gdb/
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* On TX, hardware can be configured without Exception Option.
95 There is no PS register in this case. Inside XT-GDB, let us treat
96 it as a virtual read-only register always holding the same value. */
97 #define TX_PS 0x20
98
99 /* ABI-independent macros. */
100 #define ARG_NOF(gdbarch) \
101 (gdbarch_tdep (gdbarch)->call_abi \
102 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
103 #define ARG_1ST(gdbarch) \
104 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
105 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
106 : (gdbarch_tdep (gdbarch)->a0_base + 6))
107
108 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
109 indicates that the instruction is an ENTRY instruction. */
110
111 #define XTENSA_IS_ENTRY(gdbarch, op1) \
112 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
113 ? ((op1) == 0x6c) : ((op1) == 0x36))
114
115 #define XTENSA_ENTRY_LENGTH 3
116
117 /* windowing_enabled() returns true, if windowing is enabled.
118 WOE must be set to 1; EXCM to 0.
119 Note: We assume that EXCM is always 0 for XEA1. */
120
121 #define PS_WOE (1<<18)
122 #define PS_EXC (1<<4)
123
124 static int
125 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
126 {
127 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
128 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
129 return 0;
130
131 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
132 }
133
134 /* Convert a live A-register number to the corresponding AR-register
135 number. */
136 static int
137 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
138 {
139 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
140 int arreg;
141
142 arreg = a_regnum - tdep->a0_base;
143 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
144 arreg &= tdep->num_aregs - 1;
145
146 return arreg + tdep->ar_base;
147 }
148
149 /* Convert a live AR-register number to the corresponding A-register order
150 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
151 static int
152 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
153 {
154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
155 int areg;
156
157 areg = ar_regnum - tdep->ar_base;
158 if (areg < 0 || areg >= tdep->num_aregs)
159 return -1;
160 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
161 return (areg > 15) ? -1 : areg;
162 }
163
164 /* Read Xtensa register directly from the hardware. */
165 static unsigned long
166 xtensa_read_register (int regnum)
167 {
168 ULONGEST value;
169
170 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
171 return (unsigned long) value;
172 }
173
174 /* Write Xtensa register directly to the hardware. */
175 static void
176 xtensa_write_register (int regnum, ULONGEST value)
177 {
178 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
179 }
180
181 /* Return the window size of the previous call to the function from which we
182 have just returned.
183
184 This function is used to extract the return value after a called function
185 has returned to the caller. On Xtensa, the register that holds the return
186 value (from the perspective of the caller) depends on what call
187 instruction was used. For now, we are assuming that the call instruction
188 precedes the current address, so we simply analyze the call instruction.
189 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
190 method to call the inferior function. */
191
192 static int
193 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
194 {
195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
196 int winsize = 4;
197 int insn;
198 gdb_byte buf[4];
199
200 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
201
202 /* Read the previous instruction (should be a call[x]{4|8|12}. */
203 read_memory (pc-3, buf, 3);
204 insn = extract_unsigned_integer (buf, 3, byte_order);
205
206 /* Decode call instruction:
207 Little Endian
208 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
209 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
210 Big Endian
211 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
212 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
213
214 if (byte_order == BFD_ENDIAN_LITTLE)
215 {
216 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
217 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
218 }
219 else
220 {
221 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
222 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
223 }
224 return winsize;
225 }
226
227
228 /* REGISTER INFORMATION */
229
230 /* Find register by name. */
231 static int
232 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
233 {
234 int i;
235
236 for (i = 0; i < gdbarch_num_regs (gdbarch)
237 + gdbarch_num_pseudo_regs (gdbarch);
238 i++)
239
240 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
241 return i;
242
243 return -1;
244 }
245
246 /* Returns the name of a register. */
247 static const char *
248 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
249 {
250 /* Return the name stored in the register map. */
251 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
252 + gdbarch_num_pseudo_regs (gdbarch))
253 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
254
255 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
256 return 0;
257 }
258
259 /* Return the type of a register. Create a new type, if necessary. */
260
261 static struct type *
262 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 /* Return signed integer for ARx and Ax registers. */
267 if ((regnum >= tdep->ar_base
268 && regnum < tdep->ar_base + tdep->num_aregs)
269 || (regnum >= tdep->a0_base
270 && regnum < tdep->a0_base + 16))
271 return builtin_type (gdbarch)->builtin_int;
272
273 if (regnum == gdbarch_pc_regnum (gdbarch)
274 || regnum == tdep->a0_base + 1)
275 return builtin_type (gdbarch)->builtin_data_ptr;
276
277 /* Return the stored type for all other registers. */
278 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
279 + gdbarch_num_pseudo_regs (gdbarch))
280 {
281 xtensa_register_t* reg = &tdep->regmap[regnum];
282
283 /* Set ctype for this register (only the first time). */
284
285 if (reg->ctype == 0)
286 {
287 struct ctype_cache *tp;
288 int size = reg->byte_size;
289
290 /* We always use the memory representation,
291 even if the register width is smaller. */
292 switch (size)
293 {
294 case 1:
295 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
296 break;
297
298 case 2:
299 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
300 break;
301
302 case 4:
303 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
304 break;
305
306 case 8:
307 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
308 break;
309
310 case 16:
311 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
312 break;
313
314 default:
315 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
316 if (tp->size == size)
317 break;
318
319 if (tp == NULL)
320 {
321 char *name = xmalloc (16);
322 tp = xmalloc (sizeof (struct ctype_cache));
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326
327 sprintf (name, "int%d", size * 8);
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, xstrdup (name));
330 }
331
332 reg->ctype = tp->virtual_type;
333 }
334 }
335 return reg->ctype;
336 }
337
338 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
339 return 0;
340 }
341
342
343 /* Return the 'local' register number for stubs, dwarf2, etc.
344 The debugging information enumerates registers starting from 0 for A0
345 to n for An. So, we only have to add the base number for A0. */
346
347 static int
348 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
349 {
350 int i;
351
352 if (regnum >= 0 && regnum < 16)
353 return gdbarch_tdep (gdbarch)->a0_base + regnum;
354
355 for (i = 0;
356 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 i++)
358 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
359 return i;
360
361 internal_error (__FILE__, __LINE__,
362 _("invalid dwarf/stabs register number %d"), regnum);
363 return 0;
364 }
365
366
367 /* Write the bits of a masked register to the various registers.
368 Only the masked areas of these registers are modified; the other
369 fields are untouched. The size of masked registers is always less
370 than or equal to 32 bits. */
371
372 static void
373 xtensa_register_write_masked (struct regcache *regcache,
374 xtensa_register_t *reg, const gdb_byte *buffer)
375 {
376 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
377 const xtensa_mask_t *mask = reg->mask;
378
379 int shift = 0; /* Shift for next mask (mod 32). */
380 int start, size; /* Start bit and size of current mask. */
381
382 unsigned int *ptr = value;
383 unsigned int regval, m, mem = 0;
384
385 int bytesize = reg->byte_size;
386 int bitsize = bytesize * 8;
387 int i, r;
388
389 DEBUGTRACE ("xtensa_register_write_masked ()\n");
390
391 /* Copy the masked register to host byte-order. */
392 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
393 for (i = 0; i < bytesize; i++)
394 {
395 mem >>= 8;
396 mem |= (buffer[bytesize - i - 1] << 24);
397 if ((i & 3) == 3)
398 *ptr++ = mem;
399 }
400 else
401 for (i = 0; i < bytesize; i++)
402 {
403 mem >>= 8;
404 mem |= (buffer[i] << 24);
405 if ((i & 3) == 3)
406 *ptr++ = mem;
407 }
408
409 /* We might have to shift the final value:
410 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
411 bytesize & 3 == x -> shift (4-x) * 8. */
412
413 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 ptr = value;
415 mem = *ptr;
416
417 /* Write the bits to the masked areas of the other registers. */
418 for (i = 0; i < mask->count; i++)
419 {
420 start = mask->mask[i].bit_start;
421 size = mask->mask[i].bit_size;
422 regval = mem >> shift;
423
424 if ((shift += size) > bitsize)
425 error (_("size of all masks is larger than the register"));
426
427 if (shift >= 32)
428 {
429 mem = *(++ptr);
430 shift -= 32;
431 bitsize -= 32;
432
433 if (shift > 0)
434 regval |= mem << (size - shift);
435 }
436
437 /* Make sure we have a valid register. */
438 r = mask->mask[i].reg_num;
439 if (r >= 0 && size > 0)
440 {
441 /* Don't overwrite the unmasked areas. */
442 ULONGEST old_val;
443 regcache_cooked_read_unsigned (regcache, r, &old_val);
444 m = 0xffffffff >> (32 - size) << start;
445 regval <<= start;
446 regval = (regval & m) | (old_val & ~m);
447 regcache_cooked_write_unsigned (regcache, r, regval);
448 }
449 }
450 }
451
452
453 /* Read a tie state or mapped registers. Read the masked areas
454 of the registers and assemble them into a single value. */
455
456 static enum register_status
457 xtensa_register_read_masked (struct regcache *regcache,
458 xtensa_register_t *reg, gdb_byte *buffer)
459 {
460 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
461 const xtensa_mask_t *mask = reg->mask;
462
463 int shift = 0;
464 int start, size;
465
466 unsigned int *ptr = value;
467 unsigned int regval, mem = 0;
468
469 int bytesize = reg->byte_size;
470 int bitsize = bytesize * 8;
471 int i;
472
473 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
474 reg->name == 0 ? "" : reg->name);
475
476 /* Assemble the register from the masked areas of other registers. */
477 for (i = 0; i < mask->count; i++)
478 {
479 int r = mask->mask[i].reg_num;
480 if (r >= 0)
481 {
482 enum register_status status;
483 ULONGEST val;
484
485 status = regcache_cooked_read_unsigned (regcache, r, &val);
486 if (status != REG_VALID)
487 return status;
488 regval = (unsigned int) val;
489 }
490 else
491 regval = 0;
492
493 start = mask->mask[i].bit_start;
494 size = mask->mask[i].bit_size;
495
496 regval >>= start;
497
498 if (size < 32)
499 regval &= (0xffffffff >> (32 - size));
500
501 mem |= regval << shift;
502
503 if ((shift += size) > bitsize)
504 error (_("size of all masks is larger than the register"));
505
506 if (shift >= 32)
507 {
508 *ptr++ = mem;
509 bitsize -= 32;
510 shift -= 32;
511
512 if (shift == 0)
513 mem = 0;
514 else
515 mem = regval >> (size - shift);
516 }
517 }
518
519 if (shift > 0)
520 *ptr = mem;
521
522 /* Copy value to target byte order. */
523 ptr = value;
524 mem = *ptr;
525
526 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
527 for (i = 0; i < bytesize; i++)
528 {
529 if ((i & 3) == 0)
530 mem = *ptr++;
531 buffer[bytesize - i - 1] = mem & 0xff;
532 mem >>= 8;
533 }
534 else
535 for (i = 0; i < bytesize; i++)
536 {
537 if ((i & 3) == 0)
538 mem = *ptr++;
539 buffer[i] = mem & 0xff;
540 mem >>= 8;
541 }
542
543 return REG_VALID;
544 }
545
546
547 /* Read pseudo registers. */
548
549 static enum register_status
550 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
551 struct regcache *regcache,
552 int regnum,
553 gdb_byte *buffer)
554 {
555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
556
557 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
558 regnum, xtensa_register_name (gdbarch, regnum));
559
560 if (regnum == gdbarch_num_regs (gdbarch)
561 + gdbarch_num_pseudo_regs (gdbarch) - 1)
562 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
563
564 /* Read aliases a0..a15, if this is a Windowed ABI. */
565 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
566 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
567 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
568 {
569 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
570 enum register_status status;
571
572 status = regcache_raw_read (regcache,
573 gdbarch_tdep (gdbarch)->wb_regnum,
574 buf);
575 if (status != REG_VALID)
576 return status;
577 regnum = arreg_number (gdbarch, regnum,
578 extract_unsigned_integer (buf, 4, byte_order));
579 }
580
581 /* We can always read non-pseudo registers. */
582 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
583 return regcache_raw_read (regcache, regnum, buffer);
584
585 /* We have to find out how to deal with priveleged registers.
586 Let's treat them as pseudo-registers, but we cannot read/write them. */
587
588 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
589 {
590 buffer[0] = (gdb_byte)0;
591 buffer[1] = (gdb_byte)0;
592 buffer[2] = (gdb_byte)0;
593 buffer[3] = (gdb_byte)0;
594 return REG_VALID;
595 }
596 /* Pseudo registers. */
597 else if (regnum >= 0
598 && regnum < gdbarch_num_regs (gdbarch)
599 + gdbarch_num_pseudo_regs (gdbarch))
600 {
601 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
602 xtensa_register_type_t type = reg->type;
603 int flags = gdbarch_tdep (gdbarch)->target_flags;
604
605 /* We cannot read Unknown or Unmapped registers. */
606 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
607 {
608 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
609 {
610 warning (_("cannot read register %s"),
611 xtensa_register_name (gdbarch, regnum));
612 return REG_VALID;
613 }
614 }
615
616 /* Some targets cannot read TIE register files. */
617 else if (type == xtRegisterTypeTieRegfile)
618 {
619 /* Use 'fetch' to get register? */
620 if (flags & xtTargetFlagsUseFetchStore)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625
626 /* On some targets (esp. simulators), we can always read the reg. */
627 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
628 {
629 warning (_("cannot read register"));
630 return REG_VALID;
631 }
632 }
633
634 /* We can always read mapped registers. */
635 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
636 return xtensa_register_read_masked (regcache, reg, buffer);
637
638 /* Assume that we can read the register. */
639 return regcache_raw_read (regcache, regnum, buffer);
640 }
641 else
642 internal_error (__FILE__, __LINE__,
643 _("invalid register number %d"), regnum);
644 }
645
646
647 /* Write pseudo registers. */
648
649 static void
650 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
651 struct regcache *regcache,
652 int regnum,
653 const gdb_byte *buffer)
654 {
655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
656
657 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
658 regnum, xtensa_register_name (gdbarch, regnum));
659
660 if (regnum == gdbarch_num_regs (gdbarch)
661 + gdbarch_num_pseudo_regs (gdbarch) -1)
662 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
663
664 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
665 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
666 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
667 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
668 {
669 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
670 unsigned int wb;
671
672 regcache_raw_read (regcache,
673 gdbarch_tdep (gdbarch)->wb_regnum, buf);
674 regnum = arreg_number (gdbarch, regnum,
675 extract_unsigned_integer (buf, 4, byte_order));
676 }
677
678 /* We can always write 'core' registers.
679 Note: We might have converted Ax->ARy. */
680 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
681 regcache_raw_write (regcache, regnum, buffer);
682
683 /* We have to find out how to deal with priveleged registers.
684 Let's treat them as pseudo-registers, but we cannot read/write them. */
685
686 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
687 {
688 return;
689 }
690 /* Pseudo registers. */
691 else if (regnum >= 0
692 && regnum < gdbarch_num_regs (gdbarch)
693 + gdbarch_num_pseudo_regs (gdbarch))
694 {
695 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
696 xtensa_register_type_t type = reg->type;
697 int flags = gdbarch_tdep (gdbarch)->target_flags;
698
699 /* On most targets, we cannot write registers
700 of type "Unknown" or "Unmapped". */
701 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
702 {
703 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
704 {
705 warning (_("cannot write register %s"),
706 xtensa_register_name (gdbarch, regnum));
707 return;
708 }
709 }
710
711 /* Some targets cannot read TIE register files. */
712 else if (type == xtRegisterTypeTieRegfile)
713 {
714 /* Use 'store' to get register? */
715 if (flags & xtTargetFlagsUseFetchStore)
716 {
717 warning (_("cannot write register"));
718 return;
719 }
720
721 /* On some targets (esp. simulators), we can always write
722 the register. */
723 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
724 {
725 warning (_("cannot write register"));
726 return;
727 }
728 }
729
730 /* We can always write mapped registers. */
731 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
732 {
733 xtensa_register_write_masked (regcache, reg, buffer);
734 return;
735 }
736
737 /* Assume that we can write the register. */
738 regcache_raw_write (regcache, regnum, buffer);
739 }
740 else
741 internal_error (__FILE__, __LINE__,
742 _("invalid register number %d"), regnum);
743 }
744
745 static struct reggroup *xtensa_ar_reggroup;
746 static struct reggroup *xtensa_user_reggroup;
747 static struct reggroup *xtensa_vectra_reggroup;
748 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
749
750 static void
751 xtensa_init_reggroups (void)
752 {
753 int i;
754 char cpname[] = "cp0";
755
756 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
757 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
758 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
759
760 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
761 {
762 cpname[2] = '0' + i;
763 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
764 }
765 }
766
767 static void
768 xtensa_add_reggroups (struct gdbarch *gdbarch)
769 {
770 int i;
771
772 /* Predefined groups. */
773 reggroup_add (gdbarch, all_reggroup);
774 reggroup_add (gdbarch, save_reggroup);
775 reggroup_add (gdbarch, restore_reggroup);
776 reggroup_add (gdbarch, system_reggroup);
777 reggroup_add (gdbarch, vector_reggroup);
778 reggroup_add (gdbarch, general_reggroup);
779 reggroup_add (gdbarch, float_reggroup);
780
781 /* Xtensa-specific groups. */
782 reggroup_add (gdbarch, xtensa_ar_reggroup);
783 reggroup_add (gdbarch, xtensa_user_reggroup);
784 reggroup_add (gdbarch, xtensa_vectra_reggroup);
785
786 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
787 reggroup_add (gdbarch, xtensa_cp[i]);
788 }
789
790 static int
791 xtensa_coprocessor_register_group (struct reggroup *group)
792 {
793 int i;
794
795 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
796 if (group == xtensa_cp[i])
797 return i;
798
799 return -1;
800 }
801
802 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
803 | XTENSA_REGISTER_FLAGS_WRITABLE \
804 | XTENSA_REGISTER_FLAGS_VOLATILE)
805
806 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
807 | XTENSA_REGISTER_FLAGS_WRITABLE)
808
809 static int
810 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
811 int regnum,
812 struct reggroup *group)
813 {
814 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
815 xtensa_register_type_t type = reg->type;
816 xtensa_register_group_t rg = reg->group;
817 int cp_number;
818
819 if (group == save_reggroup)
820 /* Every single register should be included into the list of registers
821 to be watched for changes while using -data-list-changed-registers. */
822 return 1;
823
824 /* First, skip registers that are not visible to this target
825 (unknown and unmapped registers when not using ISS). */
826
827 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
828 return 0;
829 if (group == all_reggroup)
830 return 1;
831 if (group == xtensa_ar_reggroup)
832 return rg & xtRegisterGroupAddrReg;
833 if (group == xtensa_user_reggroup)
834 return rg & xtRegisterGroupUser;
835 if (group == float_reggroup)
836 return rg & xtRegisterGroupFloat;
837 if (group == general_reggroup)
838 return rg & xtRegisterGroupGeneral;
839 if (group == system_reggroup)
840 return rg & xtRegisterGroupState;
841 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
842 return rg & xtRegisterGroupVectra;
843 if (group == restore_reggroup)
844 return (regnum < gdbarch_num_regs (gdbarch)
845 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
846 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
847 return rg & (xtRegisterGroupCP0 << cp_number);
848 else
849 return 1;
850 }
851
852
853 /* Supply register REGNUM from the buffer specified by GREGS and LEN
854 in the general-purpose register set REGSET to register cache
855 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
856
857 static void
858 xtensa_supply_gregset (const struct regset *regset,
859 struct regcache *rc,
860 int regnum,
861 const void *gregs,
862 size_t len)
863 {
864 const xtensa_elf_gregset_t *regs = gregs;
865 struct gdbarch *gdbarch = get_regcache_arch (rc);
866 int i;
867
868 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
869
870 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
872 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
874 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
875 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
876 (char *) &regs->windowbase);
877 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
878 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
879 (char *) &regs->windowstart);
880 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
881 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
882 (char *) &regs->lbeg);
883 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
884 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
885 (char *) &regs->lend);
886 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
887 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
888 (char *) &regs->lcount);
889 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
891 (char *) &regs->sar);
892 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
893 && regnum < gdbarch_tdep (gdbarch)->ar_base
894 + gdbarch_tdep (gdbarch)->num_aregs)
895 regcache_raw_supply (rc, regnum,
896 (char *) &regs->ar[regnum - gdbarch_tdep
897 (gdbarch)->ar_base]);
898 else if (regnum == -1)
899 {
900 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
901 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
902 (char *) &regs->ar[i]);
903 }
904 }
905
906
907 /* Xtensa register set. */
908
909 static struct regset
910 xtensa_gregset =
911 {
912 NULL,
913 xtensa_supply_gregset
914 };
915
916
917 /* Return the appropriate register set for the core
918 section identified by SECT_NAME and SECT_SIZE. */
919
920 static const struct regset *
921 xtensa_regset_from_core_section (struct gdbarch *core_arch,
922 const char *sect_name,
923 size_t sect_size)
924 {
925 DEBUGTRACE ("xtensa_regset_from_core_section "
926 "(..., sect_name==\"%s\", sect_size==%x)\n",
927 sect_name, (unsigned int) sect_size);
928
929 if (strcmp (sect_name, ".reg") == 0
930 && sect_size >= sizeof(xtensa_elf_gregset_t))
931 return &xtensa_gregset;
932
933 return NULL;
934 }
935
936
937 /* Handling frames. */
938
939 /* Number of registers to save in case of Windowed ABI. */
940 #define XTENSA_NUM_SAVED_AREGS 12
941
942 /* Frame cache part for Windowed ABI. */
943 typedef struct xtensa_windowed_frame_cache
944 {
945 int wb; /* WINDOWBASE of the previous frame. */
946 int callsize; /* Call size of this frame. */
947 int ws; /* WINDOWSTART of the previous frame. It keeps track of
948 life windows only. If there is no bit set for the
949 window, that means it had been already spilled
950 because of window overflow. */
951
952 /* Addresses of spilled A-registers.
953 AREGS[i] == -1, if corresponding AR is alive. */
954 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
955 } xtensa_windowed_frame_cache_t;
956
957 /* Call0 ABI Definitions. */
958
959 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
960 analysis. */
961 #define C0_NREGS 16 /* Number of A-registers to track. */
962 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
963 #define C0_SP 1 /* Register used as SP. */
964 #define C0_FP 15 /* Register used as FP. */
965 #define C0_RA 0 /* Register used as return address. */
966 #define C0_ARGS 2 /* Register used as first arg/retval. */
967 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
968
969 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
970 A-register where the current content of the reg came from (in terms
971 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
972 mean that the orignal content of the register was saved to the stack.
973 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
974 know where SP will end up until the entire prologue has been analyzed. */
975
976 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
977 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
978 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
979
980 extern xtensa_isa xtensa_default_isa;
981
982 typedef struct xtensa_c0reg
983 {
984 int fr_reg; /* original register from which register content
985 is derived, or C0_CONST, or C0_INEXP. */
986 int fr_ofs; /* constant offset from reg, or immediate value. */
987 int to_stk; /* offset from original SP to register (4-byte aligned),
988 or C0_NOSTK if register has not been saved. */
989 } xtensa_c0reg_t;
990
991 /* Frame cache part for Call0 ABI. */
992 typedef struct xtensa_call0_frame_cache
993 {
994 int c0_frmsz; /* Stack frame size. */
995 int c0_hasfp; /* Current frame uses frame pointer. */
996 int fp_regnum; /* A-register used as FP. */
997 int c0_fp; /* Actual value of frame pointer. */
998 int c0_fpalign; /* Dinamic adjustment for the stack
999 pointer. It's an AND mask. Zero,
1000 if alignment was not adjusted. */
1001 int c0_old_sp; /* In case of dynamic adjustment, it is
1002 a register holding unaligned sp.
1003 C0_INEXP, when undefined. */
1004 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
1005 stack offset. C0_NOSTK otherwise. */
1006
1007 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
1008 } xtensa_call0_frame_cache_t;
1009
1010 typedef struct xtensa_frame_cache
1011 {
1012 CORE_ADDR base; /* Stack pointer of this frame. */
1013 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1014 CORE_ADDR ra; /* The raw return address of this frame. */
1015 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1016 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1017 int call0; /* It's a call0 framework (else windowed). */
1018 union
1019 {
1020 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1021 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1022 };
1023 } xtensa_frame_cache_t;
1024
1025
1026 static struct xtensa_frame_cache *
1027 xtensa_alloc_frame_cache (int windowed)
1028 {
1029 xtensa_frame_cache_t *cache;
1030 int i;
1031
1032 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1033
1034 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1035
1036 cache->base = 0;
1037 cache->pc = 0;
1038 cache->ra = 0;
1039 cache->ps = 0;
1040 cache->prev_sp = 0;
1041 cache->call0 = !windowed;
1042 if (cache->call0)
1043 {
1044 cache->c0.c0_frmsz = -1;
1045 cache->c0.c0_hasfp = 0;
1046 cache->c0.fp_regnum = -1;
1047 cache->c0.c0_fp = -1;
1048 cache->c0.c0_fpalign = 0;
1049 cache->c0.c0_old_sp = C0_INEXP;
1050 cache->c0.c0_sp_ofs = C0_NOSTK;
1051
1052 for (i = 0; i < C0_NREGS; i++)
1053 {
1054 cache->c0.c0_rt[i].fr_reg = i;
1055 cache->c0.c0_rt[i].fr_ofs = 0;
1056 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1057 }
1058 }
1059 else
1060 {
1061 cache->wd.wb = 0;
1062 cache->wd.ws = 0;
1063 cache->wd.callsize = -1;
1064
1065 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1066 cache->wd.aregs[i] = -1;
1067 }
1068 return cache;
1069 }
1070
1071
1072 static CORE_ADDR
1073 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1074 {
1075 return address & ~15;
1076 }
1077
1078
1079 static CORE_ADDR
1080 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1081 {
1082 gdb_byte buf[8];
1083 CORE_ADDR pc;
1084
1085 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1086 host_address_to_string (next_frame));
1087
1088 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1089 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1090
1091 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1092
1093 return pc;
1094 }
1095
1096
1097 static struct frame_id
1098 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1099 {
1100 CORE_ADDR pc, fp;
1101
1102 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1103
1104 pc = get_frame_pc (this_frame);
1105 fp = get_frame_register_unsigned
1106 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1107
1108 /* Make dummy frame ID unique by adding a constant. */
1109 return frame_id_build (fp + SP_ALIGNMENT, pc);
1110 }
1111
1112 /* Returns true, if instruction to execute next is unique to Xtensa Window
1113 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1114
1115 static int
1116 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1117 {
1118 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1119 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1120 unsigned int code;
1121
1122 if (byte_order == BFD_ENDIAN_BIG)
1123 {
1124 /* Check, if this is L32E or S32E. */
1125 code = insn & 0xf000ff00;
1126 if ((code == 0x00009000) || (code == 0x00009400))
1127 return 1;
1128 /* Check, if this is RFWU or RFWO. */
1129 code = insn & 0xffffff00;
1130 return ((code == 0x00430000) || (code == 0x00530000));
1131 }
1132 else
1133 {
1134 /* Check, if this is L32E or S32E. */
1135 code = insn & 0x00ff000f;
1136 if ((code == 0x090000) || (code == 0x490000))
1137 return 1;
1138 /* Check, if this is RFWU or RFWO. */
1139 code = insn & 0x00ffffff;
1140 return ((code == 0x00003400) || (code == 0x00003500));
1141 }
1142 }
1143
1144 /* Returns the best guess about which register is a frame pointer
1145 for the function containing CURRENT_PC. */
1146
1147 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1148 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1149
1150 static unsigned int
1151 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1152 {
1153 #define RETURN_FP goto done
1154
1155 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1156 CORE_ADDR start_addr;
1157 xtensa_isa isa;
1158 xtensa_insnbuf ins, slot;
1159 char ibuf[XTENSA_ISA_BSZ];
1160 CORE_ADDR ia, bt, ba;
1161 xtensa_format ifmt;
1162 int ilen, islots, is;
1163 xtensa_opcode opc;
1164 const char *opcname;
1165
1166 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1167 if (start_addr == 0)
1168 return fp_regnum;
1169
1170 if (!xtensa_default_isa)
1171 xtensa_default_isa = xtensa_isa_init (0, 0);
1172 isa = xtensa_default_isa;
1173 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1174 ins = xtensa_insnbuf_alloc (isa);
1175 slot = xtensa_insnbuf_alloc (isa);
1176 ba = 0;
1177
1178 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1179 {
1180 if (ia + xtensa_isa_maxlength (isa) > bt)
1181 {
1182 ba = ia;
1183 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1184 ? ba + XTENSA_ISA_BSZ : current_pc;
1185 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1186 RETURN_FP;
1187 }
1188
1189 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1190 ifmt = xtensa_format_decode (isa, ins);
1191 if (ifmt == XTENSA_UNDEFINED)
1192 RETURN_FP;
1193 ilen = xtensa_format_length (isa, ifmt);
1194 if (ilen == XTENSA_UNDEFINED)
1195 RETURN_FP;
1196 islots = xtensa_format_num_slots (isa, ifmt);
1197 if (islots == XTENSA_UNDEFINED)
1198 RETURN_FP;
1199
1200 for (is = 0; is < islots; ++is)
1201 {
1202 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1203 RETURN_FP;
1204
1205 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1206 if (opc == XTENSA_UNDEFINED)
1207 RETURN_FP;
1208
1209 opcname = xtensa_opcode_name (isa, opc);
1210
1211 if (strcasecmp (opcname, "mov.n") == 0
1212 || strcasecmp (opcname, "or") == 0)
1213 {
1214 unsigned int register_operand;
1215
1216 /* Possible candidate for setting frame pointer
1217 from A1. This is what we are looking for. */
1218
1219 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1220 is, slot, &register_operand) != 0)
1221 RETURN_FP;
1222 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1223 RETURN_FP;
1224 if (register_operand == 1) /* Mov{.n} FP A1. */
1225 {
1226 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1227 &register_operand) != 0)
1228 RETURN_FP;
1229 if (xtensa_operand_decode (isa, opc, 0,
1230 &register_operand) != 0)
1231 RETURN_FP;
1232
1233 fp_regnum
1234 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1235 RETURN_FP;
1236 }
1237 }
1238
1239 if (
1240 /* We have problems decoding the memory. */
1241 opcname == NULL
1242 || strcasecmp (opcname, "ill") == 0
1243 || strcasecmp (opcname, "ill.n") == 0
1244 /* Hit planted breakpoint. */
1245 || strcasecmp (opcname, "break") == 0
1246 || strcasecmp (opcname, "break.n") == 0
1247 /* Flow control instructions finish prologue. */
1248 || xtensa_opcode_is_branch (isa, opc) > 0
1249 || xtensa_opcode_is_jump (isa, opc) > 0
1250 || xtensa_opcode_is_loop (isa, opc) > 0
1251 || xtensa_opcode_is_call (isa, opc) > 0
1252 || strcasecmp (opcname, "simcall") == 0
1253 || strcasecmp (opcname, "syscall") == 0)
1254 /* Can not continue analysis. */
1255 RETURN_FP;
1256 }
1257 }
1258 done:
1259 xtensa_insnbuf_free(isa, slot);
1260 xtensa_insnbuf_free(isa, ins);
1261 return fp_regnum;
1262 }
1263
1264 /* The key values to identify the frame using "cache" are
1265
1266 cache->base = SP (or best guess about FP) of this frame;
1267 cache->pc = entry-PC (entry point of the frame function);
1268 cache->prev_sp = SP of the previous frame. */
1269
1270 static void
1271 call0_frame_cache (struct frame_info *this_frame,
1272 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1273
1274 static void
1275 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1276 xtensa_frame_cache_t *cache,
1277 CORE_ADDR pc);
1278
1279 static struct xtensa_frame_cache *
1280 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1281 {
1282 xtensa_frame_cache_t *cache;
1283 CORE_ADDR ra, wb, ws, pc, sp, ps;
1284 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1286 unsigned int fp_regnum;
1287 int windowed, ps_regnum;
1288
1289 if (*this_cache)
1290 return *this_cache;
1291
1292 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1293 ps_regnum = gdbarch_ps_regnum (gdbarch);
1294 ps = (ps_regnum >= 0
1295 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1296
1297 windowed = windowing_enabled (gdbarch, ps);
1298
1299 /* Get pristine xtensa-frame. */
1300 cache = xtensa_alloc_frame_cache (windowed);
1301 *this_cache = cache;
1302
1303 if (windowed)
1304 {
1305 char op1;
1306
1307 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1308 wb = get_frame_register_unsigned (this_frame,
1309 gdbarch_tdep (gdbarch)->wb_regnum);
1310 ws = get_frame_register_unsigned (this_frame,
1311 gdbarch_tdep (gdbarch)->ws_regnum);
1312
1313 op1 = read_memory_integer (pc, 1, byte_order);
1314 if (XTENSA_IS_ENTRY (gdbarch, op1))
1315 {
1316 int callinc = CALLINC (ps);
1317 ra = get_frame_register_unsigned
1318 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1319
1320 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1321 cache->wd.callsize = 0;
1322 cache->wd.wb = wb;
1323 cache->wd.ws = ws;
1324 cache->prev_sp = get_frame_register_unsigned
1325 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1326
1327 /* This only can be the outermost frame since we are
1328 just about to execute ENTRY. SP hasn't been set yet.
1329 We can assume any frame size, because it does not
1330 matter, and, let's fake frame base in cache. */
1331 cache->base = cache->prev_sp - 16;
1332
1333 cache->pc = pc;
1334 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1335 cache->ps = (ps & ~PS_CALLINC_MASK)
1336 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1337
1338 return cache;
1339 }
1340 else
1341 {
1342 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1343 ra = get_frame_register_unsigned (this_frame,
1344 gdbarch_tdep (gdbarch)->a0_base);
1345 cache->wd.callsize = WINSIZE (ra);
1346 cache->wd.wb = (wb - cache->wd.callsize / 4)
1347 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1348 cache->wd.ws = ws & ~(1 << wb);
1349
1350 cache->pc = get_frame_func (this_frame);
1351 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1352 cache->ps = (ps & ~PS_CALLINC_MASK)
1353 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1354 }
1355
1356 if (cache->wd.ws == 0)
1357 {
1358 int i;
1359
1360 /* Set A0...A3. */
1361 sp = get_frame_register_unsigned
1362 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1363
1364 for (i = 0; i < 4; i++, sp += 4)
1365 {
1366 cache->wd.aregs[i] = sp;
1367 }
1368
1369 if (cache->wd.callsize > 4)
1370 {
1371 /* Set A4...A7/A11. */
1372 /* Get the SP of the frame previous to the previous one.
1373 To achieve this, we have to dereference SP twice. */
1374 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1375 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1376 sp -= cache->wd.callsize * 4;
1377
1378 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1379 {
1380 cache->wd.aregs[i] = sp;
1381 }
1382 }
1383 }
1384
1385 if ((cache->prev_sp == 0) && ( ra != 0 ))
1386 /* If RA is equal to 0 this frame is an outermost frame. Leave
1387 cache->prev_sp unchanged marking the boundary of the frame stack. */
1388 {
1389 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1390 {
1391 /* Register window overflow already happened.
1392 We can read caller's SP from the proper spill loction. */
1393 sp = get_frame_register_unsigned
1394 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1395 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1396 }
1397 else
1398 {
1399 /* Read caller's frame SP directly from the previous window. */
1400 int regnum = arreg_number
1401 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1402 cache->wd.wb);
1403
1404 cache->prev_sp = xtensa_read_register (regnum);
1405 }
1406 }
1407 }
1408 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1409 {
1410 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1411
1412 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1413 /* Everything was set already, including cache->base. */
1414 return cache;
1415 }
1416 else /* Call0 framework. */
1417 {
1418 call0_frame_cache (this_frame, cache, pc);
1419 fp_regnum = cache->c0.fp_regnum;
1420 }
1421
1422 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1423
1424 return cache;
1425 }
1426
1427 static int xtensa_session_once_reported = 1;
1428
1429 /* Report a problem with prologue analysis while doing backtracing.
1430 But, do it only once to avoid annoyng repeated messages. */
1431
1432 static void
1433 warning_once (void)
1434 {
1435 if (xtensa_session_once_reported == 0)
1436 warning (_("\
1437 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1438 This message will not be repeated in this session.\n"));
1439
1440 xtensa_session_once_reported = 1;
1441 }
1442
1443
1444 static void
1445 xtensa_frame_this_id (struct frame_info *this_frame,
1446 void **this_cache,
1447 struct frame_id *this_id)
1448 {
1449 struct xtensa_frame_cache *cache =
1450 xtensa_frame_cache (this_frame, this_cache);
1451
1452 if (cache->prev_sp == 0)
1453 return;
1454
1455 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1456 }
1457
1458 static struct value *
1459 xtensa_frame_prev_register (struct frame_info *this_frame,
1460 void **this_cache,
1461 int regnum)
1462 {
1463 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1464 struct xtensa_frame_cache *cache;
1465 ULONGEST saved_reg = 0;
1466 int done = 1;
1467
1468 if (*this_cache == NULL)
1469 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1470 cache = *this_cache;
1471
1472 if (regnum ==gdbarch_pc_regnum (gdbarch))
1473 saved_reg = cache->ra;
1474 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1475 saved_reg = cache->prev_sp;
1476 else if (!cache->call0)
1477 {
1478 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1479 saved_reg = cache->wd.ws;
1480 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1481 saved_reg = cache->wd.wb;
1482 else if (regnum == gdbarch_ps_regnum (gdbarch))
1483 saved_reg = cache->ps;
1484 else
1485 done = 0;
1486 }
1487 else
1488 done = 0;
1489
1490 if (done)
1491 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1492
1493 if (!cache->call0) /* Windowed ABI. */
1494 {
1495 /* Convert A-register numbers to AR-register numbers,
1496 if we deal with A-register. */
1497 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1498 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1499 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1500
1501 /* Check, if we deal with AR-register saved on stack. */
1502 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1503 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1504 + gdbarch_tdep (gdbarch)->num_aregs))
1505 {
1506 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1507
1508 if (areg >= 0
1509 && areg < XTENSA_NUM_SAVED_AREGS
1510 && cache->wd.aregs[areg] != -1)
1511 return frame_unwind_got_memory (this_frame, regnum,
1512 cache->wd.aregs[areg]);
1513 }
1514 }
1515 else /* Call0 ABI. */
1516 {
1517 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1518 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1519 + C0_NREGS))
1520 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1521
1522 if (reg < C0_NREGS)
1523 {
1524 CORE_ADDR spe;
1525 int stkofs;
1526
1527 /* If register was saved in the prologue, retrieve it. */
1528 stkofs = cache->c0.c0_rt[reg].to_stk;
1529 if (stkofs != C0_NOSTK)
1530 {
1531 /* Determine SP on entry based on FP. */
1532 spe = cache->c0.c0_fp
1533 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1534
1535 return frame_unwind_got_memory (this_frame, regnum,
1536 spe + stkofs);
1537 }
1538 }
1539 }
1540
1541 /* All other registers have been either saved to
1542 the stack or are still alive in the processor. */
1543
1544 return frame_unwind_got_register (this_frame, regnum, regnum);
1545 }
1546
1547
1548 static const struct frame_unwind
1549 xtensa_unwind =
1550 {
1551 NORMAL_FRAME,
1552 xtensa_frame_this_id,
1553 xtensa_frame_prev_register,
1554 NULL,
1555 default_frame_sniffer
1556 };
1557
1558 static CORE_ADDR
1559 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1560 {
1561 struct xtensa_frame_cache *cache =
1562 xtensa_frame_cache (this_frame, this_cache);
1563
1564 return cache->base;
1565 }
1566
1567 static const struct frame_base
1568 xtensa_frame_base =
1569 {
1570 &xtensa_unwind,
1571 xtensa_frame_base_address,
1572 xtensa_frame_base_address,
1573 xtensa_frame_base_address
1574 };
1575
1576
1577 static void
1578 xtensa_extract_return_value (struct type *type,
1579 struct regcache *regcache,
1580 void *dst)
1581 {
1582 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1583 bfd_byte *valbuf = dst;
1584 int len = TYPE_LENGTH (type);
1585 ULONGEST pc, wb;
1586 int callsize, areg;
1587 int offset = 0;
1588
1589 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1590
1591 gdb_assert(len > 0);
1592
1593 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1594 {
1595 /* First, we have to find the caller window in the register file. */
1596 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1597 callsize = extract_call_winsize (gdbarch, pc);
1598
1599 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1600 if (len > (callsize > 8 ? 8 : 16))
1601 internal_error (__FILE__, __LINE__,
1602 _("cannot extract return value of %d bytes long"),
1603 len);
1604
1605 /* Get the register offset of the return
1606 register (A2) in the caller window. */
1607 regcache_raw_read_unsigned
1608 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1609 areg = arreg_number (gdbarch,
1610 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1611 }
1612 else
1613 {
1614 /* No windowing hardware - Call0 ABI. */
1615 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1616 }
1617
1618 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1619
1620 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1621 offset = 4 - len;
1622
1623 for (; len > 0; len -= 4, areg++, valbuf += 4)
1624 {
1625 if (len < 4)
1626 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1627 else
1628 regcache_raw_read (regcache, areg, valbuf);
1629 }
1630 }
1631
1632
1633 static void
1634 xtensa_store_return_value (struct type *type,
1635 struct regcache *regcache,
1636 const void *dst)
1637 {
1638 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1639 const bfd_byte *valbuf = dst;
1640 unsigned int areg;
1641 ULONGEST pc, wb;
1642 int callsize;
1643 int len = TYPE_LENGTH (type);
1644 int offset = 0;
1645
1646 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1647
1648 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1649 {
1650 regcache_raw_read_unsigned
1651 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1652 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1653 callsize = extract_call_winsize (gdbarch, pc);
1654
1655 if (len > (callsize > 8 ? 8 : 16))
1656 internal_error (__FILE__, __LINE__,
1657 _("unimplemented for this length: %d"),
1658 TYPE_LENGTH (type));
1659 areg = arreg_number (gdbarch,
1660 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1661
1662 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1663 callsize, (int) wb);
1664 }
1665 else
1666 {
1667 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1668 }
1669
1670 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1671 offset = 4 - len;
1672
1673 for (; len > 0; len -= 4, areg++, valbuf += 4)
1674 {
1675 if (len < 4)
1676 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1677 else
1678 regcache_raw_write (regcache, areg, valbuf);
1679 }
1680 }
1681
1682
1683 static enum return_value_convention
1684 xtensa_return_value (struct gdbarch *gdbarch,
1685 struct type *func_type,
1686 struct type *valtype,
1687 struct regcache *regcache,
1688 gdb_byte *readbuf,
1689 const gdb_byte *writebuf)
1690 {
1691 /* Structures up to 16 bytes are returned in registers. */
1692
1693 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1695 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1696 && TYPE_LENGTH (valtype) > 16);
1697
1698 if (struct_return)
1699 return RETURN_VALUE_STRUCT_CONVENTION;
1700
1701 DEBUGTRACE ("xtensa_return_value(...)\n");
1702
1703 if (writebuf != NULL)
1704 {
1705 xtensa_store_return_value (valtype, regcache, writebuf);
1706 }
1707
1708 if (readbuf != NULL)
1709 {
1710 gdb_assert (!struct_return);
1711 xtensa_extract_return_value (valtype, regcache, readbuf);
1712 }
1713 return RETURN_VALUE_REGISTER_CONVENTION;
1714 }
1715
1716
1717 /* DUMMY FRAME */
1718
1719 static CORE_ADDR
1720 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1721 struct value *function,
1722 struct regcache *regcache,
1723 CORE_ADDR bp_addr,
1724 int nargs,
1725 struct value **args,
1726 CORE_ADDR sp,
1727 int struct_return,
1728 CORE_ADDR struct_addr)
1729 {
1730 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1731 int i;
1732 int size, onstack_size;
1733 gdb_byte *buf = (gdb_byte *) alloca (16);
1734 CORE_ADDR ra, ps;
1735 struct argument_info
1736 {
1737 const bfd_byte *contents;
1738 int length;
1739 int onstack; /* onstack == 0 => in reg */
1740 int align; /* alignment */
1741 union
1742 {
1743 int offset; /* stack offset if on stack. */
1744 int regno; /* regno if in register. */
1745 } u;
1746 };
1747
1748 struct argument_info *arg_info =
1749 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1750
1751 CORE_ADDR osp = sp;
1752
1753 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1754
1755 if (xtensa_debug_level > 3)
1756 {
1757 int i;
1758 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1759 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1760 "struct_addr=0x%x\n",
1761 (int) sp, (int) struct_return, (int) struct_addr);
1762
1763 for (i = 0; i < nargs; i++)
1764 {
1765 struct value *arg = args[i];
1766 struct type *arg_type = check_typedef (value_type (arg));
1767 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1768 host_address_to_string (arg),
1769 TYPE_LENGTH (arg_type));
1770 switch (TYPE_CODE (arg_type))
1771 {
1772 case TYPE_CODE_INT:
1773 fprintf_unfiltered (gdb_stdlog, "int");
1774 break;
1775 case TYPE_CODE_STRUCT:
1776 fprintf_unfiltered (gdb_stdlog, "struct");
1777 break;
1778 default:
1779 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1780 break;
1781 }
1782 fprintf_unfiltered (gdb_stdlog, " %s\n",
1783 host_address_to_string (value_contents (arg)));
1784 }
1785 }
1786
1787 /* First loop: collect information.
1788 Cast into type_long. (This shouldn't happen often for C because
1789 GDB already does this earlier.) It's possible that GDB could
1790 do it all the time but it's harmless to leave this code here. */
1791
1792 size = 0;
1793 onstack_size = 0;
1794 i = 0;
1795
1796 if (struct_return)
1797 size = REGISTER_SIZE;
1798
1799 for (i = 0; i < nargs; i++)
1800 {
1801 struct argument_info *info = &arg_info[i];
1802 struct value *arg = args[i];
1803 struct type *arg_type = check_typedef (value_type (arg));
1804
1805 switch (TYPE_CODE (arg_type))
1806 {
1807 case TYPE_CODE_INT:
1808 case TYPE_CODE_BOOL:
1809 case TYPE_CODE_CHAR:
1810 case TYPE_CODE_RANGE:
1811 case TYPE_CODE_ENUM:
1812
1813 /* Cast argument to long if necessary as the mask does it too. */
1814 if (TYPE_LENGTH (arg_type)
1815 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1816 {
1817 arg_type = builtin_type (gdbarch)->builtin_long;
1818 arg = value_cast (arg_type, arg);
1819 }
1820 /* Aligment is equal to the type length for the basic types. */
1821 info->align = TYPE_LENGTH (arg_type);
1822 break;
1823
1824 case TYPE_CODE_FLT:
1825
1826 /* Align doubles correctly. */
1827 if (TYPE_LENGTH (arg_type)
1828 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1829 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1830 else
1831 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1832 break;
1833
1834 case TYPE_CODE_STRUCT:
1835 default:
1836 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1837 break;
1838 }
1839 info->length = TYPE_LENGTH (arg_type);
1840 info->contents = value_contents (arg);
1841
1842 /* Align size and onstack_size. */
1843 size = (size + info->align - 1) & ~(info->align - 1);
1844 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1845
1846 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1847 {
1848 info->onstack = 1;
1849 info->u.offset = onstack_size;
1850 onstack_size += info->length;
1851 }
1852 else
1853 {
1854 info->onstack = 0;
1855 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1856 }
1857 size += info->length;
1858 }
1859
1860 /* Adjust the stack pointer and align it. */
1861 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1862
1863 /* Simulate MOVSP, if Windowed ABI. */
1864 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1865 && (sp != osp))
1866 {
1867 read_memory (osp - 16, buf, 16);
1868 write_memory (sp - 16, buf, 16);
1869 }
1870
1871 /* Second Loop: Load arguments. */
1872
1873 if (struct_return)
1874 {
1875 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1876 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1877 }
1878
1879 for (i = 0; i < nargs; i++)
1880 {
1881 struct argument_info *info = &arg_info[i];
1882
1883 if (info->onstack)
1884 {
1885 int n = info->length;
1886 CORE_ADDR offset = sp + info->u.offset;
1887
1888 /* Odd-sized structs are aligned to the lower side of a memory
1889 word in big-endian mode and require a shift. This only
1890 applies for structures smaller than one word. */
1891
1892 if (n < REGISTER_SIZE
1893 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1894 offset += (REGISTER_SIZE - n);
1895
1896 write_memory (offset, info->contents, info->length);
1897
1898 }
1899 else
1900 {
1901 int n = info->length;
1902 const bfd_byte *cp = info->contents;
1903 int r = info->u.regno;
1904
1905 /* Odd-sized structs are aligned to the lower side of registers in
1906 big-endian mode and require a shift. The odd-sized leftover will
1907 be at the end. Note that this is only true for structures smaller
1908 than REGISTER_SIZE; for larger odd-sized structures the excess
1909 will be left-aligned in the register on both endiannesses. */
1910
1911 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1912 {
1913 ULONGEST v;
1914 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1915 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1916
1917 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1918 regcache_cooked_write (regcache, r, buf);
1919
1920 cp += REGISTER_SIZE;
1921 n -= REGISTER_SIZE;
1922 r++;
1923 }
1924 else
1925 while (n > 0)
1926 {
1927 regcache_cooked_write (regcache, r, cp);
1928
1929 cp += REGISTER_SIZE;
1930 n -= REGISTER_SIZE;
1931 r++;
1932 }
1933 }
1934 }
1935
1936 /* Set the return address of dummy frame to the dummy address.
1937 The return address for the current function (in A0) is
1938 saved in the dummy frame, so we can savely overwrite A0 here. */
1939
1940 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1941 {
1942 ULONGEST val;
1943
1944 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1945 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1946 ps = (unsigned long) val & ~0x00030000;
1947 regcache_cooked_write_unsigned
1948 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1949 regcache_cooked_write_unsigned (regcache,
1950 gdbarch_ps_regnum (gdbarch),
1951 ps | 0x00010000);
1952
1953 /* All the registers have been saved. After executing
1954 dummy call, they all will be restored. So it's safe
1955 to modify WINDOWSTART register to make it look like there
1956 is only one register window corresponding to WINDOWEBASE. */
1957
1958 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1959 regcache_cooked_write_unsigned
1960 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1961 1 << extract_unsigned_integer (buf, 4, byte_order));
1962 }
1963 else
1964 {
1965 /* Simulate CALL0: write RA into A0 register. */
1966 regcache_cooked_write_unsigned
1967 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1968 }
1969
1970 /* Set new stack pointer and return it. */
1971 regcache_cooked_write_unsigned (regcache,
1972 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1973 /* Make dummy frame ID unique by adding a constant. */
1974 return sp + SP_ALIGNMENT;
1975 }
1976
1977
1978 /* Return a breakpoint for the current location of PC. We always use
1979 the density version if we have density instructions (regardless of the
1980 current instruction at PC), and use regular instructions otherwise. */
1981
1982 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1983 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1984 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1985 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1986
1987 static const unsigned char *
1988 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1989 int *lenptr)
1990 {
1991 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1992 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1993 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1994 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1995
1996 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1997
1998 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1999 {
2000 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2001 {
2002 *lenptr = sizeof (density_big_breakpoint);
2003 return density_big_breakpoint;
2004 }
2005 else
2006 {
2007 *lenptr = sizeof (density_little_breakpoint);
2008 return density_little_breakpoint;
2009 }
2010 }
2011 else
2012 {
2013 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2014 {
2015 *lenptr = sizeof (big_breakpoint);
2016 return big_breakpoint;
2017 }
2018 else
2019 {
2020 *lenptr = sizeof (little_breakpoint);
2021 return little_breakpoint;
2022 }
2023 }
2024 }
2025
2026 /* Call0 ABI support routines. */
2027
2028 /* Return true, if PC points to "ret" or "ret.n". */
2029
2030 static int
2031 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2032 {
2033 #define RETURN_RET goto done
2034 xtensa_isa isa;
2035 xtensa_insnbuf ins, slot;
2036 char ibuf[XTENSA_ISA_BSZ];
2037 CORE_ADDR ia, bt, ba;
2038 xtensa_format ifmt;
2039 int ilen, islots, is;
2040 xtensa_opcode opc;
2041 const char *opcname;
2042 int found_ret = 0;
2043
2044 isa = xtensa_default_isa;
2045 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2046 ins = xtensa_insnbuf_alloc (isa);
2047 slot = xtensa_insnbuf_alloc (isa);
2048 ba = 0;
2049
2050 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2051 {
2052 if (ia + xtensa_isa_maxlength (isa) > bt)
2053 {
2054 ba = ia;
2055 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2056 ? ba + XTENSA_ISA_BSZ : finish_pc;
2057 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2058 RETURN_RET;
2059 }
2060
2061 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2062 ifmt = xtensa_format_decode (isa, ins);
2063 if (ifmt == XTENSA_UNDEFINED)
2064 RETURN_RET;
2065 ilen = xtensa_format_length (isa, ifmt);
2066 if (ilen == XTENSA_UNDEFINED)
2067 RETURN_RET;
2068 islots = xtensa_format_num_slots (isa, ifmt);
2069 if (islots == XTENSA_UNDEFINED)
2070 RETURN_RET;
2071
2072 for (is = 0; is < islots; ++is)
2073 {
2074 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2075 RETURN_RET;
2076
2077 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2078 if (opc == XTENSA_UNDEFINED)
2079 RETURN_RET;
2080
2081 opcname = xtensa_opcode_name (isa, opc);
2082
2083 if ((strcasecmp (opcname, "ret.n") == 0)
2084 || (strcasecmp (opcname, "ret") == 0))
2085 {
2086 found_ret = 1;
2087 RETURN_RET;
2088 }
2089 }
2090 }
2091 done:
2092 xtensa_insnbuf_free(isa, slot);
2093 xtensa_insnbuf_free(isa, ins);
2094 return found_ret;
2095 }
2096
2097 /* Call0 opcode class. Opcodes are preclassified according to what they
2098 mean for Call0 prologue analysis, and their number of significant operands.
2099 The purpose of this is to simplify prologue analysis by separating
2100 instruction decoding (libisa) from the semantics of prologue analysis. */
2101
2102 typedef enum
2103 {
2104 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2105 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2106 c0opc_flow, /* Flow control insn. */
2107 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2108 c0opc_break, /* Debugger software breakpoints. */
2109 c0opc_add, /* Adding two registers. */
2110 c0opc_addi, /* Adding a register and an immediate. */
2111 c0opc_and, /* Bitwise "and"-ing two registers. */
2112 c0opc_sub, /* Subtracting a register from a register. */
2113 c0opc_mov, /* Moving a register to a register. */
2114 c0opc_movi, /* Moving an immediate to a register. */
2115 c0opc_l32r, /* Loading a literal. */
2116 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2117 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2118 c0opc_l32e, /* L32E instruction. */
2119 c0opc_s32e, /* S32E instruction. */
2120 c0opc_rfwo, /* RFWO instruction. */
2121 c0opc_rfwu, /* RFWU instruction. */
2122 c0opc_NrOf /* Number of opcode classifications. */
2123 } xtensa_insn_kind;
2124
2125 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2126
2127 static int
2128 rwx_special_register (const char *opcname)
2129 {
2130 char ch = *opcname++;
2131
2132 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2133 return 0;
2134 if (*opcname++ != 's')
2135 return 0;
2136 if (*opcname++ != 'r')
2137 return 0;
2138 if (*opcname++ != '.')
2139 return 0;
2140
2141 return 1;
2142 }
2143
2144 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2145
2146 static xtensa_insn_kind
2147 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2148 {
2149 const char *opcname;
2150 xtensa_insn_kind opclass = c0opc_uninteresting;
2151
2152 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2153
2154 /* Get opcode name and handle special classifications. */
2155
2156 opcname = xtensa_opcode_name (isa, opc);
2157
2158 if (opcname == NULL
2159 || strcasecmp (opcname, "ill") == 0
2160 || strcasecmp (opcname, "ill.n") == 0)
2161 opclass = c0opc_illegal;
2162 else if (strcasecmp (opcname, "break") == 0
2163 || strcasecmp (opcname, "break.n") == 0)
2164 opclass = c0opc_break;
2165 else if (strcasecmp (opcname, "entry") == 0)
2166 opclass = c0opc_entry;
2167 else if (strcasecmp (opcname, "rfwo") == 0)
2168 opclass = c0opc_rfwo;
2169 else if (strcasecmp (opcname, "rfwu") == 0)
2170 opclass = c0opc_rfwu;
2171 else if (xtensa_opcode_is_branch (isa, opc) > 0
2172 || xtensa_opcode_is_jump (isa, opc) > 0
2173 || xtensa_opcode_is_loop (isa, opc) > 0
2174 || xtensa_opcode_is_call (isa, opc) > 0
2175 || strcasecmp (opcname, "simcall") == 0
2176 || strcasecmp (opcname, "syscall") == 0)
2177 opclass = c0opc_flow;
2178
2179 /* Also, classify specific opcodes that need to be tracked. */
2180 else if (strcasecmp (opcname, "add") == 0
2181 || strcasecmp (opcname, "add.n") == 0)
2182 opclass = c0opc_add;
2183 else if (strcasecmp (opcname, "and") == 0)
2184 opclass = c0opc_and;
2185 else if (strcasecmp (opcname, "addi") == 0
2186 || strcasecmp (opcname, "addi.n") == 0
2187 || strcasecmp (opcname, "addmi") == 0)
2188 opclass = c0opc_addi;
2189 else if (strcasecmp (opcname, "sub") == 0)
2190 opclass = c0opc_sub;
2191 else if (strcasecmp (opcname, "mov.n") == 0
2192 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2193 opclass = c0opc_mov;
2194 else if (strcasecmp (opcname, "movi") == 0
2195 || strcasecmp (opcname, "movi.n") == 0)
2196 opclass = c0opc_movi;
2197 else if (strcasecmp (opcname, "l32r") == 0)
2198 opclass = c0opc_l32r;
2199 else if (strcasecmp (opcname, "s32i") == 0
2200 || strcasecmp (opcname, "s32i.n") == 0)
2201 opclass = c0opc_s32i;
2202 else if (strcasecmp (opcname, "l32e") == 0)
2203 opclass = c0opc_l32e;
2204 else if (strcasecmp (opcname, "s32e") == 0)
2205 opclass = c0opc_s32e;
2206 else if (rwx_special_register (opcname))
2207 opclass = c0opc_rwxsr;
2208
2209 return opclass;
2210 }
2211
2212 /* Tracks register movement/mutation for a given operation, which may
2213 be within a bundle. Updates the destination register tracking info
2214 accordingly. The pc is needed only for pc-relative load instructions
2215 (eg. l32r). The SP register number is needed to identify stores to
2216 the stack frame. Returns 0, if analysis was succesfull, non-zero
2217 otherwise. */
2218
2219 static int
2220 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2221 xtensa_insn_kind opclass, int nods, unsigned odv[],
2222 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2223 {
2224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2225 unsigned litbase, litaddr, litval;
2226
2227 switch (opclass)
2228 {
2229 case c0opc_addi:
2230 /* 3 operands: dst, src, imm. */
2231 gdb_assert (nods == 3);
2232 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2233 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2234 break;
2235 case c0opc_add:
2236 /* 3 operands: dst, src1, src2. */
2237 gdb_assert (nods == 3);
2238 if (src[odv[1]].fr_reg == C0_CONST)
2239 {
2240 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2241 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2242 }
2243 else if (src[odv[2]].fr_reg == C0_CONST)
2244 {
2245 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2246 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2247 }
2248 else dst[odv[0]].fr_reg = C0_INEXP;
2249 break;
2250 case c0opc_and:
2251 /* 3 operands: dst, src1, src2. */
2252 gdb_assert (nods == 3);
2253 if (cache->c0.c0_fpalign == 0)
2254 {
2255 /* Handle dynamic stack alignment. */
2256 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2257 {
2258 if (src[odv[2]].fr_reg == C0_CONST)
2259 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2260 break;
2261 }
2262 else if ((src[odv[0]].fr_reg == spreg)
2263 && (src[odv[2]].fr_reg == spreg))
2264 {
2265 if (src[odv[1]].fr_reg == C0_CONST)
2266 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2267 break;
2268 }
2269 /* else fall through. */
2270 }
2271 if (src[odv[1]].fr_reg == C0_CONST)
2272 {
2273 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2274 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2275 }
2276 else if (src[odv[2]].fr_reg == C0_CONST)
2277 {
2278 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2279 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2280 }
2281 else dst[odv[0]].fr_reg = C0_INEXP;
2282 break;
2283 case c0opc_sub:
2284 /* 3 operands: dst, src1, src2. */
2285 gdb_assert (nods == 3);
2286 if (src[odv[2]].fr_reg == C0_CONST)
2287 {
2288 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2289 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2290 }
2291 else dst[odv[0]].fr_reg = C0_INEXP;
2292 break;
2293 case c0opc_mov:
2294 /* 2 operands: dst, src [, src]. */
2295 gdb_assert (nods == 2);
2296 /* First, check if it's a special case of saving unaligned SP
2297 to a spare register in case of dynamic stack adjustment.
2298 But, only do it one time. The second time could be initializing
2299 frame pointer. We don't want to overwrite the first one. */
2300 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2301 cache->c0.c0_old_sp = odv[0];
2302
2303 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2304 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2305 break;
2306 case c0opc_movi:
2307 /* 2 operands: dst, imm. */
2308 gdb_assert (nods == 2);
2309 dst[odv[0]].fr_reg = C0_CONST;
2310 dst[odv[0]].fr_ofs = odv[1];
2311 break;
2312 case c0opc_l32r:
2313 /* 2 operands: dst, literal offset. */
2314 gdb_assert (nods == 2);
2315 /* litbase = xtensa_get_litbase (pc); can be also used. */
2316 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2317 ? 0 : xtensa_read_register
2318 (gdbarch_tdep (gdbarch)->litbase_regnum);
2319 litaddr = litbase & 1
2320 ? (litbase & ~1) + (signed)odv[1]
2321 : (pc + 3 + (signed)odv[1]) & ~3;
2322 litval = read_memory_integer (litaddr, 4, byte_order);
2323 dst[odv[0]].fr_reg = C0_CONST;
2324 dst[odv[0]].fr_ofs = litval;
2325 break;
2326 case c0opc_s32i:
2327 /* 3 operands: value, base, offset. */
2328 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2329 /* First, check if it's a spill for saved unaligned SP,
2330 when dynamic stack adjustment was applied to this frame. */
2331 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2332 && (odv[1] == spreg) /* SP usage indicates spill. */
2333 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2334 cache->c0.c0_sp_ofs = odv[2];
2335
2336 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2337 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2338 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2339 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2340 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2341 {
2342 /* ISA encoding guarantees alignment. But, check it anyway. */
2343 gdb_assert ((odv[2] & 3) == 0);
2344 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2345 }
2346 break;
2347 /* If we end up inside Window Overflow / Underflow interrupt handler
2348 report an error because these handlers should have been handled
2349 already in a different way. */
2350 case c0opc_l32e:
2351 case c0opc_s32e:
2352 case c0opc_rfwo:
2353 case c0opc_rfwu:
2354 return 1;
2355 default:
2356 return 1;
2357 }
2358 return 0;
2359 }
2360
2361 /* Analyze prologue of the function at start address to determine if it uses
2362 the Call0 ABI, and if so track register moves and linear modifications
2363 in the prologue up to the PC or just beyond the prologue, whichever is
2364 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2365 prologue. The prologue may overlap non-prologue instructions but is
2366 guaranteed to end by the first flow-control instruction (jump, branch,
2367 call or return). Since an optimized function may move information around
2368 and change the stack frame arbitrarily during the prologue, the information
2369 is guaranteed valid only at the point in the function indicated by the PC.
2370 May be used to skip the prologue or identify the ABI, w/o tracking.
2371
2372 Returns: Address of first instruction after prologue, or PC (whichever
2373 is first), or 0, if decoding failed (in libisa).
2374 Input args:
2375 start Start address of function/prologue.
2376 pc Program counter to stop at. Use 0 to continue to end of prologue.
2377 If 0, avoids infinite run-on in corrupt code memory by bounding
2378 the scan to the end of the function if that can be determined.
2379 nregs Number of general registers to track.
2380 InOut args:
2381 cache Xtensa frame cache.
2382
2383 Note that these may produce useful results even if decoding fails
2384 because they begin with default assumptions that analysis may change. */
2385
2386 static CORE_ADDR
2387 call0_analyze_prologue (struct gdbarch *gdbarch,
2388 CORE_ADDR start, CORE_ADDR pc,
2389 int nregs, xtensa_frame_cache_t *cache)
2390 {
2391 CORE_ADDR ia; /* Current insn address in prologue. */
2392 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2393 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2394 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2395 xtensa_isa isa; /* libisa ISA handle. */
2396 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2397 xtensa_format ifmt; /* libisa instruction format. */
2398 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2399 xtensa_opcode opc; /* Opcode in current slot. */
2400 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2401 int nods; /* Opcode number of operands. */
2402 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2403 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2404 int j; /* General loop counter. */
2405 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2406 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2407 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2408
2409 struct symtab_and_line prologue_sal;
2410
2411 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2412 (int)start, (int)pc);
2413
2414 /* Try to limit the scan to the end of the function if a non-zero pc
2415 arg was not supplied to avoid probing beyond the end of valid memory.
2416 If memory is full of garbage that classifies as c0opc_uninteresting.
2417 If this fails (eg. if no symbols) pc ends up 0 as it was.
2418 Intialize the Call0 frame and register tracking info.
2419 Assume it's Call0 until an 'entry' instruction is encountered.
2420 Assume we may be in the prologue until we hit a flow control instr. */
2421
2422 rtmp = NULL;
2423 body_pc = UINT_MAX;
2424 end_pc = 0;
2425
2426 /* Find out, if we have an information about the prologue from DWARF. */
2427 prologue_sal = find_pc_line (start, 0);
2428 if (prologue_sal.line != 0) /* Found debug info. */
2429 body_pc = prologue_sal.end;
2430
2431 /* If we are going to analyze the prologue in general without knowing about
2432 the current PC, make the best assumtion for the end of the prologue. */
2433 if (pc == 0)
2434 {
2435 find_pc_partial_function (start, 0, NULL, &end_pc);
2436 body_pc = min (end_pc, body_pc);
2437 }
2438 else
2439 body_pc = min (pc, body_pc);
2440
2441 cache->call0 = 1;
2442 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2443
2444 if (!xtensa_default_isa)
2445 xtensa_default_isa = xtensa_isa_init (0, 0);
2446 isa = xtensa_default_isa;
2447 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2448 ins = xtensa_insnbuf_alloc (isa);
2449 slot = xtensa_insnbuf_alloc (isa);
2450
2451 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2452 {
2453 /* (Re)fill instruction buffer from memory if necessary, but do not
2454 read memory beyond PC to be sure we stay within text section
2455 (this protection only works if a non-zero pc is supplied). */
2456
2457 if (ia + xtensa_isa_maxlength (isa) > bt)
2458 {
2459 ba = ia;
2460 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2461 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2462 error (_("Unable to read target memory ..."));
2463 }
2464
2465 /* Decode format information. */
2466
2467 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2468 ifmt = xtensa_format_decode (isa, ins);
2469 if (ifmt == XTENSA_UNDEFINED)
2470 {
2471 fail = 1;
2472 goto done;
2473 }
2474 ilen = xtensa_format_length (isa, ifmt);
2475 if (ilen == XTENSA_UNDEFINED)
2476 {
2477 fail = 1;
2478 goto done;
2479 }
2480 islots = xtensa_format_num_slots (isa, ifmt);
2481 if (islots == XTENSA_UNDEFINED)
2482 {
2483 fail = 1;
2484 goto done;
2485 }
2486
2487 /* Analyze a bundle or a single instruction, using a snapshot of
2488 the register tracking info as input for the entire bundle so that
2489 register changes do not take effect within this bundle. */
2490
2491 for (j = 0; j < nregs; ++j)
2492 rtmp[j] = cache->c0.c0_rt[j];
2493
2494 for (is = 0; is < islots; ++is)
2495 {
2496 /* Decode a slot and classify the opcode. */
2497
2498 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2499 if (fail)
2500 goto done;
2501
2502 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2503 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2504 (unsigned)ia, opc);
2505 if (opc == XTENSA_UNDEFINED)
2506 opclass = c0opc_illegal;
2507 else
2508 opclass = call0_classify_opcode (isa, opc);
2509
2510 /* Decide whether to track this opcode, ignore it, or bail out. */
2511
2512 switch (opclass)
2513 {
2514 case c0opc_illegal:
2515 case c0opc_break:
2516 fail = 1;
2517 goto done;
2518
2519 case c0opc_uninteresting:
2520 continue;
2521
2522 case c0opc_flow: /* Flow control instructions stop analysis. */
2523 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2524 goto done;
2525
2526 case c0opc_entry:
2527 cache->call0 = 0;
2528 ia += ilen; /* Skip over 'entry' insn. */
2529 goto done;
2530
2531 default:
2532 cache->call0 = 1;
2533 }
2534
2535 /* Only expected opcodes should get this far. */
2536
2537 /* Extract and decode the operands. */
2538 nods = xtensa_opcode_num_operands (isa, opc);
2539 if (nods == XTENSA_UNDEFINED)
2540 {
2541 fail = 1;
2542 goto done;
2543 }
2544
2545 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2546 {
2547 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2548 is, slot, &odv[j]);
2549 if (fail)
2550 goto done;
2551
2552 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2553 if (fail)
2554 goto done;
2555 }
2556
2557 /* Check operands to verify use of 'mov' assembler macro. */
2558 if (opclass == c0opc_mov && nods == 3)
2559 {
2560 if (odv[2] == odv[1])
2561 {
2562 nods = 2;
2563 if ((odv[0] == 1) && (odv[1] != 1))
2564 /* OR A1, An, An , where n != 1.
2565 This means we are inside epilogue already. */
2566 goto done;
2567 }
2568 else
2569 {
2570 opclass = c0opc_uninteresting;
2571 continue;
2572 }
2573 }
2574
2575 /* Track register movement and modification for this operation. */
2576 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2577 opclass, nods, odv, ia, 1, cache);
2578 if (fail)
2579 goto done;
2580 }
2581 }
2582 done:
2583 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2584 (unsigned)ia, fail ? "failed" : "succeeded");
2585 xtensa_insnbuf_free(isa, slot);
2586 xtensa_insnbuf_free(isa, ins);
2587 return fail ? XTENSA_ISA_BADPC : ia;
2588 }
2589
2590 /* Initialize frame cache for the current frame in CALL0 ABI. */
2591
2592 static void
2593 call0_frame_cache (struct frame_info *this_frame,
2594 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2595 {
2596 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2598 CORE_ADDR start_pc; /* The beginning of the function. */
2599 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2600 CORE_ADDR sp, fp, ra;
2601 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2602
2603 sp = get_frame_register_unsigned
2604 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2605 fp = sp; /* Assume FP == SP until proven otherwise. */
2606
2607 /* Find the beginning of the prologue of the function containing the PC
2608 and analyze it up to the PC or the end of the prologue. */
2609
2610 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2611 {
2612 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2613
2614 if (body_pc == XTENSA_ISA_BADPC)
2615 {
2616 warning_once ();
2617 ra = 0;
2618 goto finish_frame_analysis;
2619 }
2620 }
2621
2622 /* Get the frame information and FP (if used) at the current PC.
2623 If PC is in the prologue, the prologue analysis is more reliable
2624 than DWARF info. We don't not know for sure, if PC is in the prologue,
2625 but we do know no calls have yet taken place, so we can almost
2626 certainly rely on the prologue analysis. */
2627
2628 if (body_pc <= pc)
2629 {
2630 /* Prologue analysis was successful up to the PC.
2631 It includes the cases when PC == START_PC. */
2632 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2633 /* c0_hasfp == true means there is a frame pointer because
2634 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2635 was derived from SP. Otherwise, it would be C0_FP. */
2636 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2637 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2638 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2639 }
2640 else /* No data from the prologue analysis. */
2641 {
2642 c0_hasfp = 0;
2643 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2644 c0_frmsz = 0;
2645 start_pc = pc;
2646 }
2647
2648 if (cache->c0.c0_fpalign)
2649 {
2650 /* This frame has a special prologue with a dynamic stack adjustment
2651 to force an alignment, which is bigger than standard 16 bytes. */
2652
2653 CORE_ADDR unaligned_sp;
2654
2655 if (cache->c0.c0_old_sp == C0_INEXP)
2656 /* This can't be. Prologue code should be consistent.
2657 Unaligned stack pointer should be saved in a spare register. */
2658 {
2659 warning_once ();
2660 ra = 0;
2661 goto finish_frame_analysis;
2662 }
2663
2664 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2665 /* Saved unaligned value of SP is kept in a register. */
2666 unaligned_sp = get_frame_register_unsigned
2667 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2668 else
2669 /* Get the value from stack. */
2670 unaligned_sp = (CORE_ADDR)
2671 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2672
2673 prev_sp = unaligned_sp + c0_frmsz;
2674 }
2675 else
2676 prev_sp = fp + c0_frmsz;
2677
2678 /* Frame size from debug info or prologue tracking does not account for
2679 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2680 if (c0_hasfp)
2681 {
2682 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2683
2684 /* Update the stack frame size. */
2685 c0_frmsz += fp - sp;
2686 }
2687
2688 /* Get the return address (RA) from the stack if saved,
2689 or try to get it from a register. */
2690
2691 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2692 if (to_stk != C0_NOSTK)
2693 ra = (CORE_ADDR)
2694 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2695 4, byte_order);
2696
2697 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2698 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2699 {
2700 /* Special case for terminating backtrace at a function that wants to
2701 be seen as the outermost one. Such a function will clear it's RA (A0)
2702 register to 0 in the prologue instead of saving its original value. */
2703 ra = 0;
2704 }
2705 else
2706 {
2707 /* RA was copied to another register or (before any function call) may
2708 still be in the original RA register. This is not always reliable:
2709 even in a leaf function, register tracking stops after prologue, and
2710 even in prologue, non-prologue instructions (not tracked) may overwrite
2711 RA or any register it was copied to. If likely in prologue or before
2712 any call, use retracking info and hope for the best (compiler should
2713 have saved RA in stack if not in a leaf function). If not in prologue,
2714 too bad. */
2715
2716 int i;
2717 for (i = 0;
2718 (i < C0_NREGS) &&
2719 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2720 ++i);
2721 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2722 i = C0_RA;
2723 if (i < C0_NREGS)
2724 {
2725 ra = get_frame_register_unsigned
2726 (this_frame,
2727 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2728 }
2729 else ra = 0;
2730 }
2731
2732 finish_frame_analysis:
2733 cache->pc = start_pc;
2734 cache->ra = ra;
2735 /* RA == 0 marks the outermost frame. Do not go past it. */
2736 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2737 cache->c0.fp_regnum = fp_regnum;
2738 cache->c0.c0_frmsz = c0_frmsz;
2739 cache->c0.c0_hasfp = c0_hasfp;
2740 cache->c0.c0_fp = fp;
2741 }
2742
2743 static CORE_ADDR a0_saved;
2744 static CORE_ADDR a7_saved;
2745 static CORE_ADDR a11_saved;
2746 static int a0_was_saved;
2747 static int a7_was_saved;
2748 static int a11_was_saved;
2749
2750 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2751 static void
2752 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2753 {
2754 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2755 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2756 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2757 unsigned int spilled_value
2758 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2759
2760 if ((at == 0) && !a0_was_saved)
2761 {
2762 a0_saved = xtensa_read_register (atreg);
2763 a0_was_saved = 1;
2764 }
2765 else if ((at == 7) && !a7_was_saved)
2766 {
2767 a7_saved = xtensa_read_register (atreg);
2768 a7_was_saved = 1;
2769 }
2770 else if ((at == 11) && !a11_was_saved)
2771 {
2772 a11_saved = xtensa_read_register (atreg);
2773 a11_was_saved = 1;
2774 }
2775
2776 xtensa_write_register (atreg, spilled_value);
2777 }
2778
2779 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2780 static void
2781 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2782 {
2783 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2784 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2785 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2786 ULONGEST spilled_value = xtensa_read_register (atreg);
2787
2788 write_memory_unsigned_integer (addr, 4,
2789 gdbarch_byte_order (gdbarch),
2790 spilled_value);
2791 }
2792
2793 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2794
2795 typedef enum
2796 {
2797 xtWindowOverflow,
2798 xtWindowUnderflow,
2799 xtNoExceptionHandler
2800 } xtensa_exception_handler_t;
2801
2802 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2803 Return type of Xtensa Window Interrupt Handler on success. */
2804 static xtensa_exception_handler_t
2805 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2806 {
2807 xtensa_isa isa;
2808 xtensa_insnbuf ins, slot;
2809 char ibuf[XTENSA_ISA_BSZ];
2810 CORE_ADDR ia, bt, ba;
2811 xtensa_format ifmt;
2812 int ilen, islots, is;
2813 xtensa_opcode opc;
2814 int insn_num = 0;
2815 int fail = 0;
2816 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2817
2818 int at, as, offset;
2819 int num_operands;
2820
2821 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2822 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2823
2824 isa = xtensa_default_isa;
2825 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2826 ins = xtensa_insnbuf_alloc (isa);
2827 slot = xtensa_insnbuf_alloc (isa);
2828 ba = 0;
2829 ia = current_pc;
2830 bt = ia;
2831
2832 a0_was_saved = 0;
2833 a7_was_saved = 0;
2834 a11_was_saved = 0;
2835
2836 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2837 {
2838 if (ia + xtensa_isa_maxlength (isa) > bt)
2839 {
2840 ba = ia;
2841 bt = (ba + XTENSA_ISA_BSZ);
2842 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2843 return xtNoExceptionHandler;
2844 }
2845 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2846 ifmt = xtensa_format_decode (isa, ins);
2847 if (ifmt == XTENSA_UNDEFINED)
2848 return xtNoExceptionHandler;
2849 ilen = xtensa_format_length (isa, ifmt);
2850 if (ilen == XTENSA_UNDEFINED)
2851 return xtNoExceptionHandler;
2852 islots = xtensa_format_num_slots (isa, ifmt);
2853 if (islots == XTENSA_UNDEFINED)
2854 return xtNoExceptionHandler;
2855 for (is = 0; is < islots; ++is)
2856 {
2857 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2858 return xtNoExceptionHandler;
2859 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2860 if (opc == XTENSA_UNDEFINED)
2861 return xtNoExceptionHandler;
2862 switch (call0_classify_opcode (isa, opc))
2863 {
2864 case c0opc_illegal:
2865 case c0opc_flow:
2866 case c0opc_entry:
2867 case c0opc_break:
2868 /* We expect none of them here. */
2869 return xtNoExceptionHandler;
2870 case c0opc_l32e:
2871 func = execute_l32e;
2872 break;
2873 case c0opc_s32e:
2874 func = execute_s32e;
2875 break;
2876 case c0opc_rfwo: /* RFWO. */
2877 /* Here, we return from WindowOverflow handler and,
2878 if we stopped at the very beginning, which means
2879 A0 was saved, we have to restore it now. */
2880 if (a0_was_saved)
2881 {
2882 int arreg = arreg_number (gdbarch,
2883 gdbarch_tdep (gdbarch)->a0_base,
2884 wb);
2885 xtensa_write_register (arreg, a0_saved);
2886 }
2887 return xtWindowOverflow;
2888 case c0opc_rfwu: /* RFWU. */
2889 /* Here, we return from WindowUnderflow handler.
2890 Let's see if either A7 or A11 has to be restored. */
2891 if (WindowUnderflow12)
2892 {
2893 if (a11_was_saved)
2894 {
2895 int arreg = arreg_number (gdbarch,
2896 gdbarch_tdep (gdbarch)->a0_base + 11,
2897 wb);
2898 xtensa_write_register (arreg, a11_saved);
2899 }
2900 }
2901 else if (a7_was_saved)
2902 {
2903 int arreg = arreg_number (gdbarch,
2904 gdbarch_tdep (gdbarch)->a0_base + 7,
2905 wb);
2906 xtensa_write_register (arreg, a7_saved);
2907 }
2908 return xtWindowUnderflow;
2909 default: /* Simply skip this insns. */
2910 continue;
2911 }
2912
2913 /* Decode arguments for L32E / S32E and simulate their execution. */
2914 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2915 return xtNoExceptionHandler;
2916 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2917 return xtNoExceptionHandler;
2918 if (xtensa_operand_decode (isa, opc, 0, &at))
2919 return xtNoExceptionHandler;
2920 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2921 return xtNoExceptionHandler;
2922 if (xtensa_operand_decode (isa, opc, 1, &as))
2923 return xtNoExceptionHandler;
2924 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2925 return xtNoExceptionHandler;
2926 if (xtensa_operand_decode (isa, opc, 2, &offset))
2927 return xtNoExceptionHandler;
2928
2929 (*func) (gdbarch, at, as, offset, wb);
2930 }
2931
2932 ia += ilen;
2933 }
2934 return xtNoExceptionHandler;
2935 }
2936
2937 /* Handle Window Overflow / Underflow exception frames. */
2938
2939 static void
2940 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2941 xtensa_frame_cache_t *cache,
2942 CORE_ADDR pc)
2943 {
2944 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2945 CORE_ADDR ps, wb, ws, ra;
2946 int epc1_regnum, i, regnum;
2947 xtensa_exception_handler_t eh_type;
2948
2949 /* Read PS, WB, and WS from the hardware. Note that PS register
2950 must be present, if Windowed ABI is supported. */
2951 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2952 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2953 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2954
2955 /* Execute all the remaining instructions from Window Interrupt Handler
2956 by simulating them on the remote protocol level. On return, set the
2957 type of Xtensa Window Interrupt Handler, or report an error. */
2958 eh_type = execute_code (gdbarch, pc, wb);
2959 if (eh_type == xtNoExceptionHandler)
2960 error (_("\
2961 Unable to decode Xtensa Window Interrupt Handler's code."));
2962
2963 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2964 cache->call0 = 0; /* It's Windowed ABI. */
2965
2966 /* All registers for the cached frame will be alive. */
2967 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2968 cache->wd.aregs[i] = -1;
2969
2970 if (eh_type == xtWindowOverflow)
2971 cache->wd.ws = ws ^ (1 << wb);
2972 else /* eh_type == xtWindowUnderflow. */
2973 cache->wd.ws = ws | (1 << wb);
2974
2975 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2976 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2977 cache->wd.wb);
2978 ra = xtensa_read_register (regnum);
2979 cache->wd.callsize = WINSIZE (ra);
2980 cache->prev_sp = xtensa_read_register (regnum + 1);
2981 /* Set regnum to a frame pointer of the frame being cached. */
2982 regnum = xtensa_scan_prologue (gdbarch, pc);
2983 regnum = arreg_number (gdbarch,
2984 gdbarch_tdep (gdbarch)->a0_base + regnum,
2985 cache->wd.wb);
2986 cache->base = get_frame_register_unsigned (this_frame, regnum);
2987
2988 /* Read PC of interrupted function from EPC1 register. */
2989 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2990 if (epc1_regnum < 0)
2991 error(_("Unable to read Xtensa register EPC1"));
2992 cache->ra = xtensa_read_register (epc1_regnum);
2993 cache->pc = get_frame_func (this_frame);
2994 }
2995
2996
2997 /* Skip function prologue.
2998
2999 Return the pc of the first instruction after prologue. GDB calls this to
3000 find the address of the first line of the function or (if there is no line
3001 number information) to skip the prologue for planting breakpoints on
3002 function entries. Use debug info (if present) or prologue analysis to skip
3003 the prologue to achieve reliable debugging behavior. For windowed ABI,
3004 only the 'entry' instruction is skipped. It is not strictly necessary to
3005 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
3006 backtrace at any point in the prologue, however certain potential hazards
3007 are avoided and a more "normal" debugging experience is ensured by
3008 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3009 For example, if we don't skip the prologue:
3010 - Some args may not yet have been saved to the stack where the debug
3011 info expects to find them (true anyway when only 'entry' is skipped);
3012 - Software breakpoints ('break' instrs) may not have been unplanted
3013 when the prologue analysis is done on initializing the frame cache,
3014 and breaks in the prologue will throw off the analysis.
3015
3016 If we have debug info ( line-number info, in particular ) we simply skip
3017 the code associated with the first function line effectively skipping
3018 the prologue code. It works even in cases like
3019
3020 int main()
3021 { int local_var = 1;
3022 ....
3023 }
3024
3025 because, for this source code, both Xtensa compilers will generate two
3026 separate entries ( with the same line number ) in dwarf line-number
3027 section to make sure there is a boundary between the prologue code and
3028 the rest of the function.
3029
3030 If there is no debug info, we need to analyze the code. */
3031
3032 /* #define DONT_SKIP_PROLOGUE */
3033
3034 static CORE_ADDR
3035 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3036 {
3037 struct symtab_and_line prologue_sal;
3038 CORE_ADDR body_pc;
3039
3040 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3041
3042 #if DONT_SKIP_PROLOGUE
3043 return start_pc;
3044 #endif
3045
3046 /* Try to find first body line from debug info. */
3047
3048 prologue_sal = find_pc_line (start_pc, 0);
3049 if (prologue_sal.line != 0) /* Found debug info. */
3050 {
3051 /* In Call0, it is possible to have a function with only one instruction
3052 ('ret') resulting from a one-line optimized function that does nothing.
3053 In that case, prologue_sal.end may actually point to the start of the
3054 next function in the text section, causing a breakpoint to be set at
3055 the wrong place. Check, if the end address is within a different
3056 function, and if so return the start PC. We know we have symbol
3057 information. */
3058
3059 CORE_ADDR end_func;
3060
3061 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3062 && call0_ret (start_pc, prologue_sal.end))
3063 return start_pc;
3064
3065 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3066 if (end_func != start_pc)
3067 return start_pc;
3068
3069 return prologue_sal.end;
3070 }
3071
3072 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3073 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3074 xtensa_alloc_frame_cache (0));
3075 return body_pc != 0 ? body_pc : start_pc;
3076 }
3077
3078 /* Verify the current configuration. */
3079 static void
3080 xtensa_verify_config (struct gdbarch *gdbarch)
3081 {
3082 struct ui_file *log;
3083 struct cleanup *cleanups;
3084 struct gdbarch_tdep *tdep;
3085 long length;
3086 char *buf;
3087
3088 tdep = gdbarch_tdep (gdbarch);
3089 log = mem_fileopen ();
3090 cleanups = make_cleanup_ui_file_delete (log);
3091
3092 /* Verify that we got a reasonable number of AREGS. */
3093 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3094 fprintf_unfiltered (log, _("\
3095 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3096 tdep->num_aregs);
3097
3098 /* Verify that certain registers exist. */
3099
3100 if (tdep->pc_regnum == -1)
3101 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3102 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3103 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3104
3105 if (tdep->isa_use_windowed_registers)
3106 {
3107 if (tdep->wb_regnum == -1)
3108 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3109 if (tdep->ws_regnum == -1)
3110 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3111 if (tdep->ar_base == -1)
3112 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3113 }
3114
3115 if (tdep->a0_base == -1)
3116 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3117
3118 buf = ui_file_xstrdup (log, &length);
3119 make_cleanup (xfree, buf);
3120 if (length > 0)
3121 internal_error (__FILE__, __LINE__,
3122 _("the following are invalid: %s"), buf);
3123 do_cleanups (cleanups);
3124 }
3125
3126
3127 /* Derive specific register numbers from the array of registers. */
3128
3129 static void
3130 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3131 {
3132 xtensa_register_t* rmap;
3133 int n, max_size = 4;
3134
3135 tdep->num_regs = 0;
3136 tdep->num_nopriv_regs = 0;
3137
3138 /* Special registers 0..255 (core). */
3139 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3140
3141 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3142 {
3143 if (rmap->target_number == 0x0020)
3144 tdep->pc_regnum = n;
3145 else if (rmap->target_number == 0x0100)
3146 tdep->ar_base = n;
3147 else if (rmap->target_number == 0x0000)
3148 tdep->a0_base = n;
3149 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3150 tdep->wb_regnum = n;
3151 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3152 tdep->ws_regnum = n;
3153 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3154 tdep->debugcause_regnum = n;
3155 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3156 tdep->exccause_regnum = n;
3157 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3158 tdep->excvaddr_regnum = n;
3159 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3160 tdep->lbeg_regnum = n;
3161 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3162 tdep->lend_regnum = n;
3163 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3164 tdep->lcount_regnum = n;
3165 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3166 tdep->sar_regnum = n;
3167 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3168 tdep->litbase_regnum = n;
3169 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3170 tdep->ps_regnum = n;
3171 #if 0
3172 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3173 tdep->interrupt_regnum = n;
3174 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3175 tdep->interrupt2_regnum = n;
3176 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3177 tdep->cpenable_regnum = n;
3178 #endif
3179
3180 if (rmap->byte_size > max_size)
3181 max_size = rmap->byte_size;
3182 if (rmap->mask != 0 && tdep->num_regs == 0)
3183 tdep->num_regs = n;
3184 /* Find out out how to deal with priveleged registers.
3185
3186 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3187 && tdep->num_nopriv_regs == 0)
3188 tdep->num_nopriv_regs = n;
3189 */
3190 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3191 && tdep->num_regs == 0)
3192 tdep->num_regs = n;
3193 }
3194
3195 /* Number of pseudo registers. */
3196 tdep->num_pseudo_regs = n - tdep->num_regs;
3197
3198 /* Empirically determined maximum sizes. */
3199 tdep->max_register_raw_size = max_size;
3200 tdep->max_register_virtual_size = max_size;
3201 }
3202
3203 /* Module "constructor" function. */
3204
3205 extern struct gdbarch_tdep xtensa_tdep;
3206
3207 static struct gdbarch *
3208 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3209 {
3210 struct gdbarch_tdep *tdep;
3211 struct gdbarch *gdbarch;
3212 struct xtensa_abi_handler *abi_handler;
3213
3214 DEBUGTRACE ("gdbarch_init()\n");
3215
3216 /* We have to set the byte order before we call gdbarch_alloc. */
3217 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3218
3219 tdep = &xtensa_tdep;
3220 gdbarch = gdbarch_alloc (&info, tdep);
3221 xtensa_derive_tdep (tdep);
3222
3223 /* Verify our configuration. */
3224 xtensa_verify_config (gdbarch);
3225 xtensa_session_once_reported = 0;
3226
3227 /* Pseudo-Register read/write. */
3228 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3229 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3230
3231 /* Set target information. */
3232 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3233 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3234 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3235 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3236 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3237
3238 /* Renumber registers for known formats (stabs and dwarf2). */
3239 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3240 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3241
3242 /* We provide our own function to get register information. */
3243 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3244 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3245
3246 /* To call functions from GDB using dummy frame. */
3247 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3248
3249 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3250
3251 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3252
3253 /* Advance PC across any prologue instructions to reach "real" code. */
3254 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3255
3256 /* Stack grows downward. */
3257 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3258
3259 /* Set breakpoints. */
3260 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3261
3262 /* After breakpoint instruction or illegal instruction, pc still
3263 points at break instruction, so don't decrement. */
3264 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3265
3266 /* We don't skip args. */
3267 set_gdbarch_frame_args_skip (gdbarch, 0);
3268
3269 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3270
3271 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3272
3273 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3274
3275 /* Frame handling. */
3276 frame_base_set_default (gdbarch, &xtensa_frame_base);
3277 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3278 dwarf2_append_unwinders (gdbarch);
3279
3280 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3281
3282 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3283
3284 xtensa_add_reggroups (gdbarch);
3285 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3286
3287 set_gdbarch_regset_from_core_section (gdbarch,
3288 xtensa_regset_from_core_section);
3289
3290 set_solib_svr4_fetch_link_map_offsets
3291 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3292
3293 return gdbarch;
3294 }
3295
3296 static void
3297 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3298 {
3299 error (_("xtensa_dump_tdep(): not implemented"));
3300 }
3301
3302 /* Provide a prototype to silence -Wmissing-prototypes. */
3303 extern initialize_file_ftype _initialize_xtensa_tdep;
3304
3305 void
3306 _initialize_xtensa_tdep (void)
3307 {
3308 struct cmd_list_element *c;
3309
3310 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3311 xtensa_init_reggroups ();
3312
3313 add_setshow_zinteger_cmd ("xtensa",
3314 class_maintenance,
3315 &xtensa_debug_level,
3316 _("Set Xtensa debugging."),
3317 _("Show Xtensa debugging."), _("\
3318 When non-zero, Xtensa-specific debugging is enabled. \
3319 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3320 NULL,
3321 NULL,
3322 &setdebuglist, &showdebuglist);
3323 }
This page took 0.111966 seconds and 5 git commands to generate.