(Fix date for):
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "elf/dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* ABI-independent macros. */
95 #define ARG_NOF(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi \
97 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
98 #define ARG_1ST(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
100 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
101 : (gdbarch_tdep (gdbarch)->a0_base + 6))
102
103 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
104 indicates that the instruction is an ENTRY instruction. */
105
106 #define XTENSA_IS_ENTRY(gdbarch, op1) \
107 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
108 ? ((op1) == 0x6c) : ((op1) == 0x36))
109
110 #define XTENSA_ENTRY_LENGTH 3
111
112 /* windowing_enabled() returns true, if windowing is enabled.
113 WOE must be set to 1; EXCM to 0.
114 Note: We assume that EXCM is always 0 for XEA1. */
115
116 #define PS_WOE (1<<18)
117 #define PS_EXC (1<<4)
118
119 /* Convert a live A-register number to the corresponding AR-register number. */
120 static int
121 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
122 {
123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
124 int arreg;
125
126 arreg = a_regnum - tdep->a0_base;
127 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
128 arreg &= tdep->num_aregs - 1;
129
130 return arreg + tdep->ar_base;
131 }
132
133 /* Convert a live AR-register number to the corresponding A-register order
134 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
135 static int
136 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int areg;
140
141 areg = ar_regnum - tdep->ar_base;
142 if (areg < 0 || areg >= tdep->num_aregs)
143 return -1;
144 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
145 return (areg > 15) ? -1 : areg;
146 }
147
148 static inline int
149 windowing_enabled (CORE_ADDR ps)
150 {
151 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
152 }
153
154 /* Return the window size of the previous call to the function from which we
155 have just returned.
156
157 This function is used to extract the return value after a called function
158 has returned to the caller. On Xtensa, the register that holds the return
159 value (from the perspective of the caller) depends on what call
160 instruction was used. For now, we are assuming that the call instruction
161 precedes the current address, so we simply analyze the call instruction.
162 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
163 method to call the inferior function. */
164
165 static int
166 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
167 {
168 int winsize = 4;
169 int insn;
170 gdb_byte buf[4];
171
172 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
173
174 /* Read the previous instruction (should be a call[x]{4|8|12}. */
175 read_memory (pc-3, buf, 3);
176 insn = extract_unsigned_integer (buf, 3);
177
178 /* Decode call instruction:
179 Little Endian
180 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
181 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
182 Big Endian
183 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
184 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
185
186 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
187 {
188 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
189 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
190 }
191 else
192 {
193 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
194 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
195 }
196 return winsize;
197 }
198
199
200 /* REGISTER INFORMATION */
201
202 /* Returns the name of a register. */
203 static const char *
204 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
205 {
206 /* Return the name stored in the register map. */
207 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
208 + gdbarch_num_pseudo_regs (gdbarch))
209 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
210
211 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
212 return 0;
213 }
214
215 /* Return the type of a register. Create a new type, if necessary. */
216
217 static struct ctype_cache
218 {
219 struct ctype_cache *next;
220 int size;
221 struct type *virtual_type;
222 } *type_entries = NULL;
223
224 static struct type *
225 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
226 {
227 /* Return signed integer for ARx and Ax registers. */
228 if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
229 && regnum < gdbarch_tdep (gdbarch)->ar_base
230 + gdbarch_tdep (gdbarch)->num_aregs)
231 || (regnum >= gdbarch_tdep (gdbarch)->a0_base
232 && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
233 return builtin_type (gdbarch)->builtin_int;
234
235 if (regnum == gdbarch_pc_regnum (gdbarch)
236 || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
237 return builtin_type (gdbarch)->builtin_data_ptr;
238
239 /* Return the stored type for all other registers. */
240 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
241 + gdbarch_num_pseudo_regs (gdbarch))
242 {
243 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
244
245 /* Set ctype for this register (only the first time). */
246
247 if (reg->ctype == 0)
248 {
249 struct ctype_cache *tp;
250 int size = reg->byte_size;
251
252 /* We always use the memory representation,
253 even if the register width is smaller. */
254 switch (size)
255 {
256 case 1:
257 reg->ctype = builtin_type_uint8;
258 break;
259
260 case 2:
261 reg->ctype = builtin_type_uint16;
262 break;
263
264 case 4:
265 reg->ctype = builtin_type_uint32;
266 break;
267
268 case 8:
269 reg->ctype = builtin_type_uint64;
270 break;
271
272 case 16:
273 reg->ctype = builtin_type_uint128;
274 break;
275
276 default:
277 for (tp = type_entries; tp != NULL; tp = tp->next)
278 if (tp->size == size)
279 break;
280
281 if (tp == NULL)
282 {
283 char *name = xmalloc (16);
284 tp = xmalloc (sizeof (struct ctype_cache));
285 tp->next = type_entries;
286 type_entries = tp;
287 tp->size = size;
288
289 sprintf (name, "int%d", size * 8);
290 tp->virtual_type = init_type (TYPE_CODE_INT, size,
291 TYPE_FLAG_UNSIGNED, name,
292 NULL);
293 }
294
295 reg->ctype = tp->virtual_type;
296 }
297 }
298 return reg->ctype;
299 }
300
301 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
302 return 0;
303 }
304
305
306 /* Return the 'local' register number for stubs, dwarf2, etc.
307 The debugging information enumerates registers starting from 0 for A0
308 to n for An. So, we only have to add the base number for A0. */
309
310 static int
311 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
312 {
313 int i;
314
315 if (regnum >= 0 && regnum < 16)
316 return gdbarch_tdep (gdbarch)->a0_base + regnum;
317
318 for (i = 0;
319 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
320 i++)
321 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
322 return i;
323
324 internal_error (__FILE__, __LINE__,
325 _("invalid dwarf/stabs register number %d"), regnum);
326 return 0;
327 }
328
329
330 /* Write the bits of a masked register to the various registers.
331 Only the masked areas of these registers are modified; the other
332 fields are untouched. The size of masked registers is always less
333 than or equal to 32 bits. */
334
335 static void
336 xtensa_register_write_masked (struct regcache *regcache,
337 xtensa_register_t *reg, const gdb_byte *buffer)
338 {
339 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
340 const xtensa_mask_t *mask = reg->mask;
341
342 int shift = 0; /* Shift for next mask (mod 32). */
343 int start, size; /* Start bit and size of current mask. */
344
345 unsigned int *ptr = value;
346 unsigned int regval, m, mem = 0;
347
348 int bytesize = reg->byte_size;
349 int bitsize = bytesize * 8;
350 int i, r;
351
352 DEBUGTRACE ("xtensa_register_write_masked ()\n");
353
354 /* Copy the masked register to host byte-order. */
355 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
356 for (i = 0; i < bytesize; i++)
357 {
358 mem >>= 8;
359 mem |= (buffer[bytesize - i - 1] << 24);
360 if ((i & 3) == 3)
361 *ptr++ = mem;
362 }
363 else
364 for (i = 0; i < bytesize; i++)
365 {
366 mem >>= 8;
367 mem |= (buffer[i] << 24);
368 if ((i & 3) == 3)
369 *ptr++ = mem;
370 }
371
372 /* We might have to shift the final value:
373 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
374 bytesize & 3 == x -> shift (4-x) * 8. */
375
376 *ptr = mem >> (((0 - bytesize) & 3) * 8);
377 ptr = value;
378 mem = *ptr;
379
380 /* Write the bits to the masked areas of the other registers. */
381 for (i = 0; i < mask->count; i++)
382 {
383 start = mask->mask[i].bit_start;
384 size = mask->mask[i].bit_size;
385 regval = mem >> shift;
386
387 if ((shift += size) > bitsize)
388 error (_("size of all masks is larger than the register"));
389
390 if (shift >= 32)
391 {
392 mem = *(++ptr);
393 shift -= 32;
394 bitsize -= 32;
395
396 if (shift > 0)
397 regval |= mem << (size - shift);
398 }
399
400 /* Make sure we have a valid register. */
401 r = mask->mask[i].reg_num;
402 if (r >= 0 && size > 0)
403 {
404 /* Don't overwrite the unmasked areas. */
405 ULONGEST old_val;
406 regcache_cooked_read_unsigned (regcache, r, &old_val);
407 m = 0xffffffff >> (32 - size) << start;
408 regval <<= start;
409 regval = (regval & m) | (old_val & ~m);
410 regcache_cooked_write_unsigned (regcache, r, regval);
411 }
412 }
413 }
414
415
416 /* Read a tie state or mapped registers. Read the masked areas
417 of the registers and assemble them into a single value. */
418
419 static void
420 xtensa_register_read_masked (struct regcache *regcache,
421 xtensa_register_t *reg, gdb_byte *buffer)
422 {
423 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
424 const xtensa_mask_t *mask = reg->mask;
425
426 int shift = 0;
427 int start, size;
428
429 unsigned int *ptr = value;
430 unsigned int regval, mem = 0;
431
432 int bytesize = reg->byte_size;
433 int bitsize = bytesize * 8;
434 int i;
435
436 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
437 reg->name == 0 ? "" : reg->name);
438
439 /* Assemble the register from the masked areas of other registers. */
440 for (i = 0; i < mask->count; i++)
441 {
442 int r = mask->mask[i].reg_num;
443 if (r >= 0)
444 {
445 ULONGEST val;
446 regcache_cooked_read_unsigned (regcache, r, &val);
447 regval = (unsigned int) val;
448 }
449 else
450 regval = 0;
451
452 start = mask->mask[i].bit_start;
453 size = mask->mask[i].bit_size;
454
455 regval >>= start;
456
457 if (size < 32)
458 regval &= (0xffffffff >> (32 - size));
459
460 mem |= regval << shift;
461
462 if ((shift += size) > bitsize)
463 error (_("size of all masks is larger than the register"));
464
465 if (shift >= 32)
466 {
467 *ptr++ = mem;
468 bitsize -= 32;
469 shift -= 32;
470
471 if (shift == 0)
472 mem = 0;
473 else
474 mem = regval >> (size - shift);
475 }
476 }
477
478 if (shift > 0)
479 *ptr = mem;
480
481 /* Copy value to target byte order. */
482 ptr = value;
483 mem = *ptr;
484
485 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
486 for (i = 0; i < bytesize; i++)
487 {
488 if ((i & 3) == 0)
489 mem = *ptr++;
490 buffer[bytesize - i - 1] = mem & 0xff;
491 mem >>= 8;
492 }
493 else
494 for (i = 0; i < bytesize; i++)
495 {
496 if ((i & 3) == 0)
497 mem = *ptr++;
498 buffer[i] = mem & 0xff;
499 mem >>= 8;
500 }
501 }
502
503
504 /* Read pseudo registers. */
505
506 static void
507 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
508 struct regcache *regcache,
509 int regnum,
510 gdb_byte *buffer)
511 {
512 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
513 regnum, xtensa_register_name (gdbarch, regnum));
514
515 if (regnum == gdbarch_num_regs (gdbarch)
516 + gdbarch_num_pseudo_regs (gdbarch) - 1)
517 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
518
519 /* Read aliases a0..a15, if this is a Windowed ABI. */
520 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
521 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
522 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
523 {
524 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
525
526 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
527 regnum = arreg_number (gdbarch, regnum,
528 extract_unsigned_integer (buf, 4));
529 }
530
531 /* We can always read non-pseudo registers. */
532 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
533 regcache_raw_read (regcache, regnum, buffer);
534
535
536 /* We have to find out how to deal with priveleged registers.
537 Let's treat them as pseudo-registers, but we cannot read/write them. */
538
539 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
540 {
541 buffer[0] = (gdb_byte)0;
542 buffer[1] = (gdb_byte)0;
543 buffer[2] = (gdb_byte)0;
544 buffer[3] = (gdb_byte)0;
545 }
546 /* Pseudo registers. */
547 else if (regnum >= 0
548 && regnum < gdbarch_num_regs (gdbarch)
549 + gdbarch_num_pseudo_regs (gdbarch))
550 {
551 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
552 xtensa_register_type_t type = reg->type;
553 int flags = gdbarch_tdep (gdbarch)->target_flags;
554
555 /* We cannot read Unknown or Unmapped registers. */
556 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
557 {
558 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
559 {
560 warning (_("cannot read register %s"),
561 xtensa_register_name (gdbarch, regnum));
562 return;
563 }
564 }
565
566 /* Some targets cannot read TIE register files. */
567 else if (type == xtRegisterTypeTieRegfile)
568 {
569 /* Use 'fetch' to get register? */
570 if (flags & xtTargetFlagsUseFetchStore)
571 {
572 warning (_("cannot read register"));
573 return;
574 }
575
576 /* On some targets (esp. simulators), we can always read the reg. */
577 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
578 {
579 warning (_("cannot read register"));
580 return;
581 }
582 }
583
584 /* We can always read mapped registers. */
585 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
586 {
587 xtensa_register_read_masked (regcache, reg, buffer);
588 return;
589 }
590
591 /* Assume that we can read the register. */
592 regcache_raw_read (regcache, regnum, buffer);
593 }
594 else
595 internal_error (__FILE__, __LINE__,
596 _("invalid register number %d"), regnum);
597 }
598
599
600 /* Write pseudo registers. */
601
602 static void
603 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
604 struct regcache *regcache,
605 int regnum,
606 const gdb_byte *buffer)
607 {
608 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
609 regnum, xtensa_register_name (gdbarch, regnum));
610
611 if (regnum == gdbarch_num_regs (gdbarch)
612 + gdbarch_num_pseudo_regs (gdbarch) -1)
613 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
614
615 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
616 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
617 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
618 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
619 {
620 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
621 unsigned int wb;
622
623 regcache_raw_read (regcache,
624 gdbarch_tdep (gdbarch)->wb_regnum, buf);
625 regnum = arreg_number (gdbarch, regnum,
626 extract_unsigned_integer (buf, 4));
627 }
628
629 /* We can always write 'core' registers.
630 Note: We might have converted Ax->ARy. */
631 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
632 regcache_raw_write (regcache, regnum, buffer);
633
634 /* We have to find out how to deal with priveleged registers.
635 Let's treat them as pseudo-registers, but we cannot read/write them. */
636
637 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
638 {
639 return;
640 }
641 /* Pseudo registers. */
642 else if (regnum >= 0
643 && regnum < gdbarch_num_regs (gdbarch)
644 + gdbarch_num_pseudo_regs (gdbarch))
645 {
646 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
647 xtensa_register_type_t type = reg->type;
648 int flags = gdbarch_tdep (gdbarch)->target_flags;
649
650 /* On most targets, we cannot write registers
651 of type "Unknown" or "Unmapped". */
652 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
653 {
654 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
655 {
656 warning (_("cannot write register %s"),
657 xtensa_register_name (gdbarch, regnum));
658 return;
659 }
660 }
661
662 /* Some targets cannot read TIE register files. */
663 else if (type == xtRegisterTypeTieRegfile)
664 {
665 /* Use 'store' to get register? */
666 if (flags & xtTargetFlagsUseFetchStore)
667 {
668 warning (_("cannot write register"));
669 return;
670 }
671
672 /* On some targets (esp. simulators), we can always write
673 the register. */
674 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
675 {
676 warning (_("cannot write register"));
677 return;
678 }
679 }
680
681 /* We can always write mapped registers. */
682 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
683 {
684 xtensa_register_write_masked (regcache, reg, buffer);
685 return;
686 }
687
688 /* Assume that we can write the register. */
689 regcache_raw_write (regcache, regnum, buffer);
690 }
691 else
692 internal_error (__FILE__, __LINE__,
693 _("invalid register number %d"), regnum);
694 }
695
696 static struct reggroup *xtensa_ar_reggroup;
697 static struct reggroup *xtensa_user_reggroup;
698 static struct reggroup *xtensa_vectra_reggroup;
699 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
700
701 static void
702 xtensa_init_reggroups (void)
703 {
704 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
705 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
706 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
707
708 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
709 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
710 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
711 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
712 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
713 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
714 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
715 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
716 }
717
718 static void
719 xtensa_add_reggroups (struct gdbarch *gdbarch)
720 {
721 int i;
722
723 /* Predefined groups. */
724 reggroup_add (gdbarch, all_reggroup);
725 reggroup_add (gdbarch, save_reggroup);
726 reggroup_add (gdbarch, restore_reggroup);
727 reggroup_add (gdbarch, system_reggroup);
728 reggroup_add (gdbarch, vector_reggroup);
729 reggroup_add (gdbarch, general_reggroup);
730 reggroup_add (gdbarch, float_reggroup);
731
732 /* Xtensa-specific groups. */
733 reggroup_add (gdbarch, xtensa_ar_reggroup);
734 reggroup_add (gdbarch, xtensa_user_reggroup);
735 reggroup_add (gdbarch, xtensa_vectra_reggroup);
736
737 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
738 reggroup_add (gdbarch, xtensa_cp[i]);
739 }
740
741 static int
742 xtensa_coprocessor_register_group (struct reggroup *group)
743 {
744 int i;
745
746 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
747 if (group == xtensa_cp[i])
748 return i;
749
750 return -1;
751 }
752
753 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
754 | XTENSA_REGISTER_FLAGS_WRITABLE \
755 | XTENSA_REGISTER_FLAGS_VOLATILE)
756
757 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
758 | XTENSA_REGISTER_FLAGS_WRITABLE)
759
760 static int
761 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
762 int regnum,
763 struct reggroup *group)
764 {
765 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
766 xtensa_register_type_t type = reg->type;
767 xtensa_register_group_t rg = reg->group;
768 int cp_number;
769
770 /* First, skip registers that are not visible to this target
771 (unknown and unmapped registers when not using ISS). */
772
773 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
774 return 0;
775 if (group == all_reggroup)
776 return 1;
777 if (group == xtensa_ar_reggroup)
778 return rg & xtRegisterGroupAddrReg;
779 if (group == xtensa_user_reggroup)
780 return rg & xtRegisterGroupUser;
781 if (group == float_reggroup)
782 return rg & xtRegisterGroupFloat;
783 if (group == general_reggroup)
784 return rg & xtRegisterGroupGeneral;
785 if (group == float_reggroup)
786 return rg & xtRegisterGroupFloat;
787 if (group == system_reggroup)
788 return rg & xtRegisterGroupState;
789 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
790 return rg & xtRegisterGroupVectra;
791 if (group == save_reggroup || group == restore_reggroup)
792 return (regnum < gdbarch_num_regs (gdbarch)
793 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
794 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
795 return rg & (xtRegisterGroupCP0 << cp_number);
796 else
797 return 1;
798 }
799
800
801 /* Supply register REGNUM from the buffer specified by GREGS and LEN
802 in the general-purpose register set REGSET to register cache
803 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
804
805 static void
806 xtensa_supply_gregset (const struct regset *regset,
807 struct regcache *rc,
808 int regnum,
809 const void *gregs,
810 size_t len)
811 {
812 const xtensa_elf_gregset_t *regs = gregs;
813 struct gdbarch *gdbarch = get_regcache_arch (rc);
814 int i;
815
816 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
817
818 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
820 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
821 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
822 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
823 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
824 (char *) &regs->windowbase);
825 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
826 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
827 (char *) &regs->windowstart);
828 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
829 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
830 (char *) &regs->lbeg);
831 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
832 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
833 (char *) &regs->lend);
834 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
835 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
836 (char *) &regs->lcount);
837 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
838 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
839 (char *) &regs->sar);
840 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
841 && regnum < gdbarch_tdep (gdbarch)->ar_base
842 + gdbarch_tdep (gdbarch)->num_aregs)
843 regcache_raw_supply (rc, regnum,
844 (char *) &regs->ar[regnum - gdbarch_tdep
845 (gdbarch)->ar_base]);
846 else if (regnum == -1)
847 {
848 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
849 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
850 (char *) &regs->ar[i]);
851 }
852 }
853
854
855 /* Xtensa register set. */
856
857 static struct regset
858 xtensa_gregset =
859 {
860 NULL,
861 xtensa_supply_gregset
862 };
863
864
865 /* Return the appropriate register set for the core
866 section identified by SECT_NAME and SECT_SIZE. */
867
868 static const struct regset *
869 xtensa_regset_from_core_section (struct gdbarch *core_arch,
870 const char *sect_name,
871 size_t sect_size)
872 {
873 DEBUGTRACE ("xtensa_regset_from_core_section "
874 "(..., sect_name==\"%s\", sect_size==%x) \n",
875 sect_name, (unsigned int) sect_size);
876
877 if (strcmp (sect_name, ".reg") == 0
878 && sect_size >= sizeof(xtensa_elf_gregset_t))
879 return &xtensa_gregset;
880
881 return NULL;
882 }
883
884
885 /* Handling frames. */
886
887 /* Number of registers to save in case of Windowed ABI. */
888 #define XTENSA_NUM_SAVED_AREGS 12
889
890 /* Frame cache part for Windowed ABI. */
891 typedef struct xtensa_windowed_frame_cache
892 {
893 int wb; /* WINDOWBASE of the previous frame. */
894 int callsize; /* Call size of this frame. */
895 int ws; /* WINDOWSTART of the previous frame. It keeps track of
896 life windows only. If there is no bit set for the
897 window, that means it had been already spilled
898 because of window overflow. */
899
900 /* Spilled A-registers from the previous frame.
901 AREGS[i] == -1, if corresponding AR is alive. */
902 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
903 } xtensa_windowed_frame_cache_t;
904
905 /* Call0 ABI Definitions. */
906
907 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
908 #define C0_NREGS 16 /* Number of A-registers to track. */
909 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
910 #define C0_SP 1 /* Register used as SP. */
911 #define C0_FP 15 /* Register used as FP. */
912 #define C0_RA 0 /* Register used as return address. */
913 #define C0_ARGS 2 /* Register used as first arg/retval. */
914 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
915
916 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
917 A-register where the current content of the reg came from (in terms
918 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
919 mean that the orignal content of the register was saved to the stack.
920 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
921 know where SP will end up until the entire prologue has been analyzed. */
922
923 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
924 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
925 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
926
927 extern xtensa_isa xtensa_default_isa;
928
929 typedef struct xtensa_c0reg
930 {
931 int fr_reg; /* original register from which register content
932 is derived, or C0_CONST, or C0_INEXP. */
933 int fr_ofs; /* constant offset from reg, or immediate value. */
934 int to_stk; /* offset from original SP to register (4-byte aligned),
935 or C0_NOSTK if register has not been saved. */
936 } xtensa_c0reg_t;
937
938
939 /* Frame cache part for Call0 ABI. */
940 typedef struct xtensa_call0_frame_cache
941 {
942 int c0_frmsz; /* Stack frame size. */
943 int c0_hasfp; /* Current frame uses frame pointer. */
944 int fp_regnum; /* A-register used as FP. */
945 int c0_fp; /* Actual value of frame pointer. */
946 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
947 } xtensa_call0_frame_cache_t;
948
949 typedef struct xtensa_frame_cache
950 {
951 CORE_ADDR base; /* Stack pointer of this frame. */
952 CORE_ADDR pc; /* PC at the entry point to the function. */
953 CORE_ADDR ra; /* The raw return address (without CALLINC). */
954 CORE_ADDR ps; /* The PS register of this frame. */
955 CORE_ADDR prev_sp; /* Stack Pointer of the previous frame. */
956 int call0; /* It's a call0 framework (else windowed). */
957 union
958 {
959 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
960 xtensa_call0_frame_cache_t c0; /* call0 == true. */
961 };
962 } xtensa_frame_cache_t;
963
964
965 static struct xtensa_frame_cache *
966 xtensa_alloc_frame_cache (int windowed)
967 {
968 xtensa_frame_cache_t *cache;
969 int i;
970
971 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
972
973 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
974
975 cache->base = 0;
976 cache->pc = 0;
977 cache->ra = 0;
978 cache->ps = 0;
979 cache->prev_sp = 0;
980 cache->call0 = !windowed;
981 if (cache->call0)
982 {
983 cache->c0.c0_frmsz = -1;
984 cache->c0.c0_hasfp = 0;
985 cache->c0.fp_regnum = -1;
986 cache->c0.c0_fp = -1;
987
988 for (i = 0; i < C0_NREGS; i++)
989 {
990 cache->c0.c0_rt[i].fr_reg = i;
991 cache->c0.c0_rt[i].fr_ofs = 0;
992 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
993 }
994 }
995 else
996 {
997 cache->wd.wb = 0;
998 cache->wd.ws = 0;
999 cache->wd.callsize = -1;
1000
1001 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1002 cache->wd.aregs[i] = -1;
1003 }
1004 return cache;
1005 }
1006
1007
1008 static CORE_ADDR
1009 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1010 {
1011 return address & ~15;
1012 }
1013
1014
1015 static CORE_ADDR
1016 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1017 {
1018 gdb_byte buf[8];
1019 CORE_ADDR pc;
1020
1021 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1022 host_address_to_string (next_frame));
1023
1024 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1025 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1026
1027 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1028
1029 return pc;
1030 }
1031
1032
1033 static struct frame_id
1034 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1035 {
1036 CORE_ADDR pc, fp;
1037
1038 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1039
1040 pc = get_frame_pc (this_frame);
1041 fp = get_frame_register_unsigned
1042 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1043
1044 /* Make dummy frame ID unique by adding a constant. */
1045 return frame_id_build (fp + SP_ALIGNMENT, pc);
1046 }
1047
1048 /* Returns the best guess about which register is a frame pointer
1049 for the function containing CURRENT_PC. */
1050
1051 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1052
1053 static unsigned int
1054 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1055 {
1056 #define RETURN_FP goto done
1057
1058 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1059 CORE_ADDR start_addr;
1060 xtensa_isa isa;
1061 xtensa_insnbuf ins, slot;
1062 char ibuf[XTENSA_ISA_BSZ];
1063 CORE_ADDR ia, bt, ba;
1064 xtensa_format ifmt;
1065 int ilen, islots, is;
1066 xtensa_opcode opc;
1067 const char *opcname;
1068
1069 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1070 if (start_addr == 0)
1071 return fp_regnum;
1072
1073 if (!xtensa_default_isa)
1074 xtensa_default_isa = xtensa_isa_init (0, 0);
1075 isa = xtensa_default_isa;
1076 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1077 ins = xtensa_insnbuf_alloc (isa);
1078 slot = xtensa_insnbuf_alloc (isa);
1079 ba = 0;
1080
1081 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1082 {
1083 if (ia + xtensa_isa_maxlength (isa) > bt)
1084 {
1085 ba = ia;
1086 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1087 ? ba + XTENSA_ISA_BSZ : current_pc;
1088 read_memory (ba, ibuf, bt - ba);
1089 }
1090
1091 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1092 ifmt = xtensa_format_decode (isa, ins);
1093 if (ifmt == XTENSA_UNDEFINED)
1094 RETURN_FP;
1095 ilen = xtensa_format_length (isa, ifmt);
1096 if (ilen == XTENSA_UNDEFINED)
1097 RETURN_FP;
1098 islots = xtensa_format_num_slots (isa, ifmt);
1099 if (islots == XTENSA_UNDEFINED)
1100 RETURN_FP;
1101
1102 for (is = 0; is < islots; ++is)
1103 {
1104 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1105 RETURN_FP;
1106
1107 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1108 if (opc == XTENSA_UNDEFINED)
1109 RETURN_FP;
1110
1111 opcname = xtensa_opcode_name (isa, opc);
1112
1113 if (strcasecmp (opcname, "mov.n") == 0
1114 || strcasecmp (opcname, "or") == 0)
1115 {
1116 unsigned int register_operand;
1117
1118 /* Possible candidate for setting frame pointer
1119 from A1. This is what we are looking for. */
1120
1121 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1122 is, slot, &register_operand) != 0)
1123 RETURN_FP;
1124 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1125 RETURN_FP;
1126 if (register_operand == 1) /* Mov{.n} FP A1. */
1127 {
1128 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1129 &register_operand) != 0)
1130 RETURN_FP;
1131 if (xtensa_operand_decode (isa, opc, 0,
1132 &register_operand) != 0)
1133 RETURN_FP;
1134
1135 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1136 RETURN_FP;
1137 }
1138 }
1139
1140 if (
1141 /* We have problems decoding the memory. */
1142 opcname == NULL
1143 || strcasecmp (opcname, "ill") == 0
1144 || strcasecmp (opcname, "ill.n") == 0
1145 /* Hit planted breakpoint. */
1146 || strcasecmp (opcname, "break") == 0
1147 || strcasecmp (opcname, "break.n") == 0
1148 /* Flow control instructions finish prologue. */
1149 || xtensa_opcode_is_branch (isa, opc) > 0
1150 || xtensa_opcode_is_jump (isa, opc) > 0
1151 || xtensa_opcode_is_loop (isa, opc) > 0
1152 || xtensa_opcode_is_call (isa, opc) > 0
1153 || strcasecmp (opcname, "simcall") == 0
1154 || strcasecmp (opcname, "syscall") == 0)
1155 /* Can not continue analysis. */
1156 RETURN_FP;
1157 }
1158 }
1159 done:
1160 xtensa_insnbuf_free(isa, slot);
1161 xtensa_insnbuf_free(isa, ins);
1162 return fp_regnum;
1163 }
1164
1165 /* The key values to identify the frame using "cache" are
1166
1167 cache->base = SP (or best guess about FP) of this frame;
1168 cache->pc = entry-PC (entry point of the frame function);
1169 cache->prev_sp = SP of the previous frame.
1170 */
1171
1172 static void
1173 call0_frame_cache (struct frame_info *this_frame,
1174 xtensa_frame_cache_t *cache,
1175 CORE_ADDR pc, CORE_ADDR litbase);
1176
1177 static struct xtensa_frame_cache *
1178 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1179 {
1180 xtensa_frame_cache_t *cache;
1181 CORE_ADDR ra, wb, ws, pc, sp, ps;
1182 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1183 unsigned int fp_regnum;
1184 char op1;
1185 int windowed;
1186
1187 if (*this_cache)
1188 return *this_cache;
1189
1190 ps = get_frame_register_unsigned (this_frame, gdbarch_ps_regnum (gdbarch));
1191 windowed = windowing_enabled (ps);
1192
1193 /* Get pristine xtensa-frame. */
1194 cache = xtensa_alloc_frame_cache (windowed);
1195 *this_cache = cache;
1196
1197 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1198
1199 if (windowed)
1200 {
1201 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1202 wb = get_frame_register_unsigned (this_frame,
1203 gdbarch_tdep (gdbarch)->wb_regnum);
1204 ws = get_frame_register_unsigned (this_frame,
1205 gdbarch_tdep (gdbarch)->ws_regnum);
1206
1207 op1 = read_memory_integer (pc, 1);
1208 if (XTENSA_IS_ENTRY (gdbarch, op1))
1209 {
1210 int callinc = CALLINC (ps);
1211 ra = get_frame_register_unsigned
1212 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1213
1214 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1215 cache->wd.callsize = 0;
1216 cache->wd.wb = wb;
1217 cache->wd.ws = ws;
1218 cache->prev_sp = get_frame_register_unsigned
1219 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1220
1221 /* This only can be the outermost frame since we are
1222 just about to execute ENTRY. SP hasn't been set yet.
1223 We can assume any frame size, because it does not
1224 matter, and, let's fake frame base in cache. */
1225 cache->base = cache->prev_sp + 16;
1226
1227 cache->pc = pc;
1228 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1229 cache->ps = (ps & ~PS_CALLINC_MASK)
1230 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1231
1232 return cache;
1233 }
1234 else
1235 {
1236 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1237 ra = get_frame_register_unsigned (this_frame,
1238 gdbarch_tdep (gdbarch)->a0_base);
1239 cache->wd.callsize = WINSIZE (ra);
1240 cache->wd.wb = (wb - cache->wd.callsize / 4)
1241 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1242 cache->wd.ws = ws & ~(1 << wb);
1243
1244 cache->pc = get_frame_func (this_frame);
1245 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1246 cache->ps = (ps & ~PS_CALLINC_MASK)
1247 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1248 }
1249
1250 if (cache->wd.ws == 0)
1251 {
1252 int i;
1253
1254 /* Set A0...A3. */
1255 sp = get_frame_register_unsigned
1256 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1257
1258 for (i = 0; i < 4; i++, sp += 4)
1259 {
1260 cache->wd.aregs[i] = sp;
1261 }
1262
1263 if (cache->wd.callsize > 4)
1264 {
1265 /* Set A4...A7/A11. */
1266 /* Get the SP of the frame previous to the previous one.
1267 To achieve this, we have to dereference SP twice. */
1268 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1269 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1270 sp -= cache->wd.callsize * 4;
1271
1272 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1273 {
1274 cache->wd.aregs[i] = sp;
1275 }
1276 }
1277 }
1278
1279 if ((cache->prev_sp == 0) && ( ra != 0 ))
1280 /* If RA is equal to 0 this frame is an outermost frame. Leave
1281 cache->prev_sp unchanged marking the boundary of the frame stack. */
1282 {
1283 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1284 {
1285 /* Register window overflow already happened.
1286 We can read caller's SP from the proper spill loction. */
1287 sp = get_frame_register_unsigned
1288 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1289 cache->prev_sp = read_memory_integer (sp - 12, 4);
1290 }
1291 else
1292 {
1293 /* Read caller's frame SP directly from the previous window. */
1294 int regnum = arreg_number
1295 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1296 cache->wd.wb);
1297
1298 cache->prev_sp = get_frame_register_unsigned (this_frame, regnum);
1299 }
1300 }
1301 }
1302 else /* Call0 framework. */
1303 {
1304 unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
1305 CORE_ADDR litbase = (litbase_regnum == -1)
1306 ? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
1307
1308 call0_frame_cache (this_frame, cache, pc, litbase);
1309 fp_regnum = cache->c0.fp_regnum;
1310 }
1311
1312 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1313
1314 return cache;
1315 }
1316
1317 static void
1318 xtensa_frame_this_id (struct frame_info *this_frame,
1319 void **this_cache,
1320 struct frame_id *this_id)
1321 {
1322 struct xtensa_frame_cache *cache =
1323 xtensa_frame_cache (this_frame, this_cache);
1324
1325 if (cache->prev_sp == 0)
1326 return;
1327
1328 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1329 }
1330
1331 static struct value *
1332 xtensa_frame_prev_register (struct frame_info *this_frame,
1333 void **this_cache,
1334 int regnum)
1335 {
1336 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1337 struct xtensa_frame_cache *cache;
1338 ULONGEST saved_reg = 0;
1339 int done = 1;
1340
1341 if (*this_cache == NULL)
1342 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1343 cache = *this_cache;
1344
1345 if (regnum ==gdbarch_pc_regnum (gdbarch))
1346 saved_reg = cache->ra;
1347 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1348 saved_reg = cache->prev_sp;
1349 else if (!cache->call0)
1350 {
1351 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1352 saved_reg = cache->wd.ws;
1353 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1354 saved_reg = cache->wd.wb;
1355 else if (regnum == gdbarch_ps_regnum (gdbarch))
1356 saved_reg = cache->ps;
1357 else
1358 done = 0;
1359 }
1360 else
1361 done = 0;
1362
1363 if (done)
1364 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1365
1366 if (!cache->call0) /* Windowed ABI. */
1367 {
1368 /* Convert A-register numbers to AR-register numbers,
1369 if we deal with A-register. */
1370 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1371 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1372 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1373
1374 /* Check, if we deal with AR-register saved on stack. */
1375 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1376 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1377 + gdbarch_tdep (gdbarch)->num_aregs))
1378 {
1379 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1380
1381 if (areg >= 0
1382 && areg < XTENSA_NUM_SAVED_AREGS
1383 && cache->wd.aregs[areg] != -1)
1384 return frame_unwind_got_memory (this_frame, regnum,
1385 cache->wd.aregs[areg]);
1386 }
1387 }
1388 else /* Call0 ABI. */
1389 {
1390 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1391 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1392 + C0_NREGS))
1393 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1394
1395 if (reg < C0_NREGS)
1396 {
1397 CORE_ADDR spe;
1398 int stkofs;
1399
1400 /* If register was saved in the prologue, retrieve it. */
1401 stkofs = cache->c0.c0_rt[reg].to_stk;
1402 if (stkofs != C0_NOSTK)
1403 {
1404 /* Determine SP on entry based on FP. */
1405 spe = cache->c0.c0_fp
1406 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1407
1408 return frame_unwind_got_memory (this_frame, regnum, spe + stkofs);
1409 }
1410 }
1411 }
1412
1413 /* All other registers have been either saved to
1414 the stack or are still alive in the processor. */
1415
1416 return frame_unwind_got_register (this_frame, regnum, regnum);
1417 }
1418
1419
1420 static const struct frame_unwind
1421 xtensa_unwind =
1422 {
1423 NORMAL_FRAME,
1424 xtensa_frame_this_id,
1425 xtensa_frame_prev_register,
1426 NULL,
1427 default_frame_sniffer
1428 };
1429
1430 static CORE_ADDR
1431 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1432 {
1433 struct xtensa_frame_cache *cache =
1434 xtensa_frame_cache (this_frame, this_cache);
1435
1436 return cache->base;
1437 }
1438
1439 static const struct frame_base
1440 xtensa_frame_base =
1441 {
1442 &xtensa_unwind,
1443 xtensa_frame_base_address,
1444 xtensa_frame_base_address,
1445 xtensa_frame_base_address
1446 };
1447
1448
1449 static void
1450 xtensa_extract_return_value (struct type *type,
1451 struct regcache *regcache,
1452 void *dst)
1453 {
1454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1455 bfd_byte *valbuf = dst;
1456 int len = TYPE_LENGTH (type);
1457 ULONGEST pc, wb;
1458 int callsize, areg;
1459 int offset = 0;
1460
1461 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1462
1463 gdb_assert(len > 0);
1464
1465 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1466 {
1467 /* First, we have to find the caller window in the register file. */
1468 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1469 callsize = extract_call_winsize (gdbarch, pc);
1470
1471 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1472 if (len > (callsize > 8 ? 8 : 16))
1473 internal_error (__FILE__, __LINE__,
1474 _("cannot extract return value of %d bytes long"), len);
1475
1476 /* Get the register offset of the return
1477 register (A2) in the caller window. */
1478 regcache_raw_read_unsigned
1479 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1480 areg = arreg_number (gdbarch,
1481 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1482 }
1483 else
1484 {
1485 /* No windowing hardware - Call0 ABI. */
1486 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1487 }
1488
1489 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1490
1491 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1492 offset = 4 - len;
1493
1494 for (; len > 0; len -= 4, areg++, valbuf += 4)
1495 {
1496 if (len < 4)
1497 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1498 else
1499 regcache_raw_read (regcache, areg, valbuf);
1500 }
1501 }
1502
1503
1504 static void
1505 xtensa_store_return_value (struct type *type,
1506 struct regcache *regcache,
1507 const void *dst)
1508 {
1509 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1510 const bfd_byte *valbuf = dst;
1511 unsigned int areg;
1512 ULONGEST pc, wb;
1513 int callsize;
1514 int len = TYPE_LENGTH (type);
1515 int offset = 0;
1516
1517 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1518
1519 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1520 {
1521 regcache_raw_read_unsigned
1522 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1523 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1524 callsize = extract_call_winsize (gdbarch, pc);
1525
1526 if (len > (callsize > 8 ? 8 : 16))
1527 internal_error (__FILE__, __LINE__,
1528 _("unimplemented for this length: %d"),
1529 TYPE_LENGTH (type));
1530 areg = arreg_number (gdbarch,
1531 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1532
1533 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1534 callsize, (int) wb);
1535 }
1536 else
1537 {
1538 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1539 }
1540
1541 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1542 offset = 4 - len;
1543
1544 for (; len > 0; len -= 4, areg++, valbuf += 4)
1545 {
1546 if (len < 4)
1547 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1548 else
1549 regcache_raw_write (regcache, areg, valbuf);
1550 }
1551 }
1552
1553
1554 static enum return_value_convention
1555 xtensa_return_value (struct gdbarch *gdbarch,
1556 struct type *func_type,
1557 struct type *valtype,
1558 struct regcache *regcache,
1559 gdb_byte *readbuf,
1560 const gdb_byte *writebuf)
1561 {
1562 /* Structures up to 16 bytes are returned in registers. */
1563
1564 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1565 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1566 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1567 && TYPE_LENGTH (valtype) > 16);
1568
1569 if (struct_return)
1570 return RETURN_VALUE_STRUCT_CONVENTION;
1571
1572 DEBUGTRACE ("xtensa_return_value(...)\n");
1573
1574 if (writebuf != NULL)
1575 {
1576 xtensa_store_return_value (valtype, regcache, writebuf);
1577 }
1578
1579 if (readbuf != NULL)
1580 {
1581 gdb_assert (!struct_return);
1582 xtensa_extract_return_value (valtype, regcache, readbuf);
1583 }
1584 return RETURN_VALUE_REGISTER_CONVENTION;
1585 }
1586
1587
1588 /* DUMMY FRAME */
1589
1590 static CORE_ADDR
1591 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1592 struct value *function,
1593 struct regcache *regcache,
1594 CORE_ADDR bp_addr,
1595 int nargs,
1596 struct value **args,
1597 CORE_ADDR sp,
1598 int struct_return,
1599 CORE_ADDR struct_addr)
1600 {
1601 int i;
1602 int size, onstack_size;
1603 gdb_byte *buf = (gdb_byte *) alloca (16);
1604 CORE_ADDR ra, ps;
1605 struct argument_info
1606 {
1607 const bfd_byte *contents;
1608 int length;
1609 int onstack; /* onstack == 0 => in reg */
1610 int align; /* alignment */
1611 union
1612 {
1613 int offset; /* stack offset if on stack */
1614 int regno; /* regno if in register */
1615 } u;
1616 };
1617
1618 struct argument_info *arg_info =
1619 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1620
1621 CORE_ADDR osp = sp;
1622
1623 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1624
1625 if (xtensa_debug_level > 3)
1626 {
1627 int i;
1628 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1629 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1630 "struct_addr=0x%x\n",
1631 (int) sp, (int) struct_return, (int) struct_addr);
1632
1633 for (i = 0; i < nargs; i++)
1634 {
1635 struct value *arg = args[i];
1636 struct type *arg_type = check_typedef (value_type (arg));
1637 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1638 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1639 switch (TYPE_CODE (arg_type))
1640 {
1641 case TYPE_CODE_INT:
1642 fprintf_unfiltered (gdb_stdlog, "int");
1643 break;
1644 case TYPE_CODE_STRUCT:
1645 fprintf_unfiltered (gdb_stdlog, "struct");
1646 break;
1647 default:
1648 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1649 break;
1650 }
1651 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1652 (unsigned long) value_contents (arg));
1653 }
1654 }
1655
1656 /* First loop: collect information.
1657 Cast into type_long. (This shouldn't happen often for C because
1658 GDB already does this earlier.) It's possible that GDB could
1659 do it all the time but it's harmless to leave this code here. */
1660
1661 size = 0;
1662 onstack_size = 0;
1663 i = 0;
1664
1665 if (struct_return)
1666 size = REGISTER_SIZE;
1667
1668 for (i = 0; i < nargs; i++)
1669 {
1670 struct argument_info *info = &arg_info[i];
1671 struct value *arg = args[i];
1672 struct type *arg_type = check_typedef (value_type (arg));
1673
1674 switch (TYPE_CODE (arg_type))
1675 {
1676 case TYPE_CODE_INT:
1677 case TYPE_CODE_BOOL:
1678 case TYPE_CODE_CHAR:
1679 case TYPE_CODE_RANGE:
1680 case TYPE_CODE_ENUM:
1681
1682 /* Cast argument to long if necessary as the mask does it too. */
1683 if (TYPE_LENGTH (arg_type)
1684 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1685 {
1686 arg_type = builtin_type (gdbarch)->builtin_long;
1687 arg = value_cast (arg_type, arg);
1688 }
1689 /* Aligment is equal to the type length for the basic types. */
1690 info->align = TYPE_LENGTH (arg_type);
1691 break;
1692
1693 case TYPE_CODE_FLT:
1694
1695 /* Align doubles correctly. */
1696 if (TYPE_LENGTH (arg_type)
1697 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1698 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1699 else
1700 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1701 break;
1702
1703 case TYPE_CODE_STRUCT:
1704 default:
1705 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1706 break;
1707 }
1708 info->length = TYPE_LENGTH (arg_type);
1709 info->contents = value_contents (arg);
1710
1711 /* Align size and onstack_size. */
1712 size = (size + info->align - 1) & ~(info->align - 1);
1713 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1714
1715 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1716 {
1717 info->onstack = 1;
1718 info->u.offset = onstack_size;
1719 onstack_size += info->length;
1720 }
1721 else
1722 {
1723 info->onstack = 0;
1724 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1725 }
1726 size += info->length;
1727 }
1728
1729 /* Adjust the stack pointer and align it. */
1730 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1731
1732 /* Simulate MOVSP, if Windowed ABI. */
1733 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1734 && (sp != osp))
1735 {
1736 read_memory (osp - 16, buf, 16);
1737 write_memory (sp - 16, buf, 16);
1738 }
1739
1740 /* Second Loop: Load arguments. */
1741
1742 if (struct_return)
1743 {
1744 store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
1745 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1746 }
1747
1748 for (i = 0; i < nargs; i++)
1749 {
1750 struct argument_info *info = &arg_info[i];
1751
1752 if (info->onstack)
1753 {
1754 int n = info->length;
1755 CORE_ADDR offset = sp + info->u.offset;
1756
1757 /* Odd-sized structs are aligned to the lower side of a memory
1758 word in big-endian mode and require a shift. This only
1759 applies for structures smaller than one word. */
1760
1761 if (n < REGISTER_SIZE
1762 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1763 offset += (REGISTER_SIZE - n);
1764
1765 write_memory (offset, info->contents, info->length);
1766
1767 }
1768 else
1769 {
1770 int n = info->length;
1771 const bfd_byte *cp = info->contents;
1772 int r = info->u.regno;
1773
1774 /* Odd-sized structs are aligned to the lower side of registers in
1775 big-endian mode and require a shift. The odd-sized leftover will
1776 be at the end. Note that this is only true for structures smaller
1777 than REGISTER_SIZE; for larger odd-sized structures the excess
1778 will be left-aligned in the register on both endiannesses. */
1779
1780 if (n < REGISTER_SIZE
1781 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1782 {
1783 ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
1784 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1785
1786 store_unsigned_integer (buf, REGISTER_SIZE, v);
1787 regcache_cooked_write (regcache, r, buf);
1788
1789 cp += REGISTER_SIZE;
1790 n -= REGISTER_SIZE;
1791 r++;
1792 }
1793 else
1794 while (n > 0)
1795 {
1796 regcache_cooked_write (regcache, r, cp);
1797
1798 cp += REGISTER_SIZE;
1799 n -= REGISTER_SIZE;
1800 r++;
1801 }
1802 }
1803 }
1804
1805 /* Set the return address of dummy frame to the dummy address.
1806 The return address for the current function (in A0) is
1807 saved in the dummy frame, so we can savely overwrite A0 here. */
1808
1809 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1810 {
1811 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1812 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1813 ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
1814 regcache_cooked_write_unsigned
1815 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1816 regcache_cooked_write_unsigned (regcache,
1817 gdbarch_ps_regnum (gdbarch),
1818 ps | 0x00010000);
1819
1820 /* All the registers have been saved. After executing
1821 dummy call, they all will be restored. So it's safe
1822 to modify WINDOWSTART register to make it look like there
1823 is only one register window corresponding to WINDOWEBASE. */
1824
1825 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1826 regcache_cooked_write_unsigned (regcache,
1827 gdbarch_tdep (gdbarch)->ws_regnum,
1828 1 << extract_unsigned_integer (buf, 4));
1829 }
1830 else
1831 {
1832 /* Simulate CALL0: write RA into A0 register. */
1833 regcache_cooked_write_unsigned
1834 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1835 }
1836
1837 /* Set new stack pointer and return it. */
1838 regcache_cooked_write_unsigned (regcache,
1839 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1840 /* Make dummy frame ID unique by adding a constant. */
1841 return sp + SP_ALIGNMENT;
1842 }
1843
1844
1845 /* Return a breakpoint for the current location of PC. We always use
1846 the density version if we have density instructions (regardless of the
1847 current instruction at PC), and use regular instructions otherwise. */
1848
1849 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1850 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1851 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1852 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1853
1854 static const unsigned char *
1855 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1856 int *lenptr)
1857 {
1858 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1859 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1860 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1861 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1862
1863 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1864
1865 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1866 {
1867 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1868 {
1869 *lenptr = sizeof (density_big_breakpoint);
1870 return density_big_breakpoint;
1871 }
1872 else
1873 {
1874 *lenptr = sizeof (density_little_breakpoint);
1875 return density_little_breakpoint;
1876 }
1877 }
1878 else
1879 {
1880 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1881 {
1882 *lenptr = sizeof (big_breakpoint);
1883 return big_breakpoint;
1884 }
1885 else
1886 {
1887 *lenptr = sizeof (little_breakpoint);
1888 return little_breakpoint;
1889 }
1890 }
1891 }
1892
1893 /* Call0 ABI support routines. */
1894
1895 /* Call0 opcode class. Opcodes are preclassified according to what they
1896 mean for Call0 prologue analysis, and their number of significant operands.
1897 The purpose of this is to simplify prologue analysis by separating
1898 instruction decoding (libisa) from the semantics of prologue analysis. */
1899
1900 typedef enum {
1901 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1902 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1903 c0opc_flow, /* Flow control insn. */
1904 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1905 c0opc_break, /* Debugger software breakpoints. */
1906 c0opc_add, /* Adding two registers. */
1907 c0opc_addi, /* Adding a register and an immediate. */
1908 c0opc_sub, /* Subtracting a register from a register. */
1909 c0opc_mov, /* Moving a register to a register. */
1910 c0opc_movi, /* Moving an immediate to a register. */
1911 c0opc_l32r, /* Loading a literal. */
1912 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1913 c0opc_NrOf /* Number of opcode classifications. */
1914 } xtensa_insn_kind;
1915
1916
1917 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1918
1919 static xtensa_insn_kind
1920 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1921 {
1922 const char *opcname;
1923 xtensa_insn_kind opclass = c0opc_uninteresting;
1924
1925 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1926
1927 /* Get opcode name and handle special classifications. */
1928
1929 opcname = xtensa_opcode_name (isa, opc);
1930
1931 if (opcname == NULL
1932 || strcasecmp (opcname, "ill") == 0
1933 || strcasecmp (opcname, "ill.n") == 0)
1934 opclass = c0opc_illegal;
1935 else if (strcasecmp (opcname, "break") == 0
1936 || strcasecmp (opcname, "break.n") == 0)
1937 opclass = c0opc_break;
1938 else if (strcasecmp (opcname, "entry") == 0)
1939 opclass = c0opc_entry;
1940 else if (xtensa_opcode_is_branch (isa, opc) > 0
1941 || xtensa_opcode_is_jump (isa, opc) > 0
1942 || xtensa_opcode_is_loop (isa, opc) > 0
1943 || xtensa_opcode_is_call (isa, opc) > 0
1944 || strcasecmp (opcname, "simcall") == 0
1945 || strcasecmp (opcname, "syscall") == 0)
1946 opclass = c0opc_flow;
1947
1948 /* Also, classify specific opcodes that need to be tracked. */
1949 else if (strcasecmp (opcname, "add") == 0
1950 || strcasecmp (opcname, "add.n") == 0)
1951 opclass = c0opc_add;
1952 else if (strcasecmp (opcname, "addi") == 0
1953 || strcasecmp (opcname, "addi.n") == 0
1954 || strcasecmp (opcname, "addmi") == 0)
1955 opclass = c0opc_addi;
1956 else if (strcasecmp (opcname, "sub") == 0)
1957 opclass = c0opc_sub;
1958 else if (strcasecmp (opcname, "mov.n") == 0
1959 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1960 opclass = c0opc_mov;
1961 else if (strcasecmp (opcname, "movi") == 0
1962 || strcasecmp (opcname, "movi.n") == 0)
1963 opclass = c0opc_movi;
1964 else if (strcasecmp (opcname, "l32r") == 0)
1965 opclass = c0opc_l32r;
1966 else if (strcasecmp (opcname, "s32i") == 0
1967 || strcasecmp (opcname, "s32i.n") == 0)
1968 opclass = c0opc_s32i;
1969
1970 return opclass;
1971 }
1972
1973 /* Tracks register movement/mutation for a given operation, which may
1974 be within a bundle. Updates the destination register tracking info
1975 accordingly. The pc is needed only for pc-relative load instructions
1976 (eg. l32r). The SP register number is needed to identify stores to
1977 the stack frame. */
1978
1979 static void
1980 call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1981 xtensa_insn_kind opclass, int nods, unsigned odv[],
1982 CORE_ADDR pc, CORE_ADDR litbase, int spreg)
1983 {
1984 unsigned litaddr, litval;
1985
1986 switch (opclass)
1987 {
1988 case c0opc_addi:
1989 /* 3 operands: dst, src, imm. */
1990 gdb_assert (nods == 3);
1991 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1992 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1993 break;
1994 case c0opc_add:
1995 /* 3 operands: dst, src1, src2. */
1996 gdb_assert (nods == 3);
1997 if (src[odv[1]].fr_reg == C0_CONST)
1998 {
1999 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2000 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2001 }
2002 else if (src[odv[2]].fr_reg == C0_CONST)
2003 {
2004 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2005 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2006 }
2007 else dst[odv[0]].fr_reg = C0_INEXP;
2008 break;
2009 case c0opc_sub:
2010 /* 3 operands: dst, src1, src2. */
2011 gdb_assert (nods == 3);
2012 if (src[odv[2]].fr_reg == C0_CONST)
2013 {
2014 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2015 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2016 }
2017 else dst[odv[0]].fr_reg = C0_INEXP;
2018 break;
2019 case c0opc_mov:
2020 /* 2 operands: dst, src [, src]. */
2021 gdb_assert (nods == 2);
2022 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2023 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2024 break;
2025 case c0opc_movi:
2026 /* 2 operands: dst, imm. */
2027 gdb_assert (nods == 2);
2028 dst[odv[0]].fr_reg = C0_CONST;
2029 dst[odv[0]].fr_ofs = odv[1];
2030 break;
2031 case c0opc_l32r:
2032 /* 2 operands: dst, literal offset. */
2033 gdb_assert (nods == 2);
2034 litaddr = litbase & 1
2035 ? (litbase & ~1) + (signed)odv[1]
2036 : (pc + 3 + (signed)odv[1]) & ~3;
2037 litval = read_memory_integer(litaddr, 4);
2038 dst[odv[0]].fr_reg = C0_CONST;
2039 dst[odv[0]].fr_ofs = litval;
2040 break;
2041 case c0opc_s32i:
2042 /* 3 operands: value, base, offset. */
2043 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2044 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2045 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2046 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2047 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2048 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2049 {
2050 /* ISA encoding guarantees alignment. But, check it anyway. */
2051 gdb_assert ((odv[2] & 3) == 0);
2052 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2053 }
2054 break;
2055 default:
2056 gdb_assert (0);
2057 }
2058 }
2059
2060 /* Analyze prologue of the function at start address to determine if it uses
2061 the Call0 ABI, and if so track register moves and linear modifications
2062 in the prologue up to the PC or just beyond the prologue, whichever is first.
2063 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2064 The prologue may overlap non-prologue instructions but is guaranteed to end
2065 by the first flow-control instruction (jump, branch, call or return).
2066 Since an optimized function may move information around and change the
2067 stack frame arbitrarily during the prologue, the information is guaranteed
2068 valid only at the point in the function indicated by the PC.
2069 May be used to skip the prologue or identify the ABI, w/o tracking.
2070
2071 Returns: Address of first instruction after prologue, or PC (whichever
2072 is first), or 0, if decoding failed (in libisa).
2073 Input args:
2074 start Start address of function/prologue.
2075 pc Program counter to stop at. Use 0 to continue to end of prologue.
2076 If 0, avoids infinite run-on in corrupt code memory by bounding
2077 the scan to the end of the function if that can be determined.
2078 nregs Number of general registers to track (size of rt[] array).
2079 InOut args:
2080 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2081 If NULL, registers are not tracked.
2082 Output args:
2083 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2084 (more accurately, non-zero until 'entry' insn is encountered).
2085
2086 Note that these may produce useful results even if decoding fails
2087 because they begin with default assumptions that analysis may change. */
2088
2089 static CORE_ADDR
2090 call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
2091 int nregs, xtensa_c0reg_t rt[], int *call0)
2092 {
2093 CORE_ADDR ia; /* Current insn address in prologue. */
2094 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2095 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2096 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2097 xtensa_isa isa; /* libisa ISA handle. */
2098 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2099 xtensa_format ifmt; /* libisa instruction format. */
2100 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2101 xtensa_opcode opc; /* Opcode in current slot. */
2102 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2103 int nods; /* Opcode number of operands. */
2104 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2105 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2106 int j; /* General loop counter. */
2107 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2108 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2109 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2110
2111 struct symtab_and_line prologue_sal;
2112
2113 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2114 (int)start, (int)pc);
2115
2116 /* Try to limit the scan to the end of the function if a non-zero pc
2117 arg was not supplied to avoid probing beyond the end of valid memory.
2118 If memory is full of garbage that classifies as c0opc_uninteresting.
2119 If this fails (eg. if no symbols) pc ends up 0 as it was.
2120 Intialize the Call0 frame and register tracking info.
2121 Assume it's Call0 until an 'entry' instruction is encountered.
2122 Assume we may be in the prologue until we hit a flow control instr. */
2123
2124 rtmp = NULL;
2125 body_pc = INT_MAX;
2126 end_pc = 0;
2127
2128 /* Find out, if we have an information about the prologue from DWARF. */
2129 prologue_sal = find_pc_line (start, 0);
2130 if (prologue_sal.line != 0) /* Found debug info. */
2131 body_pc = prologue_sal.end;
2132
2133 /* If we are going to analyze the prologue in general without knowing about
2134 the current PC, make the best assumtion for the end of the prologue. */
2135 if (pc == 0)
2136 {
2137 find_pc_partial_function (start, 0, NULL, &end_pc);
2138 body_pc = min (end_pc, body_pc);
2139 }
2140 else
2141 body_pc = min (pc, body_pc);
2142
2143 if (call0 != NULL)
2144 *call0 = 1;
2145
2146 if (rt != NULL)
2147 {
2148 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2149 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2150 }
2151 else nregs = 0;
2152
2153 if (!xtensa_default_isa)
2154 xtensa_default_isa = xtensa_isa_init (0, 0);
2155 isa = xtensa_default_isa;
2156 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2157 ins = xtensa_insnbuf_alloc (isa);
2158 slot = xtensa_insnbuf_alloc (isa);
2159
2160 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2161 {
2162 /* (Re)fill instruction buffer from memory if necessary, but do not
2163 read memory beyond PC to be sure we stay within text section
2164 (this protection only works if a non-zero pc is supplied). */
2165
2166 if (ia + xtensa_isa_maxlength (isa) > bt)
2167 {
2168 ba = ia;
2169 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2170 read_memory (ba, ibuf, bt - ba);
2171 }
2172
2173 /* Decode format information. */
2174
2175 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2176 ifmt = xtensa_format_decode (isa, ins);
2177 if (ifmt == XTENSA_UNDEFINED)
2178 {
2179 fail = 1;
2180 goto done;
2181 }
2182 ilen = xtensa_format_length (isa, ifmt);
2183 if (ilen == XTENSA_UNDEFINED)
2184 {
2185 fail = 1;
2186 goto done;
2187 }
2188 islots = xtensa_format_num_slots (isa, ifmt);
2189 if (islots == XTENSA_UNDEFINED)
2190 {
2191 fail = 1;
2192 goto done;
2193 }
2194
2195 /* Analyze a bundle or a single instruction, using a snapshot of
2196 the register tracking info as input for the entire bundle so that
2197 register changes do not take effect within this bundle. */
2198
2199 for (j = 0; j < nregs; ++j)
2200 rtmp[j] = rt[j];
2201
2202 for (is = 0; is < islots; ++is)
2203 {
2204 /* Decode a slot and classify the opcode. */
2205
2206 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2207 if (fail)
2208 goto done;
2209
2210 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2211 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2212 (unsigned)ia, opc);
2213 if (opc == XTENSA_UNDEFINED)
2214 opclass = c0opc_illegal;
2215 else
2216 opclass = call0_classify_opcode (isa, opc);
2217
2218 /* Decide whether to track this opcode, ignore it, or bail out. */
2219
2220 switch (opclass)
2221 {
2222 case c0opc_illegal:
2223 case c0opc_break:
2224 fail = 1;
2225 goto done;
2226
2227 case c0opc_uninteresting:
2228 continue;
2229
2230 case c0opc_flow:
2231 goto done;
2232
2233 case c0opc_entry:
2234 if (call0 != NULL)
2235 *call0 = 0;
2236 ia += ilen; /* Skip over 'entry' insn. */
2237 goto done;
2238
2239 default:
2240 if (call0 != NULL)
2241 *call0 = 1;
2242 }
2243
2244 /* Only expected opcodes should get this far. */
2245 if (rt == NULL)
2246 continue;
2247
2248 /* Extract and decode the operands. */
2249 nods = xtensa_opcode_num_operands (isa, opc);
2250 if (nods == XTENSA_UNDEFINED)
2251 {
2252 fail = 1;
2253 goto done;
2254 }
2255
2256 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2257 {
2258 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2259 is, slot, &odv[j]);
2260 if (fail)
2261 goto done;
2262
2263 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2264 if (fail)
2265 goto done;
2266 }
2267
2268 /* Check operands to verify use of 'mov' assembler macro. */
2269 if (opclass == c0opc_mov && nods == 3)
2270 {
2271 if (odv[2] == odv[1])
2272 nods = 2;
2273 else
2274 {
2275 opclass = c0opc_uninteresting;
2276 continue;
2277 }
2278 }
2279
2280 /* Track register movement and modification for this operation. */
2281 call0_track_op (rt, rtmp, opclass, nods, odv, ia, litbase, 1);
2282 }
2283 }
2284 done:
2285 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2286 (unsigned)ia, fail ? "failed" : "succeeded");
2287 xtensa_insnbuf_free(isa, slot);
2288 xtensa_insnbuf_free(isa, ins);
2289 return fail ? 0 : ia;
2290 }
2291
2292 /* Initialize frame cache for the current frame in CALL0 ABI. */
2293
2294 static void
2295 call0_frame_cache (struct frame_info *this_frame,
2296 xtensa_frame_cache_t *cache, CORE_ADDR pc, CORE_ADDR litbase)
2297 {
2298 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2299 CORE_ADDR start_pc; /* The beginning of the function. */
2300 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2301 CORE_ADDR sp, fp, ra;
2302 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2303
2304 /* Find the beginning of the prologue of the function containing the PC
2305 and analyze it up to the PC or the end of the prologue. */
2306
2307 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2308 {
2309 body_pc = call0_analyze_prologue (start_pc, pc, litbase, C0_NREGS,
2310 &cache->c0.c0_rt[0],
2311 &cache->call0);
2312 }
2313
2314 sp = get_frame_register_unsigned
2315 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2316 fp = sp; /* Assume FP == SP until proven otherwise. */
2317
2318 /* Get the frame information and FP (if used) at the current PC.
2319 If PC is in the prologue, the prologue analysis is more reliable
2320 than DWARF info. We don't not know for sure if PC is in the prologue,
2321 but we know no calls have yet taken place, so we can almost
2322 certainly rely on the prologue analysis. */
2323
2324 if (body_pc <= pc)
2325 {
2326 /* Prologue analysis was successful up to the PC.
2327 It includes the cases when PC == START_PC. */
2328 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2329 /* c0_hasfp == true means there is a frame pointer because
2330 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2331 was derived from SP. Otherwise, it would be C0_FP. */
2332 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2333 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2334 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2335 }
2336 else /* No data from the prologue analysis. */
2337 {
2338 c0_hasfp = 0;
2339 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2340 c0_frmsz = 0;
2341 start_pc = pc;
2342 }
2343
2344 prev_sp = fp + c0_frmsz;
2345
2346 /* Frame size from debug info or prologue tracking does not account for
2347 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2348 if (c0_hasfp)
2349 {
2350 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2351
2352 /* Recalculate previous SP. */
2353 prev_sp = fp + c0_frmsz;
2354 /* Update the stack frame size. */
2355 c0_frmsz += fp - sp;
2356 }
2357
2358 /* Get the return address (RA) from the stack if saved,
2359 or try to get it from a register. */
2360
2361 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2362 if (to_stk != C0_NOSTK)
2363 ra = (CORE_ADDR)
2364 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
2365
2366 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2367 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2368 {
2369 /* Special case for terminating backtrace at a function that wants to
2370 be seen as the outermost. Such a function will clear it's RA (A0)
2371 register to 0 in the prologue instead of saving its original value. */
2372 ra = 0;
2373 }
2374 else
2375 {
2376 /* RA was copied to another register or (before any function call) may
2377 still be in the original RA register. This is not always reliable:
2378 even in a leaf function, register tracking stops after prologue, and
2379 even in prologue, non-prologue instructions (not tracked) may overwrite
2380 RA or any register it was copied to. If likely in prologue or before
2381 any call, use retracking info and hope for the best (compiler should
2382 have saved RA in stack if not in a leaf function). If not in prologue,
2383 too bad. */
2384
2385 int i;
2386 for (i = 0;
2387 (i < C0_NREGS) &&
2388 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2389 ++i);
2390 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2391 i = C0_RA;
2392 if (i < C0_NREGS)
2393 {
2394 ra = get_frame_register_unsigned
2395 (this_frame,
2396 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2397 }
2398 else ra = 0;
2399 }
2400
2401 cache->pc = start_pc;
2402 cache->ra = ra;
2403 /* RA == 0 marks the outermost frame. Do not go past it. */
2404 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2405 cache->c0.fp_regnum = fp_regnum;
2406 cache->c0.c0_frmsz = c0_frmsz;
2407 cache->c0.c0_hasfp = c0_hasfp;
2408 cache->c0.c0_fp = fp;
2409 }
2410
2411
2412 /* Skip function prologue.
2413
2414 Return the pc of the first instruction after prologue. GDB calls this to
2415 find the address of the first line of the function or (if there is no line
2416 number information) to skip the prologue for planting breakpoints on
2417 function entries. Use debug info (if present) or prologue analysis to skip
2418 the prologue to achieve reliable debugging behavior. For windowed ABI,
2419 only the 'entry' instruction is skipped. It is not strictly necessary to
2420 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2421 backtrace at any point in the prologue, however certain potential hazards
2422 are avoided and a more "normal" debugging experience is ensured by
2423 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2424 For example, if we don't skip the prologue:
2425 - Some args may not yet have been saved to the stack where the debug
2426 info expects to find them (true anyway when only 'entry' is skipped);
2427 - Software breakpoints ('break' instrs) may not have been unplanted
2428 when the prologue analysis is done on initializing the frame cache,
2429 and breaks in the prologue will throw off the analysis.
2430
2431 If we have debug info ( line-number info, in particular ) we simply skip
2432 the code associated with the first function line effectively skipping
2433 the prologue code. It works even in cases like
2434
2435 int main()
2436 { int local_var = 1;
2437 ....
2438 }
2439
2440 because, for this source code, both Xtensa compilers will generate two
2441 separate entries ( with the same line number ) in dwarf line-number
2442 section to make sure there is a boundary between the prologue code and
2443 the rest of the function.
2444
2445 If there is no debug info, we need to analyze the code. */
2446
2447 /* #define DONT_SKIP_PROLOGUE */
2448
2449 static CORE_ADDR
2450 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2451 {
2452 struct symtab_and_line prologue_sal;
2453 CORE_ADDR body_pc;
2454
2455 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2456
2457 #if DONT_SKIP_PROLOGUE
2458 return start_pc;
2459 #endif
2460
2461 /* Try to find first body line from debug info. */
2462
2463 prologue_sal = find_pc_line (start_pc, 0);
2464 if (prologue_sal.line != 0) /* Found debug info. */
2465 {
2466 /* In Call0, it is possible to have a function with only one instruction
2467 ('ret') resulting from a 1-line optimized function that does nothing.
2468 In that case, prologue_sal.end may actually point to the start of the
2469 next function in the text section, causing a breakpoint to be set at
2470 the wrong place. Check if the end address is in a different function,
2471 and if so return the start PC. We know we have symbol info. */
2472
2473 CORE_ADDR end_func;
2474
2475 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2476 if (end_func != start_pc)
2477 return start_pc;
2478
2479 return prologue_sal.end;
2480 }
2481
2482 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2483 body_pc = call0_analyze_prologue(start_pc, 0, 0, 0, NULL, NULL);
2484 return body_pc != 0 ? body_pc : start_pc;
2485 }
2486
2487 /* Verify the current configuration. */
2488 static void
2489 xtensa_verify_config (struct gdbarch *gdbarch)
2490 {
2491 struct ui_file *log;
2492 struct cleanup *cleanups;
2493 struct gdbarch_tdep *tdep;
2494 long dummy;
2495 char *buf;
2496
2497 tdep = gdbarch_tdep (gdbarch);
2498 log = mem_fileopen ();
2499 cleanups = make_cleanup_ui_file_delete (log);
2500
2501 /* Verify that we got a reasonable number of AREGS. */
2502 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2503 fprintf_unfiltered (log, _("\
2504 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2505 tdep->num_aregs);
2506
2507 /* Verify that certain registers exist. */
2508
2509 if (tdep->pc_regnum == -1)
2510 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2511 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2512 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2513
2514 if (tdep->isa_use_windowed_registers)
2515 {
2516 if (tdep->wb_regnum == -1)
2517 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2518 if (tdep->ws_regnum == -1)
2519 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2520 if (tdep->ar_base == -1)
2521 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2522 }
2523
2524 if (tdep->a0_base == -1)
2525 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2526
2527 buf = ui_file_xstrdup (log, &dummy);
2528 make_cleanup (xfree, buf);
2529 if (strlen (buf) > 0)
2530 internal_error (__FILE__, __LINE__,
2531 _("the following are invalid: %s"), buf);
2532 do_cleanups (cleanups);
2533 }
2534
2535
2536 /* Derive specific register numbers from the array of registers. */
2537
2538 static void
2539 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
2540 {
2541 xtensa_register_t* rmap;
2542 int n, max_size = 4;
2543
2544 tdep->num_regs = 0;
2545 tdep->num_nopriv_regs = 0;
2546
2547 /* Special registers 0..255 (core). */
2548 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
2549
2550 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
2551 {
2552 if (rmap->target_number == 0x0020)
2553 tdep->pc_regnum = n;
2554 else if (rmap->target_number == 0x0100)
2555 tdep->ar_base = n;
2556 else if (rmap->target_number == 0x0000)
2557 tdep->a0_base = n;
2558 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
2559 tdep->wb_regnum = n;
2560 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
2561 tdep->ws_regnum = n;
2562 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
2563 tdep->debugcause_regnum = n;
2564 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
2565 tdep->exccause_regnum = n;
2566 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
2567 tdep->excvaddr_regnum = n;
2568 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
2569 tdep->lbeg_regnum = n;
2570 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
2571 tdep->lend_regnum = n;
2572 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
2573 tdep->lcount_regnum = n;
2574 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
2575 tdep->sar_regnum = n;
2576 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
2577 tdep->litbase_regnum = n;
2578 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
2579 tdep->ps_regnum = n;
2580 #if 0
2581 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
2582 tdep->interrupt_regnum = n;
2583 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
2584 tdep->interrupt2_regnum = n;
2585 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
2586 tdep->cpenable_regnum = n;
2587 #endif
2588
2589 if (rmap->byte_size > max_size)
2590 max_size = rmap->byte_size;
2591 if (rmap->mask != 0 && tdep->num_regs == 0)
2592 tdep->num_regs = n;
2593 /* Find out out how to deal with priveleged registers.
2594
2595 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2596 && tdep->num_nopriv_regs == 0)
2597 tdep->num_nopriv_regs = n;
2598 */
2599 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2600 && tdep->num_regs == 0)
2601 tdep->num_regs = n;
2602 }
2603
2604 /* Number of pseudo registers. */
2605 tdep->num_pseudo_regs = n - tdep->num_regs;
2606
2607 /* Empirically determined maximum sizes. */
2608 tdep->max_register_raw_size = max_size;
2609 tdep->max_register_virtual_size = max_size;
2610 }
2611
2612 /* Module "constructor" function. */
2613
2614 extern struct gdbarch_tdep xtensa_tdep;
2615
2616 static struct gdbarch *
2617 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2618 {
2619 struct gdbarch_tdep *tdep;
2620 struct gdbarch *gdbarch;
2621 struct xtensa_abi_handler *abi_handler;
2622
2623 DEBUGTRACE ("gdbarch_init()\n");
2624
2625 /* We have to set the byte order before we call gdbarch_alloc. */
2626 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
2627
2628 tdep = &xtensa_tdep;
2629 gdbarch = gdbarch_alloc (&info, tdep);
2630 xtensa_derive_tdep (tdep);
2631
2632 /* Verify our configuration. */
2633 xtensa_verify_config (gdbarch);
2634
2635 /* Pseudo-Register read/write. */
2636 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2637 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2638
2639 /* Set target information. */
2640 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2641 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2642 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2643 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2644 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2645
2646 /* Renumber registers for known formats (stabs and dwarf2). */
2647 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2648 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2649
2650 /* We provide our own function to get register information. */
2651 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2652 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2653
2654 /* To call functions from GDB using dummy frame */
2655 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2656
2657 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2658
2659 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2660
2661 /* Advance PC across any prologue instructions to reach "real" code. */
2662 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2663
2664 /* Stack grows downward. */
2665 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2666
2667 /* Set breakpoints. */
2668 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2669
2670 /* After breakpoint instruction or illegal instruction, pc still
2671 points at break instruction, so don't decrement. */
2672 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2673
2674 /* We don't skip args. */
2675 set_gdbarch_frame_args_skip (gdbarch, 0);
2676
2677 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2678
2679 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2680
2681 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
2682
2683 /* Frame handling. */
2684 frame_base_set_default (gdbarch, &xtensa_frame_base);
2685 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
2686 dwarf2_append_unwinders (gdbarch);
2687
2688 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2689
2690 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2691
2692 xtensa_add_reggroups (gdbarch);
2693 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2694
2695 set_gdbarch_regset_from_core_section (gdbarch,
2696 xtensa_regset_from_core_section);
2697
2698 set_solib_svr4_fetch_link_map_offsets
2699 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2700
2701 return gdbarch;
2702 }
2703
2704 static void
2705 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2706 {
2707 error (_("xtensa_dump_tdep(): not implemented"));
2708 }
2709
2710 /* Provide a prototype to silence -Wmissing-prototypes. */
2711 extern initialize_file_ftype _initialize_xtensa_tdep;
2712
2713 void
2714 _initialize_xtensa_tdep (void)
2715 {
2716 struct cmd_list_element *c;
2717
2718 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2719 xtensa_init_reggroups ();
2720
2721 add_setshow_zinteger_cmd ("xtensa",
2722 class_maintenance,
2723 &xtensa_debug_level, _("\
2724 Set Xtensa debugging."), _("\
2725 Show Xtensa debugging."), _("\
2726 When non-zero, Xtensa-specific debugging is enabled. \
2727 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2728 NULL,
2729 NULL,
2730 &setdebuglist, &showdebuglist);
2731 }
This page took 0.085285 seconds and 4 git commands to generate.