_regnum (gdbarch)
272 || regnum == tdep->a0_base + 1)
273 return builtin_type (gdbarch)->builtin_data_ptr;
274
275 /* Return the stored type for all other registers. */
276 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
277 + gdbarch_num_pseudo_regs (gdbarch))
278 {
279 xtensa_register_t* reg = &tdep->regmap[regnum];
280
281 /* Set ctype for this register (only the first time). */
282
283 if (reg->ctype == 0)
284 {
285 struct ctype_cache *tp;
286 int size = reg->byte_size;
287
288 /* We always use the memory representation,
289 even if the register width is smaller. */
290 switch (size)
291 {
292 case 1:
293 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
294 break;
295
296 case 2:
297 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
298 break;
299
300 case 4:
301 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
302 break;
303
304 case 8:
305 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
306 break;
307
308 case 16:
309 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
310 break;
311
312 default:
313 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
314 if (tp->size == size)
315 break;
316
317 if (tp == NULL)
318 {
319 char *name = xstrprintf ("int%d", size * 8);
320 tp = xmalloc (sizeof (struct ctype_cache));
321 tp->next = tdep->type_entries;
322 tdep->type_entries = tp;
323 tp->size = size;
324 tp->virtual_type
325 = arch_integer_type (gdbarch, size * 8, 1, name);
326 xfree (name);
327 }
328
329 reg->ctype = tp->virtual_type;
330 }
331 }
332 return reg->ctype;
333 }
334
335 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
336 return 0;
337 }
338
339
340 /* Return the 'local' register number for stubs, dwarf2, etc.
341 The debugging information enumerates registers starting from 0 for A0
342 to n for An. So, we only have to add the base number for A0. */
343
344 static int
345 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
346 {
347 int i;
348
349 if (regnum >= 0 && regnum < 16)
350 return gdbarch_tdep (gdbarch)->a0_base + regnum;
351
352 for (i = 0;
353 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
354 i++)
355 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
356 return i;
357
358 internal_error (__FILE__, __LINE__,
359 _("invalid dwarf/stabs register number %d"), regnum);
360 return 0;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
563 enum register_status status;
564
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
570 regnum = arreg_number (gdbarch, regnum,
571 extract_unsigned_integer (buf, 4, byte_order));
572 }
573
574 /* We can always read non-pseudo registers. */
575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
576 return regcache_raw_read (regcache, regnum, buffer);
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
587 return REG_VALID;
588 }
589 /* Pseudo registers. */
590 else if (regnum >= 0
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
593 {
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
597
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
605 return REG_VALID;
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
616 return REG_VALID;
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
630
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
633 }
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637 }
638
639
640 /* Write pseudo registers. */
641
642 static void
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
652
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
657 {
658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
659
660 regcache_raw_read (regcache,
661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
662 regnum = arreg_number (gdbarch, regnum,
663 extract_unsigned_integer (buf, 4, byte_order));
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
670
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
678 /* Pseudo registers. */
679 else if (regnum >= 0
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
682 {
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
686
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
721 xtensa_register_write_masked (regcache, reg, buffer);
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731 }
732
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737
738 static void
739 xtensa_init_reggroups (void)
740 {
741 int i;
742 char cpname[] = "cp0";
743
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
747
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
750 cpname[2] = '0' + i;
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
753 }
754
755 static void
756 xtensa_add_reggroups (struct gdbarch *gdbarch)
757 {
758 int i;
759
760 /* Predefined groups. */
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
776 }
777
778 static int
779 xtensa_coprocessor_register_group (struct reggroup *group)
780 {
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788 }
789
790 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797 static int
798 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801 {
802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
805 int cp_number;
806
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
831 if (group == restore_reggroup)
832 return (regnum < gdbarch_num_regs (gdbarch)
833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
836 return rg & (xtRegisterGroupCP0 << cp_number);
837 else
838 return 1;
839 }
840
841
842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
845
846 static void
847 xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852 {
853 const xtensa_elf_gregset_t *regs = gregs;
854 struct gdbarch *gdbarch = get_regcache_arch (rc);
855 int i;
856
857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
858
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
865 (char *) &regs->windowbase);
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
868 (char *) &regs->windowstart);
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
871 (char *) &regs->lbeg);
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
874 (char *) &regs->lend);
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
877 (char *) &regs->lcount);
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
880 (char *) &regs->sar);
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
886 (gdbarch)->ar_base]);
887 else if (regnum == -1)
888 {
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
891 (char *) &regs->ar[i]);
892 }
893 }
894
895
896 /* Xtensa register set. */
897
898 static struct regset
899 xtensa_gregset =
900 {
901 NULL,
902 xtensa_supply_gregset
903 };
904
905
906 /* Iterate over supported core file register note sections. */
907
908 static void
909 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
913 {
914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
915
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
918 }
919
920
921 /* Handling frames. */
922
923 /* Number of registers to save in case of Windowed ABI. */
924 #define XTENSA_NUM_SAVED_AREGS 12
925
926 /* Frame cache part for Windowed ABI. */
927 typedef struct xtensa_windowed_frame_cache
928 {
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
939 } xtensa_windowed_frame_cache_t;
940
941 /* Call0 ABI Definitions. */
942
943 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
945 #define C0_NREGS 16 /* Number of A-registers to track. */
946 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
947 #define C0_SP 1 /* Register used as SP. */
948 #define C0_FP 15 /* Register used as FP. */
949 #define C0_RA 0 /* Register used as return address. */
950 #define C0_ARGS 2 /* Register used as first arg/retval. */
951 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
952
953 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
959
960 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
961 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
963
964 extern xtensa_isa xtensa_default_isa;
965
966 typedef struct xtensa_c0reg
967 {
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
973 } xtensa_c0reg_t;
974
975 /* Frame cache part for Call0 ABI. */
976 typedef struct xtensa_call0_frame_cache
977 {
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
990
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
992 } xtensa_call0_frame_cache_t;
993
994 typedef struct xtensa_frame_cache
995 {
996 CORE_ADDR base; /* Stack pointer of this frame. */
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1001 int call0; /* It's a call0 framework (else windowed). */
1002 union
1003 {
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1006 };
1007 } xtensa_frame_cache_t;
1008
1009
1010 static struct xtensa_frame_cache *
1011 xtensa_alloc_frame_cache (int windowed)
1012 {
1013 xtensa_frame_cache_t *cache;
1014 int i;
1015
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1017
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1019
1020 cache->base = 0;
1021 cache->pc = 0;
1022 cache->ra = 0;
1023 cache->ps = 0;
1024 cache->prev_sp = 0;
1025 cache->call0 = !windowed;
1026 if (cache->call0)
1027 {
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
1035
1036 for (i = 0; i < C0_NREGS; i++)
1037 {
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1041 }
1042 }
1043 else
1044 {
1045 cache->wd.wb = 0;
1046 cache->wd.ws = 0;
1047 cache->wd.callsize = -1;
1048
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1051 }
1052 return cache;
1053 }
1054
1055
1056 static CORE_ADDR
1057 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1058 {
1059 return address & ~15;
1060 }
1061
1062
1063 static CORE_ADDR
1064 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065 {
1066 gdb_byte buf[8];
1067 CORE_ADDR pc;
1068
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
1071
1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1074
1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1076
1077 return pc;
1078 }
1079
1080
1081 static struct frame_id
1082 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1083 {
1084 CORE_ADDR pc, fp;
1085
1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1087
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1091
1092 /* Make dummy frame ID unique by adding a constant. */
1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
1094 }
1095
1096 /* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1098
1099 static int
1100 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1101 {
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1104 unsigned int code;
1105
1106 if (byte_order == BFD_ENDIAN_BIG)
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1115 }
1116 else
1117 {
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1121 return 1;
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1125 }
1126 }
1127
1128 /* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1130
1131 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1133
1134 static unsigned int
1135 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1136 {
1137 #define RETURN_FP goto done
1138
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1141 xtensa_isa isa;
1142 xtensa_insnbuf ins, slot;
1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
1144 CORE_ADDR ia, bt, ba;
1145 xtensa_format ifmt;
1146 int ilen, islots, is;
1147 xtensa_opcode opc;
1148 const char *opcname;
1149
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1152 return fp_regnum;
1153
1154 if (!xtensa_default_isa)
1155 xtensa_default_isa = xtensa_isa_init (0, 0);
1156 isa = xtensa_default_isa;
1157 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1158 ins = xtensa_insnbuf_alloc (isa);
1159 slot = xtensa_insnbuf_alloc (isa);
1160 ba = 0;
1161
1162 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1163 {
1164 if (ia + xtensa_isa_maxlength (isa) > bt)
1165 {
1166 ba = ia;
1167 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1168 ? ba + XTENSA_ISA_BSZ : current_pc;
1169 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1170 RETURN_FP;
1171 }
1172
1173 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1174 ifmt = xtensa_format_decode (isa, ins);
1175 if (ifmt == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177 ilen = xtensa_format_length (isa, ifmt);
1178 if (ilen == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180 islots = xtensa_format_num_slots (isa, ifmt);
1181 if (islots == XTENSA_UNDEFINED)
1182 RETURN_FP;
1183
1184 for (is = 0; is < islots; ++is)
1185 {
1186 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1187 RETURN_FP;
1188
1189 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1190 if (opc == XTENSA_UNDEFINED)
1191 RETURN_FP;
1192
1193 opcname = xtensa_opcode_name (isa, opc);
1194
1195 if (strcasecmp (opcname, "mov.n") == 0
1196 || strcasecmp (opcname, "or") == 0)
1197 {
1198 unsigned int register_operand;
1199
1200 /* Possible candidate for setting frame pointer
1201 from A1. This is what we are looking for. */
1202
1203 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1204 is, slot, &register_operand) != 0)
1205 RETURN_FP;
1206 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1207 RETURN_FP;
1208 if (register_operand == 1) /* Mov{.n} FP A1. */
1209 {
1210 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1211 &register_operand) != 0)
1212 RETURN_FP;
1213 if (xtensa_operand_decode (isa, opc, 0,
1214 &register_operand) != 0)
1215 RETURN_FP;
1216
1217 fp_regnum
1218 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1219 RETURN_FP;
1220 }
1221 }
1222
1223 if (
1224 /* We have problems decoding the memory. */
1225 opcname == NULL
1226 || strcasecmp (opcname, "ill") == 0
1227 || strcasecmp (opcname, "ill.n") == 0
1228 /* Hit planted breakpoint. */
1229 || strcasecmp (opcname, "break") == 0
1230 || strcasecmp (opcname, "break.n") == 0
1231 /* Flow control instructions finish prologue. */
1232 || xtensa_opcode_is_branch (isa, opc) > 0
1233 || xtensa_opcode_is_jump (isa, opc) > 0
1234 || xtensa_opcode_is_loop (isa, opc) > 0
1235 || xtensa_opcode_is_call (isa, opc) > 0
1236 || strcasecmp (opcname, "simcall") == 0
1237 || strcasecmp (opcname, "syscall") == 0)
1238 /* Can not continue analysis. */
1239 RETURN_FP;
1240 }
1241 }
1242 done:
1243 xtensa_insnbuf_free(isa, slot);
1244 xtensa_insnbuf_free(isa, ins);
1245 return fp_regnum;
1246 }
1247
1248 /* The key values to identify the frame using "cache" are
1249
1250 cache->base = SP (or best guess about FP) of this frame;
1251 cache->pc = entry-PC (entry point of the frame function);
1252 cache->prev_sp = SP of the previous frame. */
1253
1254 static void
1255 call0_frame_cache (struct frame_info *this_frame,
1256 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1257
1258 static void
1259 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1260 xtensa_frame_cache_t *cache,
1261 CORE_ADDR pc);
1262
1263 static struct xtensa_frame_cache *
1264 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1265 {
1266 xtensa_frame_cache_t *cache;
1267 CORE_ADDR ra, wb, ws, pc, sp, ps;
1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1270 unsigned int fp_regnum;
1271 int windowed, ps_regnum;
1272
1273 if (*this_cache)
1274 return *this_cache;
1275
1276 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1277 ps_regnum = gdbarch_ps_regnum (gdbarch);
1278 ps = (ps_regnum >= 0
1279 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1280
1281 windowed = windowing_enabled (gdbarch, ps);
1282
1283 /* Get pristine xtensa-frame. */
1284 cache = xtensa_alloc_frame_cache (windowed);
1285 *this_cache = cache;
1286
1287 if (windowed)
1288 {
1289 char op1;
1290
1291 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1292 wb = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->wb_regnum);
1294 ws = get_frame_register_unsigned (this_frame,
1295 gdbarch_tdep (gdbarch)->ws_regnum);
1296
1297 op1 = read_memory_integer (pc, 1, byte_order);
1298 if (XTENSA_IS_ENTRY (gdbarch, op1))
1299 {
1300 int callinc = CALLINC (ps);
1301 ra = get_frame_register_unsigned
1302 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1303
1304 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1305 cache->wd.callsize = 0;
1306 cache->wd.wb = wb;
1307 cache->wd.ws = ws;
1308 cache->prev_sp = get_frame_register_unsigned
1309 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1310
1311 /* This only can be the outermost frame since we are
1312 just about to execute ENTRY. SP hasn't been set yet.
1313 We can assume any frame size, because it does not
1314 matter, and, let's fake frame base in cache. */
1315 cache->base = cache->prev_sp - 16;
1316
1317 cache->pc = pc;
1318 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1319 cache->ps = (ps & ~PS_CALLINC_MASK)
1320 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1321
1322 return cache;
1323 }
1324 else
1325 {
1326 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1327 ra = get_frame_register_unsigned (this_frame,
1328 gdbarch_tdep (gdbarch)->a0_base);
1329 cache->wd.callsize = WINSIZE (ra);
1330 cache->wd.wb = (wb - cache->wd.callsize / 4)
1331 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1332 cache->wd.ws = ws & ~(1 << wb);
1333
1334 cache->pc = get_frame_func (this_frame);
1335 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1336 cache->ps = (ps & ~PS_CALLINC_MASK)
1337 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1338 }
1339
1340 if (cache->wd.ws == 0)
1341 {
1342 int i;
1343
1344 /* Set A0...A3. */
1345 sp = get_frame_register_unsigned
1346 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1347
1348 for (i = 0; i < 4; i++, sp += 4)
1349 {
1350 cache->wd.aregs[i] = sp;
1351 }
1352
1353 if (cache->wd.callsize > 4)
1354 {
1355 /* Set A4...A7/A11. */
1356 /* Get the SP of the frame previous to the previous one.
1357 To achieve this, we have to dereference SP twice. */
1358 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1359 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1360 sp -= cache->wd.callsize * 4;
1361
1362 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1363 {
1364 cache->wd.aregs[i] = sp;
1365 }
1366 }
1367 }
1368
1369 if ((cache->prev_sp == 0) && ( ra != 0 ))
1370 /* If RA is equal to 0 this frame is an outermost frame. Leave
1371 cache->prev_sp unchanged marking the boundary of the frame stack. */
1372 {
1373 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1374 {
1375 /* Register window overflow already happened.
1376 We can read caller's SP from the proper spill loction. */
1377 sp = get_frame_register_unsigned
1378 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1379 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1380 }
1381 else
1382 {
1383 /* Read caller's frame SP directly from the previous window. */
1384 int regnum = arreg_number
1385 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1386 cache->wd.wb);
1387
1388 cache->prev_sp = xtensa_read_register (regnum);
1389 }
1390 }
1391 }
1392 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1393 {
1394 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1395
1396 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1397 /* Everything was set already, including cache->base. */
1398 return cache;
1399 }
1400 else /* Call0 framework. */
1401 {
1402 call0_frame_cache (this_frame, cache, pc);
1403 fp_regnum = cache->c0.fp_regnum;
1404 }
1405
1406 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1407
1408 return cache;
1409 }
1410
1411 static int xtensa_session_once_reported = 1;
1412
1413 /* Report a problem with prologue analysis while doing backtracing.
1414 But, do it only once to avoid annoyng repeated messages. */
1415
1416 static void
1417 warning_once (void)
1418 {
1419 if (xtensa_session_once_reported == 0)
1420 warning (_("\
1421 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1422 This message will not be repeated in this session.\n"));
1423
1424 xtensa_session_once_reported = 1;
1425 }
1426
1427
1428 static void
1429 xtensa_frame_this_id (struct frame_info *this_frame,
1430 void **this_cache,
1431 struct frame_id *this_id)
1432 {
1433 struct xtensa_frame_cache *cache =
1434 xtensa_frame_cache (this_frame, this_cache);
1435
1436 if (cache->prev_sp == 0)
1437 return;
1438
1439 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1440 }
1441
1442 static struct value *
1443 xtensa_frame_prev_register (struct frame_info *this_frame,
1444 void **this_cache,
1445 int regnum)
1446 {
1447 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1448 struct xtensa_frame_cache *cache;
1449 ULONGEST saved_reg = 0;
1450 int done = 1;
1451
1452 if (*this_cache == NULL)
1453 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1454 cache = *this_cache;
1455
1456 if (regnum ==gdbarch_pc_regnum (gdbarch))
1457 saved_reg = cache->ra;
1458 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1459 saved_reg = cache->prev_sp;
1460 else if (!cache->call0)
1461 {
1462 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1463 saved_reg = cache->wd.ws;
1464 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1465 saved_reg = cache->wd.wb;
1466 else if (regnum == gdbarch_ps_regnum (gdbarch))
1467 saved_reg = cache->ps;
1468 else
1469 done = 0;
1470 }
1471 else
1472 done = 0;
1473
1474 if (done)
1475 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1476
1477 if (!cache->call0) /* Windowed ABI. */
1478 {
1479 /* Convert A-register numbers to AR-register numbers,
1480 if we deal with A-register. */
1481 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1482 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1483 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1484
1485 /* Check, if we deal with AR-register saved on stack. */
1486 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1487 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1488 + gdbarch_tdep (gdbarch)->num_aregs))
1489 {
1490 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1491
1492 if (areg >= 0
1493 && areg < XTENSA_NUM_SAVED_AREGS
1494 && cache->wd.aregs[areg] != -1)
1495 return frame_unwind_got_memory (this_frame, regnum,
1496 cache->wd.aregs[areg]);
1497 }
1498 }
1499 else /* Call0 ABI. */
1500 {
1501 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1502 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1503 + C0_NREGS))
1504 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1505
1506 if (reg < C0_NREGS)
1507 {
1508 CORE_ADDR spe;
1509 int stkofs;
1510
1511 /* If register was saved in the prologue, retrieve it. */
1512 stkofs = cache->c0.c0_rt[reg].to_stk;
1513 if (stkofs != C0_NOSTK)
1514 {
1515 /* Determine SP on entry based on FP. */
1516 spe = cache->c0.c0_fp
1517 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1518
1519 return frame_unwind_got_memory (this_frame, regnum,
1520 spe + stkofs);
1521 }
1522 }
1523 }
1524
1525 /* All other registers have been either saved to
1526 the stack or are still alive in the processor. */
1527
1528 return frame_unwind_got_register (this_frame, regnum, regnum);
1529 }
1530
1531
1532 static const struct frame_unwind
1533 xtensa_unwind =
1534 {
1535 NORMAL_FRAME,
1536 default_frame_unwind_stop_reason,
1537 xtensa_frame_this_id,
1538 xtensa_frame_prev_register,
1539 NULL,
1540 default_frame_sniffer
1541 };
1542
1543 static CORE_ADDR
1544 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1545 {
1546 struct xtensa_frame_cache *cache =
1547 xtensa_frame_cache (this_frame, this_cache);
1548
1549 return cache->base;
1550 }
1551
1552 static const struct frame_base
1553 xtensa_frame_base =
1554 {
1555 &xtensa_unwind,
1556 xtensa_frame_base_address,
1557 xtensa_frame_base_address,
1558 xtensa_frame_base_address
1559 };
1560
1561
1562 static void
1563 xtensa_extract_return_value (struct type *type,
1564 struct regcache *regcache,
1565 void *dst)
1566 {
1567 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1568 bfd_byte *valbuf = dst;
1569 int len = TYPE_LENGTH (type);
1570 ULONGEST pc, wb;
1571 int callsize, areg;
1572 int offset = 0;
1573
1574 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1575
1576 gdb_assert(len > 0);
1577
1578 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1579 {
1580 /* First, we have to find the caller window in the register file. */
1581 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1582 callsize = extract_call_winsize (gdbarch, pc);
1583
1584 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1585 if (len > (callsize > 8 ? 8 : 16))
1586 internal_error (__FILE__, __LINE__,
1587 _("cannot extract return value of %d bytes long"),
1588 len);
1589
1590 /* Get the register offset of the return
1591 register (A2) in the caller window. */
1592 regcache_raw_read_unsigned
1593 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1594 areg = arreg_number (gdbarch,
1595 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1596 }
1597 else
1598 {
1599 /* No windowing hardware - Call0 ABI. */
1600 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1601 }
1602
1603 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1604
1605 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1606 offset = 4 - len;
1607
1608 for (; len > 0; len -= 4, areg++, valbuf += 4)
1609 {
1610 if (len < 4)
1611 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1612 else
1613 regcache_raw_read (regcache, areg, valbuf);
1614 }
1615 }
1616
1617
1618 static void
1619 xtensa_store_return_value (struct type *type,
1620 struct regcache *regcache,
1621 const void *dst)
1622 {
1623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1624 const bfd_byte *valbuf = dst;
1625 unsigned int areg;
1626 ULONGEST pc, wb;
1627 int callsize;
1628 int len = TYPE_LENGTH (type);
1629 int offset = 0;
1630
1631 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1632
1633 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1634 {
1635 regcache_raw_read_unsigned
1636 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1637 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1638 callsize = extract_call_winsize (gdbarch, pc);
1639
1640 if (len > (callsize > 8 ? 8 : 16))
1641 internal_error (__FILE__, __LINE__,
1642 _("unimplemented for this length: %d"),
1643 TYPE_LENGTH (type));
1644 areg = arreg_number (gdbarch,
1645 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1646
1647 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1648 callsize, (int) wb);
1649 }
1650 else
1651 {
1652 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1653 }
1654
1655 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1656 offset = 4 - len;
1657
1658 for (; len > 0; len -= 4, areg++, valbuf += 4)
1659 {
1660 if (len < 4)
1661 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1662 else
1663 regcache_raw_write (regcache, areg, valbuf);
1664 }
1665 }
1666
1667
1668 static enum return_value_convention
1669 xtensa_return_value (struct gdbarch *gdbarch,
1670 struct value *function,
1671 struct type *valtype,
1672 struct regcache *regcache,
1673 gdb_byte *readbuf,
1674 const gdb_byte *writebuf)
1675 {
1676 /* Structures up to 16 bytes are returned in registers. */
1677
1678 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1679 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1680 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1681 && TYPE_LENGTH (valtype) > 16);
1682
1683 if (struct_return)
1684 return RETURN_VALUE_STRUCT_CONVENTION;
1685
1686 DEBUGTRACE ("xtensa_return_value(...)\n");
1687
1688 if (writebuf != NULL)
1689 {
1690 xtensa_store_return_value (valtype, regcache, writebuf);
1691 }
1692
1693 if (readbuf != NULL)
1694 {
1695 gdb_assert (!struct_return);
1696 xtensa_extract_return_value (valtype, regcache, readbuf);
1697 }
1698 return RETURN_VALUE_REGISTER_CONVENTION;
1699 }
1700
1701
1702 /* DUMMY FRAME */
1703
1704 static CORE_ADDR
1705 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1706 struct value *function,
1707 struct regcache *regcache,
1708 CORE_ADDR bp_addr,
1709 int nargs,
1710 struct value **args,
1711 CORE_ADDR sp,
1712 int struct_return,
1713 CORE_ADDR struct_addr)
1714 {
1715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1716 int i;
1717 int size, onstack_size;
1718 gdb_byte *buf = (gdb_byte *) alloca (16);
1719 CORE_ADDR ra, ps;
1720 struct argument_info
1721 {
1722 const bfd_byte *contents;
1723 int length;
1724 int onstack; /* onstack == 0 => in reg */
1725 int align; /* alignment */
1726 union
1727 {
1728 int offset; /* stack offset if on stack. */
1729 int regno; /* regno if in register. */
1730 } u;
1731 };
1732
1733 struct argument_info *arg_info =
1734 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1735
1736 CORE_ADDR osp = sp;
1737
1738 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1739
1740 if (xtensa_debug_level > 3)
1741 {
1742 int i;
1743 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1744 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1745 "struct_addr=0x%x\n",
1746 (int) sp, (int) struct_return, (int) struct_addr);
1747
1748 for (i = 0; i < nargs; i++)
1749 {
1750 struct value *arg = args[i];
1751 struct type *arg_type = check_typedef (value_type (arg));
1752 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1753 host_address_to_string (arg),
1754 TYPE_LENGTH (arg_type));
1755 switch (TYPE_CODE (arg_type))
1756 {
1757 case TYPE_CODE_INT:
1758 fprintf_unfiltered (gdb_stdlog, "int");
1759 break;
1760 case TYPE_CODE_STRUCT:
1761 fprintf_unfiltered (gdb_stdlog, "struct");
1762 break;
1763 default:
1764 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1765 break;
1766 }
1767 fprintf_unfiltered (gdb_stdlog, " %s\n",
1768 host_address_to_string (value_contents (arg)));
1769 }
1770 }
1771
1772 /* First loop: collect information.
1773 Cast into type_long. (This shouldn't happen often for C because
1774 GDB already does this earlier.) It's possible that GDB could
1775 do it all the time but it's harmless to leave this code here. */
1776
1777 size = 0;
1778 onstack_size = 0;
1779 i = 0;
1780
1781 if (struct_return)
1782 size = REGISTER_SIZE;
1783
1784 for (i = 0; i < nargs; i++)
1785 {
1786 struct argument_info *info = &arg_info[i];
1787 struct value *arg = args[i];
1788 struct type *arg_type = check_typedef (value_type (arg));
1789
1790 switch (TYPE_CODE (arg_type))
1791 {
1792 case TYPE_CODE_INT:
1793 case TYPE_CODE_BOOL:
1794 case TYPE_CODE_CHAR:
1795 case TYPE_CODE_RANGE:
1796 case TYPE_CODE_ENUM:
1797
1798 /* Cast argument to long if necessary as the mask does it too. */
1799 if (TYPE_LENGTH (arg_type)
1800 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1801 {
1802 arg_type = builtin_type (gdbarch)->builtin_long;
1803 arg = value_cast (arg_type, arg);
1804 }
1805 /* Aligment is equal to the type length for the basic types. */
1806 info->align = TYPE_LENGTH (arg_type);
1807 break;
1808
1809 case TYPE_CODE_FLT:
1810
1811 /* Align doubles correctly. */
1812 if (TYPE_LENGTH (arg_type)
1813 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1815 else
1816 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1817 break;
1818
1819 case TYPE_CODE_STRUCT:
1820 default:
1821 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1822 break;
1823 }
1824 info->length = TYPE_LENGTH (arg_type);
1825 info->contents = value_contents (arg);
1826
1827 /* Align size and onstack_size. */
1828 size = (size + info->align - 1) & ~(info->align - 1);
1829 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1830
1831 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1832 {
1833 info->onstack = 1;
1834 info->u.offset = onstack_size;
1835 onstack_size += info->length;
1836 }
1837 else
1838 {
1839 info->onstack = 0;
1840 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1841 }
1842 size += info->length;
1843 }
1844
1845 /* Adjust the stack pointer and align it. */
1846 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1847
1848 /* Simulate MOVSP, if Windowed ABI. */
1849 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1850 && (sp != osp))
1851 {
1852 read_memory (osp - 16, buf, 16);
1853 write_memory (sp - 16, buf, 16);
1854 }
1855
1856 /* Second Loop: Load arguments. */
1857
1858 if (struct_return)
1859 {
1860 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1861 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1862 }
1863
1864 for (i = 0; i < nargs; i++)
1865 {
1866 struct argument_info *info = &arg_info[i];
1867
1868 if (info->onstack)
1869 {
1870 int n = info->length;
1871 CORE_ADDR offset = sp + info->u.offset;
1872
1873 /* Odd-sized structs are aligned to the lower side of a memory
1874 word in big-endian mode and require a shift. This only
1875 applies for structures smaller than one word. */
1876
1877 if (n < REGISTER_SIZE
1878 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1879 offset += (REGISTER_SIZE - n);
1880
1881 write_memory (offset, info->contents, info->length);
1882
1883 }
1884 else
1885 {
1886 int n = info->length;
1887 const bfd_byte *cp = info->contents;
1888 int r = info->u.regno;
1889
1890 /* Odd-sized structs are aligned to the lower side of registers in
1891 big-endian mode and require a shift. The odd-sized leftover will
1892 be at the end. Note that this is only true for structures smaller
1893 than REGISTER_SIZE; for larger odd-sized structures the excess
1894 will be left-aligned in the register on both endiannesses. */
1895
1896 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1897 {
1898 ULONGEST v;
1899 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1900 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1901
1902 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1903 regcache_cooked_write (regcache, r, buf);
1904
1905 cp += REGISTER_SIZE;
1906 n -= REGISTER_SIZE;
1907 r++;
1908 }
1909 else
1910 while (n > 0)
1911 {
1912 regcache_cooked_write (regcache, r, cp);
1913
1914 cp += REGISTER_SIZE;
1915 n -= REGISTER_SIZE;
1916 r++;
1917 }
1918 }
1919 }
1920
1921 /* Set the return address of dummy frame to the dummy address.
1922 The return address for the current function (in A0) is
1923 saved in the dummy frame, so we can savely overwrite A0 here. */
1924
1925 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1926 {
1927 ULONGEST val;
1928
1929 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1930 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1931 ps = (unsigned long) val & ~0x00030000;
1932 regcache_cooked_write_unsigned
1933 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1934 regcache_cooked_write_unsigned (regcache,
1935 gdbarch_ps_regnum (gdbarch),
1936 ps | 0x00010000);
1937
1938 /* All the registers have been saved. After executing
1939 dummy call, they all will be restored. So it's safe
1940 to modify WINDOWSTART register to make it look like there
1941 is only one register window corresponding to WINDOWEBASE. */
1942
1943 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1944 regcache_cooked_write_unsigned
1945 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1946 1 << extract_unsigned_integer (buf, 4, byte_order));
1947 }
1948 else
1949 {
1950 /* Simulate CALL0: write RA into A0 register. */
1951 regcache_cooked_write_unsigned
1952 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1953 }
1954
1955 /* Set new stack pointer and return it. */
1956 regcache_cooked_write_unsigned (regcache,
1957 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1958 /* Make dummy frame ID unique by adding a constant. */
1959 return sp + SP_ALIGNMENT;
1960 }
1961
1962
1963 /* Return a breakpoint for the current location of PC. We always use
1964 the density version if we have density instructions (regardless of the
1965 current instruction at PC), and use regular instructions otherwise. */
1966
1967 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1968 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1969 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1970 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1971
1972 static const unsigned char *
1973 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1974 int *lenptr)
1975 {
1976 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1977 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1978 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1979 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1980
1981 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1982
1983 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1984 {
1985 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1986 {
1987 *lenptr = sizeof (density_big_breakpoint);
1988 return density_big_breakpoint;
1989 }
1990 else
1991 {
1992 *lenptr = sizeof (density_little_breakpoint);
1993 return density_little_breakpoint;
1994 }
1995 }
1996 else
1997 {
1998 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1999 {
2000 *lenptr = sizeof (big_breakpoint);
2001 return big_breakpoint;
2002 }
2003 else
2004 {
2005 *lenptr = sizeof (little_breakpoint);
2006 return little_breakpoint;
2007 }
2008 }
2009 }
2010
2011 /* Call0 ABI support routines. */
2012
2013 /* Return true, if PC points to "ret" or "ret.n". */
2014
2015 static int
2016 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2017 {
2018 #define RETURN_RET goto done
2019 xtensa_isa isa;
2020 xtensa_insnbuf ins, slot;
2021 gdb_byte ibuf[XTENSA_ISA_BSZ];
2022 CORE_ADDR ia, bt, ba;
2023 xtensa_format ifmt;
2024 int ilen, islots, is;
2025 xtensa_opcode opc;
2026 const char *opcname;
2027 int found_ret = 0;
2028
2029 isa = xtensa_default_isa;
2030 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2031 ins = xtensa_insnbuf_alloc (isa);
2032 slot = xtensa_insnbuf_alloc (isa);
2033 ba = 0;
2034
2035 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2036 {
2037 if (ia + xtensa_isa_maxlength (isa) > bt)
2038 {
2039 ba = ia;
2040 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2041 ? ba + XTENSA_ISA_BSZ : finish_pc;
2042 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2043 RETURN_RET;
2044 }
2045
2046 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2047 ifmt = xtensa_format_decode (isa, ins);
2048 if (ifmt == XTENSA_UNDEFINED)
2049 RETURN_RET;
2050 ilen = xtensa_format_length (isa, ifmt);
2051 if (ilen == XTENSA_UNDEFINED)
2052 RETURN_RET;
2053 islots = xtensa_format_num_slots (isa, ifmt);
2054 if (islots == XTENSA_UNDEFINED)
2055 RETURN_RET;
2056
2057 for (is = 0; is < islots; ++is)
2058 {
2059 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2060 RETURN_RET;
2061
2062 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2063 if (opc == XTENSA_UNDEFINED)
2064 RETURN_RET;
2065
2066 opcname = xtensa_opcode_name (isa, opc);
2067
2068 if ((strcasecmp (opcname, "ret.n") == 0)
2069 || (strcasecmp (opcname, "ret") == 0))
2070 {
2071 found_ret = 1;
2072 RETURN_RET;
2073 }
2074 }
2075 }
2076 done:
2077 xtensa_insnbuf_free(isa, slot);
2078 xtensa_insnbuf_free(isa, ins);
2079 return found_ret;
2080 }
2081
2082 /* Call0 opcode class. Opcodes are preclassified according to what they
2083 mean for Call0 prologue analysis, and their number of significant operands.
2084 The purpose of this is to simplify prologue analysis by separating
2085 instruction decoding (libisa) from the semantics of prologue analysis. */
2086
2087 typedef enum
2088 {
2089 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2090 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2091 c0opc_flow, /* Flow control insn. */
2092 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2093 c0opc_break, /* Debugger software breakpoints. */
2094 c0opc_add, /* Adding two registers. */
2095 c0opc_addi, /* Adding a register and an immediate. */
2096 c0opc_and, /* Bitwise "and"-ing two registers. */
2097 c0opc_sub, /* Subtracting a register from a register. */
2098 c0opc_mov, /* Moving a register to a register. */
2099 c0opc_movi, /* Moving an immediate to a register. */
2100 c0opc_l32r, /* Loading a literal. */
2101 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2102 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2103 c0opc_l32e, /* L32E instruction. */
2104 c0opc_s32e, /* S32E instruction. */
2105 c0opc_rfwo, /* RFWO instruction. */
2106 c0opc_rfwu, /* RFWU instruction. */
2107 c0opc_NrOf /* Number of opcode classifications. */
2108 } xtensa_insn_kind;
2109
2110 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2111
2112 static int
2113 rwx_special_register (const char *opcname)
2114 {
2115 char ch = *opcname++;
2116
2117 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2118 return 0;
2119 if (*opcname++ != 's')
2120 return 0;
2121 if (*opcname++ != 'r')
2122 return 0;
2123 if (*opcname++ != '.')
2124 return 0;
2125
2126 return 1;
2127 }
2128
2129 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2130
2131 static xtensa_insn_kind
2132 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2133 {
2134 const char *opcname;
2135 xtensa_insn_kind opclass = c0opc_uninteresting;
2136
2137 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2138
2139 /* Get opcode name and handle special classifications. */
2140
2141 opcname = xtensa_opcode_name (isa, opc);
2142
2143 if (opcname == NULL
2144 || strcasecmp (opcname, "ill") == 0
2145 || strcasecmp (opcname, "ill.n") == 0)
2146 opclass = c0opc_illegal;
2147 else if (strcasecmp (opcname, "break") == 0
2148 || strcasecmp (opcname, "break.n") == 0)
2149 opclass = c0opc_break;
2150 else if (strcasecmp (opcname, "entry") == 0)
2151 opclass = c0opc_entry;
2152 else if (strcasecmp (opcname, "rfwo") == 0)
2153 opclass = c0opc_rfwo;
2154 else if (strcasecmp (opcname, "rfwu") == 0)
2155 opclass = c0opc_rfwu;
2156 else if (xtensa_opcode_is_branch (isa, opc) > 0
2157 || xtensa_opcode_is_jump (isa, opc) > 0
2158 || xtensa_opcode_is_loop (isa, opc) > 0
2159 || xtensa_opcode_is_call (isa, opc) > 0
2160 || strcasecmp (opcname, "simcall") == 0
2161 || strcasecmp (opcname, "syscall") == 0)
2162 opclass = c0opc_flow;
2163
2164 /* Also, classify specific opcodes that need to be tracked. */
2165 else if (strcasecmp (opcname, "add") == 0
2166 || strcasecmp (opcname, "add.n") == 0)
2167 opclass = c0opc_add;
2168 else if (strcasecmp (opcname, "and") == 0)
2169 opclass = c0opc_and;
2170 else if (strcasecmp (opcname, "addi") == 0
2171 || strcasecmp (opcname, "addi.n") == 0
2172 || strcasecmp (opcname, "addmi") == 0)
2173 opclass = c0opc_addi;
2174 else if (strcasecmp (opcname, "sub") == 0)
2175 opclass = c0opc_sub;
2176 else if (strcasecmp (opcname, "mov.n") == 0
2177 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2178 opclass = c0opc_mov;
2179 else if (strcasecmp (opcname, "movi") == 0
2180 || strcasecmp (opcname, "movi.n") == 0)
2181 opclass = c0opc_movi;
2182 else if (strcasecmp (opcname, "l32r") == 0)
2183 opclass = c0opc_l32r;
2184 else if (strcasecmp (opcname, "s32i") == 0
2185 || strcasecmp (opcname, "s32i.n") == 0)
2186 opclass = c0opc_s32i;
2187 else if (strcasecmp (opcname, "l32e") == 0)
2188 opclass = c0opc_l32e;
2189 else if (strcasecmp (opcname, "s32e") == 0)
2190 opclass = c0opc_s32e;
2191 else if (rwx_special_register (opcname))
2192 opclass = c0opc_rwxsr;
2193
2194 return opclass;
2195 }
2196
2197 /* Tracks register movement/mutation for a given operation, which may
2198 be within a bundle. Updates the destination register tracking info
2199 accordingly. The pc is needed only for pc-relative load instructions
2200 (eg. l32r). The SP register number is needed to identify stores to
2201 the stack frame. Returns 0, if analysis was succesfull, non-zero
2202 otherwise. */
2203
2204 static int
2205 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2206 xtensa_insn_kind opclass, int nods, unsigned odv[],
2207 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2208 {
2209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2210 unsigned litbase, litaddr, litval;
2211
2212 switch (opclass)
2213 {
2214 case c0opc_addi:
2215 /* 3 operands: dst, src, imm. */
2216 gdb_assert (nods == 3);
2217 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2218 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2219 break;
2220 case c0opc_add:
2221 /* 3 operands: dst, src1, src2. */
2222 gdb_assert (nods == 3);
2223 if (src[odv[1]].fr_reg == C0_CONST)
2224 {
2225 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2226 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2227 }
2228 else if (src[odv[2]].fr_reg == C0_CONST)
2229 {
2230 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2231 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2232 }
2233 else dst[odv[0]].fr_reg = C0_INEXP;
2234 break;
2235 case c0opc_and:
2236 /* 3 operands: dst, src1, src2. */
2237 gdb_assert (nods == 3);
2238 if (cache->c0.c0_fpalign == 0)
2239 {
2240 /* Handle dynamic stack alignment. */
2241 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2242 {
2243 if (src[odv[2]].fr_reg == C0_CONST)
2244 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2245 break;
2246 }
2247 else if ((src[odv[0]].fr_reg == spreg)
2248 && (src[odv[2]].fr_reg == spreg))
2249 {
2250 if (src[odv[1]].fr_reg == C0_CONST)
2251 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2252 break;
2253 }
2254 /* else fall through. */
2255 }
2256 if (src[odv[1]].fr_reg == C0_CONST)
2257 {
2258 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2259 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2260 }
2261 else if (src[odv[2]].fr_reg == C0_CONST)
2262 {
2263 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2264 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2265 }
2266 else dst[odv[0]].fr_reg = C0_INEXP;
2267 break;
2268 case c0opc_sub:
2269 /* 3 operands: dst, src1, src2. */
2270 gdb_assert (nods == 3);
2271 if (src[odv[2]].fr_reg == C0_CONST)
2272 {
2273 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2274 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2275 }
2276 else dst[odv[0]].fr_reg = C0_INEXP;
2277 break;
2278 case c0opc_mov:
2279 /* 2 operands: dst, src [, src]. */
2280 gdb_assert (nods == 2);
2281 /* First, check if it's a special case of saving unaligned SP
2282 to a spare register in case of dynamic stack adjustment.
2283 But, only do it one time. The second time could be initializing
2284 frame pointer. We don't want to overwrite the first one. */
2285 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2286 cache->c0.c0_old_sp = odv[0];
2287
2288 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2289 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2290 break;
2291 case c0opc_movi:
2292 /* 2 operands: dst, imm. */
2293 gdb_assert (nods == 2);
2294 dst[odv[0]].fr_reg = C0_CONST;
2295 dst[odv[0]].fr_ofs = odv[1];
2296 break;
2297 case c0opc_l32r:
2298 /* 2 operands: dst, literal offset. */
2299 gdb_assert (nods == 2);
2300 /* litbase = xtensa_get_litbase (pc); can be also used. */
2301 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2302 ? 0 : xtensa_read_register
2303 (gdbarch_tdep (gdbarch)->litbase_regnum);
2304 litaddr = litbase & 1
2305 ? (litbase & ~1) + (signed)odv[1]
2306 : (pc + 3 + (signed)odv[1]) & ~3;
2307 litval = read_memory_integer (litaddr, 4, byte_order);
2308 dst[odv[0]].fr_reg = C0_CONST;
2309 dst[odv[0]].fr_ofs = litval;
2310 break;
2311 case c0opc_s32i:
2312 /* 3 operands: value, base, offset. */
2313 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2314 /* First, check if it's a spill for saved unaligned SP,
2315 when dynamic stack adjustment was applied to this frame. */
2316 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2317 && (odv[1] == spreg) /* SP usage indicates spill. */
2318 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2319 cache->c0.c0_sp_ofs = odv[2];
2320
2321 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2322 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2323 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2324 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2325 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2326 {
2327 /* ISA encoding guarantees alignment. But, check it anyway. */
2328 gdb_assert ((odv[2] & 3) == 0);
2329 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2330 }
2331 break;
2332 /* If we end up inside Window Overflow / Underflow interrupt handler
2333 report an error because these handlers should have been handled
2334 already in a different way. */
2335 case c0opc_l32e:
2336 case c0opc_s32e:
2337 case c0opc_rfwo:
2338 case c0opc_rfwu:
2339 return 1;
2340 default:
2341 return 1;
2342 }
2343 return 0;
2344 }
2345
2346 /* Analyze prologue of the function at start address to determine if it uses
2347 the Call0 ABI, and if so track register moves and linear modifications
2348 in the prologue up to the PC or just beyond the prologue, whichever is
2349 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2350 prologue. The prologue may overlap non-prologue instructions but is
2351 guaranteed to end by the first flow-control instruction (jump, branch,
2352 call or return). Since an optimized function may move information around
2353 and change the stack frame arbitrarily during the prologue, the information
2354 is guaranteed valid only at the point in the function indicated by the PC.
2355 May be used to skip the prologue or identify the ABI, w/o tracking.
2356
2357 Returns: Address of first instruction after prologue, or PC (whichever
2358 is first), or 0, if decoding failed (in libisa).
2359 Input args:
2360 start Start address of function/prologue.
2361 pc Program counter to stop at. Use 0 to continue to end of prologue.
2362 If 0, avoids infinite run-on in corrupt code memory by bounding
2363 the scan to the end of the function if that can be determined.
2364 nregs Number of general registers to track.
2365 InOut args:
2366 cache Xtensa frame cache.
2367
2368 Note that these may produce useful results even if decoding fails
2369 because they begin with default assumptions that analysis may change. */
2370
2371 static CORE_ADDR
2372 call0_analyze_prologue (struct gdbarch *gdbarch,
2373 CORE_ADDR start, CORE_ADDR pc,
2374 int nregs, xtensa_frame_cache_t *cache)
2375 {
2376 CORE_ADDR ia; /* Current insn address in prologue. */
2377 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2378 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2379 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2380 xtensa_isa isa; /* libisa ISA handle. */
2381 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2382 xtensa_format ifmt; /* libisa instruction format. */
2383 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2384 xtensa_opcode opc; /* Opcode in current slot. */
2385 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2386 int nods; /* Opcode number of operands. */
2387 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2388 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2389 int j; /* General loop counter. */
2390 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2391 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2392 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2393
2394 struct symtab_and_line prologue_sal;
2395
2396 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2397 (int)start, (int)pc);
2398
2399 /* Try to limit the scan to the end of the function if a non-zero pc
2400 arg was not supplied to avoid probing beyond the end of valid memory.
2401 If memory is full of garbage that classifies as c0opc_uninteresting.
2402 If this fails (eg. if no symbols) pc ends up 0 as it was.
2403 Intialize the Call0 frame and register tracking info.
2404 Assume it's Call0 until an 'entry' instruction is encountered.
2405 Assume we may be in the prologue until we hit a flow control instr. */
2406
2407 rtmp = NULL;
2408 body_pc = UINT_MAX;
2409 end_pc = 0;
2410
2411 /* Find out, if we have an information about the prologue from DWARF. */
2412 prologue_sal = find_pc_line (start, 0);
2413 if (prologue_sal.line != 0) /* Found debug info. */
2414 body_pc = prologue_sal.end;
2415
2416 /* If we are going to analyze the prologue in general without knowing about
2417 the current PC, make the best assumtion for the end of the prologue. */
2418 if (pc == 0)
2419 {
2420 find_pc_partial_function (start, 0, NULL, &end_pc);
2421 body_pc = min (end_pc, body_pc);
2422 }
2423 else
2424 body_pc = min (pc, body_pc);
2425
2426 cache->call0 = 1;
2427 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2428
2429 if (!xtensa_default_isa)
2430 xtensa_default_isa = xtensa_isa_init (0, 0);
2431 isa = xtensa_default_isa;
2432 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2433 ins = xtensa_insnbuf_alloc (isa);
2434 slot = xtensa_insnbuf_alloc (isa);
2435
2436 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2437 {
2438 /* (Re)fill instruction buffer from memory if necessary, but do not
2439 read memory beyond PC to be sure we stay within text section
2440 (this protection only works if a non-zero pc is supplied). */
2441
2442 if (ia + xtensa_isa_maxlength (isa) > bt)
2443 {
2444 ba = ia;
2445 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2446 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2447 error (_("Unable to read target memory ..."));
2448 }
2449
2450 /* Decode format information. */
2451
2452 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2453 ifmt = xtensa_format_decode (isa, ins);
2454 if (ifmt == XTENSA_UNDEFINED)
2455 {
2456 fail = 1;
2457 goto done;
2458 }
2459 ilen = xtensa_format_length (isa, ifmt);
2460 if (ilen == XTENSA_UNDEFINED)
2461 {
2462 fail = 1;
2463 goto done;
2464 }
2465 islots = xtensa_format_num_slots (isa, ifmt);
2466 if (islots == XTENSA_UNDEFINED)
2467 {
2468 fail = 1;
2469 goto done;
2470 }
2471
2472 /* Analyze a bundle or a single instruction, using a snapshot of
2473 the register tracking info as input for the entire bundle so that
2474 register changes do not take effect within this bundle. */
2475
2476 for (j = 0; j < nregs; ++j)
2477 rtmp[j] = cache->c0.c0_rt[j];
2478
2479 for (is = 0; is < islots; ++is)
2480 {
2481 /* Decode a slot and classify the opcode. */
2482
2483 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2484 if (fail)
2485 goto done;
2486
2487 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2488 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2489 (unsigned)ia, opc);
2490 if (opc == XTENSA_UNDEFINED)
2491 opclass = c0opc_illegal;
2492 else
2493 opclass = call0_classify_opcode (isa, opc);
2494
2495 /* Decide whether to track this opcode, ignore it, or bail out. */
2496
2497 switch (opclass)
2498 {
2499 case c0opc_illegal:
2500 case c0opc_break:
2501 fail = 1;
2502 goto done;
2503
2504 case c0opc_uninteresting:
2505 continue;
2506
2507 case c0opc_flow: /* Flow control instructions stop analysis. */
2508 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2509 goto done;
2510
2511 case c0opc_entry:
2512 cache->call0 = 0;
2513 ia += ilen; /* Skip over 'entry' insn. */
2514 goto done;
2515
2516 default:
2517 cache->call0 = 1;
2518 }
2519
2520 /* Only expected opcodes should get this far. */
2521
2522 /* Extract and decode the operands. */
2523 nods = xtensa_opcode_num_operands (isa, opc);
2524 if (nods == XTENSA_UNDEFINED)
2525 {
2526 fail = 1;
2527 goto done;
2528 }
2529
2530 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2531 {
2532 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2533 is, slot, &odv[j]);
2534 if (fail)
2535 goto done;
2536
2537 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2538 if (fail)
2539 goto done;
2540 }
2541
2542 /* Check operands to verify use of 'mov' assembler macro. */
2543 if (opclass == c0opc_mov && nods == 3)
2544 {
2545 if (odv[2] == odv[1])
2546 {
2547 nods = 2;
2548 if ((odv[0] == 1) && (odv[1] != 1))
2549 /* OR A1, An, An , where n != 1.
2550 This means we are inside epilogue already. */
2551 goto done;
2552 }
2553 else
2554 {
2555 opclass = c0opc_uninteresting;
2556 continue;
2557 }
2558 }
2559
2560 /* Track register movement and modification for this operation. */
2561 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2562 opclass, nods, odv, ia, 1, cache);
2563 if (fail)
2564 goto done;
2565 }
2566 }
2567 done:
2568 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2569 (unsigned)ia, fail ? "failed" : "succeeded");
2570 xtensa_insnbuf_free(isa, slot);
2571 xtensa_insnbuf_free(isa, ins);
2572 return fail ? XTENSA_ISA_BADPC : ia;
2573 }
2574
2575 /* Initialize frame cache for the current frame in CALL0 ABI. */
2576
2577 static void
2578 call0_frame_cache (struct frame_info *this_frame,
2579 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2580 {
2581 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2583 CORE_ADDR start_pc; /* The beginning of the function. */
2584 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2585 CORE_ADDR sp, fp, ra;
2586 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2587
2588 sp = get_frame_register_unsigned
2589 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2590 fp = sp; /* Assume FP == SP until proven otherwise. */
2591
2592 /* Find the beginning of the prologue of the function containing the PC
2593 and analyze it up to the PC or the end of the prologue. */
2594
2595 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2596 {
2597 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2598
2599 if (body_pc == XTENSA_ISA_BADPC)
2600 {
2601 warning_once ();
2602 ra = 0;
2603 goto finish_frame_analysis;
2604 }
2605 }
2606
2607 /* Get the frame information and FP (if used) at the current PC.
2608 If PC is in the prologue, the prologue analysis is more reliable
2609 than DWARF info. We don't not know for sure, if PC is in the prologue,
2610 but we do know no calls have yet taken place, so we can almost
2611 certainly rely on the prologue analysis. */
2612
2613 if (body_pc <= pc)
2614 {
2615 /* Prologue analysis was successful up to the PC.
2616 It includes the cases when PC == START_PC. */
2617 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2618 /* c0_hasfp == true means there is a frame pointer because
2619 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2620 was derived from SP. Otherwise, it would be C0_FP. */
2621 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2622 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2623 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2624 }
2625 else /* No data from the prologue analysis. */
2626 {
2627 c0_hasfp = 0;
2628 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2629 c0_frmsz = 0;
2630 start_pc = pc;
2631 }
2632
2633 if (cache->c0.c0_fpalign)
2634 {
2635 /* This frame has a special prologue with a dynamic stack adjustment
2636 to force an alignment, which is bigger than standard 16 bytes. */
2637
2638 CORE_ADDR unaligned_sp;
2639
2640 if (cache->c0.c0_old_sp == C0_INEXP)
2641 /* This can't be. Prologue code should be consistent.
2642 Unaligned stack pointer should be saved in a spare register. */
2643 {
2644 warning_once ();
2645 ra = 0;
2646 goto finish_frame_analysis;
2647 }
2648
2649 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2650 /* Saved unaligned value of SP is kept in a register. */
2651 unaligned_sp = get_frame_register_unsigned
2652 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2653 else
2654 /* Get the value from stack. */
2655 unaligned_sp = (CORE_ADDR)
2656 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2657
2658 prev_sp = unaligned_sp + c0_frmsz;
2659 }
2660 else
2661 prev_sp = fp + c0_frmsz;
2662
2663 /* Frame size from debug info or prologue tracking does not account for
2664 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2665 if (c0_hasfp)
2666 {
2667 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2668
2669 /* Update the stack frame size. */
2670 c0_frmsz += fp - sp;
2671 }
2672
2673 /* Get the return address (RA) from the stack if saved,
2674 or try to get it from a register. */
2675
2676 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2677 if (to_stk != C0_NOSTK)
2678 ra = (CORE_ADDR)
2679 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2680 4, byte_order);
2681
2682 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2683 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2684 {
2685 /* Special case for terminating backtrace at a function that wants to
2686 be seen as the outermost one. Such a function will clear it's RA (A0)
2687 register to 0 in the prologue instead of saving its original value. */
2688 ra = 0;
2689 }
2690 else
2691 {
2692 /* RA was copied to another register or (before any function call) may
2693 still be in the original RA register. This is not always reliable:
2694 even in a leaf function, register tracking stops after prologue, and
2695 even in prologue, non-prologue instructions (not tracked) may overwrite
2696 RA or any register it was copied to. If likely in prologue or before
2697 any call, use retracking info and hope for the best (compiler should
2698 have saved RA in stack if not in a leaf function). If not in prologue,
2699 too bad. */
2700
2701 int i;
2702 for (i = 0;
2703 (i < C0_NREGS)
2704 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2705 ++i);
2706 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2707 i = C0_RA;
2708 if (i < C0_NREGS)
2709 {
2710 ra = get_frame_register_unsigned
2711 (this_frame,
2712 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2713 }
2714 else ra = 0;
2715 }
2716
2717 finish_frame_analysis:
2718 cache->pc = start_pc;
2719 cache->ra = ra;
2720 /* RA == 0 marks the outermost frame. Do not go past it. */
2721 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2722 cache->c0.fp_regnum = fp_regnum;
2723 cache->c0.c0_frmsz = c0_frmsz;
2724 cache->c0.c0_hasfp = c0_hasfp;
2725 cache->c0.c0_fp = fp;
2726 }
2727
2728 static CORE_ADDR a0_saved;
2729 static CORE_ADDR a7_saved;
2730 static CORE_ADDR a11_saved;
2731 static int a0_was_saved;
2732 static int a7_was_saved;
2733 static int a11_was_saved;
2734
2735 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2736 static void
2737 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2738 {
2739 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2740 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2741 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2742 unsigned int spilled_value
2743 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2744
2745 if ((at == 0) && !a0_was_saved)
2746 {
2747 a0_saved = xtensa_read_register (atreg);
2748 a0_was_saved = 1;
2749 }
2750 else if ((at == 7) && !a7_was_saved)
2751 {
2752 a7_saved = xtensa_read_register (atreg);
2753 a7_was_saved = 1;
2754 }
2755 else if ((at == 11) && !a11_was_saved)
2756 {
2757 a11_saved = xtensa_read_register (atreg);
2758 a11_was_saved = 1;
2759 }
2760
2761 xtensa_write_register (atreg, spilled_value);
2762 }
2763
2764 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2765 static void
2766 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2767 {
2768 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2769 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2770 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2771 ULONGEST spilled_value = xtensa_read_register (atreg);
2772
2773 write_memory_unsigned_integer (addr, 4,
2774 gdbarch_byte_order (gdbarch),
2775 spilled_value);
2776 }
2777
2778 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2779
2780 typedef enum
2781 {
2782 xtWindowOverflow,
2783 xtWindowUnderflow,
2784 xtNoExceptionHandler
2785 } xtensa_exception_handler_t;
2786
2787 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2788 Return type of Xtensa Window Interrupt Handler on success. */
2789 static xtensa_exception_handler_t
2790 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2791 {
2792 xtensa_isa isa;
2793 xtensa_insnbuf ins, slot;
2794 gdb_byte ibuf[XTENSA_ISA_BSZ];
2795 CORE_ADDR ia, bt, ba;
2796 xtensa_format ifmt;
2797 int ilen, islots, is;
2798 xtensa_opcode opc;
2799 int insn_num = 0;
2800 int fail = 0;
2801 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2802
2803 uint32_t at, as, offset;
2804
2805 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2806 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2807
2808 isa = xtensa_default_isa;
2809 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2810 ins = xtensa_insnbuf_alloc (isa);
2811 slot = xtensa_insnbuf_alloc (isa);
2812 ba = 0;
2813 ia = current_pc;
2814 bt = ia;
2815
2816 a0_was_saved = 0;
2817 a7_was_saved = 0;
2818 a11_was_saved = 0;
2819
2820 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2821 {
2822 if (ia + xtensa_isa_maxlength (isa) > bt)
2823 {
2824 ba = ia;
2825 bt = (ba + XTENSA_ISA_BSZ);
2826 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2827 return xtNoExceptionHandler;
2828 }
2829 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2830 ifmt = xtensa_format_decode (isa, ins);
2831 if (ifmt == XTENSA_UNDEFINED)
2832 return xtNoExceptionHandler;
2833 ilen = xtensa_format_length (isa, ifmt);
2834 if (ilen == XTENSA_UNDEFINED)
2835 return xtNoExceptionHandler;
2836 islots = xtensa_format_num_slots (isa, ifmt);
2837 if (islots == XTENSA_UNDEFINED)
2838 return xtNoExceptionHandler;
2839 for (is = 0; is < islots; ++is)
2840 {
2841 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2842 return xtNoExceptionHandler;
2843 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2844 if (opc == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 switch (call0_classify_opcode (isa, opc))
2847 {
2848 case c0opc_illegal:
2849 case c0opc_flow:
2850 case c0opc_entry:
2851 case c0opc_break:
2852 /* We expect none of them here. */
2853 return xtNoExceptionHandler;
2854 case c0opc_l32e:
2855 func = execute_l32e;
2856 break;
2857 case c0opc_s32e:
2858 func = execute_s32e;
2859 break;
2860 case c0opc_rfwo: /* RFWO. */
2861 /* Here, we return from WindowOverflow handler and,
2862 if we stopped at the very beginning, which means
2863 A0 was saved, we have to restore it now. */
2864 if (a0_was_saved)
2865 {
2866 int arreg = arreg_number (gdbarch,
2867 gdbarch_tdep (gdbarch)->a0_base,
2868 wb);
2869 xtensa_write_register (arreg, a0_saved);
2870 }
2871 return xtWindowOverflow;
2872 case c0opc_rfwu: /* RFWU. */
2873 /* Here, we return from WindowUnderflow handler.
2874 Let's see if either A7 or A11 has to be restored. */
2875 if (WindowUnderflow12)
2876 {
2877 if (a11_was_saved)
2878 {
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base + 11,
2881 wb);
2882 xtensa_write_register (arreg, a11_saved);
2883 }
2884 }
2885 else if (a7_was_saved)
2886 {
2887 int arreg = arreg_number (gdbarch,
2888 gdbarch_tdep (gdbarch)->a0_base + 7,
2889 wb);
2890 xtensa_write_register (arreg, a7_saved);
2891 }
2892 return xtWindowUnderflow;
2893 default: /* Simply skip this insns. */
2894 continue;
2895 }
2896
2897 /* Decode arguments for L32E / S32E and simulate their execution. */
2898 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 0, &at))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 1, &as))
2907 return xtNoExceptionHandler;
2908 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2909 return xtNoExceptionHandler;
2910 if (xtensa_operand_decode (isa, opc, 2, &offset))
2911 return xtNoExceptionHandler;
2912
2913 (*func) (gdbarch, at, as, offset, wb);
2914 }
2915
2916 ia += ilen;
2917 }
2918 return xtNoExceptionHandler;
2919 }
2920
2921 /* Handle Window Overflow / Underflow exception frames. */
2922
2923 static void
2924 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2925 xtensa_frame_cache_t *cache,
2926 CORE_ADDR pc)
2927 {
2928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2929 CORE_ADDR ps, wb, ws, ra;
2930 int epc1_regnum, i, regnum;
2931 xtensa_exception_handler_t eh_type;
2932
2933 /* Read PS, WB, and WS from the hardware. Note that PS register
2934 must be present, if Windowed ABI is supported. */
2935 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2936 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2937 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2938
2939 /* Execute all the remaining instructions from Window Interrupt Handler
2940 by simulating them on the remote protocol level. On return, set the
2941 type of Xtensa Window Interrupt Handler, or report an error. */
2942 eh_type = execute_code (gdbarch, pc, wb);
2943 if (eh_type == xtNoExceptionHandler)
2944 error (_("\
2945 Unable to decode Xtensa Window Interrupt Handler's code."));
2946
2947 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2948 cache->call0 = 0; /* It's Windowed ABI. */
2949
2950 /* All registers for the cached frame will be alive. */
2951 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2952 cache->wd.aregs[i] = -1;
2953
2954 if (eh_type == xtWindowOverflow)
2955 cache->wd.ws = ws ^ (1 << wb);
2956 else /* eh_type == xtWindowUnderflow. */
2957 cache->wd.ws = ws | (1 << wb);
2958
2959 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2960 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2961 cache->wd.wb);
2962 ra = xtensa_read_register (regnum);
2963 cache->wd.callsize = WINSIZE (ra);
2964 cache->prev_sp = xtensa_read_register (regnum + 1);
2965 /* Set regnum to a frame pointer of the frame being cached. */
2966 regnum = xtensa_scan_prologue (gdbarch, pc);
2967 regnum = arreg_number (gdbarch,
2968 gdbarch_tdep (gdbarch)->a0_base + regnum,
2969 cache->wd.wb);
2970 cache->base = get_frame_register_unsigned (this_frame, regnum);
2971
2972 /* Read PC of interrupted function from EPC1 register. */
2973 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2974 if (epc1_regnum < 0)
2975 error(_("Unable to read Xtensa register EPC1"));
2976 cache->ra = xtensa_read_register (epc1_regnum);
2977 cache->pc = get_frame_func (this_frame);
2978 }
2979
2980
2981 /* Skip function prologue.
2982
2983 Return the pc of the first instruction after prologue. GDB calls this to
2984 find the address of the first line of the function or (if there is no line
2985 number information) to skip the prologue for planting breakpoints on
2986 function entries. Use debug info (if present) or prologue analysis to skip
2987 the prologue to achieve reliable debugging behavior. For windowed ABI,
2988 only the 'entry' instruction is skipped. It is not strictly necessary to
2989 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2990 backtrace at any point in the prologue, however certain potential hazards
2991 are avoided and a more "normal" debugging experience is ensured by
2992 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2993 For example, if we don't skip the prologue:
2994 - Some args may not yet have been saved to the stack where the debug
2995 info expects to find them (true anyway when only 'entry' is skipped);
2996 - Software breakpoints ('break' instrs) may not have been unplanted
2997 when the prologue analysis is done on initializing the frame cache,
2998 and breaks in the prologue will throw off the analysis.
2999
3000 If we have debug info ( line-number info, in particular ) we simply skip
3001 the code associated with the first function line effectively skipping
3002 the prologue code. It works even in cases like
3003
3004 int main()
3005 { int local_var = 1;
3006 ....
3007 }
3008
3009 because, for this source code, both Xtensa compilers will generate two
3010 separate entries ( with the same line number ) in dwarf line-number
3011 section to make sure there is a boundary between the prologue code and
3012 the rest of the function.
3013
3014 If there is no debug info, we need to analyze the code. */
3015
3016 /* #define DONT_SKIP_PROLOGUE */
3017
3018 static CORE_ADDR
3019 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3020 {
3021 struct symtab_and_line prologue_sal;
3022 CORE_ADDR body_pc;
3023
3024 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3025
3026 #if DONT_SKIP_PROLOGUE
3027 return start_pc;
3028 #endif
3029
3030 /* Try to find first body line from debug info. */
3031
3032 prologue_sal = find_pc_line (start_pc, 0);
3033 if (prologue_sal.line != 0) /* Found debug info. */
3034 {
3035 /* In Call0, it is possible to have a function with only one instruction
3036 ('ret') resulting from a one-line optimized function that does nothing.
3037 In that case, prologue_sal.end may actually point to the start of the
3038 next function in the text section, causing a breakpoint to be set at
3039 the wrong place. Check, if the end address is within a different
3040 function, and if so return the start PC. We know we have symbol
3041 information. */
3042
3043 CORE_ADDR end_func;
3044
3045 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3046 && call0_ret (start_pc, prologue_sal.end))
3047 return start_pc;
3048
3049 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3050 if (end_func != start_pc)
3051 return start_pc;
3052
3053 return prologue_sal.end;
3054 }
3055
3056 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3057 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3058 xtensa_alloc_frame_cache (0));
3059 return body_pc != 0 ? body_pc : start_pc;
3060 }
3061
3062 /* Verify the current configuration. */
3063 static void
3064 xtensa_verify_config (struct gdbarch *gdbarch)
3065 {
3066 struct ui_file *log;
3067 struct cleanup *cleanups;
3068 struct gdbarch_tdep *tdep;
3069 long length;
3070 char *buf;
3071
3072 tdep = gdbarch_tdep (gdbarch);
3073 log = mem_fileopen ();
3074 cleanups = make_cleanup_ui_file_delete (log);
3075
3076 /* Verify that we got a reasonable number of AREGS. */
3077 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3078 fprintf_unfiltered (log, _("\
3079 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3080 tdep->num_aregs);
3081
3082 /* Verify that certain registers exist. */
3083
3084 if (tdep->pc_regnum == -1)
3085 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3086 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3087 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3088
3089 if (tdep->isa_use_windowed_registers)
3090 {
3091 if (tdep->wb_regnum == -1)
3092 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3093 if (tdep->ws_regnum == -1)
3094 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3095 if (tdep->ar_base == -1)
3096 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3097 }
3098
3099 if (tdep->a0_base == -1)
3100 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3101
3102 buf = ui_file_xstrdup (log, &length);
3103 make_cleanup (xfree, buf);
3104 if (length > 0)
3105 internal_error (__FILE__, __LINE__,
3106 _("the following are invalid: %s"), buf);
3107 do_cleanups (cleanups);
3108 }
3109
3110
3111 /* Derive specific register numbers from the array of registers. */
3112
3113 static void
3114 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3115 {
3116 xtensa_register_t* rmap;
3117 int n, max_size = 4;
3118
3119 tdep->num_regs = 0;
3120 tdep->num_nopriv_regs = 0;
3121
3122 /* Special registers 0..255 (core). */
3123 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3124
3125 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3126 {
3127 if (rmap->target_number == 0x0020)
3128 tdep->pc_regnum = n;
3129 else if (rmap->target_number == 0x0100)
3130 tdep->ar_base = n;
3131 else if (rmap->target_number == 0x0000)
3132 tdep->a0_base = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3134 tdep->wb_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3136 tdep->ws_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3138 tdep->debugcause_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3140 tdep->exccause_regnum = n;
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3142 tdep->excvaddr_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3144 tdep->lbeg_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3146 tdep->lend_regnum = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3148 tdep->lcount_regnum = n;
3149 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3150 tdep->sar_regnum = n;
3151 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3152 tdep->litbase_regnum = n;
3153 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3154 tdep->ps_regnum = n;
3155 #if 0
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3157 tdep->interrupt_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3159 tdep->interrupt2_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3161 tdep->cpenable_regnum = n;
3162 #endif
3163
3164 if (rmap->byte_size > max_size)
3165 max_size = rmap->byte_size;
3166 if (rmap->mask != 0 && tdep->num_regs == 0)
3167 tdep->num_regs = n;
3168 /* Find out out how to deal with priveleged registers.
3169
3170 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3171 && tdep->num_nopriv_regs == 0)
3172 tdep->num_nopriv_regs = n;
3173 */
3174 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3175 && tdep->num_regs == 0)
3176 tdep->num_regs = n;
3177 }
3178
3179 /* Number of pseudo registers. */
3180 tdep->num_pseudo_regs = n - tdep->num_regs;
3181
3182 /* Empirically determined maximum sizes. */
3183 tdep->max_register_raw_size = max_size;
3184 tdep->max_register_virtual_size = max_size;
3185 }
3186
3187 /* Module "constructor" function. */
3188
3189 extern struct gdbarch_tdep xtensa_tdep;
3190
3191 static struct gdbarch *
3192 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3193 {
3194 struct gdbarch_tdep *tdep;
3195 struct gdbarch *gdbarch;
3196 struct xtensa_abi_handler *abi_handler;
3197
3198 DEBUGTRACE ("gdbarch_init()\n");
3199
3200 /* We have to set the byte order before we call gdbarch_alloc. */
3201 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3202
3203 tdep = &xtensa_tdep;
3204 gdbarch = gdbarch_alloc (&info, tdep);
3205 xtensa_derive_tdep (tdep);
3206
3207 /* Verify our configuration. */
3208 xtensa_verify_config (gdbarch);
3209 xtensa_session_once_reported = 0;
3210
3211 /* Pseudo-Register read/write. */
3212 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3213 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3214
3215 /* Set target information. */
3216 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3217 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3218 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3219 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3220 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3221
3222 /* Renumber registers for known formats (stabs and dwarf2). */
3223 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3224 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3225
3226 /* We provide our own function to get register information. */
3227 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3228 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3229
3230 /* To call functions from GDB using dummy frame. */
3231 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3232
3233 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3234
3235 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3236
3237 /* Advance PC across any prologue instructions to reach "real" code. */
3238 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3239
3240 /* Stack grows downward. */
3241 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3242
3243 /* Set breakpoints. */
3244 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3245
3246 /* After breakpoint instruction or illegal instruction, pc still
3247 points at break instruction, so don't decrement. */
3248 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3249
3250 /* We don't skip args. */
3251 set_gdbarch_frame_args_skip (gdbarch, 0);
3252
3253 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3254
3255 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3256
3257 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3258
3259 /* Frame handling. */
3260 frame_base_set_default (gdbarch, &xtensa_frame_base);
3261 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3262 dwarf2_append_unwinders (gdbarch);
3263
3264 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3265
3266 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3267
3268 xtensa_add_reggroups (gdbarch);
3269 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3270
3271 set_gdbarch_iterate_over_regset_sections
3272 (gdbarch, xtensa_iterate_over_regset_sections);
3273
3274 set_solib_svr4_fetch_link_map_offsets
3275 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3276
3277 /* Hook in the ABI-specific overrides, if they have been registered. */
3278 gdbarch_init_osabi (info, gdbarch);
3279
3280 return gdbarch;
3281 }
3282
3283 static void
3284 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3285 {
3286 error (_("xtensa_dump_tdep(): not implemented"));
3287 }
3288
3289 /* Provide a prototype to silence -Wmissing-prototypes. */
3290 extern initialize_file_ftype _initialize_xtensa_tdep;
3291
3292 void
3293 _initialize_xtensa_tdep (void)
3294 {
3295 struct cmd_list_element *c;
3296
3297 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3298 xtensa_init_reggroups ();
3299
3300 add_setshow_zuinteger_cmd ("xtensa",
3301 class_maintenance,
3302 &xtensa_debug_level,
3303 _("Set Xtensa debugging."),
3304 _("Show Xtensa debugging."), _("\
3305 When non-zero, Xtensa-specific debugging is enabled. \
3306 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3307 NULL,
3308 NULL,
3309 &setdebuglist, &showdebuglist);
3310 }
This page took 0.098378 seconds and 4 git commands to generate.