Remove unnecessary target dependencies on relocation format.
[deliverable/binutils-gdb.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
109 static bool
110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static unsigned int
114 aarch64_rm(const Insntype insn)
115 { return aarch64_bits(insn, 16, 5); }
116
117 static unsigned int
118 aarch64_rn(const Insntype insn)
119 { return aarch64_bits(insn, 5, 5); }
120
121 static unsigned int
122 aarch64_rd(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
126 aarch64_rt(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
130 aarch64_rt2(const Insntype insn)
131 { return aarch64_bits(insn, 10, 5); }
132
133 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134 static Insntype
135 aarch64_adr_encode_imm(Insntype adr, int imm21)
136 {
137 gold_assert(is_adr(adr));
138 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139 const int mask19 = (1 << 19) - 1;
140 const int mask2 = 3;
141 adr &= ~((mask19 << 5) | (mask2 << 29));
142 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143 return adr;
144 }
145
146 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149 static int64_t
150 aarch64_adrp_decode_imm(const Insntype adrp)
151 {
152 const int mask19 = (1 << 19) - 1;
153 const int mask2 = 3;
154 gold_assert(is_adrp(adrp));
155 // 21-bit imm encoded in adrp.
156 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157 // Retrieve msb of 21-bit-signed imm for sign extension.
158 uint64_t msbt = (imm >> 20) & 1;
159 // Real value is imm multipled by 4k. Value now has 33-bit information.
160 int64_t value = imm << 12;
161 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162 // with value.
163 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164 }
165
166 static bool
167 aarch64_b(const Insntype insn)
168 { return (insn & 0xFC000000) == 0x14000000; }
169
170 static bool
171 aarch64_bl(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x94000000; }
173
174 static bool
175 aarch64_blr(const Insntype insn)
176 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178 static bool
179 aarch64_br(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
183 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184 static bool
185 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187 static bool
188 aarch64_ldst(Insntype insn)
189 { return (insn & 0x0a000000) == 0x08000000; }
190
191 static bool
192 aarch64_ldst_ex(Insntype insn)
193 { return (insn & 0x3f000000) == 0x08000000; }
194
195 static bool
196 aarch64_ldst_pcrel(Insntype insn)
197 { return (insn & 0x3b000000) == 0x18000000; }
198
199 static bool
200 aarch64_ldst_nap(Insntype insn)
201 { return (insn & 0x3b800000) == 0x28000000; }
202
203 static bool
204 aarch64_ldstp_pi(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28800000; }
206
207 static bool
208 aarch64_ldstp_o(Insntype insn)
209 { return (insn & 0x3b800000) == 0x29000000; }
210
211 static bool
212 aarch64_ldstp_pre(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29800000; }
214
215 static bool
216 aarch64_ldst_ui(Insntype insn)
217 { return (insn & 0x3b200c00) == 0x38000000; }
218
219 static bool
220 aarch64_ldst_piimm(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000400; }
222
223 static bool
224 aarch64_ldst_u(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000800; }
226
227 static bool
228 aarch64_ldst_preimm(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000c00; }
230
231 static bool
232 aarch64_ldst_ro(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38200800; }
234
235 static bool
236 aarch64_ldst_uimm(Insntype insn)
237 { return (insn & 0x3b000000) == 0x39000000; }
238
239 static bool
240 aarch64_ldst_simd_m(Insntype insn)
241 { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243 static bool
244 aarch64_ldst_simd_m_pi(Insntype insn)
245 { return (insn & 0xbfa00000) == 0x0c800000; }
246
247 static bool
248 aarch64_ldst_simd_s(Insntype insn)
249 { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251 static bool
252 aarch64_ldst_simd_s_pi(Insntype insn)
253 { return (insn & 0xbf800000) == 0x0d800000; }
254
255 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258 // instructions PAIR is TRUE, RT and RT2 are returned.
259 static bool
260 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261 bool *pair, bool *load)
262 {
263 uint32_t opcode;
264 unsigned int r;
265 uint32_t opc = 0;
266 uint32_t v = 0;
267 uint32_t opc_v = 0;
268
269 /* Bail out quickly if INSN doesn't fall into the the load-store
270 encoding space. */
271 if (!aarch64_ldst (insn))
272 return false;
273
274 *pair = false;
275 *load = false;
276 if (aarch64_ldst_ex (insn))
277 {
278 *rt = aarch64_rt (insn);
279 *rt2 = *rt;
280 if (aarch64_bit (insn, 21) == 1)
281 {
282 *pair = true;
283 *rt2 = aarch64_rt2 (insn);
284 }
285 *load = aarch64_ld (insn);
286 return true;
287 }
288 else if (aarch64_ldst_nap (insn)
289 || aarch64_ldstp_pi (insn)
290 || aarch64_ldstp_o (insn)
291 || aarch64_ldstp_pre (insn))
292 {
293 *pair = true;
294 *rt = aarch64_rt (insn);
295 *rt2 = aarch64_rt2 (insn);
296 *load = aarch64_ld (insn);
297 return true;
298 }
299 else if (aarch64_ldst_pcrel (insn)
300 || aarch64_ldst_ui (insn)
301 || aarch64_ldst_piimm (insn)
302 || aarch64_ldst_u (insn)
303 || aarch64_ldst_preimm (insn)
304 || aarch64_ldst_ro (insn)
305 || aarch64_ldst_uimm (insn))
306 {
307 *rt = aarch64_rt (insn);
308 *rt2 = *rt;
309 if (aarch64_ldst_pcrel (insn))
310 *load = true;
311 opc = aarch64_bits (insn, 22, 2);
312 v = aarch64_bit (insn, 26);
313 opc_v = opc | (v << 2);
314 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
315 || opc_v == 5 || opc_v == 7);
316 return true;
317 }
318 else if (aarch64_ldst_simd_m (insn)
319 || aarch64_ldst_simd_m_pi (insn))
320 {
321 *rt = aarch64_rt (insn);
322 *load = aarch64_bit (insn, 22);
323 opcode = (insn >> 12) & 0xf;
324 switch (opcode)
325 {
326 case 0:
327 case 2:
328 *rt2 = *rt + 3;
329 break;
330
331 case 4:
332 case 6:
333 *rt2 = *rt + 2;
334 break;
335
336 case 7:
337 *rt2 = *rt;
338 break;
339
340 case 8:
341 case 10:
342 *rt2 = *rt + 1;
343 break;
344
345 default:
346 return false;
347 }
348 return true;
349 }
350 else if (aarch64_ldst_simd_s (insn)
351 || aarch64_ldst_simd_s_pi (insn))
352 {
353 *rt = aarch64_rt (insn);
354 r = (insn >> 21) & 1;
355 *load = aarch64_bit (insn, 22);
356 opcode = (insn >> 13) & 0x7;
357 switch (opcode)
358 {
359 case 0:
360 case 2:
361 case 4:
362 *rt2 = *rt + r;
363 break;
364
365 case 1:
366 case 3:
367 case 5:
368 *rt2 = *rt + (r == 0 ? 2 : 3);
369 break;
370
371 case 6:
372 *rt2 = *rt + r;
373 break;
374
375 case 7:
376 *rt2 = *rt + (r == 0 ? 2 : 3);
377 break;
378
379 default:
380 return false;
381 }
382 return true;
383 }
384 return false;
385 } // End of "aarch64_mem_op_p".
386
387 // Return true if INSN is mac insn.
388 static bool
389 aarch64_mac(Insntype insn)
390 { return (insn & 0xff000000) == 0x9b000000; }
391
392 // Return true if INSN is multiply-accumulate.
393 // (This is similar to implementaton in elfnn-aarch64.c.)
394 static bool
395 aarch64_mlxl(Insntype insn)
396 {
397 uint32_t op31 = aarch64_op31(insn);
398 if (aarch64_mac(insn)
399 && (op31 == 0 || op31 == 1 || op31 == 5)
400 /* Exclude MUL instructions which are encoded as a multiple-accumulate
401 with RA = XZR. */
402 && aarch64_ra(insn) != AARCH64_ZR)
403 {
404 return true;
405 }
406 return false;
407 }
408 }; // End of "AArch64_insn_utilities".
409
410
411 // Insn length in byte.
412
413 template<bool big_endian>
414 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417 // Zero register encoding - 31.
418
419 template<bool big_endian>
420 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
421
422
423 // Output_data_got_aarch64 class.
424
425 template<int size, bool big_endian>
426 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427 {
428 public:
429 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
431 : Output_data_got<size, big_endian>(),
432 symbol_table_(symtab), layout_(layout)
433 { }
434
435 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
436 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437 // applied in a static link.
438 void
439 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
444 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
445 // relocation that needs to be applied in a static link.
446 void
447 add_static_reloc(unsigned int got_offset, unsigned int r_type,
448 Sized_relobj_file<size, big_endian>* relobj,
449 unsigned int index)
450 {
451 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452 index));
453 }
454
455
456 protected:
457 // Write out the GOT table.
458 void
459 do_write(Output_file* of) {
460 // The first entry in the GOT is the address of the .dynamic section.
461 gold_assert(this->data_size() >= size / 8);
462 Output_section* dynamic = this->layout_->dynamic_section();
463 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464 this->replace_constant(0, dynamic_addr);
465 Output_data_got<size, big_endian>::do_write(of);
466
467 // Handling static relocs
468 if (this->static_relocs_.empty())
469 return;
470
471 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473 gold_assert(parameters->doing_static_link());
474 const off_t offset = this->offset();
475 const section_size_type oview_size =
476 convert_to_section_size_type(this->data_size());
477 unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479 Output_segment* tls_segment = this->layout_->tls_segment();
480 gold_assert(tls_segment != NULL);
481
482 AArch64_address aligned_tcb_address =
483 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
484 tls_segment->maximum_alignment());
485
486 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487 {
488 Static_reloc& reloc(this->static_relocs_[i]);
489 AArch64_address value;
490
491 if (!reloc.symbol_is_global())
492 {
493 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494 const Symbol_value<size>* psymval =
495 reloc.relobj()->local_symbol(reloc.index());
496
497 // We are doing static linking. Issue an error and skip this
498 // relocation if the symbol is undefined or in a discarded_section.
499 bool is_ordinary;
500 unsigned int shndx = psymval->input_shndx(&is_ordinary);
501 if ((shndx == elfcpp::SHN_UNDEF)
502 || (is_ordinary
503 && shndx != elfcpp::SHN_UNDEF
504 && !object->is_section_included(shndx)
505 && !this->symbol_table_->is_section_folded(object, shndx)))
506 {
507 gold_error(_("undefined or discarded local symbol %u from "
508 " object %s in GOT"),
509 reloc.index(), reloc.relobj()->name().c_str());
510 continue;
511 }
512 value = psymval->value(object, 0);
513 }
514 else
515 {
516 const Symbol* gsym = reloc.symbol();
517 gold_assert(gsym != NULL);
518 if (gsym->is_forwarder())
519 gsym = this->symbol_table_->resolve_forwards(gsym);
520
521 // We are doing static linking. Issue an error and skip this
522 // relocation if the symbol is undefined or in a discarded_section
523 // unless it is a weakly_undefined symbol.
524 if ((gsym->is_defined_in_discarded_section()
525 || gsym->is_undefined())
526 && !gsym->is_weak_undefined())
527 {
528 gold_error(_("undefined or discarded symbol %s in GOT"),
529 gsym->name());
530 continue;
531 }
532
533 if (!gsym->is_weak_undefined())
534 {
535 const Sized_symbol<size>* sym =
536 static_cast<const Sized_symbol<size>*>(gsym);
537 value = sym->value();
538 }
539 else
540 value = 0;
541 }
542
543 unsigned got_offset = reloc.got_offset();
544 gold_assert(got_offset < oview_size);
545
546 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548 Valtype x;
549 switch (reloc.r_type())
550 {
551 case elfcpp::R_AARCH64_TLS_DTPREL64:
552 x = value;
553 break;
554 case elfcpp::R_AARCH64_TLS_TPREL64:
555 x = value + aligned_tcb_address;
556 break;
557 default:
558 gold_unreachable();
559 }
560 elfcpp::Swap<size, big_endian>::writeval(wv, x);
561 }
562
563 of->write_output_view(offset, oview_size, oview);
564 }
565
566 private:
567 // Symbol table of the output object.
568 Symbol_table* symbol_table_;
569 // A pointer to the Layout class, so that we can find the .dynamic
570 // section when we write out the GOT section.
571 Layout* layout_;
572
573 // This class represent dynamic relocations that need to be applied by
574 // gold because we are using TLS relocations in a static link.
575 class Static_reloc
576 {
577 public:
578 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580 { this->u_.global.symbol = gsym; }
581
582 Static_reloc(unsigned int got_offset, unsigned int r_type,
583 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585 {
586 this->u_.local.relobj = relobj;
587 this->u_.local.index = index;
588 }
589
590 // Return the GOT offset.
591 unsigned int
592 got_offset() const
593 { return this->got_offset_; }
594
595 // Relocation type.
596 unsigned int
597 r_type() const
598 { return this->r_type_; }
599
600 // Whether the symbol is global or not.
601 bool
602 symbol_is_global() const
603 { return this->symbol_is_global_; }
604
605 // For a relocation against a global symbol, the global symbol.
606 Symbol*
607 symbol() const
608 {
609 gold_assert(this->symbol_is_global_);
610 return this->u_.global.symbol;
611 }
612
613 // For a relocation against a local symbol, the defining object.
614 Sized_relobj_file<size, big_endian>*
615 relobj() const
616 {
617 gold_assert(!this->symbol_is_global_);
618 return this->u_.local.relobj;
619 }
620
621 // For a relocation against a local symbol, the local symbol index.
622 unsigned int
623 index() const
624 {
625 gold_assert(!this->symbol_is_global_);
626 return this->u_.local.index;
627 }
628
629 private:
630 // GOT offset of the entry to which this relocation is applied.
631 unsigned int got_offset_;
632 // Type of relocation.
633 unsigned int r_type_;
634 // Whether this relocation is against a global symbol.
635 bool symbol_is_global_;
636 // A global or local symbol.
637 union
638 {
639 struct
640 {
641 // For a global symbol, the symbol itself.
642 Symbol* symbol;
643 } global;
644 struct
645 {
646 // For a local symbol, the object defining the symbol.
647 Sized_relobj_file<size, big_endian>* relobj;
648 // For a local symbol, the symbol index.
649 unsigned int index;
650 } local;
651 } u_;
652 }; // End of inner class Static_reloc
653
654 std::vector<Static_reloc> static_relocs_;
655 }; // End of Output_data_got_aarch64
656
657
658 template<int size, bool big_endian>
659 class AArch64_input_section;
660
661
662 template<int size, bool big_endian>
663 class AArch64_output_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_relobj;
668
669
670 // Stub type enum constants.
671
672 enum
673 {
674 ST_NONE = 0,
675
676 // Using adrp/add pair, 4 insns (including alignment) without mem access,
677 // the fastest stub. This has a limited jump distance, which is tested by
678 // aarch64_valid_for_adrp_p.
679 ST_ADRP_BRANCH = 1,
680
681 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682 // unlimited in jump distance.
683 ST_LONG_BRANCH_ABS = 2,
684
685 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686 // mem access, slowest one. Only used in position independent executables.
687 ST_LONG_BRANCH_PCREL = 3,
688
689 // Stub for erratum 843419 handling.
690 ST_E_843419 = 4,
691
692 // Stub for erratum 835769 handling.
693 ST_E_835769 = 5,
694
695 // Number of total stub types.
696 ST_NUMBER = 6
697 };
698
699
700 // Struct that wraps insns for a particular stub. All stub templates are
701 // created/initialized as constants by Stub_template_repertoire.
702
703 template<bool big_endian>
704 struct Stub_template
705 {
706 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707 const int insn_num;
708 };
709
710
711 // Simple singleton class that creates/initializes/stores all types of stub
712 // templates.
713
714 template<bool big_endian>
715 class Stub_template_repertoire
716 {
717 public:
718 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720 // Single static method to get stub template for a given stub type.
721 static const Stub_template<big_endian>*
722 get_stub_template(int type)
723 {
724 static Stub_template_repertoire<big_endian> singleton;
725 return singleton.stub_templates_[type];
726 }
727
728 private:
729 // Constructor - creates/initializes all stub templates.
730 Stub_template_repertoire();
731 ~Stub_template_repertoire()
732 { }
733
734 // Disallowing copy ctor and copy assignment operator.
735 Stub_template_repertoire(Stub_template_repertoire&);
736 Stub_template_repertoire& operator=(Stub_template_repertoire&);
737
738 // Data that stores all insn templates.
739 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740 }; // End of "class Stub_template_repertoire".
741
742
743 // Constructor - creates/initilizes all stub templates.
744
745 template<bool big_endian>
746 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747 {
748 // Insn array definitions.
749 const static Insntype ST_NONE_INSNS[] = {};
750
751 const static Insntype ST_ADRP_BRANCH_INSNS[] =
752 {
753 0x90000010, /* adrp ip0, X */
754 /* ADR_PREL_PG_HI21(X) */
755 0x91000210, /* add ip0, ip0, :lo12:X */
756 /* ADD_ABS_LO12_NC(X) */
757 0xd61f0200, /* br ip0 */
758 0x00000000, /* alignment padding */
759 };
760
761 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762 {
763 0x58000050, /* ldr ip0, 0x8 */
764 0xd61f0200, /* br ip0 */
765 0x00000000, /* address field */
766 0x00000000, /* address fields */
767 };
768
769 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770 {
771 0x58000090, /* ldr ip0, 0x10 */
772 0x10000011, /* adr ip1, #0 */
773 0x8b110210, /* add ip0, ip0, ip1 */
774 0xd61f0200, /* br ip0 */
775 0x00000000, /* address field */
776 0x00000000, /* address field */
777 0x00000000, /* alignment padding */
778 0x00000000, /* alignment padding */
779 };
780
781 const static Insntype ST_E_843419_INSNS[] =
782 {
783 0x00000000, /* Placeholder for erratum insn. */
784 0x14000000, /* b <label> */
785 };
786
787 // ST_E_835769 has the same stub template as ST_E_843419.
788 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
790 #define install_insn_template(T) \
791 const static Stub_template<big_endian> template_##T = { \
792 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793 this->stub_templates_[T] = &template_##T
794
795 install_insn_template(ST_NONE);
796 install_insn_template(ST_ADRP_BRANCH);
797 install_insn_template(ST_LONG_BRANCH_ABS);
798 install_insn_template(ST_LONG_BRANCH_PCREL);
799 install_insn_template(ST_E_843419);
800 install_insn_template(ST_E_835769);
801
802 #undef install_insn_template
803 }
804
805
806 // Base class for stubs.
807
808 template<int size, bool big_endian>
809 class Stub_base
810 {
811 public:
812 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815 static const AArch64_address invalid_address =
816 static_cast<AArch64_address>(-1);
817
818 static const section_offset_type invalid_offset =
819 static_cast<section_offset_type>(-1);
820
821 Stub_base(int type)
822 : destination_address_(invalid_address),
823 offset_(invalid_offset),
824 type_(type)
825 {}
826
827 ~Stub_base()
828 {}
829
830 // Get stub type.
831 int
832 type() const
833 { return this->type_; }
834
835 // Get stub template that provides stub insn information.
836 const Stub_template<big_endian>*
837 stub_template() const
838 {
839 return Stub_template_repertoire<big_endian>::
840 get_stub_template(this->type());
841 }
842
843 // Get destination address.
844 AArch64_address
845 destination_address() const
846 {
847 gold_assert(this->destination_address_ != this->invalid_address);
848 return this->destination_address_;
849 }
850
851 // Set destination address.
852 void
853 set_destination_address(AArch64_address address)
854 {
855 gold_assert(address != this->invalid_address);
856 this->destination_address_ = address;
857 }
858
859 // Reset the destination address.
860 void
861 reset_destination_address()
862 { this->destination_address_ = this->invalid_address; }
863
864 // Get offset of code stub. For Reloc_stub, it is the offset from the
865 // beginning of its containing stub table; for Erratum_stub, it is the offset
866 // from the end of reloc_stubs.
867 section_offset_type
868 offset() const
869 {
870 gold_assert(this->offset_ != this->invalid_offset);
871 return this->offset_;
872 }
873
874 // Set stub offset.
875 void
876 set_offset(section_offset_type offset)
877 { this->offset_ = offset; }
878
879 // Return the stub insn.
880 const Insntype*
881 insns() const
882 { return this->stub_template()->insns; }
883
884 // Return num of stub insns.
885 unsigned int
886 insn_num() const
887 { return this->stub_template()->insn_num; }
888
889 // Get size of the stub.
890 int
891 stub_size() const
892 {
893 return this->insn_num() *
894 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895 }
896
897 // Write stub to output file.
898 void
899 write(unsigned char* view, section_size_type view_size)
900 { this->do_write(view, view_size); }
901
902 protected:
903 // Abstract method to be implemented by sub-classes.
904 virtual void
905 do_write(unsigned char*, section_size_type) = 0;
906
907 private:
908 // The last insn of a stub is a jump to destination insn. This field records
909 // the destination address.
910 AArch64_address destination_address_;
911 // The stub offset. Note this has difference interpretations between an
912 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913 // beginning of the containing stub_table, whereas for Erratum_stub, this is
914 // the offset from the end of reloc_stubs.
915 section_offset_type offset_;
916 // Stub type.
917 const int type_;
918 }; // End of "Stub_base".
919
920
921 // Erratum stub class. An erratum stub differs from a reloc stub in that for
922 // each erratum occurrence, we generate an erratum stub. We never share erratum
923 // stubs, whereas for reloc stubs, different branches insns share a single reloc
924 // stub as long as the branch targets are the same. (More to the point, reloc
925 // stubs can be shared because they're used to reach a specific target, whereas
926 // erratum stubs branch back to the original control flow.)
927
928 template<int size, bool big_endian>
929 class Erratum_stub : public Stub_base<size, big_endian>
930 {
931 public:
932 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
934 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
935 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
937 static const int STUB_ADDR_ALIGN;
938
939 static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
941 Erratum_stub(The_aarch64_relobj* relobj, int type,
942 unsigned shndx, unsigned int sh_offset)
943 : Stub_base<size, big_endian>(type), relobj_(relobj),
944 shndx_(shndx), sh_offset_(sh_offset),
945 erratum_insn_(invalid_insn),
946 erratum_address_(this->invalid_address)
947 {}
948
949 ~Erratum_stub() {}
950
951 // Return the object that contains the erratum.
952 The_aarch64_relobj*
953 relobj()
954 { return this->relobj_; }
955
956 // Get section index of the erratum.
957 unsigned int
958 shndx() const
959 { return this->shndx_; }
960
961 // Get section offset of the erratum.
962 unsigned int
963 sh_offset() const
964 { return this->sh_offset_; }
965
966 // Get the erratum insn. This is the insn located at erratum_insn_address.
967 Insntype
968 erratum_insn() const
969 {
970 gold_assert(this->erratum_insn_ != this->invalid_insn);
971 return this->erratum_insn_;
972 }
973
974 // Set the insn that the erratum happens to.
975 void
976 set_erratum_insn(Insntype insn)
977 { this->erratum_insn_ = insn; }
978
979 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981 // is no longer the one we want to write out to the stub, update erratum_insn_
982 // with relocated version. Also note that in this case xn must not be "PC", so
983 // it is safe to move the erratum insn from the origin place to the stub. For
984 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985 // relocation spot (assertion added though).
986 void
987 update_erratum_insn(Insntype insn)
988 {
989 gold_assert(this->erratum_insn_ != this->invalid_insn);
990 switch (this->type())
991 {
992 case ST_E_843419:
993 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995 gold_assert(Insn_utilities::aarch64_rd(insn) ==
996 Insn_utilities::aarch64_rd(this->erratum_insn()));
997 gold_assert(Insn_utilities::aarch64_rn(insn) ==
998 Insn_utilities::aarch64_rn(this->erratum_insn()));
999 // Update plain ld/st insn with relocated insn.
1000 this->erratum_insn_ = insn;
1001 break;
1002 case ST_E_835769:
1003 gold_assert(insn == this->erratum_insn());
1004 break;
1005 default:
1006 gold_unreachable();
1007 }
1008 }
1009
1010
1011 // Return the address where an erratum must be done.
1012 AArch64_address
1013 erratum_address() const
1014 {
1015 gold_assert(this->erratum_address_ != this->invalid_address);
1016 return this->erratum_address_;
1017 }
1018
1019 // Set the address where an erratum must be done.
1020 void
1021 set_erratum_address(AArch64_address addr)
1022 { this->erratum_address_ = addr; }
1023
1024 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025 // sh_offset). We do not include 'type' in the calculation, becuase there is
1026 // at most one stub type at (obj, shndx, sh_offset).
1027 bool
1028 operator<(const Erratum_stub<size, big_endian>& k) const
1029 {
1030 if (this == &k)
1031 return false;
1032 // We group stubs by relobj.
1033 if (this->relobj_ != k.relobj_)
1034 return this->relobj_ < k.relobj_;
1035 // Then by section index.
1036 if (this->shndx_ != k.shndx_)
1037 return this->shndx_ < k.shndx_;
1038 // Lastly by section offset.
1039 return this->sh_offset_ < k.sh_offset_;
1040 }
1041
1042 protected:
1043 virtual void
1044 do_write(unsigned char*, section_size_type);
1045
1046 private:
1047 // The object that needs to be fixed.
1048 The_aarch64_relobj* relobj_;
1049 // The shndx in the object that needs to be fixed.
1050 const unsigned int shndx_;
1051 // The section offset in the obejct that needs to be fixed.
1052 const unsigned int sh_offset_;
1053 // The insn to be fixed.
1054 Insntype erratum_insn_;
1055 // The address of the above insn.
1056 AArch64_address erratum_address_;
1057 }; // End of "Erratum_stub".
1058
1059
1060 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1061 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062 // adrp's code position (two or three insns before erratum insn itself).
1063
1064 template<int size, bool big_endian>
1065 class E843419_stub : public Erratum_stub<size, big_endian>
1066 {
1067 public:
1068 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
1070 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, unsigned int sh_offset,
1072 unsigned int adrp_sh_offset)
1073 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074 adrp_sh_offset_(adrp_sh_offset)
1075 {}
1076
1077 unsigned int
1078 adrp_sh_offset() const
1079 { return this->adrp_sh_offset_; }
1080
1081 private:
1082 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083 // can can obtain it from its parent.)
1084 const unsigned int adrp_sh_offset_;
1085 };
1086
1087
1088 template<int size, bool big_endian>
1089 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1090
1091 // Comparator used in set definition.
1092 template<int size, bool big_endian>
1093 struct Erratum_stub_less
1094 {
1095 bool
1096 operator()(const Erratum_stub<size, big_endian>* s1,
1097 const Erratum_stub<size, big_endian>* s2) const
1098 { return *s1 < *s2; }
1099 };
1100
1101 // Erratum_stub implementation for writing stub to output file.
1102
1103 template<int size, bool big_endian>
1104 void
1105 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106 {
1107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108 const Insntype* insns = this->insns();
1109 uint32_t num_insns = this->insn_num();
1110 Insntype* ip = reinterpret_cast<Insntype*>(view);
1111 // For current implemented erratum 843419 and 835769, the first insn in the
1112 // stub is always a copy of the problematic insn (in 843419, the mem access
1113 // insn, in 835769, the mac insn), followed by a jump-back.
1114 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115 for (uint32_t i = 1; i < num_insns; ++i)
1116 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117 }
1118
1119
1120 // Reloc stub class.
1121
1122 template<int size, bool big_endian>
1123 class Reloc_stub : public Stub_base<size, big_endian>
1124 {
1125 public:
1126 typedef Reloc_stub<size, big_endian> This;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129 // Branch range. This is used to calculate the section group size, as well as
1130 // determine whether a stub is needed.
1131 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134 // Constant used to determine if an offset fits in the adrp instruction
1135 // encoding.
1136 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137 static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139 static const int BYTES_PER_INSN = 4;
1140 static const int STUB_ADDR_ALIGN;
1141
1142 // Determine whether the offset fits in the jump/branch instruction.
1143 static bool
1144 aarch64_valid_branch_offset_p(int64_t offset)
1145 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147 // Determine whether the offset fits in the adrp immediate field.
1148 static bool
1149 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150 {
1151 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154 }
1155
1156 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157 // needed.
1158 static int
1159 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160 AArch64_address target);
1161
1162 Reloc_stub(int type)
1163 : Stub_base<size, big_endian>(type)
1164 { }
1165
1166 ~Reloc_stub()
1167 { }
1168
1169 // The key class used to index the stub instance in the stub table's stub map.
1170 class Key
1171 {
1172 public:
1173 Key(int type, const Symbol* symbol, const Relobj* relobj,
1174 unsigned int r_sym, int32_t addend)
1175 : type_(type), addend_(addend)
1176 {
1177 if (symbol != NULL)
1178 {
1179 this->r_sym_ = Reloc_stub::invalid_index;
1180 this->u_.symbol = symbol;
1181 }
1182 else
1183 {
1184 gold_assert(relobj != NULL && r_sym != invalid_index);
1185 this->r_sym_ = r_sym;
1186 this->u_.relobj = relobj;
1187 }
1188 }
1189
1190 ~Key()
1191 { }
1192
1193 // Return stub type.
1194 int
1195 type() const
1196 { return this->type_; }
1197
1198 // Return the local symbol index or invalid_index.
1199 unsigned int
1200 r_sym() const
1201 { return this->r_sym_; }
1202
1203 // Return the symbol if there is one.
1204 const Symbol*
1205 symbol() const
1206 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208 // Return the relobj if there is one.
1209 const Relobj*
1210 relobj() const
1211 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213 // Whether this equals to another key k.
1214 bool
1215 eq(const Key& k) const
1216 {
1217 return ((this->type_ == k.type_)
1218 && (this->r_sym_ == k.r_sym_)
1219 && ((this->r_sym_ != Reloc_stub::invalid_index)
1220 ? (this->u_.relobj == k.u_.relobj)
1221 : (this->u_.symbol == k.u_.symbol))
1222 && (this->addend_ == k.addend_));
1223 }
1224
1225 // Return a hash value.
1226 size_t
1227 hash_value() const
1228 {
1229 size_t name_hash_value = gold::string_hash<char>(
1230 (this->r_sym_ != Reloc_stub::invalid_index)
1231 ? this->u_.relobj->name().c_str()
1232 : this->u_.symbol->name());
1233 // We only have 4 stub types.
1234 size_t stub_type_hash_value = 0x03 & this->type_;
1235 return (name_hash_value
1236 ^ stub_type_hash_value
1237 ^ ((this->r_sym_ & 0x3fff) << 2)
1238 ^ ((this->addend_ & 0xffff) << 16));
1239 }
1240
1241 // Functors for STL associative containers.
1242 struct hash
1243 {
1244 size_t
1245 operator()(const Key& k) const
1246 { return k.hash_value(); }
1247 };
1248
1249 struct equal_to
1250 {
1251 bool
1252 operator()(const Key& k1, const Key& k2) const
1253 { return k1.eq(k2); }
1254 };
1255
1256 private:
1257 // Stub type.
1258 const int type_;
1259 // If this is a local symbol, this is the index in the defining object.
1260 // Otherwise, it is invalid_index for a global symbol.
1261 unsigned int r_sym_;
1262 // If r_sym_ is an invalid index, this points to a global symbol.
1263 // Otherwise, it points to a relobj. We used the unsized and target
1264 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265 // Arm_relobj, in order to avoid making the stub class a template
1266 // as most of the stub machinery is endianness-neutral. However, it
1267 // may require a bit of casting done by users of this class.
1268 union
1269 {
1270 const Symbol* symbol;
1271 const Relobj* relobj;
1272 } u_;
1273 // Addend associated with a reloc.
1274 int32_t addend_;
1275 }; // End of inner class Reloc_stub::Key
1276
1277 protected:
1278 // This may be overridden in the child class.
1279 virtual void
1280 do_write(unsigned char*, section_size_type);
1281
1282 private:
1283 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1284 }; // End of Reloc_stub
1285
1286 template<int size, bool big_endian>
1287 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1288
1289 // Write data to output file.
1290
1291 template<int size, bool big_endian>
1292 void
1293 Reloc_stub<size, big_endian>::
1294 do_write(unsigned char* view, section_size_type)
1295 {
1296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1297 const uint32_t* insns = this->insns();
1298 uint32_t num_insns = this->insn_num();
1299 Insntype* ip = reinterpret_cast<Insntype*>(view);
1300 for (uint32_t i = 0; i < num_insns; ++i)
1301 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1302 }
1303
1304
1305 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306 // needed.
1307
1308 template<int size, bool big_endian>
1309 inline int
1310 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311 unsigned int r_type, AArch64_address location, AArch64_address dest)
1312 {
1313 int64_t branch_offset = 0;
1314 switch(r_type)
1315 {
1316 case elfcpp::R_AARCH64_CALL26:
1317 case elfcpp::R_AARCH64_JUMP26:
1318 branch_offset = dest - location;
1319 break;
1320 default:
1321 gold_unreachable();
1322 }
1323
1324 if (aarch64_valid_branch_offset_p(branch_offset))
1325 return ST_NONE;
1326
1327 if (aarch64_valid_for_adrp_p(location, dest))
1328 return ST_ADRP_BRANCH;
1329
1330 if (parameters->options().output_is_position_independent()
1331 && parameters->options().output_is_executable())
1332 return ST_LONG_BRANCH_PCREL;
1333
1334 return ST_LONG_BRANCH_ABS;
1335 }
1336
1337 // A class to hold stubs for the ARM target.
1338
1339 template<int size, bool big_endian>
1340 class Stub_table : public Output_data
1341 {
1342 public:
1343 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1344 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1345 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1346 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1347 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1348 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1349 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1350 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1351 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1352 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1353 typedef Stub_table<size, big_endian> The_stub_table;
1354 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1355 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1356 Reloc_stub_map;
1357 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1358 typedef Relocate_info<size, big_endian> The_relocate_info;
1359
1360 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1361 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1362
1363 Stub_table(The_aarch64_input_section* owner)
1364 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1365 erratum_stubs_size_(0), prev_data_size_(0)
1366 { }
1367
1368 ~Stub_table()
1369 { }
1370
1371 The_aarch64_input_section*
1372 owner() const
1373 { return owner_; }
1374
1375 // Whether this stub table is empty.
1376 bool
1377 empty() const
1378 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1379
1380 // Return the current data size.
1381 off_t
1382 current_data_size() const
1383 { return this->current_data_size_for_child(); }
1384
1385 // Add a STUB using KEY. The caller is responsible for avoiding addition
1386 // if a STUB with the same key has already been added.
1387 void
1388 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1389
1390 // Add an erratum stub into the erratum stub set. The set is ordered by
1391 // (relobj, shndx, sh_offset).
1392 void
1393 add_erratum_stub(The_erratum_stub* stub);
1394
1395 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1396 The_erratum_stub*
1397 find_erratum_stub(The_aarch64_relobj* a64relobj,
1398 unsigned int shndx, unsigned int sh_offset);
1399
1400 // Find all the erratums for a given input section. The return value is a pair
1401 // of iterators [begin, end).
1402 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1403 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1404 unsigned int shndx);
1405
1406 // Compute the erratum stub address.
1407 AArch64_address
1408 erratum_stub_address(The_erratum_stub* stub) const
1409 {
1410 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1411 The_erratum_stub::STUB_ADDR_ALIGN);
1412 r += stub->offset();
1413 return r;
1414 }
1415
1416 // Finalize stubs. No-op here, just for completeness.
1417 void
1418 finalize_stubs()
1419 { }
1420
1421 // Look up a relocation stub using KEY. Return NULL if there is none.
1422 The_reloc_stub*
1423 find_reloc_stub(The_reloc_stub_key& key)
1424 {
1425 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1426 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1427 }
1428
1429 // Relocate stubs in this stub table.
1430 void
1431 relocate_stubs(const The_relocate_info*,
1432 The_target_aarch64*,
1433 Output_section*,
1434 unsigned char*,
1435 AArch64_address,
1436 section_size_type);
1437
1438 // Update data size at the end of a relaxation pass. Return true if data size
1439 // is different from that of the previous relaxation pass.
1440 bool
1441 update_data_size_changed_p()
1442 {
1443 // No addralign changed here.
1444 off_t s = align_address(this->reloc_stubs_size_,
1445 The_erratum_stub::STUB_ADDR_ALIGN)
1446 + this->erratum_stubs_size_;
1447 bool changed = (s != this->prev_data_size_);
1448 this->prev_data_size_ = s;
1449 return changed;
1450 }
1451
1452 protected:
1453 // Write out section contents.
1454 void
1455 do_write(Output_file*);
1456
1457 // Return the required alignment.
1458 uint64_t
1459 do_addralign() const
1460 {
1461 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1462 The_erratum_stub::STUB_ADDR_ALIGN);
1463 }
1464
1465 // Reset address and file offset.
1466 void
1467 do_reset_address_and_file_offset()
1468 { this->set_current_data_size_for_child(this->prev_data_size_); }
1469
1470 // Set final data size.
1471 void
1472 set_final_data_size()
1473 { this->set_data_size(this->current_data_size()); }
1474
1475 private:
1476 // Relocate one stub.
1477 void
1478 relocate_stub(The_reloc_stub*,
1479 const The_relocate_info*,
1480 The_target_aarch64*,
1481 Output_section*,
1482 unsigned char*,
1483 AArch64_address,
1484 section_size_type);
1485
1486 private:
1487 // Owner of this stub table.
1488 The_aarch64_input_section* owner_;
1489 // The relocation stubs.
1490 Reloc_stub_map reloc_stubs_;
1491 // The erratum stubs.
1492 Erratum_stub_set erratum_stubs_;
1493 // Size of reloc stubs.
1494 off_t reloc_stubs_size_;
1495 // Size of erratum stubs.
1496 off_t erratum_stubs_size_;
1497 // data size of this in the previous pass.
1498 off_t prev_data_size_;
1499 }; // End of Stub_table
1500
1501
1502 // Add an erratum stub into the erratum stub set. The set is ordered by
1503 // (relobj, shndx, sh_offset).
1504
1505 template<int size, bool big_endian>
1506 void
1507 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1508 {
1509 std::pair<Erratum_stub_set_iter, bool> ret =
1510 this->erratum_stubs_.insert(stub);
1511 gold_assert(ret.second);
1512 this->erratum_stubs_size_ = align_address(
1513 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1514 stub->set_offset(this->erratum_stubs_size_);
1515 this->erratum_stubs_size_ += stub->stub_size();
1516 }
1517
1518
1519 // Find if such erratum exists for given (obj, shndx, sh_offset).
1520
1521 template<int size, bool big_endian>
1522 Erratum_stub<size, big_endian>*
1523 Stub_table<size, big_endian>::find_erratum_stub(
1524 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1525 {
1526 // A dummy object used as key to search in the set.
1527 The_erratum_stub key(a64relobj, ST_NONE,
1528 shndx, sh_offset);
1529 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1530 if (i != this->erratum_stubs_.end())
1531 {
1532 The_erratum_stub* stub(*i);
1533 gold_assert(stub->erratum_insn() != 0);
1534 return stub;
1535 }
1536 return NULL;
1537 }
1538
1539
1540 // Find all the errata for a given input section. The return value is a pair of
1541 // iterators [begin, end).
1542
1543 template<int size, bool big_endian>
1544 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1545 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1546 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1547 The_aarch64_relobj* a64relobj, unsigned int shndx)
1548 {
1549 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1550 Erratum_stub_set_iter start, end;
1551 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1552 start = this->erratum_stubs_.lower_bound(&low_key);
1553 if (start == this->erratum_stubs_.end())
1554 return Result_pair(this->erratum_stubs_.end(),
1555 this->erratum_stubs_.end());
1556 end = start;
1557 while (end != this->erratum_stubs_.end() &&
1558 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1559 ++end;
1560 return Result_pair(start, end);
1561 }
1562
1563
1564 // Add a STUB using KEY. The caller is responsible for avoiding addition
1565 // if a STUB with the same key has already been added.
1566
1567 template<int size, bool big_endian>
1568 void
1569 Stub_table<size, big_endian>::add_reloc_stub(
1570 The_reloc_stub* stub, const The_reloc_stub_key& key)
1571 {
1572 gold_assert(stub->type() == key.type());
1573 this->reloc_stubs_[key] = stub;
1574
1575 // Assign stub offset early. We can do this because we never remove
1576 // reloc stubs and they are in the beginning of the stub table.
1577 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1578 The_reloc_stub::STUB_ADDR_ALIGN);
1579 stub->set_offset(this->reloc_stubs_size_);
1580 this->reloc_stubs_size_ += stub->stub_size();
1581 }
1582
1583
1584 // Relocate all stubs in this stub table.
1585
1586 template<int size, bool big_endian>
1587 void
1588 Stub_table<size, big_endian>::
1589 relocate_stubs(const The_relocate_info* relinfo,
1590 The_target_aarch64* target_aarch64,
1591 Output_section* output_section,
1592 unsigned char* view,
1593 AArch64_address address,
1594 section_size_type view_size)
1595 {
1596 // "view_size" is the total size of the stub_table.
1597 gold_assert(address == this->address() &&
1598 view_size == static_cast<section_size_type>(this->data_size()));
1599 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1600 p != this->reloc_stubs_.end(); ++p)
1601 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1602 view, address, view_size);
1603
1604 // Just for convenience.
1605 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1606
1607 // Now 'relocate' erratum stubs.
1608 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1609 i != this->erratum_stubs_.end(); ++i)
1610 {
1611 AArch64_address stub_address = this->erratum_stub_address(*i);
1612 // The address of "b" in the stub that is to be "relocated".
1613 AArch64_address stub_b_insn_address;
1614 // Branch offset that is to be filled in "b" insn.
1615 int b_offset = 0;
1616 switch ((*i)->type())
1617 {
1618 case ST_E_843419:
1619 case ST_E_835769:
1620 // The 1st insn of the erratum could be a relocation spot,
1621 // in this case we need to fix it with
1622 // "(*i)->erratum_insn()".
1623 elfcpp::Swap<32, big_endian>::writeval(
1624 view + (stub_address - this->address()),
1625 (*i)->erratum_insn());
1626 // For the erratum, the 2nd insn is a b-insn to be patched
1627 // (relocated).
1628 stub_b_insn_address = stub_address + 1 * BPI;
1629 b_offset = (*i)->destination_address() - stub_b_insn_address;
1630 AArch64_relocate_functions<size, big_endian>::construct_b(
1631 view + (stub_b_insn_address - this->address()),
1632 ((unsigned int)(b_offset)) & 0xfffffff);
1633 break;
1634 default:
1635 gold_unreachable();
1636 break;
1637 }
1638 }
1639 }
1640
1641
1642 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1643
1644 template<int size, bool big_endian>
1645 void
1646 Stub_table<size, big_endian>::
1647 relocate_stub(The_reloc_stub* stub,
1648 const The_relocate_info* relinfo,
1649 The_target_aarch64* target_aarch64,
1650 Output_section* output_section,
1651 unsigned char* view,
1652 AArch64_address address,
1653 section_size_type view_size)
1654 {
1655 // "offset" is the offset from the beginning of the stub_table.
1656 section_size_type offset = stub->offset();
1657 section_size_type stub_size = stub->stub_size();
1658 // "view_size" is the total size of the stub_table.
1659 gold_assert(offset + stub_size <= view_size);
1660
1661 target_aarch64->relocate_stub(stub, relinfo, output_section,
1662 view + offset, address + offset, view_size);
1663 }
1664
1665
1666 // Write out the stubs to file.
1667
1668 template<int size, bool big_endian>
1669 void
1670 Stub_table<size, big_endian>::do_write(Output_file* of)
1671 {
1672 off_t offset = this->offset();
1673 const section_size_type oview_size =
1674 convert_to_section_size_type(this->data_size());
1675 unsigned char* const oview = of->get_output_view(offset, oview_size);
1676
1677 // Write relocation stubs.
1678 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1679 p != this->reloc_stubs_.end(); ++p)
1680 {
1681 The_reloc_stub* stub = p->second;
1682 AArch64_address address = this->address() + stub->offset();
1683 gold_assert(address ==
1684 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1685 stub->write(oview + stub->offset(), stub->stub_size());
1686 }
1687
1688 // Write erratum stubs.
1689 unsigned int erratum_stub_start_offset =
1690 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1691 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1692 p != this->erratum_stubs_.end(); ++p)
1693 {
1694 The_erratum_stub* stub(*p);
1695 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1696 stub->stub_size());
1697 }
1698
1699 of->write_output_view(this->offset(), oview_size, oview);
1700 }
1701
1702
1703 // AArch64_relobj class.
1704
1705 template<int size, bool big_endian>
1706 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1707 {
1708 public:
1709 typedef AArch64_relobj<size, big_endian> This;
1710 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1711 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1712 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1713 typedef Stub_table<size, big_endian> The_stub_table;
1714 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1715 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1716 typedef std::vector<The_stub_table*> Stub_table_list;
1717 static const AArch64_address invalid_address =
1718 static_cast<AArch64_address>(-1);
1719
1720 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1721 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1722 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1723 stub_tables_()
1724 { }
1725
1726 ~AArch64_relobj()
1727 { }
1728
1729 // Return the stub table of the SHNDX-th section if there is one.
1730 The_stub_table*
1731 stub_table(unsigned int shndx) const
1732 {
1733 gold_assert(shndx < this->stub_tables_.size());
1734 return this->stub_tables_[shndx];
1735 }
1736
1737 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1738 void
1739 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1740 {
1741 gold_assert(shndx < this->stub_tables_.size());
1742 this->stub_tables_[shndx] = stub_table;
1743 }
1744
1745 // Entrance to errata scanning.
1746 void
1747 scan_errata(unsigned int shndx,
1748 const elfcpp::Shdr<size, big_endian>&,
1749 Output_section*, const Symbol_table*,
1750 The_target_aarch64*);
1751
1752 // Scan all relocation sections for stub generation.
1753 void
1754 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1755 const Layout*);
1756
1757 // Whether a section is a scannable text section.
1758 bool
1759 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1760 const Output_section*, const Symbol_table*);
1761
1762 // Convert regular input section with index SHNDX to a relaxed section.
1763 void
1764 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1765 {
1766 // The stubs have relocations and we need to process them after writing
1767 // out the stubs. So relocation now must follow section write.
1768 this->set_relocs_must_follow_section_writes();
1769 }
1770
1771 // Structure for mapping symbol position.
1772 struct Mapping_symbol_position
1773 {
1774 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1775 shndx_(shndx), offset_(offset)
1776 {}
1777
1778 // "<" comparator used in ordered_map container.
1779 bool
1780 operator<(const Mapping_symbol_position& p) const
1781 {
1782 return (this->shndx_ < p.shndx_
1783 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1784 }
1785
1786 // Section index.
1787 unsigned int shndx_;
1788
1789 // Section offset.
1790 AArch64_address offset_;
1791 };
1792
1793 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1794
1795 protected:
1796 // Post constructor setup.
1797 void
1798 do_setup()
1799 {
1800 // Call parent's setup method.
1801 Sized_relobj_file<size, big_endian>::do_setup();
1802
1803 // Initialize look-up tables.
1804 this->stub_tables_.resize(this->shnum());
1805 }
1806
1807 virtual void
1808 do_relocate_sections(
1809 const Symbol_table* symtab, const Layout* layout,
1810 const unsigned char* pshdrs, Output_file* of,
1811 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1812
1813 // Count local symbols and (optionally) record mapping info.
1814 virtual void
1815 do_count_local_symbols(Stringpool_template<char>*,
1816 Stringpool_template<char>*);
1817
1818 private:
1819 // Fix all errata in the object.
1820 void
1821 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1822
1823 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1824 // applied.
1825 bool
1826 try_fix_erratum_843419_optimized(
1827 The_erratum_stub*,
1828 typename Sized_relobj_file<size, big_endian>::View_size&);
1829
1830 // Whether a section needs to be scanned for relocation stubs.
1831 bool
1832 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1833 const Relobj::Output_sections&,
1834 const Symbol_table*, const unsigned char*);
1835
1836 // List of stub tables.
1837 Stub_table_list stub_tables_;
1838
1839 // Mapping symbol information sorted by (section index, section_offset).
1840 Mapping_symbol_info mapping_symbol_info_;
1841 }; // End of AArch64_relobj
1842
1843
1844 // Override to record mapping symbol information.
1845 template<int size, bool big_endian>
1846 void
1847 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1848 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1849 {
1850 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1851
1852 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1853 // processing if not fixing erratum.
1854 if (!parameters->options().fix_cortex_a53_843419()
1855 && !parameters->options().fix_cortex_a53_835769())
1856 return;
1857
1858 const unsigned int loccount = this->local_symbol_count();
1859 if (loccount == 0)
1860 return;
1861
1862 // Read the symbol table section header.
1863 const unsigned int symtab_shndx = this->symtab_shndx();
1864 elfcpp::Shdr<size, big_endian>
1865 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1866 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1867
1868 // Read the local symbols.
1869 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1870 gold_assert(loccount == symtabshdr.get_sh_info());
1871 off_t locsize = loccount * sym_size;
1872 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1873 locsize, true, true);
1874
1875 // For mapping symbol processing, we need to read the symbol names.
1876 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1877 if (strtab_shndx >= this->shnum())
1878 {
1879 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1880 return;
1881 }
1882
1883 elfcpp::Shdr<size, big_endian>
1884 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1885 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1886 {
1887 this->error(_("symbol table name section has wrong type: %u"),
1888 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1889 return;
1890 }
1891
1892 const char* pnames =
1893 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1894 strtabshdr.get_sh_size(),
1895 false, false));
1896
1897 // Skip the first dummy symbol.
1898 psyms += sym_size;
1899 typename Sized_relobj_file<size, big_endian>::Local_values*
1900 plocal_values = this->local_values();
1901 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902 {
1903 elfcpp::Sym<size, big_endian> sym(psyms);
1904 Symbol_value<size>& lv((*plocal_values)[i]);
1905 AArch64_address input_value = lv.input_value();
1906
1907 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1908 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1909 // symbols.
1910 // Mapping symbols could be one of the following 4 forms -
1911 // a) $x
1912 // b) $x.<any...>
1913 // c) $d
1914 // d) $d.<any...>
1915 const char* sym_name = pnames + sym.get_st_name();
1916 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1917 && (sym_name[2] == '\0' || sym_name[2] == '.'))
1918 {
1919 bool is_ordinary;
1920 unsigned int input_shndx =
1921 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1922 gold_assert(is_ordinary);
1923
1924 Mapping_symbol_position msp(input_shndx, input_value);
1925 // Insert mapping_symbol_info into map whose ordering is defined by
1926 // (shndx, offset_within_section).
1927 this->mapping_symbol_info_[msp] = sym_name[1];
1928 }
1929 }
1930 }
1931
1932
1933 // Fix all errata in the object.
1934
1935 template<int size, bool big_endian>
1936 void
1937 AArch64_relobj<size, big_endian>::fix_errata(
1938 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1939 {
1940 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1941 unsigned int shnum = this->shnum();
1942 for (unsigned int i = 1; i < shnum; ++i)
1943 {
1944 The_stub_table* stub_table = this->stub_table(i);
1945 if (!stub_table)
1946 continue;
1947 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1948 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1949 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1950 while (p != end)
1951 {
1952 The_erratum_stub* stub = *p;
1953 typename Sized_relobj_file<size, big_endian>::View_size&
1954 pview((*pviews)[i]);
1955
1956 // Double check data before fix.
1957 gold_assert(pview.address + stub->sh_offset()
1958 == stub->erratum_address());
1959
1960 // Update previously recorded erratum insn with relocated
1961 // version.
1962 Insntype* ip =
1963 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1964 Insntype insn_to_fix = ip[0];
1965 stub->update_erratum_insn(insn_to_fix);
1966
1967 // First try to see if erratum is 843419 and if it can be fixed
1968 // without using branch-to-stub.
1969 if (!try_fix_erratum_843419_optimized(stub, pview))
1970 {
1971 // Replace the erratum insn with a branch-to-stub.
1972 AArch64_address stub_address =
1973 stub_table->erratum_stub_address(stub);
1974 unsigned int b_offset = stub_address - stub->erratum_address();
1975 AArch64_relocate_functions<size, big_endian>::construct_b(
1976 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1977 }
1978 ++p;
1979 }
1980 }
1981 }
1982
1983
1984 // This is an optimization for 843419. This erratum requires the sequence begin
1985 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1986 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1987 // in this case, we do not delete the erratum stub (too late to do so), it is
1988 // merely generated without ever being called.)
1989
1990 template<int size, bool big_endian>
1991 bool
1992 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1993 The_erratum_stub* stub,
1994 typename Sized_relobj_file<size, big_endian>::View_size& pview)
1995 {
1996 if (stub->type() != ST_E_843419)
1997 return false;
1998
1999 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2000 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2001 E843419_stub<size, big_endian>* e843419_stub =
2002 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2003 AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2004 Insntype* adrp_view = reinterpret_cast<Insntype*>(
2005 pview.view + e843419_stub->adrp_sh_offset());
2006 Insntype adrp_insn = adrp_view[0];
2007 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2008 // Get adrp 33-bit signed imm value.
2009 int64_t adrp_imm = Insn_utilities::
2010 aarch64_adrp_decode_imm(adrp_insn);
2011 // adrp - final value transferred to target register is calculated as:
2012 // PC[11:0] = Zeros(12)
2013 // adrp_dest_value = PC + adrp_imm;
2014 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2015 // adr -final value transferred to target register is calucalted as:
2016 // PC + adr_imm
2017 // So we have:
2018 // PC + adr_imm = adrp_dest_value
2019 // ==>
2020 // adr_imm = adrp_dest_value - PC
2021 int64_t adr_imm = adrp_dest_value - pc;
2022 // Check if imm fits in adr (21-bit signed).
2023 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2024 {
2025 // Convert 'adrp' into 'adr'.
2026 Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2027 adr_insn = Insn_utilities::
2028 aarch64_adr_encode_imm(adr_insn, adr_imm);
2029 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2030 return true;
2031 }
2032 return false;
2033 }
2034
2035
2036 // Relocate sections.
2037
2038 template<int size, bool big_endian>
2039 void
2040 AArch64_relobj<size, big_endian>::do_relocate_sections(
2041 const Symbol_table* symtab, const Layout* layout,
2042 const unsigned char* pshdrs, Output_file* of,
2043 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2044 {
2045 // Call parent to relocate sections.
2046 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2047 pshdrs, of, pviews);
2048
2049 // We do not generate stubs if doing a relocatable link.
2050 if (parameters->options().relocatable())
2051 return;
2052
2053 if (parameters->options().fix_cortex_a53_843419()
2054 || parameters->options().fix_cortex_a53_835769())
2055 this->fix_errata(pviews);
2056
2057 Relocate_info<size, big_endian> relinfo;
2058 relinfo.symtab = symtab;
2059 relinfo.layout = layout;
2060 relinfo.object = this;
2061
2062 // Relocate stub tables.
2063 unsigned int shnum = this->shnum();
2064 The_target_aarch64* target = The_target_aarch64::current_target();
2065
2066 for (unsigned int i = 1; i < shnum; ++i)
2067 {
2068 The_aarch64_input_section* aarch64_input_section =
2069 target->find_aarch64_input_section(this, i);
2070 if (aarch64_input_section != NULL
2071 && aarch64_input_section->is_stub_table_owner()
2072 && !aarch64_input_section->stub_table()->empty())
2073 {
2074 Output_section* os = this->output_section(i);
2075 gold_assert(os != NULL);
2076
2077 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2078 relinfo.reloc_shdr = NULL;
2079 relinfo.data_shndx = i;
2080 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2081
2082 typename Sized_relobj_file<size, big_endian>::View_size&
2083 view_struct = (*pviews)[i];
2084 gold_assert(view_struct.view != NULL);
2085
2086 The_stub_table* stub_table = aarch64_input_section->stub_table();
2087 off_t offset = stub_table->address() - view_struct.address;
2088 unsigned char* view = view_struct.view + offset;
2089 AArch64_address address = stub_table->address();
2090 section_size_type view_size = stub_table->data_size();
2091 stub_table->relocate_stubs(&relinfo, target, os, view, address,
2092 view_size);
2093 }
2094 }
2095 }
2096
2097
2098 // Determine if an input section is scannable for stub processing. SHDR is
2099 // the header of the section and SHNDX is the section index. OS is the output
2100 // section for the input section and SYMTAB is the global symbol table used to
2101 // look up ICF information.
2102
2103 template<int size, bool big_endian>
2104 bool
2105 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2106 const elfcpp::Shdr<size, big_endian>& text_shdr,
2107 unsigned int text_shndx,
2108 const Output_section* os,
2109 const Symbol_table* symtab)
2110 {
2111 // Skip any empty sections, unallocated sections or sections whose
2112 // type are not SHT_PROGBITS.
2113 if (text_shdr.get_sh_size() == 0
2114 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2115 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2116 return false;
2117
2118 // Skip any discarded or ICF'ed sections.
2119 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2120 return false;
2121
2122 // Skip exception frame.
2123 if (strcmp(os->name(), ".eh_frame") == 0)
2124 return false ;
2125
2126 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2127 os->find_relaxed_input_section(this, text_shndx) != NULL);
2128
2129 return true;
2130 }
2131
2132
2133 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2134 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2135
2136 template<int size, bool big_endian>
2137 bool
2138 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2139 const elfcpp::Shdr<size, big_endian>& shdr,
2140 const Relobj::Output_sections& out_sections,
2141 const Symbol_table* symtab,
2142 const unsigned char* pshdrs)
2143 {
2144 unsigned int sh_type = shdr.get_sh_type();
2145 if (sh_type != elfcpp::SHT_RELA)
2146 return false;
2147
2148 // Ignore empty section.
2149 off_t sh_size = shdr.get_sh_size();
2150 if (sh_size == 0)
2151 return false;
2152
2153 // Ignore reloc section with unexpected symbol table. The
2154 // error will be reported in the final link.
2155 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2156 return false;
2157
2158 gold_assert(sh_type == elfcpp::SHT_RELA);
2159 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2160
2161 // Ignore reloc section with unexpected entsize or uneven size.
2162 // The error will be reported in the final link.
2163 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2164 return false;
2165
2166 // Ignore reloc section with bad info. This error will be
2167 // reported in the final link.
2168 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2169 if (text_shndx >= this->shnum())
2170 return false;
2171
2172 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2173 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2174 text_shndx * shdr_size);
2175 return this->text_section_is_scannable(text_shdr, text_shndx,
2176 out_sections[text_shndx], symtab);
2177 }
2178
2179
2180 // Scan section SHNDX for erratum 843419 and 835769.
2181
2182 template<int size, bool big_endian>
2183 void
2184 AArch64_relobj<size, big_endian>::scan_errata(
2185 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2186 Output_section* os, const Symbol_table* symtab,
2187 The_target_aarch64* target)
2188 {
2189 if (shdr.get_sh_size() == 0
2190 || (shdr.get_sh_flags() &
2191 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2192 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2193 return;
2194
2195 if (!os || symtab->is_section_folded(this, shndx)) return;
2196
2197 AArch64_address output_offset = this->get_output_section_offset(shndx);
2198 AArch64_address output_address;
2199 if (output_offset != invalid_address)
2200 output_address = os->address() + output_offset;
2201 else
2202 {
2203 const Output_relaxed_input_section* poris =
2204 os->find_relaxed_input_section(this, shndx);
2205 if (!poris) return;
2206 output_address = poris->address();
2207 }
2208
2209 section_size_type input_view_size = 0;
2210 const unsigned char* input_view =
2211 this->section_contents(shndx, &input_view_size, false);
2212
2213 Mapping_symbol_position section_start(shndx, 0);
2214 // Find the first mapping symbol record within section shndx.
2215 typename Mapping_symbol_info::const_iterator p =
2216 this->mapping_symbol_info_.lower_bound(section_start);
2217 while (p != this->mapping_symbol_info_.end() &&
2218 p->first.shndx_ == shndx)
2219 {
2220 typename Mapping_symbol_info::const_iterator prev = p;
2221 ++p;
2222 if (prev->second == 'x')
2223 {
2224 section_size_type span_start =
2225 convert_to_section_size_type(prev->first.offset_);
2226 section_size_type span_end;
2227 if (p != this->mapping_symbol_info_.end()
2228 && p->first.shndx_ == shndx)
2229 span_end = convert_to_section_size_type(p->first.offset_);
2230 else
2231 span_end = convert_to_section_size_type(shdr.get_sh_size());
2232
2233 // Here we do not share the scanning code of both errata. For 843419,
2234 // only the last few insns of each page are examined, which is fast,
2235 // whereas, for 835769, every insn pair needs to be checked.
2236
2237 if (parameters->options().fix_cortex_a53_843419())
2238 target->scan_erratum_843419_span(
2239 this, shndx, span_start, span_end,
2240 const_cast<unsigned char*>(input_view), output_address);
2241
2242 if (parameters->options().fix_cortex_a53_835769())
2243 target->scan_erratum_835769_span(
2244 this, shndx, span_start, span_end,
2245 const_cast<unsigned char*>(input_view), output_address);
2246 }
2247 }
2248 }
2249
2250
2251 // Scan relocations for stub generation.
2252
2253 template<int size, bool big_endian>
2254 void
2255 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2256 The_target_aarch64* target,
2257 const Symbol_table* symtab,
2258 const Layout* layout)
2259 {
2260 unsigned int shnum = this->shnum();
2261 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2262
2263 // Read the section headers.
2264 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2265 shnum * shdr_size,
2266 true, true);
2267
2268 // To speed up processing, we set up hash tables for fast lookup of
2269 // input offsets to output addresses.
2270 this->initialize_input_to_output_maps();
2271
2272 const Relobj::Output_sections& out_sections(this->output_sections());
2273
2274 Relocate_info<size, big_endian> relinfo;
2275 relinfo.symtab = symtab;
2276 relinfo.layout = layout;
2277 relinfo.object = this;
2278
2279 // Do relocation stubs scanning.
2280 const unsigned char* p = pshdrs + shdr_size;
2281 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2282 {
2283 const elfcpp::Shdr<size, big_endian> shdr(p);
2284 if (parameters->options().fix_cortex_a53_843419()
2285 || parameters->options().fix_cortex_a53_835769())
2286 scan_errata(i, shdr, out_sections[i], symtab, target);
2287 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2288 pshdrs))
2289 {
2290 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2291 AArch64_address output_offset =
2292 this->get_output_section_offset(index);
2293 AArch64_address output_address;
2294 if (output_offset != invalid_address)
2295 {
2296 output_address = out_sections[index]->address() + output_offset;
2297 }
2298 else
2299 {
2300 // Currently this only happens for a relaxed section.
2301 const Output_relaxed_input_section* poris =
2302 out_sections[index]->find_relaxed_input_section(this, index);
2303 gold_assert(poris != NULL);
2304 output_address = poris->address();
2305 }
2306
2307 // Get the relocations.
2308 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2309 shdr.get_sh_size(),
2310 true, false);
2311
2312 // Get the section contents.
2313 section_size_type input_view_size = 0;
2314 const unsigned char* input_view =
2315 this->section_contents(index, &input_view_size, false);
2316
2317 relinfo.reloc_shndx = i;
2318 relinfo.data_shndx = index;
2319 unsigned int sh_type = shdr.get_sh_type();
2320 unsigned int reloc_size;
2321 gold_assert (sh_type == elfcpp::SHT_RELA);
2322 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2323
2324 Output_section* os = out_sections[index];
2325 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2326 shdr.get_sh_size() / reloc_size,
2327 os,
2328 output_offset == invalid_address,
2329 input_view, output_address,
2330 input_view_size);
2331 }
2332 }
2333 }
2334
2335
2336 // A class to wrap an ordinary input section containing executable code.
2337
2338 template<int size, bool big_endian>
2339 class AArch64_input_section : public Output_relaxed_input_section
2340 {
2341 public:
2342 typedef Stub_table<size, big_endian> The_stub_table;
2343
2344 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2345 : Output_relaxed_input_section(relobj, shndx, 1),
2346 stub_table_(NULL),
2347 original_contents_(NULL), original_size_(0),
2348 original_addralign_(1)
2349 { }
2350
2351 ~AArch64_input_section()
2352 { delete[] this->original_contents_; }
2353
2354 // Initialize.
2355 void
2356 init();
2357
2358 // Set the stub_table.
2359 void
2360 set_stub_table(The_stub_table* st)
2361 { this->stub_table_ = st; }
2362
2363 // Whether this is a stub table owner.
2364 bool
2365 is_stub_table_owner() const
2366 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2367
2368 // Return the original size of the section.
2369 uint32_t
2370 original_size() const
2371 { return this->original_size_; }
2372
2373 // Return the stub table.
2374 The_stub_table*
2375 stub_table()
2376 { return stub_table_; }
2377
2378 protected:
2379 // Write out this input section.
2380 void
2381 do_write(Output_file*);
2382
2383 // Return required alignment of this.
2384 uint64_t
2385 do_addralign() const
2386 {
2387 if (this->is_stub_table_owner())
2388 return std::max(this->stub_table_->addralign(),
2389 static_cast<uint64_t>(this->original_addralign_));
2390 else
2391 return this->original_addralign_;
2392 }
2393
2394 // Finalize data size.
2395 void
2396 set_final_data_size();
2397
2398 // Reset address and file offset.
2399 void
2400 do_reset_address_and_file_offset();
2401
2402 // Output offset.
2403 bool
2404 do_output_offset(const Relobj* object, unsigned int shndx,
2405 section_offset_type offset,
2406 section_offset_type* poutput) const
2407 {
2408 if ((object == this->relobj())
2409 && (shndx == this->shndx())
2410 && (offset >= 0)
2411 && (offset <=
2412 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2413 {
2414 *poutput = offset;
2415 return true;
2416 }
2417 else
2418 return false;
2419 }
2420
2421 private:
2422 // Copying is not allowed.
2423 AArch64_input_section(const AArch64_input_section&);
2424 AArch64_input_section& operator=(const AArch64_input_section&);
2425
2426 // The relocation stubs.
2427 The_stub_table* stub_table_;
2428 // Original section contents. We have to make a copy here since the file
2429 // containing the original section may not be locked when we need to access
2430 // the contents.
2431 unsigned char* original_contents_;
2432 // Section size of the original input section.
2433 uint32_t original_size_;
2434 // Address alignment of the original input section.
2435 uint32_t original_addralign_;
2436 }; // End of AArch64_input_section
2437
2438
2439 // Finalize data size.
2440
2441 template<int size, bool big_endian>
2442 void
2443 AArch64_input_section<size, big_endian>::set_final_data_size()
2444 {
2445 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2446
2447 if (this->is_stub_table_owner())
2448 {
2449 this->stub_table_->finalize_data_size();
2450 off = align_address(off, this->stub_table_->addralign());
2451 off += this->stub_table_->data_size();
2452 }
2453 this->set_data_size(off);
2454 }
2455
2456
2457 // Reset address and file offset.
2458
2459 template<int size, bool big_endian>
2460 void
2461 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2462 {
2463 // Size of the original input section contents.
2464 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2465
2466 // If this is a stub table owner, account for the stub table size.
2467 if (this->is_stub_table_owner())
2468 {
2469 The_stub_table* stub_table = this->stub_table_;
2470
2471 // Reset the stub table's address and file offset. The
2472 // current data size for child will be updated after that.
2473 stub_table_->reset_address_and_file_offset();
2474 off = align_address(off, stub_table_->addralign());
2475 off += stub_table->current_data_size();
2476 }
2477
2478 this->set_current_data_size(off);
2479 }
2480
2481
2482 // Initialize an Arm_input_section.
2483
2484 template<int size, bool big_endian>
2485 void
2486 AArch64_input_section<size, big_endian>::init()
2487 {
2488 Relobj* relobj = this->relobj();
2489 unsigned int shndx = this->shndx();
2490
2491 // We have to cache original size, alignment and contents to avoid locking
2492 // the original file.
2493 this->original_addralign_ =
2494 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2495
2496 // This is not efficient but we expect only a small number of relaxed
2497 // input sections for stubs.
2498 section_size_type section_size;
2499 const unsigned char* section_contents =
2500 relobj->section_contents(shndx, &section_size, false);
2501 this->original_size_ =
2502 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2503
2504 gold_assert(this->original_contents_ == NULL);
2505 this->original_contents_ = new unsigned char[section_size];
2506 memcpy(this->original_contents_, section_contents, section_size);
2507
2508 // We want to make this look like the original input section after
2509 // output sections are finalized.
2510 Output_section* os = relobj->output_section(shndx);
2511 off_t offset = relobj->output_section_offset(shndx);
2512 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2513 this->set_address(os->address() + offset);
2514 this->set_file_offset(os->offset() + offset);
2515 this->set_current_data_size(this->original_size_);
2516 this->finalize_data_size();
2517 }
2518
2519
2520 // Write data to output file.
2521
2522 template<int size, bool big_endian>
2523 void
2524 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2525 {
2526 // We have to write out the original section content.
2527 gold_assert(this->original_contents_ != NULL);
2528 of->write(this->offset(), this->original_contents_,
2529 this->original_size_);
2530
2531 // If this owns a stub table and it is not empty, write it.
2532 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2533 this->stub_table_->write(of);
2534 }
2535
2536
2537 // Arm output section class. This is defined mainly to add a number of stub
2538 // generation methods.
2539
2540 template<int size, bool big_endian>
2541 class AArch64_output_section : public Output_section
2542 {
2543 public:
2544 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2545 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2546 typedef Stub_table<size, big_endian> The_stub_table;
2547 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2548
2549 public:
2550 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2551 elfcpp::Elf_Xword flags)
2552 : Output_section(name, type, flags)
2553 { }
2554
2555 ~AArch64_output_section() {}
2556
2557 // Group input sections for stub generation.
2558 void
2559 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2560 const Task*);
2561
2562 private:
2563 typedef Output_section::Input_section Input_section;
2564 typedef Output_section::Input_section_list Input_section_list;
2565
2566 // Create a stub group.
2567 void
2568 create_stub_group(Input_section_list::const_iterator,
2569 Input_section_list::const_iterator,
2570 Input_section_list::const_iterator,
2571 The_target_aarch64*,
2572 std::vector<Output_relaxed_input_section*>&,
2573 const Task*);
2574 }; // End of AArch64_output_section
2575
2576
2577 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2578 // the input section that will be the owner of the stub table.
2579
2580 template<int size, bool big_endian> void
2581 AArch64_output_section<size, big_endian>::create_stub_group(
2582 Input_section_list::const_iterator first,
2583 Input_section_list::const_iterator last,
2584 Input_section_list::const_iterator owner,
2585 The_target_aarch64* target,
2586 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2587 const Task* task)
2588 {
2589 // Currently we convert ordinary input sections into relaxed sections only
2590 // at this point.
2591 The_aarch64_input_section* input_section;
2592 if (owner->is_relaxed_input_section())
2593 gold_unreachable();
2594 else
2595 {
2596 gold_assert(owner->is_input_section());
2597 // Create a new relaxed input section. We need to lock the original
2598 // file.
2599 Task_lock_obj<Object> tl(task, owner->relobj());
2600 input_section =
2601 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2602 new_relaxed_sections.push_back(input_section);
2603 }
2604
2605 // Create a stub table.
2606 The_stub_table* stub_table =
2607 target->new_stub_table(input_section);
2608
2609 input_section->set_stub_table(stub_table);
2610
2611 Input_section_list::const_iterator p = first;
2612 // Look for input sections or relaxed input sections in [first ... last].
2613 do
2614 {
2615 if (p->is_input_section() || p->is_relaxed_input_section())
2616 {
2617 // The stub table information for input sections live
2618 // in their objects.
2619 The_aarch64_relobj* aarch64_relobj =
2620 static_cast<The_aarch64_relobj*>(p->relobj());
2621 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2622 }
2623 }
2624 while (p++ != last);
2625 }
2626
2627
2628 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2629 // stub groups. We grow a stub group by adding input section until the size is
2630 // just below GROUP_SIZE. The last input section will be converted into a stub
2631 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2632 // after the stub table, effectively doubling the group size.
2633 //
2634 // This is similar to the group_sections() function in elf32-arm.c but is
2635 // implemented differently.
2636
2637 template<int size, bool big_endian>
2638 void AArch64_output_section<size, big_endian>::group_sections(
2639 section_size_type group_size,
2640 bool stubs_always_after_branch,
2641 Target_aarch64<size, big_endian>* target,
2642 const Task* task)
2643 {
2644 typedef enum
2645 {
2646 NO_GROUP,
2647 FINDING_STUB_SECTION,
2648 HAS_STUB_SECTION
2649 } State;
2650
2651 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2652
2653 State state = NO_GROUP;
2654 section_size_type off = 0;
2655 section_size_type group_begin_offset = 0;
2656 section_size_type group_end_offset = 0;
2657 section_size_type stub_table_end_offset = 0;
2658 Input_section_list::const_iterator group_begin =
2659 this->input_sections().end();
2660 Input_section_list::const_iterator stub_table =
2661 this->input_sections().end();
2662 Input_section_list::const_iterator group_end = this->input_sections().end();
2663 for (Input_section_list::const_iterator p = this->input_sections().begin();
2664 p != this->input_sections().end();
2665 ++p)
2666 {
2667 section_size_type section_begin_offset =
2668 align_address(off, p->addralign());
2669 section_size_type section_end_offset =
2670 section_begin_offset + p->data_size();
2671
2672 // Check to see if we should group the previously seen sections.
2673 switch (state)
2674 {
2675 case NO_GROUP:
2676 break;
2677
2678 case FINDING_STUB_SECTION:
2679 // Adding this section makes the group larger than GROUP_SIZE.
2680 if (section_end_offset - group_begin_offset >= group_size)
2681 {
2682 if (stubs_always_after_branch)
2683 {
2684 gold_assert(group_end != this->input_sections().end());
2685 this->create_stub_group(group_begin, group_end, group_end,
2686 target, new_relaxed_sections,
2687 task);
2688 state = NO_GROUP;
2689 }
2690 else
2691 {
2692 // Input sections up to stub_group_size bytes after the stub
2693 // table can be handled by it too.
2694 state = HAS_STUB_SECTION;
2695 stub_table = group_end;
2696 stub_table_end_offset = group_end_offset;
2697 }
2698 }
2699 break;
2700
2701 case HAS_STUB_SECTION:
2702 // Adding this section makes the post stub-section group larger
2703 // than GROUP_SIZE.
2704 gold_unreachable();
2705 // NOT SUPPORTED YET. For completeness only.
2706 if (section_end_offset - stub_table_end_offset >= group_size)
2707 {
2708 gold_assert(group_end != this->input_sections().end());
2709 this->create_stub_group(group_begin, group_end, stub_table,
2710 target, new_relaxed_sections, task);
2711 state = NO_GROUP;
2712 }
2713 break;
2714
2715 default:
2716 gold_unreachable();
2717 }
2718
2719 // If we see an input section and currently there is no group, start
2720 // a new one. Skip any empty sections. We look at the data size
2721 // instead of calling p->relobj()->section_size() to avoid locking.
2722 if ((p->is_input_section() || p->is_relaxed_input_section())
2723 && (p->data_size() != 0))
2724 {
2725 if (state == NO_GROUP)
2726 {
2727 state = FINDING_STUB_SECTION;
2728 group_begin = p;
2729 group_begin_offset = section_begin_offset;
2730 }
2731
2732 // Keep track of the last input section seen.
2733 group_end = p;
2734 group_end_offset = section_end_offset;
2735 }
2736
2737 off = section_end_offset;
2738 }
2739
2740 // Create a stub group for any ungrouped sections.
2741 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2742 {
2743 gold_assert(group_end != this->input_sections().end());
2744 this->create_stub_group(group_begin, group_end,
2745 (state == FINDING_STUB_SECTION
2746 ? group_end
2747 : stub_table),
2748 target, new_relaxed_sections, task);
2749 }
2750
2751 if (!new_relaxed_sections.empty())
2752 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2753
2754 // Update the section offsets
2755 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2756 {
2757 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2758 new_relaxed_sections[i]->relobj());
2759 unsigned int shndx = new_relaxed_sections[i]->shndx();
2760 // Tell AArch64_relobj that this input section is converted.
2761 relobj->convert_input_section_to_relaxed_section(shndx);
2762 }
2763 } // End of AArch64_output_section::group_sections
2764
2765
2766 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2767
2768
2769 // The aarch64 target class.
2770 // See the ABI at
2771 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2772 template<int size, bool big_endian>
2773 class Target_aarch64 : public Sized_target<size, big_endian>
2774 {
2775 public:
2776 typedef Target_aarch64<size, big_endian> This;
2777 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2778 Reloc_section;
2779 typedef Relocate_info<size, big_endian> The_relocate_info;
2780 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2781 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2782 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2783 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2784 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2785 typedef Stub_table<size, big_endian> The_stub_table;
2786 typedef std::vector<The_stub_table*> Stub_table_list;
2787 typedef typename Stub_table_list::iterator Stub_table_iterator;
2788 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2789 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2790 typedef Unordered_map<Section_id,
2791 AArch64_input_section<size, big_endian>*,
2792 Section_id_hash> AArch64_input_section_map;
2793 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2794 const static int TCB_SIZE = size / 8 * 2;
2795
2796 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2797 : Sized_target<size, big_endian>(info),
2798 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2799 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2800 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2801 got_mod_index_offset_(-1U),
2802 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2803 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2804 { }
2805
2806 // Scan the relocations to determine unreferenced sections for
2807 // garbage collection.
2808 void
2809 gc_process_relocs(Symbol_table* symtab,
2810 Layout* layout,
2811 Sized_relobj_file<size, big_endian>* object,
2812 unsigned int data_shndx,
2813 unsigned int sh_type,
2814 const unsigned char* prelocs,
2815 size_t reloc_count,
2816 Output_section* output_section,
2817 bool needs_special_offset_handling,
2818 size_t local_symbol_count,
2819 const unsigned char* plocal_symbols);
2820
2821 // Scan the relocations to look for symbol adjustments.
2822 void
2823 scan_relocs(Symbol_table* symtab,
2824 Layout* layout,
2825 Sized_relobj_file<size, big_endian>* object,
2826 unsigned int data_shndx,
2827 unsigned int sh_type,
2828 const unsigned char* prelocs,
2829 size_t reloc_count,
2830 Output_section* output_section,
2831 bool needs_special_offset_handling,
2832 size_t local_symbol_count,
2833 const unsigned char* plocal_symbols);
2834
2835 // Finalize the sections.
2836 void
2837 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2838
2839 // Return the value to use for a dynamic which requires special
2840 // treatment.
2841 uint64_t
2842 do_dynsym_value(const Symbol*) const;
2843
2844 // Relocate a section.
2845 void
2846 relocate_section(const Relocate_info<size, big_endian>*,
2847 unsigned int sh_type,
2848 const unsigned char* prelocs,
2849 size_t reloc_count,
2850 Output_section* output_section,
2851 bool needs_special_offset_handling,
2852 unsigned char* view,
2853 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2854 section_size_type view_size,
2855 const Reloc_symbol_changes*);
2856
2857 // Scan the relocs during a relocatable link.
2858 void
2859 scan_relocatable_relocs(Symbol_table* symtab,
2860 Layout* layout,
2861 Sized_relobj_file<size, big_endian>* object,
2862 unsigned int data_shndx,
2863 unsigned int sh_type,
2864 const unsigned char* prelocs,
2865 size_t reloc_count,
2866 Output_section* output_section,
2867 bool needs_special_offset_handling,
2868 size_t local_symbol_count,
2869 const unsigned char* plocal_symbols,
2870 Relocatable_relocs*);
2871
2872 // Relocate a section during a relocatable link.
2873 void
2874 relocate_relocs(
2875 const Relocate_info<size, big_endian>*,
2876 unsigned int sh_type,
2877 const unsigned char* prelocs,
2878 size_t reloc_count,
2879 Output_section* output_section,
2880 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2881 const Relocatable_relocs*,
2882 unsigned char* view,
2883 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2884 section_size_type view_size,
2885 unsigned char* reloc_view,
2886 section_size_type reloc_view_size);
2887
2888 // Return the symbol index to use for a target specific relocation.
2889 // The only target specific relocation is R_AARCH64_TLSDESC for a
2890 // local symbol, which is an absolute reloc.
2891 unsigned int
2892 do_reloc_symbol_index(void*, unsigned int r_type) const
2893 {
2894 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2895 return 0;
2896 }
2897
2898 // Return the addend to use for a target specific relocation.
2899 uint64_t
2900 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2901
2902 // Return the PLT section.
2903 uint64_t
2904 do_plt_address_for_global(const Symbol* gsym) const
2905 { return this->plt_section()->address_for_global(gsym); }
2906
2907 uint64_t
2908 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2909 { return this->plt_section()->address_for_local(relobj, symndx); }
2910
2911 // This function should be defined in targets that can use relocation
2912 // types to determine (implemented in local_reloc_may_be_function_pointer
2913 // and global_reloc_may_be_function_pointer)
2914 // if a function's pointer is taken. ICF uses this in safe mode to only
2915 // fold those functions whose pointer is defintely not taken.
2916 bool
2917 do_can_check_for_function_pointers() const
2918 { return true; }
2919
2920 // Return the number of entries in the PLT.
2921 unsigned int
2922 plt_entry_count() const;
2923
2924 //Return the offset of the first non-reserved PLT entry.
2925 unsigned int
2926 first_plt_entry_offset() const;
2927
2928 // Return the size of each PLT entry.
2929 unsigned int
2930 plt_entry_size() const;
2931
2932 // Create a stub table.
2933 The_stub_table*
2934 new_stub_table(The_aarch64_input_section*);
2935
2936 // Create an aarch64 input section.
2937 The_aarch64_input_section*
2938 new_aarch64_input_section(Relobj*, unsigned int);
2939
2940 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2941 The_aarch64_input_section*
2942 find_aarch64_input_section(Relobj*, unsigned int) const;
2943
2944 // Return the thread control block size.
2945 unsigned int
2946 tcb_size() const { return This::TCB_SIZE; }
2947
2948 // Scan a section for stub generation.
2949 void
2950 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2951 const unsigned char*, size_t, Output_section*,
2952 bool, const unsigned char*,
2953 Address,
2954 section_size_type);
2955
2956 // Scan a relocation section for stub.
2957 template<int sh_type>
2958 void
2959 scan_reloc_section_for_stubs(
2960 const The_relocate_info* relinfo,
2961 const unsigned char* prelocs,
2962 size_t reloc_count,
2963 Output_section* output_section,
2964 bool needs_special_offset_handling,
2965 const unsigned char* view,
2966 Address view_address,
2967 section_size_type);
2968
2969 // Relocate a single stub.
2970 void
2971 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2972 Output_section*, unsigned char*, Address,
2973 section_size_type);
2974
2975 // Get the default AArch64 target.
2976 static This*
2977 current_target()
2978 {
2979 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2980 && parameters->target().get_size() == size
2981 && parameters->target().is_big_endian() == big_endian);
2982 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2983 }
2984
2985
2986 // Scan erratum 843419 for a part of a section.
2987 void
2988 scan_erratum_843419_span(
2989 AArch64_relobj<size, big_endian>*,
2990 unsigned int,
2991 const section_size_type,
2992 const section_size_type,
2993 unsigned char*,
2994 Address);
2995
2996 // Scan erratum 835769 for a part of a section.
2997 void
2998 scan_erratum_835769_span(
2999 AArch64_relobj<size, big_endian>*,
3000 unsigned int,
3001 const section_size_type,
3002 const section_size_type,
3003 unsigned char*,
3004 Address);
3005
3006 protected:
3007 void
3008 do_select_as_default_target()
3009 {
3010 gold_assert(aarch64_reloc_property_table == NULL);
3011 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3012 }
3013
3014 // Add a new reloc argument, returning the index in the vector.
3015 size_t
3016 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3017 unsigned int r_sym)
3018 {
3019 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3020 return this->tlsdesc_reloc_info_.size() - 1;
3021 }
3022
3023 virtual Output_data_plt_aarch64<size, big_endian>*
3024 do_make_data_plt(Layout* layout,
3025 Output_data_got_aarch64<size, big_endian>* got,
3026 Output_data_space* got_plt,
3027 Output_data_space* got_irelative)
3028 {
3029 return new Output_data_plt_aarch64_standard<size, big_endian>(
3030 layout, got, got_plt, got_irelative);
3031 }
3032
3033
3034 // do_make_elf_object to override the same function in the base class.
3035 Object*
3036 do_make_elf_object(const std::string&, Input_file*, off_t,
3037 const elfcpp::Ehdr<size, big_endian>&);
3038
3039 Output_data_plt_aarch64<size, big_endian>*
3040 make_data_plt(Layout* layout,
3041 Output_data_got_aarch64<size, big_endian>* got,
3042 Output_data_space* got_plt,
3043 Output_data_space* got_irelative)
3044 {
3045 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3046 }
3047
3048 // We only need to generate stubs, and hence perform relaxation if we are
3049 // not doing relocatable linking.
3050 virtual bool
3051 do_may_relax() const
3052 { return !parameters->options().relocatable(); }
3053
3054 // Relaxation hook. This is where we do stub generation.
3055 virtual bool
3056 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3057
3058 void
3059 group_sections(Layout* layout,
3060 section_size_type group_size,
3061 bool stubs_always_after_branch,
3062 const Task* task);
3063
3064 void
3065 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3066 const Sized_symbol<size>*, unsigned int,
3067 const Symbol_value<size>*,
3068 typename elfcpp::Elf_types<size>::Elf_Swxword,
3069 Address Elf_Addr);
3070
3071 // Make an output section.
3072 Output_section*
3073 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3074 elfcpp::Elf_Xword flags)
3075 { return new The_aarch64_output_section(name, type, flags); }
3076
3077 private:
3078 // The class which scans relocations.
3079 class Scan
3080 {
3081 public:
3082 Scan()
3083 : issued_non_pic_error_(false)
3084 { }
3085
3086 inline void
3087 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3088 Sized_relobj_file<size, big_endian>* object,
3089 unsigned int data_shndx,
3090 Output_section* output_section,
3091 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3092 const elfcpp::Sym<size, big_endian>& lsym,
3093 bool is_discarded);
3094
3095 inline void
3096 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3097 Sized_relobj_file<size, big_endian>* object,
3098 unsigned int data_shndx,
3099 Output_section* output_section,
3100 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3101 Symbol* gsym);
3102
3103 inline bool
3104 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3105 Target_aarch64<size, big_endian>* ,
3106 Sized_relobj_file<size, big_endian>* ,
3107 unsigned int ,
3108 Output_section* ,
3109 const elfcpp::Rela<size, big_endian>& ,
3110 unsigned int r_type,
3111 const elfcpp::Sym<size, big_endian>&);
3112
3113 inline bool
3114 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3115 Target_aarch64<size, big_endian>* ,
3116 Sized_relobj_file<size, big_endian>* ,
3117 unsigned int ,
3118 Output_section* ,
3119 const elfcpp::Rela<size, big_endian>& ,
3120 unsigned int r_type,
3121 Symbol* gsym);
3122
3123 private:
3124 static void
3125 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3126 unsigned int r_type);
3127
3128 static void
3129 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3130 unsigned int r_type, Symbol*);
3131
3132 inline bool
3133 possible_function_pointer_reloc(unsigned int r_type);
3134
3135 void
3136 check_non_pic(Relobj*, unsigned int r_type);
3137
3138 bool
3139 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3140 unsigned int r_type);
3141
3142 // Whether we have issued an error about a non-PIC compilation.
3143 bool issued_non_pic_error_;
3144 };
3145
3146 // The class which implements relocation.
3147 class Relocate
3148 {
3149 public:
3150 Relocate()
3151 : skip_call_tls_get_addr_(false)
3152 { }
3153
3154 ~Relocate()
3155 { }
3156
3157 // Do a relocation. Return false if the caller should not issue
3158 // any warnings about this relocation.
3159 inline bool
3160 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
3161 Output_section*,
3162 size_t relnum, const elfcpp::Rela<size, big_endian>&,
3163 unsigned int r_type, const Sized_symbol<size>*,
3164 const Symbol_value<size>*,
3165 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3166 section_size_type);
3167
3168 private:
3169 inline typename AArch64_relocate_functions<size, big_endian>::Status
3170 relocate_tls(const Relocate_info<size, big_endian>*,
3171 Target_aarch64<size, big_endian>*,
3172 size_t,
3173 const elfcpp::Rela<size, big_endian>&,
3174 unsigned int r_type, const Sized_symbol<size>*,
3175 const Symbol_value<size>*,
3176 unsigned char*,
3177 typename elfcpp::Elf_types<size>::Elf_Addr);
3178
3179 inline typename AArch64_relocate_functions<size, big_endian>::Status
3180 tls_gd_to_le(
3181 const Relocate_info<size, big_endian>*,
3182 Target_aarch64<size, big_endian>*,
3183 const elfcpp::Rela<size, big_endian>&,
3184 unsigned int,
3185 unsigned char*,
3186 const Symbol_value<size>*);
3187
3188 inline typename AArch64_relocate_functions<size, big_endian>::Status
3189 tls_ld_to_le(
3190 const Relocate_info<size, big_endian>*,
3191 Target_aarch64<size, big_endian>*,
3192 const elfcpp::Rela<size, big_endian>&,
3193 unsigned int,
3194 unsigned char*,
3195 const Symbol_value<size>*);
3196
3197 inline typename AArch64_relocate_functions<size, big_endian>::Status
3198 tls_ie_to_le(
3199 const Relocate_info<size, big_endian>*,
3200 Target_aarch64<size, big_endian>*,
3201 const elfcpp::Rela<size, big_endian>&,
3202 unsigned int,
3203 unsigned char*,
3204 const Symbol_value<size>*);
3205
3206 inline typename AArch64_relocate_functions<size, big_endian>::Status
3207 tls_desc_gd_to_le(
3208 const Relocate_info<size, big_endian>*,
3209 Target_aarch64<size, big_endian>*,
3210 const elfcpp::Rela<size, big_endian>&,
3211 unsigned int,
3212 unsigned char*,
3213 const Symbol_value<size>*);
3214
3215 inline typename AArch64_relocate_functions<size, big_endian>::Status
3216 tls_desc_gd_to_ie(
3217 const Relocate_info<size, big_endian>*,
3218 Target_aarch64<size, big_endian>*,
3219 const elfcpp::Rela<size, big_endian>&,
3220 unsigned int,
3221 unsigned char*,
3222 const Symbol_value<size>*,
3223 typename elfcpp::Elf_types<size>::Elf_Addr,
3224 typename elfcpp::Elf_types<size>::Elf_Addr);
3225
3226 bool skip_call_tls_get_addr_;
3227
3228 }; // End of class Relocate
3229
3230 // A class which returns the size required for a relocation type,
3231 // used while scanning relocs during a relocatable link.
3232 class Relocatable_size_for_reloc
3233 {
3234 public:
3235 unsigned int
3236 get_size_for_reloc(unsigned int, Relobj*);
3237 };
3238
3239 // Adjust TLS relocation type based on the options and whether this
3240 // is a local symbol.
3241 static tls::Tls_optimization
3242 optimize_tls_reloc(bool is_final, int r_type);
3243
3244 // Get the GOT section, creating it if necessary.
3245 Output_data_got_aarch64<size, big_endian>*
3246 got_section(Symbol_table*, Layout*);
3247
3248 // Get the GOT PLT section.
3249 Output_data_space*
3250 got_plt_section() const
3251 {
3252 gold_assert(this->got_plt_ != NULL);
3253 return this->got_plt_;
3254 }
3255
3256 // Get the GOT section for TLSDESC entries.
3257 Output_data_got<size, big_endian>*
3258 got_tlsdesc_section() const
3259 {
3260 gold_assert(this->got_tlsdesc_ != NULL);
3261 return this->got_tlsdesc_;
3262 }
3263
3264 // Create the PLT section.
3265 void
3266 make_plt_section(Symbol_table* symtab, Layout* layout);
3267
3268 // Create a PLT entry for a global symbol.
3269 void
3270 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3271
3272 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3273 void
3274 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3275 Sized_relobj_file<size, big_endian>* relobj,
3276 unsigned int local_sym_index);
3277
3278 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3279 void
3280 define_tls_base_symbol(Symbol_table*, Layout*);
3281
3282 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3283 void
3284 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3285
3286 // Create a GOT entry for the TLS module index.
3287 unsigned int
3288 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3289 Sized_relobj_file<size, big_endian>* object);
3290
3291 // Get the PLT section.
3292 Output_data_plt_aarch64<size, big_endian>*
3293 plt_section() const
3294 {
3295 gold_assert(this->plt_ != NULL);
3296 return this->plt_;
3297 }
3298
3299 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3300 // ST_E_843419, we need an additional field for adrp offset.
3301 void create_erratum_stub(
3302 AArch64_relobj<size, big_endian>* relobj,
3303 unsigned int shndx,
3304 section_size_type erratum_insn_offset,
3305 Address erratum_address,
3306 typename Insn_utilities::Insntype erratum_insn,
3307 int erratum_type,
3308 unsigned int e843419_adrp_offset=0);
3309
3310 // Return whether this is a 3-insn erratum sequence.
3311 bool is_erratum_843419_sequence(
3312 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3313 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3314 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3315
3316 // Return whether this is a 835769 sequence.
3317 // (Similarly implemented as in elfnn-aarch64.c.)
3318 bool is_erratum_835769_sequence(
3319 typename elfcpp::Swap<32,big_endian>::Valtype,
3320 typename elfcpp::Swap<32,big_endian>::Valtype);
3321
3322 // Get the dynamic reloc section, creating it if necessary.
3323 Reloc_section*
3324 rela_dyn_section(Layout*);
3325
3326 // Get the section to use for TLSDESC relocations.
3327 Reloc_section*
3328 rela_tlsdesc_section(Layout*) const;
3329
3330 // Get the section to use for IRELATIVE relocations.
3331 Reloc_section*
3332 rela_irelative_section(Layout*);
3333
3334 // Add a potential copy relocation.
3335 void
3336 copy_reloc(Symbol_table* symtab, Layout* layout,
3337 Sized_relobj_file<size, big_endian>* object,
3338 unsigned int shndx, Output_section* output_section,
3339 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3340 {
3341 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3342 this->copy_relocs_.copy_reloc(symtab, layout,
3343 symtab->get_sized_symbol<size>(sym),
3344 object, shndx, output_section,
3345 r_type, reloc.get_r_offset(),
3346 reloc.get_r_addend(),
3347 this->rela_dyn_section(layout));
3348 }
3349
3350 // Information about this specific target which we pass to the
3351 // general Target structure.
3352 static const Target::Target_info aarch64_info;
3353
3354 // The types of GOT entries needed for this platform.
3355 // These values are exposed to the ABI in an incremental link.
3356 // Do not renumber existing values without changing the version
3357 // number of the .gnu_incremental_inputs section.
3358 enum Got_type
3359 {
3360 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3361 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3362 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3363 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3364 };
3365
3366 // This type is used as the argument to the target specific
3367 // relocation routines. The only target specific reloc is
3368 // R_AARCh64_TLSDESC against a local symbol.
3369 struct Tlsdesc_info
3370 {
3371 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3372 unsigned int a_r_sym)
3373 : object(a_object), r_sym(a_r_sym)
3374 { }
3375
3376 // The object in which the local symbol is defined.
3377 Sized_relobj_file<size, big_endian>* object;
3378 // The local symbol index in the object.
3379 unsigned int r_sym;
3380 };
3381
3382 // The GOT section.
3383 Output_data_got_aarch64<size, big_endian>* got_;
3384 // The PLT section.
3385 Output_data_plt_aarch64<size, big_endian>* plt_;
3386 // The GOT PLT section.
3387 Output_data_space* got_plt_;
3388 // The GOT section for IRELATIVE relocations.
3389 Output_data_space* got_irelative_;
3390 // The GOT section for TLSDESC relocations.
3391 Output_data_got<size, big_endian>* got_tlsdesc_;
3392 // The _GLOBAL_OFFSET_TABLE_ symbol.
3393 Symbol* global_offset_table_;
3394 // The dynamic reloc section.
3395 Reloc_section* rela_dyn_;
3396 // The section to use for IRELATIVE relocs.
3397 Reloc_section* rela_irelative_;
3398 // Relocs saved to avoid a COPY reloc.
3399 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3400 // Offset of the GOT entry for the TLS module index.
3401 unsigned int got_mod_index_offset_;
3402 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3403 // specific relocation. Here we store the object and local symbol
3404 // index for the relocation.
3405 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3406 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3407 bool tls_base_symbol_defined_;
3408 // List of stub_tables
3409 Stub_table_list stub_tables_;
3410 // Actual stub group size
3411 section_size_type stub_group_size_;
3412 AArch64_input_section_map aarch64_input_section_map_;
3413 }; // End of Target_aarch64
3414
3415
3416 template<>
3417 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3418 {
3419 64, // size
3420 false, // is_big_endian
3421 elfcpp::EM_AARCH64, // machine_code
3422 false, // has_make_symbol
3423 false, // has_resolve
3424 false, // has_code_fill
3425 true, // is_default_stack_executable
3426 true, // can_icf_inline_merge_sections
3427 '\0', // wrap_char
3428 "/lib/ld.so.1", // program interpreter
3429 0x400000, // default_text_segment_address
3430 0x10000, // abi_pagesize (overridable by -z max-page-size)
3431 0x1000, // common_pagesize (overridable by -z common-page-size)
3432 false, // isolate_execinstr
3433 0, // rosegment_gap
3434 elfcpp::SHN_UNDEF, // small_common_shndx
3435 elfcpp::SHN_UNDEF, // large_common_shndx
3436 0, // small_common_section_flags
3437 0, // large_common_section_flags
3438 NULL, // attributes_section
3439 NULL, // attributes_vendor
3440 "_start", // entry_symbol_name
3441 32, // hash_entry_size
3442 };
3443
3444 template<>
3445 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3446 {
3447 32, // size
3448 false, // is_big_endian
3449 elfcpp::EM_AARCH64, // machine_code
3450 false, // has_make_symbol
3451 false, // has_resolve
3452 false, // has_code_fill
3453 true, // is_default_stack_executable
3454 false, // can_icf_inline_merge_sections
3455 '\0', // wrap_char
3456 "/lib/ld.so.1", // program interpreter
3457 0x400000, // default_text_segment_address
3458 0x10000, // abi_pagesize (overridable by -z max-page-size)
3459 0x1000, // common_pagesize (overridable by -z common-page-size)
3460 false, // isolate_execinstr
3461 0, // rosegment_gap
3462 elfcpp::SHN_UNDEF, // small_common_shndx
3463 elfcpp::SHN_UNDEF, // large_common_shndx
3464 0, // small_common_section_flags
3465 0, // large_common_section_flags
3466 NULL, // attributes_section
3467 NULL, // attributes_vendor
3468 "_start", // entry_symbol_name
3469 32, // hash_entry_size
3470 };
3471
3472 template<>
3473 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3474 {
3475 64, // size
3476 true, // is_big_endian
3477 elfcpp::EM_AARCH64, // machine_code
3478 false, // has_make_symbol
3479 false, // has_resolve
3480 false, // has_code_fill
3481 true, // is_default_stack_executable
3482 true, // can_icf_inline_merge_sections
3483 '\0', // wrap_char
3484 "/lib/ld.so.1", // program interpreter
3485 0x400000, // default_text_segment_address
3486 0x10000, // abi_pagesize (overridable by -z max-page-size)
3487 0x1000, // common_pagesize (overridable by -z common-page-size)
3488 false, // isolate_execinstr
3489 0, // rosegment_gap
3490 elfcpp::SHN_UNDEF, // small_common_shndx
3491 elfcpp::SHN_UNDEF, // large_common_shndx
3492 0, // small_common_section_flags
3493 0, // large_common_section_flags
3494 NULL, // attributes_section
3495 NULL, // attributes_vendor
3496 "_start", // entry_symbol_name
3497 32, // hash_entry_size
3498 };
3499
3500 template<>
3501 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3502 {
3503 32, // size
3504 true, // is_big_endian
3505 elfcpp::EM_AARCH64, // machine_code
3506 false, // has_make_symbol
3507 false, // has_resolve
3508 false, // has_code_fill
3509 true, // is_default_stack_executable
3510 false, // can_icf_inline_merge_sections
3511 '\0', // wrap_char
3512 "/lib/ld.so.1", // program interpreter
3513 0x400000, // default_text_segment_address
3514 0x10000, // abi_pagesize (overridable by -z max-page-size)
3515 0x1000, // common_pagesize (overridable by -z common-page-size)
3516 false, // isolate_execinstr
3517 0, // rosegment_gap
3518 elfcpp::SHN_UNDEF, // small_common_shndx
3519 elfcpp::SHN_UNDEF, // large_common_shndx
3520 0, // small_common_section_flags
3521 0, // large_common_section_flags
3522 NULL, // attributes_section
3523 NULL, // attributes_vendor
3524 "_start", // entry_symbol_name
3525 32, // hash_entry_size
3526 };
3527
3528 // Get the GOT section, creating it if necessary.
3529
3530 template<int size, bool big_endian>
3531 Output_data_got_aarch64<size, big_endian>*
3532 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3533 Layout* layout)
3534 {
3535 if (this->got_ == NULL)
3536 {
3537 gold_assert(symtab != NULL && layout != NULL);
3538
3539 // When using -z now, we can treat .got.plt as a relro section.
3540 // Without -z now, it is modified after program startup by lazy
3541 // PLT relocations.
3542 bool is_got_plt_relro = parameters->options().now();
3543 Output_section_order got_order = (is_got_plt_relro
3544 ? ORDER_RELRO
3545 : ORDER_RELRO_LAST);
3546 Output_section_order got_plt_order = (is_got_plt_relro
3547 ? ORDER_RELRO
3548 : ORDER_NON_RELRO_FIRST);
3549
3550 // Layout of .got and .got.plt sections.
3551 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3552 // ...
3553 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3554 // .gotplt[1] reserved for ld.so (resolver)
3555 // .gotplt[2] reserved
3556
3557 // Generate .got section.
3558 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3559 layout);
3560 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3561 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3562 this->got_, got_order, true);
3563 // The first word of GOT is reserved for the address of .dynamic.
3564 // We put 0 here now. The value will be replaced later in
3565 // Output_data_got_aarch64::do_write.
3566 this->got_->add_constant(0);
3567
3568 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3569 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3570 // even if there is a .got.plt section.
3571 this->global_offset_table_ =
3572 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3573 Symbol_table::PREDEFINED,
3574 this->got_,
3575 0, 0, elfcpp::STT_OBJECT,
3576 elfcpp::STB_LOCAL,
3577 elfcpp::STV_HIDDEN, 0,
3578 false, false);
3579
3580 // Generate .got.plt section.
3581 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3582 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3583 (elfcpp::SHF_ALLOC
3584 | elfcpp::SHF_WRITE),
3585 this->got_plt_, got_plt_order,
3586 is_got_plt_relro);
3587
3588 // The first three entries are reserved.
3589 this->got_plt_->set_current_data_size(
3590 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3591
3592 // If there are any IRELATIVE relocations, they get GOT entries
3593 // in .got.plt after the jump slot entries.
3594 this->got_irelative_ = new Output_data_space(size / 8,
3595 "** GOT IRELATIVE PLT");
3596 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3597 (elfcpp::SHF_ALLOC
3598 | elfcpp::SHF_WRITE),
3599 this->got_irelative_,
3600 got_plt_order,
3601 is_got_plt_relro);
3602
3603 // If there are any TLSDESC relocations, they get GOT entries in
3604 // .got.plt after the jump slot and IRELATIVE entries.
3605 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3606 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3607 (elfcpp::SHF_ALLOC
3608 | elfcpp::SHF_WRITE),
3609 this->got_tlsdesc_,
3610 got_plt_order,
3611 is_got_plt_relro);
3612
3613 if (!is_got_plt_relro)
3614 {
3615 // Those bytes can go into the relro segment.
3616 layout->increase_relro(
3617 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3618 }
3619
3620 }
3621 return this->got_;
3622 }
3623
3624 // Get the dynamic reloc section, creating it if necessary.
3625
3626 template<int size, bool big_endian>
3627 typename Target_aarch64<size, big_endian>::Reloc_section*
3628 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3629 {
3630 if (this->rela_dyn_ == NULL)
3631 {
3632 gold_assert(layout != NULL);
3633 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3634 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3635 elfcpp::SHF_ALLOC, this->rela_dyn_,
3636 ORDER_DYNAMIC_RELOCS, false);
3637 }
3638 return this->rela_dyn_;
3639 }
3640
3641 // Get the section to use for IRELATIVE relocs, creating it if
3642 // necessary. These go in .rela.dyn, but only after all other dynamic
3643 // relocations. They need to follow the other dynamic relocations so
3644 // that they can refer to global variables initialized by those
3645 // relocs.
3646
3647 template<int size, bool big_endian>
3648 typename Target_aarch64<size, big_endian>::Reloc_section*
3649 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3650 {
3651 if (this->rela_irelative_ == NULL)
3652 {
3653 // Make sure we have already created the dynamic reloc section.
3654 this->rela_dyn_section(layout);
3655 this->rela_irelative_ = new Reloc_section(false);
3656 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3657 elfcpp::SHF_ALLOC, this->rela_irelative_,
3658 ORDER_DYNAMIC_RELOCS, false);
3659 gold_assert(this->rela_dyn_->output_section()
3660 == this->rela_irelative_->output_section());
3661 }
3662 return this->rela_irelative_;
3663 }
3664
3665
3666 // do_make_elf_object to override the same function in the base class. We need
3667 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3668 // store backend specific information. Hence we need to have our own ELF object
3669 // creation.
3670
3671 template<int size, bool big_endian>
3672 Object*
3673 Target_aarch64<size, big_endian>::do_make_elf_object(
3674 const std::string& name,
3675 Input_file* input_file,
3676 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3677 {
3678 int et = ehdr.get_e_type();
3679 // ET_EXEC files are valid input for --just-symbols/-R,
3680 // and we treat them as relocatable objects.
3681 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3682 return Sized_target<size, big_endian>::do_make_elf_object(
3683 name, input_file, offset, ehdr);
3684 else if (et == elfcpp::ET_REL)
3685 {
3686 AArch64_relobj<size, big_endian>* obj =
3687 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3688 obj->setup();
3689 return obj;
3690 }
3691 else if (et == elfcpp::ET_DYN)
3692 {
3693 // Keep base implementation.
3694 Sized_dynobj<size, big_endian>* obj =
3695 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3696 obj->setup();
3697 return obj;
3698 }
3699 else
3700 {
3701 gold_error(_("%s: unsupported ELF file type %d"),
3702 name.c_str(), et);
3703 return NULL;
3704 }
3705 }
3706
3707
3708 // Scan a relocation for stub generation.
3709
3710 template<int size, bool big_endian>
3711 void
3712 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3713 const Relocate_info<size, big_endian>* relinfo,
3714 unsigned int r_type,
3715 const Sized_symbol<size>* gsym,
3716 unsigned int r_sym,
3717 const Symbol_value<size>* psymval,
3718 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3719 Address address)
3720 {
3721 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3722 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3723
3724 Symbol_value<size> symval;
3725 if (gsym != NULL)
3726 {
3727 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3728 get_reloc_property(r_type);
3729 if (gsym->use_plt_offset(arp->reference_flags()))
3730 {
3731 // This uses a PLT, change the symbol value.
3732 symval.set_output_value(this->plt_section()->address()
3733 + gsym->plt_offset());
3734 psymval = &symval;
3735 }
3736 else if (gsym->is_undefined())
3737 // There is no need to generate a stub symbol is undefined.
3738 return;
3739 }
3740
3741 // Get the symbol value.
3742 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3743
3744 // Owing to pipelining, the PC relative branches below actually skip
3745 // two instructions when the branch offset is 0.
3746 Address destination = static_cast<Address>(-1);
3747 switch (r_type)
3748 {
3749 case elfcpp::R_AARCH64_CALL26:
3750 case elfcpp::R_AARCH64_JUMP26:
3751 destination = value + addend;
3752 break;
3753 default:
3754 gold_unreachable();
3755 }
3756
3757 int stub_type = The_reloc_stub::
3758 stub_type_for_reloc(r_type, address, destination);
3759 if (stub_type == ST_NONE)
3760 return;
3761
3762 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3763 gold_assert(stub_table != NULL);
3764
3765 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3766 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3767 if (stub == NULL)
3768 {
3769 stub = new The_reloc_stub(stub_type);
3770 stub_table->add_reloc_stub(stub, key);
3771 }
3772 stub->set_destination_address(destination);
3773 } // End of Target_aarch64::scan_reloc_for_stub
3774
3775
3776 // This function scans a relocation section for stub generation.
3777 // The template parameter Relocate must be a class type which provides
3778 // a single function, relocate(), which implements the machine
3779 // specific part of a relocation.
3780
3781 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3782 // SHT_REL or SHT_RELA.
3783
3784 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3785 // of relocs. OUTPUT_SECTION is the output section.
3786 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3787 // mapped to output offsets.
3788
3789 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3790 // VIEW_SIZE is the size. These refer to the input section, unless
3791 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3792 // the output section.
3793
3794 template<int size, bool big_endian>
3795 template<int sh_type>
3796 void inline
3797 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3798 const Relocate_info<size, big_endian>* relinfo,
3799 const unsigned char* prelocs,
3800 size_t reloc_count,
3801 Output_section* /*output_section*/,
3802 bool /*needs_special_offset_handling*/,
3803 const unsigned char* /*view*/,
3804 Address view_address,
3805 section_size_type)
3806 {
3807 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3808
3809 const int reloc_size =
3810 Reloc_types<sh_type,size,big_endian>::reloc_size;
3811 AArch64_relobj<size, big_endian>* object =
3812 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3813 unsigned int local_count = object->local_symbol_count();
3814
3815 gold::Default_comdat_behavior default_comdat_behavior;
3816 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3817
3818 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3819 {
3820 Reltype reloc(prelocs);
3821 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3822 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3823 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3824 if (r_type != elfcpp::R_AARCH64_CALL26
3825 && r_type != elfcpp::R_AARCH64_JUMP26)
3826 continue;
3827
3828 section_offset_type offset =
3829 convert_to_section_size_type(reloc.get_r_offset());
3830
3831 // Get the addend.
3832 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3833 reloc.get_r_addend();
3834
3835 const Sized_symbol<size>* sym;
3836 Symbol_value<size> symval;
3837 const Symbol_value<size> *psymval;
3838 bool is_defined_in_discarded_section;
3839 unsigned int shndx;
3840 if (r_sym < local_count)
3841 {
3842 sym = NULL;
3843 psymval = object->local_symbol(r_sym);
3844
3845 // If the local symbol belongs to a section we are discarding,
3846 // and that section is a debug section, try to find the
3847 // corresponding kept section and map this symbol to its
3848 // counterpart in the kept section. The symbol must not
3849 // correspond to a section we are folding.
3850 bool is_ordinary;
3851 shndx = psymval->input_shndx(&is_ordinary);
3852 is_defined_in_discarded_section =
3853 (is_ordinary
3854 && shndx != elfcpp::SHN_UNDEF
3855 && !object->is_section_included(shndx)
3856 && !relinfo->symtab->is_section_folded(object, shndx));
3857
3858 // We need to compute the would-be final value of this local
3859 // symbol.
3860 if (!is_defined_in_discarded_section)
3861 {
3862 typedef Sized_relobj_file<size, big_endian> ObjType;
3863 typename ObjType::Compute_final_local_value_status status =
3864 object->compute_final_local_value(r_sym, psymval, &symval,
3865 relinfo->symtab);
3866 if (status == ObjType::CFLV_OK)
3867 {
3868 // Currently we cannot handle a branch to a target in
3869 // a merged section. If this is the case, issue an error
3870 // and also free the merge symbol value.
3871 if (!symval.has_output_value())
3872 {
3873 const std::string& section_name =
3874 object->section_name(shndx);
3875 object->error(_("cannot handle branch to local %u "
3876 "in a merged section %s"),
3877 r_sym, section_name.c_str());
3878 }
3879 psymval = &symval;
3880 }
3881 else
3882 {
3883 // We cannot determine the final value.
3884 continue;
3885 }
3886 }
3887 }
3888 else
3889 {
3890 const Symbol* gsym;
3891 gsym = object->global_symbol(r_sym);
3892 gold_assert(gsym != NULL);
3893 if (gsym->is_forwarder())
3894 gsym = relinfo->symtab->resolve_forwards(gsym);
3895
3896 sym = static_cast<const Sized_symbol<size>*>(gsym);
3897 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3898 symval.set_output_symtab_index(sym->symtab_index());
3899 else
3900 symval.set_no_output_symtab_entry();
3901
3902 // We need to compute the would-be final value of this global
3903 // symbol.
3904 const Symbol_table* symtab = relinfo->symtab;
3905 const Sized_symbol<size>* sized_symbol =
3906 symtab->get_sized_symbol<size>(gsym);
3907 Symbol_table::Compute_final_value_status status;
3908 typename elfcpp::Elf_types<size>::Elf_Addr value =
3909 symtab->compute_final_value<size>(sized_symbol, &status);
3910
3911 // Skip this if the symbol has not output section.
3912 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3913 continue;
3914 symval.set_output_value(value);
3915
3916 if (gsym->type() == elfcpp::STT_TLS)
3917 symval.set_is_tls_symbol();
3918 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3919 symval.set_is_ifunc_symbol();
3920 psymval = &symval;
3921
3922 is_defined_in_discarded_section =
3923 (gsym->is_defined_in_discarded_section()
3924 && gsym->is_undefined());
3925 shndx = 0;
3926 }
3927
3928 Symbol_value<size> symval2;
3929 if (is_defined_in_discarded_section)
3930 {
3931 if (comdat_behavior == CB_UNDETERMINED)
3932 {
3933 std::string name = object->section_name(relinfo->data_shndx);
3934 comdat_behavior = default_comdat_behavior.get(name.c_str());
3935 }
3936 if (comdat_behavior == CB_PRETEND)
3937 {
3938 bool found;
3939 typename elfcpp::Elf_types<size>::Elf_Addr value =
3940 object->map_to_kept_section(shndx, &found);
3941 if (found)
3942 symval2.set_output_value(value + psymval->input_value());
3943 else
3944 symval2.set_output_value(0);
3945 }
3946 else
3947 {
3948 if (comdat_behavior == CB_WARNING)
3949 gold_warning_at_location(relinfo, i, offset,
3950 _("relocation refers to discarded "
3951 "section"));
3952 symval2.set_output_value(0);
3953 }
3954 symval2.set_no_output_symtab_entry();
3955 psymval = &symval2;
3956 }
3957
3958 // If symbol is a section symbol, we don't know the actual type of
3959 // destination. Give up.
3960 if (psymval->is_section_symbol())
3961 continue;
3962
3963 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3964 addend, view_address + offset);
3965 } // End of iterating relocs in a section
3966 } // End of Target_aarch64::scan_reloc_section_for_stubs
3967
3968
3969 // Scan an input section for stub generation.
3970
3971 template<int size, bool big_endian>
3972 void
3973 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3974 const Relocate_info<size, big_endian>* relinfo,
3975 unsigned int sh_type,
3976 const unsigned char* prelocs,
3977 size_t reloc_count,
3978 Output_section* output_section,
3979 bool needs_special_offset_handling,
3980 const unsigned char* view,
3981 Address view_address,
3982 section_size_type view_size)
3983 {
3984 gold_assert(sh_type == elfcpp::SHT_RELA);
3985 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3986 relinfo,
3987 prelocs,
3988 reloc_count,
3989 output_section,
3990 needs_special_offset_handling,
3991 view,
3992 view_address,
3993 view_size);
3994 }
3995
3996
3997 // Relocate a single stub.
3998
3999 template<int size, bool big_endian>
4000 void Target_aarch64<size, big_endian>::
4001 relocate_stub(The_reloc_stub* stub,
4002 const The_relocate_info*,
4003 Output_section*,
4004 unsigned char* view,
4005 Address address,
4006 section_size_type)
4007 {
4008 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4009 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4010 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4011
4012 Insntype* ip = reinterpret_cast<Insntype*>(view);
4013 int insn_number = stub->insn_num();
4014 const uint32_t* insns = stub->insns();
4015 // Check the insns are really those stub insns.
4016 for (int i = 0; i < insn_number; ++i)
4017 {
4018 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4019 gold_assert(((uint32_t)insn == insns[i]));
4020 }
4021
4022 Address dest = stub->destination_address();
4023
4024 switch(stub->type())
4025 {
4026 case ST_ADRP_BRANCH:
4027 {
4028 // 1st reloc is ADR_PREL_PG_HI21
4029 The_reloc_functions_status status =
4030 The_reloc_functions::adrp(view, dest, address);
4031 // An error should never arise in the above step. If so, please
4032 // check 'aarch64_valid_for_adrp_p'.
4033 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4034
4035 // 2nd reloc is ADD_ABS_LO12_NC
4036 const AArch64_reloc_property* arp =
4037 aarch64_reloc_property_table->get_reloc_property(
4038 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4039 gold_assert(arp != NULL);
4040 status = The_reloc_functions::template
4041 rela_general<32>(view + 4, dest, 0, arp);
4042 // An error should never arise, it is an "_NC" relocation.
4043 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4044 }
4045 break;
4046
4047 case ST_LONG_BRANCH_ABS:
4048 // 1st reloc is R_AARCH64_PREL64, at offset 8
4049 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4050 break;
4051
4052 case ST_LONG_BRANCH_PCREL:
4053 {
4054 // "PC" calculation is the 2nd insn in the stub.
4055 uint64_t offset = dest - (address + 4);
4056 // Offset is placed at offset 4 and 5.
4057 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4058 }
4059 break;
4060
4061 default:
4062 gold_unreachable();
4063 }
4064 }
4065
4066
4067 // A class to handle the PLT data.
4068 // This is an abstract base class that handles most of the linker details
4069 // but does not know the actual contents of PLT entries. The derived
4070 // classes below fill in those details.
4071
4072 template<int size, bool big_endian>
4073 class Output_data_plt_aarch64 : public Output_section_data
4074 {
4075 public:
4076 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4077 Reloc_section;
4078 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4079
4080 Output_data_plt_aarch64(Layout* layout,
4081 uint64_t addralign,
4082 Output_data_got_aarch64<size, big_endian>* got,
4083 Output_data_space* got_plt,
4084 Output_data_space* got_irelative)
4085 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4086 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4087 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4088 { this->init(layout); }
4089
4090 // Initialize the PLT section.
4091 void
4092 init(Layout* layout);
4093
4094 // Add an entry to the PLT.
4095 void
4096 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4097
4098 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4099 unsigned int
4100 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4101 Sized_relobj_file<size, big_endian>* relobj,
4102 unsigned int local_sym_index);
4103
4104 // Add the relocation for a PLT entry.
4105 void
4106 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4107 unsigned int got_offset);
4108
4109 // Add the reserved TLSDESC_PLT entry to the PLT.
4110 void
4111 reserve_tlsdesc_entry(unsigned int got_offset)
4112 { this->tlsdesc_got_offset_ = got_offset; }
4113
4114 // Return true if a TLSDESC_PLT entry has been reserved.
4115 bool
4116 has_tlsdesc_entry() const
4117 { return this->tlsdesc_got_offset_ != -1U; }
4118
4119 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4120 unsigned int
4121 get_tlsdesc_got_offset() const
4122 { return this->tlsdesc_got_offset_; }
4123
4124 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4125 unsigned int
4126 get_tlsdesc_plt_offset() const
4127 {
4128 return (this->first_plt_entry_offset() +
4129 (this->count_ + this->irelative_count_)
4130 * this->get_plt_entry_size());
4131 }
4132
4133 // Return the .rela.plt section data.
4134 Reloc_section*
4135 rela_plt()
4136 { return this->rel_; }
4137
4138 // Return where the TLSDESC relocations should go.
4139 Reloc_section*
4140 rela_tlsdesc(Layout*);
4141
4142 // Return where the IRELATIVE relocations should go in the PLT
4143 // relocations.
4144 Reloc_section*
4145 rela_irelative(Symbol_table*, Layout*);
4146
4147 // Return whether we created a section for IRELATIVE relocations.
4148 bool
4149 has_irelative_section() const
4150 { return this->irelative_rel_ != NULL; }
4151
4152 // Return the number of PLT entries.
4153 unsigned int
4154 entry_count() const
4155 { return this->count_ + this->irelative_count_; }
4156
4157 // Return the offset of the first non-reserved PLT entry.
4158 unsigned int
4159 first_plt_entry_offset() const
4160 { return this->do_first_plt_entry_offset(); }
4161
4162 // Return the size of a PLT entry.
4163 unsigned int
4164 get_plt_entry_size() const
4165 { return this->do_get_plt_entry_size(); }
4166
4167 // Return the reserved tlsdesc entry size.
4168 unsigned int
4169 get_plt_tlsdesc_entry_size() const
4170 { return this->do_get_plt_tlsdesc_entry_size(); }
4171
4172 // Return the PLT address to use for a global symbol.
4173 uint64_t
4174 address_for_global(const Symbol*);
4175
4176 // Return the PLT address to use for a local symbol.
4177 uint64_t
4178 address_for_local(const Relobj*, unsigned int symndx);
4179
4180 protected:
4181 // Fill in the first PLT entry.
4182 void
4183 fill_first_plt_entry(unsigned char* pov,
4184 Address got_address,
4185 Address plt_address)
4186 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4187
4188 // Fill in a normal PLT entry.
4189 void
4190 fill_plt_entry(unsigned char* pov,
4191 Address got_address,
4192 Address plt_address,
4193 unsigned int got_offset,
4194 unsigned int plt_offset)
4195 {
4196 this->do_fill_plt_entry(pov, got_address, plt_address,
4197 got_offset, plt_offset);
4198 }
4199
4200 // Fill in the reserved TLSDESC PLT entry.
4201 void
4202 fill_tlsdesc_entry(unsigned char* pov,
4203 Address gotplt_address,
4204 Address plt_address,
4205 Address got_base,
4206 unsigned int tlsdesc_got_offset,
4207 unsigned int plt_offset)
4208 {
4209 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4210 tlsdesc_got_offset, plt_offset);
4211 }
4212
4213 virtual unsigned int
4214 do_first_plt_entry_offset() const = 0;
4215
4216 virtual unsigned int
4217 do_get_plt_entry_size() const = 0;
4218
4219 virtual unsigned int
4220 do_get_plt_tlsdesc_entry_size() const = 0;
4221
4222 virtual void
4223 do_fill_first_plt_entry(unsigned char* pov,
4224 Address got_addr,
4225 Address plt_addr) = 0;
4226
4227 virtual void
4228 do_fill_plt_entry(unsigned char* pov,
4229 Address got_address,
4230 Address plt_address,
4231 unsigned int got_offset,
4232 unsigned int plt_offset) = 0;
4233
4234 virtual void
4235 do_fill_tlsdesc_entry(unsigned char* pov,
4236 Address gotplt_address,
4237 Address plt_address,
4238 Address got_base,
4239 unsigned int tlsdesc_got_offset,
4240 unsigned int plt_offset) = 0;
4241
4242 void
4243 do_adjust_output_section(Output_section* os);
4244
4245 // Write to a map file.
4246 void
4247 do_print_to_mapfile(Mapfile* mapfile) const
4248 { mapfile->print_output_data(this, _("** PLT")); }
4249
4250 private:
4251 // Set the final size.
4252 void
4253 set_final_data_size();
4254
4255 // Write out the PLT data.
4256 void
4257 do_write(Output_file*);
4258
4259 // The reloc section.
4260 Reloc_section* rel_;
4261
4262 // The TLSDESC relocs, if necessary. These must follow the regular
4263 // PLT relocs.
4264 Reloc_section* tlsdesc_rel_;
4265
4266 // The IRELATIVE relocs, if necessary. These must follow the
4267 // regular PLT relocations.
4268 Reloc_section* irelative_rel_;
4269
4270 // The .got section.
4271 Output_data_got_aarch64<size, big_endian>* got_;
4272
4273 // The .got.plt section.
4274 Output_data_space* got_plt_;
4275
4276 // The part of the .got.plt section used for IRELATIVE relocs.
4277 Output_data_space* got_irelative_;
4278
4279 // The number of PLT entries.
4280 unsigned int count_;
4281
4282 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4283 // follow the regular PLT entries.
4284 unsigned int irelative_count_;
4285
4286 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4287 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4288 // indicates an offset is not allocated.
4289 unsigned int tlsdesc_got_offset_;
4290 };
4291
4292 // Initialize the PLT section.
4293
4294 template<int size, bool big_endian>
4295 void
4296 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4297 {
4298 this->rel_ = new Reloc_section(false);
4299 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4300 elfcpp::SHF_ALLOC, this->rel_,
4301 ORDER_DYNAMIC_PLT_RELOCS, false);
4302 }
4303
4304 template<int size, bool big_endian>
4305 void
4306 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4307 Output_section* os)
4308 {
4309 os->set_entsize(this->get_plt_entry_size());
4310 }
4311
4312 // Add an entry to the PLT.
4313
4314 template<int size, bool big_endian>
4315 void
4316 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4317 Layout* layout, Symbol* gsym)
4318 {
4319 gold_assert(!gsym->has_plt_offset());
4320
4321 unsigned int* pcount;
4322 unsigned int plt_reserved;
4323 Output_section_data_build* got;
4324
4325 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4326 && gsym->can_use_relative_reloc(false))
4327 {
4328 pcount = &this->irelative_count_;
4329 plt_reserved = 0;
4330 got = this->got_irelative_;
4331 }
4332 else
4333 {
4334 pcount = &this->count_;
4335 plt_reserved = this->first_plt_entry_offset();
4336 got = this->got_plt_;
4337 }
4338
4339 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4340 + plt_reserved);
4341
4342 ++*pcount;
4343
4344 section_offset_type got_offset = got->current_data_size();
4345
4346 // Every PLT entry needs a GOT entry which points back to the PLT
4347 // entry (this will be changed by the dynamic linker, normally
4348 // lazily when the function is called).
4349 got->set_current_data_size(got_offset + size / 8);
4350
4351 // Every PLT entry needs a reloc.
4352 this->add_relocation(symtab, layout, gsym, got_offset);
4353
4354 // Note that we don't need to save the symbol. The contents of the
4355 // PLT are independent of which symbols are used. The symbols only
4356 // appear in the relocations.
4357 }
4358
4359 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4360 // the PLT offset.
4361
4362 template<int size, bool big_endian>
4363 unsigned int
4364 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4365 Symbol_table* symtab,
4366 Layout* layout,
4367 Sized_relobj_file<size, big_endian>* relobj,
4368 unsigned int local_sym_index)
4369 {
4370 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4371 ++this->irelative_count_;
4372
4373 section_offset_type got_offset = this->got_irelative_->current_data_size();
4374
4375 // Every PLT entry needs a GOT entry which points back to the PLT
4376 // entry.
4377 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4378
4379 // Every PLT entry needs a reloc.
4380 Reloc_section* rela = this->rela_irelative(symtab, layout);
4381 rela->add_symbolless_local_addend(relobj, local_sym_index,
4382 elfcpp::R_AARCH64_IRELATIVE,
4383 this->got_irelative_, got_offset, 0);
4384
4385 return plt_offset;
4386 }
4387
4388 // Add the relocation for a PLT entry.
4389
4390 template<int size, bool big_endian>
4391 void
4392 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4393 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4394 {
4395 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4396 && gsym->can_use_relative_reloc(false))
4397 {
4398 Reloc_section* rela = this->rela_irelative(symtab, layout);
4399 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4400 this->got_irelative_, got_offset, 0);
4401 }
4402 else
4403 {
4404 gsym->set_needs_dynsym_entry();
4405 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4406 got_offset, 0);
4407 }
4408 }
4409
4410 // Return where the TLSDESC relocations should go, creating it if
4411 // necessary. These follow the JUMP_SLOT relocations.
4412
4413 template<int size, bool big_endian>
4414 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4415 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4416 {
4417 if (this->tlsdesc_rel_ == NULL)
4418 {
4419 this->tlsdesc_rel_ = new Reloc_section(false);
4420 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4421 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4422 ORDER_DYNAMIC_PLT_RELOCS, false);
4423 gold_assert(this->tlsdesc_rel_->output_section()
4424 == this->rel_->output_section());
4425 }
4426 return this->tlsdesc_rel_;
4427 }
4428
4429 // Return where the IRELATIVE relocations should go in the PLT. These
4430 // follow the JUMP_SLOT and the TLSDESC relocations.
4431
4432 template<int size, bool big_endian>
4433 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4434 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4435 Layout* layout)
4436 {
4437 if (this->irelative_rel_ == NULL)
4438 {
4439 // Make sure we have a place for the TLSDESC relocations, in
4440 // case we see any later on.
4441 this->rela_tlsdesc(layout);
4442 this->irelative_rel_ = new Reloc_section(false);
4443 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4444 elfcpp::SHF_ALLOC, this->irelative_rel_,
4445 ORDER_DYNAMIC_PLT_RELOCS, false);
4446 gold_assert(this->irelative_rel_->output_section()
4447 == this->rel_->output_section());
4448
4449 if (parameters->doing_static_link())
4450 {
4451 // A statically linked executable will only have a .rela.plt
4452 // section to hold R_AARCH64_IRELATIVE relocs for
4453 // STT_GNU_IFUNC symbols. The library will use these
4454 // symbols to locate the IRELATIVE relocs at program startup
4455 // time.
4456 symtab->define_in_output_data("__rela_iplt_start", NULL,
4457 Symbol_table::PREDEFINED,
4458 this->irelative_rel_, 0, 0,
4459 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4460 elfcpp::STV_HIDDEN, 0, false, true);
4461 symtab->define_in_output_data("__rela_iplt_end", NULL,
4462 Symbol_table::PREDEFINED,
4463 this->irelative_rel_, 0, 0,
4464 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4465 elfcpp::STV_HIDDEN, 0, true, true);
4466 }
4467 }
4468 return this->irelative_rel_;
4469 }
4470
4471 // Return the PLT address to use for a global symbol.
4472
4473 template<int size, bool big_endian>
4474 uint64_t
4475 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4476 const Symbol* gsym)
4477 {
4478 uint64_t offset = 0;
4479 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4480 && gsym->can_use_relative_reloc(false))
4481 offset = (this->first_plt_entry_offset() +
4482 this->count_ * this->get_plt_entry_size());
4483 return this->address() + offset + gsym->plt_offset();
4484 }
4485
4486 // Return the PLT address to use for a local symbol. These are always
4487 // IRELATIVE relocs.
4488
4489 template<int size, bool big_endian>
4490 uint64_t
4491 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4492 const Relobj* object,
4493 unsigned int r_sym)
4494 {
4495 return (this->address()
4496 + this->first_plt_entry_offset()
4497 + this->count_ * this->get_plt_entry_size()
4498 + object->local_plt_offset(r_sym));
4499 }
4500
4501 // Set the final size.
4502
4503 template<int size, bool big_endian>
4504 void
4505 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4506 {
4507 unsigned int count = this->count_ + this->irelative_count_;
4508 unsigned int extra_size = 0;
4509 if (this->has_tlsdesc_entry())
4510 extra_size += this->get_plt_tlsdesc_entry_size();
4511 this->set_data_size(this->first_plt_entry_offset()
4512 + count * this->get_plt_entry_size()
4513 + extra_size);
4514 }
4515
4516 template<int size, bool big_endian>
4517 class Output_data_plt_aarch64_standard :
4518 public Output_data_plt_aarch64<size, big_endian>
4519 {
4520 public:
4521 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4522 Output_data_plt_aarch64_standard(
4523 Layout* layout,
4524 Output_data_got_aarch64<size, big_endian>* got,
4525 Output_data_space* got_plt,
4526 Output_data_space* got_irelative)
4527 : Output_data_plt_aarch64<size, big_endian>(layout,
4528 size == 32 ? 4 : 8,
4529 got, got_plt,
4530 got_irelative)
4531 { }
4532
4533 protected:
4534 // Return the offset of the first non-reserved PLT entry.
4535 virtual unsigned int
4536 do_first_plt_entry_offset() const
4537 { return this->first_plt_entry_size; }
4538
4539 // Return the size of a PLT entry
4540 virtual unsigned int
4541 do_get_plt_entry_size() const
4542 { return this->plt_entry_size; }
4543
4544 // Return the size of a tlsdesc entry
4545 virtual unsigned int
4546 do_get_plt_tlsdesc_entry_size() const
4547 { return this->plt_tlsdesc_entry_size; }
4548
4549 virtual void
4550 do_fill_first_plt_entry(unsigned char* pov,
4551 Address got_address,
4552 Address plt_address);
4553
4554 virtual void
4555 do_fill_plt_entry(unsigned char* pov,
4556 Address got_address,
4557 Address plt_address,
4558 unsigned int got_offset,
4559 unsigned int plt_offset);
4560
4561 virtual void
4562 do_fill_tlsdesc_entry(unsigned char* pov,
4563 Address gotplt_address,
4564 Address plt_address,
4565 Address got_base,
4566 unsigned int tlsdesc_got_offset,
4567 unsigned int plt_offset);
4568
4569 private:
4570 // The size of the first plt entry size.
4571 static const int first_plt_entry_size = 32;
4572 // The size of the plt entry size.
4573 static const int plt_entry_size = 16;
4574 // The size of the plt tlsdesc entry size.
4575 static const int plt_tlsdesc_entry_size = 32;
4576 // Template for the first PLT entry.
4577 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4578 // Template for subsequent PLT entries.
4579 static const uint32_t plt_entry[plt_entry_size / 4];
4580 // The reserved TLSDESC entry in the PLT for an executable.
4581 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4582 };
4583
4584 // The first entry in the PLT for an executable.
4585
4586 template<>
4587 const uint32_t
4588 Output_data_plt_aarch64_standard<32, false>::
4589 first_plt_entry[first_plt_entry_size / 4] =
4590 {
4591 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4592 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4593 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4594 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4595 0xd61f0220, /* br x17 */
4596 0xd503201f, /* nop */
4597 0xd503201f, /* nop */
4598 0xd503201f, /* nop */
4599 };
4600
4601
4602 template<>
4603 const uint32_t
4604 Output_data_plt_aarch64_standard<32, true>::
4605 first_plt_entry[first_plt_entry_size / 4] =
4606 {
4607 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4608 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4609 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4610 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4611 0xd61f0220, /* br x17 */
4612 0xd503201f, /* nop */
4613 0xd503201f, /* nop */
4614 0xd503201f, /* nop */
4615 };
4616
4617
4618 template<>
4619 const uint32_t
4620 Output_data_plt_aarch64_standard<64, false>::
4621 first_plt_entry[first_plt_entry_size / 4] =
4622 {
4623 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4624 0x90000010, /* adrp x16, PLT_GOT+16 */
4625 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4626 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4627 0xd61f0220, /* br x17 */
4628 0xd503201f, /* nop */
4629 0xd503201f, /* nop */
4630 0xd503201f, /* nop */
4631 };
4632
4633
4634 template<>
4635 const uint32_t
4636 Output_data_plt_aarch64_standard<64, true>::
4637 first_plt_entry[first_plt_entry_size / 4] =
4638 {
4639 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4640 0x90000010, /* adrp x16, PLT_GOT+16 */
4641 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4642 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4643 0xd61f0220, /* br x17 */
4644 0xd503201f, /* nop */
4645 0xd503201f, /* nop */
4646 0xd503201f, /* nop */
4647 };
4648
4649
4650 template<>
4651 const uint32_t
4652 Output_data_plt_aarch64_standard<32, false>::
4653 plt_entry[plt_entry_size / 4] =
4654 {
4655 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4656 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4657 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4658 0xd61f0220, /* br x17. */
4659 };
4660
4661
4662 template<>
4663 const uint32_t
4664 Output_data_plt_aarch64_standard<32, true>::
4665 plt_entry[plt_entry_size / 4] =
4666 {
4667 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4668 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4669 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4670 0xd61f0220, /* br x17. */
4671 };
4672
4673
4674 template<>
4675 const uint32_t
4676 Output_data_plt_aarch64_standard<64, false>::
4677 plt_entry[plt_entry_size / 4] =
4678 {
4679 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4680 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4681 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4682 0xd61f0220, /* br x17. */
4683 };
4684
4685
4686 template<>
4687 const uint32_t
4688 Output_data_plt_aarch64_standard<64, true>::
4689 plt_entry[plt_entry_size / 4] =
4690 {
4691 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4692 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4693 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4694 0xd61f0220, /* br x17. */
4695 };
4696
4697
4698 template<int size, bool big_endian>
4699 void
4700 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4701 unsigned char* pov,
4702 Address got_address,
4703 Address plt_address)
4704 {
4705 // PLT0 of the small PLT looks like this in ELF64 -
4706 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4707 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4708 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4709 // symbol resolver
4710 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4711 // GOTPLT entry for this.
4712 // br x17
4713 // PLT0 will be slightly different in ELF32 due to different got entry
4714 // size.
4715 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4716 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4717
4718 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4719 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4720 // FIXME: This only works for 64bit
4721 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4722 gotplt_2nd_ent, plt_address + 4);
4723
4724 // Fill in R_AARCH64_LDST8_LO12
4725 elfcpp::Swap<32, big_endian>::writeval(
4726 pov + 8,
4727 ((this->first_plt_entry[2] & 0xffc003ff)
4728 | ((gotplt_2nd_ent & 0xff8) << 7)));
4729
4730 // Fill in R_AARCH64_ADD_ABS_LO12
4731 elfcpp::Swap<32, big_endian>::writeval(
4732 pov + 12,
4733 ((this->first_plt_entry[3] & 0xffc003ff)
4734 | ((gotplt_2nd_ent & 0xfff) << 10)));
4735 }
4736
4737
4738 // Subsequent entries in the PLT for an executable.
4739 // FIXME: This only works for 64bit
4740
4741 template<int size, bool big_endian>
4742 void
4743 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4744 unsigned char* pov,
4745 Address got_address,
4746 Address plt_address,
4747 unsigned int got_offset,
4748 unsigned int plt_offset)
4749 {
4750 memcpy(pov, this->plt_entry, this->plt_entry_size);
4751
4752 Address gotplt_entry_address = got_address + got_offset;
4753 Address plt_entry_address = plt_address + plt_offset;
4754
4755 // Fill in R_AARCH64_PCREL_ADR_HI21
4756 AArch64_relocate_functions<size, big_endian>::adrp(
4757 pov,
4758 gotplt_entry_address,
4759 plt_entry_address);
4760
4761 // Fill in R_AARCH64_LDST64_ABS_LO12
4762 elfcpp::Swap<32, big_endian>::writeval(
4763 pov + 4,
4764 ((this->plt_entry[1] & 0xffc003ff)
4765 | ((gotplt_entry_address & 0xff8) << 7)));
4766
4767 // Fill in R_AARCH64_ADD_ABS_LO12
4768 elfcpp::Swap<32, big_endian>::writeval(
4769 pov + 8,
4770 ((this->plt_entry[2] & 0xffc003ff)
4771 | ((gotplt_entry_address & 0xfff) <<10)));
4772
4773 }
4774
4775
4776 template<>
4777 const uint32_t
4778 Output_data_plt_aarch64_standard<32, false>::
4779 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4780 {
4781 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4782 0x90000002, /* adrp x2, 0 */
4783 0x90000003, /* adrp x3, 0 */
4784 0xb9400042, /* ldr w2, [w2, #0] */
4785 0x11000063, /* add w3, w3, 0 */
4786 0xd61f0040, /* br x2 */
4787 0xd503201f, /* nop */
4788 0xd503201f, /* nop */
4789 };
4790
4791 template<>
4792 const uint32_t
4793 Output_data_plt_aarch64_standard<32, true>::
4794 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4795 {
4796 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4797 0x90000002, /* adrp x2, 0 */
4798 0x90000003, /* adrp x3, 0 */
4799 0xb9400042, /* ldr w2, [w2, #0] */
4800 0x11000063, /* add w3, w3, 0 */
4801 0xd61f0040, /* br x2 */
4802 0xd503201f, /* nop */
4803 0xd503201f, /* nop */
4804 };
4805
4806 template<>
4807 const uint32_t
4808 Output_data_plt_aarch64_standard<64, false>::
4809 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4810 {
4811 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4812 0x90000002, /* adrp x2, 0 */
4813 0x90000003, /* adrp x3, 0 */
4814 0xf9400042, /* ldr x2, [x2, #0] */
4815 0x91000063, /* add x3, x3, 0 */
4816 0xd61f0040, /* br x2 */
4817 0xd503201f, /* nop */
4818 0xd503201f, /* nop */
4819 };
4820
4821 template<>
4822 const uint32_t
4823 Output_data_plt_aarch64_standard<64, true>::
4824 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4825 {
4826 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4827 0x90000002, /* adrp x2, 0 */
4828 0x90000003, /* adrp x3, 0 */
4829 0xf9400042, /* ldr x2, [x2, #0] */
4830 0x91000063, /* add x3, x3, 0 */
4831 0xd61f0040, /* br x2 */
4832 0xd503201f, /* nop */
4833 0xd503201f, /* nop */
4834 };
4835
4836 template<int size, bool big_endian>
4837 void
4838 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4839 unsigned char* pov,
4840 Address gotplt_address,
4841 Address plt_address,
4842 Address got_base,
4843 unsigned int tlsdesc_got_offset,
4844 unsigned int plt_offset)
4845 {
4846 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4847
4848 // move DT_TLSDESC_GOT address into x2
4849 // move .got.plt address into x3
4850 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4851 Address plt_entry_address = plt_address + plt_offset;
4852
4853 // R_AARCH64_ADR_PREL_PG_HI21
4854 AArch64_relocate_functions<size, big_endian>::adrp(
4855 pov + 4,
4856 tlsdesc_got_entry,
4857 plt_entry_address + 4);
4858
4859 // R_AARCH64_ADR_PREL_PG_HI21
4860 AArch64_relocate_functions<size, big_endian>::adrp(
4861 pov + 8,
4862 gotplt_address,
4863 plt_entry_address + 8);
4864
4865 // R_AARCH64_LDST64_ABS_LO12
4866 elfcpp::Swap<32, big_endian>::writeval(
4867 pov + 12,
4868 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4869 | ((tlsdesc_got_entry & 0xff8) << 7)));
4870
4871 // R_AARCH64_ADD_ABS_LO12
4872 elfcpp::Swap<32, big_endian>::writeval(
4873 pov + 16,
4874 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4875 | ((gotplt_address & 0xfff) << 10)));
4876 }
4877
4878 // Write out the PLT. This uses the hand-coded instructions above,
4879 // and adjusts them as needed. This is specified by the AMD64 ABI.
4880
4881 template<int size, bool big_endian>
4882 void
4883 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4884 {
4885 const off_t offset = this->offset();
4886 const section_size_type oview_size =
4887 convert_to_section_size_type(this->data_size());
4888 unsigned char* const oview = of->get_output_view(offset, oview_size);
4889
4890 const off_t got_file_offset = this->got_plt_->offset();
4891 gold_assert(got_file_offset + this->got_plt_->data_size()
4892 == this->got_irelative_->offset());
4893
4894 const section_size_type got_size =
4895 convert_to_section_size_type(this->got_plt_->data_size()
4896 + this->got_irelative_->data_size());
4897 unsigned char* const got_view = of->get_output_view(got_file_offset,
4898 got_size);
4899
4900 unsigned char* pov = oview;
4901
4902 // The base address of the .plt section.
4903 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4904 // The base address of the PLT portion of the .got section.
4905 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4906 = this->got_plt_->address();
4907
4908 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4909 pov += this->first_plt_entry_offset();
4910
4911 // The first three entries in .got.plt are reserved.
4912 unsigned char* got_pov = got_view;
4913 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4914 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4915
4916 unsigned int plt_offset = this->first_plt_entry_offset();
4917 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4918 const unsigned int count = this->count_ + this->irelative_count_;
4919 for (unsigned int plt_index = 0;
4920 plt_index < count;
4921 ++plt_index,
4922 pov += this->get_plt_entry_size(),
4923 got_pov += size / 8,
4924 plt_offset += this->get_plt_entry_size(),
4925 got_offset += size / 8)
4926 {
4927 // Set and adjust the PLT entry itself.
4928 this->fill_plt_entry(pov, gotplt_address, plt_address,
4929 got_offset, plt_offset);
4930
4931 // Set the entry in the GOT, which points to plt0.
4932 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4933 }
4934
4935 if (this->has_tlsdesc_entry())
4936 {
4937 // Set and adjust the reserved TLSDESC PLT entry.
4938 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4939 // The base address of the .base section.
4940 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4941 this->got_->address();
4942 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4943 tlsdesc_got_offset, plt_offset);
4944 pov += this->get_plt_tlsdesc_entry_size();
4945 }
4946
4947 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4948 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4949
4950 of->write_output_view(offset, oview_size, oview);
4951 of->write_output_view(got_file_offset, got_size, got_view);
4952 }
4953
4954 // Telling how to update the immediate field of an instruction.
4955 struct AArch64_howto
4956 {
4957 // The immediate field mask.
4958 elfcpp::Elf_Xword dst_mask;
4959
4960 // The offset to apply relocation immediate
4961 int doffset;
4962
4963 // The second part offset, if the immediate field has two parts.
4964 // -1 if the immediate field has only one part.
4965 int doffset2;
4966 };
4967
4968 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4969 {
4970 {0, -1, -1}, // DATA
4971 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4972 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4973 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4974 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4975 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4976 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4977 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4978 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4979 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4980 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4981 };
4982
4983 // AArch64 relocate function class
4984
4985 template<int size, bool big_endian>
4986 class AArch64_relocate_functions
4987 {
4988 public:
4989 typedef enum
4990 {
4991 STATUS_OKAY, // No error during relocation.
4992 STATUS_OVERFLOW, // Relocation overflow.
4993 STATUS_BAD_RELOC, // Relocation cannot be applied.
4994 } Status;
4995
4996 typedef AArch64_relocate_functions<size, big_endian> This;
4997 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4998 typedef Relocate_info<size, big_endian> The_relocate_info;
4999 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5000 typedef Reloc_stub<size, big_endian> The_reloc_stub;
5001 typedef Stub_table<size, big_endian> The_stub_table;
5002 typedef elfcpp::Rela<size, big_endian> The_rela;
5003 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5004
5005 // Return the page address of the address.
5006 // Page(address) = address & ~0xFFF
5007
5008 static inline AArch64_valtype
5009 Page(Address address)
5010 {
5011 return (address & (~static_cast<Address>(0xFFF)));
5012 }
5013
5014 private:
5015 // Update instruction (pointed by view) with selected bits (immed).
5016 // val = (val & ~dst_mask) | (immed << doffset)
5017
5018 template<int valsize>
5019 static inline void
5020 update_view(unsigned char* view,
5021 AArch64_valtype immed,
5022 elfcpp::Elf_Xword doffset,
5023 elfcpp::Elf_Xword dst_mask)
5024 {
5025 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5026 Valtype* wv = reinterpret_cast<Valtype*>(view);
5027 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5028
5029 // Clear immediate fields.
5030 val &= ~dst_mask;
5031 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5032 static_cast<Valtype>(val | (immed << doffset)));
5033 }
5034
5035 // Update two parts of an instruction (pointed by view) with selected
5036 // bits (immed1 and immed2).
5037 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5038
5039 template<int valsize>
5040 static inline void
5041 update_view_two_parts(
5042 unsigned char* view,
5043 AArch64_valtype immed1,
5044 AArch64_valtype immed2,
5045 elfcpp::Elf_Xword doffset1,
5046 elfcpp::Elf_Xword doffset2,
5047 elfcpp::Elf_Xword dst_mask)
5048 {
5049 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5050 Valtype* wv = reinterpret_cast<Valtype*>(view);
5051 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5052 val &= ~dst_mask;
5053 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5054 static_cast<Valtype>(val | (immed1 << doffset1) |
5055 (immed2 << doffset2)));
5056 }
5057
5058 // Update adr or adrp instruction with immed.
5059 // In adr and adrp: [30:29] immlo [23:5] immhi
5060
5061 static inline void
5062 update_adr(unsigned char* view, AArch64_valtype immed)
5063 {
5064 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5065 This::template update_view_two_parts<32>(
5066 view,
5067 immed & 0x3,
5068 (immed & 0x1ffffc) >> 2,
5069 29,
5070 5,
5071 dst_mask);
5072 }
5073
5074 // Update movz/movn instruction with bits immed.
5075 // Set instruction to movz if is_movz is true, otherwise set instruction
5076 // to movn.
5077
5078 static inline void
5079 update_movnz(unsigned char* view,
5080 AArch64_valtype immed,
5081 bool is_movz)
5082 {
5083 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5084 Valtype* wv = reinterpret_cast<Valtype*>(view);
5085 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5086
5087 const elfcpp::Elf_Xword doffset =
5088 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5089 const elfcpp::Elf_Xword dst_mask =
5090 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5091
5092 // Clear immediate fields and opc code.
5093 val &= ~(dst_mask | (0x3 << 29));
5094
5095 // Set instruction to movz or movn.
5096 // movz: [30:29] is 10 movn: [30:29] is 00
5097 if (is_movz)
5098 val |= (0x2 << 29);
5099
5100 elfcpp::Swap<32, big_endian>::writeval(wv,
5101 static_cast<Valtype>(val | (immed << doffset)));
5102 }
5103
5104 // Update selected bits in text.
5105
5106 template<int valsize>
5107 static inline typename This::Status
5108 reloc_common(unsigned char* view, Address x,
5109 const AArch64_reloc_property* reloc_property)
5110 {
5111 // Select bits from X.
5112 Address immed = reloc_property->select_x_value(x);
5113
5114 // Update view.
5115 const AArch64_reloc_property::Reloc_inst inst =
5116 reloc_property->reloc_inst();
5117 // If it is a data relocation or instruction has 2 parts of immediate
5118 // fields, you should not call pcrela_general.
5119 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5120 aarch64_howto[inst].doffset != -1);
5121 This::template update_view<valsize>(view, immed,
5122 aarch64_howto[inst].doffset,
5123 aarch64_howto[inst].dst_mask);
5124
5125 // Do check overflow or alignment if needed.
5126 return (reloc_property->checkup_x_value(x)
5127 ? This::STATUS_OKAY
5128 : This::STATUS_OVERFLOW);
5129 }
5130
5131 public:
5132
5133 // Construct a B insn. Note, although we group it here with other relocation
5134 // operation, there is actually no 'relocation' involved here.
5135 static inline void
5136 construct_b(unsigned char* view, unsigned int branch_offset)
5137 {
5138 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5139 26, 0, 0xffffffff);
5140 }
5141
5142 // Do a simple rela relocation at unaligned addresses.
5143
5144 template<int valsize>
5145 static inline typename This::Status
5146 rela_ua(unsigned char* view,
5147 const Sized_relobj_file<size, big_endian>* object,
5148 const Symbol_value<size>* psymval,
5149 AArch64_valtype addend,
5150 const AArch64_reloc_property* reloc_property)
5151 {
5152 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5153 Valtype;
5154 typename elfcpp::Elf_types<size>::Elf_Addr x =
5155 psymval->value(object, addend);
5156 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5157 static_cast<Valtype>(x));
5158 return (reloc_property->checkup_x_value(x)
5159 ? This::STATUS_OKAY
5160 : This::STATUS_OVERFLOW);
5161 }
5162
5163 // Do a simple pc-relative relocation at unaligned addresses.
5164
5165 template<int valsize>
5166 static inline typename This::Status
5167 pcrela_ua(unsigned char* view,
5168 const Sized_relobj_file<size, big_endian>* object,
5169 const Symbol_value<size>* psymval,
5170 AArch64_valtype addend,
5171 Address address,
5172 const AArch64_reloc_property* reloc_property)
5173 {
5174 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5175 Valtype;
5176 Address x = psymval->value(object, addend) - address;
5177 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5178 static_cast<Valtype>(x));
5179 return (reloc_property->checkup_x_value(x)
5180 ? This::STATUS_OKAY
5181 : This::STATUS_OVERFLOW);
5182 }
5183
5184 // Do a simple rela relocation at aligned addresses.
5185
5186 template<int valsize>
5187 static inline typename This::Status
5188 rela(
5189 unsigned char* view,
5190 const Sized_relobj_file<size, big_endian>* object,
5191 const Symbol_value<size>* psymval,
5192 AArch64_valtype addend,
5193 const AArch64_reloc_property* reloc_property)
5194 {
5195 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5196 Valtype* wv = reinterpret_cast<Valtype*>(view);
5197 Address x = psymval->value(object, addend);
5198 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5199 return (reloc_property->checkup_x_value(x)
5200 ? This::STATUS_OKAY
5201 : This::STATUS_OVERFLOW);
5202 }
5203
5204 // Do relocate. Update selected bits in text.
5205 // new_val = (val & ~dst_mask) | (immed << doffset)
5206
5207 template<int valsize>
5208 static inline typename This::Status
5209 rela_general(unsigned char* view,
5210 const Sized_relobj_file<size, big_endian>* object,
5211 const Symbol_value<size>* psymval,
5212 AArch64_valtype addend,
5213 const AArch64_reloc_property* reloc_property)
5214 {
5215 // Calculate relocation.
5216 Address x = psymval->value(object, addend);
5217 return This::template reloc_common<valsize>(view, x, reloc_property);
5218 }
5219
5220 // Do relocate. Update selected bits in text.
5221 // new val = (val & ~dst_mask) | (immed << doffset)
5222
5223 template<int valsize>
5224 static inline typename This::Status
5225 rela_general(
5226 unsigned char* view,
5227 AArch64_valtype s,
5228 AArch64_valtype addend,
5229 const AArch64_reloc_property* reloc_property)
5230 {
5231 // Calculate relocation.
5232 Address x = s + addend;
5233 return This::template reloc_common<valsize>(view, x, reloc_property);
5234 }
5235
5236 // Do address relative relocate. Update selected bits in text.
5237 // new val = (val & ~dst_mask) | (immed << doffset)
5238
5239 template<int valsize>
5240 static inline typename This::Status
5241 pcrela_general(
5242 unsigned char* view,
5243 const Sized_relobj_file<size, big_endian>* object,
5244 const Symbol_value<size>* psymval,
5245 AArch64_valtype addend,
5246 Address address,
5247 const AArch64_reloc_property* reloc_property)
5248 {
5249 // Calculate relocation.
5250 Address x = psymval->value(object, addend) - address;
5251 return This::template reloc_common<valsize>(view, x, reloc_property);
5252 }
5253
5254
5255 // Calculate (S + A) - address, update adr instruction.
5256
5257 static inline typename This::Status
5258 adr(unsigned char* view,
5259 const Sized_relobj_file<size, big_endian>* object,
5260 const Symbol_value<size>* psymval,
5261 Address addend,
5262 Address address,
5263 const AArch64_reloc_property* /* reloc_property */)
5264 {
5265 AArch64_valtype x = psymval->value(object, addend) - address;
5266 // Pick bits [20:0] of X.
5267 AArch64_valtype immed = x & 0x1fffff;
5268 update_adr(view, immed);
5269 // Check -2^20 <= X < 2^20
5270 return (size == 64 && Bits<21>::has_overflow((x))
5271 ? This::STATUS_OVERFLOW
5272 : This::STATUS_OKAY);
5273 }
5274
5275 // Calculate PG(S+A) - PG(address), update adrp instruction.
5276 // R_AARCH64_ADR_PREL_PG_HI21
5277
5278 static inline typename This::Status
5279 adrp(
5280 unsigned char* view,
5281 Address sa,
5282 Address address)
5283 {
5284 AArch64_valtype x = This::Page(sa) - This::Page(address);
5285 // Pick [32:12] of X.
5286 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5287 update_adr(view, immed);
5288 // Check -2^32 <= X < 2^32
5289 return (size == 64 && Bits<33>::has_overflow((x))
5290 ? This::STATUS_OVERFLOW
5291 : This::STATUS_OKAY);
5292 }
5293
5294 // Calculate PG(S+A) - PG(address), update adrp instruction.
5295 // R_AARCH64_ADR_PREL_PG_HI21
5296
5297 static inline typename This::Status
5298 adrp(unsigned char* view,
5299 const Sized_relobj_file<size, big_endian>* object,
5300 const Symbol_value<size>* psymval,
5301 Address addend,
5302 Address address,
5303 const AArch64_reloc_property* reloc_property)
5304 {
5305 Address sa = psymval->value(object, addend);
5306 AArch64_valtype x = This::Page(sa) - This::Page(address);
5307 // Pick [32:12] of X.
5308 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5309 update_adr(view, immed);
5310 return (reloc_property->checkup_x_value(x)
5311 ? This::STATUS_OKAY
5312 : This::STATUS_OVERFLOW);
5313 }
5314
5315 // Update mov[n/z] instruction. Check overflow if needed.
5316 // If X >=0, set the instruction to movz and its immediate value to the
5317 // selected bits S.
5318 // If X < 0, set the instruction to movn and its immediate value to
5319 // NOT (selected bits of).
5320
5321 static inline typename This::Status
5322 movnz(unsigned char* view,
5323 AArch64_valtype x,
5324 const AArch64_reloc_property* reloc_property)
5325 {
5326 // Select bits from X.
5327 Address immed;
5328 bool is_movz;
5329 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5330 if (static_cast<SignedW>(x) >= 0)
5331 {
5332 immed = reloc_property->select_x_value(x);
5333 is_movz = true;
5334 }
5335 else
5336 {
5337 immed = reloc_property->select_x_value(~x);;
5338 is_movz = false;
5339 }
5340
5341 // Update movnz instruction.
5342 update_movnz(view, immed, is_movz);
5343
5344 // Do check overflow or alignment if needed.
5345 return (reloc_property->checkup_x_value(x)
5346 ? This::STATUS_OKAY
5347 : This::STATUS_OVERFLOW);
5348 }
5349
5350 static inline bool
5351 maybe_apply_stub(unsigned int,
5352 const The_relocate_info*,
5353 const The_rela&,
5354 unsigned char*,
5355 Address,
5356 const Sized_symbol<size>*,
5357 const Symbol_value<size>*,
5358 const Sized_relobj_file<size, big_endian>*,
5359 section_size_type);
5360
5361 }; // End of AArch64_relocate_functions
5362
5363
5364 // For a certain relocation type (usually jump/branch), test to see if the
5365 // destination needs a stub to fulfil. If so, re-route the destination of the
5366 // original instruction to the stub, note, at this time, the stub has already
5367 // been generated.
5368
5369 template<int size, bool big_endian>
5370 bool
5371 AArch64_relocate_functions<size, big_endian>::
5372 maybe_apply_stub(unsigned int r_type,
5373 const The_relocate_info* relinfo,
5374 const The_rela& rela,
5375 unsigned char* view,
5376 Address address,
5377 const Sized_symbol<size>* gsym,
5378 const Symbol_value<size>* psymval,
5379 const Sized_relobj_file<size, big_endian>* object,
5380 section_size_type current_group_size)
5381 {
5382 if (parameters->options().relocatable())
5383 return false;
5384
5385 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5386 Address branch_target = psymval->value(object, 0) + addend;
5387 int stub_type =
5388 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5389 if (stub_type == ST_NONE)
5390 return false;
5391
5392 const The_aarch64_relobj* aarch64_relobj =
5393 static_cast<const The_aarch64_relobj*>(object);
5394 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5395 gold_assert(stub_table != NULL);
5396
5397 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5398 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5399 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5400 gold_assert(stub != NULL);
5401
5402 Address new_branch_target = stub_table->address() + stub->offset();
5403 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5404 new_branch_target - address;
5405 const AArch64_reloc_property* arp =
5406 aarch64_reloc_property_table->get_reloc_property(r_type);
5407 gold_assert(arp != NULL);
5408 typename This::Status status = This::template
5409 rela_general<32>(view, branch_offset, 0, arp);
5410 if (status != This::STATUS_OKAY)
5411 gold_error(_("Stub is too far away, try a smaller value "
5412 "for '--stub-group-size'. The current value is 0x%lx."),
5413 static_cast<unsigned long>(current_group_size));
5414 return true;
5415 }
5416
5417
5418 // Group input sections for stub generation.
5419 //
5420 // We group input sections in an output section so that the total size,
5421 // including any padding space due to alignment is smaller than GROUP_SIZE
5422 // unless the only input section in group is bigger than GROUP_SIZE already.
5423 // Then an ARM stub table is created to follow the last input section
5424 // in group. For each group an ARM stub table is created an is placed
5425 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5426 // extend the group after the stub table.
5427
5428 template<int size, bool big_endian>
5429 void
5430 Target_aarch64<size, big_endian>::group_sections(
5431 Layout* layout,
5432 section_size_type group_size,
5433 bool stubs_always_after_branch,
5434 const Task* task)
5435 {
5436 // Group input sections and insert stub table
5437 Layout::Section_list section_list;
5438 layout->get_executable_sections(&section_list);
5439 for (Layout::Section_list::const_iterator p = section_list.begin();
5440 p != section_list.end();
5441 ++p)
5442 {
5443 AArch64_output_section<size, big_endian>* output_section =
5444 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5445 output_section->group_sections(group_size, stubs_always_after_branch,
5446 this, task);
5447 }
5448 }
5449
5450
5451 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5452 // section of RELOBJ.
5453
5454 template<int size, bool big_endian>
5455 AArch64_input_section<size, big_endian>*
5456 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5457 Relobj* relobj, unsigned int shndx) const
5458 {
5459 Section_id sid(relobj, shndx);
5460 typename AArch64_input_section_map::const_iterator p =
5461 this->aarch64_input_section_map_.find(sid);
5462 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5463 }
5464
5465
5466 // Make a new AArch64_input_section object.
5467
5468 template<int size, bool big_endian>
5469 AArch64_input_section<size, big_endian>*
5470 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5471 Relobj* relobj, unsigned int shndx)
5472 {
5473 Section_id sid(relobj, shndx);
5474
5475 AArch64_input_section<size, big_endian>* input_section =
5476 new AArch64_input_section<size, big_endian>(relobj, shndx);
5477 input_section->init();
5478
5479 // Register new AArch64_input_section in map for look-up.
5480 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5481 this->aarch64_input_section_map_.insert(
5482 std::make_pair(sid, input_section));
5483
5484 // Make sure that it we have not created another AArch64_input_section
5485 // for this input section already.
5486 gold_assert(ins.second);
5487
5488 return input_section;
5489 }
5490
5491
5492 // Relaxation hook. This is where we do stub generation.
5493
5494 template<int size, bool big_endian>
5495 bool
5496 Target_aarch64<size, big_endian>::do_relax(
5497 int pass,
5498 const Input_objects* input_objects,
5499 Symbol_table* symtab,
5500 Layout* layout ,
5501 const Task* task)
5502 {
5503 gold_assert(!parameters->options().relocatable());
5504 if (pass == 1)
5505 {
5506 // We don't handle negative stub_group_size right now.
5507 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5508 if (this->stub_group_size_ == 1)
5509 {
5510 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5511 // will fail to link. The user will have to relink with an explicit
5512 // group size option.
5513 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5514 4096 * 4;
5515 }
5516 group_sections(layout, this->stub_group_size_, true, task);
5517 }
5518 else
5519 {
5520 // If this is not the first pass, addresses and file offsets have
5521 // been reset at this point, set them here.
5522 for (Stub_table_iterator sp = this->stub_tables_.begin();
5523 sp != this->stub_tables_.end(); ++sp)
5524 {
5525 The_stub_table* stt = *sp;
5526 The_aarch64_input_section* owner = stt->owner();
5527 off_t off = align_address(owner->original_size(),
5528 stt->addralign());
5529 stt->set_address_and_file_offset(owner->address() + off,
5530 owner->offset() + off);
5531 }
5532 }
5533
5534 // Scan relocs for relocation stubs
5535 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5536 op != input_objects->relobj_end();
5537 ++op)
5538 {
5539 The_aarch64_relobj* aarch64_relobj =
5540 static_cast<The_aarch64_relobj*>(*op);
5541 // Lock the object so we can read from it. This is only called
5542 // single-threaded from Layout::finalize, so it is OK to lock.
5543 Task_lock_obj<Object> tl(task, aarch64_relobj);
5544 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5545 }
5546
5547 bool any_stub_table_changed = false;
5548 for (Stub_table_iterator siter = this->stub_tables_.begin();
5549 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5550 {
5551 The_stub_table* stub_table = *siter;
5552 if (stub_table->update_data_size_changed_p())
5553 {
5554 The_aarch64_input_section* owner = stub_table->owner();
5555 uint64_t address = owner->address();
5556 off_t offset = owner->offset();
5557 owner->reset_address_and_file_offset();
5558 owner->set_address_and_file_offset(address, offset);
5559
5560 any_stub_table_changed = true;
5561 }
5562 }
5563
5564 // Do not continue relaxation.
5565 bool continue_relaxation = any_stub_table_changed;
5566 if (!continue_relaxation)
5567 for (Stub_table_iterator sp = this->stub_tables_.begin();
5568 (sp != this->stub_tables_.end());
5569 ++sp)
5570 (*sp)->finalize_stubs();
5571
5572 return continue_relaxation;
5573 }
5574
5575
5576 // Make a new Stub_table.
5577
5578 template<int size, bool big_endian>
5579 Stub_table<size, big_endian>*
5580 Target_aarch64<size, big_endian>::new_stub_table(
5581 AArch64_input_section<size, big_endian>* owner)
5582 {
5583 Stub_table<size, big_endian>* stub_table =
5584 new Stub_table<size, big_endian>(owner);
5585 stub_table->set_address(align_address(
5586 owner->address() + owner->data_size(), 8));
5587 stub_table->set_file_offset(owner->offset() + owner->data_size());
5588 stub_table->finalize_data_size();
5589
5590 this->stub_tables_.push_back(stub_table);
5591
5592 return stub_table;
5593 }
5594
5595
5596 template<int size, bool big_endian>
5597 uint64_t
5598 Target_aarch64<size, big_endian>::do_reloc_addend(
5599 void* arg, unsigned int r_type, uint64_t) const
5600 {
5601 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5602 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5603 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5604 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5605 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5606 gold_assert(psymval->is_tls_symbol());
5607 // The value of a TLS symbol is the offset in the TLS segment.
5608 return psymval->value(ti.object, 0);
5609 }
5610
5611 // Return the number of entries in the PLT.
5612
5613 template<int size, bool big_endian>
5614 unsigned int
5615 Target_aarch64<size, big_endian>::plt_entry_count() const
5616 {
5617 if (this->plt_ == NULL)
5618 return 0;
5619 return this->plt_->entry_count();
5620 }
5621
5622 // Return the offset of the first non-reserved PLT entry.
5623
5624 template<int size, bool big_endian>
5625 unsigned int
5626 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5627 {
5628 return this->plt_->first_plt_entry_offset();
5629 }
5630
5631 // Return the size of each PLT entry.
5632
5633 template<int size, bool big_endian>
5634 unsigned int
5635 Target_aarch64<size, big_endian>::plt_entry_size() const
5636 {
5637 return this->plt_->get_plt_entry_size();
5638 }
5639
5640 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5641
5642 template<int size, bool big_endian>
5643 void
5644 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5645 Symbol_table* symtab, Layout* layout)
5646 {
5647 if (this->tls_base_symbol_defined_)
5648 return;
5649
5650 Output_segment* tls_segment = layout->tls_segment();
5651 if (tls_segment != NULL)
5652 {
5653 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5654 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5655 Symbol_table::PREDEFINED,
5656 tls_segment, 0, 0,
5657 elfcpp::STT_TLS,
5658 elfcpp::STB_LOCAL,
5659 elfcpp::STV_HIDDEN, 0,
5660 Symbol::SEGMENT_START,
5661 true);
5662 }
5663 this->tls_base_symbol_defined_ = true;
5664 }
5665
5666 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5667
5668 template<int size, bool big_endian>
5669 void
5670 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5671 Symbol_table* symtab, Layout* layout)
5672 {
5673 if (this->plt_ == NULL)
5674 this->make_plt_section(symtab, layout);
5675
5676 if (!this->plt_->has_tlsdesc_entry())
5677 {
5678 // Allocate the TLSDESC_GOT entry.
5679 Output_data_got_aarch64<size, big_endian>* got =
5680 this->got_section(symtab, layout);
5681 unsigned int got_offset = got->add_constant(0);
5682
5683 // Allocate the TLSDESC_PLT entry.
5684 this->plt_->reserve_tlsdesc_entry(got_offset);
5685 }
5686 }
5687
5688 // Create a GOT entry for the TLS module index.
5689
5690 template<int size, bool big_endian>
5691 unsigned int
5692 Target_aarch64<size, big_endian>::got_mod_index_entry(
5693 Symbol_table* symtab, Layout* layout,
5694 Sized_relobj_file<size, big_endian>* object)
5695 {
5696 if (this->got_mod_index_offset_ == -1U)
5697 {
5698 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5699 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5700 Output_data_got_aarch64<size, big_endian>* got =
5701 this->got_section(symtab, layout);
5702 unsigned int got_offset = got->add_constant(0);
5703 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5704 got_offset, 0);
5705 got->add_constant(0);
5706 this->got_mod_index_offset_ = got_offset;
5707 }
5708 return this->got_mod_index_offset_;
5709 }
5710
5711 // Optimize the TLS relocation type based on what we know about the
5712 // symbol. IS_FINAL is true if the final address of this symbol is
5713 // known at link time.
5714
5715 template<int size, bool big_endian>
5716 tls::Tls_optimization
5717 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5718 int r_type)
5719 {
5720 // If we are generating a shared library, then we can't do anything
5721 // in the linker
5722 if (parameters->options().shared())
5723 return tls::TLSOPT_NONE;
5724
5725 switch (r_type)
5726 {
5727 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5728 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5729 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5730 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5731 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5732 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5733 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5734 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5735 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5736 case elfcpp::R_AARCH64_TLSDESC_LDR:
5737 case elfcpp::R_AARCH64_TLSDESC_ADD:
5738 case elfcpp::R_AARCH64_TLSDESC_CALL:
5739 // These are General-Dynamic which permits fully general TLS
5740 // access. Since we know that we are generating an executable,
5741 // we can convert this to Initial-Exec. If we also know that
5742 // this is a local symbol, we can further switch to Local-Exec.
5743 if (is_final)
5744 return tls::TLSOPT_TO_LE;
5745 return tls::TLSOPT_TO_IE;
5746
5747 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5748 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5749 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5750 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5751 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5752 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5753 // These are Local-Dynamic, which refer to local symbols in the
5754 // dynamic TLS block. Since we know that we generating an
5755 // executable, we can switch to Local-Exec.
5756 return tls::TLSOPT_TO_LE;
5757
5758 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5759 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5760 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5761 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5762 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5763 // These are Initial-Exec relocs which get the thread offset
5764 // from the GOT. If we know that we are linking against the
5765 // local symbol, we can switch to Local-Exec, which links the
5766 // thread offset into the instruction.
5767 if (is_final)
5768 return tls::TLSOPT_TO_LE;
5769 return tls::TLSOPT_NONE;
5770
5771 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5772 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5773 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5774 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5775 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5776 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5777 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5778 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5779 // When we already have Local-Exec, there is nothing further we
5780 // can do.
5781 return tls::TLSOPT_NONE;
5782
5783 default:
5784 gold_unreachable();
5785 }
5786 }
5787
5788 // Returns true if this relocation type could be that of a function pointer.
5789
5790 template<int size, bool big_endian>
5791 inline bool
5792 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5793 unsigned int r_type)
5794 {
5795 switch (r_type)
5796 {
5797 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5798 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5799 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5800 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5801 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5802 {
5803 return true;
5804 }
5805 }
5806 return false;
5807 }
5808
5809 // For safe ICF, scan a relocation for a local symbol to check if it
5810 // corresponds to a function pointer being taken. In that case mark
5811 // the function whose pointer was taken as not foldable.
5812
5813 template<int size, bool big_endian>
5814 inline bool
5815 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5816 Symbol_table* ,
5817 Layout* ,
5818 Target_aarch64<size, big_endian>* ,
5819 Sized_relobj_file<size, big_endian>* ,
5820 unsigned int ,
5821 Output_section* ,
5822 const elfcpp::Rela<size, big_endian>& ,
5823 unsigned int r_type,
5824 const elfcpp::Sym<size, big_endian>&)
5825 {
5826 // When building a shared library, do not fold any local symbols.
5827 return (parameters->options().shared()
5828 || possible_function_pointer_reloc(r_type));
5829 }
5830
5831 // For safe ICF, scan a relocation for a global symbol to check if it
5832 // corresponds to a function pointer being taken. In that case mark
5833 // the function whose pointer was taken as not foldable.
5834
5835 template<int size, bool big_endian>
5836 inline bool
5837 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5838 Symbol_table* ,
5839 Layout* ,
5840 Target_aarch64<size, big_endian>* ,
5841 Sized_relobj_file<size, big_endian>* ,
5842 unsigned int ,
5843 Output_section* ,
5844 const elfcpp::Rela<size, big_endian>& ,
5845 unsigned int r_type,
5846 Symbol* gsym)
5847 {
5848 // When building a shared library, do not fold symbols whose visibility
5849 // is hidden, internal or protected.
5850 return ((parameters->options().shared()
5851 && (gsym->visibility() == elfcpp::STV_INTERNAL
5852 || gsym->visibility() == elfcpp::STV_PROTECTED
5853 || gsym->visibility() == elfcpp::STV_HIDDEN))
5854 || possible_function_pointer_reloc(r_type));
5855 }
5856
5857 // Report an unsupported relocation against a local symbol.
5858
5859 template<int size, bool big_endian>
5860 void
5861 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5862 Sized_relobj_file<size, big_endian>* object,
5863 unsigned int r_type)
5864 {
5865 gold_error(_("%s: unsupported reloc %u against local symbol"),
5866 object->name().c_str(), r_type);
5867 }
5868
5869 // We are about to emit a dynamic relocation of type R_TYPE. If the
5870 // dynamic linker does not support it, issue an error.
5871
5872 template<int size, bool big_endian>
5873 void
5874 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5875 unsigned int r_type)
5876 {
5877 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5878
5879 switch (r_type)
5880 {
5881 // These are the relocation types supported by glibc for AARCH64.
5882 case elfcpp::R_AARCH64_NONE:
5883 case elfcpp::R_AARCH64_COPY:
5884 case elfcpp::R_AARCH64_GLOB_DAT:
5885 case elfcpp::R_AARCH64_JUMP_SLOT:
5886 case elfcpp::R_AARCH64_RELATIVE:
5887 case elfcpp::R_AARCH64_TLS_DTPREL64:
5888 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5889 case elfcpp::R_AARCH64_TLS_TPREL64:
5890 case elfcpp::R_AARCH64_TLSDESC:
5891 case elfcpp::R_AARCH64_IRELATIVE:
5892 case elfcpp::R_AARCH64_ABS32:
5893 case elfcpp::R_AARCH64_ABS64:
5894 return;
5895
5896 default:
5897 break;
5898 }
5899
5900 // This prevents us from issuing more than one error per reloc
5901 // section. But we can still wind up issuing more than one
5902 // error per object file.
5903 if (this->issued_non_pic_error_)
5904 return;
5905 gold_assert(parameters->options().output_is_position_independent());
5906 object->error(_("requires unsupported dynamic reloc; "
5907 "recompile with -fPIC"));
5908 this->issued_non_pic_error_ = true;
5909 return;
5910 }
5911
5912 // Return whether we need to make a PLT entry for a relocation of the
5913 // given type against a STT_GNU_IFUNC symbol.
5914
5915 template<int size, bool big_endian>
5916 bool
5917 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5918 Sized_relobj_file<size, big_endian>* object,
5919 unsigned int r_type)
5920 {
5921 const AArch64_reloc_property* arp =
5922 aarch64_reloc_property_table->get_reloc_property(r_type);
5923 gold_assert(arp != NULL);
5924
5925 int flags = arp->reference_flags();
5926 if (flags & Symbol::TLS_REF)
5927 {
5928 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5929 object->name().c_str(), arp->name().c_str());
5930 return false;
5931 }
5932 return flags != 0;
5933 }
5934
5935 // Scan a relocation for a local symbol.
5936
5937 template<int size, bool big_endian>
5938 inline void
5939 Target_aarch64<size, big_endian>::Scan::local(
5940 Symbol_table* symtab,
5941 Layout* layout,
5942 Target_aarch64<size, big_endian>* target,
5943 Sized_relobj_file<size, big_endian>* object,
5944 unsigned int data_shndx,
5945 Output_section* output_section,
5946 const elfcpp::Rela<size, big_endian>& rela,
5947 unsigned int r_type,
5948 const elfcpp::Sym<size, big_endian>& lsym,
5949 bool is_discarded)
5950 {
5951 if (is_discarded)
5952 return;
5953
5954 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5955 Reloc_section;
5956 Output_data_got_aarch64<size, big_endian>* got =
5957 target->got_section(symtab, layout);
5958 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5959
5960 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5961 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5962 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5963 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5964
5965 switch (r_type)
5966 {
5967 case elfcpp::R_AARCH64_ABS32:
5968 case elfcpp::R_AARCH64_ABS16:
5969 if (parameters->options().output_is_position_independent())
5970 {
5971 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5972 object->name().c_str(), r_type);
5973 }
5974 break;
5975
5976 case elfcpp::R_AARCH64_ABS64:
5977 // If building a shared library or pie, we need to mark this as a dynmic
5978 // reloction, so that the dynamic loader can relocate it.
5979 if (parameters->options().output_is_position_independent())
5980 {
5981 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5982 rela_dyn->add_local_relative(object, r_sym,
5983 elfcpp::R_AARCH64_RELATIVE,
5984 output_section,
5985 data_shndx,
5986 rela.get_r_offset(),
5987 rela.get_r_addend(),
5988 is_ifunc);
5989 }
5990 break;
5991
5992 case elfcpp::R_AARCH64_PREL64:
5993 case elfcpp::R_AARCH64_PREL32:
5994 case elfcpp::R_AARCH64_PREL16:
5995 break;
5996
5997 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5998 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5999 // This pair of relocations is used to access a specific GOT entry.
6000 {
6001 bool is_new = false;
6002 // This symbol requires a GOT entry.
6003 if (is_ifunc)
6004 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6005 else
6006 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6007 if (is_new && parameters->options().output_is_position_independent())
6008 target->rela_dyn_section(layout)->
6009 add_local_relative(object,
6010 r_sym,
6011 elfcpp::R_AARCH64_RELATIVE,
6012 got,
6013 object->local_got_offset(r_sym,
6014 GOT_TYPE_STANDARD),
6015 0,
6016 false);
6017 }
6018 break;
6019
6020 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6021 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6022 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6023 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6024 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6025 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6026 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6027 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6028 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6029 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6030 break;
6031
6032 // Control flow, pc-relative. We don't need to do anything for a relative
6033 // addressing relocation against a local symbol if it does not reference
6034 // the GOT.
6035 case elfcpp::R_AARCH64_TSTBR14:
6036 case elfcpp::R_AARCH64_CONDBR19:
6037 case elfcpp::R_AARCH64_JUMP26:
6038 case elfcpp::R_AARCH64_CALL26:
6039 break;
6040
6041 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6042 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6043 {
6044 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6045 optimize_tls_reloc(!parameters->options().shared(), r_type);
6046 if (tlsopt == tls::TLSOPT_TO_LE)
6047 break;
6048
6049 layout->set_has_static_tls();
6050 // Create a GOT entry for the tp-relative offset.
6051 if (!parameters->doing_static_link())
6052 {
6053 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6054 target->rela_dyn_section(layout),
6055 elfcpp::R_AARCH64_TLS_TPREL64);
6056 }
6057 else if (!object->local_has_got_offset(r_sym,
6058 GOT_TYPE_TLS_OFFSET))
6059 {
6060 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6061 unsigned int got_offset =
6062 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6063 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6064 gold_assert(addend == 0);
6065 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6066 object, r_sym);
6067 }
6068 }
6069 break;
6070
6071 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6072 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6073 {
6074 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6075 optimize_tls_reloc(!parameters->options().shared(), r_type);
6076 if (tlsopt == tls::TLSOPT_TO_LE)
6077 {
6078 layout->set_has_static_tls();
6079 break;
6080 }
6081 gold_assert(tlsopt == tls::TLSOPT_NONE);
6082
6083 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6084 GOT_TYPE_TLS_PAIR,
6085 target->rela_dyn_section(layout),
6086 elfcpp::R_AARCH64_TLS_DTPMOD64);
6087 }
6088 break;
6089
6090 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6091 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6092 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6093 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6094 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6095 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6096 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6097 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6098 {
6099 layout->set_has_static_tls();
6100 bool output_is_shared = parameters->options().shared();
6101 if (output_is_shared)
6102 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6103 object->name().c_str(), r_type);
6104 }
6105 break;
6106
6107 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6108 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6109 {
6110 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6111 optimize_tls_reloc(!parameters->options().shared(), r_type);
6112 if (tlsopt == tls::TLSOPT_NONE)
6113 {
6114 // Create a GOT entry for the module index.
6115 target->got_mod_index_entry(symtab, layout, object);
6116 }
6117 else if (tlsopt != tls::TLSOPT_TO_LE)
6118 unsupported_reloc_local(object, r_type);
6119 }
6120 break;
6121
6122 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6123 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6124 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6125 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6126 break;
6127
6128 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6129 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6130 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6131 {
6132 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6133 optimize_tls_reloc(!parameters->options().shared(), r_type);
6134 target->define_tls_base_symbol(symtab, layout);
6135 if (tlsopt == tls::TLSOPT_NONE)
6136 {
6137 // Create reserved PLT and GOT entries for the resolver.
6138 target->reserve_tlsdesc_entries(symtab, layout);
6139
6140 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6141 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6142 // entry needs to be in an area in .got.plt, not .got. Call
6143 // got_section to make sure the section has been created.
6144 target->got_section(symtab, layout);
6145 Output_data_got<size, big_endian>* got =
6146 target->got_tlsdesc_section();
6147 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6148 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6149 {
6150 unsigned int got_offset = got->add_constant(0);
6151 got->add_constant(0);
6152 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6153 got_offset);
6154 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6155 // We store the arguments we need in a vector, and use
6156 // the index into the vector as the parameter to pass
6157 // to the target specific routines.
6158 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6159 void* arg = reinterpret_cast<void*>(intarg);
6160 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6161 got, got_offset, 0);
6162 }
6163 }
6164 else if (tlsopt != tls::TLSOPT_TO_LE)
6165 unsupported_reloc_local(object, r_type);
6166 }
6167 break;
6168
6169 case elfcpp::R_AARCH64_TLSDESC_CALL:
6170 break;
6171
6172 default:
6173 unsupported_reloc_local(object, r_type);
6174 }
6175 }
6176
6177
6178 // Report an unsupported relocation against a global symbol.
6179
6180 template<int size, bool big_endian>
6181 void
6182 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6183 Sized_relobj_file<size, big_endian>* object,
6184 unsigned int r_type,
6185 Symbol* gsym)
6186 {
6187 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6188 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6189 }
6190
6191 template<int size, bool big_endian>
6192 inline void
6193 Target_aarch64<size, big_endian>::Scan::global(
6194 Symbol_table* symtab,
6195 Layout* layout,
6196 Target_aarch64<size, big_endian>* target,
6197 Sized_relobj_file<size, big_endian> * object,
6198 unsigned int data_shndx,
6199 Output_section* output_section,
6200 const elfcpp::Rela<size, big_endian>& rela,
6201 unsigned int r_type,
6202 Symbol* gsym)
6203 {
6204 // A STT_GNU_IFUNC symbol may require a PLT entry.
6205 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6206 && this->reloc_needs_plt_for_ifunc(object, r_type))
6207 target->make_plt_entry(symtab, layout, gsym);
6208
6209 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6210 Reloc_section;
6211 const AArch64_reloc_property* arp =
6212 aarch64_reloc_property_table->get_reloc_property(r_type);
6213 gold_assert(arp != NULL);
6214
6215 switch (r_type)
6216 {
6217 case elfcpp::R_AARCH64_ABS16:
6218 case elfcpp::R_AARCH64_ABS32:
6219 case elfcpp::R_AARCH64_ABS64:
6220 {
6221 // Make a PLT entry if necessary.
6222 if (gsym->needs_plt_entry())
6223 {
6224 target->make_plt_entry(symtab, layout, gsym);
6225 // Since this is not a PC-relative relocation, we may be
6226 // taking the address of a function. In that case we need to
6227 // set the entry in the dynamic symbol table to the address of
6228 // the PLT entry.
6229 if (gsym->is_from_dynobj() && !parameters->options().shared())
6230 gsym->set_needs_dynsym_value();
6231 }
6232 // Make a dynamic relocation if necessary.
6233 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6234 {
6235 if (!parameters->options().output_is_position_independent()
6236 && gsym->may_need_copy_reloc())
6237 {
6238 target->copy_reloc(symtab, layout, object,
6239 data_shndx, output_section, gsym, rela);
6240 }
6241 else if (r_type == elfcpp::R_AARCH64_ABS64
6242 && gsym->type() == elfcpp::STT_GNU_IFUNC
6243 && gsym->can_use_relative_reloc(false)
6244 && !gsym->is_from_dynobj()
6245 && !gsym->is_undefined()
6246 && !gsym->is_preemptible())
6247 {
6248 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6249 // symbol. This makes a function address in a PIE executable
6250 // match the address in a shared library that it links against.
6251 Reloc_section* rela_dyn =
6252 target->rela_irelative_section(layout);
6253 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6254 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6255 output_section, object,
6256 data_shndx,
6257 rela.get_r_offset(),
6258 rela.get_r_addend());
6259 }
6260 else if (r_type == elfcpp::R_AARCH64_ABS64
6261 && gsym->can_use_relative_reloc(false))
6262 {
6263 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6264 rela_dyn->add_global_relative(gsym,
6265 elfcpp::R_AARCH64_RELATIVE,
6266 output_section,
6267 object,
6268 data_shndx,
6269 rela.get_r_offset(),
6270 rela.get_r_addend(),
6271 false);
6272 }
6273 else
6274 {
6275 check_non_pic(object, r_type);
6276 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6277 rela_dyn = target->rela_dyn_section(layout);
6278 rela_dyn->add_global(
6279 gsym, r_type, output_section, object,
6280 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6281 }
6282 }
6283 }
6284 break;
6285
6286 case elfcpp::R_AARCH64_PREL16:
6287 case elfcpp::R_AARCH64_PREL32:
6288 case elfcpp::R_AARCH64_PREL64:
6289 // This is used to fill the GOT absolute address.
6290 if (gsym->needs_plt_entry())
6291 {
6292 target->make_plt_entry(symtab, layout, gsym);
6293 }
6294 break;
6295
6296 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6297 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6298 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6299 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6300 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6301 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6302 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6303 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6304 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6305 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6306 {
6307 if (gsym->needs_plt_entry())
6308 target->make_plt_entry(symtab, layout, gsym);
6309 // Make a dynamic relocation if necessary.
6310 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6311 {
6312 if (parameters->options().output_is_executable()
6313 && gsym->may_need_copy_reloc())
6314 {
6315 target->copy_reloc(symtab, layout, object,
6316 data_shndx, output_section, gsym, rela);
6317 }
6318 }
6319 break;
6320 }
6321
6322 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6323 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6324 {
6325 // This pair of relocations is used to access a specific GOT entry.
6326 // Note a GOT entry is an *address* to a symbol.
6327 // The symbol requires a GOT entry
6328 Output_data_got_aarch64<size, big_endian>* got =
6329 target->got_section(symtab, layout);
6330 if (gsym->final_value_is_known())
6331 {
6332 // For a STT_GNU_IFUNC symbol we want the PLT address.
6333 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6334 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6335 else
6336 got->add_global(gsym, GOT_TYPE_STANDARD);
6337 }
6338 else
6339 {
6340 // If this symbol is not fully resolved, we need to add a dynamic
6341 // relocation for it.
6342 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6343
6344 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6345 //
6346 // 1) The symbol may be defined in some other module.
6347 // 2) We are building a shared library and this is a protected
6348 // symbol; using GLOB_DAT means that the dynamic linker can use
6349 // the address of the PLT in the main executable when appropriate
6350 // so that function address comparisons work.
6351 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6352 // again so that function address comparisons work.
6353 if (gsym->is_from_dynobj()
6354 || gsym->is_undefined()
6355 || gsym->is_preemptible()
6356 || (gsym->visibility() == elfcpp::STV_PROTECTED
6357 && parameters->options().shared())
6358 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6359 && parameters->options().output_is_position_independent()))
6360 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6361 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6362 else
6363 {
6364 // For a STT_GNU_IFUNC symbol we want to write the PLT
6365 // offset into the GOT, so that function pointer
6366 // comparisons work correctly.
6367 bool is_new;
6368 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6369 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6370 else
6371 {
6372 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6373 // Tell the dynamic linker to use the PLT address
6374 // when resolving relocations.
6375 if (gsym->is_from_dynobj()
6376 && !parameters->options().shared())
6377 gsym->set_needs_dynsym_value();
6378 }
6379 if (is_new)
6380 {
6381 rela_dyn->add_global_relative(
6382 gsym, elfcpp::R_AARCH64_RELATIVE,
6383 got,
6384 gsym->got_offset(GOT_TYPE_STANDARD),
6385 0,
6386 false);
6387 }
6388 }
6389 }
6390 break;
6391 }
6392
6393 case elfcpp::R_AARCH64_TSTBR14:
6394 case elfcpp::R_AARCH64_CONDBR19:
6395 case elfcpp::R_AARCH64_JUMP26:
6396 case elfcpp::R_AARCH64_CALL26:
6397 {
6398 if (gsym->final_value_is_known())
6399 break;
6400
6401 if (gsym->is_defined() &&
6402 !gsym->is_from_dynobj() &&
6403 !gsym->is_preemptible())
6404 break;
6405
6406 // Make plt entry for function call.
6407 target->make_plt_entry(symtab, layout, gsym);
6408 break;
6409 }
6410
6411 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6412 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6413 {
6414 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6415 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6416 if (tlsopt == tls::TLSOPT_TO_LE)
6417 {
6418 layout->set_has_static_tls();
6419 break;
6420 }
6421 gold_assert(tlsopt == tls::TLSOPT_NONE);
6422
6423 // General dynamic.
6424 Output_data_got_aarch64<size, big_endian>* got =
6425 target->got_section(symtab, layout);
6426 // Create 2 consecutive entries for module index and offset.
6427 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6428 target->rela_dyn_section(layout),
6429 elfcpp::R_AARCH64_TLS_DTPMOD64,
6430 elfcpp::R_AARCH64_TLS_DTPREL64);
6431 }
6432 break;
6433
6434 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6435 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6436 {
6437 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6438 optimize_tls_reloc(!parameters->options().shared(), r_type);
6439 if (tlsopt == tls::TLSOPT_NONE)
6440 {
6441 // Create a GOT entry for the module index.
6442 target->got_mod_index_entry(symtab, layout, object);
6443 }
6444 else if (tlsopt != tls::TLSOPT_TO_LE)
6445 unsupported_reloc_local(object, r_type);
6446 }
6447 break;
6448
6449 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6450 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6451 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6452 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6453 break;
6454
6455 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6456 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6457 {
6458 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6459 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6460 if (tlsopt == tls::TLSOPT_TO_LE)
6461 break;
6462
6463 layout->set_has_static_tls();
6464 // Create a GOT entry for the tp-relative offset.
6465 Output_data_got_aarch64<size, big_endian>* got
6466 = target->got_section(symtab, layout);
6467 if (!parameters->doing_static_link())
6468 {
6469 got->add_global_with_rel(
6470 gsym, GOT_TYPE_TLS_OFFSET,
6471 target->rela_dyn_section(layout),
6472 elfcpp::R_AARCH64_TLS_TPREL64);
6473 }
6474 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6475 {
6476 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6477 unsigned int got_offset =
6478 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6479 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6480 gold_assert(addend == 0);
6481 got->add_static_reloc(got_offset,
6482 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6483 }
6484 }
6485 break;
6486
6487 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6488 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6489 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6490 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6491 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6492 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6493 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6494 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
6495 layout->set_has_static_tls();
6496 if (parameters->options().shared())
6497 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6498 object->name().c_str(), r_type);
6499 break;
6500
6501 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6502 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6503 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6504 {
6505 target->define_tls_base_symbol(symtab, layout);
6506 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6507 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6508 if (tlsopt == tls::TLSOPT_NONE)
6509 {
6510 // Create reserved PLT and GOT entries for the resolver.
6511 target->reserve_tlsdesc_entries(symtab, layout);
6512
6513 // Create a double GOT entry with an R_AARCH64_TLSDESC
6514 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6515 // entry needs to be in an area in .got.plt, not .got. Call
6516 // got_section to make sure the section has been created.
6517 target->got_section(symtab, layout);
6518 Output_data_got<size, big_endian>* got =
6519 target->got_tlsdesc_section();
6520 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6521 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6522 elfcpp::R_AARCH64_TLSDESC, 0);
6523 }
6524 else if (tlsopt == tls::TLSOPT_TO_IE)
6525 {
6526 // Create a GOT entry for the tp-relative offset.
6527 Output_data_got<size, big_endian>* got
6528 = target->got_section(symtab, layout);
6529 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6530 target->rela_dyn_section(layout),
6531 elfcpp::R_AARCH64_TLS_TPREL64);
6532 }
6533 else if (tlsopt != tls::TLSOPT_TO_LE)
6534 unsupported_reloc_global(object, r_type, gsym);
6535 }
6536 break;
6537
6538 case elfcpp::R_AARCH64_TLSDESC_CALL:
6539 break;
6540
6541 default:
6542 gold_error(_("%s: unsupported reloc type in global scan"),
6543 aarch64_reloc_property_table->
6544 reloc_name_in_error_message(r_type).c_str());
6545 }
6546 return;
6547 } // End of Scan::global
6548
6549
6550 // Create the PLT section.
6551 template<int size, bool big_endian>
6552 void
6553 Target_aarch64<size, big_endian>::make_plt_section(
6554 Symbol_table* symtab, Layout* layout)
6555 {
6556 if (this->plt_ == NULL)
6557 {
6558 // Create the GOT section first.
6559 this->got_section(symtab, layout);
6560
6561 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6562 this->got_irelative_);
6563
6564 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6565 (elfcpp::SHF_ALLOC
6566 | elfcpp::SHF_EXECINSTR),
6567 this->plt_, ORDER_PLT, false);
6568
6569 // Make the sh_info field of .rela.plt point to .plt.
6570 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6571 rela_plt_os->set_info_section(this->plt_->output_section());
6572 }
6573 }
6574
6575 // Return the section for TLSDESC relocations.
6576
6577 template<int size, bool big_endian>
6578 typename Target_aarch64<size, big_endian>::Reloc_section*
6579 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6580 {
6581 return this->plt_section()->rela_tlsdesc(layout);
6582 }
6583
6584 // Create a PLT entry for a global symbol.
6585
6586 template<int size, bool big_endian>
6587 void
6588 Target_aarch64<size, big_endian>::make_plt_entry(
6589 Symbol_table* symtab,
6590 Layout* layout,
6591 Symbol* gsym)
6592 {
6593 if (gsym->has_plt_offset())
6594 return;
6595
6596 if (this->plt_ == NULL)
6597 this->make_plt_section(symtab, layout);
6598
6599 this->plt_->add_entry(symtab, layout, gsym);
6600 }
6601
6602 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6603
6604 template<int size, bool big_endian>
6605 void
6606 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6607 Symbol_table* symtab, Layout* layout,
6608 Sized_relobj_file<size, big_endian>* relobj,
6609 unsigned int local_sym_index)
6610 {
6611 if (relobj->local_has_plt_offset(local_sym_index))
6612 return;
6613 if (this->plt_ == NULL)
6614 this->make_plt_section(symtab, layout);
6615 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6616 relobj,
6617 local_sym_index);
6618 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6619 }
6620
6621 template<int size, bool big_endian>
6622 void
6623 Target_aarch64<size, big_endian>::gc_process_relocs(
6624 Symbol_table* symtab,
6625 Layout* layout,
6626 Sized_relobj_file<size, big_endian>* object,
6627 unsigned int data_shndx,
6628 unsigned int sh_type,
6629 const unsigned char* prelocs,
6630 size_t reloc_count,
6631 Output_section* output_section,
6632 bool needs_special_offset_handling,
6633 size_t local_symbol_count,
6634 const unsigned char* plocal_symbols)
6635 {
6636 if (sh_type == elfcpp::SHT_REL)
6637 {
6638 return;
6639 }
6640
6641 gold::gc_process_relocs<
6642 size, big_endian,
6643 Target_aarch64<size, big_endian>,
6644 elfcpp::SHT_RELA,
6645 typename Target_aarch64<size, big_endian>::Scan,
6646 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
6647 symtab,
6648 layout,
6649 this,
6650 object,
6651 data_shndx,
6652 prelocs,
6653 reloc_count,
6654 output_section,
6655 needs_special_offset_handling,
6656 local_symbol_count,
6657 plocal_symbols);
6658 }
6659
6660 // Scan relocations for a section.
6661
6662 template<int size, bool big_endian>
6663 void
6664 Target_aarch64<size, big_endian>::scan_relocs(
6665 Symbol_table* symtab,
6666 Layout* layout,
6667 Sized_relobj_file<size, big_endian>* object,
6668 unsigned int data_shndx,
6669 unsigned int sh_type,
6670 const unsigned char* prelocs,
6671 size_t reloc_count,
6672 Output_section* output_section,
6673 bool needs_special_offset_handling,
6674 size_t local_symbol_count,
6675 const unsigned char* plocal_symbols)
6676 {
6677 if (sh_type == elfcpp::SHT_REL)
6678 {
6679 gold_error(_("%s: unsupported REL reloc section"),
6680 object->name().c_str());
6681 return;
6682 }
6683 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
6684 symtab,
6685 layout,
6686 this,
6687 object,
6688 data_shndx,
6689 prelocs,
6690 reloc_count,
6691 output_section,
6692 needs_special_offset_handling,
6693 local_symbol_count,
6694 plocal_symbols);
6695 }
6696
6697 // Return the value to use for a dynamic which requires special
6698 // treatment. This is how we support equality comparisons of function
6699 // pointers across shared library boundaries, as described in the
6700 // processor specific ABI supplement.
6701
6702 template<int size, bool big_endian>
6703 uint64_t
6704 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6705 {
6706 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6707 return this->plt_address_for_global(gsym);
6708 }
6709
6710
6711 // Finalize the sections.
6712
6713 template<int size, bool big_endian>
6714 void
6715 Target_aarch64<size, big_endian>::do_finalize_sections(
6716 Layout* layout,
6717 const Input_objects*,
6718 Symbol_table* symtab)
6719 {
6720 const Reloc_section* rel_plt = (this->plt_ == NULL
6721 ? NULL
6722 : this->plt_->rela_plt());
6723 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6724 this->rela_dyn_, true, false);
6725
6726 // Emit any relocs we saved in an attempt to avoid generating COPY
6727 // relocs.
6728 if (this->copy_relocs_.any_saved_relocs())
6729 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6730
6731 // Fill in some more dynamic tags.
6732 Output_data_dynamic* const odyn = layout->dynamic_data();
6733 if (odyn != NULL)
6734 {
6735 if (this->plt_ != NULL
6736 && this->plt_->output_section() != NULL
6737 && this->plt_ ->has_tlsdesc_entry())
6738 {
6739 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6740 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6741 this->got_->finalize_data_size();
6742 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6743 this->plt_, plt_offset);
6744 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6745 this->got_, got_offset);
6746 }
6747 }
6748
6749 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6750 // the .got.plt section.
6751 Symbol* sym = this->global_offset_table_;
6752 if (sym != NULL)
6753 {
6754 uint64_t data_size = this->got_plt_->current_data_size();
6755 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6756
6757 // If the .got section is more than 0x8000 bytes, we add
6758 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6759 // bit relocations have a greater chance of working.
6760 if (data_size >= 0x8000)
6761 symtab->get_sized_symbol<size>(sym)->set_value(
6762 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6763 }
6764
6765 if (parameters->doing_static_link()
6766 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6767 {
6768 // If linking statically, make sure that the __rela_iplt symbols
6769 // were defined if necessary, even if we didn't create a PLT.
6770 static const Define_symbol_in_segment syms[] =
6771 {
6772 {
6773 "__rela_iplt_start", // name
6774 elfcpp::PT_LOAD, // segment_type
6775 elfcpp::PF_W, // segment_flags_set
6776 elfcpp::PF(0), // segment_flags_clear
6777 0, // value
6778 0, // size
6779 elfcpp::STT_NOTYPE, // type
6780 elfcpp::STB_GLOBAL, // binding
6781 elfcpp::STV_HIDDEN, // visibility
6782 0, // nonvis
6783 Symbol::SEGMENT_START, // offset_from_base
6784 true // only_if_ref
6785 },
6786 {
6787 "__rela_iplt_end", // name
6788 elfcpp::PT_LOAD, // segment_type
6789 elfcpp::PF_W, // segment_flags_set
6790 elfcpp::PF(0), // segment_flags_clear
6791 0, // value
6792 0, // size
6793 elfcpp::STT_NOTYPE, // type
6794 elfcpp::STB_GLOBAL, // binding
6795 elfcpp::STV_HIDDEN, // visibility
6796 0, // nonvis
6797 Symbol::SEGMENT_START, // offset_from_base
6798 true // only_if_ref
6799 }
6800 };
6801
6802 symtab->define_symbols(layout, 2, syms,
6803 layout->script_options()->saw_sections_clause());
6804 }
6805
6806 return;
6807 }
6808
6809 // Perform a relocation.
6810
6811 template<int size, bool big_endian>
6812 inline bool
6813 Target_aarch64<size, big_endian>::Relocate::relocate(
6814 const Relocate_info<size, big_endian>* relinfo,
6815 Target_aarch64<size, big_endian>* target,
6816 Output_section* ,
6817 size_t relnum,
6818 const elfcpp::Rela<size, big_endian>& rela,
6819 unsigned int r_type,
6820 const Sized_symbol<size>* gsym,
6821 const Symbol_value<size>* psymval,
6822 unsigned char* view,
6823 typename elfcpp::Elf_types<size>::Elf_Addr address,
6824 section_size_type /* view_size */)
6825 {
6826 if (view == NULL)
6827 return true;
6828
6829 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6830
6831 const AArch64_reloc_property* reloc_property =
6832 aarch64_reloc_property_table->get_reloc_property(r_type);
6833
6834 if (reloc_property == NULL)
6835 {
6836 std::string reloc_name =
6837 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6838 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6839 _("cannot relocate %s in object file"),
6840 reloc_name.c_str());
6841 return true;
6842 }
6843
6844 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6845
6846 // Pick the value to use for symbols defined in the PLT.
6847 Symbol_value<size> symval;
6848 if (gsym != NULL
6849 && gsym->use_plt_offset(reloc_property->reference_flags()))
6850 {
6851 symval.set_output_value(target->plt_address_for_global(gsym));
6852 psymval = &symval;
6853 }
6854 else if (gsym == NULL && psymval->is_ifunc_symbol())
6855 {
6856 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6857 if (object->local_has_plt_offset(r_sym))
6858 {
6859 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6860 psymval = &symval;
6861 }
6862 }
6863
6864 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6865
6866 // Get the GOT offset if needed.
6867 // For aarch64, the GOT pointer points to the start of the GOT section.
6868 bool have_got_offset = false;
6869 int got_offset = 0;
6870 int got_base = (target->got_ != NULL
6871 ? (target->got_->current_data_size() >= 0x8000
6872 ? 0x8000 : 0)
6873 : 0);
6874 switch (r_type)
6875 {
6876 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6877 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6878 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6879 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6880 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6881 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6882 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6883 case elfcpp::R_AARCH64_GOTREL64:
6884 case elfcpp::R_AARCH64_GOTREL32:
6885 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6886 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6887 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6888 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6889 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6890 if (gsym != NULL)
6891 {
6892 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6893 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6894 }
6895 else
6896 {
6897 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6898 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6899 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6900 - got_base);
6901 }
6902 have_got_offset = true;
6903 break;
6904
6905 default:
6906 break;
6907 }
6908
6909 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6910 typename elfcpp::Elf_types<size>::Elf_Addr value;
6911 switch (r_type)
6912 {
6913 case elfcpp::R_AARCH64_NONE:
6914 break;
6915
6916 case elfcpp::R_AARCH64_ABS64:
6917 if (!parameters->options().apply_dynamic_relocs()
6918 && parameters->options().output_is_position_independent()
6919 && gsym != NULL
6920 && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6921 && !gsym->can_use_relative_reloc(false))
6922 // We have generated an absolute dynamic relocation, so do not
6923 // apply the relocation statically. (Works around bugs in older
6924 // Android dynamic linkers.)
6925 break;
6926 reloc_status = Reloc::template rela_ua<64>(
6927 view, object, psymval, addend, reloc_property);
6928 break;
6929
6930 case elfcpp::R_AARCH64_ABS32:
6931 if (!parameters->options().apply_dynamic_relocs()
6932 && parameters->options().output_is_position_independent()
6933 && gsym != NULL
6934 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6935 // We have generated an absolute dynamic relocation, so do not
6936 // apply the relocation statically. (Works around bugs in older
6937 // Android dynamic linkers.)
6938 break;
6939 reloc_status = Reloc::template rela_ua<32>(
6940 view, object, psymval, addend, reloc_property);
6941 break;
6942
6943 case elfcpp::R_AARCH64_ABS16:
6944 if (!parameters->options().apply_dynamic_relocs()
6945 && parameters->options().output_is_position_independent()
6946 && gsym != NULL
6947 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6948 // We have generated an absolute dynamic relocation, so do not
6949 // apply the relocation statically. (Works around bugs in older
6950 // Android dynamic linkers.)
6951 break;
6952 reloc_status = Reloc::template rela_ua<16>(
6953 view, object, psymval, addend, reloc_property);
6954 break;
6955
6956 case elfcpp::R_AARCH64_PREL64:
6957 reloc_status = Reloc::template pcrela_ua<64>(
6958 view, object, psymval, addend, address, reloc_property);
6959 break;
6960
6961 case elfcpp::R_AARCH64_PREL32:
6962 reloc_status = Reloc::template pcrela_ua<32>(
6963 view, object, psymval, addend, address, reloc_property);
6964 break;
6965
6966 case elfcpp::R_AARCH64_PREL16:
6967 reloc_status = Reloc::template pcrela_ua<16>(
6968 view, object, psymval, addend, address, reloc_property);
6969 break;
6970
6971 case elfcpp::R_AARCH64_LD_PREL_LO19:
6972 reloc_status = Reloc::template pcrela_general<32>(
6973 view, object, psymval, addend, address, reloc_property);
6974 break;
6975
6976 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6977 reloc_status = Reloc::adr(view, object, psymval, addend,
6978 address, reloc_property);
6979 break;
6980
6981 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6982 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6983 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6984 reloc_property);
6985 break;
6986
6987 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6988 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6989 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6990 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6991 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6992 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6993 reloc_status = Reloc::template rela_general<32>(
6994 view, object, psymval, addend, reloc_property);
6995 break;
6996
6997 case elfcpp::R_AARCH64_CALL26:
6998 if (this->skip_call_tls_get_addr_)
6999 {
7000 // Double check that the TLSGD insn has been optimized away.
7001 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7002 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7003 reinterpret_cast<Insntype*>(view));
7004 gold_assert((insn & 0xff000000) == 0x91000000);
7005
7006 reloc_status = Reloc::STATUS_OKAY;
7007 this->skip_call_tls_get_addr_ = false;
7008 // Return false to stop further processing this reloc.
7009 return false;
7010 }
7011 // Fallthrough
7012 case elfcpp::R_AARCH64_JUMP26:
7013 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7014 gsym, psymval, object,
7015 target->stub_group_size_))
7016 break;
7017 // Fallthrough
7018 case elfcpp::R_AARCH64_TSTBR14:
7019 case elfcpp::R_AARCH64_CONDBR19:
7020 reloc_status = Reloc::template pcrela_general<32>(
7021 view, object, psymval, addend, address, reloc_property);
7022 break;
7023
7024 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7025 gold_assert(have_got_offset);
7026 value = target->got_->address() + got_base + got_offset;
7027 reloc_status = Reloc::adrp(view, value + addend, address);
7028 break;
7029
7030 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7031 gold_assert(have_got_offset);
7032 value = target->got_->address() + got_base + got_offset;
7033 reloc_status = Reloc::template rela_general<32>(
7034 view, value, addend, reloc_property);
7035 break;
7036
7037 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7038 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7039 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7040 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7041 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7042 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7043 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7044 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7045 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7046 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7047 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7048 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7049 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7050 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7051 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7052 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7053 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7054 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7055 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7056 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7057 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7058 case elfcpp::R_AARCH64_TLSDESC_CALL:
7059 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7060 gsym, psymval, view, address);
7061 break;
7062
7063 // These are dynamic relocations, which are unexpected when linking.
7064 case elfcpp::R_AARCH64_COPY:
7065 case elfcpp::R_AARCH64_GLOB_DAT:
7066 case elfcpp::R_AARCH64_JUMP_SLOT:
7067 case elfcpp::R_AARCH64_RELATIVE:
7068 case elfcpp::R_AARCH64_IRELATIVE:
7069 case elfcpp::R_AARCH64_TLS_DTPREL64:
7070 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7071 case elfcpp::R_AARCH64_TLS_TPREL64:
7072 case elfcpp::R_AARCH64_TLSDESC:
7073 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7074 _("unexpected reloc %u in object file"),
7075 r_type);
7076 break;
7077
7078 default:
7079 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7080 _("unsupported reloc %s"),
7081 reloc_property->name().c_str());
7082 break;
7083 }
7084
7085 // Report any errors.
7086 switch (reloc_status)
7087 {
7088 case Reloc::STATUS_OKAY:
7089 break;
7090 case Reloc::STATUS_OVERFLOW:
7091 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7092 _("relocation overflow in %s"),
7093 reloc_property->name().c_str());
7094 break;
7095 case Reloc::STATUS_BAD_RELOC:
7096 gold_error_at_location(
7097 relinfo,
7098 relnum,
7099 rela.get_r_offset(),
7100 _("unexpected opcode while processing relocation %s"),
7101 reloc_property->name().c_str());
7102 break;
7103 default:
7104 gold_unreachable();
7105 }
7106
7107 return true;
7108 }
7109
7110
7111 template<int size, bool big_endian>
7112 inline
7113 typename AArch64_relocate_functions<size, big_endian>::Status
7114 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7115 const Relocate_info<size, big_endian>* relinfo,
7116 Target_aarch64<size, big_endian>* target,
7117 size_t relnum,
7118 const elfcpp::Rela<size, big_endian>& rela,
7119 unsigned int r_type, const Sized_symbol<size>* gsym,
7120 const Symbol_value<size>* psymval,
7121 unsigned char* view,
7122 typename elfcpp::Elf_types<size>::Elf_Addr address)
7123 {
7124 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7125 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7126
7127 Output_segment* tls_segment = relinfo->layout->tls_segment();
7128 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7129 const AArch64_reloc_property* reloc_property =
7130 aarch64_reloc_property_table->get_reloc_property(r_type);
7131 gold_assert(reloc_property != NULL);
7132
7133 const bool is_final = (gsym == NULL
7134 ? !parameters->options().shared()
7135 : gsym->final_value_is_known());
7136 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7137 optimize_tls_reloc(is_final, r_type);
7138
7139 Sized_relobj_file<size, big_endian>* object = relinfo->object;
7140 int tls_got_offset_type;
7141 switch (r_type)
7142 {
7143 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7144 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7145 {
7146 if (tlsopt == tls::TLSOPT_TO_LE)
7147 {
7148 if (tls_segment == NULL)
7149 {
7150 gold_assert(parameters->errors()->error_count() > 0
7151 || issue_undefined_symbol_error(gsym));
7152 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7153 }
7154 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7155 psymval);
7156 }
7157 else if (tlsopt == tls::TLSOPT_NONE)
7158 {
7159 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7160 // Firstly get the address for the got entry.
7161 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7162 if (gsym != NULL)
7163 {
7164 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7165 got_entry_address = target->got_->address() +
7166 gsym->got_offset(tls_got_offset_type);
7167 }
7168 else
7169 {
7170 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7171 gold_assert(
7172 object->local_has_got_offset(r_sym, tls_got_offset_type));
7173 got_entry_address = target->got_->address() +
7174 object->local_got_offset(r_sym, tls_got_offset_type);
7175 }
7176
7177 // Relocate the address into adrp/ld, adrp/add pair.
7178 switch (r_type)
7179 {
7180 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7181 return aarch64_reloc_funcs::adrp(
7182 view, got_entry_address + addend, address);
7183
7184 break;
7185
7186 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7187 return aarch64_reloc_funcs::template rela_general<32>(
7188 view, got_entry_address, addend, reloc_property);
7189 break;
7190
7191 default:
7192 gold_unreachable();
7193 }
7194 }
7195 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7196 _("unsupported gd_to_ie relaxation on %u"),
7197 r_type);
7198 }
7199 break;
7200
7201 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7202 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7203 {
7204 if (tlsopt == tls::TLSOPT_TO_LE)
7205 {
7206 if (tls_segment == NULL)
7207 {
7208 gold_assert(parameters->errors()->error_count() > 0
7209 || issue_undefined_symbol_error(gsym));
7210 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7211 }
7212 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7213 psymval);
7214 }
7215
7216 gold_assert(tlsopt == tls::TLSOPT_NONE);
7217 // Relocate the field with the offset of the GOT entry for
7218 // the module index.
7219 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7220 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7221 target->got_->address());
7222
7223 switch (r_type)
7224 {
7225 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7226 return aarch64_reloc_funcs::adrp(
7227 view, got_entry_address + addend, address);
7228 break;
7229
7230 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7231 return aarch64_reloc_funcs::template rela_general<32>(
7232 view, got_entry_address, addend, reloc_property);
7233 break;
7234
7235 default:
7236 gold_unreachable();
7237 }
7238 }
7239 break;
7240
7241 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7242 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7243 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7244 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7245 {
7246 AArch64_address value = psymval->value(object, 0);
7247 if (tlsopt == tls::TLSOPT_TO_LE)
7248 {
7249 if (tls_segment == NULL)
7250 {
7251 gold_assert(parameters->errors()->error_count() > 0
7252 || issue_undefined_symbol_error(gsym));
7253 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7254 }
7255 }
7256 switch (r_type)
7257 {
7258 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7259 return aarch64_reloc_funcs::movnz(view, value + addend,
7260 reloc_property);
7261 break;
7262
7263 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7264 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7265 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7266 return aarch64_reloc_funcs::template rela_general<32>(
7267 view, value, addend, reloc_property);
7268 break;
7269
7270 default:
7271 gold_unreachable();
7272 }
7273 // We should never reach here.
7274 }
7275 break;
7276
7277 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7278 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7279 {
7280 if (tlsopt == tls::TLSOPT_TO_LE)
7281 {
7282 if (tls_segment == NULL)
7283 {
7284 gold_assert(parameters->errors()->error_count() > 0
7285 || issue_undefined_symbol_error(gsym));
7286 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7287 }
7288 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7289 psymval);
7290 }
7291 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7292
7293 // Firstly get the address for the got entry.
7294 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7295 if (gsym != NULL)
7296 {
7297 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7298 got_entry_address = target->got_->address() +
7299 gsym->got_offset(tls_got_offset_type);
7300 }
7301 else
7302 {
7303 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7304 gold_assert(
7305 object->local_has_got_offset(r_sym, tls_got_offset_type));
7306 got_entry_address = target->got_->address() +
7307 object->local_got_offset(r_sym, tls_got_offset_type);
7308 }
7309 // Relocate the address into adrp/ld, adrp/add pair.
7310 switch (r_type)
7311 {
7312 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7313 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7314 address);
7315 break;
7316 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7317 return aarch64_reloc_funcs::template rela_general<32>(
7318 view, got_entry_address, addend, reloc_property);
7319 default:
7320 gold_unreachable();
7321 }
7322 }
7323 // We shall never reach here.
7324 break;
7325
7326 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7327 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7328 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7329 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7330 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7331 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7332 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7333 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7334 {
7335 gold_assert(tls_segment != NULL);
7336 AArch64_address value = psymval->value(object, 0);
7337
7338 if (!parameters->options().shared())
7339 {
7340 AArch64_address aligned_tcb_size =
7341 align_address(target->tcb_size(),
7342 tls_segment->maximum_alignment());
7343 value += aligned_tcb_size;
7344 switch (r_type)
7345 {
7346 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7347 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7348 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7349 return aarch64_reloc_funcs::movnz(view, value + addend,
7350 reloc_property);
7351 default:
7352 return aarch64_reloc_funcs::template
7353 rela_general<32>(view,
7354 value,
7355 addend,
7356 reloc_property);
7357 }
7358 }
7359 else
7360 gold_error(_("%s: unsupported reloc %u "
7361 "in non-static TLSLE mode."),
7362 object->name().c_str(), r_type);
7363 }
7364 break;
7365
7366 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7367 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7368 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7369 case elfcpp::R_AARCH64_TLSDESC_CALL:
7370 {
7371 if (tlsopt == tls::TLSOPT_TO_LE)
7372 {
7373 if (tls_segment == NULL)
7374 {
7375 gold_assert(parameters->errors()->error_count() > 0
7376 || issue_undefined_symbol_error(gsym));
7377 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7378 }
7379 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7380 view, psymval);
7381 }
7382 else
7383 {
7384 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7385 ? GOT_TYPE_TLS_OFFSET
7386 : GOT_TYPE_TLS_DESC);
7387 unsigned int got_tlsdesc_offset = 0;
7388 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7389 && tlsopt == tls::TLSOPT_NONE)
7390 {
7391 // We created GOT entries in the .got.tlsdesc portion of the
7392 // .got.plt section, but the offset stored in the symbol is the
7393 // offset within .got.tlsdesc.
7394 got_tlsdesc_offset = (target->got_->data_size()
7395 + target->got_plt_section()->data_size());
7396 }
7397 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7398 if (gsym != NULL)
7399 {
7400 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7401 got_entry_address = target->got_->address()
7402 + got_tlsdesc_offset
7403 + gsym->got_offset(tls_got_offset_type);
7404 }
7405 else
7406 {
7407 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7408 gold_assert(
7409 object->local_has_got_offset(r_sym, tls_got_offset_type));
7410 got_entry_address = target->got_->address() +
7411 got_tlsdesc_offset +
7412 object->local_got_offset(r_sym, tls_got_offset_type);
7413 }
7414 if (tlsopt == tls::TLSOPT_TO_IE)
7415 {
7416 if (tls_segment == NULL)
7417 {
7418 gold_assert(parameters->errors()->error_count() > 0
7419 || issue_undefined_symbol_error(gsym));
7420 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7421 }
7422 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7423 view, psymval, got_entry_address,
7424 address);
7425 }
7426
7427 // Now do tlsdesc relocation.
7428 switch (r_type)
7429 {
7430 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7431 return aarch64_reloc_funcs::adrp(view,
7432 got_entry_address + addend,
7433 address);
7434 break;
7435 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7436 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7437 return aarch64_reloc_funcs::template rela_general<32>(
7438 view, got_entry_address, addend, reloc_property);
7439 break;
7440 case elfcpp::R_AARCH64_TLSDESC_CALL:
7441 return aarch64_reloc_funcs::STATUS_OKAY;
7442 break;
7443 default:
7444 gold_unreachable();
7445 }
7446 }
7447 }
7448 break;
7449
7450 default:
7451 gold_error(_("%s: unsupported TLS reloc %u."),
7452 object->name().c_str(), r_type);
7453 }
7454 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7455 } // End of relocate_tls.
7456
7457
7458 template<int size, bool big_endian>
7459 inline
7460 typename AArch64_relocate_functions<size, big_endian>::Status
7461 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7462 const Relocate_info<size, big_endian>* relinfo,
7463 Target_aarch64<size, big_endian>* target,
7464 const elfcpp::Rela<size, big_endian>& rela,
7465 unsigned int r_type,
7466 unsigned char* view,
7467 const Symbol_value<size>* psymval)
7468 {
7469 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7470 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7471 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7472
7473 Insntype* ip = reinterpret_cast<Insntype*>(view);
7474 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7475 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7476 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7477
7478 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7479 {
7480 // This is the 2nd relocs, optimization should already have been
7481 // done.
7482 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7483 return aarch64_reloc_funcs::STATUS_OKAY;
7484 }
7485
7486 // The original sequence is -
7487 // 90000000 adrp x0, 0 <main>
7488 // 91000000 add x0, x0, #0x0
7489 // 94000000 bl 0 <__tls_get_addr>
7490 // optimized to sequence -
7491 // d53bd040 mrs x0, tpidr_el0
7492 // 91400000 add x0, x0, #0x0, lsl #12
7493 // 91000000 add x0, x0, #0x0
7494
7495 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7496 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7497 // have to change "bl tls_get_addr", which does not have a corresponding tls
7498 // relocation type. So before proceeding, we need to make sure compiler
7499 // does not change the sequence.
7500 if(!(insn1 == 0x90000000 // adrp x0,0
7501 && insn2 == 0x91000000 // add x0, x0, #0x0
7502 && insn3 == 0x94000000)) // bl 0
7503 {
7504 // Ideally we should give up gd_to_le relaxation and do gd access.
7505 // However the gd_to_le relaxation decision has been made early
7506 // in the scan stage, where we did not allocate any GOT entry for
7507 // this symbol. Therefore we have to exit and report error now.
7508 gold_error(_("unexpected reloc insn sequence while relaxing "
7509 "tls gd to le for reloc %u."), r_type);
7510 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7511 }
7512
7513 // Write new insns.
7514 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7515 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7516 insn3 = 0x91000000; // add x0, x0, #0x0
7517 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7518 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7519 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7520
7521 // Calculate tprel value.
7522 Output_segment* tls_segment = relinfo->layout->tls_segment();
7523 gold_assert(tls_segment != NULL);
7524 AArch64_address value = psymval->value(relinfo->object, 0);
7525 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7526 AArch64_address aligned_tcb_size =
7527 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7528 AArch64_address x = value + aligned_tcb_size;
7529
7530 // After new insns are written, apply TLSLE relocs.
7531 const AArch64_reloc_property* rp1 =
7532 aarch64_reloc_property_table->get_reloc_property(
7533 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7534 const AArch64_reloc_property* rp2 =
7535 aarch64_reloc_property_table->get_reloc_property(
7536 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7537 gold_assert(rp1 != NULL && rp2 != NULL);
7538
7539 typename aarch64_reloc_funcs::Status s1 =
7540 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7541 x,
7542 addend,
7543 rp1);
7544 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7545 return s1;
7546
7547 typename aarch64_reloc_funcs::Status s2 =
7548 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7549 x,
7550 addend,
7551 rp2);
7552
7553 this->skip_call_tls_get_addr_ = true;
7554 return s2;
7555 } // End of tls_gd_to_le
7556
7557
7558 template<int size, bool big_endian>
7559 inline
7560 typename AArch64_relocate_functions<size, big_endian>::Status
7561 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7562 const Relocate_info<size, big_endian>* relinfo,
7563 Target_aarch64<size, big_endian>* target,
7564 const elfcpp::Rela<size, big_endian>& rela,
7565 unsigned int r_type,
7566 unsigned char* view,
7567 const Symbol_value<size>* psymval)
7568 {
7569 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7570 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7571 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7572
7573 Insntype* ip = reinterpret_cast<Insntype*>(view);
7574 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7575 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7576 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7577
7578 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7579 {
7580 // This is the 2nd relocs, optimization should already have been
7581 // done.
7582 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7583 return aarch64_reloc_funcs::STATUS_OKAY;
7584 }
7585
7586 // The original sequence is -
7587 // 90000000 adrp x0, 0 <main>
7588 // 91000000 add x0, x0, #0x0
7589 // 94000000 bl 0 <__tls_get_addr>
7590 // optimized to sequence -
7591 // d53bd040 mrs x0, tpidr_el0
7592 // 91400000 add x0, x0, #0x0, lsl #12
7593 // 91000000 add x0, x0, #0x0
7594
7595 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7596 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7597 // have to change "bl tls_get_addr", which does not have a corresponding tls
7598 // relocation type. So before proceeding, we need to make sure compiler
7599 // does not change the sequence.
7600 if(!(insn1 == 0x90000000 // adrp x0,0
7601 && insn2 == 0x91000000 // add x0, x0, #0x0
7602 && insn3 == 0x94000000)) // bl 0
7603 {
7604 // Ideally we should give up gd_to_le relaxation and do gd access.
7605 // However the gd_to_le relaxation decision has been made early
7606 // in the scan stage, where we did not allocate any GOT entry for
7607 // this symbol. Therefore we have to exit and report error now.
7608 gold_error(_("unexpected reloc insn sequence while relaxing "
7609 "tls gd to le for reloc %u."), r_type);
7610 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7611 }
7612
7613 // Write new insns.
7614 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7615 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7616 insn3 = 0x91000000; // add x0, x0, #0x0
7617 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7618 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7619 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7620
7621 // Calculate tprel value.
7622 Output_segment* tls_segment = relinfo->layout->tls_segment();
7623 gold_assert(tls_segment != NULL);
7624 AArch64_address value = psymval->value(relinfo->object, 0);
7625 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7626 AArch64_address aligned_tcb_size =
7627 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7628 AArch64_address x = value + aligned_tcb_size;
7629
7630 // After new insns are written, apply TLSLE relocs.
7631 const AArch64_reloc_property* rp1 =
7632 aarch64_reloc_property_table->get_reloc_property(
7633 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7634 const AArch64_reloc_property* rp2 =
7635 aarch64_reloc_property_table->get_reloc_property(
7636 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7637 gold_assert(rp1 != NULL && rp2 != NULL);
7638
7639 typename aarch64_reloc_funcs::Status s1 =
7640 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7641 x,
7642 addend,
7643 rp1);
7644 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7645 return s1;
7646
7647 typename aarch64_reloc_funcs::Status s2 =
7648 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7649 x,
7650 addend,
7651 rp2);
7652
7653 this->skip_call_tls_get_addr_ = true;
7654 return s2;
7655
7656 } // End of tls_ld_to_le
7657
7658 template<int size, bool big_endian>
7659 inline
7660 typename AArch64_relocate_functions<size, big_endian>::Status
7661 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7662 const Relocate_info<size, big_endian>* relinfo,
7663 Target_aarch64<size, big_endian>* target,
7664 const elfcpp::Rela<size, big_endian>& rela,
7665 unsigned int r_type,
7666 unsigned char* view,
7667 const Symbol_value<size>* psymval)
7668 {
7669 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7670 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7671 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7672
7673 AArch64_address value = psymval->value(relinfo->object, 0);
7674 Output_segment* tls_segment = relinfo->layout->tls_segment();
7675 AArch64_address aligned_tcb_address =
7676 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7677 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7678 AArch64_address x = value + addend + aligned_tcb_address;
7679 // "x" is the offset to tp, we can only do this if x is within
7680 // range [0, 2^32-1]
7681 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7682 {
7683 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7684 r_type);
7685 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7686 }
7687
7688 Insntype* ip = reinterpret_cast<Insntype*>(view);
7689 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7690 unsigned int regno;
7691 Insntype newinsn;
7692 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7693 {
7694 // Generate movz.
7695 regno = (insn & 0x1f);
7696 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7697 }
7698 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7699 {
7700 // Generate movk.
7701 regno = (insn & 0x1f);
7702 gold_assert(regno == ((insn >> 5) & 0x1f));
7703 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7704 }
7705 else
7706 gold_unreachable();
7707
7708 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7709 return aarch64_reloc_funcs::STATUS_OKAY;
7710 } // End of tls_ie_to_le
7711
7712
7713 template<int size, bool big_endian>
7714 inline
7715 typename AArch64_relocate_functions<size, big_endian>::Status
7716 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7717 const Relocate_info<size, big_endian>* relinfo,
7718 Target_aarch64<size, big_endian>* target,
7719 const elfcpp::Rela<size, big_endian>& rela,
7720 unsigned int r_type,
7721 unsigned char* view,
7722 const Symbol_value<size>* psymval)
7723 {
7724 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7726 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7727
7728 // TLSDESC-GD sequence is like:
7729 // adrp x0, :tlsdesc:v1
7730 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7731 // add x0, x0, :tlsdesc_lo12:v1
7732 // .tlsdesccall v1
7733 // blr x1
7734 // After desc_gd_to_le optimization, the sequence will be like:
7735 // movz x0, #0x0, lsl #16
7736 // movk x0, #0x10
7737 // nop
7738 // nop
7739
7740 // Calculate tprel value.
7741 Output_segment* tls_segment = relinfo->layout->tls_segment();
7742 gold_assert(tls_segment != NULL);
7743 Insntype* ip = reinterpret_cast<Insntype*>(view);
7744 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7745 AArch64_address value = psymval->value(relinfo->object, addend);
7746 AArch64_address aligned_tcb_size =
7747 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7748 AArch64_address x = value + aligned_tcb_size;
7749 // x is the offset to tp, we can only do this if x is within range
7750 // [0, 2^32-1]. If x is out of range, fail and exit.
7751 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7752 {
7753 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7754 "We Can't do gd_to_le relaxation.\n"), r_type);
7755 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7756 }
7757 Insntype newinsn;
7758 switch (r_type)
7759 {
7760 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7761 case elfcpp::R_AARCH64_TLSDESC_CALL:
7762 // Change to nop
7763 newinsn = 0xd503201f;
7764 break;
7765
7766 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7767 // Change to movz.
7768 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7769 break;
7770
7771 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7772 // Change to movk.
7773 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7774 break;
7775
7776 default:
7777 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7778 r_type);
7779 gold_unreachable();
7780 }
7781 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7782 return aarch64_reloc_funcs::STATUS_OKAY;
7783 } // End of tls_desc_gd_to_le
7784
7785
7786 template<int size, bool big_endian>
7787 inline
7788 typename AArch64_relocate_functions<size, big_endian>::Status
7789 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7790 const Relocate_info<size, big_endian>* /* relinfo */,
7791 Target_aarch64<size, big_endian>* /* target */,
7792 const elfcpp::Rela<size, big_endian>& rela,
7793 unsigned int r_type,
7794 unsigned char* view,
7795 const Symbol_value<size>* /* psymval */,
7796 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7797 typename elfcpp::Elf_types<size>::Elf_Addr address)
7798 {
7799 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7800 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7801
7802 // TLSDESC-GD sequence is like:
7803 // adrp x0, :tlsdesc:v1
7804 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7805 // add x0, x0, :tlsdesc_lo12:v1
7806 // .tlsdesccall v1
7807 // blr x1
7808 // After desc_gd_to_ie optimization, the sequence will be like:
7809 // adrp x0, :tlsie:v1
7810 // ldr x0, [x0, :tlsie_lo12:v1]
7811 // nop
7812 // nop
7813
7814 Insntype* ip = reinterpret_cast<Insntype*>(view);
7815 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7816 Insntype newinsn;
7817 switch (r_type)
7818 {
7819 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7820 case elfcpp::R_AARCH64_TLSDESC_CALL:
7821 // Change to nop
7822 newinsn = 0xd503201f;
7823 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7824 break;
7825
7826 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7827 {
7828 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7829 address);
7830 }
7831 break;
7832
7833 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7834 {
7835 // Set ldr target register to be x0.
7836 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7837 insn &= 0xffffffe0;
7838 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7839 // Do relocation.
7840 const AArch64_reloc_property* reloc_property =
7841 aarch64_reloc_property_table->get_reloc_property(
7842 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7843 return aarch64_reloc_funcs::template rela_general<32>(
7844 view, got_entry_address, addend, reloc_property);
7845 }
7846 break;
7847
7848 default:
7849 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7850 r_type);
7851 gold_unreachable();
7852 }
7853 return aarch64_reloc_funcs::STATUS_OKAY;
7854 } // End of tls_desc_gd_to_ie
7855
7856 // Relocate section data.
7857
7858 template<int size, bool big_endian>
7859 void
7860 Target_aarch64<size, big_endian>::relocate_section(
7861 const Relocate_info<size, big_endian>* relinfo,
7862 unsigned int sh_type,
7863 const unsigned char* prelocs,
7864 size_t reloc_count,
7865 Output_section* output_section,
7866 bool needs_special_offset_handling,
7867 unsigned char* view,
7868 typename elfcpp::Elf_types<size>::Elf_Addr address,
7869 section_size_type view_size,
7870 const Reloc_symbol_changes* reloc_symbol_changes)
7871 {
7872 gold_assert(sh_type == elfcpp::SHT_RELA);
7873 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7874 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7875 AArch64_relocate, gold::Default_comdat_behavior>(
7876 relinfo,
7877 this,
7878 prelocs,
7879 reloc_count,
7880 output_section,
7881 needs_special_offset_handling,
7882 view,
7883 address,
7884 view_size,
7885 reloc_symbol_changes);
7886 }
7887
7888 // Return the size of a relocation while scanning during a relocatable
7889 // link.
7890
7891 template<int size, bool big_endian>
7892 unsigned int
7893 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7894 get_size_for_reloc(
7895 unsigned int ,
7896 Relobj* )
7897 {
7898 // We will never support SHT_REL relocations.
7899 gold_unreachable();
7900 return 0;
7901 }
7902
7903 // Scan the relocs during a relocatable link.
7904
7905 template<int size, bool big_endian>
7906 void
7907 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7908 Symbol_table* symtab,
7909 Layout* layout,
7910 Sized_relobj_file<size, big_endian>* object,
7911 unsigned int data_shndx,
7912 unsigned int sh_type,
7913 const unsigned char* prelocs,
7914 size_t reloc_count,
7915 Output_section* output_section,
7916 bool needs_special_offset_handling,
7917 size_t local_symbol_count,
7918 const unsigned char* plocal_symbols,
7919 Relocatable_relocs* rr)
7920 {
7921 gold_assert(sh_type == elfcpp::SHT_RELA);
7922
7923 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7924 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7925
7926 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7927 Scan_relocatable_relocs>(
7928 symtab,
7929 layout,
7930 object,
7931 data_shndx,
7932 prelocs,
7933 reloc_count,
7934 output_section,
7935 needs_special_offset_handling,
7936 local_symbol_count,
7937 plocal_symbols,
7938 rr);
7939 }
7940
7941 // Relocate a section during a relocatable link.
7942
7943 template<int size, bool big_endian>
7944 void
7945 Target_aarch64<size, big_endian>::relocate_relocs(
7946 const Relocate_info<size, big_endian>* relinfo,
7947 unsigned int sh_type,
7948 const unsigned char* prelocs,
7949 size_t reloc_count,
7950 Output_section* output_section,
7951 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7952 const Relocatable_relocs* rr,
7953 unsigned char* view,
7954 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7955 section_size_type view_size,
7956 unsigned char* reloc_view,
7957 section_size_type reloc_view_size)
7958 {
7959 gold_assert(sh_type == elfcpp::SHT_RELA);
7960
7961 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7962 relinfo,
7963 prelocs,
7964 reloc_count,
7965 output_section,
7966 offset_in_output_section,
7967 rr,
7968 view,
7969 view_address,
7970 view_size,
7971 reloc_view,
7972 reloc_view_size);
7973 }
7974
7975
7976 // Return whether this is a 3-insn erratum sequence.
7977
7978 template<int size, bool big_endian>
7979 bool
7980 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7981 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7982 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7983 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7984 {
7985 unsigned rt1, rt2;
7986 bool load, pair;
7987
7988 // The 2nd insn is a single register load or store; or register pair
7989 // store.
7990 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7991 && (!pair || (pair && !load)))
7992 {
7993 // The 3rd insn is a load or store instruction from the "Load/store
7994 // register (unsigned immediate)" encoding class, using Rn as the
7995 // base address register.
7996 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7997 && (Insn_utilities::aarch64_rn(insn3)
7998 == Insn_utilities::aarch64_rd(insn1)))
7999 return true;
8000 }
8001 return false;
8002 }
8003
8004
8005 // Return whether this is a 835769 sequence.
8006 // (Similarly implemented as in elfnn-aarch64.c.)
8007
8008 template<int size, bool big_endian>
8009 bool
8010 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8011 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8012 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8013 {
8014 uint32_t rt;
8015 uint32_t rt2;
8016 uint32_t rn;
8017 uint32_t rm;
8018 uint32_t ra;
8019 bool pair;
8020 bool load;
8021
8022 if (Insn_utilities::aarch64_mlxl(insn2)
8023 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8024 {
8025 /* Any SIMD memory op is independent of the subsequent MLA
8026 by definition of the erratum. */
8027 if (Insn_utilities::aarch64_bit(insn1, 26))
8028 return true;
8029
8030 /* If not SIMD, check for integer memory ops and MLA relationship. */
8031 rn = Insn_utilities::aarch64_rn(insn2);
8032 ra = Insn_utilities::aarch64_ra(insn2);
8033 rm = Insn_utilities::aarch64_rm(insn2);
8034
8035 /* If this is a load and there's a true(RAW) dependency, we are safe
8036 and this is not an erratum sequence. */
8037 if (load &&
8038 (rt == rn || rt == rm || rt == ra
8039 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8040 return false;
8041
8042 /* We conservatively put out stubs for all other cases (including
8043 writebacks). */
8044 return true;
8045 }
8046
8047 return false;
8048 }
8049
8050
8051 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8052
8053 template<int size, bool big_endian>
8054 void
8055 Target_aarch64<size, big_endian>::create_erratum_stub(
8056 AArch64_relobj<size, big_endian>* relobj,
8057 unsigned int shndx,
8058 section_size_type erratum_insn_offset,
8059 Address erratum_address,
8060 typename Insn_utilities::Insntype erratum_insn,
8061 int erratum_type,
8062 unsigned int e843419_adrp_offset)
8063 {
8064 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8065 The_stub_table* stub_table = relobj->stub_table(shndx);
8066 gold_assert(stub_table != NULL);
8067 if (stub_table->find_erratum_stub(relobj,
8068 shndx,
8069 erratum_insn_offset) == NULL)
8070 {
8071 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8072 The_erratum_stub* stub;
8073 if (erratum_type == ST_E_835769)
8074 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8075 erratum_insn_offset);
8076 else if (erratum_type == ST_E_843419)
8077 stub = new E843419_stub<size, big_endian>(
8078 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8079 else
8080 gold_unreachable();
8081 stub->set_erratum_insn(erratum_insn);
8082 stub->set_erratum_address(erratum_address);
8083 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8084 // always the next insn after erratum insn.
8085 stub->set_destination_address(erratum_address + BPI);
8086 stub_table->add_erratum_stub(stub);
8087 }
8088 }
8089
8090
8091 // Scan erratum for section SHNDX range [output_address + span_start,
8092 // output_address + span_end). Note here we do not share the code with
8093 // scan_erratum_843419_span function, because for 843419 we optimize by only
8094 // scanning the last few insns of a page, whereas for 835769, we need to scan
8095 // every insn.
8096
8097 template<int size, bool big_endian>
8098 void
8099 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8100 AArch64_relobj<size, big_endian>* relobj,
8101 unsigned int shndx,
8102 const section_size_type span_start,
8103 const section_size_type span_end,
8104 unsigned char* input_view,
8105 Address output_address)
8106 {
8107 typedef typename Insn_utilities::Insntype Insntype;
8108
8109 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8110
8111 // Adjust output_address and view to the start of span.
8112 output_address += span_start;
8113 input_view += span_start;
8114
8115 section_size_type span_length = span_end - span_start;
8116 section_size_type offset = 0;
8117 for (offset = 0; offset + BPI < span_length; offset += BPI)
8118 {
8119 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8120 Insntype insn1 = ip[0];
8121 Insntype insn2 = ip[1];
8122 if (is_erratum_835769_sequence(insn1, insn2))
8123 {
8124 Insntype erratum_insn = insn2;
8125 // "span_start + offset" is the offset for insn1. So for insn2, it is
8126 // "span_start + offset + BPI".
8127 section_size_type erratum_insn_offset = span_start + offset + BPI;
8128 Address erratum_address = output_address + offset + BPI;
8129 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8130 "section %d, offset 0x%08x."),
8131 relobj->name().c_str(), shndx,
8132 (unsigned int)(span_start + offset));
8133
8134 this->create_erratum_stub(relobj, shndx,
8135 erratum_insn_offset, erratum_address,
8136 erratum_insn, ST_E_835769);
8137 offset += BPI; // Skip mac insn.
8138 }
8139 }
8140 } // End of "Target_aarch64::scan_erratum_835769_span".
8141
8142
8143 // Scan erratum for section SHNDX range
8144 // [output_address + span_start, output_address + span_end).
8145
8146 template<int size, bool big_endian>
8147 void
8148 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8149 AArch64_relobj<size, big_endian>* relobj,
8150 unsigned int shndx,
8151 const section_size_type span_start,
8152 const section_size_type span_end,
8153 unsigned char* input_view,
8154 Address output_address)
8155 {
8156 typedef typename Insn_utilities::Insntype Insntype;
8157
8158 // Adjust output_address and view to the start of span.
8159 output_address += span_start;
8160 input_view += span_start;
8161
8162 if ((output_address & 0x03) != 0)
8163 return;
8164
8165 section_size_type offset = 0;
8166 section_size_type span_length = span_end - span_start;
8167 // The first instruction must be ending at 0xFF8 or 0xFFC.
8168 unsigned int page_offset = output_address & 0xFFF;
8169 // Make sure starting position, that is "output_address+offset",
8170 // starts at page position 0xff8 or 0xffc.
8171 if (page_offset < 0xff8)
8172 offset = 0xff8 - page_offset;
8173 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8174 {
8175 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8176 Insntype insn1 = ip[0];
8177 if (Insn_utilities::is_adrp(insn1))
8178 {
8179 Insntype insn2 = ip[1];
8180 Insntype insn3 = ip[2];
8181 Insntype erratum_insn;
8182 unsigned insn_offset;
8183 bool do_report = false;
8184 if (is_erratum_843419_sequence(insn1, insn2, insn3))
8185 {
8186 do_report = true;
8187 erratum_insn = insn3;
8188 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8189 }
8190 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8191 {
8192 // Optionally we can have an insn between ins2 and ins3
8193 Insntype insn_opt = ip[2];
8194 // And insn_opt must not be a branch.
8195 if (!Insn_utilities::aarch64_b(insn_opt)
8196 && !Insn_utilities::aarch64_bl(insn_opt)
8197 && !Insn_utilities::aarch64_blr(insn_opt)
8198 && !Insn_utilities::aarch64_br(insn_opt))
8199 {
8200 // And insn_opt must not write to dest reg in insn1. However
8201 // we do a conservative scan, which means we may fix/report
8202 // more than necessary, but it doesn't hurt.
8203
8204 Insntype insn4 = ip[3];
8205 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8206 {
8207 do_report = true;
8208 erratum_insn = insn4;
8209 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8210 }
8211 }
8212 }
8213 if (do_report)
8214 {
8215 gold_info(_("Erratum 843419 found and fixed at \"%s\", "
8216 "section %d, offset 0x%08x."),
8217 relobj->name().c_str(), shndx,
8218 (unsigned int)(span_start + offset));
8219 unsigned int erratum_insn_offset =
8220 span_start + offset + insn_offset;
8221 Address erratum_address =
8222 output_address + offset + insn_offset;
8223 create_erratum_stub(relobj, shndx,
8224 erratum_insn_offset, erratum_address,
8225 erratum_insn, ST_E_843419,
8226 span_start + offset);
8227 }
8228 }
8229
8230 // Advance to next candidate instruction. We only consider instruction
8231 // sequences starting at a page offset of 0xff8 or 0xffc.
8232 page_offset = (output_address + offset) & 0xfff;
8233 if (page_offset == 0xff8)
8234 offset += 4;
8235 else // (page_offset == 0xffc), we move to next page's 0xff8.
8236 offset += 0xffc;
8237 }
8238 } // End of "Target_aarch64::scan_erratum_843419_span".
8239
8240
8241 // The selector for aarch64 object files.
8242
8243 template<int size, bool big_endian>
8244 class Target_selector_aarch64 : public Target_selector
8245 {
8246 public:
8247 Target_selector_aarch64();
8248
8249 virtual Target*
8250 do_instantiate_target()
8251 { return new Target_aarch64<size, big_endian>(); }
8252 };
8253
8254 template<>
8255 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8256 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8257 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8258 { }
8259
8260 template<>
8261 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8262 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8263 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8264 { }
8265
8266 template<>
8267 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8268 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8269 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8270 { }
8271
8272 template<>
8273 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8274 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8275 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8276 { }
8277
8278 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8279 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8280 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8281 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8282
8283 } // End anonymous namespace.
This page took 0.190447 seconds and 5 git commands to generate.