Replace some xmalloc-family functions with XNEW-family ones
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 static int
123 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
124 {
125 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
126 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
127 return 0;
128
129 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
130 }
131
132 /* Convert a live A-register number to the corresponding AR-register
133 number. */
134 static int
135 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
136 {
137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138 int arreg;
139
140 arreg = a_regnum - tdep->a0_base;
141 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
142 arreg &= tdep->num_aregs - 1;
143
144 return arreg + tdep->ar_base;
145 }
146
147 /* Convert a live AR-register number to the corresponding A-register order
148 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
149 static int
150 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153 int areg;
154
155 areg = ar_regnum - tdep->ar_base;
156 if (areg < 0 || areg >= tdep->num_aregs)
157 return -1;
158 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
159 return (areg > 15) ? -1 : areg;
160 }
161
162 /* Read Xtensa register directly from the hardware. */
163 static unsigned long
164 xtensa_read_register (int regnum)
165 {
166 ULONGEST value;
167
168 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
169 return (unsigned long) value;
170 }
171
172 /* Write Xtensa register directly to the hardware. */
173 static void
174 xtensa_write_register (int regnum, ULONGEST value)
175 {
176 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
177 }
178
179 /* Return the window size of the previous call to the function from which we
180 have just returned.
181
182 This function is used to extract the return value after a called function
183 has returned to the caller. On Xtensa, the register that holds the return
184 value (from the perspective of the caller) depends on what call
185 instruction was used. For now, we are assuming that the call instruction
186 precedes the current address, so we simply analyze the call instruction.
187 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
188 method to call the inferior function. */
189
190 static int
191 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
192 {
193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
194 int winsize = 4;
195 int insn;
196 gdb_byte buf[4];
197
198 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
199
200 /* Read the previous instruction (should be a call[x]{4|8|12}. */
201 read_memory (pc-3, buf, 3);
202 insn = extract_unsigned_integer (buf, 3, byte_order);
203
204 /* Decode call instruction:
205 Little Endian
206 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
207 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
208 Big Endian
209 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
210 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
211
212 if (byte_order == BFD_ENDIAN_LITTLE)
213 {
214 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
215 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
216 }
217 else
218 {
219 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
220 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
221 }
222 return winsize;
223 }
224
225
226 /* REGISTER INFORMATION */
227
228 /* Find register by name. */
229 static int
230 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
231 {
232 int i;
233
234 for (i = 0; i < gdbarch_num_regs (gdbarch)
235 + gdbarch_num_pseudo_regs (gdbarch);
236 i++)
237
238 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
239 return i;
240
241 return -1;
242 }
243
244 /* Returns the name of a register. */
245 static const char *
246 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
247 {
248 /* Return the name stored in the register map. */
249 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
250 + gdbarch_num_pseudo_regs (gdbarch))
251 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
252
253 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
254 return 0;
255 }
256
257 /* Return the type of a register. Create a new type, if necessary. */
258
259 static struct type *
260 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* Return signed integer for ARx and Ax registers. */
265 if ((regnum >= tdep->ar_base
266 && regnum < tdep->ar_base + tdep->num_aregs)
267 || (regnum >= tdep->a0_base
268 && regnum < tdep->a0_base + 16))
269 return builtin_type (gdbarch)->builtin_int;
270
271 if (regnum == gdbarch_pc_regnum (gdbarch)
272 || regnum == tdep->a0_base + 1)
273 return builtin_type (gdbarch)->builtin_data_ptr;
274
275 /* Return the stored type for all other registers. */
276 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
277 + gdbarch_num_pseudo_regs (gdbarch))
278 {
279 xtensa_register_t* reg = &tdep->regmap[regnum];
280
281 /* Set ctype for this register (only the first time). */
282
283 if (reg->ctype == 0)
284 {
285 struct ctype_cache *tp;
286 int size = reg->byte_size;
287
288 /* We always use the memory representation,
289 even if the register width is smaller. */
290 switch (size)
291 {
292 case 1:
293 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
294 break;
295
296 case 2:
297 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
298 break;
299
300 case 4:
301 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
302 break;
303
304 case 8:
305 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
306 break;
307
308 case 16:
309 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
310 break;
311
312 default:
313 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
314 if (tp->size == size)
315 break;
316
317 if (tp == NULL)
318 {
319 char *name = xstrprintf ("int%d", size * 8);
320
321 tp = XNEW (struct ctype_cache);
322 tp->next = tdep->type_entries;
323 tdep->type_entries = tp;
324 tp->size = size;
325 tp->virtual_type
326 = arch_integer_type (gdbarch, size * 8, 1, name);
327 xfree (name);
328 }
329
330 reg->ctype = tp->virtual_type;
331 }
332 }
333 return reg->ctype;
334 }
335
336 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
337 return 0;
338 }
339
340
341 /* Return the 'local' register number for stubs, dwarf2, etc.
342 The debugging information enumerates registers starting from 0 for A0
343 to n for An. So, we only have to add the base number for A0. */
344
345 static int
346 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
347 {
348 int i;
349
350 if (regnum >= 0 && regnum < 16)
351 return gdbarch_tdep (gdbarch)->a0_base + regnum;
352
353 for (i = 0;
354 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
355 i++)
356 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
357 return i;
358
359 internal_error (__FILE__, __LINE__,
360 _("invalid dwarf/stabs register number %d"), regnum);
361 return 0;
362 }
363
364
365 /* Write the bits of a masked register to the various registers.
366 Only the masked areas of these registers are modified; the other
367 fields are untouched. The size of masked registers is always less
368 than or equal to 32 bits. */
369
370 static void
371 xtensa_register_write_masked (struct regcache *regcache,
372 xtensa_register_t *reg, const gdb_byte *buffer)
373 {
374 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
375 const xtensa_mask_t *mask = reg->mask;
376
377 int shift = 0; /* Shift for next mask (mod 32). */
378 int start, size; /* Start bit and size of current mask. */
379
380 unsigned int *ptr = value;
381 unsigned int regval, m, mem = 0;
382
383 int bytesize = reg->byte_size;
384 int bitsize = bytesize * 8;
385 int i, r;
386
387 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388
389 /* Copy the masked register to host byte-order. */
390 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
391 for (i = 0; i < bytesize; i++)
392 {
393 mem >>= 8;
394 mem |= (buffer[bytesize - i - 1] << 24);
395 if ((i & 3) == 3)
396 *ptr++ = mem;
397 }
398 else
399 for (i = 0; i < bytesize; i++)
400 {
401 mem >>= 8;
402 mem |= (buffer[i] << 24);
403 if ((i & 3) == 3)
404 *ptr++ = mem;
405 }
406
407 /* We might have to shift the final value:
408 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
409 bytesize & 3 == x -> shift (4-x) * 8. */
410
411 *ptr = mem >> (((0 - bytesize) & 3) * 8);
412 ptr = value;
413 mem = *ptr;
414
415 /* Write the bits to the masked areas of the other registers. */
416 for (i = 0; i < mask->count; i++)
417 {
418 start = mask->mask[i].bit_start;
419 size = mask->mask[i].bit_size;
420 regval = mem >> shift;
421
422 if ((shift += size) > bitsize)
423 error (_("size of all masks is larger than the register"));
424
425 if (shift >= 32)
426 {
427 mem = *(++ptr);
428 shift -= 32;
429 bitsize -= 32;
430
431 if (shift > 0)
432 regval |= mem << (size - shift);
433 }
434
435 /* Make sure we have a valid register. */
436 r = mask->mask[i].reg_num;
437 if (r >= 0 && size > 0)
438 {
439 /* Don't overwrite the unmasked areas. */
440 ULONGEST old_val;
441 regcache_cooked_read_unsigned (regcache, r, &old_val);
442 m = 0xffffffff >> (32 - size) << start;
443 regval <<= start;
444 regval = (regval & m) | (old_val & ~m);
445 regcache_cooked_write_unsigned (regcache, r, regval);
446 }
447 }
448 }
449
450
451 /* Read a tie state or mapped registers. Read the masked areas
452 of the registers and assemble them into a single value. */
453
454 static enum register_status
455 xtensa_register_read_masked (struct regcache *regcache,
456 xtensa_register_t *reg, gdb_byte *buffer)
457 {
458 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
459 const xtensa_mask_t *mask = reg->mask;
460
461 int shift = 0;
462 int start, size;
463
464 unsigned int *ptr = value;
465 unsigned int regval, mem = 0;
466
467 int bytesize = reg->byte_size;
468 int bitsize = bytesize * 8;
469 int i;
470
471 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
472 reg->name == 0 ? "" : reg->name);
473
474 /* Assemble the register from the masked areas of other registers. */
475 for (i = 0; i < mask->count; i++)
476 {
477 int r = mask->mask[i].reg_num;
478 if (r >= 0)
479 {
480 enum register_status status;
481 ULONGEST val;
482
483 status = regcache_cooked_read_unsigned (regcache, r, &val);
484 if (status != REG_VALID)
485 return status;
486 regval = (unsigned int) val;
487 }
488 else
489 regval = 0;
490
491 start = mask->mask[i].bit_start;
492 size = mask->mask[i].bit_size;
493
494 regval >>= start;
495
496 if (size < 32)
497 regval &= (0xffffffff >> (32 - size));
498
499 mem |= regval << shift;
500
501 if ((shift += size) > bitsize)
502 error (_("size of all masks is larger than the register"));
503
504 if (shift >= 32)
505 {
506 *ptr++ = mem;
507 bitsize -= 32;
508 shift -= 32;
509
510 if (shift == 0)
511 mem = 0;
512 else
513 mem = regval >> (size - shift);
514 }
515 }
516
517 if (shift > 0)
518 *ptr = mem;
519
520 /* Copy value to target byte order. */
521 ptr = value;
522 mem = *ptr;
523
524 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
525 for (i = 0; i < bytesize; i++)
526 {
527 if ((i & 3) == 0)
528 mem = *ptr++;
529 buffer[bytesize - i - 1] = mem & 0xff;
530 mem >>= 8;
531 }
532 else
533 for (i = 0; i < bytesize; i++)
534 {
535 if ((i & 3) == 0)
536 mem = *ptr++;
537 buffer[i] = mem & 0xff;
538 mem >>= 8;
539 }
540
541 return REG_VALID;
542 }
543
544
545 /* Read pseudo registers. */
546
547 static enum register_status
548 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
549 struct regcache *regcache,
550 int regnum,
551 gdb_byte *buffer)
552 {
553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554
555 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
556 regnum, xtensa_register_name (gdbarch, regnum));
557
558 /* Read aliases a0..a15, if this is a Windowed ABI. */
559 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
560 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
561 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
562 {
563 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
564 enum register_status status;
565
566 status = regcache_raw_read (regcache,
567 gdbarch_tdep (gdbarch)->wb_regnum,
568 buf);
569 if (status != REG_VALID)
570 return status;
571 regnum = arreg_number (gdbarch, regnum,
572 extract_unsigned_integer (buf, 4, byte_order));
573 }
574
575 /* We can always read non-pseudo registers. */
576 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
577 return regcache_raw_read (regcache, regnum, buffer);
578
579 /* We have to find out how to deal with priveleged registers.
580 Let's treat them as pseudo-registers, but we cannot read/write them. */
581
582 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
583 {
584 buffer[0] = (gdb_byte)0;
585 buffer[1] = (gdb_byte)0;
586 buffer[2] = (gdb_byte)0;
587 buffer[3] = (gdb_byte)0;
588 return REG_VALID;
589 }
590 /* Pseudo registers. */
591 else if (regnum >= 0
592 && regnum < gdbarch_num_regs (gdbarch)
593 + gdbarch_num_pseudo_regs (gdbarch))
594 {
595 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
596 xtensa_register_type_t type = reg->type;
597 int flags = gdbarch_tdep (gdbarch)->target_flags;
598
599 /* We cannot read Unknown or Unmapped registers. */
600 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
601 {
602 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
603 {
604 warning (_("cannot read register %s"),
605 xtensa_register_name (gdbarch, regnum));
606 return REG_VALID;
607 }
608 }
609
610 /* Some targets cannot read TIE register files. */
611 else if (type == xtRegisterTypeTieRegfile)
612 {
613 /* Use 'fetch' to get register? */
614 if (flags & xtTargetFlagsUseFetchStore)
615 {
616 warning (_("cannot read register"));
617 return REG_VALID;
618 }
619
620 /* On some targets (esp. simulators), we can always read the reg. */
621 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
622 {
623 warning (_("cannot read register"));
624 return REG_VALID;
625 }
626 }
627
628 /* We can always read mapped registers. */
629 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
630 return xtensa_register_read_masked (regcache, reg, buffer);
631
632 /* Assume that we can read the register. */
633 return regcache_raw_read (regcache, regnum, buffer);
634 }
635 else
636 internal_error (__FILE__, __LINE__,
637 _("invalid register number %d"), regnum);
638 }
639
640
641 /* Write pseudo registers. */
642
643 static void
644 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
645 struct regcache *regcache,
646 int regnum,
647 const gdb_byte *buffer)
648 {
649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650
651 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
652 regnum, xtensa_register_name (gdbarch, regnum));
653
654 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
655 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
656 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
657 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
658 {
659 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
660
661 regcache_raw_read (regcache,
662 gdbarch_tdep (gdbarch)->wb_regnum, buf);
663 regnum = arreg_number (gdbarch, regnum,
664 extract_unsigned_integer (buf, 4, byte_order));
665 }
666
667 /* We can always write 'core' registers.
668 Note: We might have converted Ax->ARy. */
669 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
670 regcache_raw_write (regcache, regnum, buffer);
671
672 /* We have to find out how to deal with priveleged registers.
673 Let's treat them as pseudo-registers, but we cannot read/write them. */
674
675 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
676 {
677 return;
678 }
679 /* Pseudo registers. */
680 else if (regnum >= 0
681 && regnum < gdbarch_num_regs (gdbarch)
682 + gdbarch_num_pseudo_regs (gdbarch))
683 {
684 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
685 xtensa_register_type_t type = reg->type;
686 int flags = gdbarch_tdep (gdbarch)->target_flags;
687
688 /* On most targets, we cannot write registers
689 of type "Unknown" or "Unmapped". */
690 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
691 {
692 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
693 {
694 warning (_("cannot write register %s"),
695 xtensa_register_name (gdbarch, regnum));
696 return;
697 }
698 }
699
700 /* Some targets cannot read TIE register files. */
701 else if (type == xtRegisterTypeTieRegfile)
702 {
703 /* Use 'store' to get register? */
704 if (flags & xtTargetFlagsUseFetchStore)
705 {
706 warning (_("cannot write register"));
707 return;
708 }
709
710 /* On some targets (esp. simulators), we can always write
711 the register. */
712 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
713 {
714 warning (_("cannot write register"));
715 return;
716 }
717 }
718
719 /* We can always write mapped registers. */
720 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
721 {
722 xtensa_register_write_masked (regcache, reg, buffer);
723 return;
724 }
725
726 /* Assume that we can write the register. */
727 regcache_raw_write (regcache, regnum, buffer);
728 }
729 else
730 internal_error (__FILE__, __LINE__,
731 _("invalid register number %d"), regnum);
732 }
733
734 static struct reggroup *xtensa_ar_reggroup;
735 static struct reggroup *xtensa_user_reggroup;
736 static struct reggroup *xtensa_vectra_reggroup;
737 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
738
739 static void
740 xtensa_init_reggroups (void)
741 {
742 int i;
743 char cpname[] = "cp0";
744
745 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
746 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
747 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
748
749 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
750 {
751 cpname[2] = '0' + i;
752 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
753 }
754 }
755
756 static void
757 xtensa_add_reggroups (struct gdbarch *gdbarch)
758 {
759 int i;
760
761 /* Predefined groups. */
762 reggroup_add (gdbarch, all_reggroup);
763 reggroup_add (gdbarch, save_reggroup);
764 reggroup_add (gdbarch, restore_reggroup);
765 reggroup_add (gdbarch, system_reggroup);
766 reggroup_add (gdbarch, vector_reggroup);
767 reggroup_add (gdbarch, general_reggroup);
768 reggroup_add (gdbarch, float_reggroup);
769
770 /* Xtensa-specific groups. */
771 reggroup_add (gdbarch, xtensa_ar_reggroup);
772 reggroup_add (gdbarch, xtensa_user_reggroup);
773 reggroup_add (gdbarch, xtensa_vectra_reggroup);
774
775 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
776 reggroup_add (gdbarch, xtensa_cp[i]);
777 }
778
779 static int
780 xtensa_coprocessor_register_group (struct reggroup *group)
781 {
782 int i;
783
784 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
785 if (group == xtensa_cp[i])
786 return i;
787
788 return -1;
789 }
790
791 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
792 | XTENSA_REGISTER_FLAGS_WRITABLE \
793 | XTENSA_REGISTER_FLAGS_VOLATILE)
794
795 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
796 | XTENSA_REGISTER_FLAGS_WRITABLE)
797
798 static int
799 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
800 int regnum,
801 struct reggroup *group)
802 {
803 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
804 xtensa_register_type_t type = reg->type;
805 xtensa_register_group_t rg = reg->group;
806 int cp_number;
807
808 if (group == save_reggroup)
809 /* Every single register should be included into the list of registers
810 to be watched for changes while using -data-list-changed-registers. */
811 return 1;
812
813 /* First, skip registers that are not visible to this target
814 (unknown and unmapped registers when not using ISS). */
815
816 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
817 return 0;
818 if (group == all_reggroup)
819 return 1;
820 if (group == xtensa_ar_reggroup)
821 return rg & xtRegisterGroupAddrReg;
822 if (group == xtensa_user_reggroup)
823 return rg & xtRegisterGroupUser;
824 if (group == float_reggroup)
825 return rg & xtRegisterGroupFloat;
826 if (group == general_reggroup)
827 return rg & xtRegisterGroupGeneral;
828 if (group == system_reggroup)
829 return rg & xtRegisterGroupState;
830 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
831 return rg & xtRegisterGroupVectra;
832 if (group == restore_reggroup)
833 return (regnum < gdbarch_num_regs (gdbarch)
834 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
835 cp_number = xtensa_coprocessor_register_group (group);
836 if (cp_number >= 0)
837 return rg & (xtRegisterGroupCP0 << cp_number);
838 else
839 return 1;
840 }
841
842
843 /* Supply register REGNUM from the buffer specified by GREGS and LEN
844 in the general-purpose register set REGSET to register cache
845 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
846
847 static void
848 xtensa_supply_gregset (const struct regset *regset,
849 struct regcache *rc,
850 int regnum,
851 const void *gregs,
852 size_t len)
853 {
854 const xtensa_elf_gregset_t *regs = gregs;
855 struct gdbarch *gdbarch = get_regcache_arch (rc);
856 int i;
857
858 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
859
860 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
862 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
863 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
864 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
865 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
866 (char *) &regs->windowbase);
867 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
869 (char *) &regs->windowstart);
870 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
872 (char *) &regs->lbeg);
873 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
874 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
875 (char *) &regs->lend);
876 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
877 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
878 (char *) &regs->lcount);
879 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
880 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
881 (char *) &regs->sar);
882 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
883 && regnum < gdbarch_tdep (gdbarch)->ar_base
884 + gdbarch_tdep (gdbarch)->num_aregs)
885 regcache_raw_supply (rc, regnum,
886 (char *) &regs->ar[regnum - gdbarch_tdep
887 (gdbarch)->ar_base]);
888 else if (regnum == -1)
889 {
890 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
891 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
892 (char *) &regs->ar[i]);
893 }
894 }
895
896
897 /* Xtensa register set. */
898
899 static struct regset
900 xtensa_gregset =
901 {
902 NULL,
903 xtensa_supply_gregset
904 };
905
906
907 /* Iterate over supported core file register note sections. */
908
909 static void
910 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
911 iterate_over_regset_sections_cb *cb,
912 void *cb_data,
913 const struct regcache *regcache)
914 {
915 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
916
917 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
918 NULL, cb_data);
919 }
920
921
922 /* Handling frames. */
923
924 /* Number of registers to save in case of Windowed ABI. */
925 #define XTENSA_NUM_SAVED_AREGS 12
926
927 /* Frame cache part for Windowed ABI. */
928 typedef struct xtensa_windowed_frame_cache
929 {
930 int wb; /* WINDOWBASE of the previous frame. */
931 int callsize; /* Call size of this frame. */
932 int ws; /* WINDOWSTART of the previous frame. It keeps track of
933 life windows only. If there is no bit set for the
934 window, that means it had been already spilled
935 because of window overflow. */
936
937 /* Addresses of spilled A-registers.
938 AREGS[i] == -1, if corresponding AR is alive. */
939 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
940 } xtensa_windowed_frame_cache_t;
941
942 /* Call0 ABI Definitions. */
943
944 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
945 analysis. */
946 #define C0_NREGS 16 /* Number of A-registers to track. */
947 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
948 #define C0_SP 1 /* Register used as SP. */
949 #define C0_FP 15 /* Register used as FP. */
950 #define C0_RA 0 /* Register used as return address. */
951 #define C0_ARGS 2 /* Register used as first arg/retval. */
952 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
953
954 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
955 A-register where the current content of the reg came from (in terms
956 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
957 mean that the orignal content of the register was saved to the stack.
958 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
959 know where SP will end up until the entire prologue has been analyzed. */
960
961 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
962 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
963 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
964
965 extern xtensa_isa xtensa_default_isa;
966
967 typedef struct xtensa_c0reg
968 {
969 int fr_reg; /* original register from which register content
970 is derived, or C0_CONST, or C0_INEXP. */
971 int fr_ofs; /* constant offset from reg, or immediate value. */
972 int to_stk; /* offset from original SP to register (4-byte aligned),
973 or C0_NOSTK if register has not been saved. */
974 } xtensa_c0reg_t;
975
976 /* Frame cache part for Call0 ABI. */
977 typedef struct xtensa_call0_frame_cache
978 {
979 int c0_frmsz; /* Stack frame size. */
980 int c0_hasfp; /* Current frame uses frame pointer. */
981 int fp_regnum; /* A-register used as FP. */
982 int c0_fp; /* Actual value of frame pointer. */
983 int c0_fpalign; /* Dinamic adjustment for the stack
984 pointer. It's an AND mask. Zero,
985 if alignment was not adjusted. */
986 int c0_old_sp; /* In case of dynamic adjustment, it is
987 a register holding unaligned sp.
988 C0_INEXP, when undefined. */
989 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
990 stack offset. C0_NOSTK otherwise. */
991
992 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
993 } xtensa_call0_frame_cache_t;
994
995 typedef struct xtensa_frame_cache
996 {
997 CORE_ADDR base; /* Stack pointer of this frame. */
998 CORE_ADDR pc; /* PC of this frame at the function entry point. */
999 CORE_ADDR ra; /* The raw return address of this frame. */
1000 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1001 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1002 int call0; /* It's a call0 framework (else windowed). */
1003 union
1004 {
1005 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1006 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1007 };
1008 } xtensa_frame_cache_t;
1009
1010
1011 static struct xtensa_frame_cache *
1012 xtensa_alloc_frame_cache (int windowed)
1013 {
1014 xtensa_frame_cache_t *cache;
1015 int i;
1016
1017 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1018
1019 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1020
1021 cache->base = 0;
1022 cache->pc = 0;
1023 cache->ra = 0;
1024 cache->ps = 0;
1025 cache->prev_sp = 0;
1026 cache->call0 = !windowed;
1027 if (cache->call0)
1028 {
1029 cache->c0.c0_frmsz = -1;
1030 cache->c0.c0_hasfp = 0;
1031 cache->c0.fp_regnum = -1;
1032 cache->c0.c0_fp = -1;
1033 cache->c0.c0_fpalign = 0;
1034 cache->c0.c0_old_sp = C0_INEXP;
1035 cache->c0.c0_sp_ofs = C0_NOSTK;
1036
1037 for (i = 0; i < C0_NREGS; i++)
1038 {
1039 cache->c0.c0_rt[i].fr_reg = i;
1040 cache->c0.c0_rt[i].fr_ofs = 0;
1041 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1042 }
1043 }
1044 else
1045 {
1046 cache->wd.wb = 0;
1047 cache->wd.ws = 0;
1048 cache->wd.callsize = -1;
1049
1050 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1051 cache->wd.aregs[i] = -1;
1052 }
1053 return cache;
1054 }
1055
1056
1057 static CORE_ADDR
1058 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1059 {
1060 return address & ~15;
1061 }
1062
1063
1064 static CORE_ADDR
1065 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1066 {
1067 gdb_byte buf[8];
1068 CORE_ADDR pc;
1069
1070 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1071 host_address_to_string (next_frame));
1072
1073 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1074 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1075
1076 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1077
1078 return pc;
1079 }
1080
1081
1082 static struct frame_id
1083 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1084 {
1085 CORE_ADDR pc, fp;
1086
1087 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1088
1089 pc = get_frame_pc (this_frame);
1090 fp = get_frame_register_unsigned
1091 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1092
1093 /* Make dummy frame ID unique by adding a constant. */
1094 return frame_id_build (fp + SP_ALIGNMENT, pc);
1095 }
1096
1097 /* Returns true, if instruction to execute next is unique to Xtensa Window
1098 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1099
1100 static int
1101 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1102 {
1103 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1104 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1105 unsigned int code;
1106
1107 if (byte_order == BFD_ENDIAN_BIG)
1108 {
1109 /* Check, if this is L32E or S32E. */
1110 code = insn & 0xf000ff00;
1111 if ((code == 0x00009000) || (code == 0x00009400))
1112 return 1;
1113 /* Check, if this is RFWU or RFWO. */
1114 code = insn & 0xffffff00;
1115 return ((code == 0x00430000) || (code == 0x00530000));
1116 }
1117 else
1118 {
1119 /* Check, if this is L32E or S32E. */
1120 code = insn & 0x00ff000f;
1121 if ((code == 0x090000) || (code == 0x490000))
1122 return 1;
1123 /* Check, if this is RFWU or RFWO. */
1124 code = insn & 0x00ffffff;
1125 return ((code == 0x00003400) || (code == 0x00003500));
1126 }
1127 }
1128
1129 /* Returns the best guess about which register is a frame pointer
1130 for the function containing CURRENT_PC. */
1131
1132 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1133 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1134
1135 static unsigned int
1136 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1137 {
1138 #define RETURN_FP goto done
1139
1140 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1141 CORE_ADDR start_addr;
1142 xtensa_isa isa;
1143 xtensa_insnbuf ins, slot;
1144 gdb_byte ibuf[XTENSA_ISA_BSZ];
1145 CORE_ADDR ia, bt, ba;
1146 xtensa_format ifmt;
1147 int ilen, islots, is;
1148 xtensa_opcode opc;
1149 const char *opcname;
1150
1151 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1152 if (start_addr == 0)
1153 return fp_regnum;
1154
1155 if (!xtensa_default_isa)
1156 xtensa_default_isa = xtensa_isa_init (0, 0);
1157 isa = xtensa_default_isa;
1158 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1159 ins = xtensa_insnbuf_alloc (isa);
1160 slot = xtensa_insnbuf_alloc (isa);
1161 ba = 0;
1162
1163 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1164 {
1165 if (ia + xtensa_isa_maxlength (isa) > bt)
1166 {
1167 ba = ia;
1168 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1169 ? ba + XTENSA_ISA_BSZ : current_pc;
1170 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1171 RETURN_FP;
1172 }
1173
1174 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1175 ifmt = xtensa_format_decode (isa, ins);
1176 if (ifmt == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178 ilen = xtensa_format_length (isa, ifmt);
1179 if (ilen == XTENSA_UNDEFINED)
1180 RETURN_FP;
1181 islots = xtensa_format_num_slots (isa, ifmt);
1182 if (islots == XTENSA_UNDEFINED)
1183 RETURN_FP;
1184
1185 for (is = 0; is < islots; ++is)
1186 {
1187 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1188 RETURN_FP;
1189
1190 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1191 if (opc == XTENSA_UNDEFINED)
1192 RETURN_FP;
1193
1194 opcname = xtensa_opcode_name (isa, opc);
1195
1196 if (strcasecmp (opcname, "mov.n") == 0
1197 || strcasecmp (opcname, "or") == 0)
1198 {
1199 unsigned int register_operand;
1200
1201 /* Possible candidate for setting frame pointer
1202 from A1. This is what we are looking for. */
1203
1204 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1205 is, slot, &register_operand) != 0)
1206 RETURN_FP;
1207 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1208 RETURN_FP;
1209 if (register_operand == 1) /* Mov{.n} FP A1. */
1210 {
1211 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1212 &register_operand) != 0)
1213 RETURN_FP;
1214 if (xtensa_operand_decode (isa, opc, 0,
1215 &register_operand) != 0)
1216 RETURN_FP;
1217
1218 fp_regnum
1219 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1220 RETURN_FP;
1221 }
1222 }
1223
1224 if (
1225 /* We have problems decoding the memory. */
1226 opcname == NULL
1227 || strcasecmp (opcname, "ill") == 0
1228 || strcasecmp (opcname, "ill.n") == 0
1229 /* Hit planted breakpoint. */
1230 || strcasecmp (opcname, "break") == 0
1231 || strcasecmp (opcname, "break.n") == 0
1232 /* Flow control instructions finish prologue. */
1233 || xtensa_opcode_is_branch (isa, opc) > 0
1234 || xtensa_opcode_is_jump (isa, opc) > 0
1235 || xtensa_opcode_is_loop (isa, opc) > 0
1236 || xtensa_opcode_is_call (isa, opc) > 0
1237 || strcasecmp (opcname, "simcall") == 0
1238 || strcasecmp (opcname, "syscall") == 0)
1239 /* Can not continue analysis. */
1240 RETURN_FP;
1241 }
1242 }
1243 done:
1244 xtensa_insnbuf_free(isa, slot);
1245 xtensa_insnbuf_free(isa, ins);
1246 return fp_regnum;
1247 }
1248
1249 /* The key values to identify the frame using "cache" are
1250
1251 cache->base = SP (or best guess about FP) of this frame;
1252 cache->pc = entry-PC (entry point of the frame function);
1253 cache->prev_sp = SP of the previous frame. */
1254
1255 static void
1256 call0_frame_cache (struct frame_info *this_frame,
1257 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1258
1259 static void
1260 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1261 xtensa_frame_cache_t *cache,
1262 CORE_ADDR pc);
1263
1264 static struct xtensa_frame_cache *
1265 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1266 {
1267 xtensa_frame_cache_t *cache;
1268 CORE_ADDR ra, wb, ws, pc, sp, ps;
1269 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1270 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1271 unsigned int fp_regnum;
1272 int windowed, ps_regnum;
1273
1274 if (*this_cache)
1275 return *this_cache;
1276
1277 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1278 ps_regnum = gdbarch_ps_regnum (gdbarch);
1279 ps = (ps_regnum >= 0
1280 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1281
1282 windowed = windowing_enabled (gdbarch, ps);
1283
1284 /* Get pristine xtensa-frame. */
1285 cache = xtensa_alloc_frame_cache (windowed);
1286 *this_cache = cache;
1287
1288 if (windowed)
1289 {
1290 char op1;
1291
1292 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1293 wb = get_frame_register_unsigned (this_frame,
1294 gdbarch_tdep (gdbarch)->wb_regnum);
1295 ws = get_frame_register_unsigned (this_frame,
1296 gdbarch_tdep (gdbarch)->ws_regnum);
1297
1298 op1 = read_memory_integer (pc, 1, byte_order);
1299 if (XTENSA_IS_ENTRY (gdbarch, op1))
1300 {
1301 int callinc = CALLINC (ps);
1302 ra = get_frame_register_unsigned
1303 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1304
1305 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1306 cache->wd.callsize = 0;
1307 cache->wd.wb = wb;
1308 cache->wd.ws = ws;
1309 cache->prev_sp = get_frame_register_unsigned
1310 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1311
1312 /* This only can be the outermost frame since we are
1313 just about to execute ENTRY. SP hasn't been set yet.
1314 We can assume any frame size, because it does not
1315 matter, and, let's fake frame base in cache. */
1316 cache->base = cache->prev_sp - 16;
1317
1318 cache->pc = pc;
1319 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1320 cache->ps = (ps & ~PS_CALLINC_MASK)
1321 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1322
1323 return cache;
1324 }
1325 else
1326 {
1327 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1328 ra = get_frame_register_unsigned (this_frame,
1329 gdbarch_tdep (gdbarch)->a0_base);
1330 cache->wd.callsize = WINSIZE (ra);
1331 cache->wd.wb = (wb - cache->wd.callsize / 4)
1332 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1333 cache->wd.ws = ws & ~(1 << wb);
1334
1335 cache->pc = get_frame_func (this_frame);
1336 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1337 cache->ps = (ps & ~PS_CALLINC_MASK)
1338 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1339 }
1340
1341 if (cache->wd.ws == 0)
1342 {
1343 int i;
1344
1345 /* Set A0...A3. */
1346 sp = get_frame_register_unsigned
1347 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1348
1349 for (i = 0; i < 4; i++, sp += 4)
1350 {
1351 cache->wd.aregs[i] = sp;
1352 }
1353
1354 if (cache->wd.callsize > 4)
1355 {
1356 /* Set A4...A7/A11. */
1357 /* Get the SP of the frame previous to the previous one.
1358 To achieve this, we have to dereference SP twice. */
1359 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1360 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1361 sp -= cache->wd.callsize * 4;
1362
1363 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1364 {
1365 cache->wd.aregs[i] = sp;
1366 }
1367 }
1368 }
1369
1370 if ((cache->prev_sp == 0) && ( ra != 0 ))
1371 /* If RA is equal to 0 this frame is an outermost frame. Leave
1372 cache->prev_sp unchanged marking the boundary of the frame stack. */
1373 {
1374 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1375 {
1376 /* Register window overflow already happened.
1377 We can read caller's SP from the proper spill loction. */
1378 sp = get_frame_register_unsigned
1379 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1380 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1381 }
1382 else
1383 {
1384 /* Read caller's frame SP directly from the previous window. */
1385 int regnum = arreg_number
1386 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1387 cache->wd.wb);
1388
1389 cache->prev_sp = xtensa_read_register (regnum);
1390 }
1391 }
1392 }
1393 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1394 {
1395 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1396
1397 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1398 /* Everything was set already, including cache->base. */
1399 return cache;
1400 }
1401 else /* Call0 framework. */
1402 {
1403 call0_frame_cache (this_frame, cache, pc);
1404 fp_regnum = cache->c0.fp_regnum;
1405 }
1406
1407 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1408
1409 return cache;
1410 }
1411
1412 static int xtensa_session_once_reported = 1;
1413
1414 /* Report a problem with prologue analysis while doing backtracing.
1415 But, do it only once to avoid annoyng repeated messages. */
1416
1417 static void
1418 warning_once (void)
1419 {
1420 if (xtensa_session_once_reported == 0)
1421 warning (_("\
1422 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1423 This message will not be repeated in this session.\n"));
1424
1425 xtensa_session_once_reported = 1;
1426 }
1427
1428
1429 static void
1430 xtensa_frame_this_id (struct frame_info *this_frame,
1431 void **this_cache,
1432 struct frame_id *this_id)
1433 {
1434 struct xtensa_frame_cache *cache =
1435 xtensa_frame_cache (this_frame, this_cache);
1436
1437 if (cache->prev_sp == 0)
1438 return;
1439
1440 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1441 }
1442
1443 static struct value *
1444 xtensa_frame_prev_register (struct frame_info *this_frame,
1445 void **this_cache,
1446 int regnum)
1447 {
1448 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1449 struct xtensa_frame_cache *cache;
1450 ULONGEST saved_reg = 0;
1451 int done = 1;
1452
1453 if (*this_cache == NULL)
1454 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1455 cache = *this_cache;
1456
1457 if (regnum ==gdbarch_pc_regnum (gdbarch))
1458 saved_reg = cache->ra;
1459 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1460 saved_reg = cache->prev_sp;
1461 else if (!cache->call0)
1462 {
1463 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1464 saved_reg = cache->wd.ws;
1465 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1466 saved_reg = cache->wd.wb;
1467 else if (regnum == gdbarch_ps_regnum (gdbarch))
1468 saved_reg = cache->ps;
1469 else
1470 done = 0;
1471 }
1472 else
1473 done = 0;
1474
1475 if (done)
1476 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1477
1478 if (!cache->call0) /* Windowed ABI. */
1479 {
1480 /* Convert A-register numbers to AR-register numbers,
1481 if we deal with A-register. */
1482 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1483 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1484 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1485
1486 /* Check, if we deal with AR-register saved on stack. */
1487 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1488 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1489 + gdbarch_tdep (gdbarch)->num_aregs))
1490 {
1491 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1492
1493 if (areg >= 0
1494 && areg < XTENSA_NUM_SAVED_AREGS
1495 && cache->wd.aregs[areg] != -1)
1496 return frame_unwind_got_memory (this_frame, regnum,
1497 cache->wd.aregs[areg]);
1498 }
1499 }
1500 else /* Call0 ABI. */
1501 {
1502 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1503 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1504 + C0_NREGS))
1505 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1506
1507 if (reg < C0_NREGS)
1508 {
1509 CORE_ADDR spe;
1510 int stkofs;
1511
1512 /* If register was saved in the prologue, retrieve it. */
1513 stkofs = cache->c0.c0_rt[reg].to_stk;
1514 if (stkofs != C0_NOSTK)
1515 {
1516 /* Determine SP on entry based on FP. */
1517 spe = cache->c0.c0_fp
1518 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1519
1520 return frame_unwind_got_memory (this_frame, regnum,
1521 spe + stkofs);
1522 }
1523 }
1524 }
1525
1526 /* All other registers have been either saved to
1527 the stack or are still alive in the processor. */
1528
1529 return frame_unwind_got_register (this_frame, regnum, regnum);
1530 }
1531
1532
1533 static const struct frame_unwind
1534 xtensa_unwind =
1535 {
1536 NORMAL_FRAME,
1537 default_frame_unwind_stop_reason,
1538 xtensa_frame_this_id,
1539 xtensa_frame_prev_register,
1540 NULL,
1541 default_frame_sniffer
1542 };
1543
1544 static CORE_ADDR
1545 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1546 {
1547 struct xtensa_frame_cache *cache =
1548 xtensa_frame_cache (this_frame, this_cache);
1549
1550 return cache->base;
1551 }
1552
1553 static const struct frame_base
1554 xtensa_frame_base =
1555 {
1556 &xtensa_unwind,
1557 xtensa_frame_base_address,
1558 xtensa_frame_base_address,
1559 xtensa_frame_base_address
1560 };
1561
1562
1563 static void
1564 xtensa_extract_return_value (struct type *type,
1565 struct regcache *regcache,
1566 void *dst)
1567 {
1568 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1569 bfd_byte *valbuf = dst;
1570 int len = TYPE_LENGTH (type);
1571 ULONGEST pc, wb;
1572 int callsize, areg;
1573 int offset = 0;
1574
1575 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1576
1577 gdb_assert(len > 0);
1578
1579 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1580 {
1581 /* First, we have to find the caller window in the register file. */
1582 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1583 callsize = extract_call_winsize (gdbarch, pc);
1584
1585 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1586 if (len > (callsize > 8 ? 8 : 16))
1587 internal_error (__FILE__, __LINE__,
1588 _("cannot extract return value of %d bytes long"),
1589 len);
1590
1591 /* Get the register offset of the return
1592 register (A2) in the caller window. */
1593 regcache_raw_read_unsigned
1594 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1595 areg = arreg_number (gdbarch,
1596 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1597 }
1598 else
1599 {
1600 /* No windowing hardware - Call0 ABI. */
1601 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1602 }
1603
1604 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1605
1606 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1607 offset = 4 - len;
1608
1609 for (; len > 0; len -= 4, areg++, valbuf += 4)
1610 {
1611 if (len < 4)
1612 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1613 else
1614 regcache_raw_read (regcache, areg, valbuf);
1615 }
1616 }
1617
1618
1619 static void
1620 xtensa_store_return_value (struct type *type,
1621 struct regcache *regcache,
1622 const void *dst)
1623 {
1624 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1625 const bfd_byte *valbuf = dst;
1626 unsigned int areg;
1627 ULONGEST pc, wb;
1628 int callsize;
1629 int len = TYPE_LENGTH (type);
1630 int offset = 0;
1631
1632 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1633
1634 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1635 {
1636 regcache_raw_read_unsigned
1637 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1638 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1639 callsize = extract_call_winsize (gdbarch, pc);
1640
1641 if (len > (callsize > 8 ? 8 : 16))
1642 internal_error (__FILE__, __LINE__,
1643 _("unimplemented for this length: %d"),
1644 TYPE_LENGTH (type));
1645 areg = arreg_number (gdbarch,
1646 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1647
1648 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1649 callsize, (int) wb);
1650 }
1651 else
1652 {
1653 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1654 }
1655
1656 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1657 offset = 4 - len;
1658
1659 for (; len > 0; len -= 4, areg++, valbuf += 4)
1660 {
1661 if (len < 4)
1662 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1663 else
1664 regcache_raw_write (regcache, areg, valbuf);
1665 }
1666 }
1667
1668
1669 static enum return_value_convention
1670 xtensa_return_value (struct gdbarch *gdbarch,
1671 struct value *function,
1672 struct type *valtype,
1673 struct regcache *regcache,
1674 gdb_byte *readbuf,
1675 const gdb_byte *writebuf)
1676 {
1677 /* Structures up to 16 bytes are returned in registers. */
1678
1679 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1681 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1682 && TYPE_LENGTH (valtype) > 16);
1683
1684 if (struct_return)
1685 return RETURN_VALUE_STRUCT_CONVENTION;
1686
1687 DEBUGTRACE ("xtensa_return_value(...)\n");
1688
1689 if (writebuf != NULL)
1690 {
1691 xtensa_store_return_value (valtype, regcache, writebuf);
1692 }
1693
1694 if (readbuf != NULL)
1695 {
1696 gdb_assert (!struct_return);
1697 xtensa_extract_return_value (valtype, regcache, readbuf);
1698 }
1699 return RETURN_VALUE_REGISTER_CONVENTION;
1700 }
1701
1702
1703 /* DUMMY FRAME */
1704
1705 static CORE_ADDR
1706 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1707 struct value *function,
1708 struct regcache *regcache,
1709 CORE_ADDR bp_addr,
1710 int nargs,
1711 struct value **args,
1712 CORE_ADDR sp,
1713 int struct_return,
1714 CORE_ADDR struct_addr)
1715 {
1716 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1717 int i;
1718 int size, onstack_size;
1719 gdb_byte *buf = (gdb_byte *) alloca (16);
1720 CORE_ADDR ra, ps;
1721 struct argument_info
1722 {
1723 const bfd_byte *contents;
1724 int length;
1725 int onstack; /* onstack == 0 => in reg */
1726 int align; /* alignment */
1727 union
1728 {
1729 int offset; /* stack offset if on stack. */
1730 int regno; /* regno if in register. */
1731 } u;
1732 };
1733
1734 struct argument_info *arg_info =
1735 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1736
1737 CORE_ADDR osp = sp;
1738
1739 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1740
1741 if (xtensa_debug_level > 3)
1742 {
1743 int i;
1744 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1745 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1746 "struct_addr=0x%x\n",
1747 (int) sp, (int) struct_return, (int) struct_addr);
1748
1749 for (i = 0; i < nargs; i++)
1750 {
1751 struct value *arg = args[i];
1752 struct type *arg_type = check_typedef (value_type (arg));
1753 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1754 host_address_to_string (arg),
1755 TYPE_LENGTH (arg_type));
1756 switch (TYPE_CODE (arg_type))
1757 {
1758 case TYPE_CODE_INT:
1759 fprintf_unfiltered (gdb_stdlog, "int");
1760 break;
1761 case TYPE_CODE_STRUCT:
1762 fprintf_unfiltered (gdb_stdlog, "struct");
1763 break;
1764 default:
1765 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1766 break;
1767 }
1768 fprintf_unfiltered (gdb_stdlog, " %s\n",
1769 host_address_to_string (value_contents (arg)));
1770 }
1771 }
1772
1773 /* First loop: collect information.
1774 Cast into type_long. (This shouldn't happen often for C because
1775 GDB already does this earlier.) It's possible that GDB could
1776 do it all the time but it's harmless to leave this code here. */
1777
1778 size = 0;
1779 onstack_size = 0;
1780 i = 0;
1781
1782 if (struct_return)
1783 size = REGISTER_SIZE;
1784
1785 for (i = 0; i < nargs; i++)
1786 {
1787 struct argument_info *info = &arg_info[i];
1788 struct value *arg = args[i];
1789 struct type *arg_type = check_typedef (value_type (arg));
1790
1791 switch (TYPE_CODE (arg_type))
1792 {
1793 case TYPE_CODE_INT:
1794 case TYPE_CODE_BOOL:
1795 case TYPE_CODE_CHAR:
1796 case TYPE_CODE_RANGE:
1797 case TYPE_CODE_ENUM:
1798
1799 /* Cast argument to long if necessary as the mask does it too. */
1800 if (TYPE_LENGTH (arg_type)
1801 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1802 {
1803 arg_type = builtin_type (gdbarch)->builtin_long;
1804 arg = value_cast (arg_type, arg);
1805 }
1806 /* Aligment is equal to the type length for the basic types. */
1807 info->align = TYPE_LENGTH (arg_type);
1808 break;
1809
1810 case TYPE_CODE_FLT:
1811
1812 /* Align doubles correctly. */
1813 if (TYPE_LENGTH (arg_type)
1814 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1815 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1816 else
1817 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1818 break;
1819
1820 case TYPE_CODE_STRUCT:
1821 default:
1822 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1823 break;
1824 }
1825 info->length = TYPE_LENGTH (arg_type);
1826 info->contents = value_contents (arg);
1827
1828 /* Align size and onstack_size. */
1829 size = (size + info->align - 1) & ~(info->align - 1);
1830 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1831
1832 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1833 {
1834 info->onstack = 1;
1835 info->u.offset = onstack_size;
1836 onstack_size += info->length;
1837 }
1838 else
1839 {
1840 info->onstack = 0;
1841 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1842 }
1843 size += info->length;
1844 }
1845
1846 /* Adjust the stack pointer and align it. */
1847 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1848
1849 /* Simulate MOVSP, if Windowed ABI. */
1850 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1851 && (sp != osp))
1852 {
1853 read_memory (osp - 16, buf, 16);
1854 write_memory (sp - 16, buf, 16);
1855 }
1856
1857 /* Second Loop: Load arguments. */
1858
1859 if (struct_return)
1860 {
1861 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1862 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1863 }
1864
1865 for (i = 0; i < nargs; i++)
1866 {
1867 struct argument_info *info = &arg_info[i];
1868
1869 if (info->onstack)
1870 {
1871 int n = info->length;
1872 CORE_ADDR offset = sp + info->u.offset;
1873
1874 /* Odd-sized structs are aligned to the lower side of a memory
1875 word in big-endian mode and require a shift. This only
1876 applies for structures smaller than one word. */
1877
1878 if (n < REGISTER_SIZE
1879 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1880 offset += (REGISTER_SIZE - n);
1881
1882 write_memory (offset, info->contents, info->length);
1883
1884 }
1885 else
1886 {
1887 int n = info->length;
1888 const bfd_byte *cp = info->contents;
1889 int r = info->u.regno;
1890
1891 /* Odd-sized structs are aligned to the lower side of registers in
1892 big-endian mode and require a shift. The odd-sized leftover will
1893 be at the end. Note that this is only true for structures smaller
1894 than REGISTER_SIZE; for larger odd-sized structures the excess
1895 will be left-aligned in the register on both endiannesses. */
1896
1897 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1898 {
1899 ULONGEST v;
1900 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1901 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1902
1903 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1904 regcache_cooked_write (regcache, r, buf);
1905
1906 cp += REGISTER_SIZE;
1907 n -= REGISTER_SIZE;
1908 r++;
1909 }
1910 else
1911 while (n > 0)
1912 {
1913 regcache_cooked_write (regcache, r, cp);
1914
1915 cp += REGISTER_SIZE;
1916 n -= REGISTER_SIZE;
1917 r++;
1918 }
1919 }
1920 }
1921
1922 /* Set the return address of dummy frame to the dummy address.
1923 The return address for the current function (in A0) is
1924 saved in the dummy frame, so we can savely overwrite A0 here. */
1925
1926 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1927 {
1928 ULONGEST val;
1929
1930 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1931 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1932 ps = (unsigned long) val & ~0x00030000;
1933 regcache_cooked_write_unsigned
1934 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1935 regcache_cooked_write_unsigned (regcache,
1936 gdbarch_ps_regnum (gdbarch),
1937 ps | 0x00010000);
1938
1939 /* All the registers have been saved. After executing
1940 dummy call, they all will be restored. So it's safe
1941 to modify WINDOWSTART register to make it look like there
1942 is only one register window corresponding to WINDOWEBASE. */
1943
1944 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1945 regcache_cooked_write_unsigned
1946 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1947 1 << extract_unsigned_integer (buf, 4, byte_order));
1948 }
1949 else
1950 {
1951 /* Simulate CALL0: write RA into A0 register. */
1952 regcache_cooked_write_unsigned
1953 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1954 }
1955
1956 /* Set new stack pointer and return it. */
1957 regcache_cooked_write_unsigned (regcache,
1958 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1959 /* Make dummy frame ID unique by adding a constant. */
1960 return sp + SP_ALIGNMENT;
1961 }
1962
1963
1964 /* Return a breakpoint for the current location of PC. We always use
1965 the density version if we have density instructions (regardless of the
1966 current instruction at PC), and use regular instructions otherwise. */
1967
1968 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1969 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1970 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1971 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1972
1973 static const unsigned char *
1974 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1975 int *lenptr)
1976 {
1977 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1978 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1979 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1980 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1981
1982 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1983
1984 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1985 {
1986 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1987 {
1988 *lenptr = sizeof (density_big_breakpoint);
1989 return density_big_breakpoint;
1990 }
1991 else
1992 {
1993 *lenptr = sizeof (density_little_breakpoint);
1994 return density_little_breakpoint;
1995 }
1996 }
1997 else
1998 {
1999 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 {
2001 *lenptr = sizeof (big_breakpoint);
2002 return big_breakpoint;
2003 }
2004 else
2005 {
2006 *lenptr = sizeof (little_breakpoint);
2007 return little_breakpoint;
2008 }
2009 }
2010 }
2011
2012 /* Call0 ABI support routines. */
2013
2014 /* Return true, if PC points to "ret" or "ret.n". */
2015
2016 static int
2017 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2018 {
2019 #define RETURN_RET goto done
2020 xtensa_isa isa;
2021 xtensa_insnbuf ins, slot;
2022 gdb_byte ibuf[XTENSA_ISA_BSZ];
2023 CORE_ADDR ia, bt, ba;
2024 xtensa_format ifmt;
2025 int ilen, islots, is;
2026 xtensa_opcode opc;
2027 const char *opcname;
2028 int found_ret = 0;
2029
2030 isa = xtensa_default_isa;
2031 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2032 ins = xtensa_insnbuf_alloc (isa);
2033 slot = xtensa_insnbuf_alloc (isa);
2034 ba = 0;
2035
2036 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2037 {
2038 if (ia + xtensa_isa_maxlength (isa) > bt)
2039 {
2040 ba = ia;
2041 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2042 ? ba + XTENSA_ISA_BSZ : finish_pc;
2043 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2044 RETURN_RET;
2045 }
2046
2047 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2048 ifmt = xtensa_format_decode (isa, ins);
2049 if (ifmt == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051 ilen = xtensa_format_length (isa, ifmt);
2052 if (ilen == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054 islots = xtensa_format_num_slots (isa, ifmt);
2055 if (islots == XTENSA_UNDEFINED)
2056 RETURN_RET;
2057
2058 for (is = 0; is < islots; ++is)
2059 {
2060 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2061 RETURN_RET;
2062
2063 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2064 if (opc == XTENSA_UNDEFINED)
2065 RETURN_RET;
2066
2067 opcname = xtensa_opcode_name (isa, opc);
2068
2069 if ((strcasecmp (opcname, "ret.n") == 0)
2070 || (strcasecmp (opcname, "ret") == 0))
2071 {
2072 found_ret = 1;
2073 RETURN_RET;
2074 }
2075 }
2076 }
2077 done:
2078 xtensa_insnbuf_free(isa, slot);
2079 xtensa_insnbuf_free(isa, ins);
2080 return found_ret;
2081 }
2082
2083 /* Call0 opcode class. Opcodes are preclassified according to what they
2084 mean for Call0 prologue analysis, and their number of significant operands.
2085 The purpose of this is to simplify prologue analysis by separating
2086 instruction decoding (libisa) from the semantics of prologue analysis. */
2087
2088 typedef enum
2089 {
2090 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2091 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2092 c0opc_flow, /* Flow control insn. */
2093 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2094 c0opc_break, /* Debugger software breakpoints. */
2095 c0opc_add, /* Adding two registers. */
2096 c0opc_addi, /* Adding a register and an immediate. */
2097 c0opc_and, /* Bitwise "and"-ing two registers. */
2098 c0opc_sub, /* Subtracting a register from a register. */
2099 c0opc_mov, /* Moving a register to a register. */
2100 c0opc_movi, /* Moving an immediate to a register. */
2101 c0opc_l32r, /* Loading a literal. */
2102 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2103 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2104 c0opc_l32e, /* L32E instruction. */
2105 c0opc_s32e, /* S32E instruction. */
2106 c0opc_rfwo, /* RFWO instruction. */
2107 c0opc_rfwu, /* RFWU instruction. */
2108 c0opc_NrOf /* Number of opcode classifications. */
2109 } xtensa_insn_kind;
2110
2111 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2112
2113 static int
2114 rwx_special_register (const char *opcname)
2115 {
2116 char ch = *opcname++;
2117
2118 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2119 return 0;
2120 if (*opcname++ != 's')
2121 return 0;
2122 if (*opcname++ != 'r')
2123 return 0;
2124 if (*opcname++ != '.')
2125 return 0;
2126
2127 return 1;
2128 }
2129
2130 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2131
2132 static xtensa_insn_kind
2133 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2134 {
2135 const char *opcname;
2136 xtensa_insn_kind opclass = c0opc_uninteresting;
2137
2138 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2139
2140 /* Get opcode name and handle special classifications. */
2141
2142 opcname = xtensa_opcode_name (isa, opc);
2143
2144 if (opcname == NULL
2145 || strcasecmp (opcname, "ill") == 0
2146 || strcasecmp (opcname, "ill.n") == 0)
2147 opclass = c0opc_illegal;
2148 else if (strcasecmp (opcname, "break") == 0
2149 || strcasecmp (opcname, "break.n") == 0)
2150 opclass = c0opc_break;
2151 else if (strcasecmp (opcname, "entry") == 0)
2152 opclass = c0opc_entry;
2153 else if (strcasecmp (opcname, "rfwo") == 0)
2154 opclass = c0opc_rfwo;
2155 else if (strcasecmp (opcname, "rfwu") == 0)
2156 opclass = c0opc_rfwu;
2157 else if (xtensa_opcode_is_branch (isa, opc) > 0
2158 || xtensa_opcode_is_jump (isa, opc) > 0
2159 || xtensa_opcode_is_loop (isa, opc) > 0
2160 || xtensa_opcode_is_call (isa, opc) > 0
2161 || strcasecmp (opcname, "simcall") == 0
2162 || strcasecmp (opcname, "syscall") == 0)
2163 opclass = c0opc_flow;
2164
2165 /* Also, classify specific opcodes that need to be tracked. */
2166 else if (strcasecmp (opcname, "add") == 0
2167 || strcasecmp (opcname, "add.n") == 0)
2168 opclass = c0opc_add;
2169 else if (strcasecmp (opcname, "and") == 0)
2170 opclass = c0opc_and;
2171 else if (strcasecmp (opcname, "addi") == 0
2172 || strcasecmp (opcname, "addi.n") == 0
2173 || strcasecmp (opcname, "addmi") == 0)
2174 opclass = c0opc_addi;
2175 else if (strcasecmp (opcname, "sub") == 0)
2176 opclass = c0opc_sub;
2177 else if (strcasecmp (opcname, "mov.n") == 0
2178 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2179 opclass = c0opc_mov;
2180 else if (strcasecmp (opcname, "movi") == 0
2181 || strcasecmp (opcname, "movi.n") == 0)
2182 opclass = c0opc_movi;
2183 else if (strcasecmp (opcname, "l32r") == 0)
2184 opclass = c0opc_l32r;
2185 else if (strcasecmp (opcname, "s32i") == 0
2186 || strcasecmp (opcname, "s32i.n") == 0)
2187 opclass = c0opc_s32i;
2188 else if (strcasecmp (opcname, "l32e") == 0)
2189 opclass = c0opc_l32e;
2190 else if (strcasecmp (opcname, "s32e") == 0)
2191 opclass = c0opc_s32e;
2192 else if (rwx_special_register (opcname))
2193 opclass = c0opc_rwxsr;
2194
2195 return opclass;
2196 }
2197
2198 /* Tracks register movement/mutation for a given operation, which may
2199 be within a bundle. Updates the destination register tracking info
2200 accordingly. The pc is needed only for pc-relative load instructions
2201 (eg. l32r). The SP register number is needed to identify stores to
2202 the stack frame. Returns 0, if analysis was succesfull, non-zero
2203 otherwise. */
2204
2205 static int
2206 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2207 xtensa_insn_kind opclass, int nods, unsigned odv[],
2208 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2209 {
2210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2211 unsigned litbase, litaddr, litval;
2212
2213 switch (opclass)
2214 {
2215 case c0opc_addi:
2216 /* 3 operands: dst, src, imm. */
2217 gdb_assert (nods == 3);
2218 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2219 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2220 break;
2221 case c0opc_add:
2222 /* 3 operands: dst, src1, src2. */
2223 gdb_assert (nods == 3);
2224 if (src[odv[1]].fr_reg == C0_CONST)
2225 {
2226 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2227 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2228 }
2229 else if (src[odv[2]].fr_reg == C0_CONST)
2230 {
2231 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2232 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2233 }
2234 else dst[odv[0]].fr_reg = C0_INEXP;
2235 break;
2236 case c0opc_and:
2237 /* 3 operands: dst, src1, src2. */
2238 gdb_assert (nods == 3);
2239 if (cache->c0.c0_fpalign == 0)
2240 {
2241 /* Handle dynamic stack alignment. */
2242 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2243 {
2244 if (src[odv[2]].fr_reg == C0_CONST)
2245 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2246 break;
2247 }
2248 else if ((src[odv[0]].fr_reg == spreg)
2249 && (src[odv[2]].fr_reg == spreg))
2250 {
2251 if (src[odv[1]].fr_reg == C0_CONST)
2252 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2253 break;
2254 }
2255 /* else fall through. */
2256 }
2257 if (src[odv[1]].fr_reg == C0_CONST)
2258 {
2259 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2261 }
2262 else if (src[odv[2]].fr_reg == C0_CONST)
2263 {
2264 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2265 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2266 }
2267 else dst[odv[0]].fr_reg = C0_INEXP;
2268 break;
2269 case c0opc_sub:
2270 /* 3 operands: dst, src1, src2. */
2271 gdb_assert (nods == 3);
2272 if (src[odv[2]].fr_reg == C0_CONST)
2273 {
2274 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2275 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2276 }
2277 else dst[odv[0]].fr_reg = C0_INEXP;
2278 break;
2279 case c0opc_mov:
2280 /* 2 operands: dst, src [, src]. */
2281 gdb_assert (nods == 2);
2282 /* First, check if it's a special case of saving unaligned SP
2283 to a spare register in case of dynamic stack adjustment.
2284 But, only do it one time. The second time could be initializing
2285 frame pointer. We don't want to overwrite the first one. */
2286 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2287 cache->c0.c0_old_sp = odv[0];
2288
2289 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2290 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2291 break;
2292 case c0opc_movi:
2293 /* 2 operands: dst, imm. */
2294 gdb_assert (nods == 2);
2295 dst[odv[0]].fr_reg = C0_CONST;
2296 dst[odv[0]].fr_ofs = odv[1];
2297 break;
2298 case c0opc_l32r:
2299 /* 2 operands: dst, literal offset. */
2300 gdb_assert (nods == 2);
2301 /* litbase = xtensa_get_litbase (pc); can be also used. */
2302 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2303 ? 0 : xtensa_read_register
2304 (gdbarch_tdep (gdbarch)->litbase_regnum);
2305 litaddr = litbase & 1
2306 ? (litbase & ~1) + (signed)odv[1]
2307 : (pc + 3 + (signed)odv[1]) & ~3;
2308 litval = read_memory_integer (litaddr, 4, byte_order);
2309 dst[odv[0]].fr_reg = C0_CONST;
2310 dst[odv[0]].fr_ofs = litval;
2311 break;
2312 case c0opc_s32i:
2313 /* 3 operands: value, base, offset. */
2314 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2315 /* First, check if it's a spill for saved unaligned SP,
2316 when dynamic stack adjustment was applied to this frame. */
2317 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2318 && (odv[1] == spreg) /* SP usage indicates spill. */
2319 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2320 cache->c0.c0_sp_ofs = odv[2];
2321
2322 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2323 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2324 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2325 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2326 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2327 {
2328 /* ISA encoding guarantees alignment. But, check it anyway. */
2329 gdb_assert ((odv[2] & 3) == 0);
2330 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2331 }
2332 break;
2333 /* If we end up inside Window Overflow / Underflow interrupt handler
2334 report an error because these handlers should have been handled
2335 already in a different way. */
2336 case c0opc_l32e:
2337 case c0opc_s32e:
2338 case c0opc_rfwo:
2339 case c0opc_rfwu:
2340 return 1;
2341 default:
2342 return 1;
2343 }
2344 return 0;
2345 }
2346
2347 /* Analyze prologue of the function at start address to determine if it uses
2348 the Call0 ABI, and if so track register moves and linear modifications
2349 in the prologue up to the PC or just beyond the prologue, whichever is
2350 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2351 prologue. The prologue may overlap non-prologue instructions but is
2352 guaranteed to end by the first flow-control instruction (jump, branch,
2353 call or return). Since an optimized function may move information around
2354 and change the stack frame arbitrarily during the prologue, the information
2355 is guaranteed valid only at the point in the function indicated by the PC.
2356 May be used to skip the prologue or identify the ABI, w/o tracking.
2357
2358 Returns: Address of first instruction after prologue, or PC (whichever
2359 is first), or 0, if decoding failed (in libisa).
2360 Input args:
2361 start Start address of function/prologue.
2362 pc Program counter to stop at. Use 0 to continue to end of prologue.
2363 If 0, avoids infinite run-on in corrupt code memory by bounding
2364 the scan to the end of the function if that can be determined.
2365 nregs Number of general registers to track.
2366 InOut args:
2367 cache Xtensa frame cache.
2368
2369 Note that these may produce useful results even if decoding fails
2370 because they begin with default assumptions that analysis may change. */
2371
2372 static CORE_ADDR
2373 call0_analyze_prologue (struct gdbarch *gdbarch,
2374 CORE_ADDR start, CORE_ADDR pc,
2375 int nregs, xtensa_frame_cache_t *cache)
2376 {
2377 CORE_ADDR ia; /* Current insn address in prologue. */
2378 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2379 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2380 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2381 xtensa_isa isa; /* libisa ISA handle. */
2382 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2383 xtensa_format ifmt; /* libisa instruction format. */
2384 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2385 xtensa_opcode opc; /* Opcode in current slot. */
2386 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2387 int nods; /* Opcode number of operands. */
2388 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2389 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2390 int j; /* General loop counter. */
2391 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2392 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2393 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2394
2395 struct symtab_and_line prologue_sal;
2396
2397 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2398 (int)start, (int)pc);
2399
2400 /* Try to limit the scan to the end of the function if a non-zero pc
2401 arg was not supplied to avoid probing beyond the end of valid memory.
2402 If memory is full of garbage that classifies as c0opc_uninteresting.
2403 If this fails (eg. if no symbols) pc ends up 0 as it was.
2404 Intialize the Call0 frame and register tracking info.
2405 Assume it's Call0 until an 'entry' instruction is encountered.
2406 Assume we may be in the prologue until we hit a flow control instr. */
2407
2408 rtmp = NULL;
2409 body_pc = UINT_MAX;
2410 end_pc = 0;
2411
2412 /* Find out, if we have an information about the prologue from DWARF. */
2413 prologue_sal = find_pc_line (start, 0);
2414 if (prologue_sal.line != 0) /* Found debug info. */
2415 body_pc = prologue_sal.end;
2416
2417 /* If we are going to analyze the prologue in general without knowing about
2418 the current PC, make the best assumtion for the end of the prologue. */
2419 if (pc == 0)
2420 {
2421 find_pc_partial_function (start, 0, NULL, &end_pc);
2422 body_pc = min (end_pc, body_pc);
2423 }
2424 else
2425 body_pc = min (pc, body_pc);
2426
2427 cache->call0 = 1;
2428 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2429
2430 if (!xtensa_default_isa)
2431 xtensa_default_isa = xtensa_isa_init (0, 0);
2432 isa = xtensa_default_isa;
2433 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2434 ins = xtensa_insnbuf_alloc (isa);
2435 slot = xtensa_insnbuf_alloc (isa);
2436
2437 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2438 {
2439 /* (Re)fill instruction buffer from memory if necessary, but do not
2440 read memory beyond PC to be sure we stay within text section
2441 (this protection only works if a non-zero pc is supplied). */
2442
2443 if (ia + xtensa_isa_maxlength (isa) > bt)
2444 {
2445 ba = ia;
2446 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2447 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2448 error (_("Unable to read target memory ..."));
2449 }
2450
2451 /* Decode format information. */
2452
2453 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2454 ifmt = xtensa_format_decode (isa, ins);
2455 if (ifmt == XTENSA_UNDEFINED)
2456 {
2457 fail = 1;
2458 goto done;
2459 }
2460 ilen = xtensa_format_length (isa, ifmt);
2461 if (ilen == XTENSA_UNDEFINED)
2462 {
2463 fail = 1;
2464 goto done;
2465 }
2466 islots = xtensa_format_num_slots (isa, ifmt);
2467 if (islots == XTENSA_UNDEFINED)
2468 {
2469 fail = 1;
2470 goto done;
2471 }
2472
2473 /* Analyze a bundle or a single instruction, using a snapshot of
2474 the register tracking info as input for the entire bundle so that
2475 register changes do not take effect within this bundle. */
2476
2477 for (j = 0; j < nregs; ++j)
2478 rtmp[j] = cache->c0.c0_rt[j];
2479
2480 for (is = 0; is < islots; ++is)
2481 {
2482 /* Decode a slot and classify the opcode. */
2483
2484 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2485 if (fail)
2486 goto done;
2487
2488 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2489 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2490 (unsigned)ia, opc);
2491 if (opc == XTENSA_UNDEFINED)
2492 opclass = c0opc_illegal;
2493 else
2494 opclass = call0_classify_opcode (isa, opc);
2495
2496 /* Decide whether to track this opcode, ignore it, or bail out. */
2497
2498 switch (opclass)
2499 {
2500 case c0opc_illegal:
2501 case c0opc_break:
2502 fail = 1;
2503 goto done;
2504
2505 case c0opc_uninteresting:
2506 continue;
2507
2508 case c0opc_flow: /* Flow control instructions stop analysis. */
2509 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2510 goto done;
2511
2512 case c0opc_entry:
2513 cache->call0 = 0;
2514 ia += ilen; /* Skip over 'entry' insn. */
2515 goto done;
2516
2517 default:
2518 cache->call0 = 1;
2519 }
2520
2521 /* Only expected opcodes should get this far. */
2522
2523 /* Extract and decode the operands. */
2524 nods = xtensa_opcode_num_operands (isa, opc);
2525 if (nods == XTENSA_UNDEFINED)
2526 {
2527 fail = 1;
2528 goto done;
2529 }
2530
2531 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2532 {
2533 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2534 is, slot, &odv[j]);
2535 if (fail)
2536 goto done;
2537
2538 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2539 if (fail)
2540 goto done;
2541 }
2542
2543 /* Check operands to verify use of 'mov' assembler macro. */
2544 if (opclass == c0opc_mov && nods == 3)
2545 {
2546 if (odv[2] == odv[1])
2547 {
2548 nods = 2;
2549 if ((odv[0] == 1) && (odv[1] != 1))
2550 /* OR A1, An, An , where n != 1.
2551 This means we are inside epilogue already. */
2552 goto done;
2553 }
2554 else
2555 {
2556 opclass = c0opc_uninteresting;
2557 continue;
2558 }
2559 }
2560
2561 /* Track register movement and modification for this operation. */
2562 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2563 opclass, nods, odv, ia, 1, cache);
2564 if (fail)
2565 goto done;
2566 }
2567 }
2568 done:
2569 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2570 (unsigned)ia, fail ? "failed" : "succeeded");
2571 xtensa_insnbuf_free(isa, slot);
2572 xtensa_insnbuf_free(isa, ins);
2573 return fail ? XTENSA_ISA_BADPC : ia;
2574 }
2575
2576 /* Initialize frame cache for the current frame in CALL0 ABI. */
2577
2578 static void
2579 call0_frame_cache (struct frame_info *this_frame,
2580 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2581 {
2582 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2584 CORE_ADDR start_pc; /* The beginning of the function. */
2585 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2586 CORE_ADDR sp, fp, ra;
2587 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2588
2589 sp = get_frame_register_unsigned
2590 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2591 fp = sp; /* Assume FP == SP until proven otherwise. */
2592
2593 /* Find the beginning of the prologue of the function containing the PC
2594 and analyze it up to the PC or the end of the prologue. */
2595
2596 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2597 {
2598 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2599
2600 if (body_pc == XTENSA_ISA_BADPC)
2601 {
2602 warning_once ();
2603 ra = 0;
2604 goto finish_frame_analysis;
2605 }
2606 }
2607
2608 /* Get the frame information and FP (if used) at the current PC.
2609 If PC is in the prologue, the prologue analysis is more reliable
2610 than DWARF info. We don't not know for sure, if PC is in the prologue,
2611 but we do know no calls have yet taken place, so we can almost
2612 certainly rely on the prologue analysis. */
2613
2614 if (body_pc <= pc)
2615 {
2616 /* Prologue analysis was successful up to the PC.
2617 It includes the cases when PC == START_PC. */
2618 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2619 /* c0_hasfp == true means there is a frame pointer because
2620 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2621 was derived from SP. Otherwise, it would be C0_FP. */
2622 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2623 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2624 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2625 }
2626 else /* No data from the prologue analysis. */
2627 {
2628 c0_hasfp = 0;
2629 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2630 c0_frmsz = 0;
2631 start_pc = pc;
2632 }
2633
2634 if (cache->c0.c0_fpalign)
2635 {
2636 /* This frame has a special prologue with a dynamic stack adjustment
2637 to force an alignment, which is bigger than standard 16 bytes. */
2638
2639 CORE_ADDR unaligned_sp;
2640
2641 if (cache->c0.c0_old_sp == C0_INEXP)
2642 /* This can't be. Prologue code should be consistent.
2643 Unaligned stack pointer should be saved in a spare register. */
2644 {
2645 warning_once ();
2646 ra = 0;
2647 goto finish_frame_analysis;
2648 }
2649
2650 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2651 /* Saved unaligned value of SP is kept in a register. */
2652 unaligned_sp = get_frame_register_unsigned
2653 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2654 else
2655 /* Get the value from stack. */
2656 unaligned_sp = (CORE_ADDR)
2657 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2658
2659 prev_sp = unaligned_sp + c0_frmsz;
2660 }
2661 else
2662 prev_sp = fp + c0_frmsz;
2663
2664 /* Frame size from debug info or prologue tracking does not account for
2665 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2666 if (c0_hasfp)
2667 {
2668 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2669
2670 /* Update the stack frame size. */
2671 c0_frmsz += fp - sp;
2672 }
2673
2674 /* Get the return address (RA) from the stack if saved,
2675 or try to get it from a register. */
2676
2677 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2678 if (to_stk != C0_NOSTK)
2679 ra = (CORE_ADDR)
2680 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2681 4, byte_order);
2682
2683 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2684 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2685 {
2686 /* Special case for terminating backtrace at a function that wants to
2687 be seen as the outermost one. Such a function will clear it's RA (A0)
2688 register to 0 in the prologue instead of saving its original value. */
2689 ra = 0;
2690 }
2691 else
2692 {
2693 /* RA was copied to another register or (before any function call) may
2694 still be in the original RA register. This is not always reliable:
2695 even in a leaf function, register tracking stops after prologue, and
2696 even in prologue, non-prologue instructions (not tracked) may overwrite
2697 RA or any register it was copied to. If likely in prologue or before
2698 any call, use retracking info and hope for the best (compiler should
2699 have saved RA in stack if not in a leaf function). If not in prologue,
2700 too bad. */
2701
2702 int i;
2703 for (i = 0;
2704 (i < C0_NREGS)
2705 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2706 ++i);
2707 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2708 i = C0_RA;
2709 if (i < C0_NREGS)
2710 {
2711 ra = get_frame_register_unsigned
2712 (this_frame,
2713 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2714 }
2715 else ra = 0;
2716 }
2717
2718 finish_frame_analysis:
2719 cache->pc = start_pc;
2720 cache->ra = ra;
2721 /* RA == 0 marks the outermost frame. Do not go past it. */
2722 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2723 cache->c0.fp_regnum = fp_regnum;
2724 cache->c0.c0_frmsz = c0_frmsz;
2725 cache->c0.c0_hasfp = c0_hasfp;
2726 cache->c0.c0_fp = fp;
2727 }
2728
2729 static CORE_ADDR a0_saved;
2730 static CORE_ADDR a7_saved;
2731 static CORE_ADDR a11_saved;
2732 static int a0_was_saved;
2733 static int a7_was_saved;
2734 static int a11_was_saved;
2735
2736 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2737 static void
2738 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2739 {
2740 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2741 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2742 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2743 unsigned int spilled_value
2744 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2745
2746 if ((at == 0) && !a0_was_saved)
2747 {
2748 a0_saved = xtensa_read_register (atreg);
2749 a0_was_saved = 1;
2750 }
2751 else if ((at == 7) && !a7_was_saved)
2752 {
2753 a7_saved = xtensa_read_register (atreg);
2754 a7_was_saved = 1;
2755 }
2756 else if ((at == 11) && !a11_was_saved)
2757 {
2758 a11_saved = xtensa_read_register (atreg);
2759 a11_was_saved = 1;
2760 }
2761
2762 xtensa_write_register (atreg, spilled_value);
2763 }
2764
2765 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2766 static void
2767 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2768 {
2769 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2770 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2771 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2772 ULONGEST spilled_value = xtensa_read_register (atreg);
2773
2774 write_memory_unsigned_integer (addr, 4,
2775 gdbarch_byte_order (gdbarch),
2776 spilled_value);
2777 }
2778
2779 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2780
2781 typedef enum
2782 {
2783 xtWindowOverflow,
2784 xtWindowUnderflow,
2785 xtNoExceptionHandler
2786 } xtensa_exception_handler_t;
2787
2788 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2789 Return type of Xtensa Window Interrupt Handler on success. */
2790 static xtensa_exception_handler_t
2791 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2792 {
2793 xtensa_isa isa;
2794 xtensa_insnbuf ins, slot;
2795 gdb_byte ibuf[XTENSA_ISA_BSZ];
2796 CORE_ADDR ia, bt, ba;
2797 xtensa_format ifmt;
2798 int ilen, islots, is;
2799 xtensa_opcode opc;
2800 int insn_num = 0;
2801 int fail = 0;
2802 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2803
2804 uint32_t at, as, offset;
2805
2806 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2807 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2808
2809 isa = xtensa_default_isa;
2810 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2811 ins = xtensa_insnbuf_alloc (isa);
2812 slot = xtensa_insnbuf_alloc (isa);
2813 ba = 0;
2814 ia = current_pc;
2815 bt = ia;
2816
2817 a0_was_saved = 0;
2818 a7_was_saved = 0;
2819 a11_was_saved = 0;
2820
2821 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2822 {
2823 if (ia + xtensa_isa_maxlength (isa) > bt)
2824 {
2825 ba = ia;
2826 bt = (ba + XTENSA_ISA_BSZ);
2827 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2828 return xtNoExceptionHandler;
2829 }
2830 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2831 ifmt = xtensa_format_decode (isa, ins);
2832 if (ifmt == XTENSA_UNDEFINED)
2833 return xtNoExceptionHandler;
2834 ilen = xtensa_format_length (isa, ifmt);
2835 if (ilen == XTENSA_UNDEFINED)
2836 return xtNoExceptionHandler;
2837 islots = xtensa_format_num_slots (isa, ifmt);
2838 if (islots == XTENSA_UNDEFINED)
2839 return xtNoExceptionHandler;
2840 for (is = 0; is < islots; ++is)
2841 {
2842 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2843 return xtNoExceptionHandler;
2844 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2845 if (opc == XTENSA_UNDEFINED)
2846 return xtNoExceptionHandler;
2847 switch (call0_classify_opcode (isa, opc))
2848 {
2849 case c0opc_illegal:
2850 case c0opc_flow:
2851 case c0opc_entry:
2852 case c0opc_break:
2853 /* We expect none of them here. */
2854 return xtNoExceptionHandler;
2855 case c0opc_l32e:
2856 func = execute_l32e;
2857 break;
2858 case c0opc_s32e:
2859 func = execute_s32e;
2860 break;
2861 case c0opc_rfwo: /* RFWO. */
2862 /* Here, we return from WindowOverflow handler and,
2863 if we stopped at the very beginning, which means
2864 A0 was saved, we have to restore it now. */
2865 if (a0_was_saved)
2866 {
2867 int arreg = arreg_number (gdbarch,
2868 gdbarch_tdep (gdbarch)->a0_base,
2869 wb);
2870 xtensa_write_register (arreg, a0_saved);
2871 }
2872 return xtWindowOverflow;
2873 case c0opc_rfwu: /* RFWU. */
2874 /* Here, we return from WindowUnderflow handler.
2875 Let's see if either A7 or A11 has to be restored. */
2876 if (WindowUnderflow12)
2877 {
2878 if (a11_was_saved)
2879 {
2880 int arreg = arreg_number (gdbarch,
2881 gdbarch_tdep (gdbarch)->a0_base + 11,
2882 wb);
2883 xtensa_write_register (arreg, a11_saved);
2884 }
2885 }
2886 else if (a7_was_saved)
2887 {
2888 int arreg = arreg_number (gdbarch,
2889 gdbarch_tdep (gdbarch)->a0_base + 7,
2890 wb);
2891 xtensa_write_register (arreg, a7_saved);
2892 }
2893 return xtWindowUnderflow;
2894 default: /* Simply skip this insns. */
2895 continue;
2896 }
2897
2898 /* Decode arguments for L32E / S32E and simulate their execution. */
2899 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2902 return xtNoExceptionHandler;
2903 if (xtensa_operand_decode (isa, opc, 0, &at))
2904 return xtNoExceptionHandler;
2905 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2906 return xtNoExceptionHandler;
2907 if (xtensa_operand_decode (isa, opc, 1, &as))
2908 return xtNoExceptionHandler;
2909 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2910 return xtNoExceptionHandler;
2911 if (xtensa_operand_decode (isa, opc, 2, &offset))
2912 return xtNoExceptionHandler;
2913
2914 (*func) (gdbarch, at, as, offset, wb);
2915 }
2916
2917 ia += ilen;
2918 }
2919 return xtNoExceptionHandler;
2920 }
2921
2922 /* Handle Window Overflow / Underflow exception frames. */
2923
2924 static void
2925 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2926 xtensa_frame_cache_t *cache,
2927 CORE_ADDR pc)
2928 {
2929 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2930 CORE_ADDR ps, wb, ws, ra;
2931 int epc1_regnum, i, regnum;
2932 xtensa_exception_handler_t eh_type;
2933
2934 /* Read PS, WB, and WS from the hardware. Note that PS register
2935 must be present, if Windowed ABI is supported. */
2936 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2937 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2938 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2939
2940 /* Execute all the remaining instructions from Window Interrupt Handler
2941 by simulating them on the remote protocol level. On return, set the
2942 type of Xtensa Window Interrupt Handler, or report an error. */
2943 eh_type = execute_code (gdbarch, pc, wb);
2944 if (eh_type == xtNoExceptionHandler)
2945 error (_("\
2946 Unable to decode Xtensa Window Interrupt Handler's code."));
2947
2948 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2949 cache->call0 = 0; /* It's Windowed ABI. */
2950
2951 /* All registers for the cached frame will be alive. */
2952 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2953 cache->wd.aregs[i] = -1;
2954
2955 if (eh_type == xtWindowOverflow)
2956 cache->wd.ws = ws ^ (1 << wb);
2957 else /* eh_type == xtWindowUnderflow. */
2958 cache->wd.ws = ws | (1 << wb);
2959
2960 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2961 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2962 cache->wd.wb);
2963 ra = xtensa_read_register (regnum);
2964 cache->wd.callsize = WINSIZE (ra);
2965 cache->prev_sp = xtensa_read_register (regnum + 1);
2966 /* Set regnum to a frame pointer of the frame being cached. */
2967 regnum = xtensa_scan_prologue (gdbarch, pc);
2968 regnum = arreg_number (gdbarch,
2969 gdbarch_tdep (gdbarch)->a0_base + regnum,
2970 cache->wd.wb);
2971 cache->base = get_frame_register_unsigned (this_frame, regnum);
2972
2973 /* Read PC of interrupted function from EPC1 register. */
2974 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2975 if (epc1_regnum < 0)
2976 error(_("Unable to read Xtensa register EPC1"));
2977 cache->ra = xtensa_read_register (epc1_regnum);
2978 cache->pc = get_frame_func (this_frame);
2979 }
2980
2981
2982 /* Skip function prologue.
2983
2984 Return the pc of the first instruction after prologue. GDB calls this to
2985 find the address of the first line of the function or (if there is no line
2986 number information) to skip the prologue for planting breakpoints on
2987 function entries. Use debug info (if present) or prologue analysis to skip
2988 the prologue to achieve reliable debugging behavior. For windowed ABI,
2989 only the 'entry' instruction is skipped. It is not strictly necessary to
2990 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2991 backtrace at any point in the prologue, however certain potential hazards
2992 are avoided and a more "normal" debugging experience is ensured by
2993 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2994 For example, if we don't skip the prologue:
2995 - Some args may not yet have been saved to the stack where the debug
2996 info expects to find them (true anyway when only 'entry' is skipped);
2997 - Software breakpoints ('break' instrs) may not have been unplanted
2998 when the prologue analysis is done on initializing the frame cache,
2999 and breaks in the prologue will throw off the analysis.
3000
3001 If we have debug info ( line-number info, in particular ) we simply skip
3002 the code associated with the first function line effectively skipping
3003 the prologue code. It works even in cases like
3004
3005 int main()
3006 { int local_var = 1;
3007 ....
3008 }
3009
3010 because, for this source code, both Xtensa compilers will generate two
3011 separate entries ( with the same line number ) in dwarf line-number
3012 section to make sure there is a boundary between the prologue code and
3013 the rest of the function.
3014
3015 If there is no debug info, we need to analyze the code. */
3016
3017 /* #define DONT_SKIP_PROLOGUE */
3018
3019 static CORE_ADDR
3020 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3021 {
3022 struct symtab_and_line prologue_sal;
3023 CORE_ADDR body_pc;
3024
3025 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3026
3027 #if DONT_SKIP_PROLOGUE
3028 return start_pc;
3029 #endif
3030
3031 /* Try to find first body line from debug info. */
3032
3033 prologue_sal = find_pc_line (start_pc, 0);
3034 if (prologue_sal.line != 0) /* Found debug info. */
3035 {
3036 /* In Call0, it is possible to have a function with only one instruction
3037 ('ret') resulting from a one-line optimized function that does nothing.
3038 In that case, prologue_sal.end may actually point to the start of the
3039 next function in the text section, causing a breakpoint to be set at
3040 the wrong place. Check, if the end address is within a different
3041 function, and if so return the start PC. We know we have symbol
3042 information. */
3043
3044 CORE_ADDR end_func;
3045
3046 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3047 && call0_ret (start_pc, prologue_sal.end))
3048 return start_pc;
3049
3050 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3051 if (end_func != start_pc)
3052 return start_pc;
3053
3054 return prologue_sal.end;
3055 }
3056
3057 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3058 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3059 xtensa_alloc_frame_cache (0));
3060 return body_pc != 0 ? body_pc : start_pc;
3061 }
3062
3063 /* Verify the current configuration. */
3064 static void
3065 xtensa_verify_config (struct gdbarch *gdbarch)
3066 {
3067 struct ui_file *log;
3068 struct cleanup *cleanups;
3069 struct gdbarch_tdep *tdep;
3070 long length;
3071 char *buf;
3072
3073 tdep = gdbarch_tdep (gdbarch);
3074 log = mem_fileopen ();
3075 cleanups = make_cleanup_ui_file_delete (log);
3076
3077 /* Verify that we got a reasonable number of AREGS. */
3078 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3079 fprintf_unfiltered (log, _("\
3080 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3081 tdep->num_aregs);
3082
3083 /* Verify that certain registers exist. */
3084
3085 if (tdep->pc_regnum == -1)
3086 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3087 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3088 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3089
3090 if (tdep->isa_use_windowed_registers)
3091 {
3092 if (tdep->wb_regnum == -1)
3093 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3094 if (tdep->ws_regnum == -1)
3095 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3096 if (tdep->ar_base == -1)
3097 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3098 }
3099
3100 if (tdep->a0_base == -1)
3101 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3102
3103 buf = ui_file_xstrdup (log, &length);
3104 make_cleanup (xfree, buf);
3105 if (length > 0)
3106 internal_error (__FILE__, __LINE__,
3107 _("the following are invalid: %s"), buf);
3108 do_cleanups (cleanups);
3109 }
3110
3111
3112 /* Derive specific register numbers from the array of registers. */
3113
3114 static void
3115 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3116 {
3117 xtensa_register_t* rmap;
3118 int n, max_size = 4;
3119
3120 tdep->num_regs = 0;
3121 tdep->num_nopriv_regs = 0;
3122
3123 /* Special registers 0..255 (core). */
3124 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3125
3126 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3127 {
3128 if (rmap->target_number == 0x0020)
3129 tdep->pc_regnum = n;
3130 else if (rmap->target_number == 0x0100)
3131 tdep->ar_base = n;
3132 else if (rmap->target_number == 0x0000)
3133 tdep->a0_base = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3135 tdep->wb_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3137 tdep->ws_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3139 tdep->debugcause_regnum = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3141 tdep->exccause_regnum = n;
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3143 tdep->excvaddr_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3145 tdep->lbeg_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3147 tdep->lend_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3149 tdep->lcount_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3151 tdep->sar_regnum = n;
3152 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3153 tdep->litbase_regnum = n;
3154 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3155 tdep->ps_regnum = n;
3156 #if 0
3157 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3158 tdep->interrupt_regnum = n;
3159 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3160 tdep->interrupt2_regnum = n;
3161 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3162 tdep->cpenable_regnum = n;
3163 #endif
3164
3165 if (rmap->byte_size > max_size)
3166 max_size = rmap->byte_size;
3167 if (rmap->mask != 0 && tdep->num_regs == 0)
3168 tdep->num_regs = n;
3169 /* Find out out how to deal with priveleged registers.
3170
3171 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3172 && tdep->num_nopriv_regs == 0)
3173 tdep->num_nopriv_regs = n;
3174 */
3175 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3176 && tdep->num_regs == 0)
3177 tdep->num_regs = n;
3178 }
3179
3180 /* Number of pseudo registers. */
3181 tdep->num_pseudo_regs = n - tdep->num_regs;
3182
3183 /* Empirically determined maximum sizes. */
3184 tdep->max_register_raw_size = max_size;
3185 tdep->max_register_virtual_size = max_size;
3186 }
3187
3188 /* Module "constructor" function. */
3189
3190 extern struct gdbarch_tdep xtensa_tdep;
3191
3192 static struct gdbarch *
3193 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3194 {
3195 struct gdbarch_tdep *tdep;
3196 struct gdbarch *gdbarch;
3197 struct xtensa_abi_handler *abi_handler;
3198
3199 DEBUGTRACE ("gdbarch_init()\n");
3200
3201 /* We have to set the byte order before we call gdbarch_alloc. */
3202 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3203
3204 tdep = &xtensa_tdep;
3205 gdbarch = gdbarch_alloc (&info, tdep);
3206 xtensa_derive_tdep (tdep);
3207
3208 /* Verify our configuration. */
3209 xtensa_verify_config (gdbarch);
3210 xtensa_session_once_reported = 0;
3211
3212 /* Pseudo-Register read/write. */
3213 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3214 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3215
3216 /* Set target information. */
3217 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3218 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3219 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3220 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3221 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3222
3223 /* Renumber registers for known formats (stabs and dwarf2). */
3224 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3225 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3226
3227 /* We provide our own function to get register information. */
3228 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3229 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3230
3231 /* To call functions from GDB using dummy frame. */
3232 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3233
3234 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3235
3236 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3237
3238 /* Advance PC across any prologue instructions to reach "real" code. */
3239 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3240
3241 /* Stack grows downward. */
3242 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3243
3244 /* Set breakpoints. */
3245 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3246
3247 /* After breakpoint instruction or illegal instruction, pc still
3248 points at break instruction, so don't decrement. */
3249 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3250
3251 /* We don't skip args. */
3252 set_gdbarch_frame_args_skip (gdbarch, 0);
3253
3254 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3255
3256 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3257
3258 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3259
3260 /* Frame handling. */
3261 frame_base_set_default (gdbarch, &xtensa_frame_base);
3262 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3263 dwarf2_append_unwinders (gdbarch);
3264
3265 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3266
3267 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3268
3269 xtensa_add_reggroups (gdbarch);
3270 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3271
3272 set_gdbarch_iterate_over_regset_sections
3273 (gdbarch, xtensa_iterate_over_regset_sections);
3274
3275 set_solib_svr4_fetch_link_map_offsets
3276 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3277
3278 /* Hook in the ABI-specific overrides, if they have been registered. */
3279 gdbarch_init_osabi (info, gdbarch);
3280
3281 return gdbarch;
3282 }
3283
3284 static void
3285 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3286 {
3287 error (_("xtensa_dump_tdep(): not implemented"));
3288 }
3289
3290 /* Provide a prototype to silence -Wmissing-prototypes. */
3291 extern initialize_file_ftype _initialize_xtensa_tdep;
3292
3293 void
3294 _initialize_xtensa_tdep (void)
3295 {
3296 struct cmd_list_element *c;
3297
3298 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3299 xtensa_init_reggroups ();
3300
3301 add_setshow_zuinteger_cmd ("xtensa",
3302 class_maintenance,
3303 &xtensa_debug_level,
3304 _("Set Xtensa debugging."),
3305 _("Show Xtensa debugging."), _("\
3306 When non-zero, Xtensa-specific debugging is enabled. \
3307 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3308 NULL,
3309 NULL,
3310 &setdebuglist, &showdebuglist);
3311 }
This page took 0.161407 seconds and 4 git commands to generate.