[bfd][arm] Don't assert on suspicious build attributes in input file
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 #include <algorithm>
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 static int
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 {
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131 }
132
133 /* Convert a live A-register number to the corresponding AR-register
134 number. */
135 static int
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int arreg;
140
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
144
145 return arreg + tdep->ar_base;
146 }
147
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 static int
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 {
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
161 }
162
163 /* Read Xtensa register directly from the hardware. */
164 static unsigned long
165 xtensa_read_register (int regnum)
166 {
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171 }
172
173 /* Write Xtensa register directly to the hardware. */
174 static void
175 xtensa_write_register (int regnum, ULONGEST value)
176 {
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178 }
179
180 /* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191 static int
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 int winsize = 4;
196 int insn;
197 gdb_byte buf[4];
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
213 if (byte_order == BFD_ENDIAN_LITTLE)
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
222 }
223 return winsize;
224 }
225
226
227 /* REGISTER INFORMATION */
228
229 /* Find register by name. */
230 static int
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
232 {
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243 }
244
245 /* Returns the name of a register. */
246 static const char *
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 {
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256 }
257
258 /* Return the type of a register. Create a new type, if necessary. */
259
260 static struct type *
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
271
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
275
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
279 {
280 xtensa_register_t* reg = &tdep->regmap[regnum];
281
282 /* Set ctype for this register (only the first time). */
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
289 /* We always use the memory representation,
290 even if the register width is smaller. */
291 switch (size)
292 {
293 case 1:
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
295 break;
296
297 case 2:
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
299 break;
300
301 case 4:
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
303 break;
304
305 case 8:
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
307 break;
308
309 case 16:
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
311 break;
312
313 default:
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
320 char *name = xstrprintf ("int%d", size * 8);
321
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326 tp->virtual_type
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339 }
340
341
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346 static int
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
348 {
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
353
354 for (i = 0;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
356 i++)
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
358 return i;
359
360 return -1;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 ULONGEST value;
563 enum register_status status;
564
565 status = regcache_raw_read_unsigned (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 &value);
568 if (status != REG_VALID)
569 return status;
570 regnum = arreg_number (gdbarch, regnum, value);
571 }
572
573 /* We can always read non-pseudo registers. */
574 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
575 return regcache_raw_read (regcache, regnum, buffer);
576
577 /* We have to find out how to deal with priveleged registers.
578 Let's treat them as pseudo-registers, but we cannot read/write them. */
579
580 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
581 || regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
587 return REG_VALID;
588 }
589 /* Pseudo registers. */
590 else if (regnum >= 0
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
593 {
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
597
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
605 return REG_VALID;
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
616 return REG_VALID;
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
630
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
633 }
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637 }
638
639
640 /* Write pseudo registers. */
641
642 static void
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
652
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
657 {
658 ULONGEST value;
659 regcache_raw_read_unsigned (regcache,
660 gdbarch_tdep (gdbarch)->wb_regnum, &value);
661 regnum = arreg_number (gdbarch, regnum, value);
662 }
663
664 /* We can always write 'core' registers.
665 Note: We might have converted Ax->ARy. */
666 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
667 regcache_raw_write (regcache, regnum, buffer);
668
669 /* We have to find out how to deal with priveleged registers.
670 Let's treat them as pseudo-registers, but we cannot read/write them. */
671
672 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
673 {
674 return;
675 }
676 /* Pseudo registers. */
677 else if (regnum >= 0
678 && regnum < gdbarch_num_regs (gdbarch)
679 + gdbarch_num_pseudo_regs (gdbarch))
680 {
681 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
682 xtensa_register_type_t type = reg->type;
683 int flags = gdbarch_tdep (gdbarch)->target_flags;
684
685 /* On most targets, we cannot write registers
686 of type "Unknown" or "Unmapped". */
687 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
688 {
689 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
690 {
691 warning (_("cannot write register %s"),
692 xtensa_register_name (gdbarch, regnum));
693 return;
694 }
695 }
696
697 /* Some targets cannot read TIE register files. */
698 else if (type == xtRegisterTypeTieRegfile)
699 {
700 /* Use 'store' to get register? */
701 if (flags & xtTargetFlagsUseFetchStore)
702 {
703 warning (_("cannot write register"));
704 return;
705 }
706
707 /* On some targets (esp. simulators), we can always write
708 the register. */
709 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
710 {
711 warning (_("cannot write register"));
712 return;
713 }
714 }
715
716 /* We can always write mapped registers. */
717 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
718 {
719 xtensa_register_write_masked (regcache, reg, buffer);
720 return;
721 }
722
723 /* Assume that we can write the register. */
724 regcache_raw_write (regcache, regnum, buffer);
725 }
726 else
727 internal_error (__FILE__, __LINE__,
728 _("invalid register number %d"), regnum);
729 }
730
731 static struct reggroup *xtensa_ar_reggroup;
732 static struct reggroup *xtensa_user_reggroup;
733 static struct reggroup *xtensa_vectra_reggroup;
734 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
735
736 static void
737 xtensa_init_reggroups (void)
738 {
739 int i;
740 char cpname[] = "cp0";
741
742 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
743 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
744 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
745
746 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
747 {
748 cpname[2] = '0' + i;
749 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
750 }
751 }
752
753 static void
754 xtensa_add_reggroups (struct gdbarch *gdbarch)
755 {
756 int i;
757
758 /* Predefined groups. */
759 reggroup_add (gdbarch, all_reggroup);
760 reggroup_add (gdbarch, save_reggroup);
761 reggroup_add (gdbarch, restore_reggroup);
762 reggroup_add (gdbarch, system_reggroup);
763 reggroup_add (gdbarch, vector_reggroup);
764 reggroup_add (gdbarch, general_reggroup);
765 reggroup_add (gdbarch, float_reggroup);
766
767 /* Xtensa-specific groups. */
768 reggroup_add (gdbarch, xtensa_ar_reggroup);
769 reggroup_add (gdbarch, xtensa_user_reggroup);
770 reggroup_add (gdbarch, xtensa_vectra_reggroup);
771
772 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
773 reggroup_add (gdbarch, xtensa_cp[i]);
774 }
775
776 static int
777 xtensa_coprocessor_register_group (struct reggroup *group)
778 {
779 int i;
780
781 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
782 if (group == xtensa_cp[i])
783 return i;
784
785 return -1;
786 }
787
788 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
789 | XTENSA_REGISTER_FLAGS_WRITABLE \
790 | XTENSA_REGISTER_FLAGS_VOLATILE)
791
792 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
793 | XTENSA_REGISTER_FLAGS_WRITABLE)
794
795 static int
796 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
797 int regnum,
798 struct reggroup *group)
799 {
800 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
801 xtensa_register_type_t type = reg->type;
802 xtensa_register_group_t rg = reg->group;
803 int cp_number;
804
805 if (group == save_reggroup)
806 /* Every single register should be included into the list of registers
807 to be watched for changes while using -data-list-changed-registers. */
808 return 1;
809
810 /* First, skip registers that are not visible to this target
811 (unknown and unmapped registers when not using ISS). */
812
813 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
814 return 0;
815 if (group == all_reggroup)
816 return 1;
817 if (group == xtensa_ar_reggroup)
818 return rg & xtRegisterGroupAddrReg;
819 if (group == xtensa_user_reggroup)
820 return rg & xtRegisterGroupUser;
821 if (group == float_reggroup)
822 return rg & xtRegisterGroupFloat;
823 if (group == general_reggroup)
824 return rg & xtRegisterGroupGeneral;
825 if (group == system_reggroup)
826 return rg & xtRegisterGroupState;
827 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
828 return rg & xtRegisterGroupVectra;
829 if (group == restore_reggroup)
830 return (regnum < gdbarch_num_regs (gdbarch)
831 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
832 cp_number = xtensa_coprocessor_register_group (group);
833 if (cp_number >= 0)
834 return rg & (xtRegisterGroupCP0 << cp_number);
835 else
836 return 1;
837 }
838
839
840 /* Supply register REGNUM from the buffer specified by GREGS and LEN
841 in the general-purpose register set REGSET to register cache
842 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
843
844 static void
845 xtensa_supply_gregset (const struct regset *regset,
846 struct regcache *rc,
847 int regnum,
848 const void *gregs,
849 size_t len)
850 {
851 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
852 struct gdbarch *gdbarch = get_regcache_arch (rc);
853 int i;
854
855 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
856
857 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
859 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
861 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
863 (char *) &regs->windowbase);
864 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
865 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
866 (char *) &regs->windowstart);
867 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
869 (char *) &regs->lbeg);
870 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
872 (char *) &regs->lend);
873 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
874 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
875 (char *) &regs->lcount);
876 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
877 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
878 (char *) &regs->sar);
879 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
880 && regnum < gdbarch_tdep (gdbarch)->ar_base
881 + gdbarch_tdep (gdbarch)->num_aregs)
882 regcache_raw_supply (rc, regnum,
883 (char *) &regs->ar[regnum - gdbarch_tdep
884 (gdbarch)->ar_base]);
885 else if (regnum == -1)
886 {
887 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
888 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
889 (char *) &regs->ar[i]);
890 }
891 }
892
893
894 /* Xtensa register set. */
895
896 static struct regset
897 xtensa_gregset =
898 {
899 NULL,
900 xtensa_supply_gregset
901 };
902
903
904 /* Iterate over supported core file register note sections. */
905
906 static void
907 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
908 iterate_over_regset_sections_cb *cb,
909 void *cb_data,
910 const struct regcache *regcache)
911 {
912 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
913
914 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
915 NULL, cb_data);
916 }
917
918
919 /* Handling frames. */
920
921 /* Number of registers to save in case of Windowed ABI. */
922 #define XTENSA_NUM_SAVED_AREGS 12
923
924 /* Frame cache part for Windowed ABI. */
925 typedef struct xtensa_windowed_frame_cache
926 {
927 int wb; /* WINDOWBASE of the previous frame. */
928 int callsize; /* Call size of this frame. */
929 int ws; /* WINDOWSTART of the previous frame. It keeps track of
930 life windows only. If there is no bit set for the
931 window, that means it had been already spilled
932 because of window overflow. */
933
934 /* Addresses of spilled A-registers.
935 AREGS[i] == -1, if corresponding AR is alive. */
936 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
937 } xtensa_windowed_frame_cache_t;
938
939 /* Call0 ABI Definitions. */
940
941 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
942 analysis. */
943 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
944 #define C0_SP 1 /* Register used as SP. */
945 #define C0_FP 15 /* Register used as FP. */
946 #define C0_RA 0 /* Register used as return address. */
947 #define C0_ARGS 2 /* Register used as first arg/retval. */
948 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
949
950 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
951 A-register where the current content of the reg came from (in terms
952 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
953 mean that the orignal content of the register was saved to the stack.
954 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
955 know where SP will end up until the entire prologue has been analyzed. */
956
957 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
958 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
959 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
960
961 extern xtensa_isa xtensa_default_isa;
962
963 typedef struct xtensa_c0reg
964 {
965 int fr_reg; /* original register from which register content
966 is derived, or C0_CONST, or C0_INEXP. */
967 int fr_ofs; /* constant offset from reg, or immediate value. */
968 int to_stk; /* offset from original SP to register (4-byte aligned),
969 or C0_NOSTK if register has not been saved. */
970 } xtensa_c0reg_t;
971
972 /* Frame cache part for Call0 ABI. */
973 typedef struct xtensa_call0_frame_cache
974 {
975 int c0_frmsz; /* Stack frame size. */
976 int c0_hasfp; /* Current frame uses frame pointer. */
977 int fp_regnum; /* A-register used as FP. */
978 int c0_fp; /* Actual value of frame pointer. */
979 int c0_fpalign; /* Dinamic adjustment for the stack
980 pointer. It's an AND mask. Zero,
981 if alignment was not adjusted. */
982 int c0_old_sp; /* In case of dynamic adjustment, it is
983 a register holding unaligned sp.
984 C0_INEXP, when undefined. */
985 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
986 stack offset. C0_NOSTK otherwise. */
987
988 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
989 } xtensa_call0_frame_cache_t;
990
991 typedef struct xtensa_frame_cache
992 {
993 CORE_ADDR base; /* Stack pointer of this frame. */
994 CORE_ADDR pc; /* PC of this frame at the function entry point. */
995 CORE_ADDR ra; /* The raw return address of this frame. */
996 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
997 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
998 int call0; /* It's a call0 framework (else windowed). */
999 union
1000 {
1001 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1002 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1003 };
1004 } xtensa_frame_cache_t;
1005
1006
1007 static struct xtensa_frame_cache *
1008 xtensa_alloc_frame_cache (int windowed)
1009 {
1010 xtensa_frame_cache_t *cache;
1011 int i;
1012
1013 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1014
1015 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1016
1017 cache->base = 0;
1018 cache->pc = 0;
1019 cache->ra = 0;
1020 cache->ps = 0;
1021 cache->prev_sp = 0;
1022 cache->call0 = !windowed;
1023 if (cache->call0)
1024 {
1025 cache->c0.c0_frmsz = -1;
1026 cache->c0.c0_hasfp = 0;
1027 cache->c0.fp_regnum = -1;
1028 cache->c0.c0_fp = -1;
1029 cache->c0.c0_fpalign = 0;
1030 cache->c0.c0_old_sp = C0_INEXP;
1031 cache->c0.c0_sp_ofs = C0_NOSTK;
1032
1033 for (i = 0; i < C0_NREGS; i++)
1034 {
1035 cache->c0.c0_rt[i].fr_reg = i;
1036 cache->c0.c0_rt[i].fr_ofs = 0;
1037 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1038 }
1039 }
1040 else
1041 {
1042 cache->wd.wb = 0;
1043 cache->wd.ws = 0;
1044 cache->wd.callsize = -1;
1045
1046 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1047 cache->wd.aregs[i] = -1;
1048 }
1049 return cache;
1050 }
1051
1052
1053 static CORE_ADDR
1054 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1055 {
1056 return address & ~15;
1057 }
1058
1059
1060 static CORE_ADDR
1061 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1062 {
1063 gdb_byte buf[8];
1064 CORE_ADDR pc;
1065
1066 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1067 host_address_to_string (next_frame));
1068
1069 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1070 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1071
1072 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1073
1074 return pc;
1075 }
1076
1077
1078 static struct frame_id
1079 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1080 {
1081 CORE_ADDR pc, fp;
1082
1083 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1084
1085 pc = get_frame_pc (this_frame);
1086 fp = get_frame_register_unsigned
1087 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1088
1089 /* Make dummy frame ID unique by adding a constant. */
1090 return frame_id_build (fp + SP_ALIGNMENT, pc);
1091 }
1092
1093 /* Returns true, if instruction to execute next is unique to Xtensa Window
1094 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1095
1096 static int
1097 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 {
1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1100 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1101 unsigned int code;
1102
1103 if (byte_order == BFD_ENDIAN_BIG)
1104 {
1105 /* Check, if this is L32E or S32E. */
1106 code = insn & 0xf000ff00;
1107 if ((code == 0x00009000) || (code == 0x00009400))
1108 return 1;
1109 /* Check, if this is RFWU or RFWO. */
1110 code = insn & 0xffffff00;
1111 return ((code == 0x00430000) || (code == 0x00530000));
1112 }
1113 else
1114 {
1115 /* Check, if this is L32E or S32E. */
1116 code = insn & 0x00ff000f;
1117 if ((code == 0x090000) || (code == 0x490000))
1118 return 1;
1119 /* Check, if this is RFWU or RFWO. */
1120 code = insn & 0x00ffffff;
1121 return ((code == 0x00003400) || (code == 0x00003500));
1122 }
1123 }
1124
1125 /* Returns the best guess about which register is a frame pointer
1126 for the function containing CURRENT_PC. */
1127
1128 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1129 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1130
1131 static unsigned int
1132 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1133 {
1134 #define RETURN_FP goto done
1135
1136 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1137 CORE_ADDR start_addr;
1138 xtensa_isa isa;
1139 xtensa_insnbuf ins, slot;
1140 gdb_byte ibuf[XTENSA_ISA_BSZ];
1141 CORE_ADDR ia, bt, ba;
1142 xtensa_format ifmt;
1143 int ilen, islots, is;
1144 xtensa_opcode opc;
1145 const char *opcname;
1146
1147 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1148 if (start_addr == 0)
1149 return fp_regnum;
1150
1151 isa = xtensa_default_isa;
1152 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1153 ins = xtensa_insnbuf_alloc (isa);
1154 slot = xtensa_insnbuf_alloc (isa);
1155 ba = 0;
1156
1157 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1158 {
1159 if (ia + xtensa_isa_maxlength (isa) > bt)
1160 {
1161 ba = ia;
1162 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1163 ? ba + XTENSA_ISA_BSZ : current_pc;
1164 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1165 RETURN_FP;
1166 }
1167
1168 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1169 ifmt = xtensa_format_decode (isa, ins);
1170 if (ifmt == XTENSA_UNDEFINED)
1171 RETURN_FP;
1172 ilen = xtensa_format_length (isa, ifmt);
1173 if (ilen == XTENSA_UNDEFINED)
1174 RETURN_FP;
1175 islots = xtensa_format_num_slots (isa, ifmt);
1176 if (islots == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178
1179 for (is = 0; is < islots; ++is)
1180 {
1181 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1182 RETURN_FP;
1183
1184 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1185 if (opc == XTENSA_UNDEFINED)
1186 RETURN_FP;
1187
1188 opcname = xtensa_opcode_name (isa, opc);
1189
1190 if (strcasecmp (opcname, "mov.n") == 0
1191 || strcasecmp (opcname, "or") == 0)
1192 {
1193 unsigned int register_operand;
1194
1195 /* Possible candidate for setting frame pointer
1196 from A1. This is what we are looking for. */
1197
1198 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1199 is, slot, &register_operand) != 0)
1200 RETURN_FP;
1201 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1202 RETURN_FP;
1203 if (register_operand == 1) /* Mov{.n} FP A1. */
1204 {
1205 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1206 &register_operand) != 0)
1207 RETURN_FP;
1208 if (xtensa_operand_decode (isa, opc, 0,
1209 &register_operand) != 0)
1210 RETURN_FP;
1211
1212 fp_regnum
1213 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1214 RETURN_FP;
1215 }
1216 }
1217
1218 if (
1219 /* We have problems decoding the memory. */
1220 opcname == NULL
1221 || strcasecmp (opcname, "ill") == 0
1222 || strcasecmp (opcname, "ill.n") == 0
1223 /* Hit planted breakpoint. */
1224 || strcasecmp (opcname, "break") == 0
1225 || strcasecmp (opcname, "break.n") == 0
1226 /* Flow control instructions finish prologue. */
1227 || xtensa_opcode_is_branch (isa, opc) > 0
1228 || xtensa_opcode_is_jump (isa, opc) > 0
1229 || xtensa_opcode_is_loop (isa, opc) > 0
1230 || xtensa_opcode_is_call (isa, opc) > 0
1231 || strcasecmp (opcname, "simcall") == 0
1232 || strcasecmp (opcname, "syscall") == 0)
1233 /* Can not continue analysis. */
1234 RETURN_FP;
1235 }
1236 }
1237 done:
1238 xtensa_insnbuf_free(isa, slot);
1239 xtensa_insnbuf_free(isa, ins);
1240 return fp_regnum;
1241 }
1242
1243 /* The key values to identify the frame using "cache" are
1244
1245 cache->base = SP (or best guess about FP) of this frame;
1246 cache->pc = entry-PC (entry point of the frame function);
1247 cache->prev_sp = SP of the previous frame. */
1248
1249 static void
1250 call0_frame_cache (struct frame_info *this_frame,
1251 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1252
1253 static void
1254 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1255 xtensa_frame_cache_t *cache,
1256 CORE_ADDR pc);
1257
1258 static struct xtensa_frame_cache *
1259 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1260 {
1261 xtensa_frame_cache_t *cache;
1262 CORE_ADDR ra, wb, ws, pc, sp, ps;
1263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1265 unsigned int fp_regnum;
1266 int windowed, ps_regnum;
1267
1268 if (*this_cache)
1269 return (struct xtensa_frame_cache *) *this_cache;
1270
1271 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1272 ps_regnum = gdbarch_ps_regnum (gdbarch);
1273 ps = (ps_regnum >= 0
1274 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1275
1276 windowed = windowing_enabled (gdbarch, ps);
1277
1278 /* Get pristine xtensa-frame. */
1279 cache = xtensa_alloc_frame_cache (windowed);
1280 *this_cache = cache;
1281
1282 if (windowed)
1283 {
1284 LONGEST op1;
1285
1286 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1287 wb = get_frame_register_unsigned (this_frame,
1288 gdbarch_tdep (gdbarch)->wb_regnum);
1289 ws = get_frame_register_unsigned (this_frame,
1290 gdbarch_tdep (gdbarch)->ws_regnum);
1291
1292 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1293 && XTENSA_IS_ENTRY (gdbarch, op1))
1294 {
1295 int callinc = CALLINC (ps);
1296 ra = get_frame_register_unsigned
1297 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1298
1299 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1300 cache->wd.callsize = 0;
1301 cache->wd.wb = wb;
1302 cache->wd.ws = ws;
1303 cache->prev_sp = get_frame_register_unsigned
1304 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1305
1306 /* This only can be the outermost frame since we are
1307 just about to execute ENTRY. SP hasn't been set yet.
1308 We can assume any frame size, because it does not
1309 matter, and, let's fake frame base in cache. */
1310 cache->base = cache->prev_sp - 16;
1311
1312 cache->pc = pc;
1313 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1314 cache->ps = (ps & ~PS_CALLINC_MASK)
1315 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1316
1317 return cache;
1318 }
1319 else
1320 {
1321 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1322 ra = get_frame_register_unsigned (this_frame,
1323 gdbarch_tdep (gdbarch)->a0_base);
1324 cache->wd.callsize = WINSIZE (ra);
1325 cache->wd.wb = (wb - cache->wd.callsize / 4)
1326 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1327 cache->wd.ws = ws & ~(1 << wb);
1328
1329 cache->pc = get_frame_func (this_frame);
1330 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1331 cache->ps = (ps & ~PS_CALLINC_MASK)
1332 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1333 }
1334
1335 if (cache->wd.ws == 0)
1336 {
1337 int i;
1338
1339 /* Set A0...A3. */
1340 sp = get_frame_register_unsigned
1341 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1342
1343 for (i = 0; i < 4; i++, sp += 4)
1344 {
1345 cache->wd.aregs[i] = sp;
1346 }
1347
1348 if (cache->wd.callsize > 4)
1349 {
1350 /* Set A4...A7/A11. */
1351 /* Get the SP of the frame previous to the previous one.
1352 To achieve this, we have to dereference SP twice. */
1353 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1354 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1355 sp -= cache->wd.callsize * 4;
1356
1357 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1358 {
1359 cache->wd.aregs[i] = sp;
1360 }
1361 }
1362 }
1363
1364 if ((cache->prev_sp == 0) && ( ra != 0 ))
1365 /* If RA is equal to 0 this frame is an outermost frame. Leave
1366 cache->prev_sp unchanged marking the boundary of the frame stack. */
1367 {
1368 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1369 {
1370 /* Register window overflow already happened.
1371 We can read caller's SP from the proper spill loction. */
1372 sp = get_frame_register_unsigned
1373 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1374 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1375 }
1376 else
1377 {
1378 /* Read caller's frame SP directly from the previous window. */
1379 int regnum = arreg_number
1380 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1381 cache->wd.wb);
1382
1383 cache->prev_sp = xtensa_read_register (regnum);
1384 }
1385 }
1386 }
1387 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1388 {
1389 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1390
1391 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1392 /* Everything was set already, including cache->base. */
1393 return cache;
1394 }
1395 else /* Call0 framework. */
1396 {
1397 call0_frame_cache (this_frame, cache, pc);
1398 fp_regnum = cache->c0.fp_regnum;
1399 }
1400
1401 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1402
1403 return cache;
1404 }
1405
1406 static int xtensa_session_once_reported = 1;
1407
1408 /* Report a problem with prologue analysis while doing backtracing.
1409 But, do it only once to avoid annoyng repeated messages. */
1410
1411 static void
1412 warning_once (void)
1413 {
1414 if (xtensa_session_once_reported == 0)
1415 warning (_("\
1416 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1417 This message will not be repeated in this session.\n"));
1418
1419 xtensa_session_once_reported = 1;
1420 }
1421
1422
1423 static void
1424 xtensa_frame_this_id (struct frame_info *this_frame,
1425 void **this_cache,
1426 struct frame_id *this_id)
1427 {
1428 struct xtensa_frame_cache *cache =
1429 xtensa_frame_cache (this_frame, this_cache);
1430
1431 if (cache->prev_sp == 0)
1432 return;
1433
1434 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1435 }
1436
1437 static struct value *
1438 xtensa_frame_prev_register (struct frame_info *this_frame,
1439 void **this_cache,
1440 int regnum)
1441 {
1442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1443 struct xtensa_frame_cache *cache;
1444 ULONGEST saved_reg = 0;
1445 int done = 1;
1446
1447 if (*this_cache == NULL)
1448 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1449 cache = (struct xtensa_frame_cache *) *this_cache;
1450
1451 if (regnum ==gdbarch_pc_regnum (gdbarch))
1452 saved_reg = cache->ra;
1453 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1454 saved_reg = cache->prev_sp;
1455 else if (!cache->call0)
1456 {
1457 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1458 saved_reg = cache->wd.ws;
1459 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1460 saved_reg = cache->wd.wb;
1461 else if (regnum == gdbarch_ps_regnum (gdbarch))
1462 saved_reg = cache->ps;
1463 else
1464 done = 0;
1465 }
1466 else
1467 done = 0;
1468
1469 if (done)
1470 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1471
1472 if (!cache->call0) /* Windowed ABI. */
1473 {
1474 /* Convert A-register numbers to AR-register numbers,
1475 if we deal with A-register. */
1476 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1477 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1478 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1479
1480 /* Check, if we deal with AR-register saved on stack. */
1481 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1482 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1483 + gdbarch_tdep (gdbarch)->num_aregs))
1484 {
1485 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1486
1487 if (areg >= 0
1488 && areg < XTENSA_NUM_SAVED_AREGS
1489 && cache->wd.aregs[areg] != -1)
1490 return frame_unwind_got_memory (this_frame, regnum,
1491 cache->wd.aregs[areg]);
1492 }
1493 }
1494 else /* Call0 ABI. */
1495 {
1496 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1497 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1498 + C0_NREGS))
1499 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1500
1501 if (reg < C0_NREGS)
1502 {
1503 CORE_ADDR spe;
1504 int stkofs;
1505
1506 /* If register was saved in the prologue, retrieve it. */
1507 stkofs = cache->c0.c0_rt[reg].to_stk;
1508 if (stkofs != C0_NOSTK)
1509 {
1510 /* Determine SP on entry based on FP. */
1511 spe = cache->c0.c0_fp
1512 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1513
1514 return frame_unwind_got_memory (this_frame, regnum,
1515 spe + stkofs);
1516 }
1517 }
1518 }
1519
1520 /* All other registers have been either saved to
1521 the stack or are still alive in the processor. */
1522
1523 return frame_unwind_got_register (this_frame, regnum, regnum);
1524 }
1525
1526
1527 static const struct frame_unwind
1528 xtensa_unwind =
1529 {
1530 NORMAL_FRAME,
1531 default_frame_unwind_stop_reason,
1532 xtensa_frame_this_id,
1533 xtensa_frame_prev_register,
1534 NULL,
1535 default_frame_sniffer
1536 };
1537
1538 static CORE_ADDR
1539 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1540 {
1541 struct xtensa_frame_cache *cache =
1542 xtensa_frame_cache (this_frame, this_cache);
1543
1544 return cache->base;
1545 }
1546
1547 static const struct frame_base
1548 xtensa_frame_base =
1549 {
1550 &xtensa_unwind,
1551 xtensa_frame_base_address,
1552 xtensa_frame_base_address,
1553 xtensa_frame_base_address
1554 };
1555
1556
1557 static void
1558 xtensa_extract_return_value (struct type *type,
1559 struct regcache *regcache,
1560 void *dst)
1561 {
1562 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1563 bfd_byte *valbuf = (bfd_byte *) dst;
1564 int len = TYPE_LENGTH (type);
1565 ULONGEST pc, wb;
1566 int callsize, areg;
1567 int offset = 0;
1568
1569 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1570
1571 gdb_assert(len > 0);
1572
1573 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1574 {
1575 /* First, we have to find the caller window in the register file. */
1576 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1577 callsize = extract_call_winsize (gdbarch, pc);
1578
1579 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1580 if (len > (callsize > 8 ? 8 : 16))
1581 internal_error (__FILE__, __LINE__,
1582 _("cannot extract return value of %d bytes long"),
1583 len);
1584
1585 /* Get the register offset of the return
1586 register (A2) in the caller window. */
1587 regcache_raw_read_unsigned
1588 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1589 areg = arreg_number (gdbarch,
1590 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1591 }
1592 else
1593 {
1594 /* No windowing hardware - Call0 ABI. */
1595 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1596 }
1597
1598 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1599
1600 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1601 offset = 4 - len;
1602
1603 for (; len > 0; len -= 4, areg++, valbuf += 4)
1604 {
1605 if (len < 4)
1606 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1607 else
1608 regcache_raw_read (regcache, areg, valbuf);
1609 }
1610 }
1611
1612
1613 static void
1614 xtensa_store_return_value (struct type *type,
1615 struct regcache *regcache,
1616 const void *dst)
1617 {
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1619 const bfd_byte *valbuf = (const bfd_byte *) dst;
1620 unsigned int areg;
1621 ULONGEST pc, wb;
1622 int callsize;
1623 int len = TYPE_LENGTH (type);
1624 int offset = 0;
1625
1626 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1627
1628 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1629 {
1630 regcache_raw_read_unsigned
1631 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1632 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1633 callsize = extract_call_winsize (gdbarch, pc);
1634
1635 if (len > (callsize > 8 ? 8 : 16))
1636 internal_error (__FILE__, __LINE__,
1637 _("unimplemented for this length: %d"),
1638 TYPE_LENGTH (type));
1639 areg = arreg_number (gdbarch,
1640 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1641
1642 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1643 callsize, (int) wb);
1644 }
1645 else
1646 {
1647 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1648 }
1649
1650 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1651 offset = 4 - len;
1652
1653 for (; len > 0; len -= 4, areg++, valbuf += 4)
1654 {
1655 if (len < 4)
1656 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1657 else
1658 regcache_raw_write (regcache, areg, valbuf);
1659 }
1660 }
1661
1662
1663 static enum return_value_convention
1664 xtensa_return_value (struct gdbarch *gdbarch,
1665 struct value *function,
1666 struct type *valtype,
1667 struct regcache *regcache,
1668 gdb_byte *readbuf,
1669 const gdb_byte *writebuf)
1670 {
1671 /* Structures up to 16 bytes are returned in registers. */
1672
1673 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1674 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1675 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1676 && TYPE_LENGTH (valtype) > 16);
1677
1678 if (struct_return)
1679 return RETURN_VALUE_STRUCT_CONVENTION;
1680
1681 DEBUGTRACE ("xtensa_return_value(...)\n");
1682
1683 if (writebuf != NULL)
1684 {
1685 xtensa_store_return_value (valtype, regcache, writebuf);
1686 }
1687
1688 if (readbuf != NULL)
1689 {
1690 gdb_assert (!struct_return);
1691 xtensa_extract_return_value (valtype, regcache, readbuf);
1692 }
1693 return RETURN_VALUE_REGISTER_CONVENTION;
1694 }
1695
1696
1697 /* DUMMY FRAME */
1698
1699 static CORE_ADDR
1700 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1701 struct value *function,
1702 struct regcache *regcache,
1703 CORE_ADDR bp_addr,
1704 int nargs,
1705 struct value **args,
1706 CORE_ADDR sp,
1707 int struct_return,
1708 CORE_ADDR struct_addr)
1709 {
1710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1711 int i;
1712 int size, onstack_size;
1713 gdb_byte *buf = (gdb_byte *) alloca (16);
1714 CORE_ADDR ra, ps;
1715 struct argument_info
1716 {
1717 const bfd_byte *contents;
1718 int length;
1719 int onstack; /* onstack == 0 => in reg */
1720 int align; /* alignment */
1721 union
1722 {
1723 int offset; /* stack offset if on stack. */
1724 int regno; /* regno if in register. */
1725 } u;
1726 };
1727
1728 struct argument_info *arg_info =
1729 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1730
1731 CORE_ADDR osp = sp;
1732
1733 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1734
1735 if (xtensa_debug_level > 3)
1736 {
1737 int i;
1738 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1739 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1740 "struct_addr=0x%x\n",
1741 (int) sp, (int) struct_return, (int) struct_addr);
1742
1743 for (i = 0; i < nargs; i++)
1744 {
1745 struct value *arg = args[i];
1746 struct type *arg_type = check_typedef (value_type (arg));
1747 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1748 host_address_to_string (arg),
1749 TYPE_LENGTH (arg_type));
1750 switch (TYPE_CODE (arg_type))
1751 {
1752 case TYPE_CODE_INT:
1753 fprintf_unfiltered (gdb_stdlog, "int");
1754 break;
1755 case TYPE_CODE_STRUCT:
1756 fprintf_unfiltered (gdb_stdlog, "struct");
1757 break;
1758 default:
1759 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1760 break;
1761 }
1762 fprintf_unfiltered (gdb_stdlog, " %s\n",
1763 host_address_to_string (value_contents (arg)));
1764 }
1765 }
1766
1767 /* First loop: collect information.
1768 Cast into type_long. (This shouldn't happen often for C because
1769 GDB already does this earlier.) It's possible that GDB could
1770 do it all the time but it's harmless to leave this code here. */
1771
1772 size = 0;
1773 onstack_size = 0;
1774 i = 0;
1775
1776 if (struct_return)
1777 size = REGISTER_SIZE;
1778
1779 for (i = 0; i < nargs; i++)
1780 {
1781 struct argument_info *info = &arg_info[i];
1782 struct value *arg = args[i];
1783 struct type *arg_type = check_typedef (value_type (arg));
1784
1785 switch (TYPE_CODE (arg_type))
1786 {
1787 case TYPE_CODE_INT:
1788 case TYPE_CODE_BOOL:
1789 case TYPE_CODE_CHAR:
1790 case TYPE_CODE_RANGE:
1791 case TYPE_CODE_ENUM:
1792
1793 /* Cast argument to long if necessary as the mask does it too. */
1794 if (TYPE_LENGTH (arg_type)
1795 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1796 {
1797 arg_type = builtin_type (gdbarch)->builtin_long;
1798 arg = value_cast (arg_type, arg);
1799 }
1800 /* Aligment is equal to the type length for the basic types. */
1801 info->align = TYPE_LENGTH (arg_type);
1802 break;
1803
1804 case TYPE_CODE_FLT:
1805
1806 /* Align doubles correctly. */
1807 if (TYPE_LENGTH (arg_type)
1808 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1810 else
1811 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1812 break;
1813
1814 case TYPE_CODE_STRUCT:
1815 default:
1816 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1817 break;
1818 }
1819 info->length = TYPE_LENGTH (arg_type);
1820 info->contents = value_contents (arg);
1821
1822 /* Align size and onstack_size. */
1823 size = (size + info->align - 1) & ~(info->align - 1);
1824 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1825
1826 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1827 {
1828 info->onstack = 1;
1829 info->u.offset = onstack_size;
1830 onstack_size += info->length;
1831 }
1832 else
1833 {
1834 info->onstack = 0;
1835 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1836 }
1837 size += info->length;
1838 }
1839
1840 /* Adjust the stack pointer and align it. */
1841 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1842
1843 /* Simulate MOVSP, if Windowed ABI. */
1844 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1845 && (sp != osp))
1846 {
1847 read_memory (osp - 16, buf, 16);
1848 write_memory (sp - 16, buf, 16);
1849 }
1850
1851 /* Second Loop: Load arguments. */
1852
1853 if (struct_return)
1854 {
1855 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1856 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1857 }
1858
1859 for (i = 0; i < nargs; i++)
1860 {
1861 struct argument_info *info = &arg_info[i];
1862
1863 if (info->onstack)
1864 {
1865 int n = info->length;
1866 CORE_ADDR offset = sp + info->u.offset;
1867
1868 /* Odd-sized structs are aligned to the lower side of a memory
1869 word in big-endian mode and require a shift. This only
1870 applies for structures smaller than one word. */
1871
1872 if (n < REGISTER_SIZE
1873 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1874 offset += (REGISTER_SIZE - n);
1875
1876 write_memory (offset, info->contents, info->length);
1877
1878 }
1879 else
1880 {
1881 int n = info->length;
1882 const bfd_byte *cp = info->contents;
1883 int r = info->u.regno;
1884
1885 /* Odd-sized structs are aligned to the lower side of registers in
1886 big-endian mode and require a shift. The odd-sized leftover will
1887 be at the end. Note that this is only true for structures smaller
1888 than REGISTER_SIZE; for larger odd-sized structures the excess
1889 will be left-aligned in the register on both endiannesses. */
1890
1891 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1892 {
1893 ULONGEST v;
1894 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1895 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1896
1897 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1898 regcache_cooked_write (regcache, r, buf);
1899
1900 cp += REGISTER_SIZE;
1901 n -= REGISTER_SIZE;
1902 r++;
1903 }
1904 else
1905 while (n > 0)
1906 {
1907 regcache_cooked_write (regcache, r, cp);
1908
1909 cp += REGISTER_SIZE;
1910 n -= REGISTER_SIZE;
1911 r++;
1912 }
1913 }
1914 }
1915
1916 /* Set the return address of dummy frame to the dummy address.
1917 The return address for the current function (in A0) is
1918 saved in the dummy frame, so we can savely overwrite A0 here. */
1919
1920 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1921 {
1922 ULONGEST val;
1923
1924 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1925 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1926 ps = (unsigned long) val & ~0x00030000;
1927 regcache_cooked_write_unsigned
1928 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1929 regcache_cooked_write_unsigned (regcache,
1930 gdbarch_ps_regnum (gdbarch),
1931 ps | 0x00010000);
1932
1933 /* All the registers have been saved. After executing
1934 dummy call, they all will be restored. So it's safe
1935 to modify WINDOWSTART register to make it look like there
1936 is only one register window corresponding to WINDOWEBASE. */
1937
1938 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1939 regcache_cooked_write_unsigned
1940 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1941 1 << extract_unsigned_integer (buf, 4, byte_order));
1942 }
1943 else
1944 {
1945 /* Simulate CALL0: write RA into A0 register. */
1946 regcache_cooked_write_unsigned
1947 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1948 }
1949
1950 /* Set new stack pointer and return it. */
1951 regcache_cooked_write_unsigned (regcache,
1952 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1953 /* Make dummy frame ID unique by adding a constant. */
1954 return sp + SP_ALIGNMENT;
1955 }
1956
1957 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1958
1959 static int
1960 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1961 {
1962 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1963 return 2;
1964 else
1965 return 4;
1966 }
1967
1968 /* Return a breakpoint for the current location of PC. We always use
1969 the density version if we have density instructions (regardless of the
1970 current instruction at PC), and use regular instructions otherwise. */
1971
1972 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1973 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1974 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1975 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1976
1977 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1978
1979 static const gdb_byte *
1980 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1981 {
1982 *size = kind;
1983
1984 if (kind == 4)
1985 {
1986 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1987 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1988
1989 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1990 return big_breakpoint;
1991 else
1992 return little_breakpoint;
1993 }
1994 else
1995 {
1996 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1997 static unsigned char density_little_breakpoint[]
1998 = DENSITY_LITTLE_BREAKPOINT;
1999
2000 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2001 return density_big_breakpoint;
2002 else
2003 return density_little_breakpoint;
2004 }
2005 }
2006
2007 /* Call0 ABI support routines. */
2008
2009 /* Return true, if PC points to "ret" or "ret.n". */
2010
2011 static int
2012 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2013 {
2014 #define RETURN_RET goto done
2015 xtensa_isa isa;
2016 xtensa_insnbuf ins, slot;
2017 gdb_byte ibuf[XTENSA_ISA_BSZ];
2018 CORE_ADDR ia, bt, ba;
2019 xtensa_format ifmt;
2020 int ilen, islots, is;
2021 xtensa_opcode opc;
2022 const char *opcname;
2023 int found_ret = 0;
2024
2025 isa = xtensa_default_isa;
2026 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2027 ins = xtensa_insnbuf_alloc (isa);
2028 slot = xtensa_insnbuf_alloc (isa);
2029 ba = 0;
2030
2031 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2032 {
2033 if (ia + xtensa_isa_maxlength (isa) > bt)
2034 {
2035 ba = ia;
2036 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2037 ? ba + XTENSA_ISA_BSZ : finish_pc;
2038 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2039 RETURN_RET;
2040 }
2041
2042 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2043 ifmt = xtensa_format_decode (isa, ins);
2044 if (ifmt == XTENSA_UNDEFINED)
2045 RETURN_RET;
2046 ilen = xtensa_format_length (isa, ifmt);
2047 if (ilen == XTENSA_UNDEFINED)
2048 RETURN_RET;
2049 islots = xtensa_format_num_slots (isa, ifmt);
2050 if (islots == XTENSA_UNDEFINED)
2051 RETURN_RET;
2052
2053 for (is = 0; is < islots; ++is)
2054 {
2055 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2056 RETURN_RET;
2057
2058 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2059 if (opc == XTENSA_UNDEFINED)
2060 RETURN_RET;
2061
2062 opcname = xtensa_opcode_name (isa, opc);
2063
2064 if ((strcasecmp (opcname, "ret.n") == 0)
2065 || (strcasecmp (opcname, "ret") == 0))
2066 {
2067 found_ret = 1;
2068 RETURN_RET;
2069 }
2070 }
2071 }
2072 done:
2073 xtensa_insnbuf_free(isa, slot);
2074 xtensa_insnbuf_free(isa, ins);
2075 return found_ret;
2076 }
2077
2078 /* Call0 opcode class. Opcodes are preclassified according to what they
2079 mean for Call0 prologue analysis, and their number of significant operands.
2080 The purpose of this is to simplify prologue analysis by separating
2081 instruction decoding (libisa) from the semantics of prologue analysis. */
2082
2083 typedef enum
2084 {
2085 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2086 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2087 c0opc_flow, /* Flow control insn. */
2088 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2089 c0opc_break, /* Debugger software breakpoints. */
2090 c0opc_add, /* Adding two registers. */
2091 c0opc_addi, /* Adding a register and an immediate. */
2092 c0opc_and, /* Bitwise "and"-ing two registers. */
2093 c0opc_sub, /* Subtracting a register from a register. */
2094 c0opc_mov, /* Moving a register to a register. */
2095 c0opc_movi, /* Moving an immediate to a register. */
2096 c0opc_l32r, /* Loading a literal. */
2097 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2098 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2099 c0opc_l32e, /* L32E instruction. */
2100 c0opc_s32e, /* S32E instruction. */
2101 c0opc_rfwo, /* RFWO instruction. */
2102 c0opc_rfwu, /* RFWU instruction. */
2103 c0opc_NrOf /* Number of opcode classifications. */
2104 } xtensa_insn_kind;
2105
2106 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2107
2108 static int
2109 rwx_special_register (const char *opcname)
2110 {
2111 char ch = *opcname++;
2112
2113 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2114 return 0;
2115 if (*opcname++ != 's')
2116 return 0;
2117 if (*opcname++ != 'r')
2118 return 0;
2119 if (*opcname++ != '.')
2120 return 0;
2121
2122 return 1;
2123 }
2124
2125 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2126
2127 static xtensa_insn_kind
2128 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2129 {
2130 const char *opcname;
2131 xtensa_insn_kind opclass = c0opc_uninteresting;
2132
2133 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2134
2135 /* Get opcode name and handle special classifications. */
2136
2137 opcname = xtensa_opcode_name (isa, opc);
2138
2139 if (opcname == NULL
2140 || strcasecmp (opcname, "ill") == 0
2141 || strcasecmp (opcname, "ill.n") == 0)
2142 opclass = c0opc_illegal;
2143 else if (strcasecmp (opcname, "break") == 0
2144 || strcasecmp (opcname, "break.n") == 0)
2145 opclass = c0opc_break;
2146 else if (strcasecmp (opcname, "entry") == 0)
2147 opclass = c0opc_entry;
2148 else if (strcasecmp (opcname, "rfwo") == 0)
2149 opclass = c0opc_rfwo;
2150 else if (strcasecmp (opcname, "rfwu") == 0)
2151 opclass = c0opc_rfwu;
2152 else if (xtensa_opcode_is_branch (isa, opc) > 0
2153 || xtensa_opcode_is_jump (isa, opc) > 0
2154 || xtensa_opcode_is_loop (isa, opc) > 0
2155 || xtensa_opcode_is_call (isa, opc) > 0
2156 || strcasecmp (opcname, "simcall") == 0
2157 || strcasecmp (opcname, "syscall") == 0)
2158 opclass = c0opc_flow;
2159
2160 /* Also, classify specific opcodes that need to be tracked. */
2161 else if (strcasecmp (opcname, "add") == 0
2162 || strcasecmp (opcname, "add.n") == 0)
2163 opclass = c0opc_add;
2164 else if (strcasecmp (opcname, "and") == 0)
2165 opclass = c0opc_and;
2166 else if (strcasecmp (opcname, "addi") == 0
2167 || strcasecmp (opcname, "addi.n") == 0
2168 || strcasecmp (opcname, "addmi") == 0)
2169 opclass = c0opc_addi;
2170 else if (strcasecmp (opcname, "sub") == 0)
2171 opclass = c0opc_sub;
2172 else if (strcasecmp (opcname, "mov.n") == 0
2173 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2174 opclass = c0opc_mov;
2175 else if (strcasecmp (opcname, "movi") == 0
2176 || strcasecmp (opcname, "movi.n") == 0)
2177 opclass = c0opc_movi;
2178 else if (strcasecmp (opcname, "l32r") == 0)
2179 opclass = c0opc_l32r;
2180 else if (strcasecmp (opcname, "s32i") == 0
2181 || strcasecmp (opcname, "s32i.n") == 0)
2182 opclass = c0opc_s32i;
2183 else if (strcasecmp (opcname, "l32e") == 0)
2184 opclass = c0opc_l32e;
2185 else if (strcasecmp (opcname, "s32e") == 0)
2186 opclass = c0opc_s32e;
2187 else if (rwx_special_register (opcname))
2188 opclass = c0opc_rwxsr;
2189
2190 return opclass;
2191 }
2192
2193 /* Tracks register movement/mutation for a given operation, which may
2194 be within a bundle. Updates the destination register tracking info
2195 accordingly. The pc is needed only for pc-relative load instructions
2196 (eg. l32r). The SP register number is needed to identify stores to
2197 the stack frame. Returns 0, if analysis was succesfull, non-zero
2198 otherwise. */
2199
2200 static int
2201 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2202 xtensa_insn_kind opclass, int nods, unsigned odv[],
2203 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2204 {
2205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2206 unsigned litbase, litaddr, litval;
2207
2208 switch (opclass)
2209 {
2210 case c0opc_addi:
2211 /* 3 operands: dst, src, imm. */
2212 gdb_assert (nods == 3);
2213 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2214 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2215 break;
2216 case c0opc_add:
2217 /* 3 operands: dst, src1, src2. */
2218 gdb_assert (nods == 3);
2219 if (src[odv[1]].fr_reg == C0_CONST)
2220 {
2221 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2222 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2223 }
2224 else if (src[odv[2]].fr_reg == C0_CONST)
2225 {
2226 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2227 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2228 }
2229 else dst[odv[0]].fr_reg = C0_INEXP;
2230 break;
2231 case c0opc_and:
2232 /* 3 operands: dst, src1, src2. */
2233 gdb_assert (nods == 3);
2234 if (cache->c0.c0_fpalign == 0)
2235 {
2236 /* Handle dynamic stack alignment. */
2237 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2238 {
2239 if (src[odv[2]].fr_reg == C0_CONST)
2240 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2241 break;
2242 }
2243 else if ((src[odv[0]].fr_reg == spreg)
2244 && (src[odv[2]].fr_reg == spreg))
2245 {
2246 if (src[odv[1]].fr_reg == C0_CONST)
2247 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2248 break;
2249 }
2250 /* else fall through. */
2251 }
2252 if (src[odv[1]].fr_reg == C0_CONST)
2253 {
2254 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2255 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2256 }
2257 else if (src[odv[2]].fr_reg == C0_CONST)
2258 {
2259 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2261 }
2262 else dst[odv[0]].fr_reg = C0_INEXP;
2263 break;
2264 case c0opc_sub:
2265 /* 3 operands: dst, src1, src2. */
2266 gdb_assert (nods == 3);
2267 if (src[odv[2]].fr_reg == C0_CONST)
2268 {
2269 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2270 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2271 }
2272 else dst[odv[0]].fr_reg = C0_INEXP;
2273 break;
2274 case c0opc_mov:
2275 /* 2 operands: dst, src [, src]. */
2276 gdb_assert (nods == 2);
2277 /* First, check if it's a special case of saving unaligned SP
2278 to a spare register in case of dynamic stack adjustment.
2279 But, only do it one time. The second time could be initializing
2280 frame pointer. We don't want to overwrite the first one. */
2281 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2282 cache->c0.c0_old_sp = odv[0];
2283
2284 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2285 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2286 break;
2287 case c0opc_movi:
2288 /* 2 operands: dst, imm. */
2289 gdb_assert (nods == 2);
2290 dst[odv[0]].fr_reg = C0_CONST;
2291 dst[odv[0]].fr_ofs = odv[1];
2292 break;
2293 case c0opc_l32r:
2294 /* 2 operands: dst, literal offset. */
2295 gdb_assert (nods == 2);
2296 /* litbase = xtensa_get_litbase (pc); can be also used. */
2297 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2298 ? 0 : xtensa_read_register
2299 (gdbarch_tdep (gdbarch)->litbase_regnum);
2300 litaddr = litbase & 1
2301 ? (litbase & ~1) + (signed)odv[1]
2302 : (pc + 3 + (signed)odv[1]) & ~3;
2303 litval = read_memory_integer (litaddr, 4, byte_order);
2304 dst[odv[0]].fr_reg = C0_CONST;
2305 dst[odv[0]].fr_ofs = litval;
2306 break;
2307 case c0opc_s32i:
2308 /* 3 operands: value, base, offset. */
2309 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2310 /* First, check if it's a spill for saved unaligned SP,
2311 when dynamic stack adjustment was applied to this frame. */
2312 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2313 && (odv[1] == spreg) /* SP usage indicates spill. */
2314 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2315 cache->c0.c0_sp_ofs = odv[2];
2316
2317 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2318 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2319 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2320 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2321 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2322 {
2323 /* ISA encoding guarantees alignment. But, check it anyway. */
2324 gdb_assert ((odv[2] & 3) == 0);
2325 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2326 }
2327 break;
2328 /* If we end up inside Window Overflow / Underflow interrupt handler
2329 report an error because these handlers should have been handled
2330 already in a different way. */
2331 case c0opc_l32e:
2332 case c0opc_s32e:
2333 case c0opc_rfwo:
2334 case c0opc_rfwu:
2335 return 1;
2336 default:
2337 return 1;
2338 }
2339 return 0;
2340 }
2341
2342 /* Analyze prologue of the function at start address to determine if it uses
2343 the Call0 ABI, and if so track register moves and linear modifications
2344 in the prologue up to the PC or just beyond the prologue, whichever is
2345 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2346 prologue. The prologue may overlap non-prologue instructions but is
2347 guaranteed to end by the first flow-control instruction (jump, branch,
2348 call or return). Since an optimized function may move information around
2349 and change the stack frame arbitrarily during the prologue, the information
2350 is guaranteed valid only at the point in the function indicated by the PC.
2351 May be used to skip the prologue or identify the ABI, w/o tracking.
2352
2353 Returns: Address of first instruction after prologue, or PC (whichever
2354 is first), or 0, if decoding failed (in libisa).
2355 Input args:
2356 start Start address of function/prologue.
2357 pc Program counter to stop at. Use 0 to continue to end of prologue.
2358 If 0, avoids infinite run-on in corrupt code memory by bounding
2359 the scan to the end of the function if that can be determined.
2360 nregs Number of general registers to track.
2361 InOut args:
2362 cache Xtensa frame cache.
2363
2364 Note that these may produce useful results even if decoding fails
2365 because they begin with default assumptions that analysis may change. */
2366
2367 static CORE_ADDR
2368 call0_analyze_prologue (struct gdbarch *gdbarch,
2369 CORE_ADDR start, CORE_ADDR pc,
2370 int nregs, xtensa_frame_cache_t *cache)
2371 {
2372 CORE_ADDR ia; /* Current insn address in prologue. */
2373 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2374 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2375 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2376 xtensa_isa isa; /* libisa ISA handle. */
2377 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2378 xtensa_format ifmt; /* libisa instruction format. */
2379 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2380 xtensa_opcode opc; /* Opcode in current slot. */
2381 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2382 int nods; /* Opcode number of operands. */
2383 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2384 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2385 int j; /* General loop counter. */
2386 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2387 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2388 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2389
2390 struct symtab_and_line prologue_sal;
2391
2392 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2393 (int)start, (int)pc);
2394
2395 /* Try to limit the scan to the end of the function if a non-zero pc
2396 arg was not supplied to avoid probing beyond the end of valid memory.
2397 If memory is full of garbage that classifies as c0opc_uninteresting.
2398 If this fails (eg. if no symbols) pc ends up 0 as it was.
2399 Initialize the Call0 frame and register tracking info.
2400 Assume it's Call0 until an 'entry' instruction is encountered.
2401 Assume we may be in the prologue until we hit a flow control instr. */
2402
2403 rtmp = NULL;
2404 body_pc = UINT_MAX;
2405 end_pc = 0;
2406
2407 /* Find out, if we have an information about the prologue from DWARF. */
2408 prologue_sal = find_pc_line (start, 0);
2409 if (prologue_sal.line != 0) /* Found debug info. */
2410 body_pc = prologue_sal.end;
2411
2412 /* If we are going to analyze the prologue in general without knowing about
2413 the current PC, make the best assumtion for the end of the prologue. */
2414 if (pc == 0)
2415 {
2416 find_pc_partial_function (start, 0, NULL, &end_pc);
2417 body_pc = std::min (end_pc, body_pc);
2418 }
2419 else
2420 body_pc = std::min (pc, body_pc);
2421
2422 cache->call0 = 1;
2423 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2424
2425 isa = xtensa_default_isa;
2426 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2427 ins = xtensa_insnbuf_alloc (isa);
2428 slot = xtensa_insnbuf_alloc (isa);
2429
2430 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2431 {
2432 /* (Re)fill instruction buffer from memory if necessary, but do not
2433 read memory beyond PC to be sure we stay within text section
2434 (this protection only works if a non-zero pc is supplied). */
2435
2436 if (ia + xtensa_isa_maxlength (isa) > bt)
2437 {
2438 ba = ia;
2439 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2440 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2441 error (_("Unable to read target memory ..."));
2442 }
2443
2444 /* Decode format information. */
2445
2446 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2447 ifmt = xtensa_format_decode (isa, ins);
2448 if (ifmt == XTENSA_UNDEFINED)
2449 {
2450 fail = 1;
2451 goto done;
2452 }
2453 ilen = xtensa_format_length (isa, ifmt);
2454 if (ilen == XTENSA_UNDEFINED)
2455 {
2456 fail = 1;
2457 goto done;
2458 }
2459 islots = xtensa_format_num_slots (isa, ifmt);
2460 if (islots == XTENSA_UNDEFINED)
2461 {
2462 fail = 1;
2463 goto done;
2464 }
2465
2466 /* Analyze a bundle or a single instruction, using a snapshot of
2467 the register tracking info as input for the entire bundle so that
2468 register changes do not take effect within this bundle. */
2469
2470 for (j = 0; j < nregs; ++j)
2471 rtmp[j] = cache->c0.c0_rt[j];
2472
2473 for (is = 0; is < islots; ++is)
2474 {
2475 /* Decode a slot and classify the opcode. */
2476
2477 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2478 if (fail)
2479 goto done;
2480
2481 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2482 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2483 (unsigned)ia, opc);
2484 if (opc == XTENSA_UNDEFINED)
2485 opclass = c0opc_illegal;
2486 else
2487 opclass = call0_classify_opcode (isa, opc);
2488
2489 /* Decide whether to track this opcode, ignore it, or bail out. */
2490
2491 switch (opclass)
2492 {
2493 case c0opc_illegal:
2494 case c0opc_break:
2495 fail = 1;
2496 goto done;
2497
2498 case c0opc_uninteresting:
2499 continue;
2500
2501 case c0opc_flow: /* Flow control instructions stop analysis. */
2502 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2503 goto done;
2504
2505 case c0opc_entry:
2506 cache->call0 = 0;
2507 ia += ilen; /* Skip over 'entry' insn. */
2508 goto done;
2509
2510 default:
2511 cache->call0 = 1;
2512 }
2513
2514 /* Only expected opcodes should get this far. */
2515
2516 /* Extract and decode the operands. */
2517 nods = xtensa_opcode_num_operands (isa, opc);
2518 if (nods == XTENSA_UNDEFINED)
2519 {
2520 fail = 1;
2521 goto done;
2522 }
2523
2524 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2525 {
2526 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2527 is, slot, &odv[j]);
2528 if (fail)
2529 goto done;
2530
2531 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2532 if (fail)
2533 goto done;
2534 }
2535
2536 /* Check operands to verify use of 'mov' assembler macro. */
2537 if (opclass == c0opc_mov && nods == 3)
2538 {
2539 if (odv[2] == odv[1])
2540 {
2541 nods = 2;
2542 if ((odv[0] == 1) && (odv[1] != 1))
2543 /* OR A1, An, An , where n != 1.
2544 This means we are inside epilogue already. */
2545 goto done;
2546 }
2547 else
2548 {
2549 opclass = c0opc_uninteresting;
2550 continue;
2551 }
2552 }
2553
2554 /* Track register movement and modification for this operation. */
2555 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2556 opclass, nods, odv, ia, 1, cache);
2557 if (fail)
2558 goto done;
2559 }
2560 }
2561 done:
2562 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2563 (unsigned)ia, fail ? "failed" : "succeeded");
2564 xtensa_insnbuf_free(isa, slot);
2565 xtensa_insnbuf_free(isa, ins);
2566 return fail ? XTENSA_ISA_BADPC : ia;
2567 }
2568
2569 /* Initialize frame cache for the current frame in CALL0 ABI. */
2570
2571 static void
2572 call0_frame_cache (struct frame_info *this_frame,
2573 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2574 {
2575 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2577 CORE_ADDR start_pc; /* The beginning of the function. */
2578 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2579 CORE_ADDR sp, fp, ra;
2580 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2581
2582 sp = get_frame_register_unsigned
2583 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2584 fp = sp; /* Assume FP == SP until proven otherwise. */
2585
2586 /* Find the beginning of the prologue of the function containing the PC
2587 and analyze it up to the PC or the end of the prologue. */
2588
2589 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2590 {
2591 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2592
2593 if (body_pc == XTENSA_ISA_BADPC)
2594 {
2595 warning_once ();
2596 ra = 0;
2597 goto finish_frame_analysis;
2598 }
2599 }
2600
2601 /* Get the frame information and FP (if used) at the current PC.
2602 If PC is in the prologue, the prologue analysis is more reliable
2603 than DWARF info. We don't not know for sure, if PC is in the prologue,
2604 but we do know no calls have yet taken place, so we can almost
2605 certainly rely on the prologue analysis. */
2606
2607 if (body_pc <= pc)
2608 {
2609 /* Prologue analysis was successful up to the PC.
2610 It includes the cases when PC == START_PC. */
2611 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2612 /* c0_hasfp == true means there is a frame pointer because
2613 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2614 was derived from SP. Otherwise, it would be C0_FP. */
2615 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2616 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2617 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2618 }
2619 else /* No data from the prologue analysis. */
2620 {
2621 c0_hasfp = 0;
2622 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2623 c0_frmsz = 0;
2624 start_pc = pc;
2625 }
2626
2627 if (cache->c0.c0_fpalign)
2628 {
2629 /* This frame has a special prologue with a dynamic stack adjustment
2630 to force an alignment, which is bigger than standard 16 bytes. */
2631
2632 CORE_ADDR unaligned_sp;
2633
2634 if (cache->c0.c0_old_sp == C0_INEXP)
2635 /* This can't be. Prologue code should be consistent.
2636 Unaligned stack pointer should be saved in a spare register. */
2637 {
2638 warning_once ();
2639 ra = 0;
2640 goto finish_frame_analysis;
2641 }
2642
2643 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2644 /* Saved unaligned value of SP is kept in a register. */
2645 unaligned_sp = get_frame_register_unsigned
2646 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2647 else
2648 /* Get the value from stack. */
2649 unaligned_sp = (CORE_ADDR)
2650 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2651
2652 prev_sp = unaligned_sp + c0_frmsz;
2653 }
2654 else
2655 prev_sp = fp + c0_frmsz;
2656
2657 /* Frame size from debug info or prologue tracking does not account for
2658 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2659 if (c0_hasfp)
2660 {
2661 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2662
2663 /* Update the stack frame size. */
2664 c0_frmsz += fp - sp;
2665 }
2666
2667 /* Get the return address (RA) from the stack if saved,
2668 or try to get it from a register. */
2669
2670 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2671 if (to_stk != C0_NOSTK)
2672 ra = (CORE_ADDR)
2673 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2674 4, byte_order);
2675
2676 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2677 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2678 {
2679 /* Special case for terminating backtrace at a function that wants to
2680 be seen as the outermost one. Such a function will clear it's RA (A0)
2681 register to 0 in the prologue instead of saving its original value. */
2682 ra = 0;
2683 }
2684 else
2685 {
2686 /* RA was copied to another register or (before any function call) may
2687 still be in the original RA register. This is not always reliable:
2688 even in a leaf function, register tracking stops after prologue, and
2689 even in prologue, non-prologue instructions (not tracked) may overwrite
2690 RA or any register it was copied to. If likely in prologue or before
2691 any call, use retracking info and hope for the best (compiler should
2692 have saved RA in stack if not in a leaf function). If not in prologue,
2693 too bad. */
2694
2695 int i;
2696 for (i = 0;
2697 (i < C0_NREGS)
2698 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2699 ++i);
2700 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2701 i = C0_RA;
2702 if (i < C0_NREGS)
2703 {
2704 ra = get_frame_register_unsigned
2705 (this_frame,
2706 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2707 }
2708 else ra = 0;
2709 }
2710
2711 finish_frame_analysis:
2712 cache->pc = start_pc;
2713 cache->ra = ra;
2714 /* RA == 0 marks the outermost frame. Do not go past it. */
2715 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2716 cache->c0.fp_regnum = fp_regnum;
2717 cache->c0.c0_frmsz = c0_frmsz;
2718 cache->c0.c0_hasfp = c0_hasfp;
2719 cache->c0.c0_fp = fp;
2720 }
2721
2722 static CORE_ADDR a0_saved;
2723 static CORE_ADDR a7_saved;
2724 static CORE_ADDR a11_saved;
2725 static int a0_was_saved;
2726 static int a7_was_saved;
2727 static int a11_was_saved;
2728
2729 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2730 static void
2731 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2732 {
2733 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2734 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2735 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2736 unsigned int spilled_value
2737 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2738
2739 if ((at == 0) && !a0_was_saved)
2740 {
2741 a0_saved = xtensa_read_register (atreg);
2742 a0_was_saved = 1;
2743 }
2744 else if ((at == 7) && !a7_was_saved)
2745 {
2746 a7_saved = xtensa_read_register (atreg);
2747 a7_was_saved = 1;
2748 }
2749 else if ((at == 11) && !a11_was_saved)
2750 {
2751 a11_saved = xtensa_read_register (atreg);
2752 a11_was_saved = 1;
2753 }
2754
2755 xtensa_write_register (atreg, spilled_value);
2756 }
2757
2758 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2759 static void
2760 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2761 {
2762 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2763 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2764 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2765 ULONGEST spilled_value = xtensa_read_register (atreg);
2766
2767 write_memory_unsigned_integer (addr, 4,
2768 gdbarch_byte_order (gdbarch),
2769 spilled_value);
2770 }
2771
2772 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2773
2774 typedef enum
2775 {
2776 xtWindowOverflow,
2777 xtWindowUnderflow,
2778 xtNoExceptionHandler
2779 } xtensa_exception_handler_t;
2780
2781 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2782 Return type of Xtensa Window Interrupt Handler on success. */
2783 static xtensa_exception_handler_t
2784 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2785 {
2786 xtensa_isa isa;
2787 xtensa_insnbuf ins, slot;
2788 gdb_byte ibuf[XTENSA_ISA_BSZ];
2789 CORE_ADDR ia, bt, ba;
2790 xtensa_format ifmt;
2791 int ilen, islots, is;
2792 xtensa_opcode opc;
2793 int insn_num = 0;
2794 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2795
2796 uint32_t at, as, offset;
2797
2798 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2799 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2800
2801 isa = xtensa_default_isa;
2802 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2803 ins = xtensa_insnbuf_alloc (isa);
2804 slot = xtensa_insnbuf_alloc (isa);
2805 ba = 0;
2806 ia = current_pc;
2807 bt = ia;
2808
2809 a0_was_saved = 0;
2810 a7_was_saved = 0;
2811 a11_was_saved = 0;
2812
2813 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2814 {
2815 if (ia + xtensa_isa_maxlength (isa) > bt)
2816 {
2817 ba = ia;
2818 bt = (ba + XTENSA_ISA_BSZ);
2819 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2820 return xtNoExceptionHandler;
2821 }
2822 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2823 ifmt = xtensa_format_decode (isa, ins);
2824 if (ifmt == XTENSA_UNDEFINED)
2825 return xtNoExceptionHandler;
2826 ilen = xtensa_format_length (isa, ifmt);
2827 if (ilen == XTENSA_UNDEFINED)
2828 return xtNoExceptionHandler;
2829 islots = xtensa_format_num_slots (isa, ifmt);
2830 if (islots == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 for (is = 0; is < islots; ++is)
2833 {
2834 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2835 return xtNoExceptionHandler;
2836 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2837 if (opc == XTENSA_UNDEFINED)
2838 return xtNoExceptionHandler;
2839 switch (call0_classify_opcode (isa, opc))
2840 {
2841 case c0opc_illegal:
2842 case c0opc_flow:
2843 case c0opc_entry:
2844 case c0opc_break:
2845 /* We expect none of them here. */
2846 return xtNoExceptionHandler;
2847 case c0opc_l32e:
2848 func = execute_l32e;
2849 break;
2850 case c0opc_s32e:
2851 func = execute_s32e;
2852 break;
2853 case c0opc_rfwo: /* RFWO. */
2854 /* Here, we return from WindowOverflow handler and,
2855 if we stopped at the very beginning, which means
2856 A0 was saved, we have to restore it now. */
2857 if (a0_was_saved)
2858 {
2859 int arreg = arreg_number (gdbarch,
2860 gdbarch_tdep (gdbarch)->a0_base,
2861 wb);
2862 xtensa_write_register (arreg, a0_saved);
2863 }
2864 return xtWindowOverflow;
2865 case c0opc_rfwu: /* RFWU. */
2866 /* Here, we return from WindowUnderflow handler.
2867 Let's see if either A7 or A11 has to be restored. */
2868 if (WindowUnderflow12)
2869 {
2870 if (a11_was_saved)
2871 {
2872 int arreg = arreg_number (gdbarch,
2873 gdbarch_tdep (gdbarch)->a0_base + 11,
2874 wb);
2875 xtensa_write_register (arreg, a11_saved);
2876 }
2877 }
2878 else if (a7_was_saved)
2879 {
2880 int arreg = arreg_number (gdbarch,
2881 gdbarch_tdep (gdbarch)->a0_base + 7,
2882 wb);
2883 xtensa_write_register (arreg, a7_saved);
2884 }
2885 return xtWindowUnderflow;
2886 default: /* Simply skip this insns. */
2887 continue;
2888 }
2889
2890 /* Decode arguments for L32E / S32E and simulate their execution. */
2891 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_decode (isa, opc, 0, &at))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_decode (isa, opc, 1, &as))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2902 return xtNoExceptionHandler;
2903 if (xtensa_operand_decode (isa, opc, 2, &offset))
2904 return xtNoExceptionHandler;
2905
2906 (*func) (gdbarch, at, as, offset, wb);
2907 }
2908
2909 ia += ilen;
2910 }
2911 return xtNoExceptionHandler;
2912 }
2913
2914 /* Handle Window Overflow / Underflow exception frames. */
2915
2916 static void
2917 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2918 xtensa_frame_cache_t *cache,
2919 CORE_ADDR pc)
2920 {
2921 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2922 CORE_ADDR ps, wb, ws, ra;
2923 int epc1_regnum, i, regnum;
2924 xtensa_exception_handler_t eh_type;
2925
2926 /* Read PS, WB, and WS from the hardware. Note that PS register
2927 must be present, if Windowed ABI is supported. */
2928 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2929 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2930 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2931
2932 /* Execute all the remaining instructions from Window Interrupt Handler
2933 by simulating them on the remote protocol level. On return, set the
2934 type of Xtensa Window Interrupt Handler, or report an error. */
2935 eh_type = execute_code (gdbarch, pc, wb);
2936 if (eh_type == xtNoExceptionHandler)
2937 error (_("\
2938 Unable to decode Xtensa Window Interrupt Handler's code."));
2939
2940 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2941 cache->call0 = 0; /* It's Windowed ABI. */
2942
2943 /* All registers for the cached frame will be alive. */
2944 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2945 cache->wd.aregs[i] = -1;
2946
2947 if (eh_type == xtWindowOverflow)
2948 cache->wd.ws = ws ^ (1 << wb);
2949 else /* eh_type == xtWindowUnderflow. */
2950 cache->wd.ws = ws | (1 << wb);
2951
2952 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2953 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2954 cache->wd.wb);
2955 ra = xtensa_read_register (regnum);
2956 cache->wd.callsize = WINSIZE (ra);
2957 cache->prev_sp = xtensa_read_register (regnum + 1);
2958 /* Set regnum to a frame pointer of the frame being cached. */
2959 regnum = xtensa_scan_prologue (gdbarch, pc);
2960 regnum = arreg_number (gdbarch,
2961 gdbarch_tdep (gdbarch)->a0_base + regnum,
2962 cache->wd.wb);
2963 cache->base = get_frame_register_unsigned (this_frame, regnum);
2964
2965 /* Read PC of interrupted function from EPC1 register. */
2966 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2967 if (epc1_regnum < 0)
2968 error(_("Unable to read Xtensa register EPC1"));
2969 cache->ra = xtensa_read_register (epc1_regnum);
2970 cache->pc = get_frame_func (this_frame);
2971 }
2972
2973
2974 /* Skip function prologue.
2975
2976 Return the pc of the first instruction after prologue. GDB calls this to
2977 find the address of the first line of the function or (if there is no line
2978 number information) to skip the prologue for planting breakpoints on
2979 function entries. Use debug info (if present) or prologue analysis to skip
2980 the prologue to achieve reliable debugging behavior. For windowed ABI,
2981 only the 'entry' instruction is skipped. It is not strictly necessary to
2982 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2983 backtrace at any point in the prologue, however certain potential hazards
2984 are avoided and a more "normal" debugging experience is ensured by
2985 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2986 For example, if we don't skip the prologue:
2987 - Some args may not yet have been saved to the stack where the debug
2988 info expects to find them (true anyway when only 'entry' is skipped);
2989 - Software breakpoints ('break' instrs) may not have been unplanted
2990 when the prologue analysis is done on initializing the frame cache,
2991 and breaks in the prologue will throw off the analysis.
2992
2993 If we have debug info ( line-number info, in particular ) we simply skip
2994 the code associated with the first function line effectively skipping
2995 the prologue code. It works even in cases like
2996
2997 int main()
2998 { int local_var = 1;
2999 ....
3000 }
3001
3002 because, for this source code, both Xtensa compilers will generate two
3003 separate entries ( with the same line number ) in dwarf line-number
3004 section to make sure there is a boundary between the prologue code and
3005 the rest of the function.
3006
3007 If there is no debug info, we need to analyze the code. */
3008
3009 /* #define DONT_SKIP_PROLOGUE */
3010
3011 static CORE_ADDR
3012 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3013 {
3014 struct symtab_and_line prologue_sal;
3015 CORE_ADDR body_pc;
3016
3017 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3018
3019 #if DONT_SKIP_PROLOGUE
3020 return start_pc;
3021 #endif
3022
3023 /* Try to find first body line from debug info. */
3024
3025 prologue_sal = find_pc_line (start_pc, 0);
3026 if (prologue_sal.line != 0) /* Found debug info. */
3027 {
3028 /* In Call0, it is possible to have a function with only one instruction
3029 ('ret') resulting from a one-line optimized function that does nothing.
3030 In that case, prologue_sal.end may actually point to the start of the
3031 next function in the text section, causing a breakpoint to be set at
3032 the wrong place. Check, if the end address is within a different
3033 function, and if so return the start PC. We know we have symbol
3034 information. */
3035
3036 CORE_ADDR end_func;
3037
3038 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3039 && call0_ret (start_pc, prologue_sal.end))
3040 return start_pc;
3041
3042 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3043 if (end_func != start_pc)
3044 return start_pc;
3045
3046 return prologue_sal.end;
3047 }
3048
3049 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3050 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3051 xtensa_alloc_frame_cache (0));
3052 return body_pc != 0 ? body_pc : start_pc;
3053 }
3054
3055 /* Verify the current configuration. */
3056 static void
3057 xtensa_verify_config (struct gdbarch *gdbarch)
3058 {
3059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3060 string_file log;
3061
3062 /* Verify that we got a reasonable number of AREGS. */
3063 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3064 log.printf (_("\
3065 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3066 tdep->num_aregs);
3067
3068 /* Verify that certain registers exist. */
3069
3070 if (tdep->pc_regnum == -1)
3071 log.printf (_("\n\tpc_regnum: No PC register"));
3072 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3073 log.printf (_("\n\tps_regnum: No PS register"));
3074
3075 if (tdep->isa_use_windowed_registers)
3076 {
3077 if (tdep->wb_regnum == -1)
3078 log.printf (_("\n\twb_regnum: No WB register"));
3079 if (tdep->ws_regnum == -1)
3080 log.printf (_("\n\tws_regnum: No WS register"));
3081 if (tdep->ar_base == -1)
3082 log.printf (_("\n\tar_base: No AR registers"));
3083 }
3084
3085 if (tdep->a0_base == -1)
3086 log.printf (_("\n\ta0_base: No Ax registers"));
3087
3088 if (!log.empty ())
3089 internal_error (__FILE__, __LINE__,
3090 _("the following are invalid: %s"), log.c_str ());
3091 }
3092
3093
3094 /* Derive specific register numbers from the array of registers. */
3095
3096 static void
3097 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3098 {
3099 xtensa_register_t* rmap;
3100 int n, max_size = 4;
3101
3102 tdep->num_regs = 0;
3103 tdep->num_nopriv_regs = 0;
3104
3105 /* Special registers 0..255 (core). */
3106 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3107 /* User registers 0..255. */
3108 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3109
3110 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3111 {
3112 if (rmap->target_number == 0x0020)
3113 tdep->pc_regnum = n;
3114 else if (rmap->target_number == 0x0100)
3115 tdep->ar_base = n;
3116 else if (rmap->target_number == 0x0000)
3117 tdep->a0_base = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3119 tdep->wb_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3121 tdep->ws_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3123 tdep->debugcause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3125 tdep->exccause_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3127 tdep->excvaddr_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3129 tdep->lbeg_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3131 tdep->lend_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3133 tdep->lcount_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3135 tdep->sar_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3137 tdep->litbase_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3139 tdep->ps_regnum = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3141 tdep->threadptr_regnum = n;
3142 #if 0
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3144 tdep->interrupt_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3146 tdep->interrupt2_regnum = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3148 tdep->cpenable_regnum = n;
3149 #endif
3150
3151 if (rmap->byte_size > max_size)
3152 max_size = rmap->byte_size;
3153 if (rmap->mask != 0 && tdep->num_regs == 0)
3154 tdep->num_regs = n;
3155 /* Find out out how to deal with priveleged registers.
3156
3157 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3158 && tdep->num_nopriv_regs == 0)
3159 tdep->num_nopriv_regs = n;
3160 */
3161 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3162 && tdep->num_regs == 0)
3163 tdep->num_regs = n;
3164 }
3165
3166 /* Number of pseudo registers. */
3167 tdep->num_pseudo_regs = n - tdep->num_regs;
3168
3169 /* Empirically determined maximum sizes. */
3170 tdep->max_register_raw_size = max_size;
3171 tdep->max_register_virtual_size = max_size;
3172 }
3173
3174 /* Module "constructor" function. */
3175
3176 extern struct gdbarch_tdep xtensa_tdep;
3177
3178 static struct gdbarch *
3179 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3180 {
3181 struct gdbarch_tdep *tdep;
3182 struct gdbarch *gdbarch;
3183
3184 DEBUGTRACE ("gdbarch_init()\n");
3185
3186 if (!xtensa_default_isa)
3187 xtensa_default_isa = xtensa_isa_init (0, 0);
3188
3189 /* We have to set the byte order before we call gdbarch_alloc. */
3190 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3191
3192 tdep = &xtensa_tdep;
3193 gdbarch = gdbarch_alloc (&info, tdep);
3194 xtensa_derive_tdep (tdep);
3195
3196 /* Verify our configuration. */
3197 xtensa_verify_config (gdbarch);
3198 xtensa_session_once_reported = 0;
3199
3200 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3201 set_gdbarch_wchar_signed (gdbarch, 0);
3202
3203 /* Pseudo-Register read/write. */
3204 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3205 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3206
3207 /* Set target information. */
3208 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3209 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3210 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3211 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3212 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3213
3214 /* Renumber registers for known formats (stabs and dwarf2). */
3215 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3216 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3217
3218 /* We provide our own function to get register information. */
3219 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3220 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3221
3222 /* To call functions from GDB using dummy frame. */
3223 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3224
3225 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3226
3227 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3228
3229 /* Advance PC across any prologue instructions to reach "real" code. */
3230 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3231
3232 /* Stack grows downward. */
3233 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3234
3235 /* Set breakpoints. */
3236 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3237 xtensa_breakpoint_kind_from_pc);
3238 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3239 xtensa_sw_breakpoint_from_kind);
3240
3241 /* After breakpoint instruction or illegal instruction, pc still
3242 points at break instruction, so don't decrement. */
3243 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3244
3245 /* We don't skip args. */
3246 set_gdbarch_frame_args_skip (gdbarch, 0);
3247
3248 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3249
3250 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3251
3252 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3253
3254 /* Frame handling. */
3255 frame_base_set_default (gdbarch, &xtensa_frame_base);
3256 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3257 dwarf2_append_unwinders (gdbarch);
3258
3259 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3260
3261 xtensa_add_reggroups (gdbarch);
3262 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3263
3264 set_gdbarch_iterate_over_regset_sections
3265 (gdbarch, xtensa_iterate_over_regset_sections);
3266
3267 set_solib_svr4_fetch_link_map_offsets
3268 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3269
3270 /* Hook in the ABI-specific overrides, if they have been registered. */
3271 gdbarch_init_osabi (info, gdbarch);
3272
3273 return gdbarch;
3274 }
3275
3276 static void
3277 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3278 {
3279 error (_("xtensa_dump_tdep(): not implemented"));
3280 }
3281
3282 /* Provide a prototype to silence -Wmissing-prototypes. */
3283 extern initialize_file_ftype _initialize_xtensa_tdep;
3284
3285 void
3286 _initialize_xtensa_tdep (void)
3287 {
3288 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3289 xtensa_init_reggroups ();
3290
3291 add_setshow_zuinteger_cmd ("xtensa",
3292 class_maintenance,
3293 &xtensa_debug_level,
3294 _("Set Xtensa debugging."),
3295 _("Show Xtensa debugging."), _("\
3296 When non-zero, Xtensa-specific debugging is enabled. \
3297 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3298 NULL,
3299 NULL,
3300 &setdebuglist, &showdebuglist);
3301 }
This page took 0.097645 seconds and 4 git commands to generate.