d52addfd7dc85ca71f40c58530d319822ad4e925
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "objfiles.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "value.h"
28 #include "dis-asm.h"
29 #include "inferior.h"
30 #include "floatformat.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "regset.h"
34
35 #include "dummy-frame.h"
36 #include "elf/dwarf2.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2loc.h"
39 #include "frame.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50 #include "gdb_assert.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54
55
56 static int xtensa_debug_level = 0;
57
58 #define DEBUGWARN(args...) \
59 if (xtensa_debug_level > 0) \
60 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
61
62 #define DEBUGINFO(args...) \
63 if (xtensa_debug_level > 1) \
64 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
65
66 #define DEBUGTRACE(args...) \
67 if (xtensa_debug_level > 2) \
68 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
69
70 #define DEBUGVERB(args...) \
71 if (xtensa_debug_level > 3) \
72 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
73
74
75 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
76 #define SP_ALIGNMENT 16
77
78
79 /* On Windowed ABI, we use a6 through a11 for passing arguments
80 to a function called by GDB because CALL4 is used. */
81 #define ARGS_NUM_REGS 6
82 #define REGISTER_SIZE 4
83
84
85 /* Extract the call size from the return address or PS register. */
86 #define PS_CALLINC_SHIFT 16
87 #define PS_CALLINC_MASK 0x00030000
88 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
89 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
90
91 /* ABI-independent macros. */
92 #define ARG_NOF(gdbarch) \
93 (gdbarch_tdep (gdbarch)->call_abi \
94 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
95 #define ARG_1ST(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
97 ? (gdbarch_tdep (gdbarch)->a0_base + 0) + C0_ARGS \
98 : (gdbarch_tdep (gdbarch)->a0_base + 6))
99
100 extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *);
101 extern int xtensa_config_byte_order (struct gdbarch_info *);
102
103
104 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
105 indicates that the instruction is an ENTRY instruction. */
106
107 #define XTENSA_IS_ENTRY(gdbarch, op1) \
108 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
109 ? ((op1) == 0x6c) : ((op1) == 0x36))
110
111 #define XTENSA_ENTRY_LENGTH 3
112
113 /* windowing_enabled() returns true, if windowing is enabled.
114 WOE must be set to 1; EXCM to 0.
115 Note: We assume that EXCM is always 0 for XEA1. */
116
117 #define PS_WOE (1<<18)
118 #define PS_EXC (1<<4)
119
120 /* Convert a live Ax register number to the corresponding Areg number. */
121 static int
122 areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
123 {
124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
125 int areg;
126
127 areg = regnum - tdep->a0_base;
128 areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
129 areg &= tdep->num_aregs - 1;
130
131 return areg + tdep->ar_base;
132 }
133
134 static inline int
135 windowing_enabled (CORE_ADDR ps)
136 {
137 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
138 }
139
140 /* Return the window size of the previous call to the function from which we
141 have just returned.
142
143 This function is used to extract the return value after a called function
144 has returned to the caller. On Xtensa, the register that holds the return
145 value (from the perspective of the caller) depends on what call
146 instruction was used. For now, we are assuming that the call instruction
147 precedes the current address, so we simply analyze the call instruction.
148 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
149 method to call the inferior function. */
150
151 static int
152 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
153 {
154 int winsize = 4;
155 int insn;
156 gdb_byte buf[4];
157
158 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
159
160 /* Read the previous instruction (should be a call[x]{4|8|12}. */
161 read_memory (pc-3, buf, 3);
162 insn = extract_unsigned_integer (buf, 3);
163
164 /* Decode call instruction:
165 Little Endian
166 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
167 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
168 Big Endian
169 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
170 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
171
172 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
173 {
174 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
175 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
176 }
177 else
178 {
179 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
180 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
181 }
182 return winsize;
183 }
184
185
186 /* REGISTER INFORMATION */
187
188 /* Returns the name of a register. */
189 static const char *
190 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
191 {
192 /* Return the name stored in the register map. */
193 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
194 + gdbarch_num_pseudo_regs (gdbarch))
195 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
196
197 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
198 return 0;
199 }
200
201 static unsigned long
202 xtensa_read_register (int regnum)
203 {
204 ULONGEST value;
205
206 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
207 return (unsigned long) value;
208 }
209
210 /* Return the type of a register. Create a new type, if necessary. */
211
212 static struct ctype_cache
213 {
214 struct ctype_cache *next;
215 int size;
216 struct type *virtual_type;
217 } *type_entries = NULL;
218
219 static struct type *
220 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
221 {
222 /* Return signed integer for ARx and Ax registers. */
223 if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
224 && regnum < gdbarch_tdep (gdbarch)->ar_base
225 + gdbarch_tdep (gdbarch)->num_aregs)
226 || (regnum >= gdbarch_tdep (gdbarch)->a0_base
227 && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
228 return builtin_type_int;
229
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
232 return lookup_pointer_type (builtin_type_void);
233
234 /* Return the stored type for all other registers. */
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
237 {
238 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
239
240 /* Set ctype for this register (only the first time). */
241
242 if (reg->ctype == 0)
243 {
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
246
247 /* We always use the memory representation,
248 even if the register width is smaller. */
249 switch (size)
250 {
251 case 1:
252 reg->ctype = builtin_type_uint8;
253 break;
254
255 case 2:
256 reg->ctype = builtin_type_uint16;
257 break;
258
259 case 4:
260 reg->ctype = builtin_type_uint32;
261 break;
262
263 case 8:
264 reg->ctype = builtin_type_uint64;
265 break;
266
267 case 16:
268 reg->ctype = builtin_type_uint128;
269 break;
270
271 default:
272 for (tp = type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
274 break;
275
276 if (tp == NULL)
277 {
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = type_entries;
281 type_entries = tp;
282 tp->size = size;
283
284 sprintf (name, "int%d", size * 8);
285 tp->virtual_type = init_type (TYPE_CODE_INT, size,
286 TYPE_FLAG_UNSIGNED, name,
287 NULL);
288 }
289
290 reg->ctype = tp->virtual_type;
291 }
292 }
293 return reg->ctype;
294 }
295
296 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
297 return 0;
298 }
299
300
301 /* Return the 'local' register number for stubs, dwarf2, etc.
302 The debugging information enumerates registers starting from 0 for A0
303 to n for An. So, we only have to add the base number for A0. */
304
305 static int
306 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
307 {
308 int i;
309
310 if (regnum >= 0 && regnum < 16)
311 return gdbarch_tdep (gdbarch)->a0_base + regnum;
312
313 for (i = 0;
314 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
315 i++)
316 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
317 return i;
318
319 internal_error (__FILE__, __LINE__,
320 _("invalid dwarf/stabs register number %d"), regnum);
321 return 0;
322 }
323
324
325 /* Write the bits of a masked register to the various registers.
326 Only the masked areas of these registers are modified; the other
327 fields are untouched. The size of masked registers is always less
328 than or equal to 32 bits. */
329
330 static void
331 xtensa_register_write_masked (struct regcache *regcache,
332 xtensa_register_t *reg, const gdb_byte *buffer)
333 {
334 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
335 const xtensa_mask_t *mask = reg->mask;
336
337 int shift = 0; /* Shift for next mask (mod 32). */
338 int start, size; /* Start bit and size of current mask. */
339
340 unsigned int *ptr = value;
341 unsigned int regval, m, mem = 0;
342
343 int bytesize = reg->byte_size;
344 int bitsize = bytesize * 8;
345 int i, r;
346
347 DEBUGTRACE ("xtensa_register_write_masked ()\n");
348
349 /* Copy the masked register to host byte-order. */
350 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
351 for (i = 0; i < bytesize; i++)
352 {
353 mem >>= 8;
354 mem |= (buffer[bytesize - i - 1] << 24);
355 if ((i & 3) == 3)
356 *ptr++ = mem;
357 }
358 else
359 for (i = 0; i < bytesize; i++)
360 {
361 mem >>= 8;
362 mem |= (buffer[i] << 24);
363 if ((i & 3) == 3)
364 *ptr++ = mem;
365 }
366
367 /* We might have to shift the final value:
368 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
369 bytesize & 3 == x -> shift (4-x) * 8. */
370
371 *ptr = mem >> (((0 - bytesize) & 3) * 8);
372 ptr = value;
373 mem = *ptr;
374
375 /* Write the bits to the masked areas of the other registers. */
376 for (i = 0; i < mask->count; i++)
377 {
378 start = mask->mask[i].bit_start;
379 size = mask->mask[i].bit_size;
380 regval = mem >> shift;
381
382 if ((shift += size) > bitsize)
383 error (_("size of all masks is larger than the register"));
384
385 if (shift >= 32)
386 {
387 mem = *(++ptr);
388 shift -= 32;
389 bitsize -= 32;
390
391 if (shift > 0)
392 regval |= mem << (size - shift);
393 }
394
395 /* Make sure we have a valid register. */
396 r = mask->mask[i].reg_num;
397 if (r >= 0 && size > 0)
398 {
399 /* Don't overwrite the unmasked areas. */
400 ULONGEST old_val;
401 regcache_cooked_read_unsigned (regcache, r, &old_val);
402 m = 0xffffffff >> (32 - size) << start;
403 regval <<= start;
404 regval = (regval & m) | (old_val & ~m);
405 regcache_cooked_write_unsigned (regcache, r, regval);
406 }
407 }
408 }
409
410
411 /* Read a tie state or mapped registers. Read the masked areas
412 of the registers and assemble them into a single value. */
413
414 static void
415 xtensa_register_read_masked (struct regcache *regcache,
416 xtensa_register_t *reg, gdb_byte *buffer)
417 {
418 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
419 const xtensa_mask_t *mask = reg->mask;
420
421 int shift = 0;
422 int start, size;
423
424 unsigned int *ptr = value;
425 unsigned int regval, mem = 0;
426
427 int bytesize = reg->byte_size;
428 int bitsize = bytesize * 8;
429 int i;
430
431 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
432 reg->name == 0 ? "" : reg->name);
433
434 /* Assemble the register from the masked areas of other registers. */
435 for (i = 0; i < mask->count; i++)
436 {
437 int r = mask->mask[i].reg_num;
438 if (r >= 0)
439 {
440 ULONGEST val;
441 regcache_cooked_read_unsigned (regcache, r, &val);
442 regval = (unsigned int) val;
443 }
444 else
445 regval = 0;
446
447 start = mask->mask[i].bit_start;
448 size = mask->mask[i].bit_size;
449
450 regval >>= start;
451
452 if (size < 32)
453 regval &= (0xffffffff >> (32 - size));
454
455 mem |= regval << shift;
456
457 if ((shift += size) > bitsize)
458 error (_("size of all masks is larger than the register"));
459
460 if (shift >= 32)
461 {
462 *ptr++ = mem;
463 bitsize -= 32;
464 shift -= 32;
465
466 if (shift == 0)
467 mem = 0;
468 else
469 mem = regval >> (size - shift);
470 }
471 }
472
473 if (shift > 0)
474 *ptr = mem;
475
476 /* Copy value to target byte order. */
477 ptr = value;
478 mem = *ptr;
479
480 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
481 for (i = 0; i < bytesize; i++)
482 {
483 if ((i & 3) == 0)
484 mem = *ptr++;
485 buffer[bytesize - i - 1] = mem & 0xff;
486 mem >>= 8;
487 }
488 else
489 for (i = 0; i < bytesize; i++)
490 {
491 if ((i & 3) == 0)
492 mem = *ptr++;
493 buffer[i] = mem & 0xff;
494 mem >>= 8;
495 }
496 }
497
498
499 /* Read pseudo registers. */
500
501 static void
502 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
503 struct regcache *regcache,
504 int regnum,
505 gdb_byte *buffer)
506 {
507 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
508 regnum, xtensa_register_name (gdbarch, regnum));
509
510 if (regnum == gdbarch_num_regs (gdbarch)
511 + gdbarch_num_pseudo_regs (gdbarch))
512 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
513
514 /* Read aliases a0..a15, if this is a Windowed ABI. */
515 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
516 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
517 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
518 {
519 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
520
521 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
522 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
523 }
524
525 /* We can always read non-pseudo registers. */
526 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
527 regcache_raw_read (regcache, regnum, buffer);
528
529 /* Pseudo registers. */
530 else if (regnum >= 0
531 && regnum < gdbarch_num_regs (gdbarch)
532 + gdbarch_num_pseudo_regs (gdbarch))
533 {
534 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
535 xtensa_register_type_t type = reg->type;
536 int flags = gdbarch_tdep (gdbarch)->target_flags;
537
538 /* We cannot read Unknown or Unmapped registers. */
539 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
540 {
541 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
542 {
543 warning (_("cannot read register %s"),
544 xtensa_register_name (gdbarch, regnum));
545 return;
546 }
547 }
548
549 /* Some targets cannot read TIE register files. */
550 else if (type == xtRegisterTypeTieRegfile)
551 {
552 /* Use 'fetch' to get register? */
553 if (flags & xtTargetFlagsUseFetchStore)
554 {
555 warning (_("cannot read register"));
556 return;
557 }
558
559 /* On some targets (esp. simulators), we can always read the reg. */
560 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
561 {
562 warning (_("cannot read register"));
563 return;
564 }
565 }
566
567 /* We can always read mapped registers. */
568 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
569 {
570 xtensa_register_read_masked (regcache, reg, buffer);
571 return;
572 }
573
574 /* Assume that we can read the register. */
575 regcache_raw_read (regcache, regnum, buffer);
576 }
577 else
578 internal_error (__FILE__, __LINE__,
579 _("invalid register number %d"), regnum);
580 }
581
582
583 /* Write pseudo registers. */
584
585 static void
586 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
587 struct regcache *regcache,
588 int regnum,
589 const gdb_byte *buffer)
590 {
591 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
592 regnum, xtensa_register_name (gdbarch, regnum));
593
594 if (regnum == gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch))
596 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
597
598 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
599 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
600 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
601 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
602 {
603 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
604 unsigned int wb;
605
606 regcache_raw_read (regcache,
607 gdbarch_tdep (gdbarch)->wb_regnum, buf);
608 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
609 }
610
611 /* We can always write 'core' registers.
612 Note: We might have converted Ax->ARy. */
613 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
614 regcache_raw_write (regcache, regnum, buffer);
615
616 /* Pseudo registers. */
617 else if (regnum >= 0
618 && regnum < gdbarch_num_regs (gdbarch)
619 + gdbarch_num_pseudo_regs (gdbarch))
620 {
621 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
622 xtensa_register_type_t type = reg->type;
623 int flags = gdbarch_tdep (gdbarch)->target_flags;
624
625 /* On most targets, we cannot write registers
626 of type "Unknown" or "Unmapped". */
627 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
628 {
629 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
630 {
631 warning (_("cannot write register %s"),
632 xtensa_register_name (gdbarch, regnum));
633 return;
634 }
635 }
636
637 /* Some targets cannot read TIE register files. */
638 else if (type == xtRegisterTypeTieRegfile)
639 {
640 /* Use 'store' to get register? */
641 if (flags & xtTargetFlagsUseFetchStore)
642 {
643 warning (_("cannot write register"));
644 return;
645 }
646
647 /* On some targets (esp. simulators), we can always write
648 the register. */
649 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
650 {
651 warning (_("cannot write register"));
652 return;
653 }
654 }
655
656 /* We can always write mapped registers. */
657 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
658 {
659 xtensa_register_write_masked (regcache, reg, buffer);
660 return;
661 }
662
663 /* Assume that we can write the register. */
664 regcache_raw_write (regcache, regnum, buffer);
665 }
666 else
667 internal_error (__FILE__, __LINE__,
668 _("invalid register number %d"), regnum);
669 }
670
671 static struct reggroup *xtensa_ar_reggroup;
672 static struct reggroup *xtensa_user_reggroup;
673 static struct reggroup *xtensa_vectra_reggroup;
674 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
675
676 static void
677 xtensa_init_reggroups (void)
678 {
679 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
680 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
681 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
682
683 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
684 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
685 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
686 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
687 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
688 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
689 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
690 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
691 }
692
693 static void
694 xtensa_add_reggroups (struct gdbarch *gdbarch)
695 {
696 int i;
697
698 /* Predefined groups. */
699 reggroup_add (gdbarch, all_reggroup);
700 reggroup_add (gdbarch, save_reggroup);
701 reggroup_add (gdbarch, restore_reggroup);
702 reggroup_add (gdbarch, system_reggroup);
703 reggroup_add (gdbarch, vector_reggroup);
704 reggroup_add (gdbarch, general_reggroup);
705 reggroup_add (gdbarch, float_reggroup);
706
707 /* Xtensa-specific groups. */
708 reggroup_add (gdbarch, xtensa_ar_reggroup);
709 reggroup_add (gdbarch, xtensa_user_reggroup);
710 reggroup_add (gdbarch, xtensa_vectra_reggroup);
711
712 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
713 reggroup_add (gdbarch, xtensa_cp[i]);
714 }
715
716 static int
717 xtensa_coprocessor_register_group (struct reggroup *group)
718 {
719 int i;
720
721 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
722 if (group == xtensa_cp[i])
723 return i;
724
725 return -1;
726 }
727
728 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
729 | XTENSA_REGISTER_FLAGS_WRITABLE \
730 | XTENSA_REGISTER_FLAGS_VOLATILE)
731
732 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
733 | XTENSA_REGISTER_FLAGS_WRITABLE)
734
735 static int
736 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
737 int regnum,
738 struct reggroup *group)
739 {
740 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
741 xtensa_register_type_t type = reg->type;
742 xtensa_register_group_t rg = reg->group;
743 int cp_number;
744
745 /* First, skip registers that are not visible to this target
746 (unknown and unmapped registers when not using ISS). */
747
748 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
749 return 0;
750 if (group == all_reggroup)
751 return 1;
752 if (group == xtensa_ar_reggroup)
753 return rg & xtRegisterGroupAddrReg;
754 if (group == xtensa_user_reggroup)
755 return rg & xtRegisterGroupUser;
756 if (group == float_reggroup)
757 return rg & xtRegisterGroupFloat;
758 if (group == general_reggroup)
759 return rg & xtRegisterGroupGeneral;
760 if (group == float_reggroup)
761 return rg & xtRegisterGroupFloat;
762 if (group == system_reggroup)
763 return rg & xtRegisterGroupState;
764 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
765 return rg & xtRegisterGroupVectra;
766 if (group == save_reggroup || group == restore_reggroup)
767 return (regnum < gdbarch_num_regs (gdbarch)
768 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
769 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
770 return rg & (xtRegisterGroupCP0 << cp_number);
771 else
772 return 1;
773 }
774
775
776 /* Supply register REGNUM from the buffer specified by GREGS and LEN
777 in the general-purpose register set REGSET to register cache
778 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
779
780 static void
781 xtensa_supply_gregset (const struct regset *regset,
782 struct regcache *rc,
783 int regnum,
784 const void *gregs,
785 size_t len)
786 {
787 const xtensa_elf_gregset_t *regs = gregs;
788 struct gdbarch *gdbarch = get_regcache_arch (rc);
789 int i;
790
791 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
792
793 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
794 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
795 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
796 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
797 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
798 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
799 (char *) &regs->windowbase);
800 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
801 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
802 (char *) &regs->windowstart);
803 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
804 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
805 (char *) &regs->lbeg);
806 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
807 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
808 (char *) &regs->lend);
809 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
810 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
811 (char *) &regs->lcount);
812 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
813 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
814 (char *) &regs->sar);
815 if (regnum == gdbarch_tdep (gdbarch)->exccause_regnum || regnum == -1)
816 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->exccause_regnum,
817 (char *) &regs->exccause);
818 if (regnum == gdbarch_tdep (gdbarch)->excvaddr_regnum || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->excvaddr_regnum,
820 (char *) &regs->excvaddr);
821 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
822 && regnum < gdbarch_tdep (gdbarch)->ar_base
823 + gdbarch_tdep (gdbarch)->num_aregs)
824 regcache_raw_supply (rc, regnum,
825 (char *) &regs->ar[regnum - gdbarch_tdep
826 (gdbarch)->ar_base]);
827 else if (regnum == -1)
828 {
829 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
830 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
831 (char *) &regs->ar[i]);
832 }
833 }
834
835
836 /* Xtensa register set. */
837
838 static struct regset
839 xtensa_gregset =
840 {
841 NULL,
842 xtensa_supply_gregset
843 };
844
845
846 /* Return the appropriate register set for the core
847 section identified by SECT_NAME and SECT_SIZE. */
848
849 static const struct regset *
850 xtensa_regset_from_core_section (struct gdbarch *core_arch,
851 const char *sect_name,
852 size_t sect_size)
853 {
854 DEBUGTRACE ("xtensa_regset_from_core_section "
855 "(..., sect_name==\"%s\", sect_size==%x) \n",
856 sect_name, (unsigned int) sect_size);
857
858 if (strcmp (sect_name, ".reg") == 0
859 && sect_size >= sizeof(xtensa_elf_gregset_t))
860 return &xtensa_gregset;
861
862 return NULL;
863 }
864
865
866 /* Handling frames. */
867
868 /* Number of registers to save in case of Windowed ABI. */
869 #define XTENSA_NUM_SAVED_AREGS 12
870
871 /* Frame cache part for Windowed ABI. */
872 typedef struct xtensa_windowed_frame_cache
873 {
874 int wb; /* Base for this frame; -1 if not in regfile. */
875 int callsize; /* Call size to next frame. */
876 int ws;
877 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
878 } xtensa_windowed_frame_cache_t;
879
880 /* Call0 ABI Definitions. */
881
882 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
883 #define C0_NREGS 16 /* Number of A-registers to track. */
884 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
885 #define C0_SP 1 /* Register used as SP. */
886 #define C0_FP 15 /* Register used as FP. */
887 #define C0_RA 0 /* Register used as return address. */
888 #define C0_ARGS 2 /* Register used as first arg/retval. */
889 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
890
891 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
892 A-register where the current content of the reg came from (in terms
893 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
894 mean that the orignal content of the register was saved to the stack.
895 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
896 know where SP will end up until the entire prologue has been analyzed. */
897
898 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
899 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
900 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
901
902 extern xtensa_isa xtensa_default_isa;
903
904 typedef struct xtensa_c0reg
905 {
906 int fr_reg; /* original register from which register content
907 is derived, or C0_CONST, or C0_INEXP. */
908 int fr_ofs; /* constant offset from reg, or immediate value. */
909 int to_stk; /* offset from original SP to register (4-byte aligned),
910 or C0_NOSTK if register has not been saved. */
911 } xtensa_c0reg_t;
912
913
914 /* Frame cache part for Call0 ABI. */
915 typedef struct xtensa_call0_frame_cache
916 {
917 int c0_frmsz; /* Stack frame size. */
918 int c0_hasfp; /* Current frame uses frame pointer. */
919 int fp_regnum; /* A-register used as FP. */
920 int c0_fp; /* Actual value of frame pointer. */
921 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
922 } xtensa_call0_frame_cache_t;
923
924 typedef struct xtensa_frame_cache
925 {
926 CORE_ADDR base; /* Stack pointer of the next frame. */
927 CORE_ADDR pc; /* PC at the entry point to the function. */
928 CORE_ADDR ra; /* The raw return address. */
929 CORE_ADDR ps; /* The PS register of the frame. */
930 CORE_ADDR prev_sp; /* Stack Pointer of the frame. */
931 int call0; /* It's a call0 framework (else windowed). */
932 union
933 {
934 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
935 xtensa_call0_frame_cache_t c0; /* call0 == true. */
936 };
937 } xtensa_frame_cache_t;
938
939
940 static struct xtensa_frame_cache *
941 xtensa_alloc_frame_cache (int windowed)
942 {
943 xtensa_frame_cache_t *cache;
944 int i;
945
946 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
947
948 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
949
950 cache->base = 0;
951 cache->pc = 0;
952 cache->ra = 0;
953 cache->ps = 0;
954 cache->prev_sp = 0;
955 cache->call0 = !windowed;
956 if (cache->call0)
957 {
958 cache->c0.c0_frmsz = -1;
959 cache->c0.c0_hasfp = 0;
960 cache->c0.fp_regnum = -1;
961 cache->c0.c0_fp = -1;
962
963 for (i = 0; i < C0_NREGS; i++)
964 {
965 cache->c0.c0_rt[i].fr_reg = i;
966 cache->c0.c0_rt[i].fr_ofs = 0;
967 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
968 }
969 }
970 else
971 {
972 cache->wd.wb = 0;
973 cache->wd.callsize = -1;
974
975 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
976 cache->wd.aregs[i] = -1;
977 }
978 return cache;
979 }
980
981
982 static CORE_ADDR
983 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
984 {
985 return address & ~15;
986 }
987
988
989 static CORE_ADDR
990 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
991 {
992 gdb_byte buf[8];
993
994 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
995
996 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
997
998 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
999 extract_typed_address (buf, builtin_type_void_func_ptr));
1000
1001 return extract_typed_address (buf, builtin_type_void_func_ptr);
1002 }
1003
1004
1005 static struct frame_id
1006 xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1007 {
1008 CORE_ADDR pc, fp;
1009
1010 /* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
1011
1012 DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
1013
1014 pc = frame_pc_unwind (next_frame);
1015 fp = frame_unwind_register_unsigned
1016 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1017
1018 /* Make dummy frame ID unique by adding a constant. */
1019 return frame_id_build (fp + SP_ALIGNMENT, pc);
1020 }
1021
1022 /* The key values to identify the frame using "cache" are
1023
1024 cache->base = SP of this frame;
1025 cache->pc = entry-PC (entry point of the frame function);
1026 cache->prev_sp = SP of the previous frame.
1027 */
1028
1029 static void
1030 call0_frame_cache (struct frame_info *next_frame,
1031 xtensa_frame_cache_t *cache,
1032 CORE_ADDR pc);
1033
1034 static struct xtensa_frame_cache *
1035 xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
1036 {
1037 xtensa_frame_cache_t *cache;
1038 CORE_ADDR ra, wb, ws, pc, sp, ps;
1039 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1040 unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
1041 char op1;
1042 int windowed;
1043
1044 DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
1045 next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
1046
1047 if (*this_cache)
1048 return *this_cache;
1049
1050 windowed = windowing_enabled (xtensa_read_register (ps_regnum));
1051
1052 /* Get pristine xtensa-frame. */
1053 cache = xtensa_alloc_frame_cache (windowed);
1054 *this_cache = cache;
1055
1056 pc = frame_unwind_register_unsigned (next_frame,
1057 gdbarch_pc_regnum (gdbarch));
1058
1059 if (windowed)
1060 {
1061 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1062 wb = frame_unwind_register_unsigned
1063 (next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
1064 ws = frame_unwind_register_unsigned
1065 (next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
1066 ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
1067
1068 op1 = read_memory_integer (pc, 1);
1069 if (XTENSA_IS_ENTRY (gdbarch, op1))
1070 {
1071 int callinc = CALLINC (ps);
1072 ra = frame_unwind_register_unsigned
1073 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0 + callinc * 4);
1074
1075 DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
1076 (int)pc, callinc);
1077
1078 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1079 cache->wd.callsize = 0;
1080 cache->wd.wb = wb;
1081 cache->wd.ws = ws;
1082 cache->prev_sp = frame_unwind_register_unsigned
1083 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1084 }
1085 else
1086 {
1087 ra = frame_unwind_register_unsigned
1088 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0);
1089 cache->wd.callsize = WINSIZE (ra);
1090 cache->wd.wb = (wb - cache->wd.callsize / 4)
1091 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1092 cache->wd.ws = ws & ~(1 << wb);
1093 }
1094
1095 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1096 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1097 cache->ps = (ps & ~PS_CALLINC_MASK)
1098 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1099
1100 if (cache->wd.ws == 0)
1101 {
1102 int i;
1103
1104 /* Set A0...A3. */
1105 sp = frame_unwind_register_unsigned
1106 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1107
1108 for (i = 0; i < 4; i++, sp += 4)
1109 {
1110 cache->wd.aregs[i] = sp;
1111 }
1112
1113 if (cache->wd.callsize > 4)
1114 {
1115 /* Set A4...A7/A11. */
1116 /* Read an SP of the previous frame. */
1117 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1118 sp -= cache->wd.callsize * 4;
1119
1120 for ( /* i=4 */ ; i < cache->wd.callsize; i++, sp += 4)
1121 {
1122 cache->wd.aregs[i] = sp;
1123 }
1124 }
1125 }
1126
1127 if ((cache->prev_sp == 0) && ( ra != 0 ))
1128 /* If RA is equal to 0 this frame is an outermost frame. Leave
1129 cache->prev_sp unchanged marking the boundary of the frame stack. */
1130 {
1131 if (cache->wd.ws == 0)
1132 {
1133 /* Register window overflow already happened.
1134 We can read caller's SP from the proper spill loction. */
1135 cache->prev_sp =
1136 read_memory_integer (cache->wd.aregs[1],
1137 register_size (gdbarch,
1138 gdbarch_tdep (gdbarch)->a0_base + 1));
1139 }
1140 else
1141 {
1142 /* Read caller's frame SP directly from the previous window. */
1143 int regnum = areg_number
1144 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1145 cache->wd.wb);
1146
1147 cache->prev_sp = xtensa_read_register (regnum);
1148 }
1149 }
1150 }
1151 else /* Call0 framework. */
1152 {
1153 call0_frame_cache (next_frame, cache, pc);
1154 }
1155
1156 cache->base = frame_unwind_register_unsigned
1157 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1158
1159 return cache;
1160 }
1161
1162 static void
1163 xtensa_frame_this_id (struct frame_info *next_frame,
1164 void **this_cache,
1165 struct frame_id *this_id)
1166 {
1167 struct xtensa_frame_cache *cache =
1168 xtensa_frame_cache (next_frame, this_cache);
1169 struct frame_id id;
1170
1171 DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
1172 (unsigned long) next_frame, (unsigned long) *this_cache);
1173
1174 if (cache->prev_sp == 0)
1175 return;
1176
1177 id = frame_id_build (cache->prev_sp, cache->pc);
1178 if (frame_id_eq (id, get_frame_id(next_frame)))
1179 {
1180 warning(_("\
1181 Frame stack is corrupted. That could happen because of \
1182 setting register(s) from GDB or stopping execution \
1183 inside exception handler. Frame backtracing has stopped. \
1184 It can make some GDB commands work inappropriately.\n"));
1185 cache->prev_sp = 0;
1186 return;
1187 }
1188 (*this_id) = id;
1189 }
1190
1191 static int
1192 call0_frame_get_reg_at_entry (struct frame_info *next_frame,
1193 struct xtensa_frame_cache *cache,
1194 int regnum,
1195 CORE_ADDR *addrp,
1196 enum lval_type *lval,
1197 gdb_byte *valuep)
1198 {
1199 CORE_ADDR fp, spe;
1200 int stkofs;
1201 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1202 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1203 && regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
1204 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1205
1206 /* Determine stack pointer on entry to this function, based on FP. */
1207 spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1208
1209 /* If register was saved to the stack frame in the prologue, retrieve it. */
1210 stkofs = cache->c0.c0_rt[reg].to_stk;
1211 if (stkofs != C0_NOSTK)
1212 {
1213 *lval = lval_memory;
1214 *addrp = spe + stkofs;
1215
1216 if (valuep)
1217 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1218
1219 return 1;
1220 }
1221
1222 /* If not callee-saved or if known to have been overwritten, give up. */
1223 if (reg < C0_CLESV
1224 || cache->c0.c0_rt[reg].fr_reg != reg
1225 || cache->c0.c0_rt[reg].fr_ofs != 0)
1226 return 0;
1227
1228 if (get_frame_type (next_frame) != NORMAL_FRAME)
1229 /* TODO: Do we need a special case for DUMMY_FRAME here? */
1230 return 0;
1231
1232 return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
1233 cache, regnum, addrp, lval, valuep);
1234 }
1235
1236 static void
1237 xtensa_frame_prev_register (struct frame_info *next_frame,
1238 void **this_cache,
1239 int regnum,
1240 int *optimizedp,
1241 enum lval_type *lvalp,
1242 CORE_ADDR *addrp,
1243 int *realnump,
1244 gdb_byte *valuep)
1245 {
1246 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1247 struct xtensa_frame_cache *cache =
1248 xtensa_frame_cache (next_frame, this_cache);
1249 CORE_ADDR saved_reg = 0;
1250 int done = 1;
1251
1252 DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
1253 "*this 0x%lx, regnum %d (%s), ...)\n",
1254 (unsigned long) next_frame,
1255 *this_cache ? (unsigned long) *this_cache : 0, regnum,
1256 xtensa_register_name (gdbarch, regnum));
1257
1258 if (regnum ==gdbarch_pc_regnum (gdbarch))
1259 saved_reg = cache->ra;
1260 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1261 saved_reg = cache->prev_sp;
1262 else if (!cache->call0)
1263 {
1264 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1265 {
1266 if (cache->wd.ws != 0)
1267 saved_reg = cache->wd.ws;
1268 else
1269 saved_reg = 1 << cache->wd.wb;
1270 }
1271 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1272 saved_reg = cache->wd.wb;
1273 else if (regnum == gdbarch_ps_regnum (gdbarch))
1274 saved_reg = cache->ps;
1275 else
1276 done = 0;
1277 }
1278 else
1279 done = 0;
1280
1281 if (done)
1282 {
1283 *optimizedp = 0;
1284 *lvalp = not_lval;
1285 *addrp = 0;
1286 *realnump = -1;
1287 if (valuep)
1288 store_unsigned_integer (valuep, 4, saved_reg);
1289
1290 return;
1291 }
1292
1293 if (!cache->call0) /* Windowed ABI. */
1294 {
1295 /* Convert A-register numbers to AR-register numbers. */
1296 if (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0
1297 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1298 regnum = areg_number (gdbarch, regnum, cache->wd.wb);
1299
1300 /* Check if AR-register has been saved to stack. */
1301 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1302 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1303 + gdbarch_tdep (gdbarch)->num_aregs))
1304 {
1305 int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
1306 - (cache->wd.wb * 4);
1307
1308 if (areg >= 0
1309 && areg < XTENSA_NUM_SAVED_AREGS
1310 && cache->wd.aregs[areg] != -1)
1311 {
1312 *optimizedp = 0;
1313 *lvalp = lval_memory;
1314 *addrp = cache->wd.aregs[areg];
1315 *realnump = -1;
1316
1317 if (valuep)
1318 read_memory (*addrp, valuep,
1319 register_size (gdbarch, regnum));
1320
1321 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1322 return;
1323 }
1324 }
1325 }
1326 else /* Call0 ABI. */
1327 {
1328 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1329 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1330 + C0_NREGS))
1331 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1332
1333 if (reg < C0_NREGS)
1334 {
1335 CORE_ADDR spe;
1336 int stkofs;
1337
1338 /* If register was saved in the prologue, retrieve it. */
1339 stkofs = cache->c0.c0_rt[reg].to_stk;
1340 if (stkofs != C0_NOSTK)
1341 {
1342 /* Determine SP on entry based on FP. */
1343 spe = cache->c0.c0_fp
1344 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1345 *optimizedp = 0;
1346 *lvalp = lval_memory;
1347 *addrp = spe + stkofs;
1348 *realnump = -1;
1349
1350 if (valuep)
1351 read_memory (*addrp, valuep,
1352 register_size (gdbarch, regnum));
1353
1354 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1355 return;
1356 }
1357 }
1358 }
1359
1360 /* All other registers have been either saved to
1361 the stack or are still alive in the processor. */
1362
1363 *optimizedp = 0;
1364 *lvalp = lval_register;
1365 *addrp = 0;
1366 *realnump = regnum;
1367 if (valuep)
1368 frame_unwind_register (next_frame, (*realnump), valuep);
1369 }
1370
1371
1372 static const struct frame_unwind
1373 xtensa_frame_unwind =
1374 {
1375 NORMAL_FRAME,
1376 xtensa_frame_this_id,
1377 xtensa_frame_prev_register
1378 };
1379
1380 static const struct frame_unwind *
1381 xtensa_frame_sniffer (struct frame_info *next_frame)
1382 {
1383 return &xtensa_frame_unwind;
1384 }
1385
1386 static CORE_ADDR
1387 xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
1388 {
1389 struct xtensa_frame_cache *cache =
1390 xtensa_frame_cache (next_frame, this_cache);
1391
1392 return cache->base;
1393 }
1394
1395 static const struct frame_base
1396 xtensa_frame_base =
1397 {
1398 &xtensa_frame_unwind,
1399 xtensa_frame_base_address,
1400 xtensa_frame_base_address,
1401 xtensa_frame_base_address
1402 };
1403
1404
1405 static void
1406 xtensa_extract_return_value (struct type *type,
1407 struct regcache *regcache,
1408 void *dst)
1409 {
1410 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1411 bfd_byte *valbuf = dst;
1412 int len = TYPE_LENGTH (type);
1413 ULONGEST pc, wb;
1414 int callsize, areg;
1415 int offset = 0;
1416
1417 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1418
1419 gdb_assert(len > 0);
1420
1421 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1422 {
1423 /* First, we have to find the caller window in the register file. */
1424 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1425 callsize = extract_call_winsize (gdbarch, pc);
1426
1427 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1428 if (len > (callsize > 8 ? 8 : 16))
1429 internal_error (__FILE__, __LINE__,
1430 _("cannot extract return value of %d bytes long"), len);
1431
1432 /* Get the register offset of the return
1433 register (A2) in the caller window. */
1434 regcache_raw_read_unsigned
1435 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1436 areg = areg_number (gdbarch,
1437 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1438 }
1439 else
1440 {
1441 /* No windowing hardware - Call0 ABI. */
1442 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
1443 }
1444
1445 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1446
1447 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1448 offset = 4 - len;
1449
1450 for (; len > 0; len -= 4, areg++, valbuf += 4)
1451 {
1452 if (len < 4)
1453 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1454 else
1455 regcache_raw_read (regcache, areg, valbuf);
1456 }
1457 }
1458
1459
1460 static void
1461 xtensa_store_return_value (struct type *type,
1462 struct regcache *regcache,
1463 const void *dst)
1464 {
1465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1466 const bfd_byte *valbuf = dst;
1467 unsigned int areg;
1468 ULONGEST pc, wb;
1469 int callsize;
1470 int len = TYPE_LENGTH (type);
1471 int offset = 0;
1472
1473 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1474
1475 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1476 {
1477 regcache_raw_read_unsigned
1478 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1479 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1480 callsize = extract_call_winsize (gdbarch, pc);
1481
1482 if (len > (callsize > 8 ? 8 : 16))
1483 internal_error (__FILE__, __LINE__,
1484 _("unimplemented for this length: %d"),
1485 TYPE_LENGTH (type));
1486 areg = areg_number (gdbarch,
1487 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1488
1489 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1490 callsize, (int) wb);
1491 }
1492 else
1493 {
1494 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
1495 }
1496
1497 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1498 offset = 4 - len;
1499
1500 for (; len > 0; len -= 4, areg++, valbuf += 4)
1501 {
1502 if (len < 4)
1503 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1504 else
1505 regcache_raw_write (regcache, areg, valbuf);
1506 }
1507 }
1508
1509
1510 static enum return_value_convention
1511 xtensa_return_value (struct gdbarch *gdbarch,
1512 struct type *valtype,
1513 struct regcache *regcache,
1514 gdb_byte *readbuf,
1515 const gdb_byte *writebuf)
1516 {
1517 /* Structures up to 16 bytes are returned in registers. */
1518
1519 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1520 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1521 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1522 && TYPE_LENGTH (valtype) > 16);
1523
1524 if (struct_return)
1525 return RETURN_VALUE_STRUCT_CONVENTION;
1526
1527 DEBUGTRACE ("xtensa_return_value(...)\n");
1528
1529 if (writebuf != NULL)
1530 {
1531 xtensa_store_return_value (valtype, regcache, writebuf);
1532 }
1533
1534 if (readbuf != NULL)
1535 {
1536 gdb_assert (!struct_return);
1537 xtensa_extract_return_value (valtype, regcache, readbuf);
1538 }
1539 return RETURN_VALUE_REGISTER_CONVENTION;
1540 }
1541
1542
1543 /* DUMMY FRAME */
1544
1545 static CORE_ADDR
1546 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1547 struct value *function,
1548 struct regcache *regcache,
1549 CORE_ADDR bp_addr,
1550 int nargs,
1551 struct value **args,
1552 CORE_ADDR sp,
1553 int struct_return,
1554 CORE_ADDR struct_addr)
1555 {
1556 int i;
1557 int size, onstack_size;
1558 gdb_byte *buf = (gdb_byte *) alloca (16);
1559 CORE_ADDR ra, ps;
1560 struct argument_info
1561 {
1562 const bfd_byte *contents;
1563 int length;
1564 int onstack; /* onstack == 0 => in reg */
1565 int align; /* alignment */
1566 union
1567 {
1568 int offset; /* stack offset if on stack */
1569 int regno; /* regno if in register */
1570 } u;
1571 };
1572
1573 struct argument_info *arg_info =
1574 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1575
1576 CORE_ADDR osp = sp;
1577
1578 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1579
1580 if (xtensa_debug_level > 3)
1581 {
1582 int i;
1583 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1584 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1585 "struct_addr=0x%x\n",
1586 (int) sp, (int) struct_return, (int) struct_addr);
1587
1588 for (i = 0; i < nargs; i++)
1589 {
1590 struct value *arg = args[i];
1591 struct type *arg_type = check_typedef (value_type (arg));
1592 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1593 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1594 switch (TYPE_CODE (arg_type))
1595 {
1596 case TYPE_CODE_INT:
1597 fprintf_unfiltered (gdb_stdlog, "int");
1598 break;
1599 case TYPE_CODE_STRUCT:
1600 fprintf_unfiltered (gdb_stdlog, "struct");
1601 break;
1602 default:
1603 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1604 break;
1605 }
1606 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1607 (unsigned long) value_contents (arg));
1608 }
1609 }
1610
1611 /* First loop: collect information.
1612 Cast into type_long. (This shouldn't happen often for C because
1613 GDB already does this earlier.) It's possible that GDB could
1614 do it all the time but it's harmless to leave this code here. */
1615
1616 size = 0;
1617 onstack_size = 0;
1618 i = 0;
1619
1620 if (struct_return)
1621 size = REGISTER_SIZE;
1622
1623 for (i = 0; i < nargs; i++)
1624 {
1625 struct argument_info *info = &arg_info[i];
1626 struct value *arg = args[i];
1627 struct type *arg_type = check_typedef (value_type (arg));
1628
1629 switch (TYPE_CODE (arg_type))
1630 {
1631 case TYPE_CODE_INT:
1632 case TYPE_CODE_BOOL:
1633 case TYPE_CODE_CHAR:
1634 case TYPE_CODE_RANGE:
1635 case TYPE_CODE_ENUM:
1636
1637 /* Cast argument to long if necessary as the mask does it too. */
1638 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1639 {
1640 arg_type = builtin_type_long;
1641 arg = value_cast (arg_type, arg);
1642 }
1643 /* Aligment is equal to the type length for the basic types. */
1644 info->align = TYPE_LENGTH (arg_type);
1645 break;
1646
1647 case TYPE_CODE_FLT:
1648
1649 /* Align doubles correctly. */
1650 if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
1651 info->align = TYPE_LENGTH (builtin_type_double);
1652 else
1653 info->align = TYPE_LENGTH (builtin_type_long);
1654 break;
1655
1656 case TYPE_CODE_STRUCT:
1657 default:
1658 info->align = TYPE_LENGTH (builtin_type_long);
1659 break;
1660 }
1661 info->length = TYPE_LENGTH (arg_type);
1662 info->contents = value_contents (arg);
1663
1664 /* Align size and onstack_size. */
1665 size = (size + info->align - 1) & ~(info->align - 1);
1666 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1667
1668 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1669 {
1670 info->onstack = 1;
1671 info->u.offset = onstack_size;
1672 onstack_size += info->length;
1673 }
1674 else
1675 {
1676 info->onstack = 0;
1677 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1678 }
1679 size += info->length;
1680 }
1681
1682 /* Adjust the stack pointer and align it. */
1683 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1684
1685 /* Simulate MOVSP, if Windowed ABI. */
1686 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1687 && (sp != osp))
1688 {
1689 read_memory (osp - 16, buf, 16);
1690 write_memory (sp - 16, buf, 16);
1691 }
1692
1693 /* Second Loop: Load arguments. */
1694
1695 if (struct_return)
1696 {
1697 store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
1698 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1699 }
1700
1701 for (i = 0; i < nargs; i++)
1702 {
1703 struct argument_info *info = &arg_info[i];
1704
1705 if (info->onstack)
1706 {
1707 int n = info->length;
1708 CORE_ADDR offset = sp + info->u.offset;
1709
1710 /* Odd-sized structs are aligned to the lower side of a memory
1711 word in big-endian mode and require a shift. This only
1712 applies for structures smaller than one word. */
1713
1714 if (n < REGISTER_SIZE
1715 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1716 offset += (REGISTER_SIZE - n);
1717
1718 write_memory (offset, info->contents, info->length);
1719
1720 }
1721 else
1722 {
1723 int n = info->length;
1724 const bfd_byte *cp = info->contents;
1725 int r = info->u.regno;
1726
1727 /* Odd-sized structs are aligned to the lower side of registers in
1728 big-endian mode and require a shift. The odd-sized leftover will
1729 be at the end. Note that this is only true for structures smaller
1730 than REGISTER_SIZE; for larger odd-sized structures the excess
1731 will be left-aligned in the register on both endiannesses. */
1732
1733 if (n < REGISTER_SIZE
1734 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1735 {
1736 ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
1737 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1738
1739 store_unsigned_integer (buf, REGISTER_SIZE, v);
1740 regcache_cooked_write (regcache, r, buf);
1741
1742 cp += REGISTER_SIZE;
1743 n -= REGISTER_SIZE;
1744 r++;
1745 }
1746 else
1747 while (n > 0)
1748 {
1749 regcache_cooked_write (regcache, r, cp);
1750
1751 cp += REGISTER_SIZE;
1752 n -= REGISTER_SIZE;
1753 r++;
1754 }
1755 }
1756 }
1757
1758 /* Set the return address of dummy frame to the dummy address.
1759 The return address for the current function (in A0) is
1760 saved in the dummy frame, so we can savely overwrite A0 here. */
1761
1762 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1763 {
1764 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1765 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1766 ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
1767 regcache_cooked_write_unsigned
1768 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1769 regcache_cooked_write_unsigned (regcache,
1770 gdbarch_ps_regnum (gdbarch),
1771 ps | 0x00010000);
1772 }
1773 else
1774 {
1775 /* Simulate CALL0: write RA into A0 register. */
1776 regcache_cooked_write_unsigned
1777 (regcache, gdbarch_tdep (gdbarch)->a0_base + 0, bp_addr);
1778 }
1779
1780 /* Set new stack pointer and return it. */
1781 regcache_cooked_write_unsigned (regcache,
1782 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1783 /* Make dummy frame ID unique by adding a constant. */
1784 return sp + SP_ALIGNMENT;
1785 }
1786
1787
1788 /* Return a breakpoint for the current location of PC. We always use
1789 the density version if we have density instructions (regardless of the
1790 current instruction at PC), and use regular instructions otherwise. */
1791
1792 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1793 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1794 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1795 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1796
1797 static const unsigned char *
1798 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1799 int *lenptr)
1800 {
1801 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1802 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1803 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1804 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1805
1806 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1807
1808 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1809 {
1810 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1811 {
1812 *lenptr = sizeof (density_big_breakpoint);
1813 return density_big_breakpoint;
1814 }
1815 else
1816 {
1817 *lenptr = sizeof (density_little_breakpoint);
1818 return density_little_breakpoint;
1819 }
1820 }
1821 else
1822 {
1823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1824 {
1825 *lenptr = sizeof (big_breakpoint);
1826 return big_breakpoint;
1827 }
1828 else
1829 {
1830 *lenptr = sizeof (little_breakpoint);
1831 return little_breakpoint;
1832 }
1833 }
1834 }
1835
1836 /* Call0 ABI support routines. */
1837
1838 /* Call0 opcode class. Opcodes are preclassified according to what they
1839 mean for Call0 prologue analysis, and their number of significant operands.
1840 The purpose of this is to simplify prologue analysis by separating
1841 instruction decoding (libisa) from the semantics of prologue analysis. */
1842
1843 typedef enum {
1844 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1845 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1846 c0opc_flow, /* Flow control insn. */
1847 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1848 c0opc_break, /* Debugger software breakpoints. */
1849 c0opc_add, /* Adding two registers. */
1850 c0opc_addi, /* Adding a register and an immediate. */
1851 c0opc_sub, /* Subtracting a register from a register. */
1852 c0opc_mov, /* Moving a register to a register. */
1853 c0opc_movi, /* Moving an immediate to a register. */
1854 c0opc_l32r, /* Loading a literal. */
1855 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1856 c0opc_NrOf /* Number of opcode classifications. */
1857 } xtensa_insn_kind;
1858
1859
1860 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1861
1862 static xtensa_insn_kind
1863 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1864 {
1865 const char *opcname;
1866 xtensa_insn_kind opclass = c0opc_uninteresting;
1867
1868 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1869
1870 /* Get opcode name and handle special classifications. */
1871
1872 opcname = xtensa_opcode_name (isa, opc);
1873
1874 if (opcname == NULL
1875 || strcasecmp (opcname, "ill") == 0
1876 || strcasecmp (opcname, "ill.n") == 0)
1877 opclass = c0opc_illegal;
1878 else if (strcasecmp (opcname, "break") == 0
1879 || strcasecmp (opcname, "break.n") == 0)
1880 opclass = c0opc_break;
1881 else if (strcasecmp (opcname, "entry") == 0)
1882 opclass = c0opc_entry;
1883 else if (xtensa_opcode_is_branch (isa, opc) > 0
1884 || xtensa_opcode_is_jump (isa, opc) > 0
1885 || xtensa_opcode_is_loop (isa, opc) > 0
1886 || xtensa_opcode_is_call (isa, opc) > 0
1887 || strcasecmp (opcname, "simcall") == 0
1888 || strcasecmp (opcname, "syscall") == 0)
1889 opclass = c0opc_flow;
1890
1891 /* Also, classify specific opcodes that need to be tracked. */
1892 else if (strcasecmp (opcname, "add") == 0
1893 || strcasecmp (opcname, "add.n") == 0)
1894 opclass = c0opc_add;
1895 else if (strcasecmp (opcname, "addi") == 0
1896 || strcasecmp (opcname, "addi.n") == 0
1897 || strcasecmp (opcname, "addmi") == 0)
1898 opclass = c0opc_addi;
1899 else if (strcasecmp (opcname, "sub") == 0)
1900 opclass = c0opc_sub;
1901 else if (strcasecmp (opcname, "mov.n") == 0
1902 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1903 opclass = c0opc_mov;
1904 else if (strcasecmp (opcname, "movi") == 0
1905 || strcasecmp (opcname, "movi.n") == 0)
1906 opclass = c0opc_movi;
1907 else if (strcasecmp (opcname, "l32r") == 0)
1908 opclass = c0opc_l32r;
1909 else if (strcasecmp (opcname, "s32i") == 0
1910 || strcasecmp (opcname, "s32i.n") == 0)
1911 opclass = c0opc_s32i;
1912
1913 return opclass;
1914 }
1915
1916 /* Tracks register movement/mutation for a given operation, which may
1917 be within a bundle. Updates the destination register tracking info
1918 accordingly. The pc is needed only for pc-relative load instructions
1919 (eg. l32r). The SP register number is needed to identify stores to
1920 the stack frame. */
1921
1922 static void
1923 call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1924 xtensa_insn_kind opclass, int nods, unsigned odv[],
1925 CORE_ADDR pc, int spreg)
1926 {
1927 unsigned litbase, litaddr, litval;
1928
1929 switch (opclass)
1930 {
1931 case c0opc_addi:
1932 /* 3 operands: dst, src, imm. */
1933 gdb_assert (nods == 3);
1934 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1935 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1936 break;
1937 case c0opc_add:
1938 /* 3 operands: dst, src1, src2. */
1939 gdb_assert (nods == 3);
1940 if (src[odv[1]].fr_reg == C0_CONST)
1941 {
1942 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
1943 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
1944 }
1945 else if (src[odv[2]].fr_reg == C0_CONST)
1946 {
1947 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1948 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
1949 }
1950 else dst[odv[0]].fr_reg = C0_INEXP;
1951 break;
1952 case c0opc_sub:
1953 /* 3 operands: dst, src1, src2. */
1954 gdb_assert (nods == 3);
1955 if (src[odv[2]].fr_reg == C0_CONST)
1956 {
1957 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1958 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
1959 }
1960 else dst[odv[0]].fr_reg = C0_INEXP;
1961 break;
1962 case c0opc_mov:
1963 /* 2 operands: dst, src [, src]. */
1964 gdb_assert (nods == 2);
1965 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1966 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
1967 break;
1968 case c0opc_movi:
1969 /* 2 operands: dst, imm. */
1970 gdb_assert (nods == 2);
1971 dst[odv[0]].fr_reg = C0_CONST;
1972 dst[odv[0]].fr_ofs = odv[1];
1973 break;
1974 case c0opc_l32r:
1975 /* 2 operands: dst, literal offset. */
1976 gdb_assert (nods == 2);
1977 /* litbase = xtensa_get_litbase (pc); can be also used. */
1978 litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
1979 ? 0 : xtensa_read_register
1980 (gdbarch_tdep (current_gdbarch)->litbase_regnum);
1981 litaddr = litbase & 1
1982 ? (litbase & ~1) + (signed)odv[1]
1983 : (pc + 3 + (signed)odv[1]) & ~3;
1984 litval = read_memory_integer(litaddr, 4);
1985 dst[odv[0]].fr_reg = C0_CONST;
1986 dst[odv[0]].fr_ofs = litval;
1987 break;
1988 case c0opc_s32i:
1989 /* 3 operands: value, base, offset. */
1990 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
1991 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
1992 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
1993 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
1994 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
1995 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
1996 {
1997 /* ISA encoding guarantees alignment. But, check it anyway. */
1998 gdb_assert ((odv[2] & 3) == 0);
1999 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2000 }
2001 break;
2002 default:
2003 gdb_assert (0);
2004 }
2005 }
2006
2007 /* Analyze prologue of the function at start address to determine if it uses
2008 the Call0 ABI, and if so track register moves and linear modifications
2009 in the prologue up to the PC or just beyond the prologue, whichever is first.
2010 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2011 The prologue may overlap non-prologue instructions but is guaranteed to end
2012 by the first flow-control instruction (jump, branch, call or return).
2013 Since an optimized function may move information around and change the
2014 stack frame arbitrarily during the prologue, the information is guaranteed
2015 valid only at the point in the function indicated by the PC.
2016 May be used to skip the prologue or identify the ABI, w/o tracking.
2017
2018 Returns: Address of first instruction after prologue, or PC (whichever
2019 is first), or 0, if decoding failed (in libisa).
2020 Input args:
2021 start Start address of function/prologue.
2022 pc Program counter to stop at. Use 0 to continue to end of prologue.
2023 If 0, avoids infinite run-on in corrupt code memory by bounding
2024 the scan to the end of the function if that can be determined.
2025 nregs Number of general registers to track (size of rt[] array).
2026 InOut args:
2027 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2028 If NULL, registers are not tracked.
2029 Output args:
2030 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2031 (more accurately, non-zero until 'entry' insn is encountered).
2032
2033 Note that these may produce useful results even if decoding fails
2034 because they begin with default assumptions that analysis may change. */
2035
2036 static CORE_ADDR
2037 call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
2038 int nregs, xtensa_c0reg_t rt[], int *call0)
2039 {
2040 CORE_ADDR ia; /* Current insn address in prologue. */
2041 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2042 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2043 #define BSZ 32 /* Instruction buffer size. */
2044 char ibuf[BSZ]; /* Instruction buffer for decoding prologue. */
2045 xtensa_isa isa; /* libisa ISA handle. */
2046 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2047 xtensa_format ifmt; /* libisa instruction format. */
2048 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2049 xtensa_opcode opc; /* Opcode in current slot. */
2050 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2051 int nods; /* Opcode number of operands. */
2052 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2053 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2054 int j; /* General loop counter. */
2055 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2056 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2057 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2058
2059 struct symtab_and_line prologue_sal;
2060
2061 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2062 (int)start, (int)pc);
2063
2064 /* Try to limit the scan to the end of the function if a non-zero pc
2065 arg was not supplied to avoid probing beyond the end of valid memory.
2066 If memory is full of garbage that classifies as c0opc_uninteresting.
2067 If this fails (eg. if no symbols) pc ends up 0 as it was.
2068 Intialize the Call0 frame and register tracking info.
2069 Assume it's Call0 until an 'entry' instruction is encountered.
2070 Assume we may be in the prologue until we hit a flow control instr. */
2071
2072 rtmp = NULL;
2073 body_pc = INT_MAX;
2074 end_pc = 0;
2075
2076 /* Find out, if we have an information about the prologue from DWARF. */
2077 prologue_sal = find_pc_line (start, 0);
2078 if (prologue_sal.line != 0) /* Found debug info. */
2079 body_pc = prologue_sal.end;
2080
2081 /* If we are going to analyze the prologue in general without knowing about
2082 the current PC, make the best assumtion for the end of the prologue. */
2083 if (pc == 0)
2084 {
2085 find_pc_partial_function (start, 0, NULL, &end_pc);
2086 body_pc = min (end_pc, body_pc);
2087 }
2088 else
2089 body_pc = min (pc, body_pc);
2090
2091 if (call0 != NULL)
2092 *call0 = 1;
2093
2094 if (rt != NULL)
2095 {
2096 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2097 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2098 }
2099 else nregs = 0;
2100
2101 isa = xtensa_default_isa;
2102 gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
2103 ins = xtensa_insnbuf_alloc (isa);
2104 slot = xtensa_insnbuf_alloc (isa);
2105
2106 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2107 {
2108 /* (Re)fill instruction buffer from memory if necessary, but do not
2109 read memory beyond PC to be sure we stay within text section
2110 (this protection only works if a non-zero pc is supplied). */
2111
2112 if (ia + xtensa_isa_maxlength (isa) > bt)
2113 {
2114 ba = ia;
2115 bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
2116 read_memory (ba, ibuf, bt - ba);
2117 }
2118
2119 /* Decode format information. */
2120
2121 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2122 ifmt = xtensa_format_decode (isa, ins);
2123 if (ifmt == XTENSA_UNDEFINED)
2124 {
2125 fail = 1;
2126 goto done;
2127 }
2128 ilen = xtensa_format_length (isa, ifmt);
2129 if (ilen == XTENSA_UNDEFINED)
2130 {
2131 fail = 1;
2132 goto done;
2133 }
2134 islots = xtensa_format_num_slots (isa, ifmt);
2135 if (islots == XTENSA_UNDEFINED)
2136 {
2137 fail = 1;
2138 goto done;
2139 }
2140
2141 /* Analyze a bundle or a single instruction, using a snapshot of
2142 the register tracking info as input for the entire bundle so that
2143 register changes do not take effect within this bundle. */
2144
2145 for (j = 0; j < nregs; ++j)
2146 rtmp[j] = rt[j];
2147
2148 for (is = 0; is < islots; ++is)
2149 {
2150 /* Decode a slot and classify the opcode. */
2151
2152 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2153 if (fail)
2154 goto done;
2155
2156 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2157 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2158 (unsigned)ia, opc);
2159 if (opc == XTENSA_UNDEFINED)
2160 opclass = c0opc_illegal;
2161 else
2162 opclass = call0_classify_opcode (isa, opc);
2163
2164 /* Decide whether to track this opcode, ignore it, or bail out. */
2165
2166 switch (opclass)
2167 {
2168 case c0opc_illegal:
2169 case c0opc_break:
2170 fail = 1;
2171 goto done;
2172
2173 case c0opc_uninteresting:
2174 continue;
2175
2176 case c0opc_flow:
2177 goto done;
2178
2179 case c0opc_entry:
2180 if (call0 != NULL)
2181 *call0 = 0;
2182 ia += ilen; /* Skip over 'entry' insn. */
2183 goto done;
2184
2185 default:
2186 if (call0 != NULL)
2187 *call0 = 1;
2188 }
2189
2190 /* Only expected opcodes should get this far. */
2191 if (rt == NULL)
2192 continue;
2193
2194 /* Extract and decode the operands. */
2195 nods = xtensa_opcode_num_operands (isa, opc);
2196 if (nods == XTENSA_UNDEFINED)
2197 {
2198 fail = 1;
2199 goto done;
2200 }
2201
2202 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2203 {
2204 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2205 is, slot, &odv[j]);
2206 if (fail)
2207 goto done;
2208
2209 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2210 if (fail)
2211 goto done;
2212 }
2213
2214 /* Check operands to verify use of 'mov' assembler macro. */
2215 if (opclass == c0opc_mov && nods == 3)
2216 {
2217 if (odv[2] == odv[1])
2218 nods = 2;
2219 else
2220 {
2221 opclass = c0opc_uninteresting;
2222 continue;
2223 }
2224 }
2225
2226 /* Track register movement and modification for this operation. */
2227 call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
2228 }
2229 }
2230 done:
2231 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2232 (unsigned)ia, fail ? "failed" : "succeeded");
2233 xtensa_insnbuf_free(isa, slot);
2234 xtensa_insnbuf_free(isa, ins);
2235 return fail ? 0 : ia;
2236 }
2237
2238 /* Initialize frame cache for the current frame. The "next_frame" is the next
2239 one relative to current frame. "cache" is the pointer to the data structure
2240 we have to initialize. "pc" is curretnt PC. */
2241
2242 static void
2243 call0_frame_cache (struct frame_info *next_frame,
2244 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2245 {
2246 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2247 CORE_ADDR start_pc; /* The beginning of the function. */
2248 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2249 CORE_ADDR sp, fp, ra;
2250 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2251
2252 /* Find the beginning of the prologue of the function containing the PC
2253 and analyze it up to the PC or the end of the prologue. */
2254
2255 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2256 {
2257 body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
2258 &cache->c0.c0_rt[0],
2259 &cache->call0);
2260 }
2261
2262 sp = frame_unwind_register_unsigned
2263 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2264 fp = sp; /* Assume FP == SP until proven otherwise. */
2265
2266 /* Get the frame information and FP (if used) at the current PC.
2267 If PC is in the prologue, the prologue analysis is more reliable
2268 than DWARF info. We don't not know for sure if PC is in the prologue,
2269 but we know no calls have yet taken place, so we can almost
2270 certainly rely on the prologue analysis. */
2271
2272 if (body_pc <= pc)
2273 {
2274 /* Prologue analysis was successful up to the PC.
2275 It includes the cases when PC == START_PC. */
2276 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2277 /* c0_hasfp == true means there is a frame pointer because
2278 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2279 was derived from SP. Otherwise, it would be C0_FP. */
2280 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2281 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2282 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2283 }
2284 else /* No data from the prologue analysis. */
2285 {
2286 c0_hasfp = 0;
2287 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2288 c0_frmsz = 0;
2289 start_pc = pc;
2290 }
2291
2292 prev_sp = fp + c0_frmsz;
2293
2294 /* Frame size from debug info or prologue tracking does not account for
2295 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2296 if (c0_hasfp)
2297 {
2298 fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
2299
2300 /* Recalculate previous SP. */
2301 prev_sp = fp + c0_frmsz;
2302 /* Update the stack frame size. */
2303 c0_frmsz += fp - sp;
2304 }
2305
2306 /* Get the return address (RA) from the stack if saved,
2307 or try to get it from a register. */
2308
2309 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2310 if (to_stk != C0_NOSTK)
2311 ra = (CORE_ADDR)
2312 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
2313
2314 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2315 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2316 {
2317 /* Special case for terminating backtrace at a function that wants to
2318 be seen as the outermost. Such a function will clear it's RA (A0)
2319 register to 0 in the prologue instead of saving its original value. */
2320 ra = 0;
2321 }
2322 else
2323 {
2324 /* RA was copied to another register or (before any function call) may
2325 still be in the original RA register. This is not always reliable:
2326 even in a leaf function, register tracking stops after prologue, and
2327 even in prologue, non-prologue instructions (not tracked) may overwrite
2328 RA or any register it was copied to. If likely in prologue or before
2329 any call, use retracking info and hope for the best (compiler should
2330 have saved RA in stack if not in a leaf function). If not in prologue,
2331 too bad. */
2332
2333 int i;
2334 for (i = 0;
2335 (i < C0_NREGS) &&
2336 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2337 ++i);
2338 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2339 i = C0_RA;
2340 if (i < C0_NREGS) /* Read from the next_frame. */
2341 {
2342 ra = frame_unwind_register_unsigned
2343 (next_frame,
2344 gdbarch_tdep (gdbarch)->a0_base + 0
2345 + cache->c0.c0_rt[i].fr_reg);
2346 }
2347 else ra = 0;
2348 }
2349
2350 cache->pc = start_pc;
2351 cache->ra = ra;
2352 /* RA == 0 marks the outermost frame. Do not go past it. */
2353 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2354 cache->c0.fp_regnum = fp_regnum;
2355 cache->c0.c0_frmsz = c0_frmsz;
2356 cache->c0.c0_hasfp = c0_hasfp;
2357 cache->c0.c0_fp = fp;
2358 }
2359
2360
2361 /* Skip function prologue.
2362
2363 Return the pc of the first instruction after prologue. GDB calls this to
2364 find the address of the first line of the function or (if there is no line
2365 number information) to skip the prologue for planting breakpoints on
2366 function entries. Use debug info (if present) or prologue analysis to skip
2367 the prologue to achieve reliable debugging behavior. For windowed ABI,
2368 only the 'entry' instruction is skipped. It is not strictly necessary to
2369 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2370 backtrace at any point in the prologue, however certain potential hazards
2371 are avoided and a more "normal" debugging experience is ensured by
2372 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2373 For example, if we don't skip the prologue:
2374 - Some args may not yet have been saved to the stack where the debug
2375 info expects to find them (true anyway when only 'entry' is skipped);
2376 - Software breakpoints ('break' instrs) may not have been unplanted
2377 when the prologue analysis is done on initializing the frame cache,
2378 and breaks in the prologue will throw off the analysis.
2379
2380 If we have debug info ( line-number info, in particular ) we simply skip
2381 the code associated with the first function line effectively skipping
2382 the prologue code. It works even in cases like
2383
2384 int main()
2385 { int local_var = 1;
2386 ....
2387 }
2388
2389 because, for this source code, both Xtensa compilers will generate two
2390 separate entries ( with the same line number ) in dwarf line-number
2391 section to make sure there is a boundary between the prologue code and
2392 the rest of the function.
2393
2394 If there is no debug info, we need to analyze the code. */
2395
2396 /* #define DONT_SKIP_PROLOGUE */
2397
2398 CORE_ADDR
2399 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2400 {
2401 struct symtab_and_line prologue_sal;
2402 CORE_ADDR body_pc;
2403
2404 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2405
2406 #if DONT_SKIP_PROLOGUE
2407 return start_pc;
2408 #endif
2409
2410 /* Try to find first body line from debug info. */
2411
2412 prologue_sal = find_pc_line (start_pc, 0);
2413 if (prologue_sal.line != 0) /* Found debug info. */
2414 {
2415 /* In Call0, it is possible to have a function with only one instruction
2416 ('ret') resulting from a 1-line optimized function that does nothing.
2417 In that case, prologue_sal.end may actually point to the start of the
2418 next function in the text section, causing a breakpoint to be set at
2419 the wrong place. Check if the end address is in a different function,
2420 and if so return the start PC. We know we have symbol info. */
2421
2422 CORE_ADDR end_func;
2423
2424 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2425 if (end_func != start_pc)
2426 return start_pc;
2427
2428 return prologue_sal.end;
2429 }
2430
2431 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2432 body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
2433 return body_pc != 0 ? body_pc : start_pc;
2434 }
2435
2436 /* Verify the current configuration. */
2437 static void
2438 xtensa_verify_config (struct gdbarch *gdbarch)
2439 {
2440 struct ui_file *log;
2441 struct cleanup *cleanups;
2442 struct gdbarch_tdep *tdep;
2443 long dummy;
2444 char *buf;
2445
2446 tdep = gdbarch_tdep (gdbarch);
2447 log = mem_fileopen ();
2448 cleanups = make_cleanup_ui_file_delete (log);
2449
2450 /* Verify that we got a reasonable number of AREGS. */
2451 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2452 fprintf_unfiltered (log, _("\
2453 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2454 tdep->num_aregs);
2455
2456 /* Verify that certain registers exist. */
2457
2458 if (tdep->pc_regnum == -1)
2459 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2460 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2461 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2462
2463 if (tdep->isa_use_windowed_registers)
2464 {
2465 if (tdep->wb_regnum == -1)
2466 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2467 if (tdep->ws_regnum == -1)
2468 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2469 if (tdep->ar_base == -1)
2470 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2471 }
2472
2473 if (tdep->a0_base == -1)
2474 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2475
2476 buf = ui_file_xstrdup (log, &dummy);
2477 make_cleanup (xfree, buf);
2478 if (strlen (buf) > 0)
2479 internal_error (__FILE__, __LINE__,
2480 _("the following are invalid: %s"), buf);
2481 do_cleanups (cleanups);
2482 }
2483
2484 /* Module "constructor" function. */
2485
2486 static struct gdbarch *
2487 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2488 {
2489 struct gdbarch_tdep *tdep;
2490 struct gdbarch *gdbarch;
2491 struct xtensa_abi_handler *abi_handler;
2492
2493 DEBUGTRACE ("gdbarch_init()\n");
2494
2495 /* We have to set the byte order before we call gdbarch_alloc. */
2496 info.byte_order = xtensa_config_byte_order (&info);
2497
2498 tdep = xtensa_config_tdep (&info);
2499 gdbarch = gdbarch_alloc (&info, tdep);
2500
2501 /* Verify our configuration. */
2502 xtensa_verify_config (gdbarch);
2503
2504 /* Pseudo-Register read/write. */
2505 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2506 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2507
2508 /* Set target information. */
2509 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2510 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2511 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2512 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2513 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2514
2515 /* Renumber registers for known formats (stab, dwarf, and dwarf2). */
2516 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2517 set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2518 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2519
2520 /* We provide our own function to get register information. */
2521 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2522 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2523
2524 /* To call functions from GDB using dummy frame */
2525 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2526
2527 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2528
2529 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2530
2531 /* Advance PC across any prologue instructions to reach "real" code. */
2532 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2533
2534 /* Stack grows downward. */
2535 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2536
2537 /* Set breakpoints. */
2538 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2539
2540 /* After breakpoint instruction or illegal instruction, pc still
2541 points at break instruction, so don't decrement. */
2542 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2543
2544 /* We don't skip args. */
2545 set_gdbarch_frame_args_skip (gdbarch, 0);
2546
2547 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2548
2549 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2550
2551 set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
2552
2553 /* Frame handling. */
2554 frame_base_set_default (gdbarch, &xtensa_frame_base);
2555 frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
2556
2557 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2558
2559 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2560
2561 xtensa_add_reggroups (gdbarch);
2562 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2563
2564 set_gdbarch_regset_from_core_section (gdbarch,
2565 xtensa_regset_from_core_section);
2566
2567 return gdbarch;
2568 }
2569
2570 static void
2571 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2572 {
2573 error (_("xtensa_dump_tdep(): not implemented"));
2574 }
2575
2576 void
2577 _initialize_xtensa_tdep (void)
2578 {
2579 struct cmd_list_element *c;
2580
2581 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2582 xtensa_init_reggroups ();
2583
2584 add_setshow_zinteger_cmd ("xtensa",
2585 class_maintenance,
2586 &xtensa_debug_level, _("\
2587 Set Xtensa debugging."), _("\
2588 Show Xtensa debugging."), _("\
2589 When non-zero, Xtensa-specific debugging is enabled. \
2590 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2591 NULL,
2592 NULL,
2593 &setdebuglist, &showdebuglist);
2594 }
This page took 0.125314 seconds and 3 git commands to generate.