s/get_regcache_arch (regcache)/regcache->arch ()/g
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54 #include <algorithm>
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
124
125 static int
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127 {
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 }
134
135 /* Convert a live A-register number to the corresponding AR-register
136 number. */
137 static int
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 int arreg;
142
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
146
147 return arreg + tdep->ar_base;
148 }
149
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152 static int
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
163 }
164
165 /* Read Xtensa register directly from the hardware. */
166 static unsigned long
167 xtensa_read_register (int regnum)
168 {
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173 }
174
175 /* Write Xtensa register directly to the hardware. */
176 static void
177 xtensa_write_register (int regnum, ULONGEST value)
178 {
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 }
181
182 /* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193 static int
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
195 {
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
197 int winsize = 4;
198 int insn;
199 gdb_byte buf[4];
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
215 if (byte_order == BFD_ENDIAN_LITTLE)
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
224 }
225 return winsize;
226 }
227
228
229 /* REGISTER INFORMATION */
230
231 /* Find register by name. */
232 static int
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
234 {
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245 }
246
247 /* Returns the name of a register. */
248 static const char *
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
250 {
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
255
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258 }
259
260 /* Return the type of a register. Create a new type, if necessary. */
261
262 static struct type *
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
273
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
277
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
281 {
282 xtensa_register_t* reg = &tdep->regmap[regnum];
283
284 /* Set ctype for this register (only the first time). */
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
291 /* We always use the memory representation,
292 even if the register width is smaller. */
293 switch (size)
294 {
295 case 1:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 break;
298
299 case 2:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 break;
302
303 case 4:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 break;
306
307 case 8:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 break;
310
311 case 16:
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 break;
314
315 default:
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
322 char *name = xstrprintf ("int%d", size * 8);
323
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
327 tp->size = size;
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, name);
330 xfree (name);
331 }
332
333 reg->ctype = tp->virtual_type;
334 }
335 }
336 return reg->ctype;
337 }
338
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 return 0;
341 }
342
343
344 /* Return the 'local' register number for stubs, dwarf2, etc.
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
347
348 static int
349 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
350 {
351 int i;
352
353 if (regnum >= 0 && regnum < 16)
354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
355
356 for (i = 0;
357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
358 i++)
359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
360 return i;
361
362 return -1;
363 }
364
365
366 /* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
370
371 static void
372 xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
374 {
375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
376 const xtensa_mask_t *mask = reg->mask;
377
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
380
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
383
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
386 int i, r;
387
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
389
390 /* Copy the masked register to host byte-order. */
391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
392 for (i = 0; i < bytesize; i++)
393 {
394 mem >>= 8;
395 mem |= (buffer[bytesize - i - 1] << 24);
396 if ((i & 3) == 3)
397 *ptr++ = mem;
398 }
399 else
400 for (i = 0; i < bytesize; i++)
401 {
402 mem >>= 8;
403 mem |= (buffer[i] << 24);
404 if ((i & 3) == 3)
405 *ptr++ = mem;
406 }
407
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
411
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
413 ptr = value;
414 mem = *ptr;
415
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
418 {
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
422
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
425
426 if (shift >= 32)
427 {
428 mem = *(++ptr);
429 shift -= 32;
430 bitsize -= 32;
431
432 if (shift > 0)
433 regval |= mem << (size - shift);
434 }
435
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
439 {
440 /* Don't overwrite the unmasked areas. */
441 ULONGEST old_val;
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
443 m = 0xffffffff >> (32 - size) << start;
444 regval <<= start;
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
447 }
448 }
449 }
450
451
452 /* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
454
455 static enum register_status
456 xtensa_register_read_masked (struct regcache *regcache,
457 xtensa_register_t *reg, gdb_byte *buffer)
458 {
459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
460 const xtensa_mask_t *mask = reg->mask;
461
462 int shift = 0;
463 int start, size;
464
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
467
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
470 int i;
471
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
474
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
477 {
478 int r = mask->mask[i].reg_num;
479 if (r >= 0)
480 {
481 enum register_status status;
482 ULONGEST val;
483
484 status = regcache_cooked_read_unsigned (regcache, r, &val);
485 if (status != REG_VALID)
486 return status;
487 regval = (unsigned int) val;
488 }
489 else
490 regval = 0;
491
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
494
495 regval >>= start;
496
497 if (size < 32)
498 regval &= (0xffffffff >> (32 - size));
499
500 mem |= regval << shift;
501
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
504
505 if (shift >= 32)
506 {
507 *ptr++ = mem;
508 bitsize -= 32;
509 shift -= 32;
510
511 if (shift == 0)
512 mem = 0;
513 else
514 mem = regval >> (size - shift);
515 }
516 }
517
518 if (shift > 0)
519 *ptr = mem;
520
521 /* Copy value to target byte order. */
522 ptr = value;
523 mem = *ptr;
524
525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
526 for (i = 0; i < bytesize; i++)
527 {
528 if ((i & 3) == 0)
529 mem = *ptr++;
530 buffer[bytesize - i - 1] = mem & 0xff;
531 mem >>= 8;
532 }
533 else
534 for (i = 0; i < bytesize; i++)
535 {
536 if ((i & 3) == 0)
537 mem = *ptr++;
538 buffer[i] = mem & 0xff;
539 mem >>= 8;
540 }
541
542 return REG_VALID;
543 }
544
545
546 /* Read pseudo registers. */
547
548 static enum register_status
549 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
550 struct regcache *regcache,
551 int regnum,
552 gdb_byte *buffer)
553 {
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555
556 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
557 regnum, xtensa_register_name (gdbarch, regnum));
558
559 /* Read aliases a0..a15, if this is a Windowed ABI. */
560 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
561 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
562 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
563 {
564 ULONGEST value;
565 enum register_status status;
566
567 status = regcache_raw_read_unsigned (regcache,
568 gdbarch_tdep (gdbarch)->wb_regnum,
569 &value);
570 if (status != REG_VALID)
571 return status;
572 regnum = arreg_number (gdbarch, regnum, value);
573 }
574
575 /* We can always read non-pseudo registers. */
576 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
577 return regcache_raw_read (regcache, regnum, buffer);
578
579 /* We have to find out how to deal with priveleged registers.
580 Let's treat them as pseudo-registers, but we cannot read/write them. */
581
582 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
583 || regnum < gdbarch_tdep (gdbarch)->a0_base)
584 {
585 buffer[0] = (gdb_byte)0;
586 buffer[1] = (gdb_byte)0;
587 buffer[2] = (gdb_byte)0;
588 buffer[3] = (gdb_byte)0;
589 return REG_VALID;
590 }
591 /* Pseudo registers. */
592 else if (regnum >= 0
593 && regnum < gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch))
595 {
596 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
597 xtensa_register_type_t type = reg->type;
598 int flags = gdbarch_tdep (gdbarch)->target_flags;
599
600 /* We cannot read Unknown or Unmapped registers. */
601 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
602 {
603 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
604 {
605 warning (_("cannot read register %s"),
606 xtensa_register_name (gdbarch, regnum));
607 return REG_VALID;
608 }
609 }
610
611 /* Some targets cannot read TIE register files. */
612 else if (type == xtRegisterTypeTieRegfile)
613 {
614 /* Use 'fetch' to get register? */
615 if (flags & xtTargetFlagsUseFetchStore)
616 {
617 warning (_("cannot read register"));
618 return REG_VALID;
619 }
620
621 /* On some targets (esp. simulators), we can always read the reg. */
622 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
623 {
624 warning (_("cannot read register"));
625 return REG_VALID;
626 }
627 }
628
629 /* We can always read mapped registers. */
630 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
631 return xtensa_register_read_masked (regcache, reg, buffer);
632
633 /* Assume that we can read the register. */
634 return regcache_raw_read (regcache, regnum, buffer);
635 }
636 else
637 internal_error (__FILE__, __LINE__,
638 _("invalid register number %d"), regnum);
639 }
640
641
642 /* Write pseudo registers. */
643
644 static void
645 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
646 struct regcache *regcache,
647 int regnum,
648 const gdb_byte *buffer)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
653 regnum, xtensa_register_name (gdbarch, regnum));
654
655 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
656 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
657 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
658 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
659 {
660 ULONGEST value;
661 regcache_raw_read_unsigned (regcache,
662 gdbarch_tdep (gdbarch)->wb_regnum, &value);
663 regnum = arreg_number (gdbarch, regnum, value);
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
670
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
678 /* Pseudo registers. */
679 else if (regnum >= 0
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
682 {
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
686
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
721 xtensa_register_write_masked (regcache, reg, buffer);
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731 }
732
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737
738 static void
739 xtensa_init_reggroups (void)
740 {
741 int i;
742
743 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
744 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
745 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
746
747 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
748 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
749 }
750
751 static void
752 xtensa_add_reggroups (struct gdbarch *gdbarch)
753 {
754 int i;
755
756 /* Predefined groups. */
757 reggroup_add (gdbarch, all_reggroup);
758 reggroup_add (gdbarch, save_reggroup);
759 reggroup_add (gdbarch, restore_reggroup);
760 reggroup_add (gdbarch, system_reggroup);
761 reggroup_add (gdbarch, vector_reggroup);
762 reggroup_add (gdbarch, general_reggroup);
763 reggroup_add (gdbarch, float_reggroup);
764
765 /* Xtensa-specific groups. */
766 reggroup_add (gdbarch, xtensa_ar_reggroup);
767 reggroup_add (gdbarch, xtensa_user_reggroup);
768 reggroup_add (gdbarch, xtensa_vectra_reggroup);
769
770 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
771 reggroup_add (gdbarch, xtensa_cp[i]);
772 }
773
774 static int
775 xtensa_coprocessor_register_group (struct reggroup *group)
776 {
777 int i;
778
779 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
780 if (group == xtensa_cp[i])
781 return i;
782
783 return -1;
784 }
785
786 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
787 | XTENSA_REGISTER_FLAGS_WRITABLE \
788 | XTENSA_REGISTER_FLAGS_VOLATILE)
789
790 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE)
792
793 static int
794 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
795 int regnum,
796 struct reggroup *group)
797 {
798 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
799 xtensa_register_type_t type = reg->type;
800 xtensa_register_group_t rg = reg->group;
801 int cp_number;
802
803 if (group == save_reggroup)
804 /* Every single register should be included into the list of registers
805 to be watched for changes while using -data-list-changed-registers. */
806 return 1;
807
808 /* First, skip registers that are not visible to this target
809 (unknown and unmapped registers when not using ISS). */
810
811 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
812 return 0;
813 if (group == all_reggroup)
814 return 1;
815 if (group == xtensa_ar_reggroup)
816 return rg & xtRegisterGroupAddrReg;
817 if (group == xtensa_user_reggroup)
818 return rg & xtRegisterGroupUser;
819 if (group == float_reggroup)
820 return rg & xtRegisterGroupFloat;
821 if (group == general_reggroup)
822 return rg & xtRegisterGroupGeneral;
823 if (group == system_reggroup)
824 return rg & xtRegisterGroupState;
825 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
826 return rg & xtRegisterGroupVectra;
827 if (group == restore_reggroup)
828 return (regnum < gdbarch_num_regs (gdbarch)
829 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
830 cp_number = xtensa_coprocessor_register_group (group);
831 if (cp_number >= 0)
832 return rg & (xtRegisterGroupCP0 << cp_number);
833 else
834 return 1;
835 }
836
837
838 /* Supply register REGNUM from the buffer specified by GREGS and LEN
839 in the general-purpose register set REGSET to register cache
840 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
841
842 static void
843 xtensa_supply_gregset (const struct regset *regset,
844 struct regcache *rc,
845 int regnum,
846 const void *gregs,
847 size_t len)
848 {
849 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
850 struct gdbarch *gdbarch = rc->arch ();
851 int i;
852
853 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
854
855 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
856 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
857 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
859 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
861 (char *) &regs->windowbase);
862 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
863 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
864 (char *) &regs->windowstart);
865 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
866 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
867 (char *) &regs->lbeg);
868 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
869 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
870 (char *) &regs->lend);
871 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
872 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
873 (char *) &regs->lcount);
874 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
875 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
876 (char *) &regs->sar);
877 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
878 && regnum < gdbarch_tdep (gdbarch)->ar_base
879 + gdbarch_tdep (gdbarch)->num_aregs)
880 regcache_raw_supply (rc, regnum,
881 (char *) &regs->ar[regnum - gdbarch_tdep
882 (gdbarch)->ar_base]);
883 else if (regnum == -1)
884 {
885 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
886 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
887 (char *) &regs->ar[i]);
888 }
889 }
890
891
892 /* Xtensa register set. */
893
894 static struct regset
895 xtensa_gregset =
896 {
897 NULL,
898 xtensa_supply_gregset
899 };
900
901
902 /* Iterate over supported core file register note sections. */
903
904 static void
905 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
906 iterate_over_regset_sections_cb *cb,
907 void *cb_data,
908 const struct regcache *regcache)
909 {
910 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
911
912 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
913 NULL, cb_data);
914 }
915
916
917 /* Handling frames. */
918
919 /* Number of registers to save in case of Windowed ABI. */
920 #define XTENSA_NUM_SAVED_AREGS 12
921
922 /* Frame cache part for Windowed ABI. */
923 typedef struct xtensa_windowed_frame_cache
924 {
925 int wb; /* WINDOWBASE of the previous frame. */
926 int callsize; /* Call size of this frame. */
927 int ws; /* WINDOWSTART of the previous frame. It keeps track of
928 life windows only. If there is no bit set for the
929 window, that means it had been already spilled
930 because of window overflow. */
931
932 /* Addresses of spilled A-registers.
933 AREGS[i] == -1, if corresponding AR is alive. */
934 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
935 } xtensa_windowed_frame_cache_t;
936
937 /* Call0 ABI Definitions. */
938
939 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
940 analysis. */
941 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
942 #define C0_SP 1 /* Register used as SP. */
943 #define C0_FP 15 /* Register used as FP. */
944 #define C0_RA 0 /* Register used as return address. */
945 #define C0_ARGS 2 /* Register used as first arg/retval. */
946 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
947
948 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
949 A-register where the current content of the reg came from (in terms
950 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
951 mean that the orignal content of the register was saved to the stack.
952 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
953 know where SP will end up until the entire prologue has been analyzed. */
954
955 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
956 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
957 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
958
959 extern xtensa_isa xtensa_default_isa;
960
961 typedef struct xtensa_c0reg
962 {
963 int fr_reg; /* original register from which register content
964 is derived, or C0_CONST, or C0_INEXP. */
965 int fr_ofs; /* constant offset from reg, or immediate value. */
966 int to_stk; /* offset from original SP to register (4-byte aligned),
967 or C0_NOSTK if register has not been saved. */
968 } xtensa_c0reg_t;
969
970 /* Frame cache part for Call0 ABI. */
971 typedef struct xtensa_call0_frame_cache
972 {
973 int c0_frmsz; /* Stack frame size. */
974 int c0_hasfp; /* Current frame uses frame pointer. */
975 int fp_regnum; /* A-register used as FP. */
976 int c0_fp; /* Actual value of frame pointer. */
977 int c0_fpalign; /* Dinamic adjustment for the stack
978 pointer. It's an AND mask. Zero,
979 if alignment was not adjusted. */
980 int c0_old_sp; /* In case of dynamic adjustment, it is
981 a register holding unaligned sp.
982 C0_INEXP, when undefined. */
983 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
984 stack offset. C0_NOSTK otherwise. */
985
986 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
987 } xtensa_call0_frame_cache_t;
988
989 typedef struct xtensa_frame_cache
990 {
991 CORE_ADDR base; /* Stack pointer of this frame. */
992 CORE_ADDR pc; /* PC of this frame at the function entry point. */
993 CORE_ADDR ra; /* The raw return address of this frame. */
994 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
995 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
996 int call0; /* It's a call0 framework (else windowed). */
997 union
998 {
999 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1000 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1001 };
1002 } xtensa_frame_cache_t;
1003
1004
1005 static struct xtensa_frame_cache *
1006 xtensa_alloc_frame_cache (int windowed)
1007 {
1008 xtensa_frame_cache_t *cache;
1009 int i;
1010
1011 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1012
1013 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1014
1015 cache->base = 0;
1016 cache->pc = 0;
1017 cache->ra = 0;
1018 cache->ps = 0;
1019 cache->prev_sp = 0;
1020 cache->call0 = !windowed;
1021 if (cache->call0)
1022 {
1023 cache->c0.c0_frmsz = -1;
1024 cache->c0.c0_hasfp = 0;
1025 cache->c0.fp_regnum = -1;
1026 cache->c0.c0_fp = -1;
1027 cache->c0.c0_fpalign = 0;
1028 cache->c0.c0_old_sp = C0_INEXP;
1029 cache->c0.c0_sp_ofs = C0_NOSTK;
1030
1031 for (i = 0; i < C0_NREGS; i++)
1032 {
1033 cache->c0.c0_rt[i].fr_reg = i;
1034 cache->c0.c0_rt[i].fr_ofs = 0;
1035 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1036 }
1037 }
1038 else
1039 {
1040 cache->wd.wb = 0;
1041 cache->wd.ws = 0;
1042 cache->wd.callsize = -1;
1043
1044 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1045 cache->wd.aregs[i] = -1;
1046 }
1047 return cache;
1048 }
1049
1050
1051 static CORE_ADDR
1052 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1053 {
1054 return address & ~15;
1055 }
1056
1057
1058 static CORE_ADDR
1059 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1060 {
1061 gdb_byte buf[8];
1062 CORE_ADDR pc;
1063
1064 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1065 host_address_to_string (next_frame));
1066
1067 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1068 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1069
1070 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1071
1072 return pc;
1073 }
1074
1075
1076 static struct frame_id
1077 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1078 {
1079 CORE_ADDR pc, fp;
1080
1081 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1082
1083 pc = get_frame_pc (this_frame);
1084 fp = get_frame_register_unsigned
1085 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1086
1087 /* Make dummy frame ID unique by adding a constant. */
1088 return frame_id_build (fp + SP_ALIGNMENT, pc);
1089 }
1090
1091 /* Returns true, if instruction to execute next is unique to Xtensa Window
1092 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1093
1094 static int
1095 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1096 {
1097 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1098 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1099 unsigned int code;
1100
1101 if (byte_order == BFD_ENDIAN_BIG)
1102 {
1103 /* Check, if this is L32E or S32E. */
1104 code = insn & 0xf000ff00;
1105 if ((code == 0x00009000) || (code == 0x00009400))
1106 return 1;
1107 /* Check, if this is RFWU or RFWO. */
1108 code = insn & 0xffffff00;
1109 return ((code == 0x00430000) || (code == 0x00530000));
1110 }
1111 else
1112 {
1113 /* Check, if this is L32E or S32E. */
1114 code = insn & 0x00ff000f;
1115 if ((code == 0x090000) || (code == 0x490000))
1116 return 1;
1117 /* Check, if this is RFWU or RFWO. */
1118 code = insn & 0x00ffffff;
1119 return ((code == 0x00003400) || (code == 0x00003500));
1120 }
1121 }
1122
1123 /* Returns the best guess about which register is a frame pointer
1124 for the function containing CURRENT_PC. */
1125
1126 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1127 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1128
1129 static unsigned int
1130 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1131 {
1132 #define RETURN_FP goto done
1133
1134 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1135 CORE_ADDR start_addr;
1136 xtensa_isa isa;
1137 xtensa_insnbuf ins, slot;
1138 gdb_byte ibuf[XTENSA_ISA_BSZ];
1139 CORE_ADDR ia, bt, ba;
1140 xtensa_format ifmt;
1141 int ilen, islots, is;
1142 xtensa_opcode opc;
1143 const char *opcname;
1144
1145 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1146 if (start_addr == 0)
1147 return fp_regnum;
1148
1149 isa = xtensa_default_isa;
1150 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1151 ins = xtensa_insnbuf_alloc (isa);
1152 slot = xtensa_insnbuf_alloc (isa);
1153 ba = 0;
1154
1155 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1156 {
1157 if (ia + xtensa_isa_maxlength (isa) > bt)
1158 {
1159 ba = ia;
1160 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1161 ? ba + XTENSA_ISA_BSZ : current_pc;
1162 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1163 RETURN_FP;
1164 }
1165
1166 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1167 ifmt = xtensa_format_decode (isa, ins);
1168 if (ifmt == XTENSA_UNDEFINED)
1169 RETURN_FP;
1170 ilen = xtensa_format_length (isa, ifmt);
1171 if (ilen == XTENSA_UNDEFINED)
1172 RETURN_FP;
1173 islots = xtensa_format_num_slots (isa, ifmt);
1174 if (islots == XTENSA_UNDEFINED)
1175 RETURN_FP;
1176
1177 for (is = 0; is < islots; ++is)
1178 {
1179 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1180 RETURN_FP;
1181
1182 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1183 if (opc == XTENSA_UNDEFINED)
1184 RETURN_FP;
1185
1186 opcname = xtensa_opcode_name (isa, opc);
1187
1188 if (strcasecmp (opcname, "mov.n") == 0
1189 || strcasecmp (opcname, "or") == 0)
1190 {
1191 unsigned int register_operand;
1192
1193 /* Possible candidate for setting frame pointer
1194 from A1. This is what we are looking for. */
1195
1196 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1197 is, slot, &register_operand) != 0)
1198 RETURN_FP;
1199 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1200 RETURN_FP;
1201 if (register_operand == 1) /* Mov{.n} FP A1. */
1202 {
1203 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1204 &register_operand) != 0)
1205 RETURN_FP;
1206 if (xtensa_operand_decode (isa, opc, 0,
1207 &register_operand) != 0)
1208 RETURN_FP;
1209
1210 fp_regnum
1211 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1212 RETURN_FP;
1213 }
1214 }
1215
1216 if (
1217 /* We have problems decoding the memory. */
1218 opcname == NULL
1219 || strcasecmp (opcname, "ill") == 0
1220 || strcasecmp (opcname, "ill.n") == 0
1221 /* Hit planted breakpoint. */
1222 || strcasecmp (opcname, "break") == 0
1223 || strcasecmp (opcname, "break.n") == 0
1224 /* Flow control instructions finish prologue. */
1225 || xtensa_opcode_is_branch (isa, opc) > 0
1226 || xtensa_opcode_is_jump (isa, opc) > 0
1227 || xtensa_opcode_is_loop (isa, opc) > 0
1228 || xtensa_opcode_is_call (isa, opc) > 0
1229 || strcasecmp (opcname, "simcall") == 0
1230 || strcasecmp (opcname, "syscall") == 0)
1231 /* Can not continue analysis. */
1232 RETURN_FP;
1233 }
1234 }
1235 done:
1236 xtensa_insnbuf_free(isa, slot);
1237 xtensa_insnbuf_free(isa, ins);
1238 return fp_regnum;
1239 }
1240
1241 /* The key values to identify the frame using "cache" are
1242
1243 cache->base = SP (or best guess about FP) of this frame;
1244 cache->pc = entry-PC (entry point of the frame function);
1245 cache->prev_sp = SP of the previous frame. */
1246
1247 static void
1248 call0_frame_cache (struct frame_info *this_frame,
1249 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1250
1251 static void
1252 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1253 xtensa_frame_cache_t *cache,
1254 CORE_ADDR pc);
1255
1256 static struct xtensa_frame_cache *
1257 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1258 {
1259 xtensa_frame_cache_t *cache;
1260 CORE_ADDR ra, wb, ws, pc, sp, ps;
1261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1263 unsigned int fp_regnum;
1264 int windowed, ps_regnum;
1265
1266 if (*this_cache)
1267 return (struct xtensa_frame_cache *) *this_cache;
1268
1269 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1270 ps_regnum = gdbarch_ps_regnum (gdbarch);
1271 ps = (ps_regnum >= 0
1272 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1273
1274 windowed = windowing_enabled (gdbarch, ps);
1275
1276 /* Get pristine xtensa-frame. */
1277 cache = xtensa_alloc_frame_cache (windowed);
1278 *this_cache = cache;
1279
1280 if (windowed)
1281 {
1282 LONGEST op1;
1283
1284 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1285 wb = get_frame_register_unsigned (this_frame,
1286 gdbarch_tdep (gdbarch)->wb_regnum);
1287 ws = get_frame_register_unsigned (this_frame,
1288 gdbarch_tdep (gdbarch)->ws_regnum);
1289
1290 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1291 && XTENSA_IS_ENTRY (gdbarch, op1))
1292 {
1293 int callinc = CALLINC (ps);
1294 ra = get_frame_register_unsigned
1295 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1296
1297 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1298 cache->wd.callsize = 0;
1299 cache->wd.wb = wb;
1300 cache->wd.ws = ws;
1301 cache->prev_sp = get_frame_register_unsigned
1302 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1303
1304 /* This only can be the outermost frame since we are
1305 just about to execute ENTRY. SP hasn't been set yet.
1306 We can assume any frame size, because it does not
1307 matter, and, let's fake frame base in cache. */
1308 cache->base = cache->prev_sp - 16;
1309
1310 cache->pc = pc;
1311 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1312 cache->ps = (ps & ~PS_CALLINC_MASK)
1313 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1314
1315 return cache;
1316 }
1317 else
1318 {
1319 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1320 ra = get_frame_register_unsigned (this_frame,
1321 gdbarch_tdep (gdbarch)->a0_base);
1322 cache->wd.callsize = WINSIZE (ra);
1323 cache->wd.wb = (wb - cache->wd.callsize / 4)
1324 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1325 cache->wd.ws = ws & ~(1 << wb);
1326
1327 cache->pc = get_frame_func (this_frame);
1328 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1329 cache->ps = (ps & ~PS_CALLINC_MASK)
1330 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1331 }
1332
1333 if (cache->wd.ws == 0)
1334 {
1335 int i;
1336
1337 /* Set A0...A3. */
1338 sp = get_frame_register_unsigned
1339 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1340
1341 for (i = 0; i < 4; i++, sp += 4)
1342 {
1343 cache->wd.aregs[i] = sp;
1344 }
1345
1346 if (cache->wd.callsize > 4)
1347 {
1348 /* Set A4...A7/A11. */
1349 /* Get the SP of the frame previous to the previous one.
1350 To achieve this, we have to dereference SP twice. */
1351 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1352 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1353 sp -= cache->wd.callsize * 4;
1354
1355 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1356 {
1357 cache->wd.aregs[i] = sp;
1358 }
1359 }
1360 }
1361
1362 if ((cache->prev_sp == 0) && ( ra != 0 ))
1363 /* If RA is equal to 0 this frame is an outermost frame. Leave
1364 cache->prev_sp unchanged marking the boundary of the frame stack. */
1365 {
1366 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1367 {
1368 /* Register window overflow already happened.
1369 We can read caller's SP from the proper spill loction. */
1370 sp = get_frame_register_unsigned
1371 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1372 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1373 }
1374 else
1375 {
1376 /* Read caller's frame SP directly from the previous window. */
1377 int regnum = arreg_number
1378 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1379 cache->wd.wb);
1380
1381 cache->prev_sp = xtensa_read_register (regnum);
1382 }
1383 }
1384 }
1385 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1386 {
1387 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1388
1389 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1390 /* Everything was set already, including cache->base. */
1391 return cache;
1392 }
1393 else /* Call0 framework. */
1394 {
1395 call0_frame_cache (this_frame, cache, pc);
1396 fp_regnum = cache->c0.fp_regnum;
1397 }
1398
1399 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1400
1401 return cache;
1402 }
1403
1404 static int xtensa_session_once_reported = 1;
1405
1406 /* Report a problem with prologue analysis while doing backtracing.
1407 But, do it only once to avoid annoyng repeated messages. */
1408
1409 static void
1410 warning_once (void)
1411 {
1412 if (xtensa_session_once_reported == 0)
1413 warning (_("\
1414 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1415 This message will not be repeated in this session.\n"));
1416
1417 xtensa_session_once_reported = 1;
1418 }
1419
1420
1421 static void
1422 xtensa_frame_this_id (struct frame_info *this_frame,
1423 void **this_cache,
1424 struct frame_id *this_id)
1425 {
1426 struct xtensa_frame_cache *cache =
1427 xtensa_frame_cache (this_frame, this_cache);
1428
1429 if (cache->prev_sp == 0)
1430 return;
1431
1432 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1433 }
1434
1435 static struct value *
1436 xtensa_frame_prev_register (struct frame_info *this_frame,
1437 void **this_cache,
1438 int regnum)
1439 {
1440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1441 struct xtensa_frame_cache *cache;
1442 ULONGEST saved_reg = 0;
1443 int done = 1;
1444
1445 if (*this_cache == NULL)
1446 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1447 cache = (struct xtensa_frame_cache *) *this_cache;
1448
1449 if (regnum ==gdbarch_pc_regnum (gdbarch))
1450 saved_reg = cache->ra;
1451 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1452 saved_reg = cache->prev_sp;
1453 else if (!cache->call0)
1454 {
1455 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1456 saved_reg = cache->wd.ws;
1457 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1458 saved_reg = cache->wd.wb;
1459 else if (regnum == gdbarch_ps_regnum (gdbarch))
1460 saved_reg = cache->ps;
1461 else
1462 done = 0;
1463 }
1464 else
1465 done = 0;
1466
1467 if (done)
1468 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1469
1470 if (!cache->call0) /* Windowed ABI. */
1471 {
1472 /* Convert A-register numbers to AR-register numbers,
1473 if we deal with A-register. */
1474 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1475 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1476 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1477
1478 /* Check, if we deal with AR-register saved on stack. */
1479 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1480 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1481 + gdbarch_tdep (gdbarch)->num_aregs))
1482 {
1483 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1484
1485 if (areg >= 0
1486 && areg < XTENSA_NUM_SAVED_AREGS
1487 && cache->wd.aregs[areg] != -1)
1488 return frame_unwind_got_memory (this_frame, regnum,
1489 cache->wd.aregs[areg]);
1490 }
1491 }
1492 else /* Call0 ABI. */
1493 {
1494 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1495 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1496 + C0_NREGS))
1497 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1498
1499 if (reg < C0_NREGS)
1500 {
1501 CORE_ADDR spe;
1502 int stkofs;
1503
1504 /* If register was saved in the prologue, retrieve it. */
1505 stkofs = cache->c0.c0_rt[reg].to_stk;
1506 if (stkofs != C0_NOSTK)
1507 {
1508 /* Determine SP on entry based on FP. */
1509 spe = cache->c0.c0_fp
1510 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1511
1512 return frame_unwind_got_memory (this_frame, regnum,
1513 spe + stkofs);
1514 }
1515 }
1516 }
1517
1518 /* All other registers have been either saved to
1519 the stack or are still alive in the processor. */
1520
1521 return frame_unwind_got_register (this_frame, regnum, regnum);
1522 }
1523
1524
1525 static const struct frame_unwind
1526 xtensa_unwind =
1527 {
1528 NORMAL_FRAME,
1529 default_frame_unwind_stop_reason,
1530 xtensa_frame_this_id,
1531 xtensa_frame_prev_register,
1532 NULL,
1533 default_frame_sniffer
1534 };
1535
1536 static CORE_ADDR
1537 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1538 {
1539 struct xtensa_frame_cache *cache =
1540 xtensa_frame_cache (this_frame, this_cache);
1541
1542 return cache->base;
1543 }
1544
1545 static const struct frame_base
1546 xtensa_frame_base =
1547 {
1548 &xtensa_unwind,
1549 xtensa_frame_base_address,
1550 xtensa_frame_base_address,
1551 xtensa_frame_base_address
1552 };
1553
1554
1555 static void
1556 xtensa_extract_return_value (struct type *type,
1557 struct regcache *regcache,
1558 void *dst)
1559 {
1560 struct gdbarch *gdbarch = regcache->arch ();
1561 bfd_byte *valbuf = (bfd_byte *) dst;
1562 int len = TYPE_LENGTH (type);
1563 ULONGEST pc, wb;
1564 int callsize, areg;
1565 int offset = 0;
1566
1567 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1568
1569 gdb_assert(len > 0);
1570
1571 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1572 {
1573 /* First, we have to find the caller window in the register file. */
1574 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1575 callsize = extract_call_winsize (gdbarch, pc);
1576
1577 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1578 if (len > (callsize > 8 ? 8 : 16))
1579 internal_error (__FILE__, __LINE__,
1580 _("cannot extract return value of %d bytes long"),
1581 len);
1582
1583 /* Get the register offset of the return
1584 register (A2) in the caller window. */
1585 regcache_raw_read_unsigned
1586 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1587 areg = arreg_number (gdbarch,
1588 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1589 }
1590 else
1591 {
1592 /* No windowing hardware - Call0 ABI. */
1593 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1594 }
1595
1596 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1597
1598 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1599 offset = 4 - len;
1600
1601 for (; len > 0; len -= 4, areg++, valbuf += 4)
1602 {
1603 if (len < 4)
1604 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1605 else
1606 regcache_raw_read (regcache, areg, valbuf);
1607 }
1608 }
1609
1610
1611 static void
1612 xtensa_store_return_value (struct type *type,
1613 struct regcache *regcache,
1614 const void *dst)
1615 {
1616 struct gdbarch *gdbarch = regcache->arch ();
1617 const bfd_byte *valbuf = (const bfd_byte *) dst;
1618 unsigned int areg;
1619 ULONGEST pc, wb;
1620 int callsize;
1621 int len = TYPE_LENGTH (type);
1622 int offset = 0;
1623
1624 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1625
1626 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1627 {
1628 regcache_raw_read_unsigned
1629 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1630 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1631 callsize = extract_call_winsize (gdbarch, pc);
1632
1633 if (len > (callsize > 8 ? 8 : 16))
1634 internal_error (__FILE__, __LINE__,
1635 _("unimplemented for this length: %d"),
1636 TYPE_LENGTH (type));
1637 areg = arreg_number (gdbarch,
1638 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1639
1640 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1641 callsize, (int) wb);
1642 }
1643 else
1644 {
1645 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1646 }
1647
1648 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1649 offset = 4 - len;
1650
1651 for (; len > 0; len -= 4, areg++, valbuf += 4)
1652 {
1653 if (len < 4)
1654 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1655 else
1656 regcache_raw_write (regcache, areg, valbuf);
1657 }
1658 }
1659
1660
1661 static enum return_value_convention
1662 xtensa_return_value (struct gdbarch *gdbarch,
1663 struct value *function,
1664 struct type *valtype,
1665 struct regcache *regcache,
1666 gdb_byte *readbuf,
1667 const gdb_byte *writebuf)
1668 {
1669 /* Structures up to 16 bytes are returned in registers. */
1670
1671 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1672 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1673 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1674 && TYPE_LENGTH (valtype) > 16);
1675
1676 if (struct_return)
1677 return RETURN_VALUE_STRUCT_CONVENTION;
1678
1679 DEBUGTRACE ("xtensa_return_value(...)\n");
1680
1681 if (writebuf != NULL)
1682 {
1683 xtensa_store_return_value (valtype, regcache, writebuf);
1684 }
1685
1686 if (readbuf != NULL)
1687 {
1688 gdb_assert (!struct_return);
1689 xtensa_extract_return_value (valtype, regcache, readbuf);
1690 }
1691 return RETURN_VALUE_REGISTER_CONVENTION;
1692 }
1693
1694
1695 /* DUMMY FRAME */
1696
1697 static CORE_ADDR
1698 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1699 struct value *function,
1700 struct regcache *regcache,
1701 CORE_ADDR bp_addr,
1702 int nargs,
1703 struct value **args,
1704 CORE_ADDR sp,
1705 int struct_return,
1706 CORE_ADDR struct_addr)
1707 {
1708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1709 int i;
1710 int size, onstack_size;
1711 gdb_byte *buf = (gdb_byte *) alloca (16);
1712 CORE_ADDR ra, ps;
1713 struct argument_info
1714 {
1715 const bfd_byte *contents;
1716 int length;
1717 int onstack; /* onstack == 0 => in reg */
1718 int align; /* alignment */
1719 union
1720 {
1721 int offset; /* stack offset if on stack. */
1722 int regno; /* regno if in register. */
1723 } u;
1724 };
1725
1726 struct argument_info *arg_info =
1727 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1728
1729 CORE_ADDR osp = sp;
1730
1731 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1732
1733 if (xtensa_debug_level > 3)
1734 {
1735 int i;
1736 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1737 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1738 "struct_addr=0x%x\n",
1739 (int) sp, (int) struct_return, (int) struct_addr);
1740
1741 for (i = 0; i < nargs; i++)
1742 {
1743 struct value *arg = args[i];
1744 struct type *arg_type = check_typedef (value_type (arg));
1745 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1746 host_address_to_string (arg),
1747 TYPE_LENGTH (arg_type));
1748 switch (TYPE_CODE (arg_type))
1749 {
1750 case TYPE_CODE_INT:
1751 fprintf_unfiltered (gdb_stdlog, "int");
1752 break;
1753 case TYPE_CODE_STRUCT:
1754 fprintf_unfiltered (gdb_stdlog, "struct");
1755 break;
1756 default:
1757 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1758 break;
1759 }
1760 fprintf_unfiltered (gdb_stdlog, " %s\n",
1761 host_address_to_string (value_contents (arg)));
1762 }
1763 }
1764
1765 /* First loop: collect information.
1766 Cast into type_long. (This shouldn't happen often for C because
1767 GDB already does this earlier.) It's possible that GDB could
1768 do it all the time but it's harmless to leave this code here. */
1769
1770 size = 0;
1771 onstack_size = 0;
1772 i = 0;
1773
1774 if (struct_return)
1775 size = REGISTER_SIZE;
1776
1777 for (i = 0; i < nargs; i++)
1778 {
1779 struct argument_info *info = &arg_info[i];
1780 struct value *arg = args[i];
1781 struct type *arg_type = check_typedef (value_type (arg));
1782
1783 switch (TYPE_CODE (arg_type))
1784 {
1785 case TYPE_CODE_INT:
1786 case TYPE_CODE_BOOL:
1787 case TYPE_CODE_CHAR:
1788 case TYPE_CODE_RANGE:
1789 case TYPE_CODE_ENUM:
1790
1791 /* Cast argument to long if necessary as the mask does it too. */
1792 if (TYPE_LENGTH (arg_type)
1793 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1794 {
1795 arg_type = builtin_type (gdbarch)->builtin_long;
1796 arg = value_cast (arg_type, arg);
1797 }
1798 /* Aligment is equal to the type length for the basic types. */
1799 info->align = TYPE_LENGTH (arg_type);
1800 break;
1801
1802 case TYPE_CODE_FLT:
1803
1804 /* Align doubles correctly. */
1805 if (TYPE_LENGTH (arg_type)
1806 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1807 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1808 else
1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1810 break;
1811
1812 case TYPE_CODE_STRUCT:
1813 default:
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1815 break;
1816 }
1817 info->length = TYPE_LENGTH (arg_type);
1818 info->contents = value_contents (arg);
1819
1820 /* Align size and onstack_size. */
1821 size = (size + info->align - 1) & ~(info->align - 1);
1822 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1823
1824 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1825 {
1826 info->onstack = 1;
1827 info->u.offset = onstack_size;
1828 onstack_size += info->length;
1829 }
1830 else
1831 {
1832 info->onstack = 0;
1833 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1834 }
1835 size += info->length;
1836 }
1837
1838 /* Adjust the stack pointer and align it. */
1839 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1840
1841 /* Simulate MOVSP, if Windowed ABI. */
1842 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1843 && (sp != osp))
1844 {
1845 read_memory (osp - 16, buf, 16);
1846 write_memory (sp - 16, buf, 16);
1847 }
1848
1849 /* Second Loop: Load arguments. */
1850
1851 if (struct_return)
1852 {
1853 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1854 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1855 }
1856
1857 for (i = 0; i < nargs; i++)
1858 {
1859 struct argument_info *info = &arg_info[i];
1860
1861 if (info->onstack)
1862 {
1863 int n = info->length;
1864 CORE_ADDR offset = sp + info->u.offset;
1865
1866 /* Odd-sized structs are aligned to the lower side of a memory
1867 word in big-endian mode and require a shift. This only
1868 applies for structures smaller than one word. */
1869
1870 if (n < REGISTER_SIZE
1871 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1872 offset += (REGISTER_SIZE - n);
1873
1874 write_memory (offset, info->contents, info->length);
1875
1876 }
1877 else
1878 {
1879 int n = info->length;
1880 const bfd_byte *cp = info->contents;
1881 int r = info->u.regno;
1882
1883 /* Odd-sized structs are aligned to the lower side of registers in
1884 big-endian mode and require a shift. The odd-sized leftover will
1885 be at the end. Note that this is only true for structures smaller
1886 than REGISTER_SIZE; for larger odd-sized structures the excess
1887 will be left-aligned in the register on both endiannesses. */
1888
1889 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1890 {
1891 ULONGEST v;
1892 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1893 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1894
1895 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1896 regcache_cooked_write (regcache, r, buf);
1897
1898 cp += REGISTER_SIZE;
1899 n -= REGISTER_SIZE;
1900 r++;
1901 }
1902 else
1903 while (n > 0)
1904 {
1905 regcache_cooked_write (regcache, r, cp);
1906
1907 cp += REGISTER_SIZE;
1908 n -= REGISTER_SIZE;
1909 r++;
1910 }
1911 }
1912 }
1913
1914 /* Set the return address of dummy frame to the dummy address.
1915 The return address for the current function (in A0) is
1916 saved in the dummy frame, so we can savely overwrite A0 here. */
1917
1918 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1919 {
1920 ULONGEST val;
1921
1922 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1923 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1924 ps = (unsigned long) val & ~0x00030000;
1925 regcache_cooked_write_unsigned
1926 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1927 regcache_cooked_write_unsigned (regcache,
1928 gdbarch_ps_regnum (gdbarch),
1929 ps | 0x00010000);
1930
1931 /* All the registers have been saved. After executing
1932 dummy call, they all will be restored. So it's safe
1933 to modify WINDOWSTART register to make it look like there
1934 is only one register window corresponding to WINDOWEBASE. */
1935
1936 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1937 regcache_cooked_write_unsigned
1938 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1939 1 << extract_unsigned_integer (buf, 4, byte_order));
1940 }
1941 else
1942 {
1943 /* Simulate CALL0: write RA into A0 register. */
1944 regcache_cooked_write_unsigned
1945 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1946 }
1947
1948 /* Set new stack pointer and return it. */
1949 regcache_cooked_write_unsigned (regcache,
1950 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1951 /* Make dummy frame ID unique by adding a constant. */
1952 return sp + SP_ALIGNMENT;
1953 }
1954
1955 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1956
1957 static int
1958 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1959 {
1960 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1961 return 2;
1962 else
1963 return 4;
1964 }
1965
1966 /* Return a breakpoint for the current location of PC. We always use
1967 the density version if we have density instructions (regardless of the
1968 current instruction at PC), and use regular instructions otherwise. */
1969
1970 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1971 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1972 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1973 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1974
1975 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1976
1977 static const gdb_byte *
1978 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1979 {
1980 *size = kind;
1981
1982 if (kind == 4)
1983 {
1984 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1985 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1986
1987 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1988 return big_breakpoint;
1989 else
1990 return little_breakpoint;
1991 }
1992 else
1993 {
1994 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1995 static unsigned char density_little_breakpoint[]
1996 = DENSITY_LITTLE_BREAKPOINT;
1997
1998 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1999 return density_big_breakpoint;
2000 else
2001 return density_little_breakpoint;
2002 }
2003 }
2004
2005 /* Call0 ABI support routines. */
2006
2007 /* Return true, if PC points to "ret" or "ret.n". */
2008
2009 static int
2010 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2011 {
2012 #define RETURN_RET goto done
2013 xtensa_isa isa;
2014 xtensa_insnbuf ins, slot;
2015 gdb_byte ibuf[XTENSA_ISA_BSZ];
2016 CORE_ADDR ia, bt, ba;
2017 xtensa_format ifmt;
2018 int ilen, islots, is;
2019 xtensa_opcode opc;
2020 const char *opcname;
2021 int found_ret = 0;
2022
2023 isa = xtensa_default_isa;
2024 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2025 ins = xtensa_insnbuf_alloc (isa);
2026 slot = xtensa_insnbuf_alloc (isa);
2027 ba = 0;
2028
2029 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2030 {
2031 if (ia + xtensa_isa_maxlength (isa) > bt)
2032 {
2033 ba = ia;
2034 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2035 ? ba + XTENSA_ISA_BSZ : finish_pc;
2036 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2037 RETURN_RET;
2038 }
2039
2040 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2041 ifmt = xtensa_format_decode (isa, ins);
2042 if (ifmt == XTENSA_UNDEFINED)
2043 RETURN_RET;
2044 ilen = xtensa_format_length (isa, ifmt);
2045 if (ilen == XTENSA_UNDEFINED)
2046 RETURN_RET;
2047 islots = xtensa_format_num_slots (isa, ifmt);
2048 if (islots == XTENSA_UNDEFINED)
2049 RETURN_RET;
2050
2051 for (is = 0; is < islots; ++is)
2052 {
2053 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2054 RETURN_RET;
2055
2056 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2057 if (opc == XTENSA_UNDEFINED)
2058 RETURN_RET;
2059
2060 opcname = xtensa_opcode_name (isa, opc);
2061
2062 if ((strcasecmp (opcname, "ret.n") == 0)
2063 || (strcasecmp (opcname, "ret") == 0))
2064 {
2065 found_ret = 1;
2066 RETURN_RET;
2067 }
2068 }
2069 }
2070 done:
2071 xtensa_insnbuf_free(isa, slot);
2072 xtensa_insnbuf_free(isa, ins);
2073 return found_ret;
2074 }
2075
2076 /* Call0 opcode class. Opcodes are preclassified according to what they
2077 mean for Call0 prologue analysis, and their number of significant operands.
2078 The purpose of this is to simplify prologue analysis by separating
2079 instruction decoding (libisa) from the semantics of prologue analysis. */
2080
2081 typedef enum
2082 {
2083 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2084 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2085 c0opc_flow, /* Flow control insn. */
2086 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2087 c0opc_break, /* Debugger software breakpoints. */
2088 c0opc_add, /* Adding two registers. */
2089 c0opc_addi, /* Adding a register and an immediate. */
2090 c0opc_and, /* Bitwise "and"-ing two registers. */
2091 c0opc_sub, /* Subtracting a register from a register. */
2092 c0opc_mov, /* Moving a register to a register. */
2093 c0opc_movi, /* Moving an immediate to a register. */
2094 c0opc_l32r, /* Loading a literal. */
2095 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2096 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2097 c0opc_l32e, /* L32E instruction. */
2098 c0opc_s32e, /* S32E instruction. */
2099 c0opc_rfwo, /* RFWO instruction. */
2100 c0opc_rfwu, /* RFWU instruction. */
2101 c0opc_NrOf /* Number of opcode classifications. */
2102 } xtensa_insn_kind;
2103
2104 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2105
2106 static int
2107 rwx_special_register (const char *opcname)
2108 {
2109 char ch = *opcname++;
2110
2111 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2112 return 0;
2113 if (*opcname++ != 's')
2114 return 0;
2115 if (*opcname++ != 'r')
2116 return 0;
2117 if (*opcname++ != '.')
2118 return 0;
2119
2120 return 1;
2121 }
2122
2123 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2124
2125 static xtensa_insn_kind
2126 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2127 {
2128 const char *opcname;
2129 xtensa_insn_kind opclass = c0opc_uninteresting;
2130
2131 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2132
2133 /* Get opcode name and handle special classifications. */
2134
2135 opcname = xtensa_opcode_name (isa, opc);
2136
2137 if (opcname == NULL
2138 || strcasecmp (opcname, "ill") == 0
2139 || strcasecmp (opcname, "ill.n") == 0)
2140 opclass = c0opc_illegal;
2141 else if (strcasecmp (opcname, "break") == 0
2142 || strcasecmp (opcname, "break.n") == 0)
2143 opclass = c0opc_break;
2144 else if (strcasecmp (opcname, "entry") == 0)
2145 opclass = c0opc_entry;
2146 else if (strcasecmp (opcname, "rfwo") == 0)
2147 opclass = c0opc_rfwo;
2148 else if (strcasecmp (opcname, "rfwu") == 0)
2149 opclass = c0opc_rfwu;
2150 else if (xtensa_opcode_is_branch (isa, opc) > 0
2151 || xtensa_opcode_is_jump (isa, opc) > 0
2152 || xtensa_opcode_is_loop (isa, opc) > 0
2153 || xtensa_opcode_is_call (isa, opc) > 0
2154 || strcasecmp (opcname, "simcall") == 0
2155 || strcasecmp (opcname, "syscall") == 0)
2156 opclass = c0opc_flow;
2157
2158 /* Also, classify specific opcodes that need to be tracked. */
2159 else if (strcasecmp (opcname, "add") == 0
2160 || strcasecmp (opcname, "add.n") == 0)
2161 opclass = c0opc_add;
2162 else if (strcasecmp (opcname, "and") == 0)
2163 opclass = c0opc_and;
2164 else if (strcasecmp (opcname, "addi") == 0
2165 || strcasecmp (opcname, "addi.n") == 0
2166 || strcasecmp (opcname, "addmi") == 0)
2167 opclass = c0opc_addi;
2168 else if (strcasecmp (opcname, "sub") == 0)
2169 opclass = c0opc_sub;
2170 else if (strcasecmp (opcname, "mov.n") == 0
2171 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2172 opclass = c0opc_mov;
2173 else if (strcasecmp (opcname, "movi") == 0
2174 || strcasecmp (opcname, "movi.n") == 0)
2175 opclass = c0opc_movi;
2176 else if (strcasecmp (opcname, "l32r") == 0)
2177 opclass = c0opc_l32r;
2178 else if (strcasecmp (opcname, "s32i") == 0
2179 || strcasecmp (opcname, "s32i.n") == 0)
2180 opclass = c0opc_s32i;
2181 else if (strcasecmp (opcname, "l32e") == 0)
2182 opclass = c0opc_l32e;
2183 else if (strcasecmp (opcname, "s32e") == 0)
2184 opclass = c0opc_s32e;
2185 else if (rwx_special_register (opcname))
2186 opclass = c0opc_rwxsr;
2187
2188 return opclass;
2189 }
2190
2191 /* Tracks register movement/mutation for a given operation, which may
2192 be within a bundle. Updates the destination register tracking info
2193 accordingly. The pc is needed only for pc-relative load instructions
2194 (eg. l32r). The SP register number is needed to identify stores to
2195 the stack frame. Returns 0, if analysis was succesfull, non-zero
2196 otherwise. */
2197
2198 static int
2199 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2200 xtensa_insn_kind opclass, int nods, unsigned odv[],
2201 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2202 {
2203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2204 unsigned litbase, litaddr, litval;
2205
2206 switch (opclass)
2207 {
2208 case c0opc_addi:
2209 /* 3 operands: dst, src, imm. */
2210 gdb_assert (nods == 3);
2211 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2212 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2213 break;
2214 case c0opc_add:
2215 /* 3 operands: dst, src1, src2. */
2216 gdb_assert (nods == 3);
2217 if (src[odv[1]].fr_reg == C0_CONST)
2218 {
2219 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2220 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2221 }
2222 else if (src[odv[2]].fr_reg == C0_CONST)
2223 {
2224 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2226 }
2227 else dst[odv[0]].fr_reg = C0_INEXP;
2228 break;
2229 case c0opc_and:
2230 /* 3 operands: dst, src1, src2. */
2231 gdb_assert (nods == 3);
2232 if (cache->c0.c0_fpalign == 0)
2233 {
2234 /* Handle dynamic stack alignment. */
2235 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2236 {
2237 if (src[odv[2]].fr_reg == C0_CONST)
2238 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2239 break;
2240 }
2241 else if ((src[odv[0]].fr_reg == spreg)
2242 && (src[odv[2]].fr_reg == spreg))
2243 {
2244 if (src[odv[1]].fr_reg == C0_CONST)
2245 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2246 break;
2247 }
2248 /* else fall through. */
2249 }
2250 if (src[odv[1]].fr_reg == C0_CONST)
2251 {
2252 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2253 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2254 }
2255 else if (src[odv[2]].fr_reg == C0_CONST)
2256 {
2257 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2259 }
2260 else dst[odv[0]].fr_reg = C0_INEXP;
2261 break;
2262 case c0opc_sub:
2263 /* 3 operands: dst, src1, src2. */
2264 gdb_assert (nods == 3);
2265 if (src[odv[2]].fr_reg == C0_CONST)
2266 {
2267 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2268 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2269 }
2270 else dst[odv[0]].fr_reg = C0_INEXP;
2271 break;
2272 case c0opc_mov:
2273 /* 2 operands: dst, src [, src]. */
2274 gdb_assert (nods == 2);
2275 /* First, check if it's a special case of saving unaligned SP
2276 to a spare register in case of dynamic stack adjustment.
2277 But, only do it one time. The second time could be initializing
2278 frame pointer. We don't want to overwrite the first one. */
2279 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2280 cache->c0.c0_old_sp = odv[0];
2281
2282 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2283 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2284 break;
2285 case c0opc_movi:
2286 /* 2 operands: dst, imm. */
2287 gdb_assert (nods == 2);
2288 dst[odv[0]].fr_reg = C0_CONST;
2289 dst[odv[0]].fr_ofs = odv[1];
2290 break;
2291 case c0opc_l32r:
2292 /* 2 operands: dst, literal offset. */
2293 gdb_assert (nods == 2);
2294 /* litbase = xtensa_get_litbase (pc); can be also used. */
2295 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2296 ? 0 : xtensa_read_register
2297 (gdbarch_tdep (gdbarch)->litbase_regnum);
2298 litaddr = litbase & 1
2299 ? (litbase & ~1) + (signed)odv[1]
2300 : (pc + 3 + (signed)odv[1]) & ~3;
2301 litval = read_memory_integer (litaddr, 4, byte_order);
2302 dst[odv[0]].fr_reg = C0_CONST;
2303 dst[odv[0]].fr_ofs = litval;
2304 break;
2305 case c0opc_s32i:
2306 /* 3 operands: value, base, offset. */
2307 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2308 /* First, check if it's a spill for saved unaligned SP,
2309 when dynamic stack adjustment was applied to this frame. */
2310 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2311 && (odv[1] == spreg) /* SP usage indicates spill. */
2312 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2313 cache->c0.c0_sp_ofs = odv[2];
2314
2315 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2316 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2317 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2318 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2319 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2320 {
2321 /* ISA encoding guarantees alignment. But, check it anyway. */
2322 gdb_assert ((odv[2] & 3) == 0);
2323 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2324 }
2325 break;
2326 /* If we end up inside Window Overflow / Underflow interrupt handler
2327 report an error because these handlers should have been handled
2328 already in a different way. */
2329 case c0opc_l32e:
2330 case c0opc_s32e:
2331 case c0opc_rfwo:
2332 case c0opc_rfwu:
2333 return 1;
2334 default:
2335 return 1;
2336 }
2337 return 0;
2338 }
2339
2340 /* Analyze prologue of the function at start address to determine if it uses
2341 the Call0 ABI, and if so track register moves and linear modifications
2342 in the prologue up to the PC or just beyond the prologue, whichever is
2343 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2344 prologue. The prologue may overlap non-prologue instructions but is
2345 guaranteed to end by the first flow-control instruction (jump, branch,
2346 call or return). Since an optimized function may move information around
2347 and change the stack frame arbitrarily during the prologue, the information
2348 is guaranteed valid only at the point in the function indicated by the PC.
2349 May be used to skip the prologue or identify the ABI, w/o tracking.
2350
2351 Returns: Address of first instruction after prologue, or PC (whichever
2352 is first), or 0, if decoding failed (in libisa).
2353 Input args:
2354 start Start address of function/prologue.
2355 pc Program counter to stop at. Use 0 to continue to end of prologue.
2356 If 0, avoids infinite run-on in corrupt code memory by bounding
2357 the scan to the end of the function if that can be determined.
2358 nregs Number of general registers to track.
2359 InOut args:
2360 cache Xtensa frame cache.
2361
2362 Note that these may produce useful results even if decoding fails
2363 because they begin with default assumptions that analysis may change. */
2364
2365 static CORE_ADDR
2366 call0_analyze_prologue (struct gdbarch *gdbarch,
2367 CORE_ADDR start, CORE_ADDR pc,
2368 int nregs, xtensa_frame_cache_t *cache)
2369 {
2370 CORE_ADDR ia; /* Current insn address in prologue. */
2371 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2372 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2373 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2374 xtensa_isa isa; /* libisa ISA handle. */
2375 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2376 xtensa_format ifmt; /* libisa instruction format. */
2377 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2378 xtensa_opcode opc; /* Opcode in current slot. */
2379 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2380 int nods; /* Opcode number of operands. */
2381 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2382 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2383 int j; /* General loop counter. */
2384 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2385 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2386 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2387
2388 struct symtab_and_line prologue_sal;
2389
2390 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2391 (int)start, (int)pc);
2392
2393 /* Try to limit the scan to the end of the function if a non-zero pc
2394 arg was not supplied to avoid probing beyond the end of valid memory.
2395 If memory is full of garbage that classifies as c0opc_uninteresting.
2396 If this fails (eg. if no symbols) pc ends up 0 as it was.
2397 Initialize the Call0 frame and register tracking info.
2398 Assume it's Call0 until an 'entry' instruction is encountered.
2399 Assume we may be in the prologue until we hit a flow control instr. */
2400
2401 rtmp = NULL;
2402 body_pc = UINT_MAX;
2403 end_pc = 0;
2404
2405 /* Find out, if we have an information about the prologue from DWARF. */
2406 prologue_sal = find_pc_line (start, 0);
2407 if (prologue_sal.line != 0) /* Found debug info. */
2408 body_pc = prologue_sal.end;
2409
2410 /* If we are going to analyze the prologue in general without knowing about
2411 the current PC, make the best assumtion for the end of the prologue. */
2412 if (pc == 0)
2413 {
2414 find_pc_partial_function (start, 0, NULL, &end_pc);
2415 body_pc = std::min (end_pc, body_pc);
2416 }
2417 else
2418 body_pc = std::min (pc, body_pc);
2419
2420 cache->call0 = 1;
2421 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2422
2423 isa = xtensa_default_isa;
2424 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2425 ins = xtensa_insnbuf_alloc (isa);
2426 slot = xtensa_insnbuf_alloc (isa);
2427
2428 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2429 {
2430 /* (Re)fill instruction buffer from memory if necessary, but do not
2431 read memory beyond PC to be sure we stay within text section
2432 (this protection only works if a non-zero pc is supplied). */
2433
2434 if (ia + xtensa_isa_maxlength (isa) > bt)
2435 {
2436 ba = ia;
2437 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2438 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2439 error (_("Unable to read target memory ..."));
2440 }
2441
2442 /* Decode format information. */
2443
2444 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2445 ifmt = xtensa_format_decode (isa, ins);
2446 if (ifmt == XTENSA_UNDEFINED)
2447 {
2448 fail = 1;
2449 goto done;
2450 }
2451 ilen = xtensa_format_length (isa, ifmt);
2452 if (ilen == XTENSA_UNDEFINED)
2453 {
2454 fail = 1;
2455 goto done;
2456 }
2457 islots = xtensa_format_num_slots (isa, ifmt);
2458 if (islots == XTENSA_UNDEFINED)
2459 {
2460 fail = 1;
2461 goto done;
2462 }
2463
2464 /* Analyze a bundle or a single instruction, using a snapshot of
2465 the register tracking info as input for the entire bundle so that
2466 register changes do not take effect within this bundle. */
2467
2468 for (j = 0; j < nregs; ++j)
2469 rtmp[j] = cache->c0.c0_rt[j];
2470
2471 for (is = 0; is < islots; ++is)
2472 {
2473 /* Decode a slot and classify the opcode. */
2474
2475 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2476 if (fail)
2477 goto done;
2478
2479 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2480 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2481 (unsigned)ia, opc);
2482 if (opc == XTENSA_UNDEFINED)
2483 opclass = c0opc_illegal;
2484 else
2485 opclass = call0_classify_opcode (isa, opc);
2486
2487 /* Decide whether to track this opcode, ignore it, or bail out. */
2488
2489 switch (opclass)
2490 {
2491 case c0opc_illegal:
2492 case c0opc_break:
2493 fail = 1;
2494 goto done;
2495
2496 case c0opc_uninteresting:
2497 continue;
2498
2499 case c0opc_flow: /* Flow control instructions stop analysis. */
2500 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2501 goto done;
2502
2503 case c0opc_entry:
2504 cache->call0 = 0;
2505 ia += ilen; /* Skip over 'entry' insn. */
2506 goto done;
2507
2508 default:
2509 cache->call0 = 1;
2510 }
2511
2512 /* Only expected opcodes should get this far. */
2513
2514 /* Extract and decode the operands. */
2515 nods = xtensa_opcode_num_operands (isa, opc);
2516 if (nods == XTENSA_UNDEFINED)
2517 {
2518 fail = 1;
2519 goto done;
2520 }
2521
2522 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2523 {
2524 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2525 is, slot, &odv[j]);
2526 if (fail)
2527 goto done;
2528
2529 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2530 if (fail)
2531 goto done;
2532 }
2533
2534 /* Check operands to verify use of 'mov' assembler macro. */
2535 if (opclass == c0opc_mov && nods == 3)
2536 {
2537 if (odv[2] == odv[1])
2538 {
2539 nods = 2;
2540 if ((odv[0] == 1) && (odv[1] != 1))
2541 /* OR A1, An, An , where n != 1.
2542 This means we are inside epilogue already. */
2543 goto done;
2544 }
2545 else
2546 {
2547 opclass = c0opc_uninteresting;
2548 continue;
2549 }
2550 }
2551
2552 /* Track register movement and modification for this operation. */
2553 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2554 opclass, nods, odv, ia, 1, cache);
2555 if (fail)
2556 goto done;
2557 }
2558 }
2559 done:
2560 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2561 (unsigned)ia, fail ? "failed" : "succeeded");
2562 xtensa_insnbuf_free(isa, slot);
2563 xtensa_insnbuf_free(isa, ins);
2564 return fail ? XTENSA_ISA_BADPC : ia;
2565 }
2566
2567 /* Initialize frame cache for the current frame in CALL0 ABI. */
2568
2569 static void
2570 call0_frame_cache (struct frame_info *this_frame,
2571 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2572 {
2573 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2575 CORE_ADDR start_pc; /* The beginning of the function. */
2576 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2577 CORE_ADDR sp, fp, ra;
2578 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2579
2580 sp = get_frame_register_unsigned
2581 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2582 fp = sp; /* Assume FP == SP until proven otherwise. */
2583
2584 /* Find the beginning of the prologue of the function containing the PC
2585 and analyze it up to the PC or the end of the prologue. */
2586
2587 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2588 {
2589 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2590
2591 if (body_pc == XTENSA_ISA_BADPC)
2592 {
2593 warning_once ();
2594 ra = 0;
2595 goto finish_frame_analysis;
2596 }
2597 }
2598
2599 /* Get the frame information and FP (if used) at the current PC.
2600 If PC is in the prologue, the prologue analysis is more reliable
2601 than DWARF info. We don't not know for sure, if PC is in the prologue,
2602 but we do know no calls have yet taken place, so we can almost
2603 certainly rely on the prologue analysis. */
2604
2605 if (body_pc <= pc)
2606 {
2607 /* Prologue analysis was successful up to the PC.
2608 It includes the cases when PC == START_PC. */
2609 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2610 /* c0_hasfp == true means there is a frame pointer because
2611 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2612 was derived from SP. Otherwise, it would be C0_FP. */
2613 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2614 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2615 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2616 }
2617 else /* No data from the prologue analysis. */
2618 {
2619 c0_hasfp = 0;
2620 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2621 c0_frmsz = 0;
2622 start_pc = pc;
2623 }
2624
2625 if (cache->c0.c0_fpalign)
2626 {
2627 /* This frame has a special prologue with a dynamic stack adjustment
2628 to force an alignment, which is bigger than standard 16 bytes. */
2629
2630 CORE_ADDR unaligned_sp;
2631
2632 if (cache->c0.c0_old_sp == C0_INEXP)
2633 /* This can't be. Prologue code should be consistent.
2634 Unaligned stack pointer should be saved in a spare register. */
2635 {
2636 warning_once ();
2637 ra = 0;
2638 goto finish_frame_analysis;
2639 }
2640
2641 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2642 /* Saved unaligned value of SP is kept in a register. */
2643 unaligned_sp = get_frame_register_unsigned
2644 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2645 else
2646 /* Get the value from stack. */
2647 unaligned_sp = (CORE_ADDR)
2648 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2649
2650 prev_sp = unaligned_sp + c0_frmsz;
2651 }
2652 else
2653 prev_sp = fp + c0_frmsz;
2654
2655 /* Frame size from debug info or prologue tracking does not account for
2656 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2657 if (c0_hasfp)
2658 {
2659 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2660
2661 /* Update the stack frame size. */
2662 c0_frmsz += fp - sp;
2663 }
2664
2665 /* Get the return address (RA) from the stack if saved,
2666 or try to get it from a register. */
2667
2668 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2669 if (to_stk != C0_NOSTK)
2670 ra = (CORE_ADDR)
2671 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2672 4, byte_order);
2673
2674 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2675 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2676 {
2677 /* Special case for terminating backtrace at a function that wants to
2678 be seen as the outermost one. Such a function will clear it's RA (A0)
2679 register to 0 in the prologue instead of saving its original value. */
2680 ra = 0;
2681 }
2682 else
2683 {
2684 /* RA was copied to another register or (before any function call) may
2685 still be in the original RA register. This is not always reliable:
2686 even in a leaf function, register tracking stops after prologue, and
2687 even in prologue, non-prologue instructions (not tracked) may overwrite
2688 RA or any register it was copied to. If likely in prologue or before
2689 any call, use retracking info and hope for the best (compiler should
2690 have saved RA in stack if not in a leaf function). If not in prologue,
2691 too bad. */
2692
2693 int i;
2694 for (i = 0;
2695 (i < C0_NREGS)
2696 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2697 ++i);
2698 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2699 i = C0_RA;
2700 if (i < C0_NREGS)
2701 {
2702 ra = get_frame_register_unsigned
2703 (this_frame,
2704 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2705 }
2706 else ra = 0;
2707 }
2708
2709 finish_frame_analysis:
2710 cache->pc = start_pc;
2711 cache->ra = ra;
2712 /* RA == 0 marks the outermost frame. Do not go past it. */
2713 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2714 cache->c0.fp_regnum = fp_regnum;
2715 cache->c0.c0_frmsz = c0_frmsz;
2716 cache->c0.c0_hasfp = c0_hasfp;
2717 cache->c0.c0_fp = fp;
2718 }
2719
2720 static CORE_ADDR a0_saved;
2721 static CORE_ADDR a7_saved;
2722 static CORE_ADDR a11_saved;
2723 static int a0_was_saved;
2724 static int a7_was_saved;
2725 static int a11_was_saved;
2726
2727 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2728 static void
2729 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2730 {
2731 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2732 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2733 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2734 unsigned int spilled_value
2735 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2736
2737 if ((at == 0) && !a0_was_saved)
2738 {
2739 a0_saved = xtensa_read_register (atreg);
2740 a0_was_saved = 1;
2741 }
2742 else if ((at == 7) && !a7_was_saved)
2743 {
2744 a7_saved = xtensa_read_register (atreg);
2745 a7_was_saved = 1;
2746 }
2747 else if ((at == 11) && !a11_was_saved)
2748 {
2749 a11_saved = xtensa_read_register (atreg);
2750 a11_was_saved = 1;
2751 }
2752
2753 xtensa_write_register (atreg, spilled_value);
2754 }
2755
2756 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2757 static void
2758 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2759 {
2760 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2761 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2762 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2763 ULONGEST spilled_value = xtensa_read_register (atreg);
2764
2765 write_memory_unsigned_integer (addr, 4,
2766 gdbarch_byte_order (gdbarch),
2767 spilled_value);
2768 }
2769
2770 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2771
2772 typedef enum
2773 {
2774 xtWindowOverflow,
2775 xtWindowUnderflow,
2776 xtNoExceptionHandler
2777 } xtensa_exception_handler_t;
2778
2779 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2780 Return type of Xtensa Window Interrupt Handler on success. */
2781 static xtensa_exception_handler_t
2782 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2783 {
2784 xtensa_isa isa;
2785 xtensa_insnbuf ins, slot;
2786 gdb_byte ibuf[XTENSA_ISA_BSZ];
2787 CORE_ADDR ia, bt, ba;
2788 xtensa_format ifmt;
2789 int ilen, islots, is;
2790 xtensa_opcode opc;
2791 int insn_num = 0;
2792 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2793
2794 uint32_t at, as, offset;
2795
2796 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2797 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2798
2799 isa = xtensa_default_isa;
2800 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2801 ins = xtensa_insnbuf_alloc (isa);
2802 slot = xtensa_insnbuf_alloc (isa);
2803 ba = 0;
2804 ia = current_pc;
2805 bt = ia;
2806
2807 a0_was_saved = 0;
2808 a7_was_saved = 0;
2809 a11_was_saved = 0;
2810
2811 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2812 {
2813 if (ia + xtensa_isa_maxlength (isa) > bt)
2814 {
2815 ba = ia;
2816 bt = (ba + XTENSA_ISA_BSZ);
2817 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2818 return xtNoExceptionHandler;
2819 }
2820 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2821 ifmt = xtensa_format_decode (isa, ins);
2822 if (ifmt == XTENSA_UNDEFINED)
2823 return xtNoExceptionHandler;
2824 ilen = xtensa_format_length (isa, ifmt);
2825 if (ilen == XTENSA_UNDEFINED)
2826 return xtNoExceptionHandler;
2827 islots = xtensa_format_num_slots (isa, ifmt);
2828 if (islots == XTENSA_UNDEFINED)
2829 return xtNoExceptionHandler;
2830 for (is = 0; is < islots; ++is)
2831 {
2832 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2833 return xtNoExceptionHandler;
2834 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2835 if (opc == XTENSA_UNDEFINED)
2836 return xtNoExceptionHandler;
2837 switch (call0_classify_opcode (isa, opc))
2838 {
2839 case c0opc_illegal:
2840 case c0opc_flow:
2841 case c0opc_entry:
2842 case c0opc_break:
2843 /* We expect none of them here. */
2844 return xtNoExceptionHandler;
2845 case c0opc_l32e:
2846 func = execute_l32e;
2847 break;
2848 case c0opc_s32e:
2849 func = execute_s32e;
2850 break;
2851 case c0opc_rfwo: /* RFWO. */
2852 /* Here, we return from WindowOverflow handler and,
2853 if we stopped at the very beginning, which means
2854 A0 was saved, we have to restore it now. */
2855 if (a0_was_saved)
2856 {
2857 int arreg = arreg_number (gdbarch,
2858 gdbarch_tdep (gdbarch)->a0_base,
2859 wb);
2860 xtensa_write_register (arreg, a0_saved);
2861 }
2862 return xtWindowOverflow;
2863 case c0opc_rfwu: /* RFWU. */
2864 /* Here, we return from WindowUnderflow handler.
2865 Let's see if either A7 or A11 has to be restored. */
2866 if (WindowUnderflow12)
2867 {
2868 if (a11_was_saved)
2869 {
2870 int arreg = arreg_number (gdbarch,
2871 gdbarch_tdep (gdbarch)->a0_base + 11,
2872 wb);
2873 xtensa_write_register (arreg, a11_saved);
2874 }
2875 }
2876 else if (a7_was_saved)
2877 {
2878 int arreg = arreg_number (gdbarch,
2879 gdbarch_tdep (gdbarch)->a0_base + 7,
2880 wb);
2881 xtensa_write_register (arreg, a7_saved);
2882 }
2883 return xtWindowUnderflow;
2884 default: /* Simply skip this insns. */
2885 continue;
2886 }
2887
2888 /* Decode arguments for L32E / S32E and simulate their execution. */
2889 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_decode (isa, opc, 0, &at))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_decode (isa, opc, 1, &as))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_decode (isa, opc, 2, &offset))
2902 return xtNoExceptionHandler;
2903
2904 (*func) (gdbarch, at, as, offset, wb);
2905 }
2906
2907 ia += ilen;
2908 }
2909 return xtNoExceptionHandler;
2910 }
2911
2912 /* Handle Window Overflow / Underflow exception frames. */
2913
2914 static void
2915 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2916 xtensa_frame_cache_t *cache,
2917 CORE_ADDR pc)
2918 {
2919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2920 CORE_ADDR ps, wb, ws, ra;
2921 int epc1_regnum, i, regnum;
2922 xtensa_exception_handler_t eh_type;
2923
2924 /* Read PS, WB, and WS from the hardware. Note that PS register
2925 must be present, if Windowed ABI is supported. */
2926 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2927 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2928 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2929
2930 /* Execute all the remaining instructions from Window Interrupt Handler
2931 by simulating them on the remote protocol level. On return, set the
2932 type of Xtensa Window Interrupt Handler, or report an error. */
2933 eh_type = execute_code (gdbarch, pc, wb);
2934 if (eh_type == xtNoExceptionHandler)
2935 error (_("\
2936 Unable to decode Xtensa Window Interrupt Handler's code."));
2937
2938 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2939 cache->call0 = 0; /* It's Windowed ABI. */
2940
2941 /* All registers for the cached frame will be alive. */
2942 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2943 cache->wd.aregs[i] = -1;
2944
2945 if (eh_type == xtWindowOverflow)
2946 cache->wd.ws = ws ^ (1 << wb);
2947 else /* eh_type == xtWindowUnderflow. */
2948 cache->wd.ws = ws | (1 << wb);
2949
2950 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2951 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2952 cache->wd.wb);
2953 ra = xtensa_read_register (regnum);
2954 cache->wd.callsize = WINSIZE (ra);
2955 cache->prev_sp = xtensa_read_register (regnum + 1);
2956 /* Set regnum to a frame pointer of the frame being cached. */
2957 regnum = xtensa_scan_prologue (gdbarch, pc);
2958 regnum = arreg_number (gdbarch,
2959 gdbarch_tdep (gdbarch)->a0_base + regnum,
2960 cache->wd.wb);
2961 cache->base = get_frame_register_unsigned (this_frame, regnum);
2962
2963 /* Read PC of interrupted function from EPC1 register. */
2964 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2965 if (epc1_regnum < 0)
2966 error(_("Unable to read Xtensa register EPC1"));
2967 cache->ra = xtensa_read_register (epc1_regnum);
2968 cache->pc = get_frame_func (this_frame);
2969 }
2970
2971
2972 /* Skip function prologue.
2973
2974 Return the pc of the first instruction after prologue. GDB calls this to
2975 find the address of the first line of the function or (if there is no line
2976 number information) to skip the prologue for planting breakpoints on
2977 function entries. Use debug info (if present) or prologue analysis to skip
2978 the prologue to achieve reliable debugging behavior. For windowed ABI,
2979 only the 'entry' instruction is skipped. It is not strictly necessary to
2980 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2981 backtrace at any point in the prologue, however certain potential hazards
2982 are avoided and a more "normal" debugging experience is ensured by
2983 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2984 For example, if we don't skip the prologue:
2985 - Some args may not yet have been saved to the stack where the debug
2986 info expects to find them (true anyway when only 'entry' is skipped);
2987 - Software breakpoints ('break' instrs) may not have been unplanted
2988 when the prologue analysis is done on initializing the frame cache,
2989 and breaks in the prologue will throw off the analysis.
2990
2991 If we have debug info ( line-number info, in particular ) we simply skip
2992 the code associated with the first function line effectively skipping
2993 the prologue code. It works even in cases like
2994
2995 int main()
2996 { int local_var = 1;
2997 ....
2998 }
2999
3000 because, for this source code, both Xtensa compilers will generate two
3001 separate entries ( with the same line number ) in dwarf line-number
3002 section to make sure there is a boundary between the prologue code and
3003 the rest of the function.
3004
3005 If there is no debug info, we need to analyze the code. */
3006
3007 /* #define DONT_SKIP_PROLOGUE */
3008
3009 static CORE_ADDR
3010 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3011 {
3012 struct symtab_and_line prologue_sal;
3013 CORE_ADDR body_pc;
3014
3015 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3016
3017 #if DONT_SKIP_PROLOGUE
3018 return start_pc;
3019 #endif
3020
3021 /* Try to find first body line from debug info. */
3022
3023 prologue_sal = find_pc_line (start_pc, 0);
3024 if (prologue_sal.line != 0) /* Found debug info. */
3025 {
3026 /* In Call0, it is possible to have a function with only one instruction
3027 ('ret') resulting from a one-line optimized function that does nothing.
3028 In that case, prologue_sal.end may actually point to the start of the
3029 next function in the text section, causing a breakpoint to be set at
3030 the wrong place. Check, if the end address is within a different
3031 function, and if so return the start PC. We know we have symbol
3032 information. */
3033
3034 CORE_ADDR end_func;
3035
3036 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3037 && call0_ret (start_pc, prologue_sal.end))
3038 return start_pc;
3039
3040 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3041 if (end_func != start_pc)
3042 return start_pc;
3043
3044 return prologue_sal.end;
3045 }
3046
3047 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3048 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3049 xtensa_alloc_frame_cache (0));
3050 return body_pc != 0 ? body_pc : start_pc;
3051 }
3052
3053 /* Verify the current configuration. */
3054 static void
3055 xtensa_verify_config (struct gdbarch *gdbarch)
3056 {
3057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3058 string_file log;
3059
3060 /* Verify that we got a reasonable number of AREGS. */
3061 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3062 log.printf (_("\
3063 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3064 tdep->num_aregs);
3065
3066 /* Verify that certain registers exist. */
3067
3068 if (tdep->pc_regnum == -1)
3069 log.printf (_("\n\tpc_regnum: No PC register"));
3070 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3071 log.printf (_("\n\tps_regnum: No PS register"));
3072
3073 if (tdep->isa_use_windowed_registers)
3074 {
3075 if (tdep->wb_regnum == -1)
3076 log.printf (_("\n\twb_regnum: No WB register"));
3077 if (tdep->ws_regnum == -1)
3078 log.printf (_("\n\tws_regnum: No WS register"));
3079 if (tdep->ar_base == -1)
3080 log.printf (_("\n\tar_base: No AR registers"));
3081 }
3082
3083 if (tdep->a0_base == -1)
3084 log.printf (_("\n\ta0_base: No Ax registers"));
3085
3086 if (!log.empty ())
3087 internal_error (__FILE__, __LINE__,
3088 _("the following are invalid: %s"), log.c_str ());
3089 }
3090
3091
3092 /* Derive specific register numbers from the array of registers. */
3093
3094 static void
3095 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3096 {
3097 xtensa_register_t* rmap;
3098 int n, max_size = 4;
3099
3100 tdep->num_regs = 0;
3101 tdep->num_nopriv_regs = 0;
3102
3103 /* Special registers 0..255 (core). */
3104 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3105 /* User registers 0..255. */
3106 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3107
3108 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3109 {
3110 if (rmap->target_number == 0x0020)
3111 tdep->pc_regnum = n;
3112 else if (rmap->target_number == 0x0100)
3113 tdep->ar_base = n;
3114 else if (rmap->target_number == 0x0000)
3115 tdep->a0_base = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3117 tdep->wb_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3119 tdep->ws_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3121 tdep->debugcause_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3123 tdep->exccause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3125 tdep->excvaddr_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3127 tdep->lbeg_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3129 tdep->lend_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3131 tdep->lcount_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3133 tdep->sar_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3135 tdep->litbase_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3137 tdep->ps_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3139 tdep->threadptr_regnum = n;
3140 #if 0
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3142 tdep->interrupt_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3144 tdep->interrupt2_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3146 tdep->cpenable_regnum = n;
3147 #endif
3148
3149 if (rmap->byte_size > max_size)
3150 max_size = rmap->byte_size;
3151 if (rmap->mask != 0 && tdep->num_regs == 0)
3152 tdep->num_regs = n;
3153 /* Find out out how to deal with priveleged registers.
3154
3155 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3156 && tdep->num_nopriv_regs == 0)
3157 tdep->num_nopriv_regs = n;
3158 */
3159 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3160 && tdep->num_regs == 0)
3161 tdep->num_regs = n;
3162 }
3163
3164 /* Number of pseudo registers. */
3165 tdep->num_pseudo_regs = n - tdep->num_regs;
3166
3167 /* Empirically determined maximum sizes. */
3168 tdep->max_register_raw_size = max_size;
3169 tdep->max_register_virtual_size = max_size;
3170 }
3171
3172 /* Module "constructor" function. */
3173
3174 extern struct gdbarch_tdep xtensa_tdep;
3175
3176 static struct gdbarch *
3177 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3178 {
3179 struct gdbarch_tdep *tdep;
3180 struct gdbarch *gdbarch;
3181
3182 DEBUGTRACE ("gdbarch_init()\n");
3183
3184 if (!xtensa_default_isa)
3185 xtensa_default_isa = xtensa_isa_init (0, 0);
3186
3187 /* We have to set the byte order before we call gdbarch_alloc. */
3188 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3189
3190 tdep = &xtensa_tdep;
3191 gdbarch = gdbarch_alloc (&info, tdep);
3192 xtensa_derive_tdep (tdep);
3193
3194 /* Verify our configuration. */
3195 xtensa_verify_config (gdbarch);
3196 xtensa_session_once_reported = 0;
3197
3198 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3199 set_gdbarch_wchar_signed (gdbarch, 0);
3200
3201 /* Pseudo-Register read/write. */
3202 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3203 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3204
3205 /* Set target information. */
3206 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3207 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3208 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3209 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3210 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3211
3212 /* Renumber registers for known formats (stabs and dwarf2). */
3213 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3214 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3215
3216 /* We provide our own function to get register information. */
3217 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3218 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3219
3220 /* To call functions from GDB using dummy frame. */
3221 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3222
3223 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3224
3225 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3226
3227 /* Advance PC across any prologue instructions to reach "real" code. */
3228 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3229
3230 /* Stack grows downward. */
3231 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3232
3233 /* Set breakpoints. */
3234 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3235 xtensa_breakpoint_kind_from_pc);
3236 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3237 xtensa_sw_breakpoint_from_kind);
3238
3239 /* After breakpoint instruction or illegal instruction, pc still
3240 points at break instruction, so don't decrement. */
3241 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3242
3243 /* We don't skip args. */
3244 set_gdbarch_frame_args_skip (gdbarch, 0);
3245
3246 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3247
3248 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3249
3250 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3251
3252 /* Frame handling. */
3253 frame_base_set_default (gdbarch, &xtensa_frame_base);
3254 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3255 dwarf2_append_unwinders (gdbarch);
3256
3257 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3258
3259 xtensa_add_reggroups (gdbarch);
3260 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3261
3262 set_gdbarch_iterate_over_regset_sections
3263 (gdbarch, xtensa_iterate_over_regset_sections);
3264
3265 set_solib_svr4_fetch_link_map_offsets
3266 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3267
3268 /* Hook in the ABI-specific overrides, if they have been registered. */
3269 gdbarch_init_osabi (info, gdbarch);
3270
3271 return gdbarch;
3272 }
3273
3274 static void
3275 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3276 {
3277 error (_("xtensa_dump_tdep(): not implemented"));
3278 }
3279
3280 void
3281 _initialize_xtensa_tdep (void)
3282 {
3283 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3284 xtensa_init_reggroups ();
3285
3286 add_setshow_zuinteger_cmd ("xtensa",
3287 class_maintenance,
3288 &xtensa_debug_level,
3289 _("Set Xtensa debugging."),
3290 _("Show Xtensa debugging."), _("\
3291 When non-zero, Xtensa-specific debugging is enabled. \
3292 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3293 NULL,
3294 NULL,
3295 &setdebuglist, &showdebuglist);
3296 }
This page took 0.105612 seconds and 5 git commands to generate.