Fix seg-fault reading a corrupt ELF binary.
[deliverable/binutils-gdb.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2017 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
109 static bool
110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static bool
114 is_mrs_tpidr_el0(const Insntype insn)
115 { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116
117 static unsigned int
118 aarch64_rm(const Insntype insn)
119 { return aarch64_bits(insn, 16, 5); }
120
121 static unsigned int
122 aarch64_rn(const Insntype insn)
123 { return aarch64_bits(insn, 5, 5); }
124
125 static unsigned int
126 aarch64_rd(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
130 aarch64_rt(const Insntype insn)
131 { return aarch64_bits(insn, 0, 5); }
132
133 static unsigned int
134 aarch64_rt2(const Insntype insn)
135 { return aarch64_bits(insn, 10, 5); }
136
137 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138 static Insntype
139 aarch64_adr_encode_imm(Insntype adr, int imm21)
140 {
141 gold_assert(is_adr(adr));
142 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143 const int mask19 = (1 << 19) - 1;
144 const int mask2 = 3;
145 adr &= ~((mask19 << 5) | (mask2 << 29));
146 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147 return adr;
148 }
149
150 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153 static int64_t
154 aarch64_adrp_decode_imm(const Insntype adrp)
155 {
156 const int mask19 = (1 << 19) - 1;
157 const int mask2 = 3;
158 gold_assert(is_adrp(adrp));
159 // 21-bit imm encoded in adrp.
160 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161 // Retrieve msb of 21-bit-signed imm for sign extension.
162 uint64_t msbt = (imm >> 20) & 1;
163 // Real value is imm multiplied by 4k. Value now has 33-bit information.
164 int64_t value = imm << 12;
165 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166 // with value.
167 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168 }
169
170 static bool
171 aarch64_b(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x14000000; }
173
174 static bool
175 aarch64_bl(const Insntype insn)
176 { return (insn & 0xFC000000) == 0x94000000; }
177
178 static bool
179 aarch64_blr(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181
182 static bool
183 aarch64_br(const Insntype insn)
184 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185
186 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
187 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188 static bool
189 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190
191 static bool
192 aarch64_ldst(Insntype insn)
193 { return (insn & 0x0a000000) == 0x08000000; }
194
195 static bool
196 aarch64_ldst_ex(Insntype insn)
197 { return (insn & 0x3f000000) == 0x08000000; }
198
199 static bool
200 aarch64_ldst_pcrel(Insntype insn)
201 { return (insn & 0x3b000000) == 0x18000000; }
202
203 static bool
204 aarch64_ldst_nap(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28000000; }
206
207 static bool
208 aarch64_ldstp_pi(Insntype insn)
209 { return (insn & 0x3b800000) == 0x28800000; }
210
211 static bool
212 aarch64_ldstp_o(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29000000; }
214
215 static bool
216 aarch64_ldstp_pre(Insntype insn)
217 { return (insn & 0x3b800000) == 0x29800000; }
218
219 static bool
220 aarch64_ldst_ui(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000000; }
222
223 static bool
224 aarch64_ldst_piimm(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000400; }
226
227 static bool
228 aarch64_ldst_u(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000800; }
230
231 static bool
232 aarch64_ldst_preimm(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38000c00; }
234
235 static bool
236 aarch64_ldst_ro(Insntype insn)
237 { return (insn & 0x3b200c00) == 0x38200800; }
238
239 static bool
240 aarch64_ldst_uimm(Insntype insn)
241 { return (insn & 0x3b000000) == 0x39000000; }
242
243 static bool
244 aarch64_ldst_simd_m(Insntype insn)
245 { return (insn & 0xbfbf0000) == 0x0c000000; }
246
247 static bool
248 aarch64_ldst_simd_m_pi(Insntype insn)
249 { return (insn & 0xbfa00000) == 0x0c800000; }
250
251 static bool
252 aarch64_ldst_simd_s(Insntype insn)
253 { return (insn & 0xbf9f0000) == 0x0d000000; }
254
255 static bool
256 aarch64_ldst_simd_s_pi(Insntype insn)
257 { return (insn & 0xbf800000) == 0x0d800000; }
258
259 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262 // instructions PAIR is TRUE, RT and RT2 are returned.
263 static bool
264 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265 bool *pair, bool *load)
266 {
267 uint32_t opcode;
268 unsigned int r;
269 uint32_t opc = 0;
270 uint32_t v = 0;
271 uint32_t opc_v = 0;
272
273 /* Bail out quickly if INSN doesn't fall into the the load-store
274 encoding space. */
275 if (!aarch64_ldst (insn))
276 return false;
277
278 *pair = false;
279 *load = false;
280 if (aarch64_ldst_ex (insn))
281 {
282 *rt = aarch64_rt (insn);
283 *rt2 = *rt;
284 if (aarch64_bit (insn, 21) == 1)
285 {
286 *pair = true;
287 *rt2 = aarch64_rt2 (insn);
288 }
289 *load = aarch64_ld (insn);
290 return true;
291 }
292 else if (aarch64_ldst_nap (insn)
293 || aarch64_ldstp_pi (insn)
294 || aarch64_ldstp_o (insn)
295 || aarch64_ldstp_pre (insn))
296 {
297 *pair = true;
298 *rt = aarch64_rt (insn);
299 *rt2 = aarch64_rt2 (insn);
300 *load = aarch64_ld (insn);
301 return true;
302 }
303 else if (aarch64_ldst_pcrel (insn)
304 || aarch64_ldst_ui (insn)
305 || aarch64_ldst_piimm (insn)
306 || aarch64_ldst_u (insn)
307 || aarch64_ldst_preimm (insn)
308 || aarch64_ldst_ro (insn)
309 || aarch64_ldst_uimm (insn))
310 {
311 *rt = aarch64_rt (insn);
312 *rt2 = *rt;
313 if (aarch64_ldst_pcrel (insn))
314 *load = true;
315 opc = aarch64_bits (insn, 22, 2);
316 v = aarch64_bit (insn, 26);
317 opc_v = opc | (v << 2);
318 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
319 || opc_v == 5 || opc_v == 7);
320 return true;
321 }
322 else if (aarch64_ldst_simd_m (insn)
323 || aarch64_ldst_simd_m_pi (insn))
324 {
325 *rt = aarch64_rt (insn);
326 *load = aarch64_bit (insn, 22);
327 opcode = (insn >> 12) & 0xf;
328 switch (opcode)
329 {
330 case 0:
331 case 2:
332 *rt2 = *rt + 3;
333 break;
334
335 case 4:
336 case 6:
337 *rt2 = *rt + 2;
338 break;
339
340 case 7:
341 *rt2 = *rt;
342 break;
343
344 case 8:
345 case 10:
346 *rt2 = *rt + 1;
347 break;
348
349 default:
350 return false;
351 }
352 return true;
353 }
354 else if (aarch64_ldst_simd_s (insn)
355 || aarch64_ldst_simd_s_pi (insn))
356 {
357 *rt = aarch64_rt (insn);
358 r = (insn >> 21) & 1;
359 *load = aarch64_bit (insn, 22);
360 opcode = (insn >> 13) & 0x7;
361 switch (opcode)
362 {
363 case 0:
364 case 2:
365 case 4:
366 *rt2 = *rt + r;
367 break;
368
369 case 1:
370 case 3:
371 case 5:
372 *rt2 = *rt + (r == 0 ? 2 : 3);
373 break;
374
375 case 6:
376 *rt2 = *rt + r;
377 break;
378
379 case 7:
380 *rt2 = *rt + (r == 0 ? 2 : 3);
381 break;
382
383 default:
384 return false;
385 }
386 return true;
387 }
388 return false;
389 } // End of "aarch64_mem_op_p".
390
391 // Return true if INSN is mac insn.
392 static bool
393 aarch64_mac(Insntype insn)
394 { return (insn & 0xff000000) == 0x9b000000; }
395
396 // Return true if INSN is multiply-accumulate.
397 // (This is similar to implementaton in elfnn-aarch64.c.)
398 static bool
399 aarch64_mlxl(Insntype insn)
400 {
401 uint32_t op31 = aarch64_op31(insn);
402 if (aarch64_mac(insn)
403 && (op31 == 0 || op31 == 1 || op31 == 5)
404 /* Exclude MUL instructions which are encoded as a multiple-accumulate
405 with RA = XZR. */
406 && aarch64_ra(insn) != AARCH64_ZR)
407 {
408 return true;
409 }
410 return false;
411 }
412 }; // End of "AArch64_insn_utilities".
413
414
415 // Insn length in byte.
416
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419
420
421 // Zero register encoding - 31.
422
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425
426
427 // Output_data_got_aarch64 class.
428
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432 public:
433 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
434 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435 : Output_data_got<size, big_endian>(),
436 symbol_table_(symtab), layout_(layout)
437 { }
438
439 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
440 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441 // applied in a static link.
442 void
443 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445
446
447 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
448 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
449 // relocation that needs to be applied in a static link.
450 void
451 add_static_reloc(unsigned int got_offset, unsigned int r_type,
452 Sized_relobj_file<size, big_endian>* relobj,
453 unsigned int index)
454 {
455 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456 index));
457 }
458
459
460 protected:
461 // Write out the GOT table.
462 void
463 do_write(Output_file* of) {
464 // The first entry in the GOT is the address of the .dynamic section.
465 gold_assert(this->data_size() >= size / 8);
466 Output_section* dynamic = this->layout_->dynamic_section();
467 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468 this->replace_constant(0, dynamic_addr);
469 Output_data_got<size, big_endian>::do_write(of);
470
471 // Handling static relocs
472 if (this->static_relocs_.empty())
473 return;
474
475 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476
477 gold_assert(parameters->doing_static_link());
478 const off_t offset = this->offset();
479 const section_size_type oview_size =
480 convert_to_section_size_type(this->data_size());
481 unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483 Output_segment* tls_segment = this->layout_->tls_segment();
484 gold_assert(tls_segment != NULL);
485
486 AArch64_address aligned_tcb_address =
487 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488 tls_segment->maximum_alignment());
489
490 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491 {
492 Static_reloc& reloc(this->static_relocs_[i]);
493 AArch64_address value;
494
495 if (!reloc.symbol_is_global())
496 {
497 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498 const Symbol_value<size>* psymval =
499 reloc.relobj()->local_symbol(reloc.index());
500
501 // We are doing static linking. Issue an error and skip this
502 // relocation if the symbol is undefined or in a discarded_section.
503 bool is_ordinary;
504 unsigned int shndx = psymval->input_shndx(&is_ordinary);
505 if ((shndx == elfcpp::SHN_UNDEF)
506 || (is_ordinary
507 && shndx != elfcpp::SHN_UNDEF
508 && !object->is_section_included(shndx)
509 && !this->symbol_table_->is_section_folded(object, shndx)))
510 {
511 gold_error(_("undefined or discarded local symbol %u from "
512 " object %s in GOT"),
513 reloc.index(), reloc.relobj()->name().c_str());
514 continue;
515 }
516 value = psymval->value(object, 0);
517 }
518 else
519 {
520 const Symbol* gsym = reloc.symbol();
521 gold_assert(gsym != NULL);
522 if (gsym->is_forwarder())
523 gsym = this->symbol_table_->resolve_forwards(gsym);
524
525 // We are doing static linking. Issue an error and skip this
526 // relocation if the symbol is undefined or in a discarded_section
527 // unless it is a weakly_undefined symbol.
528 if ((gsym->is_defined_in_discarded_section()
529 || gsym->is_undefined())
530 && !gsym->is_weak_undefined())
531 {
532 gold_error(_("undefined or discarded symbol %s in GOT"),
533 gsym->name());
534 continue;
535 }
536
537 if (!gsym->is_weak_undefined())
538 {
539 const Sized_symbol<size>* sym =
540 static_cast<const Sized_symbol<size>*>(gsym);
541 value = sym->value();
542 }
543 else
544 value = 0;
545 }
546
547 unsigned got_offset = reloc.got_offset();
548 gold_assert(got_offset < oview_size);
549
550 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552 Valtype x;
553 switch (reloc.r_type())
554 {
555 case elfcpp::R_AARCH64_TLS_DTPREL64:
556 x = value;
557 break;
558 case elfcpp::R_AARCH64_TLS_TPREL64:
559 x = value + aligned_tcb_address;
560 break;
561 default:
562 gold_unreachable();
563 }
564 elfcpp::Swap<size, big_endian>::writeval(wv, x);
565 }
566
567 of->write_output_view(offset, oview_size, oview);
568 }
569
570 private:
571 // Symbol table of the output object.
572 Symbol_table* symbol_table_;
573 // A pointer to the Layout class, so that we can find the .dynamic
574 // section when we write out the GOT section.
575 Layout* layout_;
576
577 // This class represent dynamic relocations that need to be applied by
578 // gold because we are using TLS relocations in a static link.
579 class Static_reloc
580 {
581 public:
582 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584 { this->u_.global.symbol = gsym; }
585
586 Static_reloc(unsigned int got_offset, unsigned int r_type,
587 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589 {
590 this->u_.local.relobj = relobj;
591 this->u_.local.index = index;
592 }
593
594 // Return the GOT offset.
595 unsigned int
596 got_offset() const
597 { return this->got_offset_; }
598
599 // Relocation type.
600 unsigned int
601 r_type() const
602 { return this->r_type_; }
603
604 // Whether the symbol is global or not.
605 bool
606 symbol_is_global() const
607 { return this->symbol_is_global_; }
608
609 // For a relocation against a global symbol, the global symbol.
610 Symbol*
611 symbol() const
612 {
613 gold_assert(this->symbol_is_global_);
614 return this->u_.global.symbol;
615 }
616
617 // For a relocation against a local symbol, the defining object.
618 Sized_relobj_file<size, big_endian>*
619 relobj() const
620 {
621 gold_assert(!this->symbol_is_global_);
622 return this->u_.local.relobj;
623 }
624
625 // For a relocation against a local symbol, the local symbol index.
626 unsigned int
627 index() const
628 {
629 gold_assert(!this->symbol_is_global_);
630 return this->u_.local.index;
631 }
632
633 private:
634 // GOT offset of the entry to which this relocation is applied.
635 unsigned int got_offset_;
636 // Type of relocation.
637 unsigned int r_type_;
638 // Whether this relocation is against a global symbol.
639 bool symbol_is_global_;
640 // A global or local symbol.
641 union
642 {
643 struct
644 {
645 // For a global symbol, the symbol itself.
646 Symbol* symbol;
647 } global;
648 struct
649 {
650 // For a local symbol, the object defining the symbol.
651 Sized_relobj_file<size, big_endian>* relobj;
652 // For a local symbol, the symbol index.
653 unsigned int index;
654 } local;
655 } u_;
656 }; // End of inner class Static_reloc
657
658 std::vector<Static_reloc> static_relocs_;
659 }; // End of Output_data_got_aarch64
660
661
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668
669
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672
673
674 // Stub type enum constants.
675
676 enum
677 {
678 ST_NONE = 0,
679
680 // Using adrp/add pair, 4 insns (including alignment) without mem access,
681 // the fastest stub. This has a limited jump distance, which is tested by
682 // aarch64_valid_for_adrp_p.
683 ST_ADRP_BRANCH = 1,
684
685 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686 // unlimited in jump distance.
687 ST_LONG_BRANCH_ABS = 2,
688
689 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690 // mem access, slowest one. Only used in position independent executables.
691 ST_LONG_BRANCH_PCREL = 3,
692
693 // Stub for erratum 843419 handling.
694 ST_E_843419 = 4,
695
696 // Stub for erratum 835769 handling.
697 ST_E_835769 = 5,
698
699 // Number of total stub types.
700 ST_NUMBER = 6
701 };
702
703
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706
707 template<bool big_endian>
708 struct Stub_template
709 {
710 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711 const int insn_num;
712 };
713
714
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723
724 // Single static method to get stub template for a given stub type.
725 static const Stub_template<big_endian>*
726 get_stub_template(int type)
727 {
728 static Stub_template_repertoire<big_endian> singleton;
729 return singleton.stub_templates_[type];
730 }
731
732 private:
733 // Constructor - creates/initializes all stub templates.
734 Stub_template_repertoire();
735 ~Stub_template_repertoire()
736 { }
737
738 // Disallowing copy ctor and copy assignment operator.
739 Stub_template_repertoire(Stub_template_repertoire&);
740 Stub_template_repertoire& operator=(Stub_template_repertoire&);
741
742 // Data that stores all insn templates.
743 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 }; // End of "class Stub_template_repertoire".
745
746
747 // Constructor - creates/initilizes all stub templates.
748
749 template<bool big_endian>
750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752 // Insn array definitions.
753 const static Insntype ST_NONE_INSNS[] = {};
754
755 const static Insntype ST_ADRP_BRANCH_INSNS[] =
756 {
757 0x90000010, /* adrp ip0, X */
758 /* ADR_PREL_PG_HI21(X) */
759 0x91000210, /* add ip0, ip0, :lo12:X */
760 /* ADD_ABS_LO12_NC(X) */
761 0xd61f0200, /* br ip0 */
762 0x00000000, /* alignment padding */
763 };
764
765 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766 {
767 0x58000050, /* ldr ip0, 0x8 */
768 0xd61f0200, /* br ip0 */
769 0x00000000, /* address field */
770 0x00000000, /* address fields */
771 };
772
773 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774 {
775 0x58000090, /* ldr ip0, 0x10 */
776 0x10000011, /* adr ip1, #0 */
777 0x8b110210, /* add ip0, ip0, ip1 */
778 0xd61f0200, /* br ip0 */
779 0x00000000, /* address field */
780 0x00000000, /* address field */
781 0x00000000, /* alignment padding */
782 0x00000000, /* alignment padding */
783 };
784
785 const static Insntype ST_E_843419_INSNS[] =
786 {
787 0x00000000, /* Placeholder for erratum insn. */
788 0x14000000, /* b <label> */
789 };
790
791 // ST_E_835769 has the same stub template as ST_E_843419
792 // but we reproduce the array here so that the sizeof
793 // expressions in install_insn_template will work.
794 const static Insntype ST_E_835769_INSNS[] =
795 {
796 0x00000000, /* Placeholder for erratum insn. */
797 0x14000000, /* b <label> */
798 };
799
800 #define install_insn_template(T) \
801 const static Stub_template<big_endian> template_##T = { \
802 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803 this->stub_templates_[T] = &template_##T
804
805 install_insn_template(ST_NONE);
806 install_insn_template(ST_ADRP_BRANCH);
807 install_insn_template(ST_LONG_BRANCH_ABS);
808 install_insn_template(ST_LONG_BRANCH_PCREL);
809 install_insn_template(ST_E_843419);
810 install_insn_template(ST_E_835769);
811
812 #undef install_insn_template
813 }
814
815
816 // Base class for stubs.
817
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824
825 static const AArch64_address invalid_address =
826 static_cast<AArch64_address>(-1);
827
828 static const section_offset_type invalid_offset =
829 static_cast<section_offset_type>(-1);
830
831 Stub_base(int type)
832 : destination_address_(invalid_address),
833 offset_(invalid_offset),
834 type_(type)
835 {}
836
837 ~Stub_base()
838 {}
839
840 // Get stub type.
841 int
842 type() const
843 { return this->type_; }
844
845 // Get stub template that provides stub insn information.
846 const Stub_template<big_endian>*
847 stub_template() const
848 {
849 return Stub_template_repertoire<big_endian>::
850 get_stub_template(this->type());
851 }
852
853 // Get destination address.
854 AArch64_address
855 destination_address() const
856 {
857 gold_assert(this->destination_address_ != this->invalid_address);
858 return this->destination_address_;
859 }
860
861 // Set destination address.
862 void
863 set_destination_address(AArch64_address address)
864 {
865 gold_assert(address != this->invalid_address);
866 this->destination_address_ = address;
867 }
868
869 // Reset the destination address.
870 void
871 reset_destination_address()
872 { this->destination_address_ = this->invalid_address; }
873
874 // Get offset of code stub. For Reloc_stub, it is the offset from the
875 // beginning of its containing stub table; for Erratum_stub, it is the offset
876 // from the end of reloc_stubs.
877 section_offset_type
878 offset() const
879 {
880 gold_assert(this->offset_ != this->invalid_offset);
881 return this->offset_;
882 }
883
884 // Set stub offset.
885 void
886 set_offset(section_offset_type offset)
887 { this->offset_ = offset; }
888
889 // Return the stub insn.
890 const Insntype*
891 insns() const
892 { return this->stub_template()->insns; }
893
894 // Return num of stub insns.
895 unsigned int
896 insn_num() const
897 { return this->stub_template()->insn_num; }
898
899 // Get size of the stub.
900 int
901 stub_size() const
902 {
903 return this->insn_num() *
904 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905 }
906
907 // Write stub to output file.
908 void
909 write(unsigned char* view, section_size_type view_size)
910 { this->do_write(view, view_size); }
911
912 protected:
913 // Abstract method to be implemented by sub-classes.
914 virtual void
915 do_write(unsigned char*, section_size_type) = 0;
916
917 private:
918 // The last insn of a stub is a jump to destination insn. This field records
919 // the destination address.
920 AArch64_address destination_address_;
921 // The stub offset. Note this has difference interpretations between an
922 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923 // beginning of the containing stub_table, whereas for Erratum_stub, this is
924 // the offset from the end of reloc_stubs.
925 section_offset_type offset_;
926 // Stub type.
927 const int type_;
928 }; // End of "Stub_base".
929
930
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946
947 static const int STUB_ADDR_ALIGN;
948
949 static const Insntype invalid_insn = static_cast<Insntype>(-1);
950
951 Erratum_stub(The_aarch64_relobj* relobj, int type,
952 unsigned shndx, unsigned int sh_offset)
953 : Stub_base<size, big_endian>(type), relobj_(relobj),
954 shndx_(shndx), sh_offset_(sh_offset),
955 erratum_insn_(invalid_insn),
956 erratum_address_(this->invalid_address)
957 {}
958
959 ~Erratum_stub() {}
960
961 // Return the object that contains the erratum.
962 The_aarch64_relobj*
963 relobj()
964 { return this->relobj_; }
965
966 // Get section index of the erratum.
967 unsigned int
968 shndx() const
969 { return this->shndx_; }
970
971 // Get section offset of the erratum.
972 unsigned int
973 sh_offset() const
974 { return this->sh_offset_; }
975
976 // Get the erratum insn. This is the insn located at erratum_insn_address.
977 Insntype
978 erratum_insn() const
979 {
980 gold_assert(this->erratum_insn_ != this->invalid_insn);
981 return this->erratum_insn_;
982 }
983
984 // Set the insn that the erratum happens to.
985 void
986 set_erratum_insn(Insntype insn)
987 { this->erratum_insn_ = insn; }
988
989 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991 // is no longer the one we want to write out to the stub, update erratum_insn_
992 // with relocated version. Also note that in this case xn must not be "PC", so
993 // it is safe to move the erratum insn from the origin place to the stub. For
994 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995 // relocation spot (assertion added though).
996 void
997 update_erratum_insn(Insntype insn)
998 {
999 gold_assert(this->erratum_insn_ != this->invalid_insn);
1000 switch (this->type())
1001 {
1002 case ST_E_843419:
1003 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006 Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008 Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 // Update plain ld/st insn with relocated insn.
1010 this->erratum_insn_ = insn;
1011 break;
1012 case ST_E_835769:
1013 gold_assert(insn == this->erratum_insn());
1014 break;
1015 default:
1016 gold_unreachable();
1017 }
1018 }
1019
1020
1021 // Return the address where an erratum must be done.
1022 AArch64_address
1023 erratum_address() const
1024 {
1025 gold_assert(this->erratum_address_ != this->invalid_address);
1026 return this->erratum_address_;
1027 }
1028
1029 // Set the address where an erratum must be done.
1030 void
1031 set_erratum_address(AArch64_address addr)
1032 { this->erratum_address_ = addr; }
1033
1034 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1035 // sh_offset). We do not include 'type' in the calculation, because there is
1036 // at most one stub type at (obj, shndx, sh_offset).
1037 bool
1038 operator<(const Erratum_stub<size, big_endian>& k) const
1039 {
1040 if (this == &k)
1041 return false;
1042 // We group stubs by relobj.
1043 if (this->relobj_ != k.relobj_)
1044 return this->relobj_ < k.relobj_;
1045 // Then by section index.
1046 if (this->shndx_ != k.shndx_)
1047 return this->shndx_ < k.shndx_;
1048 // Lastly by section offset.
1049 return this->sh_offset_ < k.sh_offset_;
1050 }
1051
1052 protected:
1053 virtual void
1054 do_write(unsigned char*, section_size_type);
1055
1056 private:
1057 // The object that needs to be fixed.
1058 The_aarch64_relobj* relobj_;
1059 // The shndx in the object that needs to be fixed.
1060 const unsigned int shndx_;
1061 // The section offset in the obejct that needs to be fixed.
1062 const unsigned int sh_offset_;
1063 // The insn to be fixed.
1064 Insntype erratum_insn_;
1065 // The address of the above insn.
1066 AArch64_address erratum_address_;
1067 }; // End of "Erratum_stub".
1068
1069
1070 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1071 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1072 // adrp's code position (two or three insns before erratum insn itself).
1073
1074 template<int size, bool big_endian>
1075 class E843419_stub : public Erratum_stub<size, big_endian>
1076 {
1077 public:
1078 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1079
1080 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1081 unsigned int shndx, unsigned int sh_offset,
1082 unsigned int adrp_sh_offset)
1083 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1084 adrp_sh_offset_(adrp_sh_offset)
1085 {}
1086
1087 unsigned int
1088 adrp_sh_offset() const
1089 { return this->adrp_sh_offset_; }
1090
1091 private:
1092 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1093 // can can obtain it from its parent.)
1094 const unsigned int adrp_sh_offset_;
1095 };
1096
1097
1098 template<int size, bool big_endian>
1099 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1100
1101 // Comparator used in set definition.
1102 template<int size, bool big_endian>
1103 struct Erratum_stub_less
1104 {
1105 bool
1106 operator()(const Erratum_stub<size, big_endian>* s1,
1107 const Erratum_stub<size, big_endian>* s2) const
1108 { return *s1 < *s2; }
1109 };
1110
1111 // Erratum_stub implementation for writing stub to output file.
1112
1113 template<int size, bool big_endian>
1114 void
1115 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1116 {
1117 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1118 const Insntype* insns = this->insns();
1119 uint32_t num_insns = this->insn_num();
1120 Insntype* ip = reinterpret_cast<Insntype*>(view);
1121 // For current implemented erratum 843419 and 835769, the first insn in the
1122 // stub is always a copy of the problematic insn (in 843419, the mem access
1123 // insn, in 835769, the mac insn), followed by a jump-back.
1124 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1125 for (uint32_t i = 1; i < num_insns; ++i)
1126 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1127 }
1128
1129
1130 // Reloc stub class.
1131
1132 template<int size, bool big_endian>
1133 class Reloc_stub : public Stub_base<size, big_endian>
1134 {
1135 public:
1136 typedef Reloc_stub<size, big_endian> This;
1137 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1138
1139 // Branch range. This is used to calculate the section group size, as well as
1140 // determine whether a stub is needed.
1141 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1142 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1143
1144 // Constant used to determine if an offset fits in the adrp instruction
1145 // encoding.
1146 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1147 static const int MIN_ADRP_IMM = -(1 << 20);
1148
1149 static const int BYTES_PER_INSN = 4;
1150 static const int STUB_ADDR_ALIGN;
1151
1152 // Determine whether the offset fits in the jump/branch instruction.
1153 static bool
1154 aarch64_valid_branch_offset_p(int64_t offset)
1155 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1156
1157 // Determine whether the offset fits in the adrp immediate field.
1158 static bool
1159 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1160 {
1161 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1162 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1163 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1164 }
1165
1166 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1167 // needed.
1168 static int
1169 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1170 AArch64_address target);
1171
1172 Reloc_stub(int type)
1173 : Stub_base<size, big_endian>(type)
1174 { }
1175
1176 ~Reloc_stub()
1177 { }
1178
1179 // The key class used to index the stub instance in the stub table's stub map.
1180 class Key
1181 {
1182 public:
1183 Key(int type, const Symbol* symbol, const Relobj* relobj,
1184 unsigned int r_sym, int32_t addend)
1185 : type_(type), addend_(addend)
1186 {
1187 if (symbol != NULL)
1188 {
1189 this->r_sym_ = Reloc_stub::invalid_index;
1190 this->u_.symbol = symbol;
1191 }
1192 else
1193 {
1194 gold_assert(relobj != NULL && r_sym != invalid_index);
1195 this->r_sym_ = r_sym;
1196 this->u_.relobj = relobj;
1197 }
1198 }
1199
1200 ~Key()
1201 { }
1202
1203 // Return stub type.
1204 int
1205 type() const
1206 { return this->type_; }
1207
1208 // Return the local symbol index or invalid_index.
1209 unsigned int
1210 r_sym() const
1211 { return this->r_sym_; }
1212
1213 // Return the symbol if there is one.
1214 const Symbol*
1215 symbol() const
1216 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1217
1218 // Return the relobj if there is one.
1219 const Relobj*
1220 relobj() const
1221 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1222
1223 // Whether this equals to another key k.
1224 bool
1225 eq(const Key& k) const
1226 {
1227 return ((this->type_ == k.type_)
1228 && (this->r_sym_ == k.r_sym_)
1229 && ((this->r_sym_ != Reloc_stub::invalid_index)
1230 ? (this->u_.relobj == k.u_.relobj)
1231 : (this->u_.symbol == k.u_.symbol))
1232 && (this->addend_ == k.addend_));
1233 }
1234
1235 // Return a hash value.
1236 size_t
1237 hash_value() const
1238 {
1239 size_t name_hash_value = gold::string_hash<char>(
1240 (this->r_sym_ != Reloc_stub::invalid_index)
1241 ? this->u_.relobj->name().c_str()
1242 : this->u_.symbol->name());
1243 // We only have 4 stub types.
1244 size_t stub_type_hash_value = 0x03 & this->type_;
1245 return (name_hash_value
1246 ^ stub_type_hash_value
1247 ^ ((this->r_sym_ & 0x3fff) << 2)
1248 ^ ((this->addend_ & 0xffff) << 16));
1249 }
1250
1251 // Functors for STL associative containers.
1252 struct hash
1253 {
1254 size_t
1255 operator()(const Key& k) const
1256 { return k.hash_value(); }
1257 };
1258
1259 struct equal_to
1260 {
1261 bool
1262 operator()(const Key& k1, const Key& k2) const
1263 { return k1.eq(k2); }
1264 };
1265
1266 private:
1267 // Stub type.
1268 const int type_;
1269 // If this is a local symbol, this is the index in the defining object.
1270 // Otherwise, it is invalid_index for a global symbol.
1271 unsigned int r_sym_;
1272 // If r_sym_ is an invalid index, this points to a global symbol.
1273 // Otherwise, it points to a relobj. We used the unsized and target
1274 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1275 // Arm_relobj, in order to avoid making the stub class a template
1276 // as most of the stub machinery is endianness-neutral. However, it
1277 // may require a bit of casting done by users of this class.
1278 union
1279 {
1280 const Symbol* symbol;
1281 const Relobj* relobj;
1282 } u_;
1283 // Addend associated with a reloc.
1284 int32_t addend_;
1285 }; // End of inner class Reloc_stub::Key
1286
1287 protected:
1288 // This may be overridden in the child class.
1289 virtual void
1290 do_write(unsigned char*, section_size_type);
1291
1292 private:
1293 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1294 }; // End of Reloc_stub
1295
1296 template<int size, bool big_endian>
1297 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1298
1299 // Write data to output file.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Reloc_stub<size, big_endian>::
1304 do_write(unsigned char* view, section_size_type)
1305 {
1306 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1307 const uint32_t* insns = this->insns();
1308 uint32_t num_insns = this->insn_num();
1309 Insntype* ip = reinterpret_cast<Insntype*>(view);
1310 for (uint32_t i = 0; i < num_insns; ++i)
1311 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1312 }
1313
1314
1315 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1316 // needed.
1317
1318 template<int size, bool big_endian>
1319 inline int
1320 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1321 unsigned int r_type, AArch64_address location, AArch64_address dest)
1322 {
1323 int64_t branch_offset = 0;
1324 switch(r_type)
1325 {
1326 case elfcpp::R_AARCH64_CALL26:
1327 case elfcpp::R_AARCH64_JUMP26:
1328 branch_offset = dest - location;
1329 break;
1330 default:
1331 gold_unreachable();
1332 }
1333
1334 if (aarch64_valid_branch_offset_p(branch_offset))
1335 return ST_NONE;
1336
1337 if (aarch64_valid_for_adrp_p(location, dest))
1338 return ST_ADRP_BRANCH;
1339
1340 // Always use PC-relative addressing in case of -shared or -pie.
1341 if (parameters->options().output_is_position_independent())
1342 return ST_LONG_BRANCH_PCREL;
1343
1344 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1345 // But is only applicable to non-shared or non-pie.
1346 return ST_LONG_BRANCH_ABS;
1347 }
1348
1349 // A class to hold stubs for the ARM target.
1350
1351 template<int size, bool big_endian>
1352 class Stub_table : public Output_data
1353 {
1354 public:
1355 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1356 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1357 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1358 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1359 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1360 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1361 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1362 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1363 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1364 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1365 typedef Stub_table<size, big_endian> The_stub_table;
1366 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1367 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1368 Reloc_stub_map;
1369 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1370 typedef Relocate_info<size, big_endian> The_relocate_info;
1371
1372 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1373 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1374
1375 Stub_table(The_aarch64_input_section* owner)
1376 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1377 erratum_stubs_size_(0), prev_data_size_(0)
1378 { }
1379
1380 ~Stub_table()
1381 { }
1382
1383 The_aarch64_input_section*
1384 owner() const
1385 { return owner_; }
1386
1387 // Whether this stub table is empty.
1388 bool
1389 empty() const
1390 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1391
1392 // Return the current data size.
1393 off_t
1394 current_data_size() const
1395 { return this->current_data_size_for_child(); }
1396
1397 // Add a STUB using KEY. The caller is responsible for avoiding addition
1398 // if a STUB with the same key has already been added.
1399 void
1400 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1401
1402 // Add an erratum stub into the erratum stub set. The set is ordered by
1403 // (relobj, shndx, sh_offset).
1404 void
1405 add_erratum_stub(The_erratum_stub* stub);
1406
1407 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1408 The_erratum_stub*
1409 find_erratum_stub(The_aarch64_relobj* a64relobj,
1410 unsigned int shndx, unsigned int sh_offset);
1411
1412 // Find all the erratums for a given input section. The return value is a pair
1413 // of iterators [begin, end).
1414 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1415 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1416 unsigned int shndx);
1417
1418 // Compute the erratum stub address.
1419 AArch64_address
1420 erratum_stub_address(The_erratum_stub* stub) const
1421 {
1422 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1423 The_erratum_stub::STUB_ADDR_ALIGN);
1424 r += stub->offset();
1425 return r;
1426 }
1427
1428 // Finalize stubs. No-op here, just for completeness.
1429 void
1430 finalize_stubs()
1431 { }
1432
1433 // Look up a relocation stub using KEY. Return NULL if there is none.
1434 The_reloc_stub*
1435 find_reloc_stub(The_reloc_stub_key& key)
1436 {
1437 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1438 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1439 }
1440
1441 // Relocate stubs in this stub table.
1442 void
1443 relocate_stubs(const The_relocate_info*,
1444 The_target_aarch64*,
1445 Output_section*,
1446 unsigned char*,
1447 AArch64_address,
1448 section_size_type);
1449
1450 // Update data size at the end of a relaxation pass. Return true if data size
1451 // is different from that of the previous relaxation pass.
1452 bool
1453 update_data_size_changed_p()
1454 {
1455 // No addralign changed here.
1456 off_t s = align_address(this->reloc_stubs_size_,
1457 The_erratum_stub::STUB_ADDR_ALIGN)
1458 + this->erratum_stubs_size_;
1459 bool changed = (s != this->prev_data_size_);
1460 this->prev_data_size_ = s;
1461 return changed;
1462 }
1463
1464 protected:
1465 // Write out section contents.
1466 void
1467 do_write(Output_file*);
1468
1469 // Return the required alignment.
1470 uint64_t
1471 do_addralign() const
1472 {
1473 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1474 The_erratum_stub::STUB_ADDR_ALIGN);
1475 }
1476
1477 // Reset address and file offset.
1478 void
1479 do_reset_address_and_file_offset()
1480 { this->set_current_data_size_for_child(this->prev_data_size_); }
1481
1482 // Set final data size.
1483 void
1484 set_final_data_size()
1485 { this->set_data_size(this->current_data_size()); }
1486
1487 private:
1488 // Relocate one stub.
1489 void
1490 relocate_stub(The_reloc_stub*,
1491 const The_relocate_info*,
1492 The_target_aarch64*,
1493 Output_section*,
1494 unsigned char*,
1495 AArch64_address,
1496 section_size_type);
1497
1498 private:
1499 // Owner of this stub table.
1500 The_aarch64_input_section* owner_;
1501 // The relocation stubs.
1502 Reloc_stub_map reloc_stubs_;
1503 // The erratum stubs.
1504 Erratum_stub_set erratum_stubs_;
1505 // Size of reloc stubs.
1506 off_t reloc_stubs_size_;
1507 // Size of erratum stubs.
1508 off_t erratum_stubs_size_;
1509 // data size of this in the previous pass.
1510 off_t prev_data_size_;
1511 }; // End of Stub_table
1512
1513
1514 // Add an erratum stub into the erratum stub set. The set is ordered by
1515 // (relobj, shndx, sh_offset).
1516
1517 template<int size, bool big_endian>
1518 void
1519 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1520 {
1521 std::pair<Erratum_stub_set_iter, bool> ret =
1522 this->erratum_stubs_.insert(stub);
1523 gold_assert(ret.second);
1524 this->erratum_stubs_size_ = align_address(
1525 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1526 stub->set_offset(this->erratum_stubs_size_);
1527 this->erratum_stubs_size_ += stub->stub_size();
1528 }
1529
1530
1531 // Find if such erratum exists for given (obj, shndx, sh_offset).
1532
1533 template<int size, bool big_endian>
1534 Erratum_stub<size, big_endian>*
1535 Stub_table<size, big_endian>::find_erratum_stub(
1536 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1537 {
1538 // A dummy object used as key to search in the set.
1539 The_erratum_stub key(a64relobj, ST_NONE,
1540 shndx, sh_offset);
1541 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1542 if (i != this->erratum_stubs_.end())
1543 {
1544 The_erratum_stub* stub(*i);
1545 gold_assert(stub->erratum_insn() != 0);
1546 return stub;
1547 }
1548 return NULL;
1549 }
1550
1551
1552 // Find all the errata for a given input section. The return value is a pair of
1553 // iterators [begin, end).
1554
1555 template<int size, bool big_endian>
1556 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1557 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1558 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1559 The_aarch64_relobj* a64relobj, unsigned int shndx)
1560 {
1561 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1562 Erratum_stub_set_iter start, end;
1563 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1564 start = this->erratum_stubs_.lower_bound(&low_key);
1565 if (start == this->erratum_stubs_.end())
1566 return Result_pair(this->erratum_stubs_.end(),
1567 this->erratum_stubs_.end());
1568 end = start;
1569 while (end != this->erratum_stubs_.end() &&
1570 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1571 ++end;
1572 return Result_pair(start, end);
1573 }
1574
1575
1576 // Add a STUB using KEY. The caller is responsible for avoiding addition
1577 // if a STUB with the same key has already been added.
1578
1579 template<int size, bool big_endian>
1580 void
1581 Stub_table<size, big_endian>::add_reloc_stub(
1582 The_reloc_stub* stub, const The_reloc_stub_key& key)
1583 {
1584 gold_assert(stub->type() == key.type());
1585 this->reloc_stubs_[key] = stub;
1586
1587 // Assign stub offset early. We can do this because we never remove
1588 // reloc stubs and they are in the beginning of the stub table.
1589 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1590 The_reloc_stub::STUB_ADDR_ALIGN);
1591 stub->set_offset(this->reloc_stubs_size_);
1592 this->reloc_stubs_size_ += stub->stub_size();
1593 }
1594
1595
1596 // Relocate all stubs in this stub table.
1597
1598 template<int size, bool big_endian>
1599 void
1600 Stub_table<size, big_endian>::
1601 relocate_stubs(const The_relocate_info* relinfo,
1602 The_target_aarch64* target_aarch64,
1603 Output_section* output_section,
1604 unsigned char* view,
1605 AArch64_address address,
1606 section_size_type view_size)
1607 {
1608 // "view_size" is the total size of the stub_table.
1609 gold_assert(address == this->address() &&
1610 view_size == static_cast<section_size_type>(this->data_size()));
1611 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1612 p != this->reloc_stubs_.end(); ++p)
1613 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1614 view, address, view_size);
1615
1616 // Just for convenience.
1617 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1618
1619 // Now 'relocate' erratum stubs.
1620 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1621 i != this->erratum_stubs_.end(); ++i)
1622 {
1623 AArch64_address stub_address = this->erratum_stub_address(*i);
1624 // The address of "b" in the stub that is to be "relocated".
1625 AArch64_address stub_b_insn_address;
1626 // Branch offset that is to be filled in "b" insn.
1627 int b_offset = 0;
1628 switch ((*i)->type())
1629 {
1630 case ST_E_843419:
1631 case ST_E_835769:
1632 // The 1st insn of the erratum could be a relocation spot,
1633 // in this case we need to fix it with
1634 // "(*i)->erratum_insn()".
1635 elfcpp::Swap<32, big_endian>::writeval(
1636 view + (stub_address - this->address()),
1637 (*i)->erratum_insn());
1638 // For the erratum, the 2nd insn is a b-insn to be patched
1639 // (relocated).
1640 stub_b_insn_address = stub_address + 1 * BPI;
1641 b_offset = (*i)->destination_address() - stub_b_insn_address;
1642 AArch64_relocate_functions<size, big_endian>::construct_b(
1643 view + (stub_b_insn_address - this->address()),
1644 ((unsigned int)(b_offset)) & 0xfffffff);
1645 break;
1646 default:
1647 gold_unreachable();
1648 break;
1649 }
1650 }
1651 }
1652
1653
1654 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1655
1656 template<int size, bool big_endian>
1657 void
1658 Stub_table<size, big_endian>::
1659 relocate_stub(The_reloc_stub* stub,
1660 const The_relocate_info* relinfo,
1661 The_target_aarch64* target_aarch64,
1662 Output_section* output_section,
1663 unsigned char* view,
1664 AArch64_address address,
1665 section_size_type view_size)
1666 {
1667 // "offset" is the offset from the beginning of the stub_table.
1668 section_size_type offset = stub->offset();
1669 section_size_type stub_size = stub->stub_size();
1670 // "view_size" is the total size of the stub_table.
1671 gold_assert(offset + stub_size <= view_size);
1672
1673 target_aarch64->relocate_stub(stub, relinfo, output_section,
1674 view + offset, address + offset, view_size);
1675 }
1676
1677
1678 // Write out the stubs to file.
1679
1680 template<int size, bool big_endian>
1681 void
1682 Stub_table<size, big_endian>::do_write(Output_file* of)
1683 {
1684 off_t offset = this->offset();
1685 const section_size_type oview_size =
1686 convert_to_section_size_type(this->data_size());
1687 unsigned char* const oview = of->get_output_view(offset, oview_size);
1688
1689 // Write relocation stubs.
1690 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1691 p != this->reloc_stubs_.end(); ++p)
1692 {
1693 The_reloc_stub* stub = p->second;
1694 AArch64_address address = this->address() + stub->offset();
1695 gold_assert(address ==
1696 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1697 stub->write(oview + stub->offset(), stub->stub_size());
1698 }
1699
1700 // Write erratum stubs.
1701 unsigned int erratum_stub_start_offset =
1702 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1703 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1704 p != this->erratum_stubs_.end(); ++p)
1705 {
1706 The_erratum_stub* stub(*p);
1707 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1708 stub->stub_size());
1709 }
1710
1711 of->write_output_view(this->offset(), oview_size, oview);
1712 }
1713
1714
1715 // AArch64_relobj class.
1716
1717 template<int size, bool big_endian>
1718 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1719 {
1720 public:
1721 typedef AArch64_relobj<size, big_endian> This;
1722 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1723 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1724 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1725 typedef Stub_table<size, big_endian> The_stub_table;
1726 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1727 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1728 typedef std::vector<The_stub_table*> Stub_table_list;
1729 static const AArch64_address invalid_address =
1730 static_cast<AArch64_address>(-1);
1731
1732 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1733 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1734 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1735 stub_tables_()
1736 { }
1737
1738 ~AArch64_relobj()
1739 { }
1740
1741 // Return the stub table of the SHNDX-th section if there is one.
1742 The_stub_table*
1743 stub_table(unsigned int shndx) const
1744 {
1745 gold_assert(shndx < this->stub_tables_.size());
1746 return this->stub_tables_[shndx];
1747 }
1748
1749 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1750 void
1751 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1752 {
1753 gold_assert(shndx < this->stub_tables_.size());
1754 this->stub_tables_[shndx] = stub_table;
1755 }
1756
1757 // Entrance to errata scanning.
1758 void
1759 scan_errata(unsigned int shndx,
1760 const elfcpp::Shdr<size, big_endian>&,
1761 Output_section*, const Symbol_table*,
1762 The_target_aarch64*);
1763
1764 // Scan all relocation sections for stub generation.
1765 void
1766 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1767 const Layout*);
1768
1769 // Whether a section is a scannable text section.
1770 bool
1771 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1772 const Output_section*, const Symbol_table*);
1773
1774 // Convert regular input section with index SHNDX to a relaxed section.
1775 void
1776 convert_input_section_to_relaxed_section(unsigned shndx)
1777 {
1778 // The stubs have relocations and we need to process them after writing
1779 // out the stubs. So relocation now must follow section write.
1780 this->set_section_offset(shndx, -1ULL);
1781 this->set_relocs_must_follow_section_writes();
1782 }
1783
1784 // Structure for mapping symbol position.
1785 struct Mapping_symbol_position
1786 {
1787 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1788 shndx_(shndx), offset_(offset)
1789 {}
1790
1791 // "<" comparator used in ordered_map container.
1792 bool
1793 operator<(const Mapping_symbol_position& p) const
1794 {
1795 return (this->shndx_ < p.shndx_
1796 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1797 }
1798
1799 // Section index.
1800 unsigned int shndx_;
1801
1802 // Section offset.
1803 AArch64_address offset_;
1804 };
1805
1806 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1807
1808 protected:
1809 // Post constructor setup.
1810 void
1811 do_setup()
1812 {
1813 // Call parent's setup method.
1814 Sized_relobj_file<size, big_endian>::do_setup();
1815
1816 // Initialize look-up tables.
1817 this->stub_tables_.resize(this->shnum());
1818 }
1819
1820 virtual void
1821 do_relocate_sections(
1822 const Symbol_table* symtab, const Layout* layout,
1823 const unsigned char* pshdrs, Output_file* of,
1824 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1825
1826 // Count local symbols and (optionally) record mapping info.
1827 virtual void
1828 do_count_local_symbols(Stringpool_template<char>*,
1829 Stringpool_template<char>*);
1830
1831 private:
1832 // Fix all errata in the object.
1833 void
1834 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1835
1836 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1837 // applied.
1838 bool
1839 try_fix_erratum_843419_optimized(
1840 The_erratum_stub*,
1841 typename Sized_relobj_file<size, big_endian>::View_size&);
1842
1843 // Whether a section needs to be scanned for relocation stubs.
1844 bool
1845 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1846 const Relobj::Output_sections&,
1847 const Symbol_table*, const unsigned char*);
1848
1849 // List of stub tables.
1850 Stub_table_list stub_tables_;
1851
1852 // Mapping symbol information sorted by (section index, section_offset).
1853 Mapping_symbol_info mapping_symbol_info_;
1854 }; // End of AArch64_relobj
1855
1856
1857 // Override to record mapping symbol information.
1858 template<int size, bool big_endian>
1859 void
1860 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1861 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1862 {
1863 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1864
1865 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1866 // processing if not fixing erratum.
1867 if (!parameters->options().fix_cortex_a53_843419()
1868 && !parameters->options().fix_cortex_a53_835769())
1869 return;
1870
1871 const unsigned int loccount = this->local_symbol_count();
1872 if (loccount == 0)
1873 return;
1874
1875 // Read the symbol table section header.
1876 const unsigned int symtab_shndx = this->symtab_shndx();
1877 elfcpp::Shdr<size, big_endian>
1878 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1879 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1880
1881 // Read the local symbols.
1882 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1883 gold_assert(loccount == symtabshdr.get_sh_info());
1884 off_t locsize = loccount * sym_size;
1885 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1886 locsize, true, true);
1887
1888 // For mapping symbol processing, we need to read the symbol names.
1889 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1890 if (strtab_shndx >= this->shnum())
1891 {
1892 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1893 return;
1894 }
1895
1896 elfcpp::Shdr<size, big_endian>
1897 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1898 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1899 {
1900 this->error(_("symbol table name section has wrong type: %u"),
1901 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1902 return;
1903 }
1904
1905 const char* pnames =
1906 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1907 strtabshdr.get_sh_size(),
1908 false, false));
1909
1910 // Skip the first dummy symbol.
1911 psyms += sym_size;
1912 typename Sized_relobj_file<size, big_endian>::Local_values*
1913 plocal_values = this->local_values();
1914 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1915 {
1916 elfcpp::Sym<size, big_endian> sym(psyms);
1917 Symbol_value<size>& lv((*plocal_values)[i]);
1918 AArch64_address input_value = lv.input_value();
1919
1920 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1921 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1922 // symbols.
1923 // Mapping symbols could be one of the following 4 forms -
1924 // a) $x
1925 // b) $x.<any...>
1926 // c) $d
1927 // d) $d.<any...>
1928 const char* sym_name = pnames + sym.get_st_name();
1929 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1930 && (sym_name[2] == '\0' || sym_name[2] == '.'))
1931 {
1932 bool is_ordinary;
1933 unsigned int input_shndx =
1934 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1935 gold_assert(is_ordinary);
1936
1937 Mapping_symbol_position msp(input_shndx, input_value);
1938 // Insert mapping_symbol_info into map whose ordering is defined by
1939 // (shndx, offset_within_section).
1940 this->mapping_symbol_info_[msp] = sym_name[1];
1941 }
1942 }
1943 }
1944
1945
1946 // Fix all errata in the object.
1947
1948 template<int size, bool big_endian>
1949 void
1950 AArch64_relobj<size, big_endian>::fix_errata(
1951 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1952 {
1953 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1954 unsigned int shnum = this->shnum();
1955 for (unsigned int i = 1; i < shnum; ++i)
1956 {
1957 The_stub_table* stub_table = this->stub_table(i);
1958 if (!stub_table)
1959 continue;
1960 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1961 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1962 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1963 while (p != end)
1964 {
1965 The_erratum_stub* stub = *p;
1966 typename Sized_relobj_file<size, big_endian>::View_size&
1967 pview((*pviews)[i]);
1968
1969 // Double check data before fix.
1970 gold_assert(pview.address + stub->sh_offset()
1971 == stub->erratum_address());
1972
1973 // Update previously recorded erratum insn with relocated
1974 // version.
1975 Insntype* ip =
1976 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1977 Insntype insn_to_fix = ip[0];
1978 stub->update_erratum_insn(insn_to_fix);
1979
1980 // First try to see if erratum is 843419 and if it can be fixed
1981 // without using branch-to-stub.
1982 if (!try_fix_erratum_843419_optimized(stub, pview))
1983 {
1984 // Replace the erratum insn with a branch-to-stub.
1985 AArch64_address stub_address =
1986 stub_table->erratum_stub_address(stub);
1987 unsigned int b_offset = stub_address - stub->erratum_address();
1988 AArch64_relocate_functions<size, big_endian>::construct_b(
1989 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1990 }
1991 ++p;
1992 }
1993 }
1994 }
1995
1996
1997 // This is an optimization for 843419. This erratum requires the sequence begin
1998 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1999 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2000 // in this case, we do not delete the erratum stub (too late to do so), it is
2001 // merely generated without ever being called.)
2002
2003 template<int size, bool big_endian>
2004 bool
2005 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2006 The_erratum_stub* stub,
2007 typename Sized_relobj_file<size, big_endian>::View_size& pview)
2008 {
2009 if (stub->type() != ST_E_843419)
2010 return false;
2011
2012 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2013 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2014 E843419_stub<size, big_endian>* e843419_stub =
2015 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2016 AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2017 unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2018 Insntype* adrp_view = reinterpret_cast<Insntype*>(pview.view + adrp_offset);
2019 Insntype adrp_insn = adrp_view[0];
2020
2021 // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2022 // from IE -> LE relaxation etc. This is a side-effect of TLS relaxation that
2023 // ADRP has been turned into MRS, there is no erratum risk anymore.
2024 // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2025 if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2026 return true;
2027
2028 // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2029 // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2030 // Like the above case, there is no erratum risk any more, we can safely
2031 // return true.
2032 if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2033 {
2034 Insntype* prev_view
2035 = reinterpret_cast<Insntype*>(pview.view + adrp_offset - 4);
2036 Insntype prev_insn = prev_view[0];
2037
2038 if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2039 return true;
2040 }
2041
2042 /* If we reach here, the first instruction must be ADRP. */
2043 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2044 // Get adrp 33-bit signed imm value.
2045 int64_t adrp_imm = Insn_utilities::
2046 aarch64_adrp_decode_imm(adrp_insn);
2047 // adrp - final value transferred to target register is calculated as:
2048 // PC[11:0] = Zeros(12)
2049 // adrp_dest_value = PC + adrp_imm;
2050 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2051 // adr -final value transferred to target register is calucalted as:
2052 // PC + adr_imm
2053 // So we have:
2054 // PC + adr_imm = adrp_dest_value
2055 // ==>
2056 // adr_imm = adrp_dest_value - PC
2057 int64_t adr_imm = adrp_dest_value - pc;
2058 // Check if imm fits in adr (21-bit signed).
2059 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2060 {
2061 // Convert 'adrp' into 'adr'.
2062 Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2063 adr_insn = Insn_utilities::
2064 aarch64_adr_encode_imm(adr_insn, adr_imm);
2065 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2066 return true;
2067 }
2068 return false;
2069 }
2070
2071
2072 // Relocate sections.
2073
2074 template<int size, bool big_endian>
2075 void
2076 AArch64_relobj<size, big_endian>::do_relocate_sections(
2077 const Symbol_table* symtab, const Layout* layout,
2078 const unsigned char* pshdrs, Output_file* of,
2079 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2080 {
2081 // Relocate the section data.
2082 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2083 1, this->shnum() - 1);
2084
2085 // We do not generate stubs if doing a relocatable link.
2086 if (parameters->options().relocatable())
2087 return;
2088
2089 if (parameters->options().fix_cortex_a53_843419()
2090 || parameters->options().fix_cortex_a53_835769())
2091 this->fix_errata(pviews);
2092
2093 Relocate_info<size, big_endian> relinfo;
2094 relinfo.symtab = symtab;
2095 relinfo.layout = layout;
2096 relinfo.object = this;
2097
2098 // Relocate stub tables.
2099 unsigned int shnum = this->shnum();
2100 The_target_aarch64* target = The_target_aarch64::current_target();
2101
2102 for (unsigned int i = 1; i < shnum; ++i)
2103 {
2104 The_aarch64_input_section* aarch64_input_section =
2105 target->find_aarch64_input_section(this, i);
2106 if (aarch64_input_section != NULL
2107 && aarch64_input_section->is_stub_table_owner()
2108 && !aarch64_input_section->stub_table()->empty())
2109 {
2110 Output_section* os = this->output_section(i);
2111 gold_assert(os != NULL);
2112
2113 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2114 relinfo.reloc_shdr = NULL;
2115 relinfo.data_shndx = i;
2116 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2117
2118 typename Sized_relobj_file<size, big_endian>::View_size&
2119 view_struct = (*pviews)[i];
2120 gold_assert(view_struct.view != NULL);
2121
2122 The_stub_table* stub_table = aarch64_input_section->stub_table();
2123 off_t offset = stub_table->address() - view_struct.address;
2124 unsigned char* view = view_struct.view + offset;
2125 AArch64_address address = stub_table->address();
2126 section_size_type view_size = stub_table->data_size();
2127 stub_table->relocate_stubs(&relinfo, target, os, view, address,
2128 view_size);
2129 }
2130 }
2131 }
2132
2133
2134 // Determine if an input section is scannable for stub processing. SHDR is
2135 // the header of the section and SHNDX is the section index. OS is the output
2136 // section for the input section and SYMTAB is the global symbol table used to
2137 // look up ICF information.
2138
2139 template<int size, bool big_endian>
2140 bool
2141 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2142 const elfcpp::Shdr<size, big_endian>& text_shdr,
2143 unsigned int text_shndx,
2144 const Output_section* os,
2145 const Symbol_table* symtab)
2146 {
2147 // Skip any empty sections, unallocated sections or sections whose
2148 // type are not SHT_PROGBITS.
2149 if (text_shdr.get_sh_size() == 0
2150 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2151 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2152 return false;
2153
2154 // Skip any discarded or ICF'ed sections.
2155 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2156 return false;
2157
2158 // Skip exception frame.
2159 if (strcmp(os->name(), ".eh_frame") == 0)
2160 return false ;
2161
2162 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2163 os->find_relaxed_input_section(this, text_shndx) != NULL);
2164
2165 return true;
2166 }
2167
2168
2169 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2170 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2171
2172 template<int size, bool big_endian>
2173 bool
2174 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2175 const elfcpp::Shdr<size, big_endian>& shdr,
2176 const Relobj::Output_sections& out_sections,
2177 const Symbol_table* symtab,
2178 const unsigned char* pshdrs)
2179 {
2180 unsigned int sh_type = shdr.get_sh_type();
2181 if (sh_type != elfcpp::SHT_RELA)
2182 return false;
2183
2184 // Ignore empty section.
2185 off_t sh_size = shdr.get_sh_size();
2186 if (sh_size == 0)
2187 return false;
2188
2189 // Ignore reloc section with unexpected symbol table. The
2190 // error will be reported in the final link.
2191 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2192 return false;
2193
2194 gold_assert(sh_type == elfcpp::SHT_RELA);
2195 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2196
2197 // Ignore reloc section with unexpected entsize or uneven size.
2198 // The error will be reported in the final link.
2199 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2200 return false;
2201
2202 // Ignore reloc section with bad info. This error will be
2203 // reported in the final link.
2204 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2205 if (text_shndx >= this->shnum())
2206 return false;
2207
2208 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2209 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2210 text_shndx * shdr_size);
2211 return this->text_section_is_scannable(text_shdr, text_shndx,
2212 out_sections[text_shndx], symtab);
2213 }
2214
2215
2216 // Scan section SHNDX for erratum 843419 and 835769.
2217
2218 template<int size, bool big_endian>
2219 void
2220 AArch64_relobj<size, big_endian>::scan_errata(
2221 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2222 Output_section* os, const Symbol_table* symtab,
2223 The_target_aarch64* target)
2224 {
2225 if (shdr.get_sh_size() == 0
2226 || (shdr.get_sh_flags() &
2227 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2228 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2229 return;
2230
2231 if (!os || symtab->is_section_folded(this, shndx)) return;
2232
2233 AArch64_address output_offset = this->get_output_section_offset(shndx);
2234 AArch64_address output_address;
2235 if (output_offset != invalid_address)
2236 output_address = os->address() + output_offset;
2237 else
2238 {
2239 const Output_relaxed_input_section* poris =
2240 os->find_relaxed_input_section(this, shndx);
2241 if (!poris) return;
2242 output_address = poris->address();
2243 }
2244
2245 section_size_type input_view_size = 0;
2246 const unsigned char* input_view =
2247 this->section_contents(shndx, &input_view_size, false);
2248
2249 Mapping_symbol_position section_start(shndx, 0);
2250 // Find the first mapping symbol record within section shndx.
2251 typename Mapping_symbol_info::const_iterator p =
2252 this->mapping_symbol_info_.lower_bound(section_start);
2253 while (p != this->mapping_symbol_info_.end() &&
2254 p->first.shndx_ == shndx)
2255 {
2256 typename Mapping_symbol_info::const_iterator prev = p;
2257 ++p;
2258 if (prev->second == 'x')
2259 {
2260 section_size_type span_start =
2261 convert_to_section_size_type(prev->first.offset_);
2262 section_size_type span_end;
2263 if (p != this->mapping_symbol_info_.end()
2264 && p->first.shndx_ == shndx)
2265 span_end = convert_to_section_size_type(p->first.offset_);
2266 else
2267 span_end = convert_to_section_size_type(shdr.get_sh_size());
2268
2269 // Here we do not share the scanning code of both errata. For 843419,
2270 // only the last few insns of each page are examined, which is fast,
2271 // whereas, for 835769, every insn pair needs to be checked.
2272
2273 if (parameters->options().fix_cortex_a53_843419())
2274 target->scan_erratum_843419_span(
2275 this, shndx, span_start, span_end,
2276 const_cast<unsigned char*>(input_view), output_address);
2277
2278 if (parameters->options().fix_cortex_a53_835769())
2279 target->scan_erratum_835769_span(
2280 this, shndx, span_start, span_end,
2281 const_cast<unsigned char*>(input_view), output_address);
2282 }
2283 }
2284 }
2285
2286
2287 // Scan relocations for stub generation.
2288
2289 template<int size, bool big_endian>
2290 void
2291 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2292 The_target_aarch64* target,
2293 const Symbol_table* symtab,
2294 const Layout* layout)
2295 {
2296 unsigned int shnum = this->shnum();
2297 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2298
2299 // Read the section headers.
2300 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2301 shnum * shdr_size,
2302 true, true);
2303
2304 // To speed up processing, we set up hash tables for fast lookup of
2305 // input offsets to output addresses.
2306 this->initialize_input_to_output_maps();
2307
2308 const Relobj::Output_sections& out_sections(this->output_sections());
2309
2310 Relocate_info<size, big_endian> relinfo;
2311 relinfo.symtab = symtab;
2312 relinfo.layout = layout;
2313 relinfo.object = this;
2314
2315 // Do relocation stubs scanning.
2316 const unsigned char* p = pshdrs + shdr_size;
2317 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2318 {
2319 const elfcpp::Shdr<size, big_endian> shdr(p);
2320 if (parameters->options().fix_cortex_a53_843419()
2321 || parameters->options().fix_cortex_a53_835769())
2322 scan_errata(i, shdr, out_sections[i], symtab, target);
2323 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2324 pshdrs))
2325 {
2326 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2327 AArch64_address output_offset =
2328 this->get_output_section_offset(index);
2329 AArch64_address output_address;
2330 if (output_offset != invalid_address)
2331 {
2332 output_address = out_sections[index]->address() + output_offset;
2333 }
2334 else
2335 {
2336 // Currently this only happens for a relaxed section.
2337 const Output_relaxed_input_section* poris =
2338 out_sections[index]->find_relaxed_input_section(this, index);
2339 gold_assert(poris != NULL);
2340 output_address = poris->address();
2341 }
2342
2343 // Get the relocations.
2344 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2345 shdr.get_sh_size(),
2346 true, false);
2347
2348 // Get the section contents.
2349 section_size_type input_view_size = 0;
2350 const unsigned char* input_view =
2351 this->section_contents(index, &input_view_size, false);
2352
2353 relinfo.reloc_shndx = i;
2354 relinfo.data_shndx = index;
2355 unsigned int sh_type = shdr.get_sh_type();
2356 unsigned int reloc_size;
2357 gold_assert (sh_type == elfcpp::SHT_RELA);
2358 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2359
2360 Output_section* os = out_sections[index];
2361 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2362 shdr.get_sh_size() / reloc_size,
2363 os,
2364 output_offset == invalid_address,
2365 input_view, output_address,
2366 input_view_size);
2367 }
2368 }
2369 }
2370
2371
2372 // A class to wrap an ordinary input section containing executable code.
2373
2374 template<int size, bool big_endian>
2375 class AArch64_input_section : public Output_relaxed_input_section
2376 {
2377 public:
2378 typedef Stub_table<size, big_endian> The_stub_table;
2379
2380 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2381 : Output_relaxed_input_section(relobj, shndx, 1),
2382 stub_table_(NULL),
2383 original_contents_(NULL), original_size_(0),
2384 original_addralign_(1)
2385 { }
2386
2387 ~AArch64_input_section()
2388 { delete[] this->original_contents_; }
2389
2390 // Initialize.
2391 void
2392 init();
2393
2394 // Set the stub_table.
2395 void
2396 set_stub_table(The_stub_table* st)
2397 { this->stub_table_ = st; }
2398
2399 // Whether this is a stub table owner.
2400 bool
2401 is_stub_table_owner() const
2402 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2403
2404 // Return the original size of the section.
2405 uint32_t
2406 original_size() const
2407 { return this->original_size_; }
2408
2409 // Return the stub table.
2410 The_stub_table*
2411 stub_table()
2412 { return stub_table_; }
2413
2414 protected:
2415 // Write out this input section.
2416 void
2417 do_write(Output_file*);
2418
2419 // Return required alignment of this.
2420 uint64_t
2421 do_addralign() const
2422 {
2423 if (this->is_stub_table_owner())
2424 return std::max(this->stub_table_->addralign(),
2425 static_cast<uint64_t>(this->original_addralign_));
2426 else
2427 return this->original_addralign_;
2428 }
2429
2430 // Finalize data size.
2431 void
2432 set_final_data_size();
2433
2434 // Reset address and file offset.
2435 void
2436 do_reset_address_and_file_offset();
2437
2438 // Output offset.
2439 bool
2440 do_output_offset(const Relobj* object, unsigned int shndx,
2441 section_offset_type offset,
2442 section_offset_type* poutput) const
2443 {
2444 if ((object == this->relobj())
2445 && (shndx == this->shndx())
2446 && (offset >= 0)
2447 && (offset <=
2448 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2449 {
2450 *poutput = offset;
2451 return true;
2452 }
2453 else
2454 return false;
2455 }
2456
2457 private:
2458 // Copying is not allowed.
2459 AArch64_input_section(const AArch64_input_section&);
2460 AArch64_input_section& operator=(const AArch64_input_section&);
2461
2462 // The relocation stubs.
2463 The_stub_table* stub_table_;
2464 // Original section contents. We have to make a copy here since the file
2465 // containing the original section may not be locked when we need to access
2466 // the contents.
2467 unsigned char* original_contents_;
2468 // Section size of the original input section.
2469 uint32_t original_size_;
2470 // Address alignment of the original input section.
2471 uint32_t original_addralign_;
2472 }; // End of AArch64_input_section
2473
2474
2475 // Finalize data size.
2476
2477 template<int size, bool big_endian>
2478 void
2479 AArch64_input_section<size, big_endian>::set_final_data_size()
2480 {
2481 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2482
2483 if (this->is_stub_table_owner())
2484 {
2485 this->stub_table_->finalize_data_size();
2486 off = align_address(off, this->stub_table_->addralign());
2487 off += this->stub_table_->data_size();
2488 }
2489 this->set_data_size(off);
2490 }
2491
2492
2493 // Reset address and file offset.
2494
2495 template<int size, bool big_endian>
2496 void
2497 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2498 {
2499 // Size of the original input section contents.
2500 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2501
2502 // If this is a stub table owner, account for the stub table size.
2503 if (this->is_stub_table_owner())
2504 {
2505 The_stub_table* stub_table = this->stub_table_;
2506
2507 // Reset the stub table's address and file offset. The
2508 // current data size for child will be updated after that.
2509 stub_table_->reset_address_and_file_offset();
2510 off = align_address(off, stub_table_->addralign());
2511 off += stub_table->current_data_size();
2512 }
2513
2514 this->set_current_data_size(off);
2515 }
2516
2517
2518 // Initialize an Arm_input_section.
2519
2520 template<int size, bool big_endian>
2521 void
2522 AArch64_input_section<size, big_endian>::init()
2523 {
2524 Relobj* relobj = this->relobj();
2525 unsigned int shndx = this->shndx();
2526
2527 // We have to cache original size, alignment and contents to avoid locking
2528 // the original file.
2529 this->original_addralign_ =
2530 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2531
2532 // This is not efficient but we expect only a small number of relaxed
2533 // input sections for stubs.
2534 section_size_type section_size;
2535 const unsigned char* section_contents =
2536 relobj->section_contents(shndx, &section_size, false);
2537 this->original_size_ =
2538 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2539
2540 gold_assert(this->original_contents_ == NULL);
2541 this->original_contents_ = new unsigned char[section_size];
2542 memcpy(this->original_contents_, section_contents, section_size);
2543
2544 // We want to make this look like the original input section after
2545 // output sections are finalized.
2546 Output_section* os = relobj->output_section(shndx);
2547 off_t offset = relobj->output_section_offset(shndx);
2548 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2549 this->set_address(os->address() + offset);
2550 this->set_file_offset(os->offset() + offset);
2551 this->set_current_data_size(this->original_size_);
2552 this->finalize_data_size();
2553 }
2554
2555
2556 // Write data to output file.
2557
2558 template<int size, bool big_endian>
2559 void
2560 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2561 {
2562 // We have to write out the original section content.
2563 gold_assert(this->original_contents_ != NULL);
2564 of->write(this->offset(), this->original_contents_,
2565 this->original_size_);
2566
2567 // If this owns a stub table and it is not empty, write it.
2568 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2569 this->stub_table_->write(of);
2570 }
2571
2572
2573 // Arm output section class. This is defined mainly to add a number of stub
2574 // generation methods.
2575
2576 template<int size, bool big_endian>
2577 class AArch64_output_section : public Output_section
2578 {
2579 public:
2580 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2581 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2582 typedef Stub_table<size, big_endian> The_stub_table;
2583 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2584
2585 public:
2586 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2587 elfcpp::Elf_Xword flags)
2588 : Output_section(name, type, flags)
2589 { }
2590
2591 ~AArch64_output_section() {}
2592
2593 // Group input sections for stub generation.
2594 void
2595 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2596 const Task*);
2597
2598 private:
2599 typedef Output_section::Input_section Input_section;
2600 typedef Output_section::Input_section_list Input_section_list;
2601
2602 // Create a stub group.
2603 void
2604 create_stub_group(Input_section_list::const_iterator,
2605 Input_section_list::const_iterator,
2606 Input_section_list::const_iterator,
2607 The_target_aarch64*,
2608 std::vector<Output_relaxed_input_section*>&,
2609 const Task*);
2610 }; // End of AArch64_output_section
2611
2612
2613 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2614 // the input section that will be the owner of the stub table.
2615
2616 template<int size, bool big_endian> void
2617 AArch64_output_section<size, big_endian>::create_stub_group(
2618 Input_section_list::const_iterator first,
2619 Input_section_list::const_iterator last,
2620 Input_section_list::const_iterator owner,
2621 The_target_aarch64* target,
2622 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2623 const Task* task)
2624 {
2625 // Currently we convert ordinary input sections into relaxed sections only
2626 // at this point.
2627 The_aarch64_input_section* input_section;
2628 if (owner->is_relaxed_input_section())
2629 gold_unreachable();
2630 else
2631 {
2632 gold_assert(owner->is_input_section());
2633 // Create a new relaxed input section. We need to lock the original
2634 // file.
2635 Task_lock_obj<Object> tl(task, owner->relobj());
2636 input_section =
2637 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2638 new_relaxed_sections.push_back(input_section);
2639 }
2640
2641 // Create a stub table.
2642 The_stub_table* stub_table =
2643 target->new_stub_table(input_section);
2644
2645 input_section->set_stub_table(stub_table);
2646
2647 Input_section_list::const_iterator p = first;
2648 // Look for input sections or relaxed input sections in [first ... last].
2649 do
2650 {
2651 if (p->is_input_section() || p->is_relaxed_input_section())
2652 {
2653 // The stub table information for input sections live
2654 // in their objects.
2655 The_aarch64_relobj* aarch64_relobj =
2656 static_cast<The_aarch64_relobj*>(p->relobj());
2657 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2658 }
2659 }
2660 while (p++ != last);
2661 }
2662
2663
2664 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2665 // stub groups. We grow a stub group by adding input section until the size is
2666 // just below GROUP_SIZE. The last input section will be converted into a stub
2667 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2668 // after the stub table, effectively doubling the group size.
2669 //
2670 // This is similar to the group_sections() function in elf32-arm.c but is
2671 // implemented differently.
2672
2673 template<int size, bool big_endian>
2674 void AArch64_output_section<size, big_endian>::group_sections(
2675 section_size_type group_size,
2676 bool stubs_always_after_branch,
2677 Target_aarch64<size, big_endian>* target,
2678 const Task* task)
2679 {
2680 typedef enum
2681 {
2682 NO_GROUP,
2683 FINDING_STUB_SECTION,
2684 HAS_STUB_SECTION
2685 } State;
2686
2687 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2688
2689 State state = NO_GROUP;
2690 section_size_type off = 0;
2691 section_size_type group_begin_offset = 0;
2692 section_size_type group_end_offset = 0;
2693 section_size_type stub_table_end_offset = 0;
2694 Input_section_list::const_iterator group_begin =
2695 this->input_sections().end();
2696 Input_section_list::const_iterator stub_table =
2697 this->input_sections().end();
2698 Input_section_list::const_iterator group_end = this->input_sections().end();
2699 for (Input_section_list::const_iterator p = this->input_sections().begin();
2700 p != this->input_sections().end();
2701 ++p)
2702 {
2703 section_size_type section_begin_offset =
2704 align_address(off, p->addralign());
2705 section_size_type section_end_offset =
2706 section_begin_offset + p->data_size();
2707
2708 // Check to see if we should group the previously seen sections.
2709 switch (state)
2710 {
2711 case NO_GROUP:
2712 break;
2713
2714 case FINDING_STUB_SECTION:
2715 // Adding this section makes the group larger than GROUP_SIZE.
2716 if (section_end_offset - group_begin_offset >= group_size)
2717 {
2718 if (stubs_always_after_branch)
2719 {
2720 gold_assert(group_end != this->input_sections().end());
2721 this->create_stub_group(group_begin, group_end, group_end,
2722 target, new_relaxed_sections,
2723 task);
2724 state = NO_GROUP;
2725 }
2726 else
2727 {
2728 // Input sections up to stub_group_size bytes after the stub
2729 // table can be handled by it too.
2730 state = HAS_STUB_SECTION;
2731 stub_table = group_end;
2732 stub_table_end_offset = group_end_offset;
2733 }
2734 }
2735 break;
2736
2737 case HAS_STUB_SECTION:
2738 // Adding this section makes the post stub-section group larger
2739 // than GROUP_SIZE.
2740 gold_unreachable();
2741 // NOT SUPPORTED YET. For completeness only.
2742 if (section_end_offset - stub_table_end_offset >= group_size)
2743 {
2744 gold_assert(group_end != this->input_sections().end());
2745 this->create_stub_group(group_begin, group_end, stub_table,
2746 target, new_relaxed_sections, task);
2747 state = NO_GROUP;
2748 }
2749 break;
2750
2751 default:
2752 gold_unreachable();
2753 }
2754
2755 // If we see an input section and currently there is no group, start
2756 // a new one. Skip any empty sections. We look at the data size
2757 // instead of calling p->relobj()->section_size() to avoid locking.
2758 if ((p->is_input_section() || p->is_relaxed_input_section())
2759 && (p->data_size() != 0))
2760 {
2761 if (state == NO_GROUP)
2762 {
2763 state = FINDING_STUB_SECTION;
2764 group_begin = p;
2765 group_begin_offset = section_begin_offset;
2766 }
2767
2768 // Keep track of the last input section seen.
2769 group_end = p;
2770 group_end_offset = section_end_offset;
2771 }
2772
2773 off = section_end_offset;
2774 }
2775
2776 // Create a stub group for any ungrouped sections.
2777 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2778 {
2779 gold_assert(group_end != this->input_sections().end());
2780 this->create_stub_group(group_begin, group_end,
2781 (state == FINDING_STUB_SECTION
2782 ? group_end
2783 : stub_table),
2784 target, new_relaxed_sections, task);
2785 }
2786
2787 if (!new_relaxed_sections.empty())
2788 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2789
2790 // Update the section offsets
2791 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2792 {
2793 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2794 new_relaxed_sections[i]->relobj());
2795 unsigned int shndx = new_relaxed_sections[i]->shndx();
2796 // Tell AArch64_relobj that this input section is converted.
2797 relobj->convert_input_section_to_relaxed_section(shndx);
2798 }
2799 } // End of AArch64_output_section::group_sections
2800
2801
2802 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2803
2804
2805 // The aarch64 target class.
2806 // See the ABI at
2807 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2808 template<int size, bool big_endian>
2809 class Target_aarch64 : public Sized_target<size, big_endian>
2810 {
2811 public:
2812 typedef Target_aarch64<size, big_endian> This;
2813 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2814 Reloc_section;
2815 typedef Relocate_info<size, big_endian> The_relocate_info;
2816 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2817 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2818 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2819 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2820 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2821 typedef Stub_table<size, big_endian> The_stub_table;
2822 typedef std::vector<The_stub_table*> Stub_table_list;
2823 typedef typename Stub_table_list::iterator Stub_table_iterator;
2824 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2825 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2826 typedef Unordered_map<Section_id,
2827 AArch64_input_section<size, big_endian>*,
2828 Section_id_hash> AArch64_input_section_map;
2829 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2830 const static int TCB_SIZE = size / 8 * 2;
2831
2832 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2833 : Sized_target<size, big_endian>(info),
2834 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2835 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2836 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2837 got_mod_index_offset_(-1U),
2838 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2839 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2840 { }
2841
2842 // Scan the relocations to determine unreferenced sections for
2843 // garbage collection.
2844 void
2845 gc_process_relocs(Symbol_table* symtab,
2846 Layout* layout,
2847 Sized_relobj_file<size, big_endian>* object,
2848 unsigned int data_shndx,
2849 unsigned int sh_type,
2850 const unsigned char* prelocs,
2851 size_t reloc_count,
2852 Output_section* output_section,
2853 bool needs_special_offset_handling,
2854 size_t local_symbol_count,
2855 const unsigned char* plocal_symbols);
2856
2857 // Scan the relocations to look for symbol adjustments.
2858 void
2859 scan_relocs(Symbol_table* symtab,
2860 Layout* layout,
2861 Sized_relobj_file<size, big_endian>* object,
2862 unsigned int data_shndx,
2863 unsigned int sh_type,
2864 const unsigned char* prelocs,
2865 size_t reloc_count,
2866 Output_section* output_section,
2867 bool needs_special_offset_handling,
2868 size_t local_symbol_count,
2869 const unsigned char* plocal_symbols);
2870
2871 // Finalize the sections.
2872 void
2873 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2874
2875 // Return the value to use for a dynamic which requires special
2876 // treatment.
2877 uint64_t
2878 do_dynsym_value(const Symbol*) const;
2879
2880 // Relocate a section.
2881 void
2882 relocate_section(const Relocate_info<size, big_endian>*,
2883 unsigned int sh_type,
2884 const unsigned char* prelocs,
2885 size_t reloc_count,
2886 Output_section* output_section,
2887 bool needs_special_offset_handling,
2888 unsigned char* view,
2889 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2890 section_size_type view_size,
2891 const Reloc_symbol_changes*);
2892
2893 // Scan the relocs during a relocatable link.
2894 void
2895 scan_relocatable_relocs(Symbol_table* symtab,
2896 Layout* layout,
2897 Sized_relobj_file<size, big_endian>* object,
2898 unsigned int data_shndx,
2899 unsigned int sh_type,
2900 const unsigned char* prelocs,
2901 size_t reloc_count,
2902 Output_section* output_section,
2903 bool needs_special_offset_handling,
2904 size_t local_symbol_count,
2905 const unsigned char* plocal_symbols,
2906 Relocatable_relocs*);
2907
2908 // Scan the relocs for --emit-relocs.
2909 void
2910 emit_relocs_scan(Symbol_table* symtab,
2911 Layout* layout,
2912 Sized_relobj_file<size, big_endian>* object,
2913 unsigned int data_shndx,
2914 unsigned int sh_type,
2915 const unsigned char* prelocs,
2916 size_t reloc_count,
2917 Output_section* output_section,
2918 bool needs_special_offset_handling,
2919 size_t local_symbol_count,
2920 const unsigned char* plocal_syms,
2921 Relocatable_relocs* rr);
2922
2923 // Relocate a section during a relocatable link.
2924 void
2925 relocate_relocs(
2926 const Relocate_info<size, big_endian>*,
2927 unsigned int sh_type,
2928 const unsigned char* prelocs,
2929 size_t reloc_count,
2930 Output_section* output_section,
2931 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2932 unsigned char* view,
2933 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2934 section_size_type view_size,
2935 unsigned char* reloc_view,
2936 section_size_type reloc_view_size);
2937
2938 // Return the symbol index to use for a target specific relocation.
2939 // The only target specific relocation is R_AARCH64_TLSDESC for a
2940 // local symbol, which is an absolute reloc.
2941 unsigned int
2942 do_reloc_symbol_index(void*, unsigned int r_type) const
2943 {
2944 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2945 return 0;
2946 }
2947
2948 // Return the addend to use for a target specific relocation.
2949 uint64_t
2950 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2951
2952 // Return the PLT section.
2953 uint64_t
2954 do_plt_address_for_global(const Symbol* gsym) const
2955 { return this->plt_section()->address_for_global(gsym); }
2956
2957 uint64_t
2958 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2959 { return this->plt_section()->address_for_local(relobj, symndx); }
2960
2961 // This function should be defined in targets that can use relocation
2962 // types to determine (implemented in local_reloc_may_be_function_pointer
2963 // and global_reloc_may_be_function_pointer)
2964 // if a function's pointer is taken. ICF uses this in safe mode to only
2965 // fold those functions whose pointer is defintely not taken.
2966 bool
2967 do_can_check_for_function_pointers() const
2968 { return true; }
2969
2970 // Return the number of entries in the PLT.
2971 unsigned int
2972 plt_entry_count() const;
2973
2974 //Return the offset of the first non-reserved PLT entry.
2975 unsigned int
2976 first_plt_entry_offset() const;
2977
2978 // Return the size of each PLT entry.
2979 unsigned int
2980 plt_entry_size() const;
2981
2982 // Create a stub table.
2983 The_stub_table*
2984 new_stub_table(The_aarch64_input_section*);
2985
2986 // Create an aarch64 input section.
2987 The_aarch64_input_section*
2988 new_aarch64_input_section(Relobj*, unsigned int);
2989
2990 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2991 The_aarch64_input_section*
2992 find_aarch64_input_section(Relobj*, unsigned int) const;
2993
2994 // Return the thread control block size.
2995 unsigned int
2996 tcb_size() const { return This::TCB_SIZE; }
2997
2998 // Scan a section for stub generation.
2999 void
3000 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3001 const unsigned char*, size_t, Output_section*,
3002 bool, const unsigned char*,
3003 Address,
3004 section_size_type);
3005
3006 // Scan a relocation section for stub.
3007 template<int sh_type>
3008 void
3009 scan_reloc_section_for_stubs(
3010 const The_relocate_info* relinfo,
3011 const unsigned char* prelocs,
3012 size_t reloc_count,
3013 Output_section* output_section,
3014 bool needs_special_offset_handling,
3015 const unsigned char* view,
3016 Address view_address,
3017 section_size_type);
3018
3019 // Relocate a single stub.
3020 void
3021 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3022 Output_section*, unsigned char*, Address,
3023 section_size_type);
3024
3025 // Get the default AArch64 target.
3026 static This*
3027 current_target()
3028 {
3029 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3030 && parameters->target().get_size() == size
3031 && parameters->target().is_big_endian() == big_endian);
3032 return static_cast<This*>(parameters->sized_target<size, big_endian>());
3033 }
3034
3035
3036 // Scan erratum 843419 for a part of a section.
3037 void
3038 scan_erratum_843419_span(
3039 AArch64_relobj<size, big_endian>*,
3040 unsigned int,
3041 const section_size_type,
3042 const section_size_type,
3043 unsigned char*,
3044 Address);
3045
3046 // Scan erratum 835769 for a part of a section.
3047 void
3048 scan_erratum_835769_span(
3049 AArch64_relobj<size, big_endian>*,
3050 unsigned int,
3051 const section_size_type,
3052 const section_size_type,
3053 unsigned char*,
3054 Address);
3055
3056 protected:
3057 void
3058 do_select_as_default_target()
3059 {
3060 gold_assert(aarch64_reloc_property_table == NULL);
3061 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3062 }
3063
3064 // Add a new reloc argument, returning the index in the vector.
3065 size_t
3066 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3067 unsigned int r_sym)
3068 {
3069 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3070 return this->tlsdesc_reloc_info_.size() - 1;
3071 }
3072
3073 virtual Output_data_plt_aarch64<size, big_endian>*
3074 do_make_data_plt(Layout* layout,
3075 Output_data_got_aarch64<size, big_endian>* got,
3076 Output_data_space* got_plt,
3077 Output_data_space* got_irelative)
3078 {
3079 return new Output_data_plt_aarch64_standard<size, big_endian>(
3080 layout, got, got_plt, got_irelative);
3081 }
3082
3083
3084 // do_make_elf_object to override the same function in the base class.
3085 Object*
3086 do_make_elf_object(const std::string&, Input_file*, off_t,
3087 const elfcpp::Ehdr<size, big_endian>&);
3088
3089 Output_data_plt_aarch64<size, big_endian>*
3090 make_data_plt(Layout* layout,
3091 Output_data_got_aarch64<size, big_endian>* got,
3092 Output_data_space* got_plt,
3093 Output_data_space* got_irelative)
3094 {
3095 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3096 }
3097
3098 // We only need to generate stubs, and hence perform relaxation if we are
3099 // not doing relocatable linking.
3100 virtual bool
3101 do_may_relax() const
3102 { return !parameters->options().relocatable(); }
3103
3104 // Relaxation hook. This is where we do stub generation.
3105 virtual bool
3106 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3107
3108 void
3109 group_sections(Layout* layout,
3110 section_size_type group_size,
3111 bool stubs_always_after_branch,
3112 const Task* task);
3113
3114 void
3115 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3116 const Sized_symbol<size>*, unsigned int,
3117 const Symbol_value<size>*,
3118 typename elfcpp::Elf_types<size>::Elf_Swxword,
3119 Address Elf_Addr);
3120
3121 // Make an output section.
3122 Output_section*
3123 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3124 elfcpp::Elf_Xword flags)
3125 { return new The_aarch64_output_section(name, type, flags); }
3126
3127 private:
3128 // The class which scans relocations.
3129 class Scan
3130 {
3131 public:
3132 Scan()
3133 : issued_non_pic_error_(false)
3134 { }
3135
3136 inline void
3137 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3138 Sized_relobj_file<size, big_endian>* object,
3139 unsigned int data_shndx,
3140 Output_section* output_section,
3141 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3142 const elfcpp::Sym<size, big_endian>& lsym,
3143 bool is_discarded);
3144
3145 inline void
3146 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3147 Sized_relobj_file<size, big_endian>* object,
3148 unsigned int data_shndx,
3149 Output_section* output_section,
3150 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3151 Symbol* gsym);
3152
3153 inline bool
3154 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3155 Target_aarch64<size, big_endian>* ,
3156 Sized_relobj_file<size, big_endian>* ,
3157 unsigned int ,
3158 Output_section* ,
3159 const elfcpp::Rela<size, big_endian>& ,
3160 unsigned int r_type,
3161 const elfcpp::Sym<size, big_endian>&);
3162
3163 inline bool
3164 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3165 Target_aarch64<size, big_endian>* ,
3166 Sized_relobj_file<size, big_endian>* ,
3167 unsigned int ,
3168 Output_section* ,
3169 const elfcpp::Rela<size, big_endian>& ,
3170 unsigned int r_type,
3171 Symbol* gsym);
3172
3173 private:
3174 static void
3175 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3176 unsigned int r_type);
3177
3178 static void
3179 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3180 unsigned int r_type, Symbol*);
3181
3182 inline bool
3183 possible_function_pointer_reloc(unsigned int r_type);
3184
3185 void
3186 check_non_pic(Relobj*, unsigned int r_type);
3187
3188 bool
3189 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3190 unsigned int r_type);
3191
3192 // Whether we have issued an error about a non-PIC compilation.
3193 bool issued_non_pic_error_;
3194 };
3195
3196 // The class which implements relocation.
3197 class Relocate
3198 {
3199 public:
3200 Relocate()
3201 : skip_call_tls_get_addr_(false)
3202 { }
3203
3204 ~Relocate()
3205 { }
3206
3207 // Do a relocation. Return false if the caller should not issue
3208 // any warnings about this relocation.
3209 inline bool
3210 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3211 Target_aarch64*, Output_section*, size_t, const unsigned char*,
3212 const Sized_symbol<size>*, const Symbol_value<size>*,
3213 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3214 section_size_type);
3215
3216 private:
3217 inline typename AArch64_relocate_functions<size, big_endian>::Status
3218 relocate_tls(const Relocate_info<size, big_endian>*,
3219 Target_aarch64<size, big_endian>*,
3220 size_t,
3221 const elfcpp::Rela<size, big_endian>&,
3222 unsigned int r_type, const Sized_symbol<size>*,
3223 const Symbol_value<size>*,
3224 unsigned char*,
3225 typename elfcpp::Elf_types<size>::Elf_Addr);
3226
3227 inline typename AArch64_relocate_functions<size, big_endian>::Status
3228 tls_gd_to_le(
3229 const Relocate_info<size, big_endian>*,
3230 Target_aarch64<size, big_endian>*,
3231 const elfcpp::Rela<size, big_endian>&,
3232 unsigned int,
3233 unsigned char*,
3234 const Symbol_value<size>*);
3235
3236 inline typename AArch64_relocate_functions<size, big_endian>::Status
3237 tls_ld_to_le(
3238 const Relocate_info<size, big_endian>*,
3239 Target_aarch64<size, big_endian>*,
3240 const elfcpp::Rela<size, big_endian>&,
3241 unsigned int,
3242 unsigned char*,
3243 const Symbol_value<size>*);
3244
3245 inline typename AArch64_relocate_functions<size, big_endian>::Status
3246 tls_ie_to_le(
3247 const Relocate_info<size, big_endian>*,
3248 Target_aarch64<size, big_endian>*,
3249 const elfcpp::Rela<size, big_endian>&,
3250 unsigned int,
3251 unsigned char*,
3252 const Symbol_value<size>*);
3253
3254 inline typename AArch64_relocate_functions<size, big_endian>::Status
3255 tls_desc_gd_to_le(
3256 const Relocate_info<size, big_endian>*,
3257 Target_aarch64<size, big_endian>*,
3258 const elfcpp::Rela<size, big_endian>&,
3259 unsigned int,
3260 unsigned char*,
3261 const Symbol_value<size>*);
3262
3263 inline typename AArch64_relocate_functions<size, big_endian>::Status
3264 tls_desc_gd_to_ie(
3265 const Relocate_info<size, big_endian>*,
3266 Target_aarch64<size, big_endian>*,
3267 const elfcpp::Rela<size, big_endian>&,
3268 unsigned int,
3269 unsigned char*,
3270 const Symbol_value<size>*,
3271 typename elfcpp::Elf_types<size>::Elf_Addr,
3272 typename elfcpp::Elf_types<size>::Elf_Addr);
3273
3274 bool skip_call_tls_get_addr_;
3275
3276 }; // End of class Relocate
3277
3278 // Adjust TLS relocation type based on the options and whether this
3279 // is a local symbol.
3280 static tls::Tls_optimization
3281 optimize_tls_reloc(bool is_final, int r_type);
3282
3283 // Get the GOT section, creating it if necessary.
3284 Output_data_got_aarch64<size, big_endian>*
3285 got_section(Symbol_table*, Layout*);
3286
3287 // Get the GOT PLT section.
3288 Output_data_space*
3289 got_plt_section() const
3290 {
3291 gold_assert(this->got_plt_ != NULL);
3292 return this->got_plt_;
3293 }
3294
3295 // Get the GOT section for TLSDESC entries.
3296 Output_data_got<size, big_endian>*
3297 got_tlsdesc_section() const
3298 {
3299 gold_assert(this->got_tlsdesc_ != NULL);
3300 return this->got_tlsdesc_;
3301 }
3302
3303 // Create the PLT section.
3304 void
3305 make_plt_section(Symbol_table* symtab, Layout* layout);
3306
3307 // Create a PLT entry for a global symbol.
3308 void
3309 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3310
3311 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3312 void
3313 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3314 Sized_relobj_file<size, big_endian>* relobj,
3315 unsigned int local_sym_index);
3316
3317 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3318 void
3319 define_tls_base_symbol(Symbol_table*, Layout*);
3320
3321 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3322 void
3323 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3324
3325 // Create a GOT entry for the TLS module index.
3326 unsigned int
3327 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3328 Sized_relobj_file<size, big_endian>* object);
3329
3330 // Get the PLT section.
3331 Output_data_plt_aarch64<size, big_endian>*
3332 plt_section() const
3333 {
3334 gold_assert(this->plt_ != NULL);
3335 return this->plt_;
3336 }
3337
3338 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3339 // ST_E_843419, we need an additional field for adrp offset.
3340 void create_erratum_stub(
3341 AArch64_relobj<size, big_endian>* relobj,
3342 unsigned int shndx,
3343 section_size_type erratum_insn_offset,
3344 Address erratum_address,
3345 typename Insn_utilities::Insntype erratum_insn,
3346 int erratum_type,
3347 unsigned int e843419_adrp_offset=0);
3348
3349 // Return whether this is a 3-insn erratum sequence.
3350 bool is_erratum_843419_sequence(
3351 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3352 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3353 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3354
3355 // Return whether this is a 835769 sequence.
3356 // (Similarly implemented as in elfnn-aarch64.c.)
3357 bool is_erratum_835769_sequence(
3358 typename elfcpp::Swap<32,big_endian>::Valtype,
3359 typename elfcpp::Swap<32,big_endian>::Valtype);
3360
3361 // Get the dynamic reloc section, creating it if necessary.
3362 Reloc_section*
3363 rela_dyn_section(Layout*);
3364
3365 // Get the section to use for TLSDESC relocations.
3366 Reloc_section*
3367 rela_tlsdesc_section(Layout*) const;
3368
3369 // Get the section to use for IRELATIVE relocations.
3370 Reloc_section*
3371 rela_irelative_section(Layout*);
3372
3373 // Add a potential copy relocation.
3374 void
3375 copy_reloc(Symbol_table* symtab, Layout* layout,
3376 Sized_relobj_file<size, big_endian>* object,
3377 unsigned int shndx, Output_section* output_section,
3378 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3379 {
3380 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3381 this->copy_relocs_.copy_reloc(symtab, layout,
3382 symtab->get_sized_symbol<size>(sym),
3383 object, shndx, output_section,
3384 r_type, reloc.get_r_offset(),
3385 reloc.get_r_addend(),
3386 this->rela_dyn_section(layout));
3387 }
3388
3389 // Information about this specific target which we pass to the
3390 // general Target structure.
3391 static const Target::Target_info aarch64_info;
3392
3393 // The types of GOT entries needed for this platform.
3394 // These values are exposed to the ABI in an incremental link.
3395 // Do not renumber existing values without changing the version
3396 // number of the .gnu_incremental_inputs section.
3397 enum Got_type
3398 {
3399 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3400 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3401 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3402 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3403 };
3404
3405 // This type is used as the argument to the target specific
3406 // relocation routines. The only target specific reloc is
3407 // R_AARCh64_TLSDESC against a local symbol.
3408 struct Tlsdesc_info
3409 {
3410 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3411 unsigned int a_r_sym)
3412 : object(a_object), r_sym(a_r_sym)
3413 { }
3414
3415 // The object in which the local symbol is defined.
3416 Sized_relobj_file<size, big_endian>* object;
3417 // The local symbol index in the object.
3418 unsigned int r_sym;
3419 };
3420
3421 // The GOT section.
3422 Output_data_got_aarch64<size, big_endian>* got_;
3423 // The PLT section.
3424 Output_data_plt_aarch64<size, big_endian>* plt_;
3425 // The GOT PLT section.
3426 Output_data_space* got_plt_;
3427 // The GOT section for IRELATIVE relocations.
3428 Output_data_space* got_irelative_;
3429 // The GOT section for TLSDESC relocations.
3430 Output_data_got<size, big_endian>* got_tlsdesc_;
3431 // The _GLOBAL_OFFSET_TABLE_ symbol.
3432 Symbol* global_offset_table_;
3433 // The dynamic reloc section.
3434 Reloc_section* rela_dyn_;
3435 // The section to use for IRELATIVE relocs.
3436 Reloc_section* rela_irelative_;
3437 // Relocs saved to avoid a COPY reloc.
3438 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3439 // Offset of the GOT entry for the TLS module index.
3440 unsigned int got_mod_index_offset_;
3441 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3442 // specific relocation. Here we store the object and local symbol
3443 // index for the relocation.
3444 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3445 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3446 bool tls_base_symbol_defined_;
3447 // List of stub_tables
3448 Stub_table_list stub_tables_;
3449 // Actual stub group size
3450 section_size_type stub_group_size_;
3451 AArch64_input_section_map aarch64_input_section_map_;
3452 }; // End of Target_aarch64
3453
3454
3455 template<>
3456 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3457 {
3458 64, // size
3459 false, // is_big_endian
3460 elfcpp::EM_AARCH64, // machine_code
3461 false, // has_make_symbol
3462 false, // has_resolve
3463 false, // has_code_fill
3464 true, // is_default_stack_executable
3465 true, // can_icf_inline_merge_sections
3466 '\0', // wrap_char
3467 "/lib/ld.so.1", // program interpreter
3468 0x400000, // default_text_segment_address
3469 0x10000, // abi_pagesize (overridable by -z max-page-size)
3470 0x1000, // common_pagesize (overridable by -z common-page-size)
3471 false, // isolate_execinstr
3472 0, // rosegment_gap
3473 elfcpp::SHN_UNDEF, // small_common_shndx
3474 elfcpp::SHN_UNDEF, // large_common_shndx
3475 0, // small_common_section_flags
3476 0, // large_common_section_flags
3477 NULL, // attributes_section
3478 NULL, // attributes_vendor
3479 "_start", // entry_symbol_name
3480 32, // hash_entry_size
3481 };
3482
3483 template<>
3484 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3485 {
3486 32, // size
3487 false, // is_big_endian
3488 elfcpp::EM_AARCH64, // machine_code
3489 false, // has_make_symbol
3490 false, // has_resolve
3491 false, // has_code_fill
3492 true, // is_default_stack_executable
3493 false, // can_icf_inline_merge_sections
3494 '\0', // wrap_char
3495 "/lib/ld.so.1", // program interpreter
3496 0x400000, // default_text_segment_address
3497 0x10000, // abi_pagesize (overridable by -z max-page-size)
3498 0x1000, // common_pagesize (overridable by -z common-page-size)
3499 false, // isolate_execinstr
3500 0, // rosegment_gap
3501 elfcpp::SHN_UNDEF, // small_common_shndx
3502 elfcpp::SHN_UNDEF, // large_common_shndx
3503 0, // small_common_section_flags
3504 0, // large_common_section_flags
3505 NULL, // attributes_section
3506 NULL, // attributes_vendor
3507 "_start", // entry_symbol_name
3508 32, // hash_entry_size
3509 };
3510
3511 template<>
3512 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3513 {
3514 64, // size
3515 true, // is_big_endian
3516 elfcpp::EM_AARCH64, // machine_code
3517 false, // has_make_symbol
3518 false, // has_resolve
3519 false, // has_code_fill
3520 true, // is_default_stack_executable
3521 true, // can_icf_inline_merge_sections
3522 '\0', // wrap_char
3523 "/lib/ld.so.1", // program interpreter
3524 0x400000, // default_text_segment_address
3525 0x10000, // abi_pagesize (overridable by -z max-page-size)
3526 0x1000, // common_pagesize (overridable by -z common-page-size)
3527 false, // isolate_execinstr
3528 0, // rosegment_gap
3529 elfcpp::SHN_UNDEF, // small_common_shndx
3530 elfcpp::SHN_UNDEF, // large_common_shndx
3531 0, // small_common_section_flags
3532 0, // large_common_section_flags
3533 NULL, // attributes_section
3534 NULL, // attributes_vendor
3535 "_start", // entry_symbol_name
3536 32, // hash_entry_size
3537 };
3538
3539 template<>
3540 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3541 {
3542 32, // size
3543 true, // is_big_endian
3544 elfcpp::EM_AARCH64, // machine_code
3545 false, // has_make_symbol
3546 false, // has_resolve
3547 false, // has_code_fill
3548 true, // is_default_stack_executable
3549 false, // can_icf_inline_merge_sections
3550 '\0', // wrap_char
3551 "/lib/ld.so.1", // program interpreter
3552 0x400000, // default_text_segment_address
3553 0x10000, // abi_pagesize (overridable by -z max-page-size)
3554 0x1000, // common_pagesize (overridable by -z common-page-size)
3555 false, // isolate_execinstr
3556 0, // rosegment_gap
3557 elfcpp::SHN_UNDEF, // small_common_shndx
3558 elfcpp::SHN_UNDEF, // large_common_shndx
3559 0, // small_common_section_flags
3560 0, // large_common_section_flags
3561 NULL, // attributes_section
3562 NULL, // attributes_vendor
3563 "_start", // entry_symbol_name
3564 32, // hash_entry_size
3565 };
3566
3567 // Get the GOT section, creating it if necessary.
3568
3569 template<int size, bool big_endian>
3570 Output_data_got_aarch64<size, big_endian>*
3571 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3572 Layout* layout)
3573 {
3574 if (this->got_ == NULL)
3575 {
3576 gold_assert(symtab != NULL && layout != NULL);
3577
3578 // When using -z now, we can treat .got.plt as a relro section.
3579 // Without -z now, it is modified after program startup by lazy
3580 // PLT relocations.
3581 bool is_got_plt_relro = parameters->options().now();
3582 Output_section_order got_order = (is_got_plt_relro
3583 ? ORDER_RELRO
3584 : ORDER_RELRO_LAST);
3585 Output_section_order got_plt_order = (is_got_plt_relro
3586 ? ORDER_RELRO
3587 : ORDER_NON_RELRO_FIRST);
3588
3589 // Layout of .got and .got.plt sections.
3590 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3591 // ...
3592 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3593 // .gotplt[1] reserved for ld.so (resolver)
3594 // .gotplt[2] reserved
3595
3596 // Generate .got section.
3597 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3598 layout);
3599 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3600 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3601 this->got_, got_order, true);
3602 // The first word of GOT is reserved for the address of .dynamic.
3603 // We put 0 here now. The value will be replaced later in
3604 // Output_data_got_aarch64::do_write.
3605 this->got_->add_constant(0);
3606
3607 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3608 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3609 // even if there is a .got.plt section.
3610 this->global_offset_table_ =
3611 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3612 Symbol_table::PREDEFINED,
3613 this->got_,
3614 0, 0, elfcpp::STT_OBJECT,
3615 elfcpp::STB_LOCAL,
3616 elfcpp::STV_HIDDEN, 0,
3617 false, false);
3618
3619 // Generate .got.plt section.
3620 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3621 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3622 (elfcpp::SHF_ALLOC
3623 | elfcpp::SHF_WRITE),
3624 this->got_plt_, got_plt_order,
3625 is_got_plt_relro);
3626
3627 // The first three entries are reserved.
3628 this->got_plt_->set_current_data_size(
3629 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3630
3631 // If there are any IRELATIVE relocations, they get GOT entries
3632 // in .got.plt after the jump slot entries.
3633 this->got_irelative_ = new Output_data_space(size / 8,
3634 "** GOT IRELATIVE PLT");
3635 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3636 (elfcpp::SHF_ALLOC
3637 | elfcpp::SHF_WRITE),
3638 this->got_irelative_,
3639 got_plt_order,
3640 is_got_plt_relro);
3641
3642 // If there are any TLSDESC relocations, they get GOT entries in
3643 // .got.plt after the jump slot and IRELATIVE entries.
3644 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3645 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3646 (elfcpp::SHF_ALLOC
3647 | elfcpp::SHF_WRITE),
3648 this->got_tlsdesc_,
3649 got_plt_order,
3650 is_got_plt_relro);
3651
3652 if (!is_got_plt_relro)
3653 {
3654 // Those bytes can go into the relro segment.
3655 layout->increase_relro(
3656 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3657 }
3658
3659 }
3660 return this->got_;
3661 }
3662
3663 // Get the dynamic reloc section, creating it if necessary.
3664
3665 template<int size, bool big_endian>
3666 typename Target_aarch64<size, big_endian>::Reloc_section*
3667 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3668 {
3669 if (this->rela_dyn_ == NULL)
3670 {
3671 gold_assert(layout != NULL);
3672 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3673 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3674 elfcpp::SHF_ALLOC, this->rela_dyn_,
3675 ORDER_DYNAMIC_RELOCS, false);
3676 }
3677 return this->rela_dyn_;
3678 }
3679
3680 // Get the section to use for IRELATIVE relocs, creating it if
3681 // necessary. These go in .rela.dyn, but only after all other dynamic
3682 // relocations. They need to follow the other dynamic relocations so
3683 // that they can refer to global variables initialized by those
3684 // relocs.
3685
3686 template<int size, bool big_endian>
3687 typename Target_aarch64<size, big_endian>::Reloc_section*
3688 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3689 {
3690 if (this->rela_irelative_ == NULL)
3691 {
3692 // Make sure we have already created the dynamic reloc section.
3693 this->rela_dyn_section(layout);
3694 this->rela_irelative_ = new Reloc_section(false);
3695 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3696 elfcpp::SHF_ALLOC, this->rela_irelative_,
3697 ORDER_DYNAMIC_RELOCS, false);
3698 gold_assert(this->rela_dyn_->output_section()
3699 == this->rela_irelative_->output_section());
3700 }
3701 return this->rela_irelative_;
3702 }
3703
3704
3705 // do_make_elf_object to override the same function in the base class. We need
3706 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3707 // store backend specific information. Hence we need to have our own ELF object
3708 // creation.
3709
3710 template<int size, bool big_endian>
3711 Object*
3712 Target_aarch64<size, big_endian>::do_make_elf_object(
3713 const std::string& name,
3714 Input_file* input_file,
3715 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3716 {
3717 int et = ehdr.get_e_type();
3718 // ET_EXEC files are valid input for --just-symbols/-R,
3719 // and we treat them as relocatable objects.
3720 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3721 return Sized_target<size, big_endian>::do_make_elf_object(
3722 name, input_file, offset, ehdr);
3723 else if (et == elfcpp::ET_REL)
3724 {
3725 AArch64_relobj<size, big_endian>* obj =
3726 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3727 obj->setup();
3728 return obj;
3729 }
3730 else if (et == elfcpp::ET_DYN)
3731 {
3732 // Keep base implementation.
3733 Sized_dynobj<size, big_endian>* obj =
3734 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3735 obj->setup();
3736 return obj;
3737 }
3738 else
3739 {
3740 gold_error(_("%s: unsupported ELF file type %d"),
3741 name.c_str(), et);
3742 return NULL;
3743 }
3744 }
3745
3746
3747 // Scan a relocation for stub generation.
3748
3749 template<int size, bool big_endian>
3750 void
3751 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3752 const Relocate_info<size, big_endian>* relinfo,
3753 unsigned int r_type,
3754 const Sized_symbol<size>* gsym,
3755 unsigned int r_sym,
3756 const Symbol_value<size>* psymval,
3757 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3758 Address address)
3759 {
3760 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3761 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3762
3763 Symbol_value<size> symval;
3764 if (gsym != NULL)
3765 {
3766 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3767 get_reloc_property(r_type);
3768 if (gsym->use_plt_offset(arp->reference_flags()))
3769 {
3770 // This uses a PLT, change the symbol value.
3771 symval.set_output_value(this->plt_address_for_global(gsym));
3772 psymval = &symval;
3773 }
3774 else if (gsym->is_undefined())
3775 {
3776 // There is no need to generate a stub symbol if the original symbol
3777 // is undefined.
3778 gold_debug(DEBUG_TARGET,
3779 "stub: not creating a stub for undefined symbol %s in file %s",
3780 gsym->name(), aarch64_relobj->name().c_str());
3781 return;
3782 }
3783 }
3784
3785 // Get the symbol value.
3786 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3787
3788 // Owing to pipelining, the PC relative branches below actually skip
3789 // two instructions when the branch offset is 0.
3790 Address destination = static_cast<Address>(-1);
3791 switch (r_type)
3792 {
3793 case elfcpp::R_AARCH64_CALL26:
3794 case elfcpp::R_AARCH64_JUMP26:
3795 destination = value + addend;
3796 break;
3797 default:
3798 gold_unreachable();
3799 }
3800
3801 int stub_type = The_reloc_stub::
3802 stub_type_for_reloc(r_type, address, destination);
3803 if (stub_type == ST_NONE)
3804 return;
3805
3806 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3807 gold_assert(stub_table != NULL);
3808
3809 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3810 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3811 if (stub == NULL)
3812 {
3813 stub = new The_reloc_stub(stub_type);
3814 stub_table->add_reloc_stub(stub, key);
3815 }
3816 stub->set_destination_address(destination);
3817 } // End of Target_aarch64::scan_reloc_for_stub
3818
3819
3820 // This function scans a relocation section for stub generation.
3821 // The template parameter Relocate must be a class type which provides
3822 // a single function, relocate(), which implements the machine
3823 // specific part of a relocation.
3824
3825 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3826 // SHT_REL or SHT_RELA.
3827
3828 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3829 // of relocs. OUTPUT_SECTION is the output section.
3830 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3831 // mapped to output offsets.
3832
3833 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3834 // VIEW_SIZE is the size. These refer to the input section, unless
3835 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3836 // the output section.
3837
3838 template<int size, bool big_endian>
3839 template<int sh_type>
3840 void inline
3841 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3842 const Relocate_info<size, big_endian>* relinfo,
3843 const unsigned char* prelocs,
3844 size_t reloc_count,
3845 Output_section* /*output_section*/,
3846 bool /*needs_special_offset_handling*/,
3847 const unsigned char* /*view*/,
3848 Address view_address,
3849 section_size_type)
3850 {
3851 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3852
3853 const int reloc_size =
3854 Reloc_types<sh_type,size,big_endian>::reloc_size;
3855 AArch64_relobj<size, big_endian>* object =
3856 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3857 unsigned int local_count = object->local_symbol_count();
3858
3859 gold::Default_comdat_behavior default_comdat_behavior;
3860 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3861
3862 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3863 {
3864 Reltype reloc(prelocs);
3865 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3866 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3867 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3868 if (r_type != elfcpp::R_AARCH64_CALL26
3869 && r_type != elfcpp::R_AARCH64_JUMP26)
3870 continue;
3871
3872 section_offset_type offset =
3873 convert_to_section_size_type(reloc.get_r_offset());
3874
3875 // Get the addend.
3876 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3877 reloc.get_r_addend();
3878
3879 const Sized_symbol<size>* sym;
3880 Symbol_value<size> symval;
3881 const Symbol_value<size> *psymval;
3882 bool is_defined_in_discarded_section;
3883 unsigned int shndx;
3884 if (r_sym < local_count)
3885 {
3886 sym = NULL;
3887 psymval = object->local_symbol(r_sym);
3888
3889 // If the local symbol belongs to a section we are discarding,
3890 // and that section is a debug section, try to find the
3891 // corresponding kept section and map this symbol to its
3892 // counterpart in the kept section. The symbol must not
3893 // correspond to a section we are folding.
3894 bool is_ordinary;
3895 shndx = psymval->input_shndx(&is_ordinary);
3896 is_defined_in_discarded_section =
3897 (is_ordinary
3898 && shndx != elfcpp::SHN_UNDEF
3899 && !object->is_section_included(shndx)
3900 && !relinfo->symtab->is_section_folded(object, shndx));
3901
3902 // We need to compute the would-be final value of this local
3903 // symbol.
3904 if (!is_defined_in_discarded_section)
3905 {
3906 typedef Sized_relobj_file<size, big_endian> ObjType;
3907 if (psymval->is_section_symbol())
3908 symval.set_is_section_symbol();
3909 typename ObjType::Compute_final_local_value_status status =
3910 object->compute_final_local_value(r_sym, psymval, &symval,
3911 relinfo->symtab);
3912 if (status == ObjType::CFLV_OK)
3913 {
3914 // Currently we cannot handle a branch to a target in
3915 // a merged section. If this is the case, issue an error
3916 // and also free the merge symbol value.
3917 if (!symval.has_output_value())
3918 {
3919 const std::string& section_name =
3920 object->section_name(shndx);
3921 object->error(_("cannot handle branch to local %u "
3922 "in a merged section %s"),
3923 r_sym, section_name.c_str());
3924 }
3925 psymval = &symval;
3926 }
3927 else
3928 {
3929 // We cannot determine the final value.
3930 continue;
3931 }
3932 }
3933 }
3934 else
3935 {
3936 const Symbol* gsym;
3937 gsym = object->global_symbol(r_sym);
3938 gold_assert(gsym != NULL);
3939 if (gsym->is_forwarder())
3940 gsym = relinfo->symtab->resolve_forwards(gsym);
3941
3942 sym = static_cast<const Sized_symbol<size>*>(gsym);
3943 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3944 symval.set_output_symtab_index(sym->symtab_index());
3945 else
3946 symval.set_no_output_symtab_entry();
3947
3948 // We need to compute the would-be final value of this global
3949 // symbol.
3950 const Symbol_table* symtab = relinfo->symtab;
3951 const Sized_symbol<size>* sized_symbol =
3952 symtab->get_sized_symbol<size>(gsym);
3953 Symbol_table::Compute_final_value_status status;
3954 typename elfcpp::Elf_types<size>::Elf_Addr value =
3955 symtab->compute_final_value<size>(sized_symbol, &status);
3956
3957 // Skip this if the symbol has not output section.
3958 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3959 continue;
3960 symval.set_output_value(value);
3961
3962 if (gsym->type() == elfcpp::STT_TLS)
3963 symval.set_is_tls_symbol();
3964 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3965 symval.set_is_ifunc_symbol();
3966 psymval = &symval;
3967
3968 is_defined_in_discarded_section =
3969 (gsym->is_defined_in_discarded_section()
3970 && gsym->is_undefined());
3971 shndx = 0;
3972 }
3973
3974 Symbol_value<size> symval2;
3975 if (is_defined_in_discarded_section)
3976 {
3977 if (comdat_behavior == CB_UNDETERMINED)
3978 {
3979 std::string name = object->section_name(relinfo->data_shndx);
3980 comdat_behavior = default_comdat_behavior.get(name.c_str());
3981 }
3982 if (comdat_behavior == CB_PRETEND)
3983 {
3984 bool found;
3985 typename elfcpp::Elf_types<size>::Elf_Addr value =
3986 object->map_to_kept_section(shndx, &found);
3987 if (found)
3988 symval2.set_output_value(value + psymval->input_value());
3989 else
3990 symval2.set_output_value(0);
3991 }
3992 else
3993 {
3994 if (comdat_behavior == CB_WARNING)
3995 gold_warning_at_location(relinfo, i, offset,
3996 _("relocation refers to discarded "
3997 "section"));
3998 symval2.set_output_value(0);
3999 }
4000 symval2.set_no_output_symtab_entry();
4001 psymval = &symval2;
4002 }
4003
4004 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4005 addend, view_address + offset);
4006 } // End of iterating relocs in a section
4007 } // End of Target_aarch64::scan_reloc_section_for_stubs
4008
4009
4010 // Scan an input section for stub generation.
4011
4012 template<int size, bool big_endian>
4013 void
4014 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4015 const Relocate_info<size, big_endian>* relinfo,
4016 unsigned int sh_type,
4017 const unsigned char* prelocs,
4018 size_t reloc_count,
4019 Output_section* output_section,
4020 bool needs_special_offset_handling,
4021 const unsigned char* view,
4022 Address view_address,
4023 section_size_type view_size)
4024 {
4025 gold_assert(sh_type == elfcpp::SHT_RELA);
4026 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4027 relinfo,
4028 prelocs,
4029 reloc_count,
4030 output_section,
4031 needs_special_offset_handling,
4032 view,
4033 view_address,
4034 view_size);
4035 }
4036
4037
4038 // Relocate a single stub.
4039
4040 template<int size, bool big_endian>
4041 void Target_aarch64<size, big_endian>::
4042 relocate_stub(The_reloc_stub* stub,
4043 const The_relocate_info*,
4044 Output_section*,
4045 unsigned char* view,
4046 Address address,
4047 section_size_type)
4048 {
4049 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4050 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4051 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4052
4053 Insntype* ip = reinterpret_cast<Insntype*>(view);
4054 int insn_number = stub->insn_num();
4055 const uint32_t* insns = stub->insns();
4056 // Check the insns are really those stub insns.
4057 for (int i = 0; i < insn_number; ++i)
4058 {
4059 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4060 gold_assert(((uint32_t)insn == insns[i]));
4061 }
4062
4063 Address dest = stub->destination_address();
4064
4065 switch(stub->type())
4066 {
4067 case ST_ADRP_BRANCH:
4068 {
4069 // 1st reloc is ADR_PREL_PG_HI21
4070 The_reloc_functions_status status =
4071 The_reloc_functions::adrp(view, dest, address);
4072 // An error should never arise in the above step. If so, please
4073 // check 'aarch64_valid_for_adrp_p'.
4074 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4075
4076 // 2nd reloc is ADD_ABS_LO12_NC
4077 const AArch64_reloc_property* arp =
4078 aarch64_reloc_property_table->get_reloc_property(
4079 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4080 gold_assert(arp != NULL);
4081 status = The_reloc_functions::template
4082 rela_general<32>(view + 4, dest, 0, arp);
4083 // An error should never arise, it is an "_NC" relocation.
4084 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4085 }
4086 break;
4087
4088 case ST_LONG_BRANCH_ABS:
4089 // 1st reloc is R_AARCH64_PREL64, at offset 8
4090 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4091 break;
4092
4093 case ST_LONG_BRANCH_PCREL:
4094 {
4095 // "PC" calculation is the 2nd insn in the stub.
4096 uint64_t offset = dest - (address + 4);
4097 // Offset is placed at offset 4 and 5.
4098 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4099 }
4100 break;
4101
4102 default:
4103 gold_unreachable();
4104 }
4105 }
4106
4107
4108 // A class to handle the PLT data.
4109 // This is an abstract base class that handles most of the linker details
4110 // but does not know the actual contents of PLT entries. The derived
4111 // classes below fill in those details.
4112
4113 template<int size, bool big_endian>
4114 class Output_data_plt_aarch64 : public Output_section_data
4115 {
4116 public:
4117 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4118 Reloc_section;
4119 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4120
4121 Output_data_plt_aarch64(Layout* layout,
4122 uint64_t addralign,
4123 Output_data_got_aarch64<size, big_endian>* got,
4124 Output_data_space* got_plt,
4125 Output_data_space* got_irelative)
4126 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4127 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4128 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4129 { this->init(layout); }
4130
4131 // Initialize the PLT section.
4132 void
4133 init(Layout* layout);
4134
4135 // Add an entry to the PLT.
4136 void
4137 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4138
4139 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4140 unsigned int
4141 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4142 Sized_relobj_file<size, big_endian>* relobj,
4143 unsigned int local_sym_index);
4144
4145 // Add the relocation for a PLT entry.
4146 void
4147 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4148 unsigned int got_offset);
4149
4150 // Add the reserved TLSDESC_PLT entry to the PLT.
4151 void
4152 reserve_tlsdesc_entry(unsigned int got_offset)
4153 { this->tlsdesc_got_offset_ = got_offset; }
4154
4155 // Return true if a TLSDESC_PLT entry has been reserved.
4156 bool
4157 has_tlsdesc_entry() const
4158 { return this->tlsdesc_got_offset_ != -1U; }
4159
4160 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4161 unsigned int
4162 get_tlsdesc_got_offset() const
4163 { return this->tlsdesc_got_offset_; }
4164
4165 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4166 unsigned int
4167 get_tlsdesc_plt_offset() const
4168 {
4169 return (this->first_plt_entry_offset() +
4170 (this->count_ + this->irelative_count_)
4171 * this->get_plt_entry_size());
4172 }
4173
4174 // Return the .rela.plt section data.
4175 Reloc_section*
4176 rela_plt()
4177 { return this->rel_; }
4178
4179 // Return where the TLSDESC relocations should go.
4180 Reloc_section*
4181 rela_tlsdesc(Layout*);
4182
4183 // Return where the IRELATIVE relocations should go in the PLT
4184 // relocations.
4185 Reloc_section*
4186 rela_irelative(Symbol_table*, Layout*);
4187
4188 // Return whether we created a section for IRELATIVE relocations.
4189 bool
4190 has_irelative_section() const
4191 { return this->irelative_rel_ != NULL; }
4192
4193 // Return the number of PLT entries.
4194 unsigned int
4195 entry_count() const
4196 { return this->count_ + this->irelative_count_; }
4197
4198 // Return the offset of the first non-reserved PLT entry.
4199 unsigned int
4200 first_plt_entry_offset() const
4201 { return this->do_first_plt_entry_offset(); }
4202
4203 // Return the size of a PLT entry.
4204 unsigned int
4205 get_plt_entry_size() const
4206 { return this->do_get_plt_entry_size(); }
4207
4208 // Return the reserved tlsdesc entry size.
4209 unsigned int
4210 get_plt_tlsdesc_entry_size() const
4211 { return this->do_get_plt_tlsdesc_entry_size(); }
4212
4213 // Return the PLT address to use for a global symbol.
4214 uint64_t
4215 address_for_global(const Symbol*);
4216
4217 // Return the PLT address to use for a local symbol.
4218 uint64_t
4219 address_for_local(const Relobj*, unsigned int symndx);
4220
4221 protected:
4222 // Fill in the first PLT entry.
4223 void
4224 fill_first_plt_entry(unsigned char* pov,
4225 Address got_address,
4226 Address plt_address)
4227 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4228
4229 // Fill in a normal PLT entry.
4230 void
4231 fill_plt_entry(unsigned char* pov,
4232 Address got_address,
4233 Address plt_address,
4234 unsigned int got_offset,
4235 unsigned int plt_offset)
4236 {
4237 this->do_fill_plt_entry(pov, got_address, plt_address,
4238 got_offset, plt_offset);
4239 }
4240
4241 // Fill in the reserved TLSDESC PLT entry.
4242 void
4243 fill_tlsdesc_entry(unsigned char* pov,
4244 Address gotplt_address,
4245 Address plt_address,
4246 Address got_base,
4247 unsigned int tlsdesc_got_offset,
4248 unsigned int plt_offset)
4249 {
4250 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4251 tlsdesc_got_offset, plt_offset);
4252 }
4253
4254 virtual unsigned int
4255 do_first_plt_entry_offset() const = 0;
4256
4257 virtual unsigned int
4258 do_get_plt_entry_size() const = 0;
4259
4260 virtual unsigned int
4261 do_get_plt_tlsdesc_entry_size() const = 0;
4262
4263 virtual void
4264 do_fill_first_plt_entry(unsigned char* pov,
4265 Address got_addr,
4266 Address plt_addr) = 0;
4267
4268 virtual void
4269 do_fill_plt_entry(unsigned char* pov,
4270 Address got_address,
4271 Address plt_address,
4272 unsigned int got_offset,
4273 unsigned int plt_offset) = 0;
4274
4275 virtual void
4276 do_fill_tlsdesc_entry(unsigned char* pov,
4277 Address gotplt_address,
4278 Address plt_address,
4279 Address got_base,
4280 unsigned int tlsdesc_got_offset,
4281 unsigned int plt_offset) = 0;
4282
4283 void
4284 do_adjust_output_section(Output_section* os);
4285
4286 // Write to a map file.
4287 void
4288 do_print_to_mapfile(Mapfile* mapfile) const
4289 { mapfile->print_output_data(this, _("** PLT")); }
4290
4291 private:
4292 // Set the final size.
4293 void
4294 set_final_data_size();
4295
4296 // Write out the PLT data.
4297 void
4298 do_write(Output_file*);
4299
4300 // The reloc section.
4301 Reloc_section* rel_;
4302
4303 // The TLSDESC relocs, if necessary. These must follow the regular
4304 // PLT relocs.
4305 Reloc_section* tlsdesc_rel_;
4306
4307 // The IRELATIVE relocs, if necessary. These must follow the
4308 // regular PLT relocations.
4309 Reloc_section* irelative_rel_;
4310
4311 // The .got section.
4312 Output_data_got_aarch64<size, big_endian>* got_;
4313
4314 // The .got.plt section.
4315 Output_data_space* got_plt_;
4316
4317 // The part of the .got.plt section used for IRELATIVE relocs.
4318 Output_data_space* got_irelative_;
4319
4320 // The number of PLT entries.
4321 unsigned int count_;
4322
4323 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4324 // follow the regular PLT entries.
4325 unsigned int irelative_count_;
4326
4327 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4328 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4329 // indicates an offset is not allocated.
4330 unsigned int tlsdesc_got_offset_;
4331 };
4332
4333 // Initialize the PLT section.
4334
4335 template<int size, bool big_endian>
4336 void
4337 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4338 {
4339 this->rel_ = new Reloc_section(false);
4340 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4341 elfcpp::SHF_ALLOC, this->rel_,
4342 ORDER_DYNAMIC_PLT_RELOCS, false);
4343 }
4344
4345 template<int size, bool big_endian>
4346 void
4347 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4348 Output_section* os)
4349 {
4350 os->set_entsize(this->get_plt_entry_size());
4351 }
4352
4353 // Add an entry to the PLT.
4354
4355 template<int size, bool big_endian>
4356 void
4357 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4358 Layout* layout, Symbol* gsym)
4359 {
4360 gold_assert(!gsym->has_plt_offset());
4361
4362 unsigned int* pcount;
4363 unsigned int plt_reserved;
4364 Output_section_data_build* got;
4365
4366 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4367 && gsym->can_use_relative_reloc(false))
4368 {
4369 pcount = &this->irelative_count_;
4370 plt_reserved = 0;
4371 got = this->got_irelative_;
4372 }
4373 else
4374 {
4375 pcount = &this->count_;
4376 plt_reserved = this->first_plt_entry_offset();
4377 got = this->got_plt_;
4378 }
4379
4380 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4381 + plt_reserved);
4382
4383 ++*pcount;
4384
4385 section_offset_type got_offset = got->current_data_size();
4386
4387 // Every PLT entry needs a GOT entry which points back to the PLT
4388 // entry (this will be changed by the dynamic linker, normally
4389 // lazily when the function is called).
4390 got->set_current_data_size(got_offset + size / 8);
4391
4392 // Every PLT entry needs a reloc.
4393 this->add_relocation(symtab, layout, gsym, got_offset);
4394
4395 // Note that we don't need to save the symbol. The contents of the
4396 // PLT are independent of which symbols are used. The symbols only
4397 // appear in the relocations.
4398 }
4399
4400 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4401 // the PLT offset.
4402
4403 template<int size, bool big_endian>
4404 unsigned int
4405 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4406 Symbol_table* symtab,
4407 Layout* layout,
4408 Sized_relobj_file<size, big_endian>* relobj,
4409 unsigned int local_sym_index)
4410 {
4411 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4412 ++this->irelative_count_;
4413
4414 section_offset_type got_offset = this->got_irelative_->current_data_size();
4415
4416 // Every PLT entry needs a GOT entry which points back to the PLT
4417 // entry.
4418 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4419
4420 // Every PLT entry needs a reloc.
4421 Reloc_section* rela = this->rela_irelative(symtab, layout);
4422 rela->add_symbolless_local_addend(relobj, local_sym_index,
4423 elfcpp::R_AARCH64_IRELATIVE,
4424 this->got_irelative_, got_offset, 0);
4425
4426 return plt_offset;
4427 }
4428
4429 // Add the relocation for a PLT entry.
4430
4431 template<int size, bool big_endian>
4432 void
4433 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4434 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4435 {
4436 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4437 && gsym->can_use_relative_reloc(false))
4438 {
4439 Reloc_section* rela = this->rela_irelative(symtab, layout);
4440 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4441 this->got_irelative_, got_offset, 0);
4442 }
4443 else
4444 {
4445 gsym->set_needs_dynsym_entry();
4446 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4447 got_offset, 0);
4448 }
4449 }
4450
4451 // Return where the TLSDESC relocations should go, creating it if
4452 // necessary. These follow the JUMP_SLOT relocations.
4453
4454 template<int size, bool big_endian>
4455 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4456 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4457 {
4458 if (this->tlsdesc_rel_ == NULL)
4459 {
4460 this->tlsdesc_rel_ = new Reloc_section(false);
4461 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4462 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4463 ORDER_DYNAMIC_PLT_RELOCS, false);
4464 gold_assert(this->tlsdesc_rel_->output_section()
4465 == this->rel_->output_section());
4466 }
4467 return this->tlsdesc_rel_;
4468 }
4469
4470 // Return where the IRELATIVE relocations should go in the PLT. These
4471 // follow the JUMP_SLOT and the TLSDESC relocations.
4472
4473 template<int size, bool big_endian>
4474 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4475 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4476 Layout* layout)
4477 {
4478 if (this->irelative_rel_ == NULL)
4479 {
4480 // Make sure we have a place for the TLSDESC relocations, in
4481 // case we see any later on.
4482 this->rela_tlsdesc(layout);
4483 this->irelative_rel_ = new Reloc_section(false);
4484 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4485 elfcpp::SHF_ALLOC, this->irelative_rel_,
4486 ORDER_DYNAMIC_PLT_RELOCS, false);
4487 gold_assert(this->irelative_rel_->output_section()
4488 == this->rel_->output_section());
4489
4490 if (parameters->doing_static_link())
4491 {
4492 // A statically linked executable will only have a .rela.plt
4493 // section to hold R_AARCH64_IRELATIVE relocs for
4494 // STT_GNU_IFUNC symbols. The library will use these
4495 // symbols to locate the IRELATIVE relocs at program startup
4496 // time.
4497 symtab->define_in_output_data("__rela_iplt_start", NULL,
4498 Symbol_table::PREDEFINED,
4499 this->irelative_rel_, 0, 0,
4500 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4501 elfcpp::STV_HIDDEN, 0, false, true);
4502 symtab->define_in_output_data("__rela_iplt_end", NULL,
4503 Symbol_table::PREDEFINED,
4504 this->irelative_rel_, 0, 0,
4505 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4506 elfcpp::STV_HIDDEN, 0, true, true);
4507 }
4508 }
4509 return this->irelative_rel_;
4510 }
4511
4512 // Return the PLT address to use for a global symbol.
4513
4514 template<int size, bool big_endian>
4515 uint64_t
4516 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4517 const Symbol* gsym)
4518 {
4519 uint64_t offset = 0;
4520 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4521 && gsym->can_use_relative_reloc(false))
4522 offset = (this->first_plt_entry_offset() +
4523 this->count_ * this->get_plt_entry_size());
4524 return this->address() + offset + gsym->plt_offset();
4525 }
4526
4527 // Return the PLT address to use for a local symbol. These are always
4528 // IRELATIVE relocs.
4529
4530 template<int size, bool big_endian>
4531 uint64_t
4532 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4533 const Relobj* object,
4534 unsigned int r_sym)
4535 {
4536 return (this->address()
4537 + this->first_plt_entry_offset()
4538 + this->count_ * this->get_plt_entry_size()
4539 + object->local_plt_offset(r_sym));
4540 }
4541
4542 // Set the final size.
4543
4544 template<int size, bool big_endian>
4545 void
4546 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4547 {
4548 unsigned int count = this->count_ + this->irelative_count_;
4549 unsigned int extra_size = 0;
4550 if (this->has_tlsdesc_entry())
4551 extra_size += this->get_plt_tlsdesc_entry_size();
4552 this->set_data_size(this->first_plt_entry_offset()
4553 + count * this->get_plt_entry_size()
4554 + extra_size);
4555 }
4556
4557 template<int size, bool big_endian>
4558 class Output_data_plt_aarch64_standard :
4559 public Output_data_plt_aarch64<size, big_endian>
4560 {
4561 public:
4562 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4563 Output_data_plt_aarch64_standard(
4564 Layout* layout,
4565 Output_data_got_aarch64<size, big_endian>* got,
4566 Output_data_space* got_plt,
4567 Output_data_space* got_irelative)
4568 : Output_data_plt_aarch64<size, big_endian>(layout,
4569 size == 32 ? 4 : 8,
4570 got, got_plt,
4571 got_irelative)
4572 { }
4573
4574 protected:
4575 // Return the offset of the first non-reserved PLT entry.
4576 virtual unsigned int
4577 do_first_plt_entry_offset() const
4578 { return this->first_plt_entry_size; }
4579
4580 // Return the size of a PLT entry
4581 virtual unsigned int
4582 do_get_plt_entry_size() const
4583 { return this->plt_entry_size; }
4584
4585 // Return the size of a tlsdesc entry
4586 virtual unsigned int
4587 do_get_plt_tlsdesc_entry_size() const
4588 { return this->plt_tlsdesc_entry_size; }
4589
4590 virtual void
4591 do_fill_first_plt_entry(unsigned char* pov,
4592 Address got_address,
4593 Address plt_address);
4594
4595 virtual void
4596 do_fill_plt_entry(unsigned char* pov,
4597 Address got_address,
4598 Address plt_address,
4599 unsigned int got_offset,
4600 unsigned int plt_offset);
4601
4602 virtual void
4603 do_fill_tlsdesc_entry(unsigned char* pov,
4604 Address gotplt_address,
4605 Address plt_address,
4606 Address got_base,
4607 unsigned int tlsdesc_got_offset,
4608 unsigned int plt_offset);
4609
4610 private:
4611 // The size of the first plt entry size.
4612 static const int first_plt_entry_size = 32;
4613 // The size of the plt entry size.
4614 static const int plt_entry_size = 16;
4615 // The size of the plt tlsdesc entry size.
4616 static const int plt_tlsdesc_entry_size = 32;
4617 // Template for the first PLT entry.
4618 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4619 // Template for subsequent PLT entries.
4620 static const uint32_t plt_entry[plt_entry_size / 4];
4621 // The reserved TLSDESC entry in the PLT for an executable.
4622 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4623 };
4624
4625 // The first entry in the PLT for an executable.
4626
4627 template<>
4628 const uint32_t
4629 Output_data_plt_aarch64_standard<32, false>::
4630 first_plt_entry[first_plt_entry_size / 4] =
4631 {
4632 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4633 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4634 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4635 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4636 0xd61f0220, /* br x17 */
4637 0xd503201f, /* nop */
4638 0xd503201f, /* nop */
4639 0xd503201f, /* nop */
4640 };
4641
4642
4643 template<>
4644 const uint32_t
4645 Output_data_plt_aarch64_standard<32, true>::
4646 first_plt_entry[first_plt_entry_size / 4] =
4647 {
4648 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4649 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4650 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4651 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4652 0xd61f0220, /* br x17 */
4653 0xd503201f, /* nop */
4654 0xd503201f, /* nop */
4655 0xd503201f, /* nop */
4656 };
4657
4658
4659 template<>
4660 const uint32_t
4661 Output_data_plt_aarch64_standard<64, false>::
4662 first_plt_entry[first_plt_entry_size / 4] =
4663 {
4664 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4665 0x90000010, /* adrp x16, PLT_GOT+16 */
4666 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4667 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4668 0xd61f0220, /* br x17 */
4669 0xd503201f, /* nop */
4670 0xd503201f, /* nop */
4671 0xd503201f, /* nop */
4672 };
4673
4674
4675 template<>
4676 const uint32_t
4677 Output_data_plt_aarch64_standard<64, true>::
4678 first_plt_entry[first_plt_entry_size / 4] =
4679 {
4680 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4681 0x90000010, /* adrp x16, PLT_GOT+16 */
4682 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4683 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4684 0xd61f0220, /* br x17 */
4685 0xd503201f, /* nop */
4686 0xd503201f, /* nop */
4687 0xd503201f, /* nop */
4688 };
4689
4690
4691 template<>
4692 const uint32_t
4693 Output_data_plt_aarch64_standard<32, false>::
4694 plt_entry[plt_entry_size / 4] =
4695 {
4696 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4697 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4698 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4699 0xd61f0220, /* br x17. */
4700 };
4701
4702
4703 template<>
4704 const uint32_t
4705 Output_data_plt_aarch64_standard<32, true>::
4706 plt_entry[plt_entry_size / 4] =
4707 {
4708 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4709 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4710 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4711 0xd61f0220, /* br x17. */
4712 };
4713
4714
4715 template<>
4716 const uint32_t
4717 Output_data_plt_aarch64_standard<64, false>::
4718 plt_entry[plt_entry_size / 4] =
4719 {
4720 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4721 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4722 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4723 0xd61f0220, /* br x17. */
4724 };
4725
4726
4727 template<>
4728 const uint32_t
4729 Output_data_plt_aarch64_standard<64, true>::
4730 plt_entry[plt_entry_size / 4] =
4731 {
4732 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4733 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4734 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4735 0xd61f0220, /* br x17. */
4736 };
4737
4738
4739 template<int size, bool big_endian>
4740 void
4741 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4742 unsigned char* pov,
4743 Address got_address,
4744 Address plt_address)
4745 {
4746 // PLT0 of the small PLT looks like this in ELF64 -
4747 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4748 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4749 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4750 // symbol resolver
4751 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4752 // GOTPLT entry for this.
4753 // br x17
4754 // PLT0 will be slightly different in ELF32 due to different got entry
4755 // size.
4756 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4757 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4758
4759 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4760 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4761 // FIXME: This only works for 64bit
4762 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4763 gotplt_2nd_ent, plt_address + 4);
4764
4765 // Fill in R_AARCH64_LDST8_LO12
4766 elfcpp::Swap<32, big_endian>::writeval(
4767 pov + 8,
4768 ((this->first_plt_entry[2] & 0xffc003ff)
4769 | ((gotplt_2nd_ent & 0xff8) << 7)));
4770
4771 // Fill in R_AARCH64_ADD_ABS_LO12
4772 elfcpp::Swap<32, big_endian>::writeval(
4773 pov + 12,
4774 ((this->first_plt_entry[3] & 0xffc003ff)
4775 | ((gotplt_2nd_ent & 0xfff) << 10)));
4776 }
4777
4778
4779 // Subsequent entries in the PLT for an executable.
4780 // FIXME: This only works for 64bit
4781
4782 template<int size, bool big_endian>
4783 void
4784 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4785 unsigned char* pov,
4786 Address got_address,
4787 Address plt_address,
4788 unsigned int got_offset,
4789 unsigned int plt_offset)
4790 {
4791 memcpy(pov, this->plt_entry, this->plt_entry_size);
4792
4793 Address gotplt_entry_address = got_address + got_offset;
4794 Address plt_entry_address = plt_address + plt_offset;
4795
4796 // Fill in R_AARCH64_PCREL_ADR_HI21
4797 AArch64_relocate_functions<size, big_endian>::adrp(
4798 pov,
4799 gotplt_entry_address,
4800 plt_entry_address);
4801
4802 // Fill in R_AARCH64_LDST64_ABS_LO12
4803 elfcpp::Swap<32, big_endian>::writeval(
4804 pov + 4,
4805 ((this->plt_entry[1] & 0xffc003ff)
4806 | ((gotplt_entry_address & 0xff8) << 7)));
4807
4808 // Fill in R_AARCH64_ADD_ABS_LO12
4809 elfcpp::Swap<32, big_endian>::writeval(
4810 pov + 8,
4811 ((this->plt_entry[2] & 0xffc003ff)
4812 | ((gotplt_entry_address & 0xfff) <<10)));
4813
4814 }
4815
4816
4817 template<>
4818 const uint32_t
4819 Output_data_plt_aarch64_standard<32, false>::
4820 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4821 {
4822 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4823 0x90000002, /* adrp x2, 0 */
4824 0x90000003, /* adrp x3, 0 */
4825 0xb9400042, /* ldr w2, [w2, #0] */
4826 0x11000063, /* add w3, w3, 0 */
4827 0xd61f0040, /* br x2 */
4828 0xd503201f, /* nop */
4829 0xd503201f, /* nop */
4830 };
4831
4832 template<>
4833 const uint32_t
4834 Output_data_plt_aarch64_standard<32, true>::
4835 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4836 {
4837 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4838 0x90000002, /* adrp x2, 0 */
4839 0x90000003, /* adrp x3, 0 */
4840 0xb9400042, /* ldr w2, [w2, #0] */
4841 0x11000063, /* add w3, w3, 0 */
4842 0xd61f0040, /* br x2 */
4843 0xd503201f, /* nop */
4844 0xd503201f, /* nop */
4845 };
4846
4847 template<>
4848 const uint32_t
4849 Output_data_plt_aarch64_standard<64, false>::
4850 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4851 {
4852 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4853 0x90000002, /* adrp x2, 0 */
4854 0x90000003, /* adrp x3, 0 */
4855 0xf9400042, /* ldr x2, [x2, #0] */
4856 0x91000063, /* add x3, x3, 0 */
4857 0xd61f0040, /* br x2 */
4858 0xd503201f, /* nop */
4859 0xd503201f, /* nop */
4860 };
4861
4862 template<>
4863 const uint32_t
4864 Output_data_plt_aarch64_standard<64, true>::
4865 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4866 {
4867 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4868 0x90000002, /* adrp x2, 0 */
4869 0x90000003, /* adrp x3, 0 */
4870 0xf9400042, /* ldr x2, [x2, #0] */
4871 0x91000063, /* add x3, x3, 0 */
4872 0xd61f0040, /* br x2 */
4873 0xd503201f, /* nop */
4874 0xd503201f, /* nop */
4875 };
4876
4877 template<int size, bool big_endian>
4878 void
4879 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4880 unsigned char* pov,
4881 Address gotplt_address,
4882 Address plt_address,
4883 Address got_base,
4884 unsigned int tlsdesc_got_offset,
4885 unsigned int plt_offset)
4886 {
4887 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4888
4889 // move DT_TLSDESC_GOT address into x2
4890 // move .got.plt address into x3
4891 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4892 Address plt_entry_address = plt_address + plt_offset;
4893
4894 // R_AARCH64_ADR_PREL_PG_HI21
4895 AArch64_relocate_functions<size, big_endian>::adrp(
4896 pov + 4,
4897 tlsdesc_got_entry,
4898 plt_entry_address + 4);
4899
4900 // R_AARCH64_ADR_PREL_PG_HI21
4901 AArch64_relocate_functions<size, big_endian>::adrp(
4902 pov + 8,
4903 gotplt_address,
4904 plt_entry_address + 8);
4905
4906 // R_AARCH64_LDST64_ABS_LO12
4907 elfcpp::Swap<32, big_endian>::writeval(
4908 pov + 12,
4909 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4910 | ((tlsdesc_got_entry & 0xff8) << 7)));
4911
4912 // R_AARCH64_ADD_ABS_LO12
4913 elfcpp::Swap<32, big_endian>::writeval(
4914 pov + 16,
4915 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4916 | ((gotplt_address & 0xfff) << 10)));
4917 }
4918
4919 // Write out the PLT. This uses the hand-coded instructions above,
4920 // and adjusts them as needed. This is specified by the AMD64 ABI.
4921
4922 template<int size, bool big_endian>
4923 void
4924 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4925 {
4926 const off_t offset = this->offset();
4927 const section_size_type oview_size =
4928 convert_to_section_size_type(this->data_size());
4929 unsigned char* const oview = of->get_output_view(offset, oview_size);
4930
4931 const off_t got_file_offset = this->got_plt_->offset();
4932 gold_assert(got_file_offset + this->got_plt_->data_size()
4933 == this->got_irelative_->offset());
4934
4935 const section_size_type got_size =
4936 convert_to_section_size_type(this->got_plt_->data_size()
4937 + this->got_irelative_->data_size());
4938 unsigned char* const got_view = of->get_output_view(got_file_offset,
4939 got_size);
4940
4941 unsigned char* pov = oview;
4942
4943 // The base address of the .plt section.
4944 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4945 // The base address of the PLT portion of the .got section.
4946 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4947 = this->got_plt_->address();
4948
4949 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4950 pov += this->first_plt_entry_offset();
4951
4952 // The first three entries in .got.plt are reserved.
4953 unsigned char* got_pov = got_view;
4954 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4955 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4956
4957 unsigned int plt_offset = this->first_plt_entry_offset();
4958 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4959 const unsigned int count = this->count_ + this->irelative_count_;
4960 for (unsigned int plt_index = 0;
4961 plt_index < count;
4962 ++plt_index,
4963 pov += this->get_plt_entry_size(),
4964 got_pov += size / 8,
4965 plt_offset += this->get_plt_entry_size(),
4966 got_offset += size / 8)
4967 {
4968 // Set and adjust the PLT entry itself.
4969 this->fill_plt_entry(pov, gotplt_address, plt_address,
4970 got_offset, plt_offset);
4971
4972 // Set the entry in the GOT, which points to plt0.
4973 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4974 }
4975
4976 if (this->has_tlsdesc_entry())
4977 {
4978 // Set and adjust the reserved TLSDESC PLT entry.
4979 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4980 // The base address of the .base section.
4981 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4982 this->got_->address();
4983 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4984 tlsdesc_got_offset, plt_offset);
4985 pov += this->get_plt_tlsdesc_entry_size();
4986 }
4987
4988 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4989 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4990
4991 of->write_output_view(offset, oview_size, oview);
4992 of->write_output_view(got_file_offset, got_size, got_view);
4993 }
4994
4995 // Telling how to update the immediate field of an instruction.
4996 struct AArch64_howto
4997 {
4998 // The immediate field mask.
4999 elfcpp::Elf_Xword dst_mask;
5000
5001 // The offset to apply relocation immediate
5002 int doffset;
5003
5004 // The second part offset, if the immediate field has two parts.
5005 // -1 if the immediate field has only one part.
5006 int doffset2;
5007 };
5008
5009 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5010 {
5011 {0, -1, -1}, // DATA
5012 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
5013 {0xffffe0, 5, -1}, // LD [23:5]-imm19
5014 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
5015 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
5016 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
5017 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
5018 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
5019 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
5020 {0x3ffffff, 0, -1}, // B [25:0]-imm26
5021 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
5022 };
5023
5024 // AArch64 relocate function class
5025
5026 template<int size, bool big_endian>
5027 class AArch64_relocate_functions
5028 {
5029 public:
5030 typedef enum
5031 {
5032 STATUS_OKAY, // No error during relocation.
5033 STATUS_OVERFLOW, // Relocation overflow.
5034 STATUS_BAD_RELOC, // Relocation cannot be applied.
5035 } Status;
5036
5037 typedef AArch64_relocate_functions<size, big_endian> This;
5038 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5039 typedef Relocate_info<size, big_endian> The_relocate_info;
5040 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5041 typedef Reloc_stub<size, big_endian> The_reloc_stub;
5042 typedef Stub_table<size, big_endian> The_stub_table;
5043 typedef elfcpp::Rela<size, big_endian> The_rela;
5044 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5045
5046 // Return the page address of the address.
5047 // Page(address) = address & ~0xFFF
5048
5049 static inline AArch64_valtype
5050 Page(Address address)
5051 {
5052 return (address & (~static_cast<Address>(0xFFF)));
5053 }
5054
5055 private:
5056 // Update instruction (pointed by view) with selected bits (immed).
5057 // val = (val & ~dst_mask) | (immed << doffset)
5058
5059 template<int valsize>
5060 static inline void
5061 update_view(unsigned char* view,
5062 AArch64_valtype immed,
5063 elfcpp::Elf_Xword doffset,
5064 elfcpp::Elf_Xword dst_mask)
5065 {
5066 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5067 Valtype* wv = reinterpret_cast<Valtype*>(view);
5068 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5069
5070 // Clear immediate fields.
5071 val &= ~dst_mask;
5072 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5073 static_cast<Valtype>(val | (immed << doffset)));
5074 }
5075
5076 // Update two parts of an instruction (pointed by view) with selected
5077 // bits (immed1 and immed2).
5078 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5079
5080 template<int valsize>
5081 static inline void
5082 update_view_two_parts(
5083 unsigned char* view,
5084 AArch64_valtype immed1,
5085 AArch64_valtype immed2,
5086 elfcpp::Elf_Xword doffset1,
5087 elfcpp::Elf_Xword doffset2,
5088 elfcpp::Elf_Xword dst_mask)
5089 {
5090 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5091 Valtype* wv = reinterpret_cast<Valtype*>(view);
5092 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5093 val &= ~dst_mask;
5094 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5095 static_cast<Valtype>(val | (immed1 << doffset1) |
5096 (immed2 << doffset2)));
5097 }
5098
5099 // Update adr or adrp instruction with immed.
5100 // In adr and adrp: [30:29] immlo [23:5] immhi
5101
5102 static inline void
5103 update_adr(unsigned char* view, AArch64_valtype immed)
5104 {
5105 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5106 This::template update_view_two_parts<32>(
5107 view,
5108 immed & 0x3,
5109 (immed & 0x1ffffc) >> 2,
5110 29,
5111 5,
5112 dst_mask);
5113 }
5114
5115 // Update movz/movn instruction with bits immed.
5116 // Set instruction to movz if is_movz is true, otherwise set instruction
5117 // to movn.
5118
5119 static inline void
5120 update_movnz(unsigned char* view,
5121 AArch64_valtype immed,
5122 bool is_movz)
5123 {
5124 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5125 Valtype* wv = reinterpret_cast<Valtype*>(view);
5126 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5127
5128 const elfcpp::Elf_Xword doffset =
5129 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5130 const elfcpp::Elf_Xword dst_mask =
5131 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5132
5133 // Clear immediate fields and opc code.
5134 val &= ~(dst_mask | (0x3 << 29));
5135
5136 // Set instruction to movz or movn.
5137 // movz: [30:29] is 10 movn: [30:29] is 00
5138 if (is_movz)
5139 val |= (0x2 << 29);
5140
5141 elfcpp::Swap<32, big_endian>::writeval(wv,
5142 static_cast<Valtype>(val | (immed << doffset)));
5143 }
5144
5145 public:
5146
5147 // Update selected bits in text.
5148
5149 template<int valsize>
5150 static inline typename This::Status
5151 reloc_common(unsigned char* view, Address x,
5152 const AArch64_reloc_property* reloc_property)
5153 {
5154 // Select bits from X.
5155 Address immed = reloc_property->select_x_value(x);
5156
5157 // Update view.
5158 const AArch64_reloc_property::Reloc_inst inst =
5159 reloc_property->reloc_inst();
5160 // If it is a data relocation or instruction has 2 parts of immediate
5161 // fields, you should not call pcrela_general.
5162 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5163 aarch64_howto[inst].doffset != -1);
5164 This::template update_view<valsize>(view, immed,
5165 aarch64_howto[inst].doffset,
5166 aarch64_howto[inst].dst_mask);
5167
5168 // Do check overflow or alignment if needed.
5169 return (reloc_property->checkup_x_value(x)
5170 ? This::STATUS_OKAY
5171 : This::STATUS_OVERFLOW);
5172 }
5173
5174 // Construct a B insn. Note, although we group it here with other relocation
5175 // operation, there is actually no 'relocation' involved here.
5176 static inline void
5177 construct_b(unsigned char* view, unsigned int branch_offset)
5178 {
5179 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5180 26, 0, 0xffffffff);
5181 }
5182
5183 // Do a simple rela relocation at unaligned addresses.
5184
5185 template<int valsize>
5186 static inline typename This::Status
5187 rela_ua(unsigned char* view,
5188 const Sized_relobj_file<size, big_endian>* object,
5189 const Symbol_value<size>* psymval,
5190 AArch64_valtype addend,
5191 const AArch64_reloc_property* reloc_property)
5192 {
5193 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5194 Valtype;
5195 typename elfcpp::Elf_types<size>::Elf_Addr x =
5196 psymval->value(object, addend);
5197 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5198 static_cast<Valtype>(x));
5199 return (reloc_property->checkup_x_value(x)
5200 ? This::STATUS_OKAY
5201 : This::STATUS_OVERFLOW);
5202 }
5203
5204 // Do a simple pc-relative relocation at unaligned addresses.
5205
5206 template<int valsize>
5207 static inline typename This::Status
5208 pcrela_ua(unsigned char* view,
5209 const Sized_relobj_file<size, big_endian>* object,
5210 const Symbol_value<size>* psymval,
5211 AArch64_valtype addend,
5212 Address address,
5213 const AArch64_reloc_property* reloc_property)
5214 {
5215 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5216 Valtype;
5217 Address x = psymval->value(object, addend) - address;
5218 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5219 static_cast<Valtype>(x));
5220 return (reloc_property->checkup_x_value(x)
5221 ? This::STATUS_OKAY
5222 : This::STATUS_OVERFLOW);
5223 }
5224
5225 // Do a simple rela relocation at aligned addresses.
5226
5227 template<int valsize>
5228 static inline typename This::Status
5229 rela(
5230 unsigned char* view,
5231 const Sized_relobj_file<size, big_endian>* object,
5232 const Symbol_value<size>* psymval,
5233 AArch64_valtype addend,
5234 const AArch64_reloc_property* reloc_property)
5235 {
5236 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5237 Valtype* wv = reinterpret_cast<Valtype*>(view);
5238 Address x = psymval->value(object, addend);
5239 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5240 return (reloc_property->checkup_x_value(x)
5241 ? This::STATUS_OKAY
5242 : This::STATUS_OVERFLOW);
5243 }
5244
5245 // Do relocate. Update selected bits in text.
5246 // new_val = (val & ~dst_mask) | (immed << doffset)
5247
5248 template<int valsize>
5249 static inline typename This::Status
5250 rela_general(unsigned char* view,
5251 const Sized_relobj_file<size, big_endian>* object,
5252 const Symbol_value<size>* psymval,
5253 AArch64_valtype addend,
5254 const AArch64_reloc_property* reloc_property)
5255 {
5256 // Calculate relocation.
5257 Address x = psymval->value(object, addend);
5258 return This::template reloc_common<valsize>(view, x, reloc_property);
5259 }
5260
5261 // Do relocate. Update selected bits in text.
5262 // new val = (val & ~dst_mask) | (immed << doffset)
5263
5264 template<int valsize>
5265 static inline typename This::Status
5266 rela_general(
5267 unsigned char* view,
5268 AArch64_valtype s,
5269 AArch64_valtype addend,
5270 const AArch64_reloc_property* reloc_property)
5271 {
5272 // Calculate relocation.
5273 Address x = s + addend;
5274 return This::template reloc_common<valsize>(view, x, reloc_property);
5275 }
5276
5277 // Do address relative relocate. Update selected bits in text.
5278 // new val = (val & ~dst_mask) | (immed << doffset)
5279
5280 template<int valsize>
5281 static inline typename This::Status
5282 pcrela_general(
5283 unsigned char* view,
5284 const Sized_relobj_file<size, big_endian>* object,
5285 const Symbol_value<size>* psymval,
5286 AArch64_valtype addend,
5287 Address address,
5288 const AArch64_reloc_property* reloc_property)
5289 {
5290 // Calculate relocation.
5291 Address x = psymval->value(object, addend) - address;
5292 return This::template reloc_common<valsize>(view, x, reloc_property);
5293 }
5294
5295
5296 // Calculate (S + A) - address, update adr instruction.
5297
5298 static inline typename This::Status
5299 adr(unsigned char* view,
5300 const Sized_relobj_file<size, big_endian>* object,
5301 const Symbol_value<size>* psymval,
5302 Address addend,
5303 Address address,
5304 const AArch64_reloc_property* /* reloc_property */)
5305 {
5306 AArch64_valtype x = psymval->value(object, addend) - address;
5307 // Pick bits [20:0] of X.
5308 AArch64_valtype immed = x & 0x1fffff;
5309 update_adr(view, immed);
5310 // Check -2^20 <= X < 2^20
5311 return (size == 64 && Bits<21>::has_overflow((x))
5312 ? This::STATUS_OVERFLOW
5313 : This::STATUS_OKAY);
5314 }
5315
5316 // Calculate PG(S+A) - PG(address), update adrp instruction.
5317 // R_AARCH64_ADR_PREL_PG_HI21
5318
5319 static inline typename This::Status
5320 adrp(
5321 unsigned char* view,
5322 Address sa,
5323 Address address)
5324 {
5325 AArch64_valtype x = This::Page(sa) - This::Page(address);
5326 // Pick [32:12] of X.
5327 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5328 update_adr(view, immed);
5329 // Check -2^32 <= X < 2^32
5330 return (size == 64 && Bits<33>::has_overflow((x))
5331 ? This::STATUS_OVERFLOW
5332 : This::STATUS_OKAY);
5333 }
5334
5335 // Calculate PG(S+A) - PG(address), update adrp instruction.
5336 // R_AARCH64_ADR_PREL_PG_HI21
5337
5338 static inline typename This::Status
5339 adrp(unsigned char* view,
5340 const Sized_relobj_file<size, big_endian>* object,
5341 const Symbol_value<size>* psymval,
5342 Address addend,
5343 Address address,
5344 const AArch64_reloc_property* reloc_property)
5345 {
5346 Address sa = psymval->value(object, addend);
5347 AArch64_valtype x = This::Page(sa) - This::Page(address);
5348 // Pick [32:12] of X.
5349 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5350 update_adr(view, immed);
5351 return (reloc_property->checkup_x_value(x)
5352 ? This::STATUS_OKAY
5353 : This::STATUS_OVERFLOW);
5354 }
5355
5356 // Update mov[n/z] instruction. Check overflow if needed.
5357 // If X >=0, set the instruction to movz and its immediate value to the
5358 // selected bits S.
5359 // If X < 0, set the instruction to movn and its immediate value to
5360 // NOT (selected bits of).
5361
5362 static inline typename This::Status
5363 movnz(unsigned char* view,
5364 AArch64_valtype x,
5365 const AArch64_reloc_property* reloc_property)
5366 {
5367 // Select bits from X.
5368 Address immed;
5369 bool is_movz;
5370 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5371 if (static_cast<SignedW>(x) >= 0)
5372 {
5373 immed = reloc_property->select_x_value(x);
5374 is_movz = true;
5375 }
5376 else
5377 {
5378 immed = reloc_property->select_x_value(~x);;
5379 is_movz = false;
5380 }
5381
5382 // Update movnz instruction.
5383 update_movnz(view, immed, is_movz);
5384
5385 // Do check overflow or alignment if needed.
5386 return (reloc_property->checkup_x_value(x)
5387 ? This::STATUS_OKAY
5388 : This::STATUS_OVERFLOW);
5389 }
5390
5391 static inline bool
5392 maybe_apply_stub(unsigned int,
5393 const The_relocate_info*,
5394 const The_rela&,
5395 unsigned char*,
5396 Address,
5397 const Sized_symbol<size>*,
5398 const Symbol_value<size>*,
5399 const Sized_relobj_file<size, big_endian>*,
5400 section_size_type);
5401
5402 }; // End of AArch64_relocate_functions
5403
5404
5405 // For a certain relocation type (usually jump/branch), test to see if the
5406 // destination needs a stub to fulfil. If so, re-route the destination of the
5407 // original instruction to the stub, note, at this time, the stub has already
5408 // been generated.
5409
5410 template<int size, bool big_endian>
5411 bool
5412 AArch64_relocate_functions<size, big_endian>::
5413 maybe_apply_stub(unsigned int r_type,
5414 const The_relocate_info* relinfo,
5415 const The_rela& rela,
5416 unsigned char* view,
5417 Address address,
5418 const Sized_symbol<size>* gsym,
5419 const Symbol_value<size>* psymval,
5420 const Sized_relobj_file<size, big_endian>* object,
5421 section_size_type current_group_size)
5422 {
5423 if (parameters->options().relocatable())
5424 return false;
5425
5426 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5427 Address branch_target = psymval->value(object, 0) + addend;
5428 int stub_type =
5429 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5430 if (stub_type == ST_NONE)
5431 return false;
5432
5433 const The_aarch64_relobj* aarch64_relobj =
5434 static_cast<const The_aarch64_relobj*>(object);
5435 const AArch64_reloc_property* arp =
5436 aarch64_reloc_property_table->get_reloc_property(r_type);
5437 gold_assert(arp != NULL);
5438
5439 // We don't create stubs for undefined symbols, but do for weak.
5440 if (gsym
5441 && !gsym->use_plt_offset(arp->reference_flags())
5442 && gsym->is_undefined())
5443 {
5444 gold_debug(DEBUG_TARGET,
5445 "stub: looking for a stub for undefined symbol %s in file %s",
5446 gsym->name(), aarch64_relobj->name().c_str());
5447 return false;
5448 }
5449
5450 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5451 gold_assert(stub_table != NULL);
5452
5453 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5454 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5455 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5456 gold_assert(stub != NULL);
5457
5458 Address new_branch_target = stub_table->address() + stub->offset();
5459 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5460 new_branch_target - address;
5461 typename This::Status status = This::template
5462 rela_general<32>(view, branch_offset, 0, arp);
5463 if (status != This::STATUS_OKAY)
5464 gold_error(_("Stub is too far away, try a smaller value "
5465 "for '--stub-group-size'. The current value is 0x%lx."),
5466 static_cast<unsigned long>(current_group_size));
5467 return true;
5468 }
5469
5470
5471 // Group input sections for stub generation.
5472 //
5473 // We group input sections in an output section so that the total size,
5474 // including any padding space due to alignment is smaller than GROUP_SIZE
5475 // unless the only input section in group is bigger than GROUP_SIZE already.
5476 // Then an ARM stub table is created to follow the last input section
5477 // in group. For each group an ARM stub table is created an is placed
5478 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5479 // extend the group after the stub table.
5480
5481 template<int size, bool big_endian>
5482 void
5483 Target_aarch64<size, big_endian>::group_sections(
5484 Layout* layout,
5485 section_size_type group_size,
5486 bool stubs_always_after_branch,
5487 const Task* task)
5488 {
5489 // Group input sections and insert stub table
5490 Layout::Section_list section_list;
5491 layout->get_executable_sections(&section_list);
5492 for (Layout::Section_list::const_iterator p = section_list.begin();
5493 p != section_list.end();
5494 ++p)
5495 {
5496 AArch64_output_section<size, big_endian>* output_section =
5497 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5498 output_section->group_sections(group_size, stubs_always_after_branch,
5499 this, task);
5500 }
5501 }
5502
5503
5504 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5505 // section of RELOBJ.
5506
5507 template<int size, bool big_endian>
5508 AArch64_input_section<size, big_endian>*
5509 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5510 Relobj* relobj, unsigned int shndx) const
5511 {
5512 Section_id sid(relobj, shndx);
5513 typename AArch64_input_section_map::const_iterator p =
5514 this->aarch64_input_section_map_.find(sid);
5515 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5516 }
5517
5518
5519 // Make a new AArch64_input_section object.
5520
5521 template<int size, bool big_endian>
5522 AArch64_input_section<size, big_endian>*
5523 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5524 Relobj* relobj, unsigned int shndx)
5525 {
5526 Section_id sid(relobj, shndx);
5527
5528 AArch64_input_section<size, big_endian>* input_section =
5529 new AArch64_input_section<size, big_endian>(relobj, shndx);
5530 input_section->init();
5531
5532 // Register new AArch64_input_section in map for look-up.
5533 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5534 this->aarch64_input_section_map_.insert(
5535 std::make_pair(sid, input_section));
5536
5537 // Make sure that it we have not created another AArch64_input_section
5538 // for this input section already.
5539 gold_assert(ins.second);
5540
5541 return input_section;
5542 }
5543
5544
5545 // Relaxation hook. This is where we do stub generation.
5546
5547 template<int size, bool big_endian>
5548 bool
5549 Target_aarch64<size, big_endian>::do_relax(
5550 int pass,
5551 const Input_objects* input_objects,
5552 Symbol_table* symtab,
5553 Layout* layout ,
5554 const Task* task)
5555 {
5556 gold_assert(!parameters->options().relocatable());
5557 if (pass == 1)
5558 {
5559 // We don't handle negative stub_group_size right now.
5560 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5561 if (this->stub_group_size_ == 1)
5562 {
5563 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5564 // will fail to link. The user will have to relink with an explicit
5565 // group size option.
5566 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5567 4096 * 4;
5568 }
5569 group_sections(layout, this->stub_group_size_, true, task);
5570 }
5571 else
5572 {
5573 // If this is not the first pass, addresses and file offsets have
5574 // been reset at this point, set them here.
5575 for (Stub_table_iterator sp = this->stub_tables_.begin();
5576 sp != this->stub_tables_.end(); ++sp)
5577 {
5578 The_stub_table* stt = *sp;
5579 The_aarch64_input_section* owner = stt->owner();
5580 off_t off = align_address(owner->original_size(),
5581 stt->addralign());
5582 stt->set_address_and_file_offset(owner->address() + off,
5583 owner->offset() + off);
5584 }
5585 }
5586
5587 // Scan relocs for relocation stubs
5588 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5589 op != input_objects->relobj_end();
5590 ++op)
5591 {
5592 The_aarch64_relobj* aarch64_relobj =
5593 static_cast<The_aarch64_relobj*>(*op);
5594 // Lock the object so we can read from it. This is only called
5595 // single-threaded from Layout::finalize, so it is OK to lock.
5596 Task_lock_obj<Object> tl(task, aarch64_relobj);
5597 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5598 }
5599
5600 bool any_stub_table_changed = false;
5601 for (Stub_table_iterator siter = this->stub_tables_.begin();
5602 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5603 {
5604 The_stub_table* stub_table = *siter;
5605 if (stub_table->update_data_size_changed_p())
5606 {
5607 The_aarch64_input_section* owner = stub_table->owner();
5608 uint64_t address = owner->address();
5609 off_t offset = owner->offset();
5610 owner->reset_address_and_file_offset();
5611 owner->set_address_and_file_offset(address, offset);
5612
5613 any_stub_table_changed = true;
5614 }
5615 }
5616
5617 // Do not continue relaxation.
5618 bool continue_relaxation = any_stub_table_changed;
5619 if (!continue_relaxation)
5620 for (Stub_table_iterator sp = this->stub_tables_.begin();
5621 (sp != this->stub_tables_.end());
5622 ++sp)
5623 (*sp)->finalize_stubs();
5624
5625 return continue_relaxation;
5626 }
5627
5628
5629 // Make a new Stub_table.
5630
5631 template<int size, bool big_endian>
5632 Stub_table<size, big_endian>*
5633 Target_aarch64<size, big_endian>::new_stub_table(
5634 AArch64_input_section<size, big_endian>* owner)
5635 {
5636 Stub_table<size, big_endian>* stub_table =
5637 new Stub_table<size, big_endian>(owner);
5638 stub_table->set_address(align_address(
5639 owner->address() + owner->data_size(), 8));
5640 stub_table->set_file_offset(owner->offset() + owner->data_size());
5641 stub_table->finalize_data_size();
5642
5643 this->stub_tables_.push_back(stub_table);
5644
5645 return stub_table;
5646 }
5647
5648
5649 template<int size, bool big_endian>
5650 uint64_t
5651 Target_aarch64<size, big_endian>::do_reloc_addend(
5652 void* arg, unsigned int r_type, uint64_t) const
5653 {
5654 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5655 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5656 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5657 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5658 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5659 gold_assert(psymval->is_tls_symbol());
5660 // The value of a TLS symbol is the offset in the TLS segment.
5661 return psymval->value(ti.object, 0);
5662 }
5663
5664 // Return the number of entries in the PLT.
5665
5666 template<int size, bool big_endian>
5667 unsigned int
5668 Target_aarch64<size, big_endian>::plt_entry_count() const
5669 {
5670 if (this->plt_ == NULL)
5671 return 0;
5672 return this->plt_->entry_count();
5673 }
5674
5675 // Return the offset of the first non-reserved PLT entry.
5676
5677 template<int size, bool big_endian>
5678 unsigned int
5679 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5680 {
5681 return this->plt_->first_plt_entry_offset();
5682 }
5683
5684 // Return the size of each PLT entry.
5685
5686 template<int size, bool big_endian>
5687 unsigned int
5688 Target_aarch64<size, big_endian>::plt_entry_size() const
5689 {
5690 return this->plt_->get_plt_entry_size();
5691 }
5692
5693 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5694
5695 template<int size, bool big_endian>
5696 void
5697 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5698 Symbol_table* symtab, Layout* layout)
5699 {
5700 if (this->tls_base_symbol_defined_)
5701 return;
5702
5703 Output_segment* tls_segment = layout->tls_segment();
5704 if (tls_segment != NULL)
5705 {
5706 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5707 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5708 Symbol_table::PREDEFINED,
5709 tls_segment, 0, 0,
5710 elfcpp::STT_TLS,
5711 elfcpp::STB_LOCAL,
5712 elfcpp::STV_HIDDEN, 0,
5713 Symbol::SEGMENT_START,
5714 true);
5715 }
5716 this->tls_base_symbol_defined_ = true;
5717 }
5718
5719 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5720
5721 template<int size, bool big_endian>
5722 void
5723 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5724 Symbol_table* symtab, Layout* layout)
5725 {
5726 if (this->plt_ == NULL)
5727 this->make_plt_section(symtab, layout);
5728
5729 if (!this->plt_->has_tlsdesc_entry())
5730 {
5731 // Allocate the TLSDESC_GOT entry.
5732 Output_data_got_aarch64<size, big_endian>* got =
5733 this->got_section(symtab, layout);
5734 unsigned int got_offset = got->add_constant(0);
5735
5736 // Allocate the TLSDESC_PLT entry.
5737 this->plt_->reserve_tlsdesc_entry(got_offset);
5738 }
5739 }
5740
5741 // Create a GOT entry for the TLS module index.
5742
5743 template<int size, bool big_endian>
5744 unsigned int
5745 Target_aarch64<size, big_endian>::got_mod_index_entry(
5746 Symbol_table* symtab, Layout* layout,
5747 Sized_relobj_file<size, big_endian>* object)
5748 {
5749 if (this->got_mod_index_offset_ == -1U)
5750 {
5751 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5752 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5753 Output_data_got_aarch64<size, big_endian>* got =
5754 this->got_section(symtab, layout);
5755 unsigned int got_offset = got->add_constant(0);
5756 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5757 got_offset, 0);
5758 got->add_constant(0);
5759 this->got_mod_index_offset_ = got_offset;
5760 }
5761 return this->got_mod_index_offset_;
5762 }
5763
5764 // Optimize the TLS relocation type based on what we know about the
5765 // symbol. IS_FINAL is true if the final address of this symbol is
5766 // known at link time.
5767
5768 template<int size, bool big_endian>
5769 tls::Tls_optimization
5770 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5771 int r_type)
5772 {
5773 // If we are generating a shared library, then we can't do anything
5774 // in the linker
5775 if (parameters->options().shared())
5776 return tls::TLSOPT_NONE;
5777
5778 switch (r_type)
5779 {
5780 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5781 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5782 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5783 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5784 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5785 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5786 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5787 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5788 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5789 case elfcpp::R_AARCH64_TLSDESC_LDR:
5790 case elfcpp::R_AARCH64_TLSDESC_ADD:
5791 case elfcpp::R_AARCH64_TLSDESC_CALL:
5792 // These are General-Dynamic which permits fully general TLS
5793 // access. Since we know that we are generating an executable,
5794 // we can convert this to Initial-Exec. If we also know that
5795 // this is a local symbol, we can further switch to Local-Exec.
5796 if (is_final)
5797 return tls::TLSOPT_TO_LE;
5798 return tls::TLSOPT_TO_IE;
5799
5800 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5801 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5802 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5803 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5804 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5805 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5806 // These are Local-Dynamic, which refer to local symbols in the
5807 // dynamic TLS block. Since we know that we generating an
5808 // executable, we can switch to Local-Exec.
5809 return tls::TLSOPT_TO_LE;
5810
5811 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5812 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5813 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5814 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5815 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5816 // These are Initial-Exec relocs which get the thread offset
5817 // from the GOT. If we know that we are linking against the
5818 // local symbol, we can switch to Local-Exec, which links the
5819 // thread offset into the instruction.
5820 if (is_final)
5821 return tls::TLSOPT_TO_LE;
5822 return tls::TLSOPT_NONE;
5823
5824 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5825 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5826 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5827 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5828 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5829 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5830 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5831 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5832 // When we already have Local-Exec, there is nothing further we
5833 // can do.
5834 return tls::TLSOPT_NONE;
5835
5836 default:
5837 gold_unreachable();
5838 }
5839 }
5840
5841 // Returns true if this relocation type could be that of a function pointer.
5842
5843 template<int size, bool big_endian>
5844 inline bool
5845 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5846 unsigned int r_type)
5847 {
5848 switch (r_type)
5849 {
5850 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5851 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5852 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5853 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5854 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5855 {
5856 return true;
5857 }
5858 }
5859 return false;
5860 }
5861
5862 // For safe ICF, scan a relocation for a local symbol to check if it
5863 // corresponds to a function pointer being taken. In that case mark
5864 // the function whose pointer was taken as not foldable.
5865
5866 template<int size, bool big_endian>
5867 inline bool
5868 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5869 Symbol_table* ,
5870 Layout* ,
5871 Target_aarch64<size, big_endian>* ,
5872 Sized_relobj_file<size, big_endian>* ,
5873 unsigned int ,
5874 Output_section* ,
5875 const elfcpp::Rela<size, big_endian>& ,
5876 unsigned int r_type,
5877 const elfcpp::Sym<size, big_endian>&)
5878 {
5879 // When building a shared library, do not fold any local symbols.
5880 return (parameters->options().shared()
5881 || possible_function_pointer_reloc(r_type));
5882 }
5883
5884 // For safe ICF, scan a relocation for a global symbol to check if it
5885 // corresponds to a function pointer being taken. In that case mark
5886 // the function whose pointer was taken as not foldable.
5887
5888 template<int size, bool big_endian>
5889 inline bool
5890 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5891 Symbol_table* ,
5892 Layout* ,
5893 Target_aarch64<size, big_endian>* ,
5894 Sized_relobj_file<size, big_endian>* ,
5895 unsigned int ,
5896 Output_section* ,
5897 const elfcpp::Rela<size, big_endian>& ,
5898 unsigned int r_type,
5899 Symbol* gsym)
5900 {
5901 // When building a shared library, do not fold symbols whose visibility
5902 // is hidden, internal or protected.
5903 return ((parameters->options().shared()
5904 && (gsym->visibility() == elfcpp::STV_INTERNAL
5905 || gsym->visibility() == elfcpp::STV_PROTECTED
5906 || gsym->visibility() == elfcpp::STV_HIDDEN))
5907 || possible_function_pointer_reloc(r_type));
5908 }
5909
5910 // Report an unsupported relocation against a local symbol.
5911
5912 template<int size, bool big_endian>
5913 void
5914 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5915 Sized_relobj_file<size, big_endian>* object,
5916 unsigned int r_type)
5917 {
5918 gold_error(_("%s: unsupported reloc %u against local symbol"),
5919 object->name().c_str(), r_type);
5920 }
5921
5922 // We are about to emit a dynamic relocation of type R_TYPE. If the
5923 // dynamic linker does not support it, issue an error.
5924
5925 template<int size, bool big_endian>
5926 void
5927 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5928 unsigned int r_type)
5929 {
5930 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5931
5932 switch (r_type)
5933 {
5934 // These are the relocation types supported by glibc for AARCH64.
5935 case elfcpp::R_AARCH64_NONE:
5936 case elfcpp::R_AARCH64_COPY:
5937 case elfcpp::R_AARCH64_GLOB_DAT:
5938 case elfcpp::R_AARCH64_JUMP_SLOT:
5939 case elfcpp::R_AARCH64_RELATIVE:
5940 case elfcpp::R_AARCH64_TLS_DTPREL64:
5941 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5942 case elfcpp::R_AARCH64_TLS_TPREL64:
5943 case elfcpp::R_AARCH64_TLSDESC:
5944 case elfcpp::R_AARCH64_IRELATIVE:
5945 case elfcpp::R_AARCH64_ABS32:
5946 case elfcpp::R_AARCH64_ABS64:
5947 return;
5948
5949 default:
5950 break;
5951 }
5952
5953 // This prevents us from issuing more than one error per reloc
5954 // section. But we can still wind up issuing more than one
5955 // error per object file.
5956 if (this->issued_non_pic_error_)
5957 return;
5958 gold_assert(parameters->options().output_is_position_independent());
5959 object->error(_("requires unsupported dynamic reloc; "
5960 "recompile with -fPIC"));
5961 this->issued_non_pic_error_ = true;
5962 return;
5963 }
5964
5965 // Return whether we need to make a PLT entry for a relocation of the
5966 // given type against a STT_GNU_IFUNC symbol.
5967
5968 template<int size, bool big_endian>
5969 bool
5970 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5971 Sized_relobj_file<size, big_endian>* object,
5972 unsigned int r_type)
5973 {
5974 const AArch64_reloc_property* arp =
5975 aarch64_reloc_property_table->get_reloc_property(r_type);
5976 gold_assert(arp != NULL);
5977
5978 int flags = arp->reference_flags();
5979 if (flags & Symbol::TLS_REF)
5980 {
5981 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5982 object->name().c_str(), arp->name().c_str());
5983 return false;
5984 }
5985 return flags != 0;
5986 }
5987
5988 // Scan a relocation for a local symbol.
5989
5990 template<int size, bool big_endian>
5991 inline void
5992 Target_aarch64<size, big_endian>::Scan::local(
5993 Symbol_table* symtab,
5994 Layout* layout,
5995 Target_aarch64<size, big_endian>* target,
5996 Sized_relobj_file<size, big_endian>* object,
5997 unsigned int data_shndx,
5998 Output_section* output_section,
5999 const elfcpp::Rela<size, big_endian>& rela,
6000 unsigned int r_type,
6001 const elfcpp::Sym<size, big_endian>& lsym,
6002 bool is_discarded)
6003 {
6004 if (is_discarded)
6005 return;
6006
6007 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6008 Reloc_section;
6009 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6010
6011 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6012 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6013 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6014 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6015
6016 switch (r_type)
6017 {
6018 case elfcpp::R_AARCH64_NONE:
6019 break;
6020
6021 case elfcpp::R_AARCH64_ABS32:
6022 case elfcpp::R_AARCH64_ABS16:
6023 if (parameters->options().output_is_position_independent())
6024 {
6025 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6026 object->name().c_str(), r_type);
6027 }
6028 break;
6029
6030 case elfcpp::R_AARCH64_ABS64:
6031 // If building a shared library or pie, we need to mark this as a dynmic
6032 // reloction, so that the dynamic loader can relocate it.
6033 if (parameters->options().output_is_position_independent())
6034 {
6035 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6036 rela_dyn->add_local_relative(object, r_sym,
6037 elfcpp::R_AARCH64_RELATIVE,
6038 output_section,
6039 data_shndx,
6040 rela.get_r_offset(),
6041 rela.get_r_addend(),
6042 is_ifunc);
6043 }
6044 break;
6045
6046 case elfcpp::R_AARCH64_PREL64:
6047 case elfcpp::R_AARCH64_PREL32:
6048 case elfcpp::R_AARCH64_PREL16:
6049 break;
6050
6051 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6052 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6053 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6054 // The above relocations are used to access GOT entries.
6055 {
6056 Output_data_got_aarch64<size, big_endian>* got =
6057 target->got_section(symtab, layout);
6058 bool is_new = false;
6059 // This symbol requires a GOT entry.
6060 if (is_ifunc)
6061 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6062 else
6063 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6064 if (is_new && parameters->options().output_is_position_independent())
6065 target->rela_dyn_section(layout)->
6066 add_local_relative(object,
6067 r_sym,
6068 elfcpp::R_AARCH64_RELATIVE,
6069 got,
6070 object->local_got_offset(r_sym,
6071 GOT_TYPE_STANDARD),
6072 0,
6073 false);
6074 }
6075 break;
6076
6077 case elfcpp::R_AARCH64_MOVW_UABS_G0: // 263
6078 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC: // 264
6079 case elfcpp::R_AARCH64_MOVW_UABS_G1: // 265
6080 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC: // 266
6081 case elfcpp::R_AARCH64_MOVW_UABS_G2: // 267
6082 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC: // 268
6083 case elfcpp::R_AARCH64_MOVW_UABS_G3: // 269
6084 case elfcpp::R_AARCH64_MOVW_SABS_G0: // 270
6085 case elfcpp::R_AARCH64_MOVW_SABS_G1: // 271
6086 case elfcpp::R_AARCH64_MOVW_SABS_G2: // 272
6087 if (parameters->options().output_is_position_independent())
6088 {
6089 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6090 object->name().c_str(), r_type);
6091 }
6092 break;
6093
6094 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6095 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6096 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6097 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6098 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6099 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6100 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6101 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6102 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6103 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6104 break;
6105
6106 // Control flow, pc-relative. We don't need to do anything for a relative
6107 // addressing relocation against a local symbol if it does not reference
6108 // the GOT.
6109 case elfcpp::R_AARCH64_TSTBR14:
6110 case elfcpp::R_AARCH64_CONDBR19:
6111 case elfcpp::R_AARCH64_JUMP26:
6112 case elfcpp::R_AARCH64_CALL26:
6113 break;
6114
6115 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6116 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6117 {
6118 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6119 optimize_tls_reloc(!parameters->options().shared(), r_type);
6120 if (tlsopt == tls::TLSOPT_TO_LE)
6121 break;
6122
6123 layout->set_has_static_tls();
6124 // Create a GOT entry for the tp-relative offset.
6125 if (!parameters->doing_static_link())
6126 {
6127 Output_data_got_aarch64<size, big_endian>* got =
6128 target->got_section(symtab, layout);
6129 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6130 target->rela_dyn_section(layout),
6131 elfcpp::R_AARCH64_TLS_TPREL64);
6132 }
6133 else if (!object->local_has_got_offset(r_sym,
6134 GOT_TYPE_TLS_OFFSET))
6135 {
6136 Output_data_got_aarch64<size, big_endian>* got =
6137 target->got_section(symtab, layout);
6138 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6139 unsigned int got_offset =
6140 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6141 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6142 gold_assert(addend == 0);
6143 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6144 object, r_sym);
6145 }
6146 }
6147 break;
6148
6149 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6150 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6151 {
6152 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6153 optimize_tls_reloc(!parameters->options().shared(), r_type);
6154 if (tlsopt == tls::TLSOPT_TO_LE)
6155 {
6156 layout->set_has_static_tls();
6157 break;
6158 }
6159 gold_assert(tlsopt == tls::TLSOPT_NONE);
6160
6161 Output_data_got_aarch64<size, big_endian>* got =
6162 target->got_section(symtab, layout);
6163 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6164 GOT_TYPE_TLS_PAIR,
6165 target->rela_dyn_section(layout),
6166 elfcpp::R_AARCH64_TLS_DTPMOD64);
6167 }
6168 break;
6169
6170 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6171 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6172 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6173 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6174 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6175 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6176 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6177 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6178 {
6179 layout->set_has_static_tls();
6180 bool output_is_shared = parameters->options().shared();
6181 if (output_is_shared)
6182 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6183 object->name().c_str(), r_type);
6184 }
6185 break;
6186
6187 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6188 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6189 {
6190 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6191 optimize_tls_reloc(!parameters->options().shared(), r_type);
6192 if (tlsopt == tls::TLSOPT_NONE)
6193 {
6194 // Create a GOT entry for the module index.
6195 target->got_mod_index_entry(symtab, layout, object);
6196 }
6197 else if (tlsopt != tls::TLSOPT_TO_LE)
6198 unsupported_reloc_local(object, r_type);
6199 }
6200 break;
6201
6202 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6203 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6204 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6205 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6206 break;
6207
6208 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6209 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6210 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6211 {
6212 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6213 optimize_tls_reloc(!parameters->options().shared(), r_type);
6214 target->define_tls_base_symbol(symtab, layout);
6215 if (tlsopt == tls::TLSOPT_NONE)
6216 {
6217 // Create reserved PLT and GOT entries for the resolver.
6218 target->reserve_tlsdesc_entries(symtab, layout);
6219
6220 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6221 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6222 // entry needs to be in an area in .got.plt, not .got. Call
6223 // got_section to make sure the section has been created.
6224 target->got_section(symtab, layout);
6225 Output_data_got<size, big_endian>* got =
6226 target->got_tlsdesc_section();
6227 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6228 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6229 {
6230 unsigned int got_offset = got->add_constant(0);
6231 got->add_constant(0);
6232 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6233 got_offset);
6234 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6235 // We store the arguments we need in a vector, and use
6236 // the index into the vector as the parameter to pass
6237 // to the target specific routines.
6238 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6239 void* arg = reinterpret_cast<void*>(intarg);
6240 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6241 got, got_offset, 0);
6242 }
6243 }
6244 else if (tlsopt != tls::TLSOPT_TO_LE)
6245 unsupported_reloc_local(object, r_type);
6246 }
6247 break;
6248
6249 case elfcpp::R_AARCH64_TLSDESC_CALL:
6250 break;
6251
6252 default:
6253 unsupported_reloc_local(object, r_type);
6254 }
6255 }
6256
6257
6258 // Report an unsupported relocation against a global symbol.
6259
6260 template<int size, bool big_endian>
6261 void
6262 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6263 Sized_relobj_file<size, big_endian>* object,
6264 unsigned int r_type,
6265 Symbol* gsym)
6266 {
6267 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6268 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6269 }
6270
6271 template<int size, bool big_endian>
6272 inline void
6273 Target_aarch64<size, big_endian>::Scan::global(
6274 Symbol_table* symtab,
6275 Layout* layout,
6276 Target_aarch64<size, big_endian>* target,
6277 Sized_relobj_file<size, big_endian> * object,
6278 unsigned int data_shndx,
6279 Output_section* output_section,
6280 const elfcpp::Rela<size, big_endian>& rela,
6281 unsigned int r_type,
6282 Symbol* gsym)
6283 {
6284 // A STT_GNU_IFUNC symbol may require a PLT entry.
6285 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6286 && this->reloc_needs_plt_for_ifunc(object, r_type))
6287 target->make_plt_entry(symtab, layout, gsym);
6288
6289 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6290 Reloc_section;
6291 const AArch64_reloc_property* arp =
6292 aarch64_reloc_property_table->get_reloc_property(r_type);
6293 gold_assert(arp != NULL);
6294
6295 switch (r_type)
6296 {
6297 case elfcpp::R_AARCH64_NONE:
6298 break;
6299
6300 case elfcpp::R_AARCH64_ABS16:
6301 case elfcpp::R_AARCH64_ABS32:
6302 case elfcpp::R_AARCH64_ABS64:
6303 {
6304 // Make a PLT entry if necessary.
6305 if (gsym->needs_plt_entry())
6306 {
6307 target->make_plt_entry(symtab, layout, gsym);
6308 // Since this is not a PC-relative relocation, we may be
6309 // taking the address of a function. In that case we need to
6310 // set the entry in the dynamic symbol table to the address of
6311 // the PLT entry.
6312 if (gsym->is_from_dynobj() && !parameters->options().shared())
6313 gsym->set_needs_dynsym_value();
6314 }
6315 // Make a dynamic relocation if necessary.
6316 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6317 {
6318 if (!parameters->options().output_is_position_independent()
6319 && gsym->may_need_copy_reloc())
6320 {
6321 target->copy_reloc(symtab, layout, object,
6322 data_shndx, output_section, gsym, rela);
6323 }
6324 else if (r_type == elfcpp::R_AARCH64_ABS64
6325 && gsym->type() == elfcpp::STT_GNU_IFUNC
6326 && gsym->can_use_relative_reloc(false)
6327 && !gsym->is_from_dynobj()
6328 && !gsym->is_undefined()
6329 && !gsym->is_preemptible())
6330 {
6331 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6332 // symbol. This makes a function address in a PIE executable
6333 // match the address in a shared library that it links against.
6334 Reloc_section* rela_dyn =
6335 target->rela_irelative_section(layout);
6336 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6337 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6338 output_section, object,
6339 data_shndx,
6340 rela.get_r_offset(),
6341 rela.get_r_addend());
6342 }
6343 else if (r_type == elfcpp::R_AARCH64_ABS64
6344 && gsym->can_use_relative_reloc(false))
6345 {
6346 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6347 rela_dyn->add_global_relative(gsym,
6348 elfcpp::R_AARCH64_RELATIVE,
6349 output_section,
6350 object,
6351 data_shndx,
6352 rela.get_r_offset(),
6353 rela.get_r_addend(),
6354 false);
6355 }
6356 else
6357 {
6358 check_non_pic(object, r_type);
6359 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6360 rela_dyn = target->rela_dyn_section(layout);
6361 rela_dyn->add_global(
6362 gsym, r_type, output_section, object,
6363 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6364 }
6365 }
6366 }
6367 break;
6368
6369 case elfcpp::R_AARCH64_PREL16:
6370 case elfcpp::R_AARCH64_PREL32:
6371 case elfcpp::R_AARCH64_PREL64:
6372 // This is used to fill the GOT absolute address.
6373 if (gsym->needs_plt_entry())
6374 {
6375 target->make_plt_entry(symtab, layout, gsym);
6376 }
6377 break;
6378
6379 case elfcpp::R_AARCH64_MOVW_UABS_G0: // 263
6380 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC: // 264
6381 case elfcpp::R_AARCH64_MOVW_UABS_G1: // 265
6382 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC: // 266
6383 case elfcpp::R_AARCH64_MOVW_UABS_G2: // 267
6384 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC: // 268
6385 case elfcpp::R_AARCH64_MOVW_UABS_G3: // 269
6386 case elfcpp::R_AARCH64_MOVW_SABS_G0: // 270
6387 case elfcpp::R_AARCH64_MOVW_SABS_G1: // 271
6388 case elfcpp::R_AARCH64_MOVW_SABS_G2: // 272
6389 if (parameters->options().output_is_position_independent())
6390 {
6391 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6392 object->name().c_str(), r_type);
6393 }
6394 break;
6395
6396 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6397 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6398 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6399 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6400 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6401 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6402 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6403 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6404 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6405 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6406 {
6407 if (gsym->needs_plt_entry())
6408 target->make_plt_entry(symtab, layout, gsym);
6409 // Make a dynamic relocation if necessary.
6410 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6411 {
6412 if (parameters->options().output_is_executable()
6413 && gsym->may_need_copy_reloc())
6414 {
6415 target->copy_reloc(symtab, layout, object,
6416 data_shndx, output_section, gsym, rela);
6417 }
6418 }
6419 break;
6420 }
6421
6422 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6423 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6424 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6425 {
6426 // The above relocations are used to access GOT entries.
6427 // Note a GOT entry is an *address* to a symbol.
6428 // The symbol requires a GOT entry
6429 Output_data_got_aarch64<size, big_endian>* got =
6430 target->got_section(symtab, layout);
6431 if (gsym->final_value_is_known())
6432 {
6433 // For a STT_GNU_IFUNC symbol we want the PLT address.
6434 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6435 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6436 else
6437 got->add_global(gsym, GOT_TYPE_STANDARD);
6438 }
6439 else
6440 {
6441 // If this symbol is not fully resolved, we need to add a dynamic
6442 // relocation for it.
6443 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6444
6445 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6446 //
6447 // 1) The symbol may be defined in some other module.
6448 // 2) We are building a shared library and this is a protected
6449 // symbol; using GLOB_DAT means that the dynamic linker can use
6450 // the address of the PLT in the main executable when appropriate
6451 // so that function address comparisons work.
6452 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6453 // again so that function address comparisons work.
6454 if (gsym->is_from_dynobj()
6455 || gsym->is_undefined()
6456 || gsym->is_preemptible()
6457 || (gsym->visibility() == elfcpp::STV_PROTECTED
6458 && parameters->options().shared())
6459 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6460 && parameters->options().output_is_position_independent()))
6461 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6462 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6463 else
6464 {
6465 // For a STT_GNU_IFUNC symbol we want to write the PLT
6466 // offset into the GOT, so that function pointer
6467 // comparisons work correctly.
6468 bool is_new;
6469 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6470 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6471 else
6472 {
6473 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6474 // Tell the dynamic linker to use the PLT address
6475 // when resolving relocations.
6476 if (gsym->is_from_dynobj()
6477 && !parameters->options().shared())
6478 gsym->set_needs_dynsym_value();
6479 }
6480 if (is_new)
6481 {
6482 rela_dyn->add_global_relative(
6483 gsym, elfcpp::R_AARCH64_RELATIVE,
6484 got,
6485 gsym->got_offset(GOT_TYPE_STANDARD),
6486 0,
6487 false);
6488 }
6489 }
6490 }
6491 break;
6492 }
6493
6494 case elfcpp::R_AARCH64_TSTBR14:
6495 case elfcpp::R_AARCH64_CONDBR19:
6496 case elfcpp::R_AARCH64_JUMP26:
6497 case elfcpp::R_AARCH64_CALL26:
6498 {
6499 if (gsym->final_value_is_known())
6500 break;
6501
6502 if (gsym->is_defined() &&
6503 !gsym->is_from_dynobj() &&
6504 !gsym->is_preemptible())
6505 break;
6506
6507 // Make plt entry for function call.
6508 target->make_plt_entry(symtab, layout, gsym);
6509 break;
6510 }
6511
6512 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6513 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6514 {
6515 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6516 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6517 if (tlsopt == tls::TLSOPT_TO_LE)
6518 {
6519 layout->set_has_static_tls();
6520 break;
6521 }
6522 gold_assert(tlsopt == tls::TLSOPT_NONE);
6523
6524 // General dynamic.
6525 Output_data_got_aarch64<size, big_endian>* got =
6526 target->got_section(symtab, layout);
6527 // Create 2 consecutive entries for module index and offset.
6528 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6529 target->rela_dyn_section(layout),
6530 elfcpp::R_AARCH64_TLS_DTPMOD64,
6531 elfcpp::R_AARCH64_TLS_DTPREL64);
6532 }
6533 break;
6534
6535 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6536 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6537 {
6538 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6539 optimize_tls_reloc(!parameters->options().shared(), r_type);
6540 if (tlsopt == tls::TLSOPT_NONE)
6541 {
6542 // Create a GOT entry for the module index.
6543 target->got_mod_index_entry(symtab, layout, object);
6544 }
6545 else if (tlsopt != tls::TLSOPT_TO_LE)
6546 unsupported_reloc_local(object, r_type);
6547 }
6548 break;
6549
6550 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6551 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6552 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6553 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6554 break;
6555
6556 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6557 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6558 {
6559 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6560 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6561 if (tlsopt == tls::TLSOPT_TO_LE)
6562 break;
6563
6564 layout->set_has_static_tls();
6565 // Create a GOT entry for the tp-relative offset.
6566 Output_data_got_aarch64<size, big_endian>* got
6567 = target->got_section(symtab, layout);
6568 if (!parameters->doing_static_link())
6569 {
6570 got->add_global_with_rel(
6571 gsym, GOT_TYPE_TLS_OFFSET,
6572 target->rela_dyn_section(layout),
6573 elfcpp::R_AARCH64_TLS_TPREL64);
6574 }
6575 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6576 {
6577 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6578 unsigned int got_offset =
6579 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6580 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6581 gold_assert(addend == 0);
6582 got->add_static_reloc(got_offset,
6583 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6584 }
6585 }
6586 break;
6587
6588 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6589 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6590 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6591 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6592 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6593 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6594 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6595 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
6596 layout->set_has_static_tls();
6597 if (parameters->options().shared())
6598 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6599 object->name().c_str(), r_type);
6600 break;
6601
6602 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6603 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6604 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6605 {
6606 target->define_tls_base_symbol(symtab, layout);
6607 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6608 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6609 if (tlsopt == tls::TLSOPT_NONE)
6610 {
6611 // Create reserved PLT and GOT entries for the resolver.
6612 target->reserve_tlsdesc_entries(symtab, layout);
6613
6614 // Create a double GOT entry with an R_AARCH64_TLSDESC
6615 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6616 // entry needs to be in an area in .got.plt, not .got. Call
6617 // got_section to make sure the section has been created.
6618 target->got_section(symtab, layout);
6619 Output_data_got<size, big_endian>* got =
6620 target->got_tlsdesc_section();
6621 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6622 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6623 elfcpp::R_AARCH64_TLSDESC, 0);
6624 }
6625 else if (tlsopt == tls::TLSOPT_TO_IE)
6626 {
6627 // Create a GOT entry for the tp-relative offset.
6628 Output_data_got<size, big_endian>* got
6629 = target->got_section(symtab, layout);
6630 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6631 target->rela_dyn_section(layout),
6632 elfcpp::R_AARCH64_TLS_TPREL64);
6633 }
6634 else if (tlsopt != tls::TLSOPT_TO_LE)
6635 unsupported_reloc_global(object, r_type, gsym);
6636 }
6637 break;
6638
6639 case elfcpp::R_AARCH64_TLSDESC_CALL:
6640 break;
6641
6642 default:
6643 gold_error(_("%s: unsupported reloc type in global scan"),
6644 aarch64_reloc_property_table->
6645 reloc_name_in_error_message(r_type).c_str());
6646 }
6647 return;
6648 } // End of Scan::global
6649
6650
6651 // Create the PLT section.
6652 template<int size, bool big_endian>
6653 void
6654 Target_aarch64<size, big_endian>::make_plt_section(
6655 Symbol_table* symtab, Layout* layout)
6656 {
6657 if (this->plt_ == NULL)
6658 {
6659 // Create the GOT section first.
6660 this->got_section(symtab, layout);
6661
6662 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6663 this->got_irelative_);
6664
6665 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6666 (elfcpp::SHF_ALLOC
6667 | elfcpp::SHF_EXECINSTR),
6668 this->plt_, ORDER_PLT, false);
6669
6670 // Make the sh_info field of .rela.plt point to .plt.
6671 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6672 rela_plt_os->set_info_section(this->plt_->output_section());
6673 }
6674 }
6675
6676 // Return the section for TLSDESC relocations.
6677
6678 template<int size, bool big_endian>
6679 typename Target_aarch64<size, big_endian>::Reloc_section*
6680 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6681 {
6682 return this->plt_section()->rela_tlsdesc(layout);
6683 }
6684
6685 // Create a PLT entry for a global symbol.
6686
6687 template<int size, bool big_endian>
6688 void
6689 Target_aarch64<size, big_endian>::make_plt_entry(
6690 Symbol_table* symtab,
6691 Layout* layout,
6692 Symbol* gsym)
6693 {
6694 if (gsym->has_plt_offset())
6695 return;
6696
6697 if (this->plt_ == NULL)
6698 this->make_plt_section(symtab, layout);
6699
6700 this->plt_->add_entry(symtab, layout, gsym);
6701 }
6702
6703 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6704
6705 template<int size, bool big_endian>
6706 void
6707 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6708 Symbol_table* symtab, Layout* layout,
6709 Sized_relobj_file<size, big_endian>* relobj,
6710 unsigned int local_sym_index)
6711 {
6712 if (relobj->local_has_plt_offset(local_sym_index))
6713 return;
6714 if (this->plt_ == NULL)
6715 this->make_plt_section(symtab, layout);
6716 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6717 relobj,
6718 local_sym_index);
6719 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6720 }
6721
6722 template<int size, bool big_endian>
6723 void
6724 Target_aarch64<size, big_endian>::gc_process_relocs(
6725 Symbol_table* symtab,
6726 Layout* layout,
6727 Sized_relobj_file<size, big_endian>* object,
6728 unsigned int data_shndx,
6729 unsigned int sh_type,
6730 const unsigned char* prelocs,
6731 size_t reloc_count,
6732 Output_section* output_section,
6733 bool needs_special_offset_handling,
6734 size_t local_symbol_count,
6735 const unsigned char* plocal_symbols)
6736 {
6737 typedef Target_aarch64<size, big_endian> Aarch64;
6738 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6739 Classify_reloc;
6740
6741 if (sh_type == elfcpp::SHT_REL)
6742 {
6743 return;
6744 }
6745
6746 gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6747 symtab,
6748 layout,
6749 this,
6750 object,
6751 data_shndx,
6752 prelocs,
6753 reloc_count,
6754 output_section,
6755 needs_special_offset_handling,
6756 local_symbol_count,
6757 plocal_symbols);
6758 }
6759
6760 // Scan relocations for a section.
6761
6762 template<int size, bool big_endian>
6763 void
6764 Target_aarch64<size, big_endian>::scan_relocs(
6765 Symbol_table* symtab,
6766 Layout* layout,
6767 Sized_relobj_file<size, big_endian>* object,
6768 unsigned int data_shndx,
6769 unsigned int sh_type,
6770 const unsigned char* prelocs,
6771 size_t reloc_count,
6772 Output_section* output_section,
6773 bool needs_special_offset_handling,
6774 size_t local_symbol_count,
6775 const unsigned char* plocal_symbols)
6776 {
6777 typedef Target_aarch64<size, big_endian> Aarch64;
6778 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6779 Classify_reloc;
6780
6781 if (sh_type == elfcpp::SHT_REL)
6782 {
6783 gold_error(_("%s: unsupported REL reloc section"),
6784 object->name().c_str());
6785 return;
6786 }
6787
6788 gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6789 symtab,
6790 layout,
6791 this,
6792 object,
6793 data_shndx,
6794 prelocs,
6795 reloc_count,
6796 output_section,
6797 needs_special_offset_handling,
6798 local_symbol_count,
6799 plocal_symbols);
6800 }
6801
6802 // Return the value to use for a dynamic which requires special
6803 // treatment. This is how we support equality comparisons of function
6804 // pointers across shared library boundaries, as described in the
6805 // processor specific ABI supplement.
6806
6807 template<int size, bool big_endian>
6808 uint64_t
6809 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6810 {
6811 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6812 return this->plt_address_for_global(gsym);
6813 }
6814
6815
6816 // Finalize the sections.
6817
6818 template<int size, bool big_endian>
6819 void
6820 Target_aarch64<size, big_endian>::do_finalize_sections(
6821 Layout* layout,
6822 const Input_objects*,
6823 Symbol_table* symtab)
6824 {
6825 const Reloc_section* rel_plt = (this->plt_ == NULL
6826 ? NULL
6827 : this->plt_->rela_plt());
6828 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6829 this->rela_dyn_, true, false);
6830
6831 // Emit any relocs we saved in an attempt to avoid generating COPY
6832 // relocs.
6833 if (this->copy_relocs_.any_saved_relocs())
6834 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6835
6836 // Fill in some more dynamic tags.
6837 Output_data_dynamic* const odyn = layout->dynamic_data();
6838 if (odyn != NULL)
6839 {
6840 if (this->plt_ != NULL
6841 && this->plt_->output_section() != NULL
6842 && this->plt_ ->has_tlsdesc_entry())
6843 {
6844 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6845 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6846 this->got_->finalize_data_size();
6847 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6848 this->plt_, plt_offset);
6849 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6850 this->got_, got_offset);
6851 }
6852 }
6853
6854 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6855 // the .got.plt section.
6856 Symbol* sym = this->global_offset_table_;
6857 if (sym != NULL)
6858 {
6859 uint64_t data_size = this->got_plt_->current_data_size();
6860 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6861
6862 // If the .got section is more than 0x8000 bytes, we add
6863 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6864 // bit relocations have a greater chance of working.
6865 if (data_size >= 0x8000)
6866 symtab->get_sized_symbol<size>(sym)->set_value(
6867 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6868 }
6869
6870 if (parameters->doing_static_link()
6871 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6872 {
6873 // If linking statically, make sure that the __rela_iplt symbols
6874 // were defined if necessary, even if we didn't create a PLT.
6875 static const Define_symbol_in_segment syms[] =
6876 {
6877 {
6878 "__rela_iplt_start", // name
6879 elfcpp::PT_LOAD, // segment_type
6880 elfcpp::PF_W, // segment_flags_set
6881 elfcpp::PF(0), // segment_flags_clear
6882 0, // value
6883 0, // size
6884 elfcpp::STT_NOTYPE, // type
6885 elfcpp::STB_GLOBAL, // binding
6886 elfcpp::STV_HIDDEN, // visibility
6887 0, // nonvis
6888 Symbol::SEGMENT_START, // offset_from_base
6889 true // only_if_ref
6890 },
6891 {
6892 "__rela_iplt_end", // name
6893 elfcpp::PT_LOAD, // segment_type
6894 elfcpp::PF_W, // segment_flags_set
6895 elfcpp::PF(0), // segment_flags_clear
6896 0, // value
6897 0, // size
6898 elfcpp::STT_NOTYPE, // type
6899 elfcpp::STB_GLOBAL, // binding
6900 elfcpp::STV_HIDDEN, // visibility
6901 0, // nonvis
6902 Symbol::SEGMENT_START, // offset_from_base
6903 true // only_if_ref
6904 }
6905 };
6906
6907 symtab->define_symbols(layout, 2, syms,
6908 layout->script_options()->saw_sections_clause());
6909 }
6910
6911 return;
6912 }
6913
6914 // Perform a relocation.
6915
6916 template<int size, bool big_endian>
6917 inline bool
6918 Target_aarch64<size, big_endian>::Relocate::relocate(
6919 const Relocate_info<size, big_endian>* relinfo,
6920 unsigned int,
6921 Target_aarch64<size, big_endian>* target,
6922 Output_section* ,
6923 size_t relnum,
6924 const unsigned char* preloc,
6925 const Sized_symbol<size>* gsym,
6926 const Symbol_value<size>* psymval,
6927 unsigned char* view,
6928 typename elfcpp::Elf_types<size>::Elf_Addr address,
6929 section_size_type /* view_size */)
6930 {
6931 if (view == NULL)
6932 return true;
6933
6934 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6935
6936 const elfcpp::Rela<size, big_endian> rela(preloc);
6937 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
6938 const AArch64_reloc_property* reloc_property =
6939 aarch64_reloc_property_table->get_reloc_property(r_type);
6940
6941 if (reloc_property == NULL)
6942 {
6943 std::string reloc_name =
6944 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6945 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6946 _("cannot relocate %s in object file"),
6947 reloc_name.c_str());
6948 return true;
6949 }
6950
6951 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6952
6953 // Pick the value to use for symbols defined in the PLT.
6954 Symbol_value<size> symval;
6955 if (gsym != NULL
6956 && gsym->use_plt_offset(reloc_property->reference_flags()))
6957 {
6958 symval.set_output_value(target->plt_address_for_global(gsym));
6959 psymval = &symval;
6960 }
6961 else if (gsym == NULL && psymval->is_ifunc_symbol())
6962 {
6963 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6964 if (object->local_has_plt_offset(r_sym))
6965 {
6966 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6967 psymval = &symval;
6968 }
6969 }
6970
6971 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6972
6973 // Get the GOT offset if needed.
6974 // For aarch64, the GOT pointer points to the start of the GOT section.
6975 bool have_got_offset = false;
6976 int got_offset = 0;
6977 int got_base = (target->got_ != NULL
6978 ? (target->got_->current_data_size() >= 0x8000
6979 ? 0x8000 : 0)
6980 : 0);
6981 switch (r_type)
6982 {
6983 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6984 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6985 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6986 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6987 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6988 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6989 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6990 case elfcpp::R_AARCH64_GOTREL64:
6991 case elfcpp::R_AARCH64_GOTREL32:
6992 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6993 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6994 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6995 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6996 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6997 if (gsym != NULL)
6998 {
6999 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7000 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7001 }
7002 else
7003 {
7004 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7005 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7006 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7007 - got_base);
7008 }
7009 have_got_offset = true;
7010 break;
7011
7012 default:
7013 break;
7014 }
7015
7016 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7017 typename elfcpp::Elf_types<size>::Elf_Addr value;
7018 switch (r_type)
7019 {
7020 case elfcpp::R_AARCH64_NONE:
7021 break;
7022
7023 case elfcpp::R_AARCH64_ABS64:
7024 if (!parameters->options().apply_dynamic_relocs()
7025 && parameters->options().output_is_position_independent()
7026 && gsym != NULL
7027 && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7028 && !gsym->can_use_relative_reloc(false))
7029 // We have generated an absolute dynamic relocation, so do not
7030 // apply the relocation statically. (Works around bugs in older
7031 // Android dynamic linkers.)
7032 break;
7033 reloc_status = Reloc::template rela_ua<64>(
7034 view, object, psymval, addend, reloc_property);
7035 break;
7036
7037 case elfcpp::R_AARCH64_ABS32:
7038 if (!parameters->options().apply_dynamic_relocs()
7039 && parameters->options().output_is_position_independent()
7040 && gsym != NULL
7041 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7042 // We have generated an absolute dynamic relocation, so do not
7043 // apply the relocation statically. (Works around bugs in older
7044 // Android dynamic linkers.)
7045 break;
7046 reloc_status = Reloc::template rela_ua<32>(
7047 view, object, psymval, addend, reloc_property);
7048 break;
7049
7050 case elfcpp::R_AARCH64_ABS16:
7051 if (!parameters->options().apply_dynamic_relocs()
7052 && parameters->options().output_is_position_independent()
7053 && gsym != NULL
7054 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7055 // We have generated an absolute dynamic relocation, so do not
7056 // apply the relocation statically. (Works around bugs in older
7057 // Android dynamic linkers.)
7058 break;
7059 reloc_status = Reloc::template rela_ua<16>(
7060 view, object, psymval, addend, reloc_property);
7061 break;
7062
7063 case elfcpp::R_AARCH64_PREL64:
7064 reloc_status = Reloc::template pcrela_ua<64>(
7065 view, object, psymval, addend, address, reloc_property);
7066 break;
7067
7068 case elfcpp::R_AARCH64_PREL32:
7069 reloc_status = Reloc::template pcrela_ua<32>(
7070 view, object, psymval, addend, address, reloc_property);
7071 break;
7072
7073 case elfcpp::R_AARCH64_PREL16:
7074 reloc_status = Reloc::template pcrela_ua<16>(
7075 view, object, psymval, addend, address, reloc_property);
7076 break;
7077
7078 case elfcpp::R_AARCH64_MOVW_UABS_G0:
7079 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7080 case elfcpp::R_AARCH64_MOVW_UABS_G1:
7081 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7082 case elfcpp::R_AARCH64_MOVW_UABS_G2:
7083 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7084 case elfcpp::R_AARCH64_MOVW_UABS_G3:
7085 reloc_status = Reloc::template rela_general<32>(
7086 view, object, psymval, addend, reloc_property);
7087 break;
7088 case elfcpp::R_AARCH64_MOVW_SABS_G0:
7089 case elfcpp::R_AARCH64_MOVW_SABS_G1:
7090 case elfcpp::R_AARCH64_MOVW_SABS_G2:
7091 reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7092 reloc_property);
7093 break;
7094
7095 case elfcpp::R_AARCH64_LD_PREL_LO19:
7096 reloc_status = Reloc::template pcrela_general<32>(
7097 view, object, psymval, addend, address, reloc_property);
7098 break;
7099
7100 case elfcpp::R_AARCH64_ADR_PREL_LO21:
7101 reloc_status = Reloc::adr(view, object, psymval, addend,
7102 address, reloc_property);
7103 break;
7104
7105 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7106 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7107 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7108 reloc_property);
7109 break;
7110
7111 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7112 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7113 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7114 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7115 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7116 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7117 reloc_status = Reloc::template rela_general<32>(
7118 view, object, psymval, addend, reloc_property);
7119 break;
7120
7121 case elfcpp::R_AARCH64_CALL26:
7122 if (this->skip_call_tls_get_addr_)
7123 {
7124 // Double check that the TLSGD insn has been optimized away.
7125 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7126 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7127 reinterpret_cast<Insntype*>(view));
7128 gold_assert((insn & 0xff000000) == 0x91000000);
7129
7130 reloc_status = Reloc::STATUS_OKAY;
7131 this->skip_call_tls_get_addr_ = false;
7132 // Return false to stop further processing this reloc.
7133 return false;
7134 }
7135 // Fall through.
7136 case elfcpp::R_AARCH64_JUMP26:
7137 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7138 gsym, psymval, object,
7139 target->stub_group_size_))
7140 break;
7141 // Fall through.
7142 case elfcpp::R_AARCH64_TSTBR14:
7143 case elfcpp::R_AARCH64_CONDBR19:
7144 reloc_status = Reloc::template pcrela_general<32>(
7145 view, object, psymval, addend, address, reloc_property);
7146 break;
7147
7148 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7149 gold_assert(have_got_offset);
7150 value = target->got_->address() + got_base + got_offset;
7151 reloc_status = Reloc::adrp(view, value + addend, address);
7152 break;
7153
7154 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7155 gold_assert(have_got_offset);
7156 value = target->got_->address() + got_base + got_offset;
7157 reloc_status = Reloc::template rela_general<32>(
7158 view, value, addend, reloc_property);
7159 break;
7160
7161 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7162 {
7163 gold_assert(have_got_offset);
7164 value = target->got_->address() + got_base + got_offset + addend -
7165 Reloc::Page(target->got_->address() + got_base);
7166 if ((value & 7) != 0)
7167 reloc_status = Reloc::STATUS_OVERFLOW;
7168 else
7169 reloc_status = Reloc::template reloc_common<32>(
7170 view, value, reloc_property);
7171 break;
7172 }
7173
7174 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7175 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7176 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7177 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7178 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7179 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7180 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7181 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7182 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7183 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7184 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7185 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7186 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7187 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7188 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7189 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7190 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7191 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7192 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7193 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7194 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7195 case elfcpp::R_AARCH64_TLSDESC_CALL:
7196 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7197 gsym, psymval, view, address);
7198 break;
7199
7200 // These are dynamic relocations, which are unexpected when linking.
7201 case elfcpp::R_AARCH64_COPY:
7202 case elfcpp::R_AARCH64_GLOB_DAT:
7203 case elfcpp::R_AARCH64_JUMP_SLOT:
7204 case elfcpp::R_AARCH64_RELATIVE:
7205 case elfcpp::R_AARCH64_IRELATIVE:
7206 case elfcpp::R_AARCH64_TLS_DTPREL64:
7207 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7208 case elfcpp::R_AARCH64_TLS_TPREL64:
7209 case elfcpp::R_AARCH64_TLSDESC:
7210 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7211 _("unexpected reloc %u in object file"),
7212 r_type);
7213 break;
7214
7215 default:
7216 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7217 _("unsupported reloc %s"),
7218 reloc_property->name().c_str());
7219 break;
7220 }
7221
7222 // Report any errors.
7223 switch (reloc_status)
7224 {
7225 case Reloc::STATUS_OKAY:
7226 break;
7227 case Reloc::STATUS_OVERFLOW:
7228 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7229 _("relocation overflow in %s"),
7230 reloc_property->name().c_str());
7231 break;
7232 case Reloc::STATUS_BAD_RELOC:
7233 gold_error_at_location(
7234 relinfo,
7235 relnum,
7236 rela.get_r_offset(),
7237 _("unexpected opcode while processing relocation %s"),
7238 reloc_property->name().c_str());
7239 break;
7240 default:
7241 gold_unreachable();
7242 }
7243
7244 return true;
7245 }
7246
7247
7248 template<int size, bool big_endian>
7249 inline
7250 typename AArch64_relocate_functions<size, big_endian>::Status
7251 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7252 const Relocate_info<size, big_endian>* relinfo,
7253 Target_aarch64<size, big_endian>* target,
7254 size_t relnum,
7255 const elfcpp::Rela<size, big_endian>& rela,
7256 unsigned int r_type, const Sized_symbol<size>* gsym,
7257 const Symbol_value<size>* psymval,
7258 unsigned char* view,
7259 typename elfcpp::Elf_types<size>::Elf_Addr address)
7260 {
7261 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7262 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7263
7264 Output_segment* tls_segment = relinfo->layout->tls_segment();
7265 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7266 const AArch64_reloc_property* reloc_property =
7267 aarch64_reloc_property_table->get_reloc_property(r_type);
7268 gold_assert(reloc_property != NULL);
7269
7270 const bool is_final = (gsym == NULL
7271 ? !parameters->options().shared()
7272 : gsym->final_value_is_known());
7273 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7274 optimize_tls_reloc(is_final, r_type);
7275
7276 Sized_relobj_file<size, big_endian>* object = relinfo->object;
7277 int tls_got_offset_type;
7278 switch (r_type)
7279 {
7280 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7281 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7282 {
7283 if (tlsopt == tls::TLSOPT_TO_LE)
7284 {
7285 if (tls_segment == NULL)
7286 {
7287 gold_assert(parameters->errors()->error_count() > 0
7288 || issue_undefined_symbol_error(gsym));
7289 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7290 }
7291 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7292 psymval);
7293 }
7294 else if (tlsopt == tls::TLSOPT_NONE)
7295 {
7296 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7297 // Firstly get the address for the got entry.
7298 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7299 if (gsym != NULL)
7300 {
7301 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7302 got_entry_address = target->got_->address() +
7303 gsym->got_offset(tls_got_offset_type);
7304 }
7305 else
7306 {
7307 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7308 gold_assert(
7309 object->local_has_got_offset(r_sym, tls_got_offset_type));
7310 got_entry_address = target->got_->address() +
7311 object->local_got_offset(r_sym, tls_got_offset_type);
7312 }
7313
7314 // Relocate the address into adrp/ld, adrp/add pair.
7315 switch (r_type)
7316 {
7317 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7318 return aarch64_reloc_funcs::adrp(
7319 view, got_entry_address + addend, address);
7320
7321 break;
7322
7323 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7324 return aarch64_reloc_funcs::template rela_general<32>(
7325 view, got_entry_address, addend, reloc_property);
7326 break;
7327
7328 default:
7329 gold_unreachable();
7330 }
7331 }
7332 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7333 _("unsupported gd_to_ie relaxation on %u"),
7334 r_type);
7335 }
7336 break;
7337
7338 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7339 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7340 {
7341 if (tlsopt == tls::TLSOPT_TO_LE)
7342 {
7343 if (tls_segment == NULL)
7344 {
7345 gold_assert(parameters->errors()->error_count() > 0
7346 || issue_undefined_symbol_error(gsym));
7347 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7348 }
7349 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7350 psymval);
7351 }
7352
7353 gold_assert(tlsopt == tls::TLSOPT_NONE);
7354 // Relocate the field with the offset of the GOT entry for
7355 // the module index.
7356 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7357 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7358 target->got_->address());
7359
7360 switch (r_type)
7361 {
7362 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7363 return aarch64_reloc_funcs::adrp(
7364 view, got_entry_address + addend, address);
7365 break;
7366
7367 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7368 return aarch64_reloc_funcs::template rela_general<32>(
7369 view, got_entry_address, addend, reloc_property);
7370 break;
7371
7372 default:
7373 gold_unreachable();
7374 }
7375 }
7376 break;
7377
7378 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7379 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7380 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7381 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7382 {
7383 AArch64_address value = psymval->value(object, 0);
7384 if (tlsopt == tls::TLSOPT_TO_LE)
7385 {
7386 if (tls_segment == NULL)
7387 {
7388 gold_assert(parameters->errors()->error_count() > 0
7389 || issue_undefined_symbol_error(gsym));
7390 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7391 }
7392 }
7393 switch (r_type)
7394 {
7395 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7396 return aarch64_reloc_funcs::movnz(view, value + addend,
7397 reloc_property);
7398 break;
7399
7400 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7401 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7402 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7403 return aarch64_reloc_funcs::template rela_general<32>(
7404 view, value, addend, reloc_property);
7405 break;
7406
7407 default:
7408 gold_unreachable();
7409 }
7410 // We should never reach here.
7411 }
7412 break;
7413
7414 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7415 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7416 {
7417 if (tlsopt == tls::TLSOPT_TO_LE)
7418 {
7419 if (tls_segment == NULL)
7420 {
7421 gold_assert(parameters->errors()->error_count() > 0
7422 || issue_undefined_symbol_error(gsym));
7423 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7424 }
7425 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7426 psymval);
7427 }
7428 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7429
7430 // Firstly get the address for the got entry.
7431 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7432 if (gsym != NULL)
7433 {
7434 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7435 got_entry_address = target->got_->address() +
7436 gsym->got_offset(tls_got_offset_type);
7437 }
7438 else
7439 {
7440 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7441 gold_assert(
7442 object->local_has_got_offset(r_sym, tls_got_offset_type));
7443 got_entry_address = target->got_->address() +
7444 object->local_got_offset(r_sym, tls_got_offset_type);
7445 }
7446 // Relocate the address into adrp/ld, adrp/add pair.
7447 switch (r_type)
7448 {
7449 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7450 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7451 address);
7452 break;
7453 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7454 return aarch64_reloc_funcs::template rela_general<32>(
7455 view, got_entry_address, addend, reloc_property);
7456 default:
7457 gold_unreachable();
7458 }
7459 }
7460 // We shall never reach here.
7461 break;
7462
7463 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7464 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7465 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7466 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7467 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7468 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7469 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7470 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7471 {
7472 gold_assert(tls_segment != NULL);
7473 AArch64_address value = psymval->value(object, 0);
7474
7475 if (!parameters->options().shared())
7476 {
7477 AArch64_address aligned_tcb_size =
7478 align_address(target->tcb_size(),
7479 tls_segment->maximum_alignment());
7480 value += aligned_tcb_size;
7481 switch (r_type)
7482 {
7483 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7484 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7485 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7486 return aarch64_reloc_funcs::movnz(view, value + addend,
7487 reloc_property);
7488 default:
7489 return aarch64_reloc_funcs::template
7490 rela_general<32>(view,
7491 value,
7492 addend,
7493 reloc_property);
7494 }
7495 }
7496 else
7497 gold_error(_("%s: unsupported reloc %u "
7498 "in non-static TLSLE mode."),
7499 object->name().c_str(), r_type);
7500 }
7501 break;
7502
7503 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7504 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7505 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7506 case elfcpp::R_AARCH64_TLSDESC_CALL:
7507 {
7508 if (tlsopt == tls::TLSOPT_TO_LE)
7509 {
7510 if (tls_segment == NULL)
7511 {
7512 gold_assert(parameters->errors()->error_count() > 0
7513 || issue_undefined_symbol_error(gsym));
7514 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7515 }
7516 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7517 view, psymval);
7518 }
7519 else
7520 {
7521 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7522 ? GOT_TYPE_TLS_OFFSET
7523 : GOT_TYPE_TLS_DESC);
7524 unsigned int got_tlsdesc_offset = 0;
7525 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7526 && tlsopt == tls::TLSOPT_NONE)
7527 {
7528 // We created GOT entries in the .got.tlsdesc portion of the
7529 // .got.plt section, but the offset stored in the symbol is the
7530 // offset within .got.tlsdesc.
7531 got_tlsdesc_offset = (target->got_->data_size()
7532 + target->got_plt_section()->data_size());
7533 }
7534 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7535 if (gsym != NULL)
7536 {
7537 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7538 got_entry_address = target->got_->address()
7539 + got_tlsdesc_offset
7540 + gsym->got_offset(tls_got_offset_type);
7541 }
7542 else
7543 {
7544 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7545 gold_assert(
7546 object->local_has_got_offset(r_sym, tls_got_offset_type));
7547 got_entry_address = target->got_->address() +
7548 got_tlsdesc_offset +
7549 object->local_got_offset(r_sym, tls_got_offset_type);
7550 }
7551 if (tlsopt == tls::TLSOPT_TO_IE)
7552 {
7553 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7554 view, psymval, got_entry_address,
7555 address);
7556 }
7557
7558 // Now do tlsdesc relocation.
7559 switch (r_type)
7560 {
7561 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7562 return aarch64_reloc_funcs::adrp(view,
7563 got_entry_address + addend,
7564 address);
7565 break;
7566 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7567 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7568 return aarch64_reloc_funcs::template rela_general<32>(
7569 view, got_entry_address, addend, reloc_property);
7570 break;
7571 case elfcpp::R_AARCH64_TLSDESC_CALL:
7572 return aarch64_reloc_funcs::STATUS_OKAY;
7573 break;
7574 default:
7575 gold_unreachable();
7576 }
7577 }
7578 }
7579 break;
7580
7581 default:
7582 gold_error(_("%s: unsupported TLS reloc %u."),
7583 object->name().c_str(), r_type);
7584 }
7585 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7586 } // End of relocate_tls.
7587
7588
7589 template<int size, bool big_endian>
7590 inline
7591 typename AArch64_relocate_functions<size, big_endian>::Status
7592 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7593 const Relocate_info<size, big_endian>* relinfo,
7594 Target_aarch64<size, big_endian>* target,
7595 const elfcpp::Rela<size, big_endian>& rela,
7596 unsigned int r_type,
7597 unsigned char* view,
7598 const Symbol_value<size>* psymval)
7599 {
7600 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7601 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7602 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7603
7604 Insntype* ip = reinterpret_cast<Insntype*>(view);
7605 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7606 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7607 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7608
7609 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7610 {
7611 // This is the 2nd relocs, optimization should already have been
7612 // done.
7613 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7614 return aarch64_reloc_funcs::STATUS_OKAY;
7615 }
7616
7617 // The original sequence is -
7618 // 90000000 adrp x0, 0 <main>
7619 // 91000000 add x0, x0, #0x0
7620 // 94000000 bl 0 <__tls_get_addr>
7621 // optimized to sequence -
7622 // d53bd040 mrs x0, tpidr_el0
7623 // 91400000 add x0, x0, #0x0, lsl #12
7624 // 91000000 add x0, x0, #0x0
7625
7626 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7627 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7628 // have to change "bl tls_get_addr", which does not have a corresponding tls
7629 // relocation type. So before proceeding, we need to make sure compiler
7630 // does not change the sequence.
7631 if(!(insn1 == 0x90000000 // adrp x0,0
7632 && insn2 == 0x91000000 // add x0, x0, #0x0
7633 && insn3 == 0x94000000)) // bl 0
7634 {
7635 // Ideally we should give up gd_to_le relaxation and do gd access.
7636 // However the gd_to_le relaxation decision has been made early
7637 // in the scan stage, where we did not allocate any GOT entry for
7638 // this symbol. Therefore we have to exit and report error now.
7639 gold_error(_("unexpected reloc insn sequence while relaxing "
7640 "tls gd to le for reloc %u."), r_type);
7641 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7642 }
7643
7644 // Write new insns.
7645 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7646 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7647 insn3 = 0x91000000; // add x0, x0, #0x0
7648 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7649 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7650 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7651
7652 // Calculate tprel value.
7653 Output_segment* tls_segment = relinfo->layout->tls_segment();
7654 gold_assert(tls_segment != NULL);
7655 AArch64_address value = psymval->value(relinfo->object, 0);
7656 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7657 AArch64_address aligned_tcb_size =
7658 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7659 AArch64_address x = value + aligned_tcb_size;
7660
7661 // After new insns are written, apply TLSLE relocs.
7662 const AArch64_reloc_property* rp1 =
7663 aarch64_reloc_property_table->get_reloc_property(
7664 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7665 const AArch64_reloc_property* rp2 =
7666 aarch64_reloc_property_table->get_reloc_property(
7667 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7668 gold_assert(rp1 != NULL && rp2 != NULL);
7669
7670 typename aarch64_reloc_funcs::Status s1 =
7671 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7672 x,
7673 addend,
7674 rp1);
7675 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7676 return s1;
7677
7678 typename aarch64_reloc_funcs::Status s2 =
7679 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7680 x,
7681 addend,
7682 rp2);
7683
7684 this->skip_call_tls_get_addr_ = true;
7685 return s2;
7686 } // End of tls_gd_to_le
7687
7688
7689 template<int size, bool big_endian>
7690 inline
7691 typename AArch64_relocate_functions<size, big_endian>::Status
7692 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7693 const Relocate_info<size, big_endian>* relinfo,
7694 Target_aarch64<size, big_endian>* target,
7695 const elfcpp::Rela<size, big_endian>& rela,
7696 unsigned int r_type,
7697 unsigned char* view,
7698 const Symbol_value<size>* psymval)
7699 {
7700 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7701 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7702 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7703
7704 Insntype* ip = reinterpret_cast<Insntype*>(view);
7705 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7706 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7707 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7708
7709 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7710 {
7711 // This is the 2nd relocs, optimization should already have been
7712 // done.
7713 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7714 return aarch64_reloc_funcs::STATUS_OKAY;
7715 }
7716
7717 // The original sequence is -
7718 // 90000000 adrp x0, 0 <main>
7719 // 91000000 add x0, x0, #0x0
7720 // 94000000 bl 0 <__tls_get_addr>
7721 // optimized to sequence -
7722 // d53bd040 mrs x0, tpidr_el0
7723 // 91400000 add x0, x0, #0x0, lsl #12
7724 // 91000000 add x0, x0, #0x0
7725
7726 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7727 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7728 // have to change "bl tls_get_addr", which does not have a corresponding tls
7729 // relocation type. So before proceeding, we need to make sure compiler
7730 // does not change the sequence.
7731 if(!(insn1 == 0x90000000 // adrp x0,0
7732 && insn2 == 0x91000000 // add x0, x0, #0x0
7733 && insn3 == 0x94000000)) // bl 0
7734 {
7735 // Ideally we should give up gd_to_le relaxation and do gd access.
7736 // However the gd_to_le relaxation decision has been made early
7737 // in the scan stage, where we did not allocate a GOT entry for
7738 // this symbol. Therefore we have to exit and report an error now.
7739 gold_error(_("unexpected reloc insn sequence while relaxing "
7740 "tls gd to le for reloc %u."), r_type);
7741 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7742 }
7743
7744 // Write new insns.
7745 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7746 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7747 insn3 = 0x91000000; // add x0, x0, #0x0
7748 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7749 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7750 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7751
7752 // Calculate tprel value.
7753 Output_segment* tls_segment = relinfo->layout->tls_segment();
7754 gold_assert(tls_segment != NULL);
7755 AArch64_address value = psymval->value(relinfo->object, 0);
7756 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7757 AArch64_address aligned_tcb_size =
7758 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7759 AArch64_address x = value + aligned_tcb_size;
7760
7761 // After new insns are written, apply TLSLE relocs.
7762 const AArch64_reloc_property* rp1 =
7763 aarch64_reloc_property_table->get_reloc_property(
7764 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7765 const AArch64_reloc_property* rp2 =
7766 aarch64_reloc_property_table->get_reloc_property(
7767 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7768 gold_assert(rp1 != NULL && rp2 != NULL);
7769
7770 typename aarch64_reloc_funcs::Status s1 =
7771 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7772 x,
7773 addend,
7774 rp1);
7775 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7776 return s1;
7777
7778 typename aarch64_reloc_funcs::Status s2 =
7779 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7780 x,
7781 addend,
7782 rp2);
7783
7784 this->skip_call_tls_get_addr_ = true;
7785 return s2;
7786
7787 } // End of tls_ld_to_le
7788
7789 template<int size, bool big_endian>
7790 inline
7791 typename AArch64_relocate_functions<size, big_endian>::Status
7792 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7793 const Relocate_info<size, big_endian>* relinfo,
7794 Target_aarch64<size, big_endian>* target,
7795 const elfcpp::Rela<size, big_endian>& rela,
7796 unsigned int r_type,
7797 unsigned char* view,
7798 const Symbol_value<size>* psymval)
7799 {
7800 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7801 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7802 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7803
7804 AArch64_address value = psymval->value(relinfo->object, 0);
7805 Output_segment* tls_segment = relinfo->layout->tls_segment();
7806 AArch64_address aligned_tcb_address =
7807 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7808 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7809 AArch64_address x = value + addend + aligned_tcb_address;
7810 // "x" is the offset to tp, we can only do this if x is within
7811 // range [0, 2^32-1]
7812 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7813 {
7814 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7815 r_type);
7816 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7817 }
7818
7819 Insntype* ip = reinterpret_cast<Insntype*>(view);
7820 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7821 unsigned int regno;
7822 Insntype newinsn;
7823 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7824 {
7825 // Generate movz.
7826 regno = (insn & 0x1f);
7827 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7828 }
7829 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7830 {
7831 // Generate movk.
7832 regno = (insn & 0x1f);
7833 gold_assert(regno == ((insn >> 5) & 0x1f));
7834 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7835 }
7836 else
7837 gold_unreachable();
7838
7839 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7840 return aarch64_reloc_funcs::STATUS_OKAY;
7841 } // End of tls_ie_to_le
7842
7843
7844 template<int size, bool big_endian>
7845 inline
7846 typename AArch64_relocate_functions<size, big_endian>::Status
7847 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7848 const Relocate_info<size, big_endian>* relinfo,
7849 Target_aarch64<size, big_endian>* target,
7850 const elfcpp::Rela<size, big_endian>& rela,
7851 unsigned int r_type,
7852 unsigned char* view,
7853 const Symbol_value<size>* psymval)
7854 {
7855 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7856 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7857 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7858
7859 // TLSDESC-GD sequence is like:
7860 // adrp x0, :tlsdesc:v1
7861 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7862 // add x0, x0, :tlsdesc_lo12:v1
7863 // .tlsdesccall v1
7864 // blr x1
7865 // After desc_gd_to_le optimization, the sequence will be like:
7866 // movz x0, #0x0, lsl #16
7867 // movk x0, #0x10
7868 // nop
7869 // nop
7870
7871 // Calculate tprel value.
7872 Output_segment* tls_segment = relinfo->layout->tls_segment();
7873 gold_assert(tls_segment != NULL);
7874 Insntype* ip = reinterpret_cast<Insntype*>(view);
7875 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7876 AArch64_address value = psymval->value(relinfo->object, addend);
7877 AArch64_address aligned_tcb_size =
7878 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7879 AArch64_address x = value + aligned_tcb_size;
7880 // x is the offset to tp, we can only do this if x is within range
7881 // [0, 2^32-1]. If x is out of range, fail and exit.
7882 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7883 {
7884 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7885 "We Can't do gd_to_le relaxation.\n"), r_type);
7886 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7887 }
7888 Insntype newinsn;
7889 switch (r_type)
7890 {
7891 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7892 case elfcpp::R_AARCH64_TLSDESC_CALL:
7893 // Change to nop
7894 newinsn = 0xd503201f;
7895 break;
7896
7897 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7898 // Change to movz.
7899 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7900 break;
7901
7902 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7903 // Change to movk.
7904 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7905 break;
7906
7907 default:
7908 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7909 r_type);
7910 gold_unreachable();
7911 }
7912 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7913 return aarch64_reloc_funcs::STATUS_OKAY;
7914 } // End of tls_desc_gd_to_le
7915
7916
7917 template<int size, bool big_endian>
7918 inline
7919 typename AArch64_relocate_functions<size, big_endian>::Status
7920 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7921 const Relocate_info<size, big_endian>* /* relinfo */,
7922 Target_aarch64<size, big_endian>* /* target */,
7923 const elfcpp::Rela<size, big_endian>& rela,
7924 unsigned int r_type,
7925 unsigned char* view,
7926 const Symbol_value<size>* /* psymval */,
7927 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7928 typename elfcpp::Elf_types<size>::Elf_Addr address)
7929 {
7930 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7931 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7932
7933 // TLSDESC-GD sequence is like:
7934 // adrp x0, :tlsdesc:v1
7935 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7936 // add x0, x0, :tlsdesc_lo12:v1
7937 // .tlsdesccall v1
7938 // blr x1
7939 // After desc_gd_to_ie optimization, the sequence will be like:
7940 // adrp x0, :tlsie:v1
7941 // ldr x0, [x0, :tlsie_lo12:v1]
7942 // nop
7943 // nop
7944
7945 Insntype* ip = reinterpret_cast<Insntype*>(view);
7946 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7947 Insntype newinsn;
7948 switch (r_type)
7949 {
7950 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7951 case elfcpp::R_AARCH64_TLSDESC_CALL:
7952 // Change to nop
7953 newinsn = 0xd503201f;
7954 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7955 break;
7956
7957 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7958 {
7959 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7960 address);
7961 }
7962 break;
7963
7964 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7965 {
7966 // Set ldr target register to be x0.
7967 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7968 insn &= 0xffffffe0;
7969 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7970 // Do relocation.
7971 const AArch64_reloc_property* reloc_property =
7972 aarch64_reloc_property_table->get_reloc_property(
7973 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7974 return aarch64_reloc_funcs::template rela_general<32>(
7975 view, got_entry_address, addend, reloc_property);
7976 }
7977 break;
7978
7979 default:
7980 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7981 r_type);
7982 gold_unreachable();
7983 }
7984 return aarch64_reloc_funcs::STATUS_OKAY;
7985 } // End of tls_desc_gd_to_ie
7986
7987 // Relocate section data.
7988
7989 template<int size, bool big_endian>
7990 void
7991 Target_aarch64<size, big_endian>::relocate_section(
7992 const Relocate_info<size, big_endian>* relinfo,
7993 unsigned int sh_type,
7994 const unsigned char* prelocs,
7995 size_t reloc_count,
7996 Output_section* output_section,
7997 bool needs_special_offset_handling,
7998 unsigned char* view,
7999 typename elfcpp::Elf_types<size>::Elf_Addr address,
8000 section_size_type view_size,
8001 const Reloc_symbol_changes* reloc_symbol_changes)
8002 {
8003 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8004 typedef Target_aarch64<size, big_endian> Aarch64;
8005 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8006 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8007 Classify_reloc;
8008
8009 gold_assert(sh_type == elfcpp::SHT_RELA);
8010
8011 // See if we are relocating a relaxed input section. If so, the view
8012 // covers the whole output section and we need to adjust accordingly.
8013 if (needs_special_offset_handling)
8014 {
8015 const Output_relaxed_input_section* poris =
8016 output_section->find_relaxed_input_section(relinfo->object,
8017 relinfo->data_shndx);
8018 if (poris != NULL)
8019 {
8020 Address section_address = poris->address();
8021 section_size_type section_size = poris->data_size();
8022
8023 gold_assert((section_address >= address)
8024 && ((section_address + section_size)
8025 <= (address + view_size)));
8026
8027 off_t offset = section_address - address;
8028 view += offset;
8029 address += offset;
8030 view_size = section_size;
8031 }
8032 }
8033
8034 gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8035 gold::Default_comdat_behavior, Classify_reloc>(
8036 relinfo,
8037 this,
8038 prelocs,
8039 reloc_count,
8040 output_section,
8041 needs_special_offset_handling,
8042 view,
8043 address,
8044 view_size,
8045 reloc_symbol_changes);
8046 }
8047
8048 // Scan the relocs during a relocatable link.
8049
8050 template<int size, bool big_endian>
8051 void
8052 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8053 Symbol_table* symtab,
8054 Layout* layout,
8055 Sized_relobj_file<size, big_endian>* object,
8056 unsigned int data_shndx,
8057 unsigned int sh_type,
8058 const unsigned char* prelocs,
8059 size_t reloc_count,
8060 Output_section* output_section,
8061 bool needs_special_offset_handling,
8062 size_t local_symbol_count,
8063 const unsigned char* plocal_symbols,
8064 Relocatable_relocs* rr)
8065 {
8066 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8067 Classify_reloc;
8068 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8069 Scan_relocatable_relocs;
8070
8071 gold_assert(sh_type == elfcpp::SHT_RELA);
8072
8073 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8074 symtab,
8075 layout,
8076 object,
8077 data_shndx,
8078 prelocs,
8079 reloc_count,
8080 output_section,
8081 needs_special_offset_handling,
8082 local_symbol_count,
8083 plocal_symbols,
8084 rr);
8085 }
8086
8087 // Scan the relocs for --emit-relocs.
8088
8089 template<int size, bool big_endian>
8090 void
8091 Target_aarch64<size, big_endian>::emit_relocs_scan(
8092 Symbol_table* symtab,
8093 Layout* layout,
8094 Sized_relobj_file<size, big_endian>* object,
8095 unsigned int data_shndx,
8096 unsigned int sh_type,
8097 const unsigned char* prelocs,
8098 size_t reloc_count,
8099 Output_section* output_section,
8100 bool needs_special_offset_handling,
8101 size_t local_symbol_count,
8102 const unsigned char* plocal_syms,
8103 Relocatable_relocs* rr)
8104 {
8105 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8106 Classify_reloc;
8107 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8108 Emit_relocs_strategy;
8109
8110 gold_assert(sh_type == elfcpp::SHT_RELA);
8111
8112 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8113 symtab,
8114 layout,
8115 object,
8116 data_shndx,
8117 prelocs,
8118 reloc_count,
8119 output_section,
8120 needs_special_offset_handling,
8121 local_symbol_count,
8122 plocal_syms,
8123 rr);
8124 }
8125
8126 // Relocate a section during a relocatable link.
8127
8128 template<int size, bool big_endian>
8129 void
8130 Target_aarch64<size, big_endian>::relocate_relocs(
8131 const Relocate_info<size, big_endian>* relinfo,
8132 unsigned int sh_type,
8133 const unsigned char* prelocs,
8134 size_t reloc_count,
8135 Output_section* output_section,
8136 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8137 unsigned char* view,
8138 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8139 section_size_type view_size,
8140 unsigned char* reloc_view,
8141 section_size_type reloc_view_size)
8142 {
8143 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8144 Classify_reloc;
8145
8146 gold_assert(sh_type == elfcpp::SHT_RELA);
8147
8148 gold::relocate_relocs<size, big_endian, Classify_reloc>(
8149 relinfo,
8150 prelocs,
8151 reloc_count,
8152 output_section,
8153 offset_in_output_section,
8154 view,
8155 view_address,
8156 view_size,
8157 reloc_view,
8158 reloc_view_size);
8159 }
8160
8161
8162 // Return whether this is a 3-insn erratum sequence.
8163
8164 template<int size, bool big_endian>
8165 bool
8166 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8167 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8168 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8169 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8170 {
8171 unsigned rt1, rt2;
8172 bool load, pair;
8173
8174 // The 2nd insn is a single register load or store; or register pair
8175 // store.
8176 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8177 && (!pair || (pair && !load)))
8178 {
8179 // The 3rd insn is a load or store instruction from the "Load/store
8180 // register (unsigned immediate)" encoding class, using Rn as the
8181 // base address register.
8182 if (Insn_utilities::aarch64_ldst_uimm(insn3)
8183 && (Insn_utilities::aarch64_rn(insn3)
8184 == Insn_utilities::aarch64_rd(insn1)))
8185 return true;
8186 }
8187 return false;
8188 }
8189
8190
8191 // Return whether this is a 835769 sequence.
8192 // (Similarly implemented as in elfnn-aarch64.c.)
8193
8194 template<int size, bool big_endian>
8195 bool
8196 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8197 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8198 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8199 {
8200 uint32_t rt;
8201 uint32_t rt2 = 0;
8202 uint32_t rn;
8203 uint32_t rm;
8204 uint32_t ra;
8205 bool pair;
8206 bool load;
8207
8208 if (Insn_utilities::aarch64_mlxl(insn2)
8209 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8210 {
8211 /* Any SIMD memory op is independent of the subsequent MLA
8212 by definition of the erratum. */
8213 if (Insn_utilities::aarch64_bit(insn1, 26))
8214 return true;
8215
8216 /* If not SIMD, check for integer memory ops and MLA relationship. */
8217 rn = Insn_utilities::aarch64_rn(insn2);
8218 ra = Insn_utilities::aarch64_ra(insn2);
8219 rm = Insn_utilities::aarch64_rm(insn2);
8220
8221 /* If this is a load and there's a true(RAW) dependency, we are safe
8222 and this is not an erratum sequence. */
8223 if (load &&
8224 (rt == rn || rt == rm || rt == ra
8225 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8226 return false;
8227
8228 /* We conservatively put out stubs for all other cases (including
8229 writebacks). */
8230 return true;
8231 }
8232
8233 return false;
8234 }
8235
8236
8237 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8238
8239 template<int size, bool big_endian>
8240 void
8241 Target_aarch64<size, big_endian>::create_erratum_stub(
8242 AArch64_relobj<size, big_endian>* relobj,
8243 unsigned int shndx,
8244 section_size_type erratum_insn_offset,
8245 Address erratum_address,
8246 typename Insn_utilities::Insntype erratum_insn,
8247 int erratum_type,
8248 unsigned int e843419_adrp_offset)
8249 {
8250 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8251 The_stub_table* stub_table = relobj->stub_table(shndx);
8252 gold_assert(stub_table != NULL);
8253 if (stub_table->find_erratum_stub(relobj,
8254 shndx,
8255 erratum_insn_offset) == NULL)
8256 {
8257 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8258 The_erratum_stub* stub;
8259 if (erratum_type == ST_E_835769)
8260 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8261 erratum_insn_offset);
8262 else if (erratum_type == ST_E_843419)
8263 stub = new E843419_stub<size, big_endian>(
8264 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8265 else
8266 gold_unreachable();
8267 stub->set_erratum_insn(erratum_insn);
8268 stub->set_erratum_address(erratum_address);
8269 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8270 // always the next insn after erratum insn.
8271 stub->set_destination_address(erratum_address + BPI);
8272 stub_table->add_erratum_stub(stub);
8273 }
8274 }
8275
8276
8277 // Scan erratum for section SHNDX range [output_address + span_start,
8278 // output_address + span_end). Note here we do not share the code with
8279 // scan_erratum_843419_span function, because for 843419 we optimize by only
8280 // scanning the last few insns of a page, whereas for 835769, we need to scan
8281 // every insn.
8282
8283 template<int size, bool big_endian>
8284 void
8285 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8286 AArch64_relobj<size, big_endian>* relobj,
8287 unsigned int shndx,
8288 const section_size_type span_start,
8289 const section_size_type span_end,
8290 unsigned char* input_view,
8291 Address output_address)
8292 {
8293 typedef typename Insn_utilities::Insntype Insntype;
8294
8295 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8296
8297 // Adjust output_address and view to the start of span.
8298 output_address += span_start;
8299 input_view += span_start;
8300
8301 section_size_type span_length = span_end - span_start;
8302 section_size_type offset = 0;
8303 for (offset = 0; offset + BPI < span_length; offset += BPI)
8304 {
8305 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8306 Insntype insn1 = ip[0];
8307 Insntype insn2 = ip[1];
8308 if (is_erratum_835769_sequence(insn1, insn2))
8309 {
8310 Insntype erratum_insn = insn2;
8311 // "span_start + offset" is the offset for insn1. So for insn2, it is
8312 // "span_start + offset + BPI".
8313 section_size_type erratum_insn_offset = span_start + offset + BPI;
8314 Address erratum_address = output_address + offset + BPI;
8315 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8316 "section %d, offset 0x%08x."),
8317 relobj->name().c_str(), shndx,
8318 (unsigned int)(span_start + offset));
8319
8320 this->create_erratum_stub(relobj, shndx,
8321 erratum_insn_offset, erratum_address,
8322 erratum_insn, ST_E_835769);
8323 offset += BPI; // Skip mac insn.
8324 }
8325 }
8326 } // End of "Target_aarch64::scan_erratum_835769_span".
8327
8328
8329 // Scan erratum for section SHNDX range
8330 // [output_address + span_start, output_address + span_end).
8331
8332 template<int size, bool big_endian>
8333 void
8334 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8335 AArch64_relobj<size, big_endian>* relobj,
8336 unsigned int shndx,
8337 const section_size_type span_start,
8338 const section_size_type span_end,
8339 unsigned char* input_view,
8340 Address output_address)
8341 {
8342 typedef typename Insn_utilities::Insntype Insntype;
8343
8344 // Adjust output_address and view to the start of span.
8345 output_address += span_start;
8346 input_view += span_start;
8347
8348 if ((output_address & 0x03) != 0)
8349 return;
8350
8351 section_size_type offset = 0;
8352 section_size_type span_length = span_end - span_start;
8353 // The first instruction must be ending at 0xFF8 or 0xFFC.
8354 unsigned int page_offset = output_address & 0xFFF;
8355 // Make sure starting position, that is "output_address+offset",
8356 // starts at page position 0xff8 or 0xffc.
8357 if (page_offset < 0xff8)
8358 offset = 0xff8 - page_offset;
8359 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8360 {
8361 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8362 Insntype insn1 = ip[0];
8363 if (Insn_utilities::is_adrp(insn1))
8364 {
8365 Insntype insn2 = ip[1];
8366 Insntype insn3 = ip[2];
8367 Insntype erratum_insn;
8368 unsigned insn_offset;
8369 bool do_report = false;
8370 if (is_erratum_843419_sequence(insn1, insn2, insn3))
8371 {
8372 do_report = true;
8373 erratum_insn = insn3;
8374 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8375 }
8376 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8377 {
8378 // Optionally we can have an insn between ins2 and ins3
8379 Insntype insn_opt = ip[2];
8380 // And insn_opt must not be a branch.
8381 if (!Insn_utilities::aarch64_b(insn_opt)
8382 && !Insn_utilities::aarch64_bl(insn_opt)
8383 && !Insn_utilities::aarch64_blr(insn_opt)
8384 && !Insn_utilities::aarch64_br(insn_opt))
8385 {
8386 // And insn_opt must not write to dest reg in insn1. However
8387 // we do a conservative scan, which means we may fix/report
8388 // more than necessary, but it doesn't hurt.
8389
8390 Insntype insn4 = ip[3];
8391 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8392 {
8393 do_report = true;
8394 erratum_insn = insn4;
8395 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8396 }
8397 }
8398 }
8399 if (do_report)
8400 {
8401 unsigned int erratum_insn_offset =
8402 span_start + offset + insn_offset;
8403 Address erratum_address =
8404 output_address + offset + insn_offset;
8405 create_erratum_stub(relobj, shndx,
8406 erratum_insn_offset, erratum_address,
8407 erratum_insn, ST_E_843419,
8408 span_start + offset);
8409 }
8410 }
8411
8412 // Advance to next candidate instruction. We only consider instruction
8413 // sequences starting at a page offset of 0xff8 or 0xffc.
8414 page_offset = (output_address + offset) & 0xfff;
8415 if (page_offset == 0xff8)
8416 offset += 4;
8417 else // (page_offset == 0xffc), we move to next page's 0xff8.
8418 offset += 0xffc;
8419 }
8420 } // End of "Target_aarch64::scan_erratum_843419_span".
8421
8422
8423 // The selector for aarch64 object files.
8424
8425 template<int size, bool big_endian>
8426 class Target_selector_aarch64 : public Target_selector
8427 {
8428 public:
8429 Target_selector_aarch64();
8430
8431 virtual Target*
8432 do_instantiate_target()
8433 { return new Target_aarch64<size, big_endian>(); }
8434 };
8435
8436 template<>
8437 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8438 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8439 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8440 { }
8441
8442 template<>
8443 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8444 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8445 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8446 { }
8447
8448 template<>
8449 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8450 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8451 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8452 { }
8453
8454 template<>
8455 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8456 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8457 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8458 { }
8459
8460 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8461 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8462 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8463 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8464
8465 } // End anonymous namespace.
This page took 0.360129 seconds and 4 git commands to generate.