7c0d8c15a752f97838405518fd7d5f47693cccb7
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54 #include <algorithm>
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
124
125 static int
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127 {
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 }
134
135 /* Convert a live A-register number to the corresponding AR-register
136 number. */
137 static int
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 int arreg;
142
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
146
147 return arreg + tdep->ar_base;
148 }
149
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152 static int
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
163 }
164
165 /* Read Xtensa register directly from the hardware. */
166 static unsigned long
167 xtensa_read_register (int regnum)
168 {
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173 }
174
175 /* Write Xtensa register directly to the hardware. */
176 static void
177 xtensa_write_register (int regnum, ULONGEST value)
178 {
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 }
181
182 /* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193 static int
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
195 {
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
197 int winsize = 4;
198 int insn;
199 gdb_byte buf[4];
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
215 if (byte_order == BFD_ENDIAN_LITTLE)
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
224 }
225 return winsize;
226 }
227
228
229 /* REGISTER INFORMATION */
230
231 /* Find register by name. */
232 static int
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
234 {
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245 }
246
247 /* Returns the name of a register. */
248 static const char *
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
250 {
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
255
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258 }
259
260 /* Return the type of a register. Create a new type, if necessary. */
261
262 static struct type *
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
273
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
277
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
281 {
282 xtensa_register_t* reg = &tdep->regmap[regnum];
283
284 /* Set ctype for this register (only the first time). */
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
291 /* We always use the memory representation,
292 even if the register width is smaller. */
293 switch (size)
294 {
295 case 1:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 break;
298
299 case 2:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 break;
302
303 case 4:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 break;
306
307 case 8:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 break;
310
311 case 16:
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 break;
314
315 default:
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
322 std::string name = string_printf ("int%d", size * 8);
323
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
327 tp->size = size;
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, name.c_str ());
330 }
331
332 reg->ctype = tp->virtual_type;
333 }
334 }
335 return reg->ctype;
336 }
337
338 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
339 return 0;
340 }
341
342
343 /* Return the 'local' register number for stubs, dwarf2, etc.
344 The debugging information enumerates registers starting from 0 for A0
345 to n for An. So, we only have to add the base number for A0. */
346
347 static int
348 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
349 {
350 int i;
351
352 if (regnum >= 0 && regnum < 16)
353 return gdbarch_tdep (gdbarch)->a0_base + regnum;
354
355 for (i = 0;
356 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 i++)
358 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
359 return i;
360
361 return -1;
362 }
363
364
365 /* Write the bits of a masked register to the various registers.
366 Only the masked areas of these registers are modified; the other
367 fields are untouched. The size of masked registers is always less
368 than or equal to 32 bits. */
369
370 static void
371 xtensa_register_write_masked (struct regcache *regcache,
372 xtensa_register_t *reg, const gdb_byte *buffer)
373 {
374 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
375 const xtensa_mask_t *mask = reg->mask;
376
377 int shift = 0; /* Shift for next mask (mod 32). */
378 int start, size; /* Start bit and size of current mask. */
379
380 unsigned int *ptr = value;
381 unsigned int regval, m, mem = 0;
382
383 int bytesize = reg->byte_size;
384 int bitsize = bytesize * 8;
385 int i, r;
386
387 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388
389 /* Copy the masked register to host byte-order. */
390 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
391 for (i = 0; i < bytesize; i++)
392 {
393 mem >>= 8;
394 mem |= (buffer[bytesize - i - 1] << 24);
395 if ((i & 3) == 3)
396 *ptr++ = mem;
397 }
398 else
399 for (i = 0; i < bytesize; i++)
400 {
401 mem >>= 8;
402 mem |= (buffer[i] << 24);
403 if ((i & 3) == 3)
404 *ptr++ = mem;
405 }
406
407 /* We might have to shift the final value:
408 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
409 bytesize & 3 == x -> shift (4-x) * 8. */
410
411 *ptr = mem >> (((0 - bytesize) & 3) * 8);
412 ptr = value;
413 mem = *ptr;
414
415 /* Write the bits to the masked areas of the other registers. */
416 for (i = 0; i < mask->count; i++)
417 {
418 start = mask->mask[i].bit_start;
419 size = mask->mask[i].bit_size;
420 regval = mem >> shift;
421
422 if ((shift += size) > bitsize)
423 error (_("size of all masks is larger than the register"));
424
425 if (shift >= 32)
426 {
427 mem = *(++ptr);
428 shift -= 32;
429 bitsize -= 32;
430
431 if (shift > 0)
432 regval |= mem << (size - shift);
433 }
434
435 /* Make sure we have a valid register. */
436 r = mask->mask[i].reg_num;
437 if (r >= 0 && size > 0)
438 {
439 /* Don't overwrite the unmasked areas. */
440 ULONGEST old_val;
441 regcache_cooked_read_unsigned (regcache, r, &old_val);
442 m = 0xffffffff >> (32 - size) << start;
443 regval <<= start;
444 regval = (regval & m) | (old_val & ~m);
445 regcache_cooked_write_unsigned (regcache, r, regval);
446 }
447 }
448 }
449
450
451 /* Read a tie state or mapped registers. Read the masked areas
452 of the registers and assemble them into a single value. */
453
454 static enum register_status
455 xtensa_register_read_masked (readable_regcache *regcache,
456 xtensa_register_t *reg, gdb_byte *buffer)
457 {
458 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
459 const xtensa_mask_t *mask = reg->mask;
460
461 int shift = 0;
462 int start, size;
463
464 unsigned int *ptr = value;
465 unsigned int regval, mem = 0;
466
467 int bytesize = reg->byte_size;
468 int bitsize = bytesize * 8;
469 int i;
470
471 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
472 reg->name == 0 ? "" : reg->name);
473
474 /* Assemble the register from the masked areas of other registers. */
475 for (i = 0; i < mask->count; i++)
476 {
477 int r = mask->mask[i].reg_num;
478 if (r >= 0)
479 {
480 enum register_status status;
481 ULONGEST val;
482
483 status = regcache->cooked_read (r, &val);
484 if (status != REG_VALID)
485 return status;
486 regval = (unsigned int) val;
487 }
488 else
489 regval = 0;
490
491 start = mask->mask[i].bit_start;
492 size = mask->mask[i].bit_size;
493
494 regval >>= start;
495
496 if (size < 32)
497 regval &= (0xffffffff >> (32 - size));
498
499 mem |= regval << shift;
500
501 if ((shift += size) > bitsize)
502 error (_("size of all masks is larger than the register"));
503
504 if (shift >= 32)
505 {
506 *ptr++ = mem;
507 bitsize -= 32;
508 shift -= 32;
509
510 if (shift == 0)
511 mem = 0;
512 else
513 mem = regval >> (size - shift);
514 }
515 }
516
517 if (shift > 0)
518 *ptr = mem;
519
520 /* Copy value to target byte order. */
521 ptr = value;
522 mem = *ptr;
523
524 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
525 for (i = 0; i < bytesize; i++)
526 {
527 if ((i & 3) == 0)
528 mem = *ptr++;
529 buffer[bytesize - i - 1] = mem & 0xff;
530 mem >>= 8;
531 }
532 else
533 for (i = 0; i < bytesize; i++)
534 {
535 if ((i & 3) == 0)
536 mem = *ptr++;
537 buffer[i] = mem & 0xff;
538 mem >>= 8;
539 }
540
541 return REG_VALID;
542 }
543
544
545 /* Read pseudo registers. */
546
547 static enum register_status
548 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
549 readable_regcache *regcache,
550 int regnum,
551 gdb_byte *buffer)
552 {
553 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
554 regnum, xtensa_register_name (gdbarch, regnum));
555
556 /* Read aliases a0..a15, if this is a Windowed ABI. */
557 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
558 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
559 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
560 {
561 ULONGEST value;
562 enum register_status status;
563
564 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
565 &value);
566 if (status != REG_VALID)
567 return status;
568 regnum = arreg_number (gdbarch, regnum, value);
569 }
570
571 /* We can always read non-pseudo registers. */
572 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
573 return regcache->raw_read (regnum, buffer);
574
575 /* We have to find out how to deal with priveleged registers.
576 Let's treat them as pseudo-registers, but we cannot read/write them. */
577
578 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
579 || regnum < gdbarch_tdep (gdbarch)->a0_base)
580 {
581 buffer[0] = (gdb_byte)0;
582 buffer[1] = (gdb_byte)0;
583 buffer[2] = (gdb_byte)0;
584 buffer[3] = (gdb_byte)0;
585 return REG_VALID;
586 }
587 /* Pseudo registers. */
588 else if (regnum >= 0
589 && regnum < gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
593 xtensa_register_type_t type = reg->type;
594 int flags = gdbarch_tdep (gdbarch)->target_flags;
595
596 /* We cannot read Unknown or Unmapped registers. */
597 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
598 {
599 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
600 {
601 warning (_("cannot read register %s"),
602 xtensa_register_name (gdbarch, regnum));
603 return REG_VALID;
604 }
605 }
606
607 /* Some targets cannot read TIE register files. */
608 else if (type == xtRegisterTypeTieRegfile)
609 {
610 /* Use 'fetch' to get register? */
611 if (flags & xtTargetFlagsUseFetchStore)
612 {
613 warning (_("cannot read register"));
614 return REG_VALID;
615 }
616
617 /* On some targets (esp. simulators), we can always read the reg. */
618 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
619 {
620 warning (_("cannot read register"));
621 return REG_VALID;
622 }
623 }
624
625 /* We can always read mapped registers. */
626 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
627 return xtensa_register_read_masked (regcache, reg, buffer);
628
629 /* Assume that we can read the register. */
630 return regcache->raw_read (regnum, buffer);
631 }
632 else
633 internal_error (__FILE__, __LINE__,
634 _("invalid register number %d"), regnum);
635 }
636
637
638 /* Write pseudo registers. */
639
640 static void
641 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
642 struct regcache *regcache,
643 int regnum,
644 const gdb_byte *buffer)
645 {
646 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
647 regnum, xtensa_register_name (gdbarch, regnum));
648
649 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
650 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
651 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
652 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
653 {
654 ULONGEST value;
655 regcache_raw_read_unsigned (regcache,
656 gdbarch_tdep (gdbarch)->wb_regnum, &value);
657 regnum = arreg_number (gdbarch, regnum, value);
658 }
659
660 /* We can always write 'core' registers.
661 Note: We might have converted Ax->ARy. */
662 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
663 regcache->raw_write (regnum, buffer);
664
665 /* We have to find out how to deal with priveleged registers.
666 Let's treat them as pseudo-registers, but we cannot read/write them. */
667
668 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
669 {
670 return;
671 }
672 /* Pseudo registers. */
673 else if (regnum >= 0
674 && regnum < gdbarch_num_regs (gdbarch)
675 + gdbarch_num_pseudo_regs (gdbarch))
676 {
677 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
678 xtensa_register_type_t type = reg->type;
679 int flags = gdbarch_tdep (gdbarch)->target_flags;
680
681 /* On most targets, we cannot write registers
682 of type "Unknown" or "Unmapped". */
683 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
684 {
685 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
686 {
687 warning (_("cannot write register %s"),
688 xtensa_register_name (gdbarch, regnum));
689 return;
690 }
691 }
692
693 /* Some targets cannot read TIE register files. */
694 else if (type == xtRegisterTypeTieRegfile)
695 {
696 /* Use 'store' to get register? */
697 if (flags & xtTargetFlagsUseFetchStore)
698 {
699 warning (_("cannot write register"));
700 return;
701 }
702
703 /* On some targets (esp. simulators), we can always write
704 the register. */
705 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
706 {
707 warning (_("cannot write register"));
708 return;
709 }
710 }
711
712 /* We can always write mapped registers. */
713 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
714 {
715 xtensa_register_write_masked (regcache, reg, buffer);
716 return;
717 }
718
719 /* Assume that we can write the register. */
720 regcache->raw_write (regnum, buffer);
721 }
722 else
723 internal_error (__FILE__, __LINE__,
724 _("invalid register number %d"), regnum);
725 }
726
727 static struct reggroup *xtensa_ar_reggroup;
728 static struct reggroup *xtensa_user_reggroup;
729 static struct reggroup *xtensa_vectra_reggroup;
730 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
731
732 static void
733 xtensa_init_reggroups (void)
734 {
735 int i;
736
737 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
738 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
739 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
740
741 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
742 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
743 }
744
745 static void
746 xtensa_add_reggroups (struct gdbarch *gdbarch)
747 {
748 int i;
749
750 /* Predefined groups. */
751 reggroup_add (gdbarch, all_reggroup);
752 reggroup_add (gdbarch, save_reggroup);
753 reggroup_add (gdbarch, restore_reggroup);
754 reggroup_add (gdbarch, system_reggroup);
755 reggroup_add (gdbarch, vector_reggroup);
756 reggroup_add (gdbarch, general_reggroup);
757 reggroup_add (gdbarch, float_reggroup);
758
759 /* Xtensa-specific groups. */
760 reggroup_add (gdbarch, xtensa_ar_reggroup);
761 reggroup_add (gdbarch, xtensa_user_reggroup);
762 reggroup_add (gdbarch, xtensa_vectra_reggroup);
763
764 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
765 reggroup_add (gdbarch, xtensa_cp[i]);
766 }
767
768 static int
769 xtensa_coprocessor_register_group (struct reggroup *group)
770 {
771 int i;
772
773 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
774 if (group == xtensa_cp[i])
775 return i;
776
777 return -1;
778 }
779
780 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
781 | XTENSA_REGISTER_FLAGS_WRITABLE \
782 | XTENSA_REGISTER_FLAGS_VOLATILE)
783
784 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
785 | XTENSA_REGISTER_FLAGS_WRITABLE)
786
787 static int
788 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
789 int regnum,
790 struct reggroup *group)
791 {
792 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
793 xtensa_register_type_t type = reg->type;
794 xtensa_register_group_t rg = reg->group;
795 int cp_number;
796
797 if (group == save_reggroup)
798 /* Every single register should be included into the list of registers
799 to be watched for changes while using -data-list-changed-registers. */
800 return 1;
801
802 /* First, skip registers that are not visible to this target
803 (unknown and unmapped registers when not using ISS). */
804
805 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
806 return 0;
807 if (group == all_reggroup)
808 return 1;
809 if (group == xtensa_ar_reggroup)
810 return rg & xtRegisterGroupAddrReg;
811 if (group == xtensa_user_reggroup)
812 return rg & xtRegisterGroupUser;
813 if (group == float_reggroup)
814 return rg & xtRegisterGroupFloat;
815 if (group == general_reggroup)
816 return rg & xtRegisterGroupGeneral;
817 if (group == system_reggroup)
818 return rg & xtRegisterGroupState;
819 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
820 return rg & xtRegisterGroupVectra;
821 if (group == restore_reggroup)
822 return (regnum < gdbarch_num_regs (gdbarch)
823 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
824 cp_number = xtensa_coprocessor_register_group (group);
825 if (cp_number >= 0)
826 return rg & (xtRegisterGroupCP0 << cp_number);
827 else
828 return 1;
829 }
830
831
832 /* Supply register REGNUM from the buffer specified by GREGS and LEN
833 in the general-purpose register set REGSET to register cache
834 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
835
836 static void
837 xtensa_supply_gregset (const struct regset *regset,
838 struct regcache *rc,
839 int regnum,
840 const void *gregs,
841 size_t len)
842 {
843 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
844 struct gdbarch *gdbarch = rc->arch ();
845 int i;
846
847 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
848
849 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
850 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
851 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
852 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
853 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
854 rc->raw_supply (gdbarch_tdep (gdbarch)->wb_regnum,
855 (char *) &regs->windowbase);
856 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
857 rc->raw_supply (gdbarch_tdep (gdbarch)->ws_regnum,
858 (char *) &regs->windowstart);
859 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
860 rc->raw_supply (gdbarch_tdep (gdbarch)->lbeg_regnum,
861 (char *) &regs->lbeg);
862 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
863 rc->raw_supply (gdbarch_tdep (gdbarch)->lend_regnum,
864 (char *) &regs->lend);
865 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
866 rc->raw_supply (gdbarch_tdep (gdbarch)->lcount_regnum,
867 (char *) &regs->lcount);
868 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
869 rc->raw_supply (gdbarch_tdep (gdbarch)->sar_regnum,
870 (char *) &regs->sar);
871 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
872 && regnum < gdbarch_tdep (gdbarch)->ar_base
873 + gdbarch_tdep (gdbarch)->num_aregs)
874 rc->raw_supply
875 (regnum, (char *) &regs->ar[regnum - gdbarch_tdep (gdbarch)->ar_base]);
876 else if (regnum == -1)
877 {
878 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
879 rc->raw_supply (gdbarch_tdep (gdbarch)->ar_base + i,
880 (char *) &regs->ar[i]);
881 }
882 }
883
884
885 /* Xtensa register set. */
886
887 static struct regset
888 xtensa_gregset =
889 {
890 NULL,
891 xtensa_supply_gregset
892 };
893
894
895 /* Iterate over supported core file register note sections. */
896
897 static void
898 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
899 iterate_over_regset_sections_cb *cb,
900 void *cb_data,
901 const struct regcache *regcache)
902 {
903 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
904
905 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
906 NULL, cb_data);
907 }
908
909
910 /* Handling frames. */
911
912 /* Number of registers to save in case of Windowed ABI. */
913 #define XTENSA_NUM_SAVED_AREGS 12
914
915 /* Frame cache part for Windowed ABI. */
916 typedef struct xtensa_windowed_frame_cache
917 {
918 int wb; /* WINDOWBASE of the previous frame. */
919 int callsize; /* Call size of this frame. */
920 int ws; /* WINDOWSTART of the previous frame. It keeps track of
921 life windows only. If there is no bit set for the
922 window, that means it had been already spilled
923 because of window overflow. */
924
925 /* Addresses of spilled A-registers.
926 AREGS[i] == -1, if corresponding AR is alive. */
927 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
928 } xtensa_windowed_frame_cache_t;
929
930 /* Call0 ABI Definitions. */
931
932 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
933 analysis. */
934 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
935 #define C0_SP 1 /* Register used as SP. */
936 #define C0_FP 15 /* Register used as FP. */
937 #define C0_RA 0 /* Register used as return address. */
938 #define C0_ARGS 2 /* Register used as first arg/retval. */
939 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
940
941 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
942 A-register where the current content of the reg came from (in terms
943 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
944 mean that the orignal content of the register was saved to the stack.
945 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
946 know where SP will end up until the entire prologue has been analyzed. */
947
948 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
949 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
950 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
951
952 extern xtensa_isa xtensa_default_isa;
953
954 typedef struct xtensa_c0reg
955 {
956 int fr_reg; /* original register from which register content
957 is derived, or C0_CONST, or C0_INEXP. */
958 int fr_ofs; /* constant offset from reg, or immediate value. */
959 int to_stk; /* offset from original SP to register (4-byte aligned),
960 or C0_NOSTK if register has not been saved. */
961 } xtensa_c0reg_t;
962
963 /* Frame cache part for Call0 ABI. */
964 typedef struct xtensa_call0_frame_cache
965 {
966 int c0_frmsz; /* Stack frame size. */
967 int c0_hasfp; /* Current frame uses frame pointer. */
968 int fp_regnum; /* A-register used as FP. */
969 int c0_fp; /* Actual value of frame pointer. */
970 int c0_fpalign; /* Dinamic adjustment for the stack
971 pointer. It's an AND mask. Zero,
972 if alignment was not adjusted. */
973 int c0_old_sp; /* In case of dynamic adjustment, it is
974 a register holding unaligned sp.
975 C0_INEXP, when undefined. */
976 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
977 stack offset. C0_NOSTK otherwise. */
978
979 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
980 } xtensa_call0_frame_cache_t;
981
982 typedef struct xtensa_frame_cache
983 {
984 CORE_ADDR base; /* Stack pointer of this frame. */
985 CORE_ADDR pc; /* PC of this frame at the function entry point. */
986 CORE_ADDR ra; /* The raw return address of this frame. */
987 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
988 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
989 int call0; /* It's a call0 framework (else windowed). */
990 union
991 {
992 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
993 xtensa_call0_frame_cache_t c0; /* call0 == true. */
994 };
995 } xtensa_frame_cache_t;
996
997
998 static struct xtensa_frame_cache *
999 xtensa_alloc_frame_cache (int windowed)
1000 {
1001 xtensa_frame_cache_t *cache;
1002 int i;
1003
1004 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1005
1006 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1007
1008 cache->base = 0;
1009 cache->pc = 0;
1010 cache->ra = 0;
1011 cache->ps = 0;
1012 cache->prev_sp = 0;
1013 cache->call0 = !windowed;
1014 if (cache->call0)
1015 {
1016 cache->c0.c0_frmsz = -1;
1017 cache->c0.c0_hasfp = 0;
1018 cache->c0.fp_regnum = -1;
1019 cache->c0.c0_fp = -1;
1020 cache->c0.c0_fpalign = 0;
1021 cache->c0.c0_old_sp = C0_INEXP;
1022 cache->c0.c0_sp_ofs = C0_NOSTK;
1023
1024 for (i = 0; i < C0_NREGS; i++)
1025 {
1026 cache->c0.c0_rt[i].fr_reg = i;
1027 cache->c0.c0_rt[i].fr_ofs = 0;
1028 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1029 }
1030 }
1031 else
1032 {
1033 cache->wd.wb = 0;
1034 cache->wd.ws = 0;
1035 cache->wd.callsize = -1;
1036
1037 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1038 cache->wd.aregs[i] = -1;
1039 }
1040 return cache;
1041 }
1042
1043
1044 static CORE_ADDR
1045 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1046 {
1047 return address & ~15;
1048 }
1049
1050
1051 static CORE_ADDR
1052 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1053 {
1054 gdb_byte buf[8];
1055 CORE_ADDR pc;
1056
1057 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1058 host_address_to_string (next_frame));
1059
1060 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1061 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1062
1063 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1064
1065 return pc;
1066 }
1067
1068
1069 static struct frame_id
1070 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1071 {
1072 CORE_ADDR pc, fp;
1073
1074 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1075
1076 pc = get_frame_pc (this_frame);
1077 fp = get_frame_register_unsigned
1078 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1079
1080 /* Make dummy frame ID unique by adding a constant. */
1081 return frame_id_build (fp + SP_ALIGNMENT, pc);
1082 }
1083
1084 /* Returns true, if instruction to execute next is unique to Xtensa Window
1085 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1086
1087 static int
1088 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1089 {
1090 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1091 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1092 unsigned int code;
1093
1094 if (byte_order == BFD_ENDIAN_BIG)
1095 {
1096 /* Check, if this is L32E or S32E. */
1097 code = insn & 0xf000ff00;
1098 if ((code == 0x00009000) || (code == 0x00009400))
1099 return 1;
1100 /* Check, if this is RFWU or RFWO. */
1101 code = insn & 0xffffff00;
1102 return ((code == 0x00430000) || (code == 0x00530000));
1103 }
1104 else
1105 {
1106 /* Check, if this is L32E or S32E. */
1107 code = insn & 0x00ff000f;
1108 if ((code == 0x090000) || (code == 0x490000))
1109 return 1;
1110 /* Check, if this is RFWU or RFWO. */
1111 code = insn & 0x00ffffff;
1112 return ((code == 0x00003400) || (code == 0x00003500));
1113 }
1114 }
1115
1116 /* Returns the best guess about which register is a frame pointer
1117 for the function containing CURRENT_PC. */
1118
1119 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1120 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1121
1122 static unsigned int
1123 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1124 {
1125 #define RETURN_FP goto done
1126
1127 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1128 CORE_ADDR start_addr;
1129 xtensa_isa isa;
1130 xtensa_insnbuf ins, slot;
1131 gdb_byte ibuf[XTENSA_ISA_BSZ];
1132 CORE_ADDR ia, bt, ba;
1133 xtensa_format ifmt;
1134 int ilen, islots, is;
1135 xtensa_opcode opc;
1136 const char *opcname;
1137
1138 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1139 if (start_addr == 0)
1140 return fp_regnum;
1141
1142 isa = xtensa_default_isa;
1143 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1144 ins = xtensa_insnbuf_alloc (isa);
1145 slot = xtensa_insnbuf_alloc (isa);
1146 ba = 0;
1147
1148 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1149 {
1150 if (ia + xtensa_isa_maxlength (isa) > bt)
1151 {
1152 ba = ia;
1153 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1154 ? ba + XTENSA_ISA_BSZ : current_pc;
1155 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1156 RETURN_FP;
1157 }
1158
1159 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1160 ifmt = xtensa_format_decode (isa, ins);
1161 if (ifmt == XTENSA_UNDEFINED)
1162 RETURN_FP;
1163 ilen = xtensa_format_length (isa, ifmt);
1164 if (ilen == XTENSA_UNDEFINED)
1165 RETURN_FP;
1166 islots = xtensa_format_num_slots (isa, ifmt);
1167 if (islots == XTENSA_UNDEFINED)
1168 RETURN_FP;
1169
1170 for (is = 0; is < islots; ++is)
1171 {
1172 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1173 RETURN_FP;
1174
1175 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1176 if (opc == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178
1179 opcname = xtensa_opcode_name (isa, opc);
1180
1181 if (strcasecmp (opcname, "mov.n") == 0
1182 || strcasecmp (opcname, "or") == 0)
1183 {
1184 unsigned int register_operand;
1185
1186 /* Possible candidate for setting frame pointer
1187 from A1. This is what we are looking for. */
1188
1189 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1190 is, slot, &register_operand) != 0)
1191 RETURN_FP;
1192 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1193 RETURN_FP;
1194 if (register_operand == 1) /* Mov{.n} FP A1. */
1195 {
1196 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1197 &register_operand) != 0)
1198 RETURN_FP;
1199 if (xtensa_operand_decode (isa, opc, 0,
1200 &register_operand) != 0)
1201 RETURN_FP;
1202
1203 fp_regnum
1204 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1205 RETURN_FP;
1206 }
1207 }
1208
1209 if (
1210 /* We have problems decoding the memory. */
1211 opcname == NULL
1212 || strcasecmp (opcname, "ill") == 0
1213 || strcasecmp (opcname, "ill.n") == 0
1214 /* Hit planted breakpoint. */
1215 || strcasecmp (opcname, "break") == 0
1216 || strcasecmp (opcname, "break.n") == 0
1217 /* Flow control instructions finish prologue. */
1218 || xtensa_opcode_is_branch (isa, opc) > 0
1219 || xtensa_opcode_is_jump (isa, opc) > 0
1220 || xtensa_opcode_is_loop (isa, opc) > 0
1221 || xtensa_opcode_is_call (isa, opc) > 0
1222 || strcasecmp (opcname, "simcall") == 0
1223 || strcasecmp (opcname, "syscall") == 0)
1224 /* Can not continue analysis. */
1225 RETURN_FP;
1226 }
1227 }
1228 done:
1229 xtensa_insnbuf_free(isa, slot);
1230 xtensa_insnbuf_free(isa, ins);
1231 return fp_regnum;
1232 }
1233
1234 /* The key values to identify the frame using "cache" are
1235
1236 cache->base = SP (or best guess about FP) of this frame;
1237 cache->pc = entry-PC (entry point of the frame function);
1238 cache->prev_sp = SP of the previous frame. */
1239
1240 static void
1241 call0_frame_cache (struct frame_info *this_frame,
1242 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1243
1244 static void
1245 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1246 xtensa_frame_cache_t *cache,
1247 CORE_ADDR pc);
1248
1249 static struct xtensa_frame_cache *
1250 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1251 {
1252 xtensa_frame_cache_t *cache;
1253 CORE_ADDR ra, wb, ws, pc, sp, ps;
1254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1256 unsigned int fp_regnum;
1257 int windowed, ps_regnum;
1258
1259 if (*this_cache)
1260 return (struct xtensa_frame_cache *) *this_cache;
1261
1262 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1263 ps_regnum = gdbarch_ps_regnum (gdbarch);
1264 ps = (ps_regnum >= 0
1265 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1266
1267 windowed = windowing_enabled (gdbarch, ps);
1268
1269 /* Get pristine xtensa-frame. */
1270 cache = xtensa_alloc_frame_cache (windowed);
1271 *this_cache = cache;
1272
1273 if (windowed)
1274 {
1275 LONGEST op1;
1276
1277 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1278 wb = get_frame_register_unsigned (this_frame,
1279 gdbarch_tdep (gdbarch)->wb_regnum);
1280 ws = get_frame_register_unsigned (this_frame,
1281 gdbarch_tdep (gdbarch)->ws_regnum);
1282
1283 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1284 && XTENSA_IS_ENTRY (gdbarch, op1))
1285 {
1286 int callinc = CALLINC (ps);
1287 ra = get_frame_register_unsigned
1288 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1289
1290 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1291 cache->wd.callsize = 0;
1292 cache->wd.wb = wb;
1293 cache->wd.ws = ws;
1294 cache->prev_sp = get_frame_register_unsigned
1295 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1296
1297 /* This only can be the outermost frame since we are
1298 just about to execute ENTRY. SP hasn't been set yet.
1299 We can assume any frame size, because it does not
1300 matter, and, let's fake frame base in cache. */
1301 cache->base = cache->prev_sp - 16;
1302
1303 cache->pc = pc;
1304 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1305 cache->ps = (ps & ~PS_CALLINC_MASK)
1306 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1307
1308 return cache;
1309 }
1310 else
1311 {
1312 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1313 ra = get_frame_register_unsigned (this_frame,
1314 gdbarch_tdep (gdbarch)->a0_base);
1315 cache->wd.callsize = WINSIZE (ra);
1316 cache->wd.wb = (wb - cache->wd.callsize / 4)
1317 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1318 cache->wd.ws = ws & ~(1 << wb);
1319
1320 cache->pc = get_frame_func (this_frame);
1321 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1322 cache->ps = (ps & ~PS_CALLINC_MASK)
1323 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1324 }
1325
1326 if (cache->wd.ws == 0)
1327 {
1328 int i;
1329
1330 /* Set A0...A3. */
1331 sp = get_frame_register_unsigned
1332 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1333
1334 for (i = 0; i < 4; i++, sp += 4)
1335 {
1336 cache->wd.aregs[i] = sp;
1337 }
1338
1339 if (cache->wd.callsize > 4)
1340 {
1341 /* Set A4...A7/A11. */
1342 /* Get the SP of the frame previous to the previous one.
1343 To achieve this, we have to dereference SP twice. */
1344 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1345 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1346 sp -= cache->wd.callsize * 4;
1347
1348 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1349 {
1350 cache->wd.aregs[i] = sp;
1351 }
1352 }
1353 }
1354
1355 if ((cache->prev_sp == 0) && ( ra != 0 ))
1356 /* If RA is equal to 0 this frame is an outermost frame. Leave
1357 cache->prev_sp unchanged marking the boundary of the frame stack. */
1358 {
1359 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1360 {
1361 /* Register window overflow already happened.
1362 We can read caller's SP from the proper spill loction. */
1363 sp = get_frame_register_unsigned
1364 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1365 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1366 }
1367 else
1368 {
1369 /* Read caller's frame SP directly from the previous window. */
1370 int regnum = arreg_number
1371 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1372 cache->wd.wb);
1373
1374 cache->prev_sp = xtensa_read_register (regnum);
1375 }
1376 }
1377 }
1378 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1379 {
1380 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1381
1382 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1383 /* Everything was set already, including cache->base. */
1384 return cache;
1385 }
1386 else /* Call0 framework. */
1387 {
1388 call0_frame_cache (this_frame, cache, pc);
1389 fp_regnum = cache->c0.fp_regnum;
1390 }
1391
1392 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1393
1394 return cache;
1395 }
1396
1397 static int xtensa_session_once_reported = 1;
1398
1399 /* Report a problem with prologue analysis while doing backtracing.
1400 But, do it only once to avoid annoyng repeated messages. */
1401
1402 static void
1403 warning_once (void)
1404 {
1405 if (xtensa_session_once_reported == 0)
1406 warning (_("\
1407 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1408 This message will not be repeated in this session.\n"));
1409
1410 xtensa_session_once_reported = 1;
1411 }
1412
1413
1414 static void
1415 xtensa_frame_this_id (struct frame_info *this_frame,
1416 void **this_cache,
1417 struct frame_id *this_id)
1418 {
1419 struct xtensa_frame_cache *cache =
1420 xtensa_frame_cache (this_frame, this_cache);
1421
1422 if (cache->prev_sp == 0)
1423 return;
1424
1425 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1426 }
1427
1428 static struct value *
1429 xtensa_frame_prev_register (struct frame_info *this_frame,
1430 void **this_cache,
1431 int regnum)
1432 {
1433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1434 struct xtensa_frame_cache *cache;
1435 ULONGEST saved_reg = 0;
1436 int done = 1;
1437
1438 if (*this_cache == NULL)
1439 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1440 cache = (struct xtensa_frame_cache *) *this_cache;
1441
1442 if (regnum ==gdbarch_pc_regnum (gdbarch))
1443 saved_reg = cache->ra;
1444 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1445 saved_reg = cache->prev_sp;
1446 else if (!cache->call0)
1447 {
1448 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1449 saved_reg = cache->wd.ws;
1450 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1451 saved_reg = cache->wd.wb;
1452 else if (regnum == gdbarch_ps_regnum (gdbarch))
1453 saved_reg = cache->ps;
1454 else
1455 done = 0;
1456 }
1457 else
1458 done = 0;
1459
1460 if (done)
1461 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1462
1463 if (!cache->call0) /* Windowed ABI. */
1464 {
1465 /* Convert A-register numbers to AR-register numbers,
1466 if we deal with A-register. */
1467 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1468 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1469 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1470
1471 /* Check, if we deal with AR-register saved on stack. */
1472 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1473 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1474 + gdbarch_tdep (gdbarch)->num_aregs))
1475 {
1476 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1477
1478 if (areg >= 0
1479 && areg < XTENSA_NUM_SAVED_AREGS
1480 && cache->wd.aregs[areg] != -1)
1481 return frame_unwind_got_memory (this_frame, regnum,
1482 cache->wd.aregs[areg]);
1483 }
1484 }
1485 else /* Call0 ABI. */
1486 {
1487 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1488 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1489 + C0_NREGS))
1490 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1491
1492 if (reg < C0_NREGS)
1493 {
1494 CORE_ADDR spe;
1495 int stkofs;
1496
1497 /* If register was saved in the prologue, retrieve it. */
1498 stkofs = cache->c0.c0_rt[reg].to_stk;
1499 if (stkofs != C0_NOSTK)
1500 {
1501 /* Determine SP on entry based on FP. */
1502 spe = cache->c0.c0_fp
1503 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1504
1505 return frame_unwind_got_memory (this_frame, regnum,
1506 spe + stkofs);
1507 }
1508 }
1509 }
1510
1511 /* All other registers have been either saved to
1512 the stack or are still alive in the processor. */
1513
1514 return frame_unwind_got_register (this_frame, regnum, regnum);
1515 }
1516
1517
1518 static const struct frame_unwind
1519 xtensa_unwind =
1520 {
1521 NORMAL_FRAME,
1522 default_frame_unwind_stop_reason,
1523 xtensa_frame_this_id,
1524 xtensa_frame_prev_register,
1525 NULL,
1526 default_frame_sniffer
1527 };
1528
1529 static CORE_ADDR
1530 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1531 {
1532 struct xtensa_frame_cache *cache =
1533 xtensa_frame_cache (this_frame, this_cache);
1534
1535 return cache->base;
1536 }
1537
1538 static const struct frame_base
1539 xtensa_frame_base =
1540 {
1541 &xtensa_unwind,
1542 xtensa_frame_base_address,
1543 xtensa_frame_base_address,
1544 xtensa_frame_base_address
1545 };
1546
1547
1548 static void
1549 xtensa_extract_return_value (struct type *type,
1550 struct regcache *regcache,
1551 void *dst)
1552 {
1553 struct gdbarch *gdbarch = regcache->arch ();
1554 bfd_byte *valbuf = (bfd_byte *) dst;
1555 int len = TYPE_LENGTH (type);
1556 ULONGEST pc, wb;
1557 int callsize, areg;
1558 int offset = 0;
1559
1560 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1561
1562 gdb_assert(len > 0);
1563
1564 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1565 {
1566 /* First, we have to find the caller window in the register file. */
1567 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1568 callsize = extract_call_winsize (gdbarch, pc);
1569
1570 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1571 if (len > (callsize > 8 ? 8 : 16))
1572 internal_error (__FILE__, __LINE__,
1573 _("cannot extract return value of %d bytes long"),
1574 len);
1575
1576 /* Get the register offset of the return
1577 register (A2) in the caller window. */
1578 regcache_raw_read_unsigned
1579 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1580 areg = arreg_number (gdbarch,
1581 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1582 }
1583 else
1584 {
1585 /* No windowing hardware - Call0 ABI. */
1586 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1587 }
1588
1589 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1590
1591 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1592 offset = 4 - len;
1593
1594 for (; len > 0; len -= 4, areg++, valbuf += 4)
1595 {
1596 if (len < 4)
1597 regcache->raw_read_part (areg, offset, len, valbuf);
1598 else
1599 regcache->raw_read (areg, valbuf);
1600 }
1601 }
1602
1603
1604 static void
1605 xtensa_store_return_value (struct type *type,
1606 struct regcache *regcache,
1607 const void *dst)
1608 {
1609 struct gdbarch *gdbarch = regcache->arch ();
1610 const bfd_byte *valbuf = (const bfd_byte *) dst;
1611 unsigned int areg;
1612 ULONGEST pc, wb;
1613 int callsize;
1614 int len = TYPE_LENGTH (type);
1615 int offset = 0;
1616
1617 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1618
1619 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1620 {
1621 regcache_raw_read_unsigned
1622 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1623 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1624 callsize = extract_call_winsize (gdbarch, pc);
1625
1626 if (len > (callsize > 8 ? 8 : 16))
1627 internal_error (__FILE__, __LINE__,
1628 _("unimplemented for this length: %d"),
1629 TYPE_LENGTH (type));
1630 areg = arreg_number (gdbarch,
1631 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1632
1633 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1634 callsize, (int) wb);
1635 }
1636 else
1637 {
1638 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1639 }
1640
1641 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1642 offset = 4 - len;
1643
1644 for (; len > 0; len -= 4, areg++, valbuf += 4)
1645 {
1646 if (len < 4)
1647 regcache->raw_write_part (areg, offset, len, valbuf);
1648 else
1649 regcache->raw_write (areg, valbuf);
1650 }
1651 }
1652
1653
1654 static enum return_value_convention
1655 xtensa_return_value (struct gdbarch *gdbarch,
1656 struct value *function,
1657 struct type *valtype,
1658 struct regcache *regcache,
1659 gdb_byte *readbuf,
1660 const gdb_byte *writebuf)
1661 {
1662 /* Structures up to 16 bytes are returned in registers. */
1663
1664 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1665 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1666 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1667 && TYPE_LENGTH (valtype) > 16);
1668
1669 if (struct_return)
1670 return RETURN_VALUE_STRUCT_CONVENTION;
1671
1672 DEBUGTRACE ("xtensa_return_value(...)\n");
1673
1674 if (writebuf != NULL)
1675 {
1676 xtensa_store_return_value (valtype, regcache, writebuf);
1677 }
1678
1679 if (readbuf != NULL)
1680 {
1681 gdb_assert (!struct_return);
1682 xtensa_extract_return_value (valtype, regcache, readbuf);
1683 }
1684 return RETURN_VALUE_REGISTER_CONVENTION;
1685 }
1686
1687
1688 /* DUMMY FRAME */
1689
1690 static CORE_ADDR
1691 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1692 struct value *function,
1693 struct regcache *regcache,
1694 CORE_ADDR bp_addr,
1695 int nargs,
1696 struct value **args,
1697 CORE_ADDR sp,
1698 int struct_return,
1699 CORE_ADDR struct_addr)
1700 {
1701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1702 int i;
1703 int size, onstack_size;
1704 gdb_byte *buf = (gdb_byte *) alloca (16);
1705 CORE_ADDR ra, ps;
1706 struct argument_info
1707 {
1708 const bfd_byte *contents;
1709 int length;
1710 int onstack; /* onstack == 0 => in reg */
1711 int align; /* alignment */
1712 union
1713 {
1714 int offset; /* stack offset if on stack. */
1715 int regno; /* regno if in register. */
1716 } u;
1717 };
1718
1719 struct argument_info *arg_info =
1720 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1721
1722 CORE_ADDR osp = sp;
1723
1724 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1725
1726 if (xtensa_debug_level > 3)
1727 {
1728 int i;
1729 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1730 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1731 "struct_addr=0x%x\n",
1732 (int) sp, (int) struct_return, (int) struct_addr);
1733
1734 for (i = 0; i < nargs; i++)
1735 {
1736 struct value *arg = args[i];
1737 struct type *arg_type = check_typedef (value_type (arg));
1738 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1739 host_address_to_string (arg),
1740 TYPE_LENGTH (arg_type));
1741 switch (TYPE_CODE (arg_type))
1742 {
1743 case TYPE_CODE_INT:
1744 fprintf_unfiltered (gdb_stdlog, "int");
1745 break;
1746 case TYPE_CODE_STRUCT:
1747 fprintf_unfiltered (gdb_stdlog, "struct");
1748 break;
1749 default:
1750 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1751 break;
1752 }
1753 fprintf_unfiltered (gdb_stdlog, " %s\n",
1754 host_address_to_string (value_contents (arg)));
1755 }
1756 }
1757
1758 /* First loop: collect information.
1759 Cast into type_long. (This shouldn't happen often for C because
1760 GDB already does this earlier.) It's possible that GDB could
1761 do it all the time but it's harmless to leave this code here. */
1762
1763 size = 0;
1764 onstack_size = 0;
1765 i = 0;
1766
1767 if (struct_return)
1768 size = REGISTER_SIZE;
1769
1770 for (i = 0; i < nargs; i++)
1771 {
1772 struct argument_info *info = &arg_info[i];
1773 struct value *arg = args[i];
1774 struct type *arg_type = check_typedef (value_type (arg));
1775
1776 switch (TYPE_CODE (arg_type))
1777 {
1778 case TYPE_CODE_INT:
1779 case TYPE_CODE_BOOL:
1780 case TYPE_CODE_CHAR:
1781 case TYPE_CODE_RANGE:
1782 case TYPE_CODE_ENUM:
1783
1784 /* Cast argument to long if necessary as the mask does it too. */
1785 if (TYPE_LENGTH (arg_type)
1786 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1787 {
1788 arg_type = builtin_type (gdbarch)->builtin_long;
1789 arg = value_cast (arg_type, arg);
1790 }
1791 /* Aligment is equal to the type length for the basic types. */
1792 info->align = TYPE_LENGTH (arg_type);
1793 break;
1794
1795 case TYPE_CODE_FLT:
1796
1797 /* Align doubles correctly. */
1798 if (TYPE_LENGTH (arg_type)
1799 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1800 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1801 else
1802 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1803 break;
1804
1805 case TYPE_CODE_STRUCT:
1806 default:
1807 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1808 break;
1809 }
1810 info->length = TYPE_LENGTH (arg_type);
1811 info->contents = value_contents (arg);
1812
1813 /* Align size and onstack_size. */
1814 size = (size + info->align - 1) & ~(info->align - 1);
1815 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1816
1817 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1818 {
1819 info->onstack = 1;
1820 info->u.offset = onstack_size;
1821 onstack_size += info->length;
1822 }
1823 else
1824 {
1825 info->onstack = 0;
1826 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1827 }
1828 size += info->length;
1829 }
1830
1831 /* Adjust the stack pointer and align it. */
1832 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1833
1834 /* Simulate MOVSP, if Windowed ABI. */
1835 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1836 && (sp != osp))
1837 {
1838 read_memory (osp - 16, buf, 16);
1839 write_memory (sp - 16, buf, 16);
1840 }
1841
1842 /* Second Loop: Load arguments. */
1843
1844 if (struct_return)
1845 {
1846 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1847 regcache->cooked_write (ARG_1ST (gdbarch), buf);
1848 }
1849
1850 for (i = 0; i < nargs; i++)
1851 {
1852 struct argument_info *info = &arg_info[i];
1853
1854 if (info->onstack)
1855 {
1856 int n = info->length;
1857 CORE_ADDR offset = sp + info->u.offset;
1858
1859 /* Odd-sized structs are aligned to the lower side of a memory
1860 word in big-endian mode and require a shift. This only
1861 applies for structures smaller than one word. */
1862
1863 if (n < REGISTER_SIZE
1864 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1865 offset += (REGISTER_SIZE - n);
1866
1867 write_memory (offset, info->contents, info->length);
1868
1869 }
1870 else
1871 {
1872 int n = info->length;
1873 const bfd_byte *cp = info->contents;
1874 int r = info->u.regno;
1875
1876 /* Odd-sized structs are aligned to the lower side of registers in
1877 big-endian mode and require a shift. The odd-sized leftover will
1878 be at the end. Note that this is only true for structures smaller
1879 than REGISTER_SIZE; for larger odd-sized structures the excess
1880 will be left-aligned in the register on both endiannesses. */
1881
1882 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1883 {
1884 ULONGEST v;
1885 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1886 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1887
1888 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1889 regcache->cooked_write (r, buf);
1890
1891 cp += REGISTER_SIZE;
1892 n -= REGISTER_SIZE;
1893 r++;
1894 }
1895 else
1896 while (n > 0)
1897 {
1898 regcache->cooked_write (r, cp);
1899
1900 cp += REGISTER_SIZE;
1901 n -= REGISTER_SIZE;
1902 r++;
1903 }
1904 }
1905 }
1906
1907 /* Set the return address of dummy frame to the dummy address.
1908 The return address for the current function (in A0) is
1909 saved in the dummy frame, so we can savely overwrite A0 here. */
1910
1911 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1912 {
1913 ULONGEST val;
1914
1915 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1916 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1917 ps = (unsigned long) val & ~0x00030000;
1918 regcache_cooked_write_unsigned
1919 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1920 regcache_cooked_write_unsigned (regcache,
1921 gdbarch_ps_regnum (gdbarch),
1922 ps | 0x00010000);
1923
1924 /* All the registers have been saved. After executing
1925 dummy call, they all will be restored. So it's safe
1926 to modify WINDOWSTART register to make it look like there
1927 is only one register window corresponding to WINDOWEBASE. */
1928
1929 regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum, buf);
1930 regcache_cooked_write_unsigned
1931 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1932 1 << extract_unsigned_integer (buf, 4, byte_order));
1933 }
1934 else
1935 {
1936 /* Simulate CALL0: write RA into A0 register. */
1937 regcache_cooked_write_unsigned
1938 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1939 }
1940
1941 /* Set new stack pointer and return it. */
1942 regcache_cooked_write_unsigned (regcache,
1943 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1944 /* Make dummy frame ID unique by adding a constant. */
1945 return sp + SP_ALIGNMENT;
1946 }
1947
1948 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1949
1950 static int
1951 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1952 {
1953 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1954 return 2;
1955 else
1956 return 4;
1957 }
1958
1959 /* Return a breakpoint for the current location of PC. We always use
1960 the density version if we have density instructions (regardless of the
1961 current instruction at PC), and use regular instructions otherwise. */
1962
1963 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1964 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1965 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1966 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1967
1968 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1969
1970 static const gdb_byte *
1971 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1972 {
1973 *size = kind;
1974
1975 if (kind == 4)
1976 {
1977 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1978 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1979
1980 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1981 return big_breakpoint;
1982 else
1983 return little_breakpoint;
1984 }
1985 else
1986 {
1987 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1988 static unsigned char density_little_breakpoint[]
1989 = DENSITY_LITTLE_BREAKPOINT;
1990
1991 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1992 return density_big_breakpoint;
1993 else
1994 return density_little_breakpoint;
1995 }
1996 }
1997
1998 /* Call0 ABI support routines. */
1999
2000 /* Return true, if PC points to "ret" or "ret.n". */
2001
2002 static int
2003 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2004 {
2005 #define RETURN_RET goto done
2006 xtensa_isa isa;
2007 xtensa_insnbuf ins, slot;
2008 gdb_byte ibuf[XTENSA_ISA_BSZ];
2009 CORE_ADDR ia, bt, ba;
2010 xtensa_format ifmt;
2011 int ilen, islots, is;
2012 xtensa_opcode opc;
2013 const char *opcname;
2014 int found_ret = 0;
2015
2016 isa = xtensa_default_isa;
2017 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2018 ins = xtensa_insnbuf_alloc (isa);
2019 slot = xtensa_insnbuf_alloc (isa);
2020 ba = 0;
2021
2022 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2023 {
2024 if (ia + xtensa_isa_maxlength (isa) > bt)
2025 {
2026 ba = ia;
2027 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2028 ? ba + XTENSA_ISA_BSZ : finish_pc;
2029 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2030 RETURN_RET;
2031 }
2032
2033 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2034 ifmt = xtensa_format_decode (isa, ins);
2035 if (ifmt == XTENSA_UNDEFINED)
2036 RETURN_RET;
2037 ilen = xtensa_format_length (isa, ifmt);
2038 if (ilen == XTENSA_UNDEFINED)
2039 RETURN_RET;
2040 islots = xtensa_format_num_slots (isa, ifmt);
2041 if (islots == XTENSA_UNDEFINED)
2042 RETURN_RET;
2043
2044 for (is = 0; is < islots; ++is)
2045 {
2046 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2047 RETURN_RET;
2048
2049 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2050 if (opc == XTENSA_UNDEFINED)
2051 RETURN_RET;
2052
2053 opcname = xtensa_opcode_name (isa, opc);
2054
2055 if ((strcasecmp (opcname, "ret.n") == 0)
2056 || (strcasecmp (opcname, "ret") == 0))
2057 {
2058 found_ret = 1;
2059 RETURN_RET;
2060 }
2061 }
2062 }
2063 done:
2064 xtensa_insnbuf_free(isa, slot);
2065 xtensa_insnbuf_free(isa, ins);
2066 return found_ret;
2067 }
2068
2069 /* Call0 opcode class. Opcodes are preclassified according to what they
2070 mean for Call0 prologue analysis, and their number of significant operands.
2071 The purpose of this is to simplify prologue analysis by separating
2072 instruction decoding (libisa) from the semantics of prologue analysis. */
2073
2074 typedef enum
2075 {
2076 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2077 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2078 c0opc_flow, /* Flow control insn. */
2079 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2080 c0opc_break, /* Debugger software breakpoints. */
2081 c0opc_add, /* Adding two registers. */
2082 c0opc_addi, /* Adding a register and an immediate. */
2083 c0opc_and, /* Bitwise "and"-ing two registers. */
2084 c0opc_sub, /* Subtracting a register from a register. */
2085 c0opc_mov, /* Moving a register to a register. */
2086 c0opc_movi, /* Moving an immediate to a register. */
2087 c0opc_l32r, /* Loading a literal. */
2088 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2089 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2090 c0opc_l32e, /* L32E instruction. */
2091 c0opc_s32e, /* S32E instruction. */
2092 c0opc_rfwo, /* RFWO instruction. */
2093 c0opc_rfwu, /* RFWU instruction. */
2094 c0opc_NrOf /* Number of opcode classifications. */
2095 } xtensa_insn_kind;
2096
2097 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2098
2099 static int
2100 rwx_special_register (const char *opcname)
2101 {
2102 char ch = *opcname++;
2103
2104 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2105 return 0;
2106 if (*opcname++ != 's')
2107 return 0;
2108 if (*opcname++ != 'r')
2109 return 0;
2110 if (*opcname++ != '.')
2111 return 0;
2112
2113 return 1;
2114 }
2115
2116 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2117
2118 static xtensa_insn_kind
2119 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2120 {
2121 const char *opcname;
2122 xtensa_insn_kind opclass = c0opc_uninteresting;
2123
2124 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2125
2126 /* Get opcode name and handle special classifications. */
2127
2128 opcname = xtensa_opcode_name (isa, opc);
2129
2130 if (opcname == NULL
2131 || strcasecmp (opcname, "ill") == 0
2132 || strcasecmp (opcname, "ill.n") == 0)
2133 opclass = c0opc_illegal;
2134 else if (strcasecmp (opcname, "break") == 0
2135 || strcasecmp (opcname, "break.n") == 0)
2136 opclass = c0opc_break;
2137 else if (strcasecmp (opcname, "entry") == 0)
2138 opclass = c0opc_entry;
2139 else if (strcasecmp (opcname, "rfwo") == 0)
2140 opclass = c0opc_rfwo;
2141 else if (strcasecmp (opcname, "rfwu") == 0)
2142 opclass = c0opc_rfwu;
2143 else if (xtensa_opcode_is_branch (isa, opc) > 0
2144 || xtensa_opcode_is_jump (isa, opc) > 0
2145 || xtensa_opcode_is_loop (isa, opc) > 0
2146 || xtensa_opcode_is_call (isa, opc) > 0
2147 || strcasecmp (opcname, "simcall") == 0
2148 || strcasecmp (opcname, "syscall") == 0)
2149 opclass = c0opc_flow;
2150
2151 /* Also, classify specific opcodes that need to be tracked. */
2152 else if (strcasecmp (opcname, "add") == 0
2153 || strcasecmp (opcname, "add.n") == 0)
2154 opclass = c0opc_add;
2155 else if (strcasecmp (opcname, "and") == 0)
2156 opclass = c0opc_and;
2157 else if (strcasecmp (opcname, "addi") == 0
2158 || strcasecmp (opcname, "addi.n") == 0
2159 || strcasecmp (opcname, "addmi") == 0)
2160 opclass = c0opc_addi;
2161 else if (strcasecmp (opcname, "sub") == 0)
2162 opclass = c0opc_sub;
2163 else if (strcasecmp (opcname, "mov.n") == 0
2164 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2165 opclass = c0opc_mov;
2166 else if (strcasecmp (opcname, "movi") == 0
2167 || strcasecmp (opcname, "movi.n") == 0)
2168 opclass = c0opc_movi;
2169 else if (strcasecmp (opcname, "l32r") == 0)
2170 opclass = c0opc_l32r;
2171 else if (strcasecmp (opcname, "s32i") == 0
2172 || strcasecmp (opcname, "s32i.n") == 0)
2173 opclass = c0opc_s32i;
2174 else if (strcasecmp (opcname, "l32e") == 0)
2175 opclass = c0opc_l32e;
2176 else if (strcasecmp (opcname, "s32e") == 0)
2177 opclass = c0opc_s32e;
2178 else if (rwx_special_register (opcname))
2179 opclass = c0opc_rwxsr;
2180
2181 return opclass;
2182 }
2183
2184 /* Tracks register movement/mutation for a given operation, which may
2185 be within a bundle. Updates the destination register tracking info
2186 accordingly. The pc is needed only for pc-relative load instructions
2187 (eg. l32r). The SP register number is needed to identify stores to
2188 the stack frame. Returns 0, if analysis was succesfull, non-zero
2189 otherwise. */
2190
2191 static int
2192 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2193 xtensa_insn_kind opclass, int nods, unsigned odv[],
2194 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2195 {
2196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2197 unsigned litbase, litaddr, litval;
2198
2199 switch (opclass)
2200 {
2201 case c0opc_addi:
2202 /* 3 operands: dst, src, imm. */
2203 gdb_assert (nods == 3);
2204 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2205 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2206 break;
2207 case c0opc_add:
2208 /* 3 operands: dst, src1, src2. */
2209 gdb_assert (nods == 3);
2210 if (src[odv[1]].fr_reg == C0_CONST)
2211 {
2212 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2213 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2214 }
2215 else if (src[odv[2]].fr_reg == C0_CONST)
2216 {
2217 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2218 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2219 }
2220 else dst[odv[0]].fr_reg = C0_INEXP;
2221 break;
2222 case c0opc_and:
2223 /* 3 operands: dst, src1, src2. */
2224 gdb_assert (nods == 3);
2225 if (cache->c0.c0_fpalign == 0)
2226 {
2227 /* Handle dynamic stack alignment. */
2228 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2229 {
2230 if (src[odv[2]].fr_reg == C0_CONST)
2231 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2232 break;
2233 }
2234 else if ((src[odv[0]].fr_reg == spreg)
2235 && (src[odv[2]].fr_reg == spreg))
2236 {
2237 if (src[odv[1]].fr_reg == C0_CONST)
2238 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2239 break;
2240 }
2241 /* else fall through. */
2242 }
2243 if (src[odv[1]].fr_reg == C0_CONST)
2244 {
2245 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2246 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2247 }
2248 else if (src[odv[2]].fr_reg == C0_CONST)
2249 {
2250 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2251 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2252 }
2253 else dst[odv[0]].fr_reg = C0_INEXP;
2254 break;
2255 case c0opc_sub:
2256 /* 3 operands: dst, src1, src2. */
2257 gdb_assert (nods == 3);
2258 if (src[odv[2]].fr_reg == C0_CONST)
2259 {
2260 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2261 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2262 }
2263 else dst[odv[0]].fr_reg = C0_INEXP;
2264 break;
2265 case c0opc_mov:
2266 /* 2 operands: dst, src [, src]. */
2267 gdb_assert (nods == 2);
2268 /* First, check if it's a special case of saving unaligned SP
2269 to a spare register in case of dynamic stack adjustment.
2270 But, only do it one time. The second time could be initializing
2271 frame pointer. We don't want to overwrite the first one. */
2272 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2273 cache->c0.c0_old_sp = odv[0];
2274
2275 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2276 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2277 break;
2278 case c0opc_movi:
2279 /* 2 operands: dst, imm. */
2280 gdb_assert (nods == 2);
2281 dst[odv[0]].fr_reg = C0_CONST;
2282 dst[odv[0]].fr_ofs = odv[1];
2283 break;
2284 case c0opc_l32r:
2285 /* 2 operands: dst, literal offset. */
2286 gdb_assert (nods == 2);
2287 /* litbase = xtensa_get_litbase (pc); can be also used. */
2288 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2289 ? 0 : xtensa_read_register
2290 (gdbarch_tdep (gdbarch)->litbase_regnum);
2291 litaddr = litbase & 1
2292 ? (litbase & ~1) + (signed)odv[1]
2293 : (pc + 3 + (signed)odv[1]) & ~3;
2294 litval = read_memory_integer (litaddr, 4, byte_order);
2295 dst[odv[0]].fr_reg = C0_CONST;
2296 dst[odv[0]].fr_ofs = litval;
2297 break;
2298 case c0opc_s32i:
2299 /* 3 operands: value, base, offset. */
2300 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2301 /* First, check if it's a spill for saved unaligned SP,
2302 when dynamic stack adjustment was applied to this frame. */
2303 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2304 && (odv[1] == spreg) /* SP usage indicates spill. */
2305 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2306 cache->c0.c0_sp_ofs = odv[2];
2307
2308 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2309 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2310 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2311 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2312 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2313 {
2314 /* ISA encoding guarantees alignment. But, check it anyway. */
2315 gdb_assert ((odv[2] & 3) == 0);
2316 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2317 }
2318 break;
2319 /* If we end up inside Window Overflow / Underflow interrupt handler
2320 report an error because these handlers should have been handled
2321 already in a different way. */
2322 case c0opc_l32e:
2323 case c0opc_s32e:
2324 case c0opc_rfwo:
2325 case c0opc_rfwu:
2326 return 1;
2327 default:
2328 return 1;
2329 }
2330 return 0;
2331 }
2332
2333 /* Analyze prologue of the function at start address to determine if it uses
2334 the Call0 ABI, and if so track register moves and linear modifications
2335 in the prologue up to the PC or just beyond the prologue, whichever is
2336 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2337 prologue. The prologue may overlap non-prologue instructions but is
2338 guaranteed to end by the first flow-control instruction (jump, branch,
2339 call or return). Since an optimized function may move information around
2340 and change the stack frame arbitrarily during the prologue, the information
2341 is guaranteed valid only at the point in the function indicated by the PC.
2342 May be used to skip the prologue or identify the ABI, w/o tracking.
2343
2344 Returns: Address of first instruction after prologue, or PC (whichever
2345 is first), or 0, if decoding failed (in libisa).
2346 Input args:
2347 start Start address of function/prologue.
2348 pc Program counter to stop at. Use 0 to continue to end of prologue.
2349 If 0, avoids infinite run-on in corrupt code memory by bounding
2350 the scan to the end of the function if that can be determined.
2351 nregs Number of general registers to track.
2352 InOut args:
2353 cache Xtensa frame cache.
2354
2355 Note that these may produce useful results even if decoding fails
2356 because they begin with default assumptions that analysis may change. */
2357
2358 static CORE_ADDR
2359 call0_analyze_prologue (struct gdbarch *gdbarch,
2360 CORE_ADDR start, CORE_ADDR pc,
2361 int nregs, xtensa_frame_cache_t *cache)
2362 {
2363 CORE_ADDR ia; /* Current insn address in prologue. */
2364 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2365 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2366 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2367 xtensa_isa isa; /* libisa ISA handle. */
2368 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2369 xtensa_format ifmt; /* libisa instruction format. */
2370 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2371 xtensa_opcode opc; /* Opcode in current slot. */
2372 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2373 int nods; /* Opcode number of operands. */
2374 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2375 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2376 int j; /* General loop counter. */
2377 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2378 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2379 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2380
2381 struct symtab_and_line prologue_sal;
2382
2383 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2384 (int)start, (int)pc);
2385
2386 /* Try to limit the scan to the end of the function if a non-zero pc
2387 arg was not supplied to avoid probing beyond the end of valid memory.
2388 If memory is full of garbage that classifies as c0opc_uninteresting.
2389 If this fails (eg. if no symbols) pc ends up 0 as it was.
2390 Initialize the Call0 frame and register tracking info.
2391 Assume it's Call0 until an 'entry' instruction is encountered.
2392 Assume we may be in the prologue until we hit a flow control instr. */
2393
2394 rtmp = NULL;
2395 body_pc = UINT_MAX;
2396 end_pc = 0;
2397
2398 /* Find out, if we have an information about the prologue from DWARF. */
2399 prologue_sal = find_pc_line (start, 0);
2400 if (prologue_sal.line != 0) /* Found debug info. */
2401 body_pc = prologue_sal.end;
2402
2403 /* If we are going to analyze the prologue in general without knowing about
2404 the current PC, make the best assumtion for the end of the prologue. */
2405 if (pc == 0)
2406 {
2407 find_pc_partial_function (start, 0, NULL, &end_pc);
2408 body_pc = std::min (end_pc, body_pc);
2409 }
2410 else
2411 body_pc = std::min (pc, body_pc);
2412
2413 cache->call0 = 1;
2414 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2415
2416 isa = xtensa_default_isa;
2417 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2418 ins = xtensa_insnbuf_alloc (isa);
2419 slot = xtensa_insnbuf_alloc (isa);
2420
2421 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2422 {
2423 /* (Re)fill instruction buffer from memory if necessary, but do not
2424 read memory beyond PC to be sure we stay within text section
2425 (this protection only works if a non-zero pc is supplied). */
2426
2427 if (ia + xtensa_isa_maxlength (isa) > bt)
2428 {
2429 ba = ia;
2430 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2431 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2432 error (_("Unable to read target memory ..."));
2433 }
2434
2435 /* Decode format information. */
2436
2437 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2438 ifmt = xtensa_format_decode (isa, ins);
2439 if (ifmt == XTENSA_UNDEFINED)
2440 {
2441 fail = 1;
2442 goto done;
2443 }
2444 ilen = xtensa_format_length (isa, ifmt);
2445 if (ilen == XTENSA_UNDEFINED)
2446 {
2447 fail = 1;
2448 goto done;
2449 }
2450 islots = xtensa_format_num_slots (isa, ifmt);
2451 if (islots == XTENSA_UNDEFINED)
2452 {
2453 fail = 1;
2454 goto done;
2455 }
2456
2457 /* Analyze a bundle or a single instruction, using a snapshot of
2458 the register tracking info as input for the entire bundle so that
2459 register changes do not take effect within this bundle. */
2460
2461 for (j = 0; j < nregs; ++j)
2462 rtmp[j] = cache->c0.c0_rt[j];
2463
2464 for (is = 0; is < islots; ++is)
2465 {
2466 /* Decode a slot and classify the opcode. */
2467
2468 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2469 if (fail)
2470 goto done;
2471
2472 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2473 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2474 (unsigned)ia, opc);
2475 if (opc == XTENSA_UNDEFINED)
2476 opclass = c0opc_illegal;
2477 else
2478 opclass = call0_classify_opcode (isa, opc);
2479
2480 /* Decide whether to track this opcode, ignore it, or bail out. */
2481
2482 switch (opclass)
2483 {
2484 case c0opc_illegal:
2485 case c0opc_break:
2486 fail = 1;
2487 goto done;
2488
2489 case c0opc_uninteresting:
2490 continue;
2491
2492 case c0opc_flow: /* Flow control instructions stop analysis. */
2493 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2494 goto done;
2495
2496 case c0opc_entry:
2497 cache->call0 = 0;
2498 ia += ilen; /* Skip over 'entry' insn. */
2499 goto done;
2500
2501 default:
2502 cache->call0 = 1;
2503 }
2504
2505 /* Only expected opcodes should get this far. */
2506
2507 /* Extract and decode the operands. */
2508 nods = xtensa_opcode_num_operands (isa, opc);
2509 if (nods == XTENSA_UNDEFINED)
2510 {
2511 fail = 1;
2512 goto done;
2513 }
2514
2515 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2516 {
2517 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2518 is, slot, &odv[j]);
2519 if (fail)
2520 goto done;
2521
2522 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2523 if (fail)
2524 goto done;
2525 }
2526
2527 /* Check operands to verify use of 'mov' assembler macro. */
2528 if (opclass == c0opc_mov && nods == 3)
2529 {
2530 if (odv[2] == odv[1])
2531 {
2532 nods = 2;
2533 if ((odv[0] == 1) && (odv[1] != 1))
2534 /* OR A1, An, An , where n != 1.
2535 This means we are inside epilogue already. */
2536 goto done;
2537 }
2538 else
2539 {
2540 opclass = c0opc_uninteresting;
2541 continue;
2542 }
2543 }
2544
2545 /* Track register movement and modification for this operation. */
2546 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2547 opclass, nods, odv, ia, 1, cache);
2548 if (fail)
2549 goto done;
2550 }
2551 }
2552 done:
2553 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2554 (unsigned)ia, fail ? "failed" : "succeeded");
2555 xtensa_insnbuf_free(isa, slot);
2556 xtensa_insnbuf_free(isa, ins);
2557 return fail ? XTENSA_ISA_BADPC : ia;
2558 }
2559
2560 /* Initialize frame cache for the current frame in CALL0 ABI. */
2561
2562 static void
2563 call0_frame_cache (struct frame_info *this_frame,
2564 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2565 {
2566 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2567 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2568 CORE_ADDR start_pc; /* The beginning of the function. */
2569 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2570 CORE_ADDR sp, fp, ra;
2571 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2572
2573 sp = get_frame_register_unsigned
2574 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2575 fp = sp; /* Assume FP == SP until proven otherwise. */
2576
2577 /* Find the beginning of the prologue of the function containing the PC
2578 and analyze it up to the PC or the end of the prologue. */
2579
2580 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2581 {
2582 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2583
2584 if (body_pc == XTENSA_ISA_BADPC)
2585 {
2586 warning_once ();
2587 ra = 0;
2588 goto finish_frame_analysis;
2589 }
2590 }
2591
2592 /* Get the frame information and FP (if used) at the current PC.
2593 If PC is in the prologue, the prologue analysis is more reliable
2594 than DWARF info. We don't not know for sure, if PC is in the prologue,
2595 but we do know no calls have yet taken place, so we can almost
2596 certainly rely on the prologue analysis. */
2597
2598 if (body_pc <= pc)
2599 {
2600 /* Prologue analysis was successful up to the PC.
2601 It includes the cases when PC == START_PC. */
2602 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2603 /* c0_hasfp == true means there is a frame pointer because
2604 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2605 was derived from SP. Otherwise, it would be C0_FP. */
2606 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2607 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2608 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2609 }
2610 else /* No data from the prologue analysis. */
2611 {
2612 c0_hasfp = 0;
2613 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2614 c0_frmsz = 0;
2615 start_pc = pc;
2616 }
2617
2618 if (cache->c0.c0_fpalign)
2619 {
2620 /* This frame has a special prologue with a dynamic stack adjustment
2621 to force an alignment, which is bigger than standard 16 bytes. */
2622
2623 CORE_ADDR unaligned_sp;
2624
2625 if (cache->c0.c0_old_sp == C0_INEXP)
2626 /* This can't be. Prologue code should be consistent.
2627 Unaligned stack pointer should be saved in a spare register. */
2628 {
2629 warning_once ();
2630 ra = 0;
2631 goto finish_frame_analysis;
2632 }
2633
2634 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2635 /* Saved unaligned value of SP is kept in a register. */
2636 unaligned_sp = get_frame_register_unsigned
2637 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2638 else
2639 /* Get the value from stack. */
2640 unaligned_sp = (CORE_ADDR)
2641 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2642
2643 prev_sp = unaligned_sp + c0_frmsz;
2644 }
2645 else
2646 prev_sp = fp + c0_frmsz;
2647
2648 /* Frame size from debug info or prologue tracking does not account for
2649 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2650 if (c0_hasfp)
2651 {
2652 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2653
2654 /* Update the stack frame size. */
2655 c0_frmsz += fp - sp;
2656 }
2657
2658 /* Get the return address (RA) from the stack if saved,
2659 or try to get it from a register. */
2660
2661 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2662 if (to_stk != C0_NOSTK)
2663 ra = (CORE_ADDR)
2664 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2665 4, byte_order);
2666
2667 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2668 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2669 {
2670 /* Special case for terminating backtrace at a function that wants to
2671 be seen as the outermost one. Such a function will clear it's RA (A0)
2672 register to 0 in the prologue instead of saving its original value. */
2673 ra = 0;
2674 }
2675 else
2676 {
2677 /* RA was copied to another register or (before any function call) may
2678 still be in the original RA register. This is not always reliable:
2679 even in a leaf function, register tracking stops after prologue, and
2680 even in prologue, non-prologue instructions (not tracked) may overwrite
2681 RA or any register it was copied to. If likely in prologue or before
2682 any call, use retracking info and hope for the best (compiler should
2683 have saved RA in stack if not in a leaf function). If not in prologue,
2684 too bad. */
2685
2686 int i;
2687 for (i = 0;
2688 (i < C0_NREGS)
2689 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2690 ++i);
2691 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2692 i = C0_RA;
2693 if (i < C0_NREGS)
2694 {
2695 ra = get_frame_register_unsigned
2696 (this_frame,
2697 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2698 }
2699 else ra = 0;
2700 }
2701
2702 finish_frame_analysis:
2703 cache->pc = start_pc;
2704 cache->ra = ra;
2705 /* RA == 0 marks the outermost frame. Do not go past it. */
2706 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2707 cache->c0.fp_regnum = fp_regnum;
2708 cache->c0.c0_frmsz = c0_frmsz;
2709 cache->c0.c0_hasfp = c0_hasfp;
2710 cache->c0.c0_fp = fp;
2711 }
2712
2713 static CORE_ADDR a0_saved;
2714 static CORE_ADDR a7_saved;
2715 static CORE_ADDR a11_saved;
2716 static int a0_was_saved;
2717 static int a7_was_saved;
2718 static int a11_was_saved;
2719
2720 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2721 static void
2722 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2723 {
2724 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2725 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2726 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2727 unsigned int spilled_value
2728 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2729
2730 if ((at == 0) && !a0_was_saved)
2731 {
2732 a0_saved = xtensa_read_register (atreg);
2733 a0_was_saved = 1;
2734 }
2735 else if ((at == 7) && !a7_was_saved)
2736 {
2737 a7_saved = xtensa_read_register (atreg);
2738 a7_was_saved = 1;
2739 }
2740 else if ((at == 11) && !a11_was_saved)
2741 {
2742 a11_saved = xtensa_read_register (atreg);
2743 a11_was_saved = 1;
2744 }
2745
2746 xtensa_write_register (atreg, spilled_value);
2747 }
2748
2749 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2750 static void
2751 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2752 {
2753 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2754 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2755 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2756 ULONGEST spilled_value = xtensa_read_register (atreg);
2757
2758 write_memory_unsigned_integer (addr, 4,
2759 gdbarch_byte_order (gdbarch),
2760 spilled_value);
2761 }
2762
2763 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2764
2765 typedef enum
2766 {
2767 xtWindowOverflow,
2768 xtWindowUnderflow,
2769 xtNoExceptionHandler
2770 } xtensa_exception_handler_t;
2771
2772 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2773 Return type of Xtensa Window Interrupt Handler on success. */
2774 static xtensa_exception_handler_t
2775 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2776 {
2777 xtensa_isa isa;
2778 xtensa_insnbuf ins, slot;
2779 gdb_byte ibuf[XTENSA_ISA_BSZ];
2780 CORE_ADDR ia, bt, ba;
2781 xtensa_format ifmt;
2782 int ilen, islots, is;
2783 xtensa_opcode opc;
2784 int insn_num = 0;
2785 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2786
2787 uint32_t at, as, offset;
2788
2789 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2790 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2791
2792 isa = xtensa_default_isa;
2793 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2794 ins = xtensa_insnbuf_alloc (isa);
2795 slot = xtensa_insnbuf_alloc (isa);
2796 ba = 0;
2797 ia = current_pc;
2798 bt = ia;
2799
2800 a0_was_saved = 0;
2801 a7_was_saved = 0;
2802 a11_was_saved = 0;
2803
2804 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2805 {
2806 if (ia + xtensa_isa_maxlength (isa) > bt)
2807 {
2808 ba = ia;
2809 bt = (ba + XTENSA_ISA_BSZ);
2810 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2811 return xtNoExceptionHandler;
2812 }
2813 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2814 ifmt = xtensa_format_decode (isa, ins);
2815 if (ifmt == XTENSA_UNDEFINED)
2816 return xtNoExceptionHandler;
2817 ilen = xtensa_format_length (isa, ifmt);
2818 if (ilen == XTENSA_UNDEFINED)
2819 return xtNoExceptionHandler;
2820 islots = xtensa_format_num_slots (isa, ifmt);
2821 if (islots == XTENSA_UNDEFINED)
2822 return xtNoExceptionHandler;
2823 for (is = 0; is < islots; ++is)
2824 {
2825 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2826 return xtNoExceptionHandler;
2827 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2828 if (opc == XTENSA_UNDEFINED)
2829 return xtNoExceptionHandler;
2830 switch (call0_classify_opcode (isa, opc))
2831 {
2832 case c0opc_illegal:
2833 case c0opc_flow:
2834 case c0opc_entry:
2835 case c0opc_break:
2836 /* We expect none of them here. */
2837 return xtNoExceptionHandler;
2838 case c0opc_l32e:
2839 func = execute_l32e;
2840 break;
2841 case c0opc_s32e:
2842 func = execute_s32e;
2843 break;
2844 case c0opc_rfwo: /* RFWO. */
2845 /* Here, we return from WindowOverflow handler and,
2846 if we stopped at the very beginning, which means
2847 A0 was saved, we have to restore it now. */
2848 if (a0_was_saved)
2849 {
2850 int arreg = arreg_number (gdbarch,
2851 gdbarch_tdep (gdbarch)->a0_base,
2852 wb);
2853 xtensa_write_register (arreg, a0_saved);
2854 }
2855 return xtWindowOverflow;
2856 case c0opc_rfwu: /* RFWU. */
2857 /* Here, we return from WindowUnderflow handler.
2858 Let's see if either A7 or A11 has to be restored. */
2859 if (WindowUnderflow12)
2860 {
2861 if (a11_was_saved)
2862 {
2863 int arreg = arreg_number (gdbarch,
2864 gdbarch_tdep (gdbarch)->a0_base + 11,
2865 wb);
2866 xtensa_write_register (arreg, a11_saved);
2867 }
2868 }
2869 else if (a7_was_saved)
2870 {
2871 int arreg = arreg_number (gdbarch,
2872 gdbarch_tdep (gdbarch)->a0_base + 7,
2873 wb);
2874 xtensa_write_register (arreg, a7_saved);
2875 }
2876 return xtWindowUnderflow;
2877 default: /* Simply skip this insns. */
2878 continue;
2879 }
2880
2881 /* Decode arguments for L32E / S32E and simulate their execution. */
2882 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2883 return xtNoExceptionHandler;
2884 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2885 return xtNoExceptionHandler;
2886 if (xtensa_operand_decode (isa, opc, 0, &at))
2887 return xtNoExceptionHandler;
2888 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2889 return xtNoExceptionHandler;
2890 if (xtensa_operand_decode (isa, opc, 1, &as))
2891 return xtNoExceptionHandler;
2892 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2893 return xtNoExceptionHandler;
2894 if (xtensa_operand_decode (isa, opc, 2, &offset))
2895 return xtNoExceptionHandler;
2896
2897 (*func) (gdbarch, at, as, offset, wb);
2898 }
2899
2900 ia += ilen;
2901 }
2902 return xtNoExceptionHandler;
2903 }
2904
2905 /* Handle Window Overflow / Underflow exception frames. */
2906
2907 static void
2908 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2909 xtensa_frame_cache_t *cache,
2910 CORE_ADDR pc)
2911 {
2912 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2913 CORE_ADDR ps, wb, ws, ra;
2914 int epc1_regnum, i, regnum;
2915 xtensa_exception_handler_t eh_type;
2916
2917 /* Read PS, WB, and WS from the hardware. Note that PS register
2918 must be present, if Windowed ABI is supported. */
2919 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2920 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2921 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2922
2923 /* Execute all the remaining instructions from Window Interrupt Handler
2924 by simulating them on the remote protocol level. On return, set the
2925 type of Xtensa Window Interrupt Handler, or report an error. */
2926 eh_type = execute_code (gdbarch, pc, wb);
2927 if (eh_type == xtNoExceptionHandler)
2928 error (_("\
2929 Unable to decode Xtensa Window Interrupt Handler's code."));
2930
2931 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2932 cache->call0 = 0; /* It's Windowed ABI. */
2933
2934 /* All registers for the cached frame will be alive. */
2935 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2936 cache->wd.aregs[i] = -1;
2937
2938 if (eh_type == xtWindowOverflow)
2939 cache->wd.ws = ws ^ (1 << wb);
2940 else /* eh_type == xtWindowUnderflow. */
2941 cache->wd.ws = ws | (1 << wb);
2942
2943 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2944 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2945 cache->wd.wb);
2946 ra = xtensa_read_register (regnum);
2947 cache->wd.callsize = WINSIZE (ra);
2948 cache->prev_sp = xtensa_read_register (regnum + 1);
2949 /* Set regnum to a frame pointer of the frame being cached. */
2950 regnum = xtensa_scan_prologue (gdbarch, pc);
2951 regnum = arreg_number (gdbarch,
2952 gdbarch_tdep (gdbarch)->a0_base + regnum,
2953 cache->wd.wb);
2954 cache->base = get_frame_register_unsigned (this_frame, regnum);
2955
2956 /* Read PC of interrupted function from EPC1 register. */
2957 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2958 if (epc1_regnum < 0)
2959 error(_("Unable to read Xtensa register EPC1"));
2960 cache->ra = xtensa_read_register (epc1_regnum);
2961 cache->pc = get_frame_func (this_frame);
2962 }
2963
2964
2965 /* Skip function prologue.
2966
2967 Return the pc of the first instruction after prologue. GDB calls this to
2968 find the address of the first line of the function or (if there is no line
2969 number information) to skip the prologue for planting breakpoints on
2970 function entries. Use debug info (if present) or prologue analysis to skip
2971 the prologue to achieve reliable debugging behavior. For windowed ABI,
2972 only the 'entry' instruction is skipped. It is not strictly necessary to
2973 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2974 backtrace at any point in the prologue, however certain potential hazards
2975 are avoided and a more "normal" debugging experience is ensured by
2976 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2977 For example, if we don't skip the prologue:
2978 - Some args may not yet have been saved to the stack where the debug
2979 info expects to find them (true anyway when only 'entry' is skipped);
2980 - Software breakpoints ('break' instrs) may not have been unplanted
2981 when the prologue analysis is done on initializing the frame cache,
2982 and breaks in the prologue will throw off the analysis.
2983
2984 If we have debug info ( line-number info, in particular ) we simply skip
2985 the code associated with the first function line effectively skipping
2986 the prologue code. It works even in cases like
2987
2988 int main()
2989 { int local_var = 1;
2990 ....
2991 }
2992
2993 because, for this source code, both Xtensa compilers will generate two
2994 separate entries ( with the same line number ) in dwarf line-number
2995 section to make sure there is a boundary between the prologue code and
2996 the rest of the function.
2997
2998 If there is no debug info, we need to analyze the code. */
2999
3000 /* #define DONT_SKIP_PROLOGUE */
3001
3002 static CORE_ADDR
3003 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3004 {
3005 struct symtab_and_line prologue_sal;
3006 CORE_ADDR body_pc;
3007
3008 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3009
3010 #if DONT_SKIP_PROLOGUE
3011 return start_pc;
3012 #endif
3013
3014 /* Try to find first body line from debug info. */
3015
3016 prologue_sal = find_pc_line (start_pc, 0);
3017 if (prologue_sal.line != 0) /* Found debug info. */
3018 {
3019 /* In Call0, it is possible to have a function with only one instruction
3020 ('ret') resulting from a one-line optimized function that does nothing.
3021 In that case, prologue_sal.end may actually point to the start of the
3022 next function in the text section, causing a breakpoint to be set at
3023 the wrong place. Check, if the end address is within a different
3024 function, and if so return the start PC. We know we have symbol
3025 information. */
3026
3027 CORE_ADDR end_func;
3028
3029 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3030 && call0_ret (start_pc, prologue_sal.end))
3031 return start_pc;
3032
3033 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3034 if (end_func != start_pc)
3035 return start_pc;
3036
3037 return prologue_sal.end;
3038 }
3039
3040 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3041 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3042 xtensa_alloc_frame_cache (0));
3043 return body_pc != 0 ? body_pc : start_pc;
3044 }
3045
3046 /* Verify the current configuration. */
3047 static void
3048 xtensa_verify_config (struct gdbarch *gdbarch)
3049 {
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3051 string_file log;
3052
3053 /* Verify that we got a reasonable number of AREGS. */
3054 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3055 log.printf (_("\
3056 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3057 tdep->num_aregs);
3058
3059 /* Verify that certain registers exist. */
3060
3061 if (tdep->pc_regnum == -1)
3062 log.printf (_("\n\tpc_regnum: No PC register"));
3063 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3064 log.printf (_("\n\tps_regnum: No PS register"));
3065
3066 if (tdep->isa_use_windowed_registers)
3067 {
3068 if (tdep->wb_regnum == -1)
3069 log.printf (_("\n\twb_regnum: No WB register"));
3070 if (tdep->ws_regnum == -1)
3071 log.printf (_("\n\tws_regnum: No WS register"));
3072 if (tdep->ar_base == -1)
3073 log.printf (_("\n\tar_base: No AR registers"));
3074 }
3075
3076 if (tdep->a0_base == -1)
3077 log.printf (_("\n\ta0_base: No Ax registers"));
3078
3079 if (!log.empty ())
3080 internal_error (__FILE__, __LINE__,
3081 _("the following are invalid: %s"), log.c_str ());
3082 }
3083
3084
3085 /* Derive specific register numbers from the array of registers. */
3086
3087 static void
3088 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3089 {
3090 xtensa_register_t* rmap;
3091 int n, max_size = 4;
3092
3093 tdep->num_regs = 0;
3094 tdep->num_nopriv_regs = 0;
3095
3096 /* Special registers 0..255 (core). */
3097 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3098 /* User registers 0..255. */
3099 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3100
3101 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3102 {
3103 if (rmap->target_number == 0x0020)
3104 tdep->pc_regnum = n;
3105 else if (rmap->target_number == 0x0100)
3106 tdep->ar_base = n;
3107 else if (rmap->target_number == 0x0000)
3108 tdep->a0_base = n;
3109 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3110 tdep->wb_regnum = n;
3111 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3112 tdep->ws_regnum = n;
3113 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3114 tdep->debugcause_regnum = n;
3115 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3116 tdep->exccause_regnum = n;
3117 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3118 tdep->excvaddr_regnum = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3120 tdep->lbeg_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3122 tdep->lend_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3124 tdep->lcount_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3126 tdep->sar_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3128 tdep->litbase_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3130 tdep->ps_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3132 tdep->threadptr_regnum = n;
3133 #if 0
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3135 tdep->interrupt_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3137 tdep->interrupt2_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3139 tdep->cpenable_regnum = n;
3140 #endif
3141
3142 if (rmap->byte_size > max_size)
3143 max_size = rmap->byte_size;
3144 if (rmap->mask != 0 && tdep->num_regs == 0)
3145 tdep->num_regs = n;
3146 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3147 && tdep->num_nopriv_regs == 0)
3148 tdep->num_nopriv_regs = n;
3149 }
3150 if (tdep->num_regs == 0)
3151 tdep->num_regs = tdep->num_nopriv_regs;
3152
3153 /* Number of pseudo registers. */
3154 tdep->num_pseudo_regs = n - tdep->num_regs;
3155
3156 /* Empirically determined maximum sizes. */
3157 tdep->max_register_raw_size = max_size;
3158 tdep->max_register_virtual_size = max_size;
3159 }
3160
3161 /* Module "constructor" function. */
3162
3163 extern struct gdbarch_tdep xtensa_tdep;
3164
3165 static struct gdbarch *
3166 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3167 {
3168 struct gdbarch_tdep *tdep;
3169 struct gdbarch *gdbarch;
3170
3171 DEBUGTRACE ("gdbarch_init()\n");
3172
3173 if (!xtensa_default_isa)
3174 xtensa_default_isa = xtensa_isa_init (0, 0);
3175
3176 /* We have to set the byte order before we call gdbarch_alloc. */
3177 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3178
3179 tdep = &xtensa_tdep;
3180 gdbarch = gdbarch_alloc (&info, tdep);
3181 xtensa_derive_tdep (tdep);
3182
3183 /* Verify our configuration. */
3184 xtensa_verify_config (gdbarch);
3185 xtensa_session_once_reported = 0;
3186
3187 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3188 set_gdbarch_wchar_signed (gdbarch, 0);
3189
3190 /* Pseudo-Register read/write. */
3191 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3192 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3193
3194 /* Set target information. */
3195 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3196 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3197 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3198 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3199 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3200
3201 /* Renumber registers for known formats (stabs and dwarf2). */
3202 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3203 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3204
3205 /* We provide our own function to get register information. */
3206 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3207 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3208
3209 /* To call functions from GDB using dummy frame. */
3210 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3211
3212 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3213
3214 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3215
3216 /* Advance PC across any prologue instructions to reach "real" code. */
3217 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3218
3219 /* Stack grows downward. */
3220 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3221
3222 /* Set breakpoints. */
3223 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3224 xtensa_breakpoint_kind_from_pc);
3225 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3226 xtensa_sw_breakpoint_from_kind);
3227
3228 /* After breakpoint instruction or illegal instruction, pc still
3229 points at break instruction, so don't decrement. */
3230 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3231
3232 /* We don't skip args. */
3233 set_gdbarch_frame_args_skip (gdbarch, 0);
3234
3235 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3236
3237 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3238
3239 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3240
3241 /* Frame handling. */
3242 frame_base_set_default (gdbarch, &xtensa_frame_base);
3243 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3244 dwarf2_append_unwinders (gdbarch);
3245
3246 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3247
3248 xtensa_add_reggroups (gdbarch);
3249 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3250
3251 set_gdbarch_iterate_over_regset_sections
3252 (gdbarch, xtensa_iterate_over_regset_sections);
3253
3254 set_solib_svr4_fetch_link_map_offsets
3255 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3256
3257 /* Hook in the ABI-specific overrides, if they have been registered. */
3258 gdbarch_init_osabi (info, gdbarch);
3259
3260 return gdbarch;
3261 }
3262
3263 static void
3264 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3265 {
3266 error (_("xtensa_dump_tdep(): not implemented"));
3267 }
3268
3269 void
3270 _initialize_xtensa_tdep (void)
3271 {
3272 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3273 xtensa_init_reggroups ();
3274
3275 add_setshow_zuinteger_cmd ("xtensa",
3276 class_maintenance,
3277 &xtensa_debug_level,
3278 _("Set Xtensa debugging."),
3279 _("Show Xtensa debugging."), _("\
3280 When non-zero, Xtensa-specific debugging is enabled. \
3281 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3282 NULL,
3283 NULL,
3284 &setdebuglist, &showdebuglist);
3285 }
This page took 0.09684 seconds and 3 git commands to generate.