S/390: z13 use GNU attribute to indicate vector ABI
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
2282 Arm_address view_address,
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
2285
2286 // Scan the relocs during a relocatable link.
2287 void
2288 scan_relocatable_relocs(Symbol_table* symtab,
2289 Layout* layout,
2290 Sized_relobj_file<32, big_endian>* object,
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
2301 // Emit relocations for a section.
2302 void
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
2310 const Relocatable_relocs*,
2311 unsigned char* view,
2312 Arm_address view_address,
2313 section_size_type view_size,
2314 unsigned char* reloc_view,
2315 section_size_type reloc_view_size);
2316
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 void
2320 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321 unsigned int sh_type,
2322 const unsigned char* preloc_in,
2323 size_t relnum,
2324 Output_section* output_section,
2325 typename elfcpp::Elf_types<32>::Elf_Off
2326 offset_in_output_section,
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2332
2333 // Return whether SYM is defined by the ABI.
2334 bool
2335 do_is_defined_by_abi(const Symbol* sym) const
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2342
2343 // Return the size of the GOT section.
2344 section_size_type
2345 got_size() const
2346 {
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2349 }
2350
2351 // Return the number of entries in the GOT.
2352 unsigned int
2353 got_entry_count() const
2354 {
2355 if (!this->has_got_section())
2356 return 0;
2357 return this->got_size() / 4;
2358 }
2359
2360 // Return the number of entries in the PLT.
2361 unsigned int
2362 plt_entry_count() const;
2363
2364 // Return the offset of the first non-reserved PLT entry.
2365 unsigned int
2366 first_plt_entry_offset() const;
2367
2368 // Return the size of each PLT entry.
2369 unsigned int
2370 plt_entry_size() const;
2371
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 Reloc_section*
2374 rel_irelative_section(Layout*);
2375
2376 // Map platform-specific reloc types
2377 static unsigned int
2378 get_real_reloc_type(unsigned int r_type);
2379
2380 //
2381 // Methods to support stub-generations.
2382 //
2383
2384 // Return the stub factory
2385 const Stub_factory&
2386 stub_factory() const
2387 { return this->stub_factory_; }
2388
2389 // Make a new Arm_input_section object.
2390 Arm_input_section<big_endian>*
2391 new_arm_input_section(Relobj*, unsigned int);
2392
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section<big_endian>*
2396 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2397
2398 // Make a new Stub_table
2399 Stub_table<big_endian>*
2400 new_stub_table(Arm_input_section<big_endian>*);
2401
2402 // Scan a section for stub generation.
2403 void
2404 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405 const unsigned char*, size_t, Output_section*,
2406 bool, const unsigned char*, Arm_address,
2407 section_size_type);
2408
2409 // Relocate a stub.
2410 void
2411 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2412 Output_section*, unsigned char*, Arm_address,
2413 section_size_type);
2414
2415 // Get the default ARM target.
2416 static Target_arm<big_endian>*
2417 default_target()
2418 {
2419 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420 && parameters->target().is_big_endian() == big_endian);
2421 return static_cast<Target_arm<big_endian>*>(
2422 parameters->sized_target<32, big_endian>());
2423 }
2424
2425 // Whether NAME belongs to a mapping symbol.
2426 static bool
2427 is_mapping_symbol_name(const char* name)
2428 {
2429 return (name
2430 && name[0] == '$'
2431 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432 && (name[2] == '\0' || name[2] == '.'));
2433 }
2434
2435 // Whether we work around the Cortex-A8 erratum.
2436 bool
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_; }
2439
2440 // Whether we merge exidx entries in debuginfo.
2441 bool
2442 merge_exidx_entries() const
2443 { return parameters->options().merge_exidx_entries(); }
2444
2445 // Whether we fix R_ARM_V4BX relocation.
2446 // 0 - do not fix
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
2449 General_options::Fix_v4bx
2450 fix_v4bx() const
2451 { return parameters->options().fix_v4bx(); }
2452
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 void
2455 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456 section_size_type, section_size_type,
2457 const unsigned char*, Arm_address);
2458
2459 // Apply Cortex-A8 workaround to a branch.
2460 void
2461 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462 unsigned char*, Arm_address);
2463
2464 protected:
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm<big_endian>*
2467 make_data_plt(Layout* layout,
2468 Arm_output_data_got<big_endian>* got,
2469 Output_data_space* got_plt,
2470 Output_data_space* got_irelative)
2471 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2472
2473 // Make an ELF object.
2474 Object*
2475 do_make_elf_object(const std::string&, Input_file*, off_t,
2476 const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478 Object*
2479 do_make_elf_object(const std::string&, Input_file*, off_t,
2480 const elfcpp::Ehdr<32, !big_endian>&)
2481 { gold_unreachable(); }
2482
2483 Object*
2484 do_make_elf_object(const std::string&, Input_file*, off_t,
2485 const elfcpp::Ehdr<64, false>&)
2486 { gold_unreachable(); }
2487
2488 Object*
2489 do_make_elf_object(const std::string&, Input_file*, off_t,
2490 const elfcpp::Ehdr<64, true>&)
2491 { gold_unreachable(); }
2492
2493 // Make an output section.
2494 Output_section*
2495 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496 elfcpp::Elf_Xword flags)
2497 { return new Arm_output_section<big_endian>(name, type, flags); }
2498
2499 void
2500 do_adjust_elf_header(unsigned char* view, int len);
2501
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2504 bool
2505 do_may_relax() const
2506 { return !parameters->options().relocatable(); }
2507
2508 bool
2509 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2510
2511 // Determine whether an object attribute tag takes an integer, a
2512 // string or both.
2513 int
2514 do_attribute_arg_type(int tag) const;
2515
2516 // Reorder tags during output.
2517 int
2518 do_attributes_order(int num) const;
2519
2520 // This is called when the target is selected as the default.
2521 void
2522 do_select_as_default_target()
2523 {
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2526 // as the default.
2527 gold_assert(arm_reloc_property_table == NULL);
2528 arm_reloc_property_table = new Arm_reloc_property_table();
2529 }
2530
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2534 virtual bool
2535 do_can_check_for_function_pointers() const
2536 { return true; }
2537
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2540 virtual bool
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 {
2543 return (!is_prefix_of(".ARM.exidx", section_name)
2544 && !is_prefix_of(".ARM.extab", section_name)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546 }
2547
2548 virtual void
2549 do_define_standard_symbols(Symbol_table*, Layout*);
2550
2551 virtual Output_data_plt_arm<big_endian>*
2552 do_make_data_plt(Layout* layout,
2553 Arm_output_data_got<big_endian>* got,
2554 Output_data_space* got_plt,
2555 Output_data_space* got_irelative)
2556 {
2557 gold_assert(got_plt != NULL && got_irelative != NULL);
2558 return new Output_data_plt_arm_standard<big_endian>(
2559 layout, got, got_plt, got_irelative);
2560 }
2561
2562 private:
2563 // The class which scans relocations.
2564 class Scan
2565 {
2566 public:
2567 Scan()
2568 : issued_non_pic_error_(false)
2569 { }
2570
2571 static inline int
2572 get_reference_flags(unsigned int r_type);
2573
2574 inline void
2575 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2576 Sized_relobj_file<32, big_endian>* object,
2577 unsigned int data_shndx,
2578 Output_section* output_section,
2579 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2580 const elfcpp::Sym<32, big_endian>& lsym,
2581 bool is_discarded);
2582
2583 inline void
2584 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2585 Sized_relobj_file<32, big_endian>* object,
2586 unsigned int data_shndx,
2587 Output_section* output_section,
2588 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589 Symbol* gsym);
2590
2591 inline bool
2592 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2593 Sized_relobj_file<32, big_endian>* ,
2594 unsigned int ,
2595 Output_section* ,
2596 const elfcpp::Rel<32, big_endian>& ,
2597 unsigned int ,
2598 const elfcpp::Sym<32, big_endian>&);
2599
2600 inline bool
2601 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2602 Sized_relobj_file<32, big_endian>* ,
2603 unsigned int ,
2604 Output_section* ,
2605 const elfcpp::Rel<32, big_endian>& ,
2606 unsigned int , Symbol*);
2607
2608 private:
2609 static void
2610 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2611 unsigned int r_type);
2612
2613 static void
2614 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2615 unsigned int r_type, Symbol*);
2616
2617 void
2618 check_non_pic(Relobj*, unsigned int r_type);
2619
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2622 static bool
2623 symbol_needs_plt_entry(const Symbol* sym)
2624 {
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym->is_undefined() && !parameters->options().shared())
2627 return false;
2628
2629 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630 return true;
2631
2632 return (!parameters->doing_static_link()
2633 && (sym->type() == elfcpp::STT_FUNC
2634 || sym->type() == elfcpp::STT_ARM_TFUNC)
2635 && (sym->is_from_dynobj()
2636 || sym->is_undefined()
2637 || sym->is_preemptible()));
2638 }
2639
2640 inline bool
2641 possible_function_pointer_reloc(unsigned int r_type);
2642
2643 // Whether a plt entry is needed for ifunc.
2644 bool
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646 unsigned int r_type);
2647
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_;
2650 };
2651
2652 // The class which implements relocation.
2653 class Relocate
2654 {
2655 public:
2656 Relocate()
2657 { }
2658
2659 ~Relocate()
2660 { }
2661
2662 // Return whether the static relocation needs to be applied.
2663 inline bool
2664 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2665 unsigned int r_type,
2666 bool is_32bit,
2667 Output_section* output_section);
2668
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2671 inline bool
2672 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673 Output_section*, size_t relnum,
2674 const elfcpp::Rel<32, big_endian>&,
2675 unsigned int r_type, const Sized_symbol<32>*,
2676 const Symbol_value<32>*,
2677 unsigned char*, Arm_address,
2678 section_size_type);
2679
2680 // Return whether we want to pass flag NON_PIC_REF for this
2681 // reloc. This means the relocation type accesses a symbol not via
2682 // GOT or PLT.
2683 static inline bool
2684 reloc_is_non_pic(unsigned int r_type)
2685 {
2686 switch (r_type)
2687 {
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL:
2690 case elfcpp::R_ARM_GOT_ABS:
2691 case elfcpp::R_ARM_GOT_PREL:
2692 case elfcpp::R_ARM_GOT_BREL12:
2693 case elfcpp::R_ARM_PLT32_ABS:
2694 case elfcpp::R_ARM_TLS_GD32:
2695 case elfcpp::R_ARM_TLS_LDM32:
2696 case elfcpp::R_ARM_TLS_IE32:
2697 case elfcpp::R_ARM_TLS_IE12GP:
2698
2699 // These relocate types may use PLT entries.
2700 case elfcpp::R_ARM_CALL:
2701 case elfcpp::R_ARM_THM_CALL:
2702 case elfcpp::R_ARM_JUMP24:
2703 case elfcpp::R_ARM_THM_JUMP24:
2704 case elfcpp::R_ARM_THM_JUMP19:
2705 case elfcpp::R_ARM_PLT32:
2706 case elfcpp::R_ARM_THM_XPC22:
2707 case elfcpp::R_ARM_PREL31:
2708 case elfcpp::R_ARM_SBREL31:
2709 return false;
2710
2711 default:
2712 return true;
2713 }
2714 }
2715
2716 private:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions<big_endian>::Status
2719 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2720 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2721 const Sized_symbol<32>*, const Symbol_value<32>*,
2722 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 section_size_type);
2724
2725 };
2726
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2730 {
2731 public:
2732 unsigned int
2733 get_size_for_reloc(unsigned int, Relobj*);
2734 };
2735
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final, int r_type);
2740
2741 // Get the GOT section, creating it if necessary.
2742 Arm_output_data_got<big_endian>*
2743 got_section(Symbol_table*, Layout*);
2744
2745 // Get the GOT PLT section.
2746 Output_data_space*
2747 got_plt_section() const
2748 {
2749 gold_assert(this->got_plt_ != NULL);
2750 return this->got_plt_;
2751 }
2752
2753 // Create the PLT section.
2754 void
2755 make_plt_section(Symbol_table* symtab, Layout* layout);
2756
2757 // Create a PLT entry for a global symbol.
2758 void
2759 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762 void
2763 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764 Sized_relobj_file<32, big_endian>* relobj,
2765 unsigned int local_sym_index);
2766
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768 void
2769 define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771 // Create a GOT entry for the TLS module index.
2772 unsigned int
2773 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2774 Sized_relobj_file<32, big_endian>* object);
2775
2776 // Get the PLT section.
2777 const Output_data_plt_arm<big_endian>*
2778 plt_section() const
2779 {
2780 gold_assert(this->plt_ != NULL);
2781 return this->plt_;
2782 }
2783
2784 // Get the dynamic reloc section, creating it if necessary.
2785 Reloc_section*
2786 rel_dyn_section(Layout*);
2787
2788 // Get the section to use for TLS_DESC relocations.
2789 Reloc_section*
2790 rel_tls_desc_section(Layout*) const;
2791
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2795 bool
2796 may_need_copy_reloc(Symbol* gsym)
2797 {
2798 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym->may_need_copy_reloc());
2800 }
2801
2802 // Add a potential copy relocation.
2803 void
2804 copy_reloc(Symbol_table* symtab, Layout* layout,
2805 Sized_relobj_file<32, big_endian>* object,
2806 unsigned int shndx, Output_section* output_section,
2807 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808 {
2809 this->copy_relocs_.copy_reloc(symtab, layout,
2810 symtab->get_sized_symbol<32>(sym),
2811 object, shndx, output_section, reloc,
2812 this->rel_dyn_section(layout));
2813 }
2814
2815 // Whether two EABI versions are compatible.
2816 static bool
2817 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2818
2819 // Merge processor-specific flags from input object and those in the ELF
2820 // header of the output.
2821 void
2822 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2823
2824 // Get the secondary compatible architecture.
2825 static int
2826 get_secondary_compatible_arch(const Attributes_section_data*);
2827
2828 // Set the secondary compatible architecture.
2829 static void
2830 set_secondary_compatible_arch(Attributes_section_data*, int);
2831
2832 static int
2833 tag_cpu_arch_combine(const char*, int, int*, int, int);
2834
2835 // Helper to print AEABI enum tag value.
2836 static std::string
2837 aeabi_enum_name(unsigned int);
2838
2839 // Return string value for TAG_CPU_name.
2840 static std::string
2841 tag_cpu_name_value(unsigned int);
2842
2843 // Query attributes object to see if integer divide instructions may be
2844 // present in an object.
2845 static bool
2846 attributes_accept_div(int arch, int profile,
2847 const Object_attribute* div_attr);
2848
2849 // Query attributes object to see if integer divide instructions are
2850 // forbidden to be in the object. This is not the inverse of
2851 // attributes_accept_div.
2852 static bool
2853 attributes_forbid_div(const Object_attribute* div_attr);
2854
2855 // Merge object attributes from input object and those in the output.
2856 void
2857 merge_object_attributes(const char*, const Attributes_section_data*);
2858
2859 // Helper to get an AEABI object attribute
2860 Object_attribute*
2861 get_aeabi_object_attribute(int tag) const
2862 {
2863 Attributes_section_data* pasd = this->attributes_section_data_;
2864 gold_assert(pasd != NULL);
2865 Object_attribute* attr =
2866 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2867 gold_assert(attr != NULL);
2868 return attr;
2869 }
2870
2871 //
2872 // Methods to support stub-generations.
2873 //
2874
2875 // Group input sections for stub generation.
2876 void
2877 group_sections(Layout*, section_size_type, bool, const Task*);
2878
2879 // Scan a relocation for stub generation.
2880 void
2881 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2882 const Sized_symbol<32>*, unsigned int,
2883 const Symbol_value<32>*,
2884 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2885
2886 // Scan a relocation section for stub.
2887 template<int sh_type>
2888 void
2889 scan_reloc_section_for_stubs(
2890 const Relocate_info<32, big_endian>* relinfo,
2891 const unsigned char* prelocs,
2892 size_t reloc_count,
2893 Output_section* output_section,
2894 bool needs_special_offset_handling,
2895 const unsigned char* view,
2896 elfcpp::Elf_types<32>::Elf_Addr view_address,
2897 section_size_type);
2898
2899 // Fix .ARM.exidx section coverage.
2900 void
2901 fix_exidx_coverage(Layout*, const Input_objects*,
2902 Arm_output_section<big_endian>*, Symbol_table*,
2903 const Task*);
2904
2905 // Functors for STL set.
2906 struct output_section_address_less_than
2907 {
2908 bool
2909 operator()(const Output_section* s1, const Output_section* s2) const
2910 { return s1->address() < s2->address(); }
2911 };
2912
2913 // Information about this specific target which we pass to the
2914 // general Target structure.
2915 static const Target::Target_info arm_info;
2916
2917 // The types of GOT entries needed for this platform.
2918 // These values are exposed to the ABI in an incremental link.
2919 // Do not renumber existing values without changing the version
2920 // number of the .gnu_incremental_inputs section.
2921 enum Got_type
2922 {
2923 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2924 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2925 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2926 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2927 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2928 };
2929
2930 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2931
2932 // Map input section to Arm_input_section.
2933 typedef Unordered_map<Section_id,
2934 Arm_input_section<big_endian>*,
2935 Section_id_hash>
2936 Arm_input_section_map;
2937
2938 // Map output addresses to relocs for Cortex-A8 erratum.
2939 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2940 Cortex_a8_relocs_info;
2941
2942 // The GOT section.
2943 Arm_output_data_got<big_endian>* got_;
2944 // The PLT section.
2945 Output_data_plt_arm<big_endian>* plt_;
2946 // The GOT PLT section.
2947 Output_data_space* got_plt_;
2948 // The GOT section for IRELATIVE relocations.
2949 Output_data_space* got_irelative_;
2950 // The dynamic reloc section.
2951 Reloc_section* rel_dyn_;
2952 // The section to use for IRELATIVE relocs.
2953 Reloc_section* rel_irelative_;
2954 // Relocs saved to avoid a COPY reloc.
2955 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2956 // Offset of the GOT entry for the TLS module index.
2957 unsigned int got_mod_index_offset_;
2958 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959 bool tls_base_symbol_defined_;
2960 // Vector of Stub_tables created.
2961 Stub_table_list stub_tables_;
2962 // Stub factory.
2963 const Stub_factory &stub_factory_;
2964 // Whether we force PIC branch veneers.
2965 bool should_force_pic_veneer_;
2966 // Map for locating Arm_input_sections.
2967 Arm_input_section_map arm_input_section_map_;
2968 // Attributes section data in output.
2969 Attributes_section_data* attributes_section_data_;
2970 // Whether we want to fix code for Cortex-A8 erratum.
2971 bool fix_cortex_a8_;
2972 // Map addresses to relocs for Cortex-A8 erratum.
2973 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2974 };
2975
2976 template<bool big_endian>
2977 const Target::Target_info Target_arm<big_endian>::arm_info =
2978 {
2979 32, // size
2980 big_endian, // is_big_endian
2981 elfcpp::EM_ARM, // machine_code
2982 false, // has_make_symbol
2983 false, // has_resolve
2984 false, // has_code_fill
2985 true, // is_default_stack_executable
2986 false, // can_icf_inline_merge_sections
2987 '\0', // wrap_char
2988 "/usr/lib/libc.so.1", // dynamic_linker
2989 0x8000, // default_text_segment_address
2990 0x1000, // abi_pagesize (overridable by -z max-page-size)
2991 0x1000, // common_pagesize (overridable by -z common-page-size)
2992 false, // isolate_execinstr
2993 0, // rosegment_gap
2994 elfcpp::SHN_UNDEF, // small_common_shndx
2995 elfcpp::SHN_UNDEF, // large_common_shndx
2996 0, // small_common_section_flags
2997 0, // large_common_section_flags
2998 ".ARM.attributes", // attributes_section
2999 "aeabi", // attributes_vendor
3000 "_start" // entry_symbol_name
3001 };
3002
3003 // Arm relocate functions class
3004 //
3005
3006 template<bool big_endian>
3007 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3008 {
3009 public:
3010 typedef enum
3011 {
3012 STATUS_OKAY, // No error during relocation.
3013 STATUS_OVERFLOW, // Relocation overflow.
3014 STATUS_BAD_RELOC // Relocation cannot be applied.
3015 } Status;
3016
3017 private:
3018 typedef Relocate_functions<32, big_endian> Base;
3019 typedef Arm_relocate_functions<big_endian> This;
3020
3021 // Encoding of imm16 argument for movt and movw ARM instructions
3022 // from ARM ARM:
3023 //
3024 // imm16 := imm4 | imm12
3025 //
3026 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3027 // +-------+---------------+-------+-------+-----------------------+
3028 // | | |imm4 | |imm12 |
3029 // +-------+---------------+-------+-------+-----------------------+
3030
3031 // Extract the relocation addend from VAL based on the ARM
3032 // instruction encoding described above.
3033 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3034 extract_arm_movw_movt_addend(
3035 typename elfcpp::Swap<32, big_endian>::Valtype val)
3036 {
3037 // According to the Elf ABI for ARM Architecture the immediate
3038 // field is sign-extended to form the addend.
3039 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3040 }
3041
3042 // Insert X into VAL based on the ARM instruction encoding described
3043 // above.
3044 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3045 insert_val_arm_movw_movt(
3046 typename elfcpp::Swap<32, big_endian>::Valtype val,
3047 typename elfcpp::Swap<32, big_endian>::Valtype x)
3048 {
3049 val &= 0xfff0f000;
3050 val |= x & 0x0fff;
3051 val |= (x & 0xf000) << 4;
3052 return val;
3053 }
3054
3055 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3056 // from ARM ARM:
3057 //
3058 // imm16 := imm4 | i | imm3 | imm8
3059 //
3060 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3061 // +---------+-+-----------+-------++-+-----+-------+---------------+
3062 // | |i| |imm4 || |imm3 | |imm8 |
3063 // +---------+-+-----------+-------++-+-----+-------+---------------+
3064
3065 // Extract the relocation addend from VAL based on the Thumb2
3066 // instruction encoding described above.
3067 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3068 extract_thumb_movw_movt_addend(
3069 typename elfcpp::Swap<32, big_endian>::Valtype val)
3070 {
3071 // According to the Elf ABI for ARM Architecture the immediate
3072 // field is sign-extended to form the addend.
3073 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3074 | ((val >> 15) & 0x0800)
3075 | ((val >> 4) & 0x0700)
3076 | (val & 0x00ff));
3077 }
3078
3079 // Insert X into VAL based on the Thumb2 instruction encoding
3080 // described above.
3081 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3082 insert_val_thumb_movw_movt(
3083 typename elfcpp::Swap<32, big_endian>::Valtype val,
3084 typename elfcpp::Swap<32, big_endian>::Valtype x)
3085 {
3086 val &= 0xfbf08f00;
3087 val |= (x & 0xf000) << 4;
3088 val |= (x & 0x0800) << 15;
3089 val |= (x & 0x0700) << 4;
3090 val |= (x & 0x00ff);
3091 return val;
3092 }
3093
3094 // Calculate the smallest constant Kn for the specified residual.
3095 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3096 static uint32_t
3097 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3098 {
3099 int32_t msb;
3100
3101 if (residual == 0)
3102 return 0;
3103 // Determine the most significant bit in the residual and
3104 // align the resulting value to a 2-bit boundary.
3105 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3106 ;
3107 // The desired shift is now (msb - 6), or zero, whichever
3108 // is the greater.
3109 return (((msb - 6) < 0) ? 0 : (msb - 6));
3110 }
3111
3112 // Calculate the final residual for the specified group index.
3113 // If the passed group index is less than zero, the method will return
3114 // the value of the specified residual without any change.
3115 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3116 static typename elfcpp::Swap<32, big_endian>::Valtype
3117 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3118 const int group)
3119 {
3120 for (int n = 0; n <= group; n++)
3121 {
3122 // Calculate which part of the value to mask.
3123 uint32_t shift = calc_grp_kn(residual);
3124 // Calculate the residual for the next time around.
3125 residual &= ~(residual & (0xff << shift));
3126 }
3127
3128 return residual;
3129 }
3130
3131 // Calculate the value of Gn for the specified group index.
3132 // We return it in the form of an encoded constant-and-rotation.
3133 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3134 static typename elfcpp::Swap<32, big_endian>::Valtype
3135 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3136 const int group)
3137 {
3138 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3139 uint32_t shift = 0;
3140
3141 for (int n = 0; n <= group; n++)
3142 {
3143 // Calculate which part of the value to mask.
3144 shift = calc_grp_kn(residual);
3145 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3146 gn = residual & (0xff << shift);
3147 // Calculate the residual for the next time around.
3148 residual &= ~gn;
3149 }
3150 // Return Gn in the form of an encoded constant-and-rotation.
3151 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3152 }
3153
3154 public:
3155 // Handle ARM long branches.
3156 static typename This::Status
3157 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3158 unsigned char*, const Sized_symbol<32>*,
3159 const Arm_relobj<big_endian>*, unsigned int,
3160 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3161
3162 // Handle THUMB long branches.
3163 static typename This::Status
3164 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3165 unsigned char*, const Sized_symbol<32>*,
3166 const Arm_relobj<big_endian>*, unsigned int,
3167 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3168
3169
3170 // Return the branch offset of a 32-bit THUMB branch.
3171 static inline int32_t
3172 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3173 {
3174 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3175 // involving the J1 and J2 bits.
3176 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3177 uint32_t upper = upper_insn & 0x3ffU;
3178 uint32_t lower = lower_insn & 0x7ffU;
3179 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3180 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3181 uint32_t i1 = j1 ^ s ? 0 : 1;
3182 uint32_t i2 = j2 ^ s ? 0 : 1;
3183
3184 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3185 | (upper << 12) | (lower << 1));
3186 }
3187
3188 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3189 // UPPER_INSN is the original upper instruction of the branch. Caller is
3190 // responsible for overflow checking and BLX offset adjustment.
3191 static inline uint16_t
3192 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3193 {
3194 uint32_t s = offset < 0 ? 1 : 0;
3195 uint32_t bits = static_cast<uint32_t>(offset);
3196 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3197 }
3198
3199 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3200 // LOWER_INSN is the original lower instruction of the branch. Caller is
3201 // responsible for overflow checking and BLX offset adjustment.
3202 static inline uint16_t
3203 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3204 {
3205 uint32_t s = offset < 0 ? 1 : 0;
3206 uint32_t bits = static_cast<uint32_t>(offset);
3207 return ((lower_insn & ~0x2fffU)
3208 | ((((bits >> 23) & 1) ^ !s) << 13)
3209 | ((((bits >> 22) & 1) ^ !s) << 11)
3210 | ((bits >> 1) & 0x7ffU));
3211 }
3212
3213 // Return the branch offset of a 32-bit THUMB conditional branch.
3214 static inline int32_t
3215 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3216 {
3217 uint32_t s = (upper_insn & 0x0400U) >> 10;
3218 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3219 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3220 uint32_t lower = (lower_insn & 0x07ffU);
3221 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3222
3223 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3224 }
3225
3226 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3227 // instruction. UPPER_INSN is the original upper instruction of the branch.
3228 // Caller is responsible for overflow checking.
3229 static inline uint16_t
3230 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3231 {
3232 uint32_t s = offset < 0 ? 1 : 0;
3233 uint32_t bits = static_cast<uint32_t>(offset);
3234 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3235 }
3236
3237 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3238 // instruction. LOWER_INSN is the original lower instruction of the branch.
3239 // The caller is responsible for overflow checking.
3240 static inline uint16_t
3241 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3242 {
3243 uint32_t bits = static_cast<uint32_t>(offset);
3244 uint32_t j2 = (bits & 0x00080000U) >> 19;
3245 uint32_t j1 = (bits & 0x00040000U) >> 18;
3246 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3247
3248 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3249 }
3250
3251 // R_ARM_ABS8: S + A
3252 static inline typename This::Status
3253 abs8(unsigned char* view,
3254 const Sized_relobj_file<32, big_endian>* object,
3255 const Symbol_value<32>* psymval)
3256 {
3257 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3260 int32_t addend = Bits<8>::sign_extend32(val);
3261 Arm_address x = psymval->value(object, addend);
3262 val = Bits<32>::bit_select32(val, x, 0xffU);
3263 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3264
3265 // R_ARM_ABS8 permits signed or unsigned results.
3266 return (Bits<8>::has_signed_unsigned_overflow32(x)
3267 ? This::STATUS_OVERFLOW
3268 : This::STATUS_OKAY);
3269 }
3270
3271 // R_ARM_THM_ABS5: S + A
3272 static inline typename This::Status
3273 thm_abs5(unsigned char* view,
3274 const Sized_relobj_file<32, big_endian>* object,
3275 const Symbol_value<32>* psymval)
3276 {
3277 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3278 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3279 Valtype* wv = reinterpret_cast<Valtype*>(view);
3280 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3281 Reltype addend = (val & 0x7e0U) >> 6;
3282 Reltype x = psymval->value(object, addend);
3283 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3284 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3285 return (Bits<5>::has_overflow32(x)
3286 ? This::STATUS_OVERFLOW
3287 : This::STATUS_OKAY);
3288 }
3289
3290 // R_ARM_ABS12: S + A
3291 static inline typename This::Status
3292 abs12(unsigned char* view,
3293 const Sized_relobj_file<32, big_endian>* object,
3294 const Symbol_value<32>* psymval)
3295 {
3296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3297 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3298 Valtype* wv = reinterpret_cast<Valtype*>(view);
3299 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3300 Reltype addend = val & 0x0fffU;
3301 Reltype x = psymval->value(object, addend);
3302 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3303 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3304 return (Bits<12>::has_overflow32(x)
3305 ? This::STATUS_OVERFLOW
3306 : This::STATUS_OKAY);
3307 }
3308
3309 // R_ARM_ABS16: S + A
3310 static inline typename This::Status
3311 abs16(unsigned char* view,
3312 const Sized_relobj_file<32, big_endian>* object,
3313 const Symbol_value<32>* psymval)
3314 {
3315 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3316 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3317 int32_t addend = Bits<16>::sign_extend32(val);
3318 Arm_address x = psymval->value(object, addend);
3319 val = Bits<32>::bit_select32(val, x, 0xffffU);
3320 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3321
3322 // R_ARM_ABS16 permits signed or unsigned results.
3323 return (Bits<16>::has_signed_unsigned_overflow32(x)
3324 ? This::STATUS_OVERFLOW
3325 : This::STATUS_OKAY);
3326 }
3327
3328 // R_ARM_ABS32: (S + A) | T
3329 static inline typename This::Status
3330 abs32(unsigned char* view,
3331 const Sized_relobj_file<32, big_endian>* object,
3332 const Symbol_value<32>* psymval,
3333 Arm_address thumb_bit)
3334 {
3335 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3336 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3337 Valtype x = psymval->value(object, addend) | thumb_bit;
3338 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3339 return This::STATUS_OKAY;
3340 }
3341
3342 // R_ARM_REL32: (S + A) | T - P
3343 static inline typename This::Status
3344 rel32(unsigned char* view,
3345 const Sized_relobj_file<32, big_endian>* object,
3346 const Symbol_value<32>* psymval,
3347 Arm_address address,
3348 Arm_address thumb_bit)
3349 {
3350 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3351 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3352 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3353 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3354 return This::STATUS_OKAY;
3355 }
3356
3357 // R_ARM_THM_JUMP24: (S + A) | T - P
3358 static typename This::Status
3359 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3360 const Symbol_value<32>* psymval, Arm_address address,
3361 Arm_address thumb_bit);
3362
3363 // R_ARM_THM_JUMP6: S + A – P
3364 static inline typename This::Status
3365 thm_jump6(unsigned char* view,
3366 const Sized_relobj_file<32, big_endian>* object,
3367 const Symbol_value<32>* psymval,
3368 Arm_address address)
3369 {
3370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3371 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3372 Valtype* wv = reinterpret_cast<Valtype*>(view);
3373 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3374 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3375 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3376 Reltype x = (psymval->value(object, addend) - address);
3377 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3378 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3379 // CZB does only forward jumps.
3380 return ((x > 0x007e)
3381 ? This::STATUS_OVERFLOW
3382 : This::STATUS_OKAY);
3383 }
3384
3385 // R_ARM_THM_JUMP8: S + A – P
3386 static inline typename This::Status
3387 thm_jump8(unsigned char* view,
3388 const Sized_relobj_file<32, big_endian>* object,
3389 const Symbol_value<32>* psymval,
3390 Arm_address address)
3391 {
3392 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3393 Valtype* wv = reinterpret_cast<Valtype*>(view);
3394 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3395 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3396 int32_t x = (psymval->value(object, addend) - address);
3397 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3398 | ((x & 0x01fe) >> 1)));
3399 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3400 return (Bits<9>::has_overflow32(x)
3401 ? This::STATUS_OVERFLOW
3402 : This::STATUS_OKAY);
3403 }
3404
3405 // R_ARM_THM_JUMP11: S + A – P
3406 static inline typename This::Status
3407 thm_jump11(unsigned char* view,
3408 const Sized_relobj_file<32, big_endian>* object,
3409 const Symbol_value<32>* psymval,
3410 Arm_address address)
3411 {
3412 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3413 Valtype* wv = reinterpret_cast<Valtype*>(view);
3414 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3415 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3416 int32_t x = (psymval->value(object, addend) - address);
3417 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3418 | ((x & 0x0ffe) >> 1)));
3419 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3420 return (Bits<12>::has_overflow32(x)
3421 ? This::STATUS_OVERFLOW
3422 : This::STATUS_OKAY);
3423 }
3424
3425 // R_ARM_BASE_PREL: B(S) + A - P
3426 static inline typename This::Status
3427 base_prel(unsigned char* view,
3428 Arm_address origin,
3429 Arm_address address)
3430 {
3431 Base::rel32(view, origin - address);
3432 return STATUS_OKAY;
3433 }
3434
3435 // R_ARM_BASE_ABS: B(S) + A
3436 static inline typename This::Status
3437 base_abs(unsigned char* view,
3438 Arm_address origin)
3439 {
3440 Base::rel32(view, origin);
3441 return STATUS_OKAY;
3442 }
3443
3444 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3445 static inline typename This::Status
3446 got_brel(unsigned char* view,
3447 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3448 {
3449 Base::rel32(view, got_offset);
3450 return This::STATUS_OKAY;
3451 }
3452
3453 // R_ARM_GOT_PREL: GOT(S) + A - P
3454 static inline typename This::Status
3455 got_prel(unsigned char* view,
3456 Arm_address got_entry,
3457 Arm_address address)
3458 {
3459 Base::rel32(view, got_entry - address);
3460 return This::STATUS_OKAY;
3461 }
3462
3463 // R_ARM_PREL: (S + A) | T - P
3464 static inline typename This::Status
3465 prel31(unsigned char* view,
3466 const Sized_relobj_file<32, big_endian>* object,
3467 const Symbol_value<32>* psymval,
3468 Arm_address address,
3469 Arm_address thumb_bit)
3470 {
3471 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3472 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3473 Valtype addend = Bits<31>::sign_extend32(val);
3474 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3475 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3476 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3477 return (Bits<31>::has_overflow32(x)
3478 ? This::STATUS_OVERFLOW
3479 : This::STATUS_OKAY);
3480 }
3481
3482 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3483 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3484 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3486 static inline typename This::Status
3487 movw(unsigned char* view,
3488 const Sized_relobj_file<32, big_endian>* object,
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base,
3491 Arm_address thumb_bit,
3492 bool check_overflow)
3493 {
3494 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3495 Valtype* wv = reinterpret_cast<Valtype*>(view);
3496 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3497 Valtype addend = This::extract_arm_movw_movt_addend(val);
3498 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3499 - relative_address_base);
3500 val = This::insert_val_arm_movw_movt(val, x);
3501 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3502 return ((check_overflow && Bits<16>::has_overflow32(x))
3503 ? This::STATUS_OVERFLOW
3504 : This::STATUS_OKAY);
3505 }
3506
3507 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3508 // R_ARM_MOVT_PREL: S + A - P
3509 // R_ARM_MOVT_BREL: S + A - B(S)
3510 static inline typename This::Status
3511 movt(unsigned char* view,
3512 const Sized_relobj_file<32, big_endian>* object,
3513 const Symbol_value<32>* psymval,
3514 Arm_address relative_address_base)
3515 {
3516 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3517 Valtype* wv = reinterpret_cast<Valtype*>(view);
3518 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3519 Valtype addend = This::extract_arm_movw_movt_addend(val);
3520 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3521 val = This::insert_val_arm_movw_movt(val, x);
3522 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3523 // FIXME: IHI0044D says that we should check for overflow.
3524 return This::STATUS_OKAY;
3525 }
3526
3527 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3528 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3529 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3530 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3531 static inline typename This::Status
3532 thm_movw(unsigned char* view,
3533 const Sized_relobj_file<32, big_endian>* object,
3534 const Symbol_value<32>* psymval,
3535 Arm_address relative_address_base,
3536 Arm_address thumb_bit,
3537 bool check_overflow)
3538 {
3539 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3540 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3541 Valtype* wv = reinterpret_cast<Valtype*>(view);
3542 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3543 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3544 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3545 Reltype x =
3546 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3547 val = This::insert_val_thumb_movw_movt(val, x);
3548 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3549 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3550 return ((check_overflow && Bits<16>::has_overflow32(x))
3551 ? This::STATUS_OVERFLOW
3552 : This::STATUS_OKAY);
3553 }
3554
3555 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3556 // R_ARM_THM_MOVT_PREL: S + A - P
3557 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3558 static inline typename This::Status
3559 thm_movt(unsigned char* view,
3560 const Sized_relobj_file<32, big_endian>* object,
3561 const Symbol_value<32>* psymval,
3562 Arm_address relative_address_base)
3563 {
3564 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3565 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3566 Valtype* wv = reinterpret_cast<Valtype*>(view);
3567 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3568 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3569 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3570 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3571 val = This::insert_val_thumb_movw_movt(val, x);
3572 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3573 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3574 return This::STATUS_OKAY;
3575 }
3576
3577 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3578 static inline typename This::Status
3579 thm_alu11(unsigned char* view,
3580 const Sized_relobj_file<32, big_endian>* object,
3581 const Symbol_value<32>* psymval,
3582 Arm_address address,
3583 Arm_address thumb_bit)
3584 {
3585 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3586 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3587 Valtype* wv = reinterpret_cast<Valtype*>(view);
3588 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3589 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3590
3591 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3592 // -----------------------------------------------------------------------
3593 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3594 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3595 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3596 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3597 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3598 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3599
3600 // Determine a sign for the addend.
3601 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3602 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3603 // Thumb2 addend encoding:
3604 // imm12 := i | imm3 | imm8
3605 int32_t addend = (insn & 0xff)
3606 | ((insn & 0x00007000) >> 4)
3607 | ((insn & 0x04000000) >> 15);
3608 // Apply a sign to the added.
3609 addend *= sign;
3610
3611 int32_t x = (psymval->value(object, addend) | thumb_bit)
3612 - (address & 0xfffffffc);
3613 Reltype val = abs(x);
3614 // Mask out the value and a distinct part of the ADD/SUB opcode
3615 // (bits 7:5 of opword).
3616 insn = (insn & 0xfb0f8f00)
3617 | (val & 0xff)
3618 | ((val & 0x700) << 4)
3619 | ((val & 0x800) << 15);
3620 // Set the opcode according to whether the value to go in the
3621 // place is negative.
3622 if (x < 0)
3623 insn |= 0x00a00000;
3624
3625 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3626 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3627 return ((val > 0xfff) ?
3628 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3629 }
3630
3631 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3632 static inline typename This::Status
3633 thm_pc8(unsigned char* view,
3634 const Sized_relobj_file<32, big_endian>* object,
3635 const Symbol_value<32>* psymval,
3636 Arm_address address)
3637 {
3638 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3639 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3640 Valtype* wv = reinterpret_cast<Valtype*>(view);
3641 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3642 Reltype addend = ((insn & 0x00ff) << 2);
3643 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3644 Reltype val = abs(x);
3645 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3646
3647 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3648 return ((val > 0x03fc)
3649 ? This::STATUS_OVERFLOW
3650 : This::STATUS_OKAY);
3651 }
3652
3653 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3654 static inline typename This::Status
3655 thm_pc12(unsigned char* view,
3656 const Sized_relobj_file<32, big_endian>* object,
3657 const Symbol_value<32>* psymval,
3658 Arm_address address)
3659 {
3660 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3661 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3662 Valtype* wv = reinterpret_cast<Valtype*>(view);
3663 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3664 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3665 // Determine a sign for the addend (positive if the U bit is 1).
3666 const int sign = (insn & 0x00800000) ? 1 : -1;
3667 int32_t addend = (insn & 0xfff);
3668 // Apply a sign to the added.
3669 addend *= sign;
3670
3671 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3672 Reltype val = abs(x);
3673 // Mask out and apply the value and the U bit.
3674 insn = (insn & 0xff7ff000) | (val & 0xfff);
3675 // Set the U bit according to whether the value to go in the
3676 // place is positive.
3677 if (x >= 0)
3678 insn |= 0x00800000;
3679
3680 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3681 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3682 return ((val > 0xfff) ?
3683 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3684 }
3685
3686 // R_ARM_V4BX
3687 static inline typename This::Status
3688 v4bx(const Relocate_info<32, big_endian>* relinfo,
3689 unsigned char* view,
3690 const Arm_relobj<big_endian>* object,
3691 const Arm_address address,
3692 const bool is_interworking)
3693 {
3694
3695 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3696 Valtype* wv = reinterpret_cast<Valtype*>(view);
3697 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3698
3699 // Ensure that we have a BX instruction.
3700 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3701 const uint32_t reg = (val & 0xf);
3702 if (is_interworking && reg != 0xf)
3703 {
3704 Stub_table<big_endian>* stub_table =
3705 object->stub_table(relinfo->data_shndx);
3706 gold_assert(stub_table != NULL);
3707
3708 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3709 gold_assert(stub != NULL);
3710
3711 int32_t veneer_address =
3712 stub_table->address() + stub->offset() - 8 - address;
3713 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3714 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3715 // Replace with a branch to veneer (B <addr>)
3716 val = (val & 0xf0000000) | 0x0a000000
3717 | ((veneer_address >> 2) & 0x00ffffff);
3718 }
3719 else
3720 {
3721 // Preserve Rm (lowest four bits) and the condition code
3722 // (highest four bits). Other bits encode MOV PC,Rm.
3723 val = (val & 0xf000000f) | 0x01a0f000;
3724 }
3725 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3726 return This::STATUS_OKAY;
3727 }
3728
3729 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3730 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3734 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3735 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3739 static inline typename This::Status
3740 arm_grp_alu(unsigned char* view,
3741 const Sized_relobj_file<32, big_endian>* object,
3742 const Symbol_value<32>* psymval,
3743 const int group,
3744 Arm_address address,
3745 Arm_address thumb_bit,
3746 bool check_overflow)
3747 {
3748 gold_assert(group >= 0 && group < 3);
3749 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3750 Valtype* wv = reinterpret_cast<Valtype*>(view);
3751 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3752
3753 // ALU group relocations are allowed only for the ADD/SUB instructions.
3754 // (0x00800000 - ADD, 0x00400000 - SUB)
3755 const Valtype opcode = insn & 0x01e00000;
3756 if (opcode != 0x00800000 && opcode != 0x00400000)
3757 return This::STATUS_BAD_RELOC;
3758
3759 // Determine a sign for the addend.
3760 const int sign = (opcode == 0x00800000) ? 1 : -1;
3761 // shifter = rotate_imm * 2
3762 const uint32_t shifter = (insn & 0xf00) >> 7;
3763 // Initial addend value.
3764 int32_t addend = insn & 0xff;
3765 // Rotate addend right by shifter.
3766 addend = (addend >> shifter) | (addend << (32 - shifter));
3767 // Apply a sign to the added.
3768 addend *= sign;
3769
3770 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3771 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3772 // Check for overflow if required
3773 if (check_overflow
3774 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3775 return This::STATUS_OVERFLOW;
3776
3777 // Mask out the value and the ADD/SUB part of the opcode; take care
3778 // not to destroy the S bit.
3779 insn &= 0xff1ff000;
3780 // Set the opcode according to whether the value to go in the
3781 // place is negative.
3782 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3783 // Encode the offset (encoded Gn).
3784 insn |= gn;
3785
3786 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3787 return This::STATUS_OKAY;
3788 }
3789
3790 // R_ARM_LDR_PC_G0: S + A - P
3791 // R_ARM_LDR_PC_G1: S + A - P
3792 // R_ARM_LDR_PC_G2: S + A - P
3793 // R_ARM_LDR_SB_G0: S + A - B(S)
3794 // R_ARM_LDR_SB_G1: S + A - B(S)
3795 // R_ARM_LDR_SB_G2: S + A - B(S)
3796 static inline typename This::Status
3797 arm_grp_ldr(unsigned char* view,
3798 const Sized_relobj_file<32, big_endian>* object,
3799 const Symbol_value<32>* psymval,
3800 const int group,
3801 Arm_address address)
3802 {
3803 gold_assert(group >= 0 && group < 3);
3804 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3805 Valtype* wv = reinterpret_cast<Valtype*>(view);
3806 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807
3808 const int sign = (insn & 0x00800000) ? 1 : -1;
3809 int32_t addend = (insn & 0xfff) * sign;
3810 int32_t x = (psymval->value(object, addend) - address);
3811 // Calculate the relevant G(n-1) value to obtain this stage residual.
3812 Valtype residual =
3813 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3814 if (residual >= 0x1000)
3815 return This::STATUS_OVERFLOW;
3816
3817 // Mask out the value and U bit.
3818 insn &= 0xff7ff000;
3819 // Set the U bit for non-negative values.
3820 if (x >= 0)
3821 insn |= 0x00800000;
3822 insn |= residual;
3823
3824 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3825 return This::STATUS_OKAY;
3826 }
3827
3828 // R_ARM_LDRS_PC_G0: S + A - P
3829 // R_ARM_LDRS_PC_G1: S + A - P
3830 // R_ARM_LDRS_PC_G2: S + A - P
3831 // R_ARM_LDRS_SB_G0: S + A - B(S)
3832 // R_ARM_LDRS_SB_G1: S + A - B(S)
3833 // R_ARM_LDRS_SB_G2: S + A - B(S)
3834 static inline typename This::Status
3835 arm_grp_ldrs(unsigned char* view,
3836 const Sized_relobj_file<32, big_endian>* object,
3837 const Symbol_value<32>* psymval,
3838 const int group,
3839 Arm_address address)
3840 {
3841 gold_assert(group >= 0 && group < 3);
3842 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3843 Valtype* wv = reinterpret_cast<Valtype*>(view);
3844 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3845
3846 const int sign = (insn & 0x00800000) ? 1 : -1;
3847 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3848 int32_t x = (psymval->value(object, addend) - address);
3849 // Calculate the relevant G(n-1) value to obtain this stage residual.
3850 Valtype residual =
3851 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3852 if (residual >= 0x100)
3853 return This::STATUS_OVERFLOW;
3854
3855 // Mask out the value and U bit.
3856 insn &= 0xff7ff0f0;
3857 // Set the U bit for non-negative values.
3858 if (x >= 0)
3859 insn |= 0x00800000;
3860 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3861
3862 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3863 return This::STATUS_OKAY;
3864 }
3865
3866 // R_ARM_LDC_PC_G0: S + A - P
3867 // R_ARM_LDC_PC_G1: S + A - P
3868 // R_ARM_LDC_PC_G2: S + A - P
3869 // R_ARM_LDC_SB_G0: S + A - B(S)
3870 // R_ARM_LDC_SB_G1: S + A - B(S)
3871 // R_ARM_LDC_SB_G2: S + A - B(S)
3872 static inline typename This::Status
3873 arm_grp_ldc(unsigned char* view,
3874 const Sized_relobj_file<32, big_endian>* object,
3875 const Symbol_value<32>* psymval,
3876 const int group,
3877 Arm_address address)
3878 {
3879 gold_assert(group >= 0 && group < 3);
3880 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3881 Valtype* wv = reinterpret_cast<Valtype*>(view);
3882 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3883
3884 const int sign = (insn & 0x00800000) ? 1 : -1;
3885 int32_t addend = ((insn & 0xff) << 2) * sign;
3886 int32_t x = (psymval->value(object, addend) - address);
3887 // Calculate the relevant G(n-1) value to obtain this stage residual.
3888 Valtype residual =
3889 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3890 if ((residual & 0x3) != 0 || residual >= 0x400)
3891 return This::STATUS_OVERFLOW;
3892
3893 // Mask out the value and U bit.
3894 insn &= 0xff7fff00;
3895 // Set the U bit for non-negative values.
3896 if (x >= 0)
3897 insn |= 0x00800000;
3898 insn |= (residual >> 2);
3899
3900 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3901 return This::STATUS_OKAY;
3902 }
3903 };
3904
3905 // Relocate ARM long branches. This handles relocation types
3906 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3907 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3908 // undefined and we do not use PLT in this relocation. In such a case,
3909 // the branch is converted into an NOP.
3910
3911 template<bool big_endian>
3912 typename Arm_relocate_functions<big_endian>::Status
3913 Arm_relocate_functions<big_endian>::arm_branch_common(
3914 unsigned int r_type,
3915 const Relocate_info<32, big_endian>* relinfo,
3916 unsigned char* view,
3917 const Sized_symbol<32>* gsym,
3918 const Arm_relobj<big_endian>* object,
3919 unsigned int r_sym,
3920 const Symbol_value<32>* psymval,
3921 Arm_address address,
3922 Arm_address thumb_bit,
3923 bool is_weakly_undefined_without_plt)
3924 {
3925 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3926 Valtype* wv = reinterpret_cast<Valtype*>(view);
3927 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3928
3929 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3930 && ((val & 0x0f000000UL) == 0x0a000000UL);
3931 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3932 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3933 && ((val & 0x0f000000UL) == 0x0b000000UL);
3934 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3935 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3936
3937 // Check that the instruction is valid.
3938 if (r_type == elfcpp::R_ARM_CALL)
3939 {
3940 if (!insn_is_uncond_bl && !insn_is_blx)
3941 return This::STATUS_BAD_RELOC;
3942 }
3943 else if (r_type == elfcpp::R_ARM_JUMP24)
3944 {
3945 if (!insn_is_b && !insn_is_cond_bl)
3946 return This::STATUS_BAD_RELOC;
3947 }
3948 else if (r_type == elfcpp::R_ARM_PLT32)
3949 {
3950 if (!insn_is_any_branch)
3951 return This::STATUS_BAD_RELOC;
3952 }
3953 else if (r_type == elfcpp::R_ARM_XPC25)
3954 {
3955 // FIXME: AAELF document IH0044C does not say much about it other
3956 // than it being obsolete.
3957 if (!insn_is_any_branch)
3958 return This::STATUS_BAD_RELOC;
3959 }
3960 else
3961 gold_unreachable();
3962
3963 // A branch to an undefined weak symbol is turned into a jump to
3964 // the next instruction unless a PLT entry will be created.
3965 // Do the same for local undefined symbols.
3966 // The jump to the next instruction is optimized as a NOP depending
3967 // on the architecture.
3968 const Target_arm<big_endian>* arm_target =
3969 Target_arm<big_endian>::default_target();
3970 if (is_weakly_undefined_without_plt)
3971 {
3972 gold_assert(!parameters->options().relocatable());
3973 Valtype cond = val & 0xf0000000U;
3974 if (arm_target->may_use_arm_nop())
3975 val = cond | 0x0320f000;
3976 else
3977 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3978 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3979 return This::STATUS_OKAY;
3980 }
3981
3982 Valtype addend = Bits<26>::sign_extend32(val << 2);
3983 Valtype branch_target = psymval->value(object, addend);
3984 int32_t branch_offset = branch_target - address;
3985
3986 // We need a stub if the branch offset is too large or if we need
3987 // to switch mode.
3988 bool may_use_blx = arm_target->may_use_v5t_interworking();
3989 Reloc_stub* stub = NULL;
3990
3991 if (!parameters->options().relocatable()
3992 && (Bits<26>::has_overflow32(branch_offset)
3993 || ((thumb_bit != 0)
3994 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3995 {
3996 Valtype unadjusted_branch_target = psymval->value(object, 0);
3997
3998 Stub_type stub_type =
3999 Reloc_stub::stub_type_for_reloc(r_type, address,
4000 unadjusted_branch_target,
4001 (thumb_bit != 0));
4002 if (stub_type != arm_stub_none)
4003 {
4004 Stub_table<big_endian>* stub_table =
4005 object->stub_table(relinfo->data_shndx);
4006 gold_assert(stub_table != NULL);
4007
4008 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4009 stub = stub_table->find_reloc_stub(stub_key);
4010 gold_assert(stub != NULL);
4011 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4012 branch_target = stub_table->address() + stub->offset() + addend;
4013 branch_offset = branch_target - address;
4014 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4015 }
4016 }
4017
4018 // At this point, if we still need to switch mode, the instruction
4019 // must either be a BLX or a BL that can be converted to a BLX.
4020 if (thumb_bit != 0)
4021 {
4022 // Turn BL to BLX.
4023 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4024 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4025 }
4026
4027 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4028 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4029 return (Bits<26>::has_overflow32(branch_offset)
4030 ? This::STATUS_OVERFLOW
4031 : This::STATUS_OKAY);
4032 }
4033
4034 // Relocate THUMB long branches. This handles relocation types
4035 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4036 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4037 // undefined and we do not use PLT in this relocation. In such a case,
4038 // the branch is converted into an NOP.
4039
4040 template<bool big_endian>
4041 typename Arm_relocate_functions<big_endian>::Status
4042 Arm_relocate_functions<big_endian>::thumb_branch_common(
4043 unsigned int r_type,
4044 const Relocate_info<32, big_endian>* relinfo,
4045 unsigned char* view,
4046 const Sized_symbol<32>* gsym,
4047 const Arm_relobj<big_endian>* object,
4048 unsigned int r_sym,
4049 const Symbol_value<32>* psymval,
4050 Arm_address address,
4051 Arm_address thumb_bit,
4052 bool is_weakly_undefined_without_plt)
4053 {
4054 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4055 Valtype* wv = reinterpret_cast<Valtype*>(view);
4056 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4057 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4058
4059 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4060 // into account.
4061 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4062 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4063
4064 // Check that the instruction is valid.
4065 if (r_type == elfcpp::R_ARM_THM_CALL)
4066 {
4067 if (!is_bl_insn && !is_blx_insn)
4068 return This::STATUS_BAD_RELOC;
4069 }
4070 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4071 {
4072 // This cannot be a BLX.
4073 if (!is_bl_insn)
4074 return This::STATUS_BAD_RELOC;
4075 }
4076 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4077 {
4078 // Check for Thumb to Thumb call.
4079 if (!is_blx_insn)
4080 return This::STATUS_BAD_RELOC;
4081 if (thumb_bit != 0)
4082 {
4083 gold_warning(_("%s: Thumb BLX instruction targets "
4084 "thumb function '%s'."),
4085 object->name().c_str(),
4086 (gsym ? gsym->name() : "(local)"));
4087 // Convert BLX to BL.
4088 lower_insn |= 0x1000U;
4089 }
4090 }
4091 else
4092 gold_unreachable();
4093
4094 // A branch to an undefined weak symbol is turned into a jump to
4095 // the next instruction unless a PLT entry will be created.
4096 // The jump to the next instruction is optimized as a NOP.W for
4097 // Thumb-2 enabled architectures.
4098 const Target_arm<big_endian>* arm_target =
4099 Target_arm<big_endian>::default_target();
4100 if (is_weakly_undefined_without_plt)
4101 {
4102 gold_assert(!parameters->options().relocatable());
4103 if (arm_target->may_use_thumb2_nop())
4104 {
4105 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4106 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4107 }
4108 else
4109 {
4110 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4111 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4112 }
4113 return This::STATUS_OKAY;
4114 }
4115
4116 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4117 Arm_address branch_target = psymval->value(object, addend);
4118
4119 // For BLX, bit 1 of target address comes from bit 1 of base address.
4120 bool may_use_blx = arm_target->may_use_v5t_interworking();
4121 if (thumb_bit == 0 && may_use_blx)
4122 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4123
4124 int32_t branch_offset = branch_target - address;
4125
4126 // We need a stub if the branch offset is too large or if we need
4127 // to switch mode.
4128 bool thumb2 = arm_target->using_thumb2();
4129 if (!parameters->options().relocatable()
4130 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4131 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4132 || ((thumb_bit == 0)
4133 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4134 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4135 {
4136 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4137
4138 Stub_type stub_type =
4139 Reloc_stub::stub_type_for_reloc(r_type, address,
4140 unadjusted_branch_target,
4141 (thumb_bit != 0));
4142
4143 if (stub_type != arm_stub_none)
4144 {
4145 Stub_table<big_endian>* stub_table =
4146 object->stub_table(relinfo->data_shndx);
4147 gold_assert(stub_table != NULL);
4148
4149 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4150 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4151 gold_assert(stub != NULL);
4152 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4153 branch_target = stub_table->address() + stub->offset() + addend;
4154 if (thumb_bit == 0 && may_use_blx)
4155 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4156 branch_offset = branch_target - address;
4157 }
4158 }
4159
4160 // At this point, if we still need to switch mode, the instruction
4161 // must either be a BLX or a BL that can be converted to a BLX.
4162 if (thumb_bit == 0)
4163 {
4164 gold_assert(may_use_blx
4165 && (r_type == elfcpp::R_ARM_THM_CALL
4166 || r_type == elfcpp::R_ARM_THM_XPC22));
4167 // Make sure this is a BLX.
4168 lower_insn &= ~0x1000U;
4169 }
4170 else
4171 {
4172 // Make sure this is a BL.
4173 lower_insn |= 0x1000U;
4174 }
4175
4176 // For a BLX instruction, make sure that the relocation is rounded up
4177 // to a word boundary. This follows the semantics of the instruction
4178 // which specifies that bit 1 of the target address will come from bit
4179 // 1 of the base address.
4180 if ((lower_insn & 0x5000U) == 0x4000U)
4181 gold_assert((branch_offset & 3) == 0);
4182
4183 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4184 // We use the Thumb-2 encoding, which is safe even if dealing with
4185 // a Thumb-1 instruction by virtue of our overflow check above. */
4186 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4187 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4188
4189 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4190 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4191
4192 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4193
4194 return ((thumb2
4195 ? Bits<25>::has_overflow32(branch_offset)
4196 : Bits<23>::has_overflow32(branch_offset))
4197 ? This::STATUS_OVERFLOW
4198 : This::STATUS_OKAY);
4199 }
4200
4201 // Relocate THUMB-2 long conditional branches.
4202 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4203 // undefined and we do not use PLT in this relocation. In such a case,
4204 // the branch is converted into an NOP.
4205
4206 template<bool big_endian>
4207 typename Arm_relocate_functions<big_endian>::Status
4208 Arm_relocate_functions<big_endian>::thm_jump19(
4209 unsigned char* view,
4210 const Arm_relobj<big_endian>* object,
4211 const Symbol_value<32>* psymval,
4212 Arm_address address,
4213 Arm_address thumb_bit)
4214 {
4215 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4216 Valtype* wv = reinterpret_cast<Valtype*>(view);
4217 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4218 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4219 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4220
4221 Arm_address branch_target = psymval->value(object, addend);
4222 int32_t branch_offset = branch_target - address;
4223
4224 // ??? Should handle interworking? GCC might someday try to
4225 // use this for tail calls.
4226 // FIXME: We do support thumb entry to PLT yet.
4227 if (thumb_bit == 0)
4228 {
4229 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4230 return This::STATUS_BAD_RELOC;
4231 }
4232
4233 // Put RELOCATION back into the insn.
4234 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4235 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4236
4237 // Put the relocated value back in the object file:
4238 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4239 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4240
4241 return (Bits<21>::has_overflow32(branch_offset)
4242 ? This::STATUS_OVERFLOW
4243 : This::STATUS_OKAY);
4244 }
4245
4246 // Get the GOT section, creating it if necessary.
4247
4248 template<bool big_endian>
4249 Arm_output_data_got<big_endian>*
4250 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4251 {
4252 if (this->got_ == NULL)
4253 {
4254 gold_assert(symtab != NULL && layout != NULL);
4255
4256 // When using -z now, we can treat .got as a relro section.
4257 // Without -z now, it is modified after program startup by lazy
4258 // PLT relocations.
4259 bool is_got_relro = parameters->options().now();
4260 Output_section_order got_order = (is_got_relro
4261 ? ORDER_RELRO_LAST
4262 : ORDER_DATA);
4263
4264 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4265 // .got.plt sections in output. The output .got section contains both
4266 // PLT and non-PLT GOT entries.
4267 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4268
4269 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4270 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4271 this->got_, got_order, is_got_relro);
4272
4273 // The old GNU linker creates a .got.plt section. We just
4274 // create another set of data in the .got section. Note that we
4275 // always create a PLT if we create a GOT, although the PLT
4276 // might be empty.
4277 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4278 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4279 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4280 this->got_plt_, got_order, is_got_relro);
4281
4282 // The first three entries are reserved.
4283 this->got_plt_->set_current_data_size(3 * 4);
4284
4285 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4286 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4287 Symbol_table::PREDEFINED,
4288 this->got_plt_,
4289 0, 0, elfcpp::STT_OBJECT,
4290 elfcpp::STB_LOCAL,
4291 elfcpp::STV_HIDDEN, 0,
4292 false, false);
4293
4294 // If there are any IRELATIVE relocations, they get GOT entries
4295 // in .got.plt after the jump slot entries.
4296 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4297 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4298 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4299 this->got_irelative_,
4300 got_order, is_got_relro);
4301
4302 }
4303 return this->got_;
4304 }
4305
4306 // Get the dynamic reloc section, creating it if necessary.
4307
4308 template<bool big_endian>
4309 typename Target_arm<big_endian>::Reloc_section*
4310 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4311 {
4312 if (this->rel_dyn_ == NULL)
4313 {
4314 gold_assert(layout != NULL);
4315 // Create both relocation sections in the same place, so as to ensure
4316 // their relative order in the output section.
4317 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4318 this->rel_irelative_ = new Reloc_section(false);
4319 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4320 elfcpp::SHF_ALLOC, this->rel_dyn_,
4321 ORDER_DYNAMIC_RELOCS, false);
4322 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4323 elfcpp::SHF_ALLOC, this->rel_irelative_,
4324 ORDER_DYNAMIC_RELOCS, false);
4325 }
4326 return this->rel_dyn_;
4327 }
4328
4329
4330 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4331 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4332 // follow the other dynamic relocations so that they can refer to global
4333 // variables initialized by those relocs.
4334
4335 template<bool big_endian>
4336 typename Target_arm<big_endian>::Reloc_section*
4337 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4338 {
4339 if (this->rel_irelative_ == NULL)
4340 {
4341 // Delegate the creation to rel_dyn_section so as to ensure their order in
4342 // the output section.
4343 this->rel_dyn_section(layout);
4344 gold_assert(this->rel_irelative_ != NULL
4345 && (this->rel_dyn_->output_section()
4346 == this->rel_irelative_->output_section()));
4347 }
4348 return this->rel_irelative_;
4349 }
4350
4351
4352 // Insn_template methods.
4353
4354 // Return byte size of an instruction template.
4355
4356 size_t
4357 Insn_template::size() const
4358 {
4359 switch (this->type())
4360 {
4361 case THUMB16_TYPE:
4362 case THUMB16_SPECIAL_TYPE:
4363 return 2;
4364 case ARM_TYPE:
4365 case THUMB32_TYPE:
4366 case DATA_TYPE:
4367 return 4;
4368 default:
4369 gold_unreachable();
4370 }
4371 }
4372
4373 // Return alignment of an instruction template.
4374
4375 unsigned
4376 Insn_template::alignment() const
4377 {
4378 switch (this->type())
4379 {
4380 case THUMB16_TYPE:
4381 case THUMB16_SPECIAL_TYPE:
4382 case THUMB32_TYPE:
4383 return 2;
4384 case ARM_TYPE:
4385 case DATA_TYPE:
4386 return 4;
4387 default:
4388 gold_unreachable();
4389 }
4390 }
4391
4392 // Stub_template methods.
4393
4394 Stub_template::Stub_template(
4395 Stub_type type, const Insn_template* insns,
4396 size_t insn_count)
4397 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4398 entry_in_thumb_mode_(false), relocs_()
4399 {
4400 off_t offset = 0;
4401
4402 // Compute byte size and alignment of stub template.
4403 for (size_t i = 0; i < insn_count; i++)
4404 {
4405 unsigned insn_alignment = insns[i].alignment();
4406 size_t insn_size = insns[i].size();
4407 gold_assert((offset & (insn_alignment - 1)) == 0);
4408 this->alignment_ = std::max(this->alignment_, insn_alignment);
4409 switch (insns[i].type())
4410 {
4411 case Insn_template::THUMB16_TYPE:
4412 case Insn_template::THUMB16_SPECIAL_TYPE:
4413 if (i == 0)
4414 this->entry_in_thumb_mode_ = true;
4415 break;
4416
4417 case Insn_template::THUMB32_TYPE:
4418 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4419 this->relocs_.push_back(Reloc(i, offset));
4420 if (i == 0)
4421 this->entry_in_thumb_mode_ = true;
4422 break;
4423
4424 case Insn_template::ARM_TYPE:
4425 // Handle cases where the target is encoded within the
4426 // instruction.
4427 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4428 this->relocs_.push_back(Reloc(i, offset));
4429 break;
4430
4431 case Insn_template::DATA_TYPE:
4432 // Entry point cannot be data.
4433 gold_assert(i != 0);
4434 this->relocs_.push_back(Reloc(i, offset));
4435 break;
4436
4437 default:
4438 gold_unreachable();
4439 }
4440 offset += insn_size;
4441 }
4442 this->size_ = offset;
4443 }
4444
4445 // Stub methods.
4446
4447 // Template to implement do_write for a specific target endianness.
4448
4449 template<bool big_endian>
4450 void inline
4451 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4452 {
4453 const Stub_template* stub_template = this->stub_template();
4454 const Insn_template* insns = stub_template->insns();
4455
4456 // FIXME: We do not handle BE8 encoding yet.
4457 unsigned char* pov = view;
4458 for (size_t i = 0; i < stub_template->insn_count(); i++)
4459 {
4460 switch (insns[i].type())
4461 {
4462 case Insn_template::THUMB16_TYPE:
4463 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4464 break;
4465 case Insn_template::THUMB16_SPECIAL_TYPE:
4466 elfcpp::Swap<16, big_endian>::writeval(
4467 pov,
4468 this->thumb16_special(i));
4469 break;
4470 case Insn_template::THUMB32_TYPE:
4471 {
4472 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4473 uint32_t lo = insns[i].data() & 0xffff;
4474 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4475 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4476 }
4477 break;
4478 case Insn_template::ARM_TYPE:
4479 case Insn_template::DATA_TYPE:
4480 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4481 break;
4482 default:
4483 gold_unreachable();
4484 }
4485 pov += insns[i].size();
4486 }
4487 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4488 }
4489
4490 // Reloc_stub::Key methods.
4491
4492 // Dump a Key as a string for debugging.
4493
4494 std::string
4495 Reloc_stub::Key::name() const
4496 {
4497 if (this->r_sym_ == invalid_index)
4498 {
4499 // Global symbol key name
4500 // <stub-type>:<symbol name>:<addend>.
4501 const std::string sym_name = this->u_.symbol->name();
4502 // We need to print two hex number and two colons. So just add 100 bytes
4503 // to the symbol name size.
4504 size_t len = sym_name.size() + 100;
4505 char* buffer = new char[len];
4506 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4507 sym_name.c_str(), this->addend_);
4508 gold_assert(c > 0 && c < static_cast<int>(len));
4509 delete[] buffer;
4510 return std::string(buffer);
4511 }
4512 else
4513 {
4514 // local symbol key name
4515 // <stub-type>:<object>:<r_sym>:<addend>.
4516 const size_t len = 200;
4517 char buffer[len];
4518 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4519 this->u_.relobj, this->r_sym_, this->addend_);
4520 gold_assert(c > 0 && c < static_cast<int>(len));
4521 return std::string(buffer);
4522 }
4523 }
4524
4525 // Reloc_stub methods.
4526
4527 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4528 // LOCATION to DESTINATION.
4529 // This code is based on the arm_type_of_stub function in
4530 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4531 // class simple.
4532
4533 Stub_type
4534 Reloc_stub::stub_type_for_reloc(
4535 unsigned int r_type,
4536 Arm_address location,
4537 Arm_address destination,
4538 bool target_is_thumb)
4539 {
4540 Stub_type stub_type = arm_stub_none;
4541
4542 // This is a bit ugly but we want to avoid using a templated class for
4543 // big and little endianities.
4544 bool may_use_blx;
4545 bool should_force_pic_veneer;
4546 bool thumb2;
4547 bool thumb_only;
4548 if (parameters->target().is_big_endian())
4549 {
4550 const Target_arm<true>* big_endian_target =
4551 Target_arm<true>::default_target();
4552 may_use_blx = big_endian_target->may_use_v5t_interworking();
4553 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4554 thumb2 = big_endian_target->using_thumb2();
4555 thumb_only = big_endian_target->using_thumb_only();
4556 }
4557 else
4558 {
4559 const Target_arm<false>* little_endian_target =
4560 Target_arm<false>::default_target();
4561 may_use_blx = little_endian_target->may_use_v5t_interworking();
4562 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4563 thumb2 = little_endian_target->using_thumb2();
4564 thumb_only = little_endian_target->using_thumb_only();
4565 }
4566
4567 int64_t branch_offset;
4568 bool output_is_position_independent =
4569 parameters->options().output_is_position_independent();
4570 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4571 {
4572 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573 // base address (instruction address + 4).
4574 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4575 destination = Bits<32>::bit_select32(destination, location, 0x2);
4576 branch_offset = static_cast<int64_t>(destination) - location;
4577
4578 // Handle cases where:
4579 // - this call goes too far (different Thumb/Thumb2 max
4580 // distance)
4581 // - it's a Thumb->Arm call and blx is not available, or it's a
4582 // Thumb->Arm branch (not bl). A stub is needed in this case.
4583 if ((!thumb2
4584 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4585 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4586 || (thumb2
4587 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4588 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4589 || ((!target_is_thumb)
4590 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4591 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4592 {
4593 if (target_is_thumb)
4594 {
4595 // Thumb to thumb.
4596 if (!thumb_only)
4597 {
4598 stub_type = (output_is_position_independent
4599 || should_force_pic_veneer)
4600 // PIC stubs.
4601 ? ((may_use_blx
4602 && (r_type == elfcpp::R_ARM_THM_CALL))
4603 // V5T and above. Stub starts with ARM code, so
4604 // we must be able to switch mode before
4605 // reaching it, which is only possible for 'bl'
4606 // (ie R_ARM_THM_CALL relocation).
4607 ? arm_stub_long_branch_any_thumb_pic
4608 // On V4T, use Thumb code only.
4609 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4610
4611 // non-PIC stubs.
4612 : ((may_use_blx
4613 && (r_type == elfcpp::R_ARM_THM_CALL))
4614 ? arm_stub_long_branch_any_any // V5T and above.
4615 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4616 }
4617 else
4618 {
4619 stub_type = (output_is_position_independent
4620 || should_force_pic_veneer)
4621 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4622 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4623 }
4624 }
4625 else
4626 {
4627 // Thumb to arm.
4628
4629 // FIXME: We should check that the input section is from an
4630 // object that has interwork enabled.
4631
4632 stub_type = (output_is_position_independent
4633 || should_force_pic_veneer)
4634 // PIC stubs.
4635 ? ((may_use_blx
4636 && (r_type == elfcpp::R_ARM_THM_CALL))
4637 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4638 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4639
4640 // non-PIC stubs.
4641 : ((may_use_blx
4642 && (r_type == elfcpp::R_ARM_THM_CALL))
4643 ? arm_stub_long_branch_any_any // V5T and above.
4644 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4645
4646 // Handle v4t short branches.
4647 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4648 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4649 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4650 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4651 }
4652 }
4653 }
4654 else if (r_type == elfcpp::R_ARM_CALL
4655 || r_type == elfcpp::R_ARM_JUMP24
4656 || r_type == elfcpp::R_ARM_PLT32)
4657 {
4658 branch_offset = static_cast<int64_t>(destination) - location;
4659 if (target_is_thumb)
4660 {
4661 // Arm to thumb.
4662
4663 // FIXME: We should check that the input section is from an
4664 // object that has interwork enabled.
4665
4666 // We have an extra 2-bytes reach because of
4667 // the mode change (bit 24 (H) of BLX encoding).
4668 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4669 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4670 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4671 || (r_type == elfcpp::R_ARM_JUMP24)
4672 || (r_type == elfcpp::R_ARM_PLT32))
4673 {
4674 stub_type = (output_is_position_independent
4675 || should_force_pic_veneer)
4676 // PIC stubs.
4677 ? (may_use_blx
4678 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4679 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4680
4681 // non-PIC stubs.
4682 : (may_use_blx
4683 ? arm_stub_long_branch_any_any // V5T and above.
4684 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4685 }
4686 }
4687 else
4688 {
4689 // Arm to arm.
4690 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4691 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4692 {
4693 stub_type = (output_is_position_independent
4694 || should_force_pic_veneer)
4695 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4696 : arm_stub_long_branch_any_any; /// non-PIC.
4697 }
4698 }
4699 }
4700
4701 return stub_type;
4702 }
4703
4704 // Cortex_a8_stub methods.
4705
4706 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707 // I is the position of the instruction template in the stub template.
4708
4709 uint16_t
4710 Cortex_a8_stub::do_thumb16_special(size_t i)
4711 {
4712 // The only use of this is to copy condition code from a conditional
4713 // branch being worked around to the corresponding conditional branch in
4714 // to the stub.
4715 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4716 && i == 0);
4717 uint16_t data = this->stub_template()->insns()[i].data();
4718 gold_assert((data & 0xff00U) == 0xd000U);
4719 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4720 return data;
4721 }
4722
4723 // Stub_factory methods.
4724
4725 Stub_factory::Stub_factory()
4726 {
4727 // The instruction template sequences are declared as static
4728 // objects and initialized first time the constructor runs.
4729
4730 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731 // to reach the stub if necessary.
4732 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4733 {
4734 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4735 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4736 // dcd R_ARM_ABS32(X)
4737 };
4738
4739 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4740 // available.
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4742 {
4743 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4746 // dcd R_ARM_ABS32(X)
4747 };
4748
4749 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4751 {
4752 Insn_template::thumb16_insn(0xb401), // push {r0}
4753 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4754 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4755 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4756 Insn_template::thumb16_insn(0x4760), // bx ip
4757 Insn_template::thumb16_insn(0xbf00), // nop
4758 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4759 // dcd R_ARM_ABS32(X)
4760 };
4761
4762 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4763 // allowed.
4764 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4765 {
4766 Insn_template::thumb16_insn(0x4778), // bx pc
4767 Insn_template::thumb16_insn(0x46c0), // nop
4768 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4769 Insn_template::arm_insn(0xe12fff1c), // bx ip
4770 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4771 // dcd R_ARM_ABS32(X)
4772 };
4773
4774 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4775 // available.
4776 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4777 {
4778 Insn_template::thumb16_insn(0x4778), // bx pc
4779 Insn_template::thumb16_insn(0x46c0), // nop
4780 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4781 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4782 // dcd R_ARM_ABS32(X)
4783 };
4784
4785 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786 // one, when the destination is close enough.
4787 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4788 {
4789 Insn_template::thumb16_insn(0x4778), // bx pc
4790 Insn_template::thumb16_insn(0x46c0), // nop
4791 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4792 };
4793
4794 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4795 // blx to reach the stub if necessary.
4796 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4797 {
4798 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4799 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4800 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4801 // dcd R_ARM_REL32(X-4)
4802 };
4803
4804 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4805 // blx to reach the stub if necessary. We can not add into pc;
4806 // it is not guaranteed to mode switch (different in ARMv6 and
4807 // ARMv7).
4808 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4809 {
4810 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4811 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4812 Insn_template::arm_insn(0xe12fff1c), // bx ip
4813 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4814 // dcd R_ARM_REL32(X)
4815 };
4816
4817 // V4T ARM -> ARM long branch stub, PIC.
4818 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4819 {
4820 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4821 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4822 Insn_template::arm_insn(0xe12fff1c), // bx ip
4823 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4824 // dcd R_ARM_REL32(X)
4825 };
4826
4827 // V4T Thumb -> ARM long branch stub, PIC.
4828 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4829 {
4830 Insn_template::thumb16_insn(0x4778), // bx pc
4831 Insn_template::thumb16_insn(0x46c0), // nop
4832 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4833 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4834 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4835 // dcd R_ARM_REL32(X)
4836 };
4837
4838 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4839 // architectures.
4840 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4841 {
4842 Insn_template::thumb16_insn(0xb401), // push {r0}
4843 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4844 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4845 Insn_template::thumb16_insn(0x4484), // add ip, r0
4846 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4847 Insn_template::thumb16_insn(0x4760), // bx ip
4848 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4849 // dcd R_ARM_REL32(X)
4850 };
4851
4852 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4853 // allowed.
4854 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4855 {
4856 Insn_template::thumb16_insn(0x4778), // bx pc
4857 Insn_template::thumb16_insn(0x46c0), // nop
4858 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4859 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4860 Insn_template::arm_insn(0xe12fff1c), // bx ip
4861 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4862 // dcd R_ARM_REL32(X)
4863 };
4864
4865 // Cortex-A8 erratum-workaround stubs.
4866
4867 // Stub used for conditional branches (which may be beyond +/-1MB away,
4868 // so we can't use a conditional branch to reach this stub).
4869
4870 // original code:
4871 //
4872 // b<cond> X
4873 // after:
4874 //
4875 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4876 {
4877 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4878 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4879 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4880 // b.w X
4881 };
4882
4883 // Stub used for b.w and bl.w instructions.
4884
4885 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4886 {
4887 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4888 };
4889
4890 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4891 {
4892 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4893 };
4894
4895 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4896 // instruction (which switches to ARM mode) to point to this stub. Jump to
4897 // the real destination using an ARM-mode branch.
4898 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4899 {
4900 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4901 };
4902
4903 // Stub used to provide an interworking for R_ARM_V4BX relocation
4904 // (bx r[n] instruction).
4905 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4906 {
4907 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4908 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4909 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4910 };
4911
4912 // Fill in the stub template look-up table. Stub templates are constructed
4913 // per instance of Stub_factory for fast look-up without locking
4914 // in a thread-enabled environment.
4915
4916 this->stub_templates_[arm_stub_none] =
4917 new Stub_template(arm_stub_none, NULL, 0);
4918
4919 #define DEF_STUB(x) \
4920 do \
4921 { \
4922 size_t array_size \
4923 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924 Stub_type type = arm_stub_##x; \
4925 this->stub_templates_[type] = \
4926 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4927 } \
4928 while (0);
4929
4930 DEF_STUBS
4931 #undef DEF_STUB
4932 }
4933
4934 // Stub_table methods.
4935
4936 // Remove all Cortex-A8 stub.
4937
4938 template<bool big_endian>
4939 void
4940 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4941 {
4942 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4943 p != this->cortex_a8_stubs_.end();
4944 ++p)
4945 delete p->second;
4946 this->cortex_a8_stubs_.clear();
4947 }
4948
4949 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4950
4951 template<bool big_endian>
4952 void
4953 Stub_table<big_endian>::relocate_stub(
4954 Stub* stub,
4955 const Relocate_info<32, big_endian>* relinfo,
4956 Target_arm<big_endian>* arm_target,
4957 Output_section* output_section,
4958 unsigned char* view,
4959 Arm_address address,
4960 section_size_type view_size)
4961 {
4962 const Stub_template* stub_template = stub->stub_template();
4963 if (stub_template->reloc_count() != 0)
4964 {
4965 // Adjust view to cover the stub only.
4966 section_size_type offset = stub->offset();
4967 section_size_type stub_size = stub_template->size();
4968 gold_assert(offset + stub_size <= view_size);
4969
4970 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4971 address + offset, stub_size);
4972 }
4973 }
4974
4975 // Relocate all stubs in this stub table.
4976
4977 template<bool big_endian>
4978 void
4979 Stub_table<big_endian>::relocate_stubs(
4980 const Relocate_info<32, big_endian>* relinfo,
4981 Target_arm<big_endian>* arm_target,
4982 Output_section* output_section,
4983 unsigned char* view,
4984 Arm_address address,
4985 section_size_type view_size)
4986 {
4987 // If we are passed a view bigger than the stub table's. we need to
4988 // adjust the view.
4989 gold_assert(address == this->address()
4990 && (view_size
4991 == static_cast<section_size_type>(this->data_size())));
4992
4993 // Relocate all relocation stubs.
4994 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4995 p != this->reloc_stubs_.end();
4996 ++p)
4997 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4998 address, view_size);
4999
5000 // Relocate all Cortex-A8 stubs.
5001 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5002 p != this->cortex_a8_stubs_.end();
5003 ++p)
5004 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5005 address, view_size);
5006
5007 // Relocate all ARM V4BX stubs.
5008 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5009 p != this->arm_v4bx_stubs_.end();
5010 ++p)
5011 {
5012 if (*p != NULL)
5013 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5014 address, view_size);
5015 }
5016 }
5017
5018 // Write out the stubs to file.
5019
5020 template<bool big_endian>
5021 void
5022 Stub_table<big_endian>::do_write(Output_file* of)
5023 {
5024 off_t offset = this->offset();
5025 const section_size_type oview_size =
5026 convert_to_section_size_type(this->data_size());
5027 unsigned char* const oview = of->get_output_view(offset, oview_size);
5028
5029 // Write relocation stubs.
5030 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5031 p != this->reloc_stubs_.end();
5032 ++p)
5033 {
5034 Reloc_stub* stub = p->second;
5035 Arm_address address = this->address() + stub->offset();
5036 gold_assert(address
5037 == align_address(address,
5038 stub->stub_template()->alignment()));
5039 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5040 big_endian);
5041 }
5042
5043 // Write Cortex-A8 stubs.
5044 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045 p != this->cortex_a8_stubs_.end();
5046 ++p)
5047 {
5048 Cortex_a8_stub* stub = p->second;
5049 Arm_address address = this->address() + stub->offset();
5050 gold_assert(address
5051 == align_address(address,
5052 stub->stub_template()->alignment()));
5053 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5054 big_endian);
5055 }
5056
5057 // Write ARM V4BX relocation stubs.
5058 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5059 p != this->arm_v4bx_stubs_.end();
5060 ++p)
5061 {
5062 if (*p == NULL)
5063 continue;
5064
5065 Arm_address address = this->address() + (*p)->offset();
5066 gold_assert(address
5067 == align_address(address,
5068 (*p)->stub_template()->alignment()));
5069 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5070 big_endian);
5071 }
5072
5073 of->write_output_view(this->offset(), oview_size, oview);
5074 }
5075
5076 // Update the data size and address alignment of the stub table at the end
5077 // of a relaxation pass. Return true if either the data size or the
5078 // alignment changed in this relaxation pass.
5079
5080 template<bool big_endian>
5081 bool
5082 Stub_table<big_endian>::update_data_size_and_addralign()
5083 {
5084 // Go over all stubs in table to compute data size and address alignment.
5085 off_t size = this->reloc_stubs_size_;
5086 unsigned addralign = this->reloc_stubs_addralign_;
5087
5088 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5089 p != this->cortex_a8_stubs_.end();
5090 ++p)
5091 {
5092 const Stub_template* stub_template = p->second->stub_template();
5093 addralign = std::max(addralign, stub_template->alignment());
5094 size = (align_address(size, stub_template->alignment())
5095 + stub_template->size());
5096 }
5097
5098 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5099 p != this->arm_v4bx_stubs_.end();
5100 ++p)
5101 {
5102 if (*p == NULL)
5103 continue;
5104
5105 const Stub_template* stub_template = (*p)->stub_template();
5106 addralign = std::max(addralign, stub_template->alignment());
5107 size = (align_address(size, stub_template->alignment())
5108 + stub_template->size());
5109 }
5110
5111 // Check if either data size or alignment changed in this pass.
5112 // Update prev_data_size_ and prev_addralign_. These will be used
5113 // as the current data size and address alignment for the next pass.
5114 bool changed = size != this->prev_data_size_;
5115 this->prev_data_size_ = size;
5116
5117 if (addralign != this->prev_addralign_)
5118 changed = true;
5119 this->prev_addralign_ = addralign;
5120
5121 return changed;
5122 }
5123
5124 // Finalize the stubs. This sets the offsets of the stubs within the stub
5125 // table. It also marks all input sections needing Cortex-A8 workaround.
5126
5127 template<bool big_endian>
5128 void
5129 Stub_table<big_endian>::finalize_stubs()
5130 {
5131 off_t off = this->reloc_stubs_size_;
5132 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5133 p != this->cortex_a8_stubs_.end();
5134 ++p)
5135 {
5136 Cortex_a8_stub* stub = p->second;
5137 const Stub_template* stub_template = stub->stub_template();
5138 uint64_t stub_addralign = stub_template->alignment();
5139 off = align_address(off, stub_addralign);
5140 stub->set_offset(off);
5141 off += stub_template->size();
5142
5143 // Mark input section so that we can determine later if a code section
5144 // needs the Cortex-A8 workaround quickly.
5145 Arm_relobj<big_endian>* arm_relobj =
5146 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5147 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5148 }
5149
5150 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5151 p != this->arm_v4bx_stubs_.end();
5152 ++p)
5153 {
5154 if (*p == NULL)
5155 continue;
5156
5157 const Stub_template* stub_template = (*p)->stub_template();
5158 uint64_t stub_addralign = stub_template->alignment();
5159 off = align_address(off, stub_addralign);
5160 (*p)->set_offset(off);
5161 off += stub_template->size();
5162 }
5163
5164 gold_assert(off <= this->prev_data_size_);
5165 }
5166
5167 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5169 // of the address range seen by the linker.
5170
5171 template<bool big_endian>
5172 void
5173 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5174 Target_arm<big_endian>* arm_target,
5175 unsigned char* view,
5176 Arm_address view_address,
5177 section_size_type view_size)
5178 {
5179 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180 for (Cortex_a8_stub_list::const_iterator p =
5181 this->cortex_a8_stubs_.lower_bound(view_address);
5182 ((p != this->cortex_a8_stubs_.end())
5183 && (p->first < (view_address + view_size)));
5184 ++p)
5185 {
5186 // We do not store the THUMB bit in the LSB of either the branch address
5187 // or the stub offset. There is no need to strip the LSB.
5188 Arm_address branch_address = p->first;
5189 const Cortex_a8_stub* stub = p->second;
5190 Arm_address stub_address = this->address() + stub->offset();
5191
5192 // Offset of the branch instruction relative to this view.
5193 section_size_type offset =
5194 convert_to_section_size_type(branch_address - view_address);
5195 gold_assert((offset + 4) <= view_size);
5196
5197 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5198 view + offset, branch_address);
5199 }
5200 }
5201
5202 // Arm_input_section methods.
5203
5204 // Initialize an Arm_input_section.
5205
5206 template<bool big_endian>
5207 void
5208 Arm_input_section<big_endian>::init()
5209 {
5210 Relobj* relobj = this->relobj();
5211 unsigned int shndx = this->shndx();
5212
5213 // We have to cache original size, alignment and contents to avoid locking
5214 // the original file.
5215 this->original_addralign_ =
5216 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5217
5218 // This is not efficient but we expect only a small number of relaxed
5219 // input sections for stubs.
5220 section_size_type section_size;
5221 const unsigned char* section_contents =
5222 relobj->section_contents(shndx, &section_size, false);
5223 this->original_size_ =
5224 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5225
5226 gold_assert(this->original_contents_ == NULL);
5227 this->original_contents_ = new unsigned char[section_size];
5228 memcpy(this->original_contents_, section_contents, section_size);
5229
5230 // We want to make this look like the original input section after
5231 // output sections are finalized.
5232 Output_section* os = relobj->output_section(shndx);
5233 off_t offset = relobj->output_section_offset(shndx);
5234 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5235 this->set_address(os->address() + offset);
5236 this->set_file_offset(os->offset() + offset);
5237
5238 this->set_current_data_size(this->original_size_);
5239 this->finalize_data_size();
5240 }
5241
5242 template<bool big_endian>
5243 void
5244 Arm_input_section<big_endian>::do_write(Output_file* of)
5245 {
5246 // We have to write out the original section content.
5247 gold_assert(this->original_contents_ != NULL);
5248 of->write(this->offset(), this->original_contents_,
5249 this->original_size_);
5250
5251 // If this owns a stub table and it is not empty, write it.
5252 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5253 this->stub_table_->write(of);
5254 }
5255
5256 // Finalize data size.
5257
5258 template<bool big_endian>
5259 void
5260 Arm_input_section<big_endian>::set_final_data_size()
5261 {
5262 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5263
5264 if (this->is_stub_table_owner())
5265 {
5266 this->stub_table_->finalize_data_size();
5267 off = align_address(off, this->stub_table_->addralign());
5268 off += this->stub_table_->data_size();
5269 }
5270 this->set_data_size(off);
5271 }
5272
5273 // Reset address and file offset.
5274
5275 template<bool big_endian>
5276 void
5277 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5278 {
5279 // Size of the original input section contents.
5280 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5281
5282 // If this is a stub table owner, account for the stub table size.
5283 if (this->is_stub_table_owner())
5284 {
5285 Stub_table<big_endian>* stub_table = this->stub_table_;
5286
5287 // Reset the stub table's address and file offset. The
5288 // current data size for child will be updated after that.
5289 stub_table_->reset_address_and_file_offset();
5290 off = align_address(off, stub_table_->addralign());
5291 off += stub_table->current_data_size();
5292 }
5293
5294 this->set_current_data_size(off);
5295 }
5296
5297 // Arm_exidx_cantunwind methods.
5298
5299 // Write this to Output file OF for a fixed endianness.
5300
5301 template<bool big_endian>
5302 void
5303 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5304 {
5305 off_t offset = this->offset();
5306 const section_size_type oview_size = 8;
5307 unsigned char* const oview = of->get_output_view(offset, oview_size);
5308
5309 Output_section* os = this->relobj_->output_section(this->shndx_);
5310 gold_assert(os != NULL);
5311
5312 Arm_relobj<big_endian>* arm_relobj =
5313 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5314 Arm_address output_offset =
5315 arm_relobj->get_output_section_offset(this->shndx_);
5316 Arm_address section_start;
5317 section_size_type section_size;
5318
5319 // Find out the end of the text section referred by this.
5320 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5321 {
5322 section_start = os->address() + output_offset;
5323 const Arm_exidx_input_section* exidx_input_section =
5324 arm_relobj->exidx_input_section_by_link(this->shndx_);
5325 gold_assert(exidx_input_section != NULL);
5326 section_size =
5327 convert_to_section_size_type(exidx_input_section->text_size());
5328 }
5329 else
5330 {
5331 // Currently this only happens for a relaxed section.
5332 const Output_relaxed_input_section* poris =
5333 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5334 gold_assert(poris != NULL);
5335 section_start = poris->address();
5336 section_size = convert_to_section_size_type(poris->data_size());
5337 }
5338
5339 // We always append this to the end of an EXIDX section.
5340 Arm_address output_address = section_start + section_size;
5341
5342 // Write out the entry. The first word either points to the beginning
5343 // or after the end of a text section. The second word is the special
5344 // EXIDX_CANTUNWIND value.
5345 uint32_t prel31_offset = output_address - this->address();
5346 if (Bits<31>::has_overflow32(offset))
5347 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5348 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5349 prel31_offset & 0x7fffffffU);
5350 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5351 elfcpp::EXIDX_CANTUNWIND);
5352
5353 of->write_output_view(this->offset(), oview_size, oview);
5354 }
5355
5356 // Arm_exidx_merged_section methods.
5357
5358 // Constructor for Arm_exidx_merged_section.
5359 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360 // SECTION_OFFSET_MAP points to a section offset map describing how
5361 // parts of the input section are mapped to output. DELETED_BYTES is
5362 // the number of bytes deleted from the EXIDX input section.
5363
5364 Arm_exidx_merged_section::Arm_exidx_merged_section(
5365 const Arm_exidx_input_section& exidx_input_section,
5366 const Arm_exidx_section_offset_map& section_offset_map,
5367 uint32_t deleted_bytes)
5368 : Output_relaxed_input_section(exidx_input_section.relobj(),
5369 exidx_input_section.shndx(),
5370 exidx_input_section.addralign()),
5371 exidx_input_section_(exidx_input_section),
5372 section_offset_map_(section_offset_map)
5373 {
5374 // If we retain or discard the whole EXIDX input section, we would
5375 // not be here.
5376 gold_assert(deleted_bytes != 0
5377 && deleted_bytes != this->exidx_input_section_.size());
5378
5379 // Fix size here so that we do not need to implement set_final_data_size.
5380 uint32_t size = exidx_input_section.size() - deleted_bytes;
5381 this->set_data_size(size);
5382 this->fix_data_size();
5383
5384 // Allocate buffer for section contents and build contents.
5385 this->section_contents_ = new unsigned char[size];
5386 }
5387
5388 // Build the contents of a merged EXIDX output section.
5389
5390 void
5391 Arm_exidx_merged_section::build_contents(
5392 const unsigned char* original_contents,
5393 section_size_type original_size)
5394 {
5395 // Go over spans of input offsets and write only those that are not
5396 // discarded.
5397 section_offset_type in_start = 0;
5398 section_offset_type out_start = 0;
5399 section_offset_type in_max =
5400 convert_types<section_offset_type>(original_size);
5401 section_offset_type out_max =
5402 convert_types<section_offset_type>(this->data_size());
5403 for (Arm_exidx_section_offset_map::const_iterator p =
5404 this->section_offset_map_.begin();
5405 p != this->section_offset_map_.end();
5406 ++p)
5407 {
5408 section_offset_type in_end = p->first;
5409 gold_assert(in_end >= in_start);
5410 section_offset_type out_end = p->second;
5411 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5412 if (out_end != -1)
5413 {
5414 size_t out_chunk_size =
5415 convert_types<size_t>(out_end - out_start + 1);
5416
5417 gold_assert(out_chunk_size == in_chunk_size
5418 && in_end < in_max && out_end < out_max);
5419
5420 memcpy(this->section_contents_ + out_start,
5421 original_contents + in_start,
5422 out_chunk_size);
5423 out_start += out_chunk_size;
5424 }
5425 in_start += in_chunk_size;
5426 }
5427 }
5428
5429 // Given an input OBJECT, an input section index SHNDX within that
5430 // object, and an OFFSET relative to the start of that input
5431 // section, return whether or not the corresponding offset within
5432 // the output section is known. If this function returns true, it
5433 // sets *POUTPUT to the output offset. The value -1 indicates that
5434 // this input offset is being discarded.
5435
5436 bool
5437 Arm_exidx_merged_section::do_output_offset(
5438 const Relobj* relobj,
5439 unsigned int shndx,
5440 section_offset_type offset,
5441 section_offset_type* poutput) const
5442 {
5443 // We only handle offsets for the original EXIDX input section.
5444 if (relobj != this->exidx_input_section_.relobj()
5445 || shndx != this->exidx_input_section_.shndx())
5446 return false;
5447
5448 section_offset_type section_size =
5449 convert_types<section_offset_type>(this->exidx_input_section_.size());
5450 if (offset < 0 || offset >= section_size)
5451 // Input offset is out of valid range.
5452 *poutput = -1;
5453 else
5454 {
5455 // We need to look up the section offset map to determine the output
5456 // offset. Find the reference point in map that is first offset
5457 // bigger than or equal to this offset.
5458 Arm_exidx_section_offset_map::const_iterator p =
5459 this->section_offset_map_.lower_bound(offset);
5460
5461 // The section offset maps are build such that this should not happen if
5462 // input offset is in the valid range.
5463 gold_assert(p != this->section_offset_map_.end());
5464
5465 // We need to check if this is dropped.
5466 section_offset_type ref = p->first;
5467 section_offset_type mapped_ref = p->second;
5468
5469 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5470 // Offset is present in output.
5471 *poutput = mapped_ref + (offset - ref);
5472 else
5473 // Offset is discarded owing to EXIDX entry merging.
5474 *poutput = -1;
5475 }
5476
5477 return true;
5478 }
5479
5480 // Write this to output file OF.
5481
5482 void
5483 Arm_exidx_merged_section::do_write(Output_file* of)
5484 {
5485 off_t offset = this->offset();
5486 const section_size_type oview_size = this->data_size();
5487 unsigned char* const oview = of->get_output_view(offset, oview_size);
5488
5489 Output_section* os = this->relobj()->output_section(this->shndx());
5490 gold_assert(os != NULL);
5491
5492 memcpy(oview, this->section_contents_, oview_size);
5493 of->write_output_view(this->offset(), oview_size, oview);
5494 }
5495
5496 // Arm_exidx_fixup methods.
5497
5498 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5500 // points to the end of the last seen EXIDX section.
5501
5502 void
5503 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5504 {
5505 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5506 && this->last_input_section_ != NULL)
5507 {
5508 Relobj* relobj = this->last_input_section_->relobj();
5509 unsigned int text_shndx = this->last_input_section_->link();
5510 Arm_exidx_cantunwind* cantunwind =
5511 new Arm_exidx_cantunwind(relobj, text_shndx);
5512 this->exidx_output_section_->add_output_section_data(cantunwind);
5513 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5514 }
5515 }
5516
5517 // Process an EXIDX section entry in input. Return whether this entry
5518 // can be deleted in the output. SECOND_WORD in the second word of the
5519 // EXIDX entry.
5520
5521 bool
5522 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5523 {
5524 bool delete_entry;
5525 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5526 {
5527 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5529 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5530 }
5531 else if ((second_word & 0x80000000) != 0)
5532 {
5533 // Inlined unwinding data. Merge if equal to previous.
5534 delete_entry = (merge_exidx_entries_
5535 && this->last_unwind_type_ == UT_INLINED_ENTRY
5536 && this->last_inlined_entry_ == second_word);
5537 this->last_unwind_type_ = UT_INLINED_ENTRY;
5538 this->last_inlined_entry_ = second_word;
5539 }
5540 else
5541 {
5542 // Normal table entry. In theory we could merge these too,
5543 // but duplicate entries are likely to be much less common.
5544 delete_entry = false;
5545 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5546 }
5547 return delete_entry;
5548 }
5549
5550 // Update the current section offset map during EXIDX section fix-up.
5551 // If there is no map, create one. INPUT_OFFSET is the offset of a
5552 // reference point, DELETED_BYTES is the number of deleted by in the
5553 // section so far. If DELETE_ENTRY is true, the reference point and
5554 // all offsets after the previous reference point are discarded.
5555
5556 void
5557 Arm_exidx_fixup::update_offset_map(
5558 section_offset_type input_offset,
5559 section_size_type deleted_bytes,
5560 bool delete_entry)
5561 {
5562 if (this->section_offset_map_ == NULL)
5563 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5564 section_offset_type output_offset;
5565 if (delete_entry)
5566 output_offset = Arm_exidx_input_section::invalid_offset;
5567 else
5568 output_offset = input_offset - deleted_bytes;
5569 (*this->section_offset_map_)[input_offset] = output_offset;
5570 }
5571
5572 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5573 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5574 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575 // If some entries are merged, also store a pointer to a newly created
5576 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5577 // owns the map and is responsible for releasing it after use.
5578
5579 template<bool big_endian>
5580 uint32_t
5581 Arm_exidx_fixup::process_exidx_section(
5582 const Arm_exidx_input_section* exidx_input_section,
5583 const unsigned char* section_contents,
5584 section_size_type section_size,
5585 Arm_exidx_section_offset_map** psection_offset_map)
5586 {
5587 Relobj* relobj = exidx_input_section->relobj();
5588 unsigned shndx = exidx_input_section->shndx();
5589
5590 if ((section_size % 8) != 0)
5591 {
5592 // Something is wrong with this section. Better not touch it.
5593 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594 relobj->name().c_str(), shndx);
5595 this->last_input_section_ = exidx_input_section;
5596 this->last_unwind_type_ = UT_NONE;
5597 return 0;
5598 }
5599
5600 uint32_t deleted_bytes = 0;
5601 bool prev_delete_entry = false;
5602 gold_assert(this->section_offset_map_ == NULL);
5603
5604 for (section_size_type i = 0; i < section_size; i += 8)
5605 {
5606 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5607 const Valtype* wv =
5608 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5609 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5610
5611 bool delete_entry = this->process_exidx_entry(second_word);
5612
5613 // Entry deletion causes changes in output offsets. We use a std::map
5614 // to record these. And entry (x, y) means input offset x
5615 // is mapped to output offset y. If y is invalid_offset, then x is
5616 // dropped in the output. Because of the way std::map::lower_bound
5617 // works, we record the last offset in a region w.r.t to keeping or
5618 // dropping. If there is no entry (x0, y0) for an input offset x0,
5619 // the output offset y0 of it is determined by the output offset y1 of
5620 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5621 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5622 // y0 is also -1.
5623 if (delete_entry != prev_delete_entry && i != 0)
5624 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5625
5626 // Update total deleted bytes for this entry.
5627 if (delete_entry)
5628 deleted_bytes += 8;
5629
5630 prev_delete_entry = delete_entry;
5631 }
5632
5633 // If section offset map is not NULL, make an entry for the end of
5634 // section.
5635 if (this->section_offset_map_ != NULL)
5636 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5637
5638 *psection_offset_map = this->section_offset_map_;
5639 this->section_offset_map_ = NULL;
5640 this->last_input_section_ = exidx_input_section;
5641
5642 // Set the first output text section so that we can link the EXIDX output
5643 // section to it. Ignore any EXIDX input section that is completely merged.
5644 if (this->first_output_text_section_ == NULL
5645 && deleted_bytes != section_size)
5646 {
5647 unsigned int link = exidx_input_section->link();
5648 Output_section* os = relobj->output_section(link);
5649 gold_assert(os != NULL);
5650 this->first_output_text_section_ = os;
5651 }
5652
5653 return deleted_bytes;
5654 }
5655
5656 // Arm_output_section methods.
5657
5658 // Create a stub group for input sections from BEGIN to END. OWNER
5659 // points to the input section to be the owner a new stub table.
5660
5661 template<bool big_endian>
5662 void
5663 Arm_output_section<big_endian>::create_stub_group(
5664 Input_section_list::const_iterator begin,
5665 Input_section_list::const_iterator end,
5666 Input_section_list::const_iterator owner,
5667 Target_arm<big_endian>* target,
5668 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5669 const Task* task)
5670 {
5671 // We use a different kind of relaxed section in an EXIDX section.
5672 // The static casting from Output_relaxed_input_section to
5673 // Arm_input_section is invalid in an EXIDX section. We are okay
5674 // because we should not be calling this for an EXIDX section.
5675 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5676
5677 // Currently we convert ordinary input sections into relaxed sections only
5678 // at this point but we may want to support creating relaxed input section
5679 // very early. So we check here to see if owner is already a relaxed
5680 // section.
5681
5682 Arm_input_section<big_endian>* arm_input_section;
5683 if (owner->is_relaxed_input_section())
5684 {
5685 arm_input_section =
5686 Arm_input_section<big_endian>::as_arm_input_section(
5687 owner->relaxed_input_section());
5688 }
5689 else
5690 {
5691 gold_assert(owner->is_input_section());
5692 // Create a new relaxed input section. We need to lock the original
5693 // file.
5694 Task_lock_obj<Object> tl(task, owner->relobj());
5695 arm_input_section =
5696 target->new_arm_input_section(owner->relobj(), owner->shndx());
5697 new_relaxed_sections->push_back(arm_input_section);
5698 }
5699
5700 // Create a stub table.
5701 Stub_table<big_endian>* stub_table =
5702 target->new_stub_table(arm_input_section);
5703
5704 arm_input_section->set_stub_table(stub_table);
5705
5706 Input_section_list::const_iterator p = begin;
5707 Input_section_list::const_iterator prev_p;
5708
5709 // Look for input sections or relaxed input sections in [begin ... end].
5710 do
5711 {
5712 if (p->is_input_section() || p->is_relaxed_input_section())
5713 {
5714 // The stub table information for input sections live
5715 // in their objects.
5716 Arm_relobj<big_endian>* arm_relobj =
5717 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5718 arm_relobj->set_stub_table(p->shndx(), stub_table);
5719 }
5720 prev_p = p++;
5721 }
5722 while (prev_p != end);
5723 }
5724
5725 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5726 // of stub groups. We grow a stub group by adding input section until the
5727 // size is just below GROUP_SIZE. The last input section will be converted
5728 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729 // input section after the stub table, effectively double the group size.
5730 //
5731 // This is similar to the group_sections() function in elf32-arm.c but is
5732 // implemented differently.
5733
5734 template<bool big_endian>
5735 void
5736 Arm_output_section<big_endian>::group_sections(
5737 section_size_type group_size,
5738 bool stubs_always_after_branch,
5739 Target_arm<big_endian>* target,
5740 const Task* task)
5741 {
5742 // States for grouping.
5743 typedef enum
5744 {
5745 // No group is being built.
5746 NO_GROUP,
5747 // A group is being built but the stub table is not found yet.
5748 // We keep group a stub group until the size is just under GROUP_SIZE.
5749 // The last input section in the group will be used as the stub table.
5750 FINDING_STUB_SECTION,
5751 // A group is being built and we have already found a stub table.
5752 // We enter this state to grow a stub group by adding input section
5753 // after the stub table. This effectively doubles the group size.
5754 HAS_STUB_SECTION
5755 } State;
5756
5757 // Any newly created relaxed sections are stored here.
5758 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5759
5760 State state = NO_GROUP;
5761 section_size_type off = 0;
5762 section_size_type group_begin_offset = 0;
5763 section_size_type group_end_offset = 0;
5764 section_size_type stub_table_end_offset = 0;
5765 Input_section_list::const_iterator group_begin =
5766 this->input_sections().end();
5767 Input_section_list::const_iterator stub_table =
5768 this->input_sections().end();
5769 Input_section_list::const_iterator group_end = this->input_sections().end();
5770 for (Input_section_list::const_iterator p = this->input_sections().begin();
5771 p != this->input_sections().end();
5772 ++p)
5773 {
5774 section_size_type section_begin_offset =
5775 align_address(off, p->addralign());
5776 section_size_type section_end_offset =
5777 section_begin_offset + p->data_size();
5778
5779 // Check to see if we should group the previously seen sections.
5780 switch (state)
5781 {
5782 case NO_GROUP:
5783 break;
5784
5785 case FINDING_STUB_SECTION:
5786 // Adding this section makes the group larger than GROUP_SIZE.
5787 if (section_end_offset - group_begin_offset >= group_size)
5788 {
5789 if (stubs_always_after_branch)
5790 {
5791 gold_assert(group_end != this->input_sections().end());
5792 this->create_stub_group(group_begin, group_end, group_end,
5793 target, &new_relaxed_sections,
5794 task);
5795 state = NO_GROUP;
5796 }
5797 else
5798 {
5799 // But wait, there's more! Input sections up to
5800 // stub_group_size bytes after the stub table can be
5801 // handled by it too.
5802 state = HAS_STUB_SECTION;
5803 stub_table = group_end;
5804 stub_table_end_offset = group_end_offset;
5805 }
5806 }
5807 break;
5808
5809 case HAS_STUB_SECTION:
5810 // Adding this section makes the post stub-section group larger
5811 // than GROUP_SIZE.
5812 if (section_end_offset - stub_table_end_offset >= group_size)
5813 {
5814 gold_assert(group_end != this->input_sections().end());
5815 this->create_stub_group(group_begin, group_end, stub_table,
5816 target, &new_relaxed_sections, task);
5817 state = NO_GROUP;
5818 }
5819 break;
5820
5821 default:
5822 gold_unreachable();
5823 }
5824
5825 // If we see an input section and currently there is no group, start
5826 // a new one. Skip any empty sections. We look at the data size
5827 // instead of calling p->relobj()->section_size() to avoid locking.
5828 if ((p->is_input_section() || p->is_relaxed_input_section())
5829 && (p->data_size() != 0))
5830 {
5831 if (state == NO_GROUP)
5832 {
5833 state = FINDING_STUB_SECTION;
5834 group_begin = p;
5835 group_begin_offset = section_begin_offset;
5836 }
5837
5838 // Keep track of the last input section seen.
5839 group_end = p;
5840 group_end_offset = section_end_offset;
5841 }
5842
5843 off = section_end_offset;
5844 }
5845
5846 // Create a stub group for any ungrouped sections.
5847 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5848 {
5849 gold_assert(group_end != this->input_sections().end());
5850 this->create_stub_group(group_begin, group_end,
5851 (state == FINDING_STUB_SECTION
5852 ? group_end
5853 : stub_table),
5854 target, &new_relaxed_sections, task);
5855 }
5856
5857 // Convert input section into relaxed input section in a batch.
5858 if (!new_relaxed_sections.empty())
5859 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5860
5861 // Update the section offsets
5862 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5863 {
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(
5866 new_relaxed_sections[i]->relobj());
5867 unsigned int shndx = new_relaxed_sections[i]->shndx();
5868 // Tell Arm_relobj that this input section is converted.
5869 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5870 }
5871 }
5872
5873 // Append non empty text sections in this to LIST in ascending
5874 // order of their position in this.
5875
5876 template<bool big_endian>
5877 void
5878 Arm_output_section<big_endian>::append_text_sections_to_list(
5879 Text_section_list* list)
5880 {
5881 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5882
5883 for (Input_section_list::const_iterator p = this->input_sections().begin();
5884 p != this->input_sections().end();
5885 ++p)
5886 {
5887 // We only care about plain or relaxed input sections. We also
5888 // ignore any merged sections.
5889 if (p->is_input_section() || p->is_relaxed_input_section())
5890 list->push_back(Text_section_list::value_type(p->relobj(),
5891 p->shndx()));
5892 }
5893 }
5894
5895 template<bool big_endian>
5896 void
5897 Arm_output_section<big_endian>::fix_exidx_coverage(
5898 Layout* layout,
5899 const Text_section_list& sorted_text_sections,
5900 Symbol_table* symtab,
5901 bool merge_exidx_entries,
5902 const Task* task)
5903 {
5904 // We should only do this for the EXIDX output section.
5905 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5906
5907 // We don't want the relaxation loop to undo these changes, so we discard
5908 // the current saved states and take another one after the fix-up.
5909 this->discard_states();
5910
5911 // Remove all input sections.
5912 uint64_t address = this->address();
5913 typedef std::list<Output_section::Input_section> Input_section_list;
5914 Input_section_list input_sections;
5915 this->reset_address_and_file_offset();
5916 this->get_input_sections(address, std::string(""), &input_sections);
5917
5918 if (!this->input_sections().empty())
5919 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5920
5921 // Go through all the known input sections and record them.
5922 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5923 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5924 Section_id_hash> Text_to_exidx_map;
5925 Text_to_exidx_map text_to_exidx_map;
5926 for (Input_section_list::const_iterator p = input_sections.begin();
5927 p != input_sections.end();
5928 ++p)
5929 {
5930 // This should never happen. At this point, we should only see
5931 // plain EXIDX input sections.
5932 gold_assert(!p->is_relaxed_input_section());
5933 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5934 }
5935
5936 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5937
5938 // Go over the sorted text sections.
5939 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5940 Section_id_set processed_input_sections;
5941 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5942 p != sorted_text_sections.end();
5943 ++p)
5944 {
5945 Relobj* relobj = p->first;
5946 unsigned int shndx = p->second;
5947
5948 Arm_relobj<big_endian>* arm_relobj =
5949 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5950 const Arm_exidx_input_section* exidx_input_section =
5951 arm_relobj->exidx_input_section_by_link(shndx);
5952
5953 // If this text section has no EXIDX section or if the EXIDX section
5954 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955 // of the last seen EXIDX section.
5956 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5957 {
5958 exidx_fixup.add_exidx_cantunwind_as_needed();
5959 continue;
5960 }
5961
5962 Relobj* exidx_relobj = exidx_input_section->relobj();
5963 unsigned int exidx_shndx = exidx_input_section->shndx();
5964 Section_id sid(exidx_relobj, exidx_shndx);
5965 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5966 if (iter == text_to_exidx_map.end())
5967 {
5968 // This is odd. We have not seen this EXIDX input section before.
5969 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5970 // issue a warning instead. We assume the user knows what he
5971 // or she is doing. Otherwise, this is an error.
5972 if (layout->script_options()->saw_sections_clause())
5973 gold_warning(_("unwinding may not work because EXIDX input section"
5974 " %u of %s is not in EXIDX output section"),
5975 exidx_shndx, exidx_relobj->name().c_str());
5976 else
5977 gold_error(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5980
5981 exidx_fixup.add_exidx_cantunwind_as_needed();
5982 continue;
5983 }
5984
5985 // We need to access the contents of the EXIDX section, lock the
5986 // object here.
5987 Task_lock_obj<Object> tl(task, exidx_relobj);
5988 section_size_type exidx_size;
5989 const unsigned char* exidx_contents =
5990 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5991
5992 // Fix up coverage and append input section to output data list.
5993 Arm_exidx_section_offset_map* section_offset_map = NULL;
5994 uint32_t deleted_bytes =
5995 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5996 exidx_contents,
5997 exidx_size,
5998 &section_offset_map);
5999
6000 if (deleted_bytes == exidx_input_section->size())
6001 {
6002 // The whole EXIDX section got merged. Remove it from output.
6003 gold_assert(section_offset_map == NULL);
6004 exidx_relobj->set_output_section(exidx_shndx, NULL);
6005
6006 // All local symbols defined in this input section will be dropped.
6007 // We need to adjust output local symbol count.
6008 arm_relobj->set_output_local_symbol_count_needs_update();
6009 }
6010 else if (deleted_bytes > 0)
6011 {
6012 // Some entries are merged. We need to convert this EXIDX input
6013 // section into a relaxed section.
6014 gold_assert(section_offset_map != NULL);
6015
6016 Arm_exidx_merged_section* merged_section =
6017 new Arm_exidx_merged_section(*exidx_input_section,
6018 *section_offset_map, deleted_bytes);
6019 merged_section->build_contents(exidx_contents, exidx_size);
6020
6021 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6022 this->add_relaxed_input_section(layout, merged_section, secname);
6023 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6024
6025 // All local symbols defined in discarded portions of this input
6026 // section will be dropped. We need to adjust output local symbol
6027 // count.
6028 arm_relobj->set_output_local_symbol_count_needs_update();
6029 }
6030 else
6031 {
6032 // Just add back the EXIDX input section.
6033 gold_assert(section_offset_map == NULL);
6034 const Output_section::Input_section* pis = iter->second;
6035 gold_assert(pis->is_input_section());
6036 this->add_script_input_section(*pis);
6037 }
6038
6039 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6040 }
6041
6042 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043 exidx_fixup.add_exidx_cantunwind_as_needed();
6044
6045 // Remove any known EXIDX input sections that are not processed.
6046 for (Input_section_list::const_iterator p = input_sections.begin();
6047 p != input_sections.end();
6048 ++p)
6049 {
6050 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6051 == processed_input_sections.end())
6052 {
6053 // We discard a known EXIDX section because its linked
6054 // text section has been folded by ICF. We also discard an
6055 // EXIDX section with error, the output does not matter in this
6056 // case. We do this to avoid triggering asserts.
6057 Arm_relobj<big_endian>* arm_relobj =
6058 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6059 const Arm_exidx_input_section* exidx_input_section =
6060 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6061 gold_assert(exidx_input_section != NULL);
6062 if (!exidx_input_section->has_errors())
6063 {
6064 unsigned int text_shndx = exidx_input_section->link();
6065 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6066 }
6067
6068 // Remove this from link. We also need to recount the
6069 // local symbols.
6070 p->relobj()->set_output_section(p->shndx(), NULL);
6071 arm_relobj->set_output_local_symbol_count_needs_update();
6072 }
6073 }
6074
6075 // Link exidx output section to the first seen output section and
6076 // set correct entry size.
6077 this->set_link_section(exidx_fixup.first_output_text_section());
6078 this->set_entsize(8);
6079
6080 // Make changes permanent.
6081 this->save_states();
6082 this->set_section_offsets_need_adjustment();
6083 }
6084
6085 // Link EXIDX output sections to text output sections.
6086
6087 template<bool big_endian>
6088 void
6089 Arm_output_section<big_endian>::set_exidx_section_link()
6090 {
6091 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6092 if (!this->input_sections().empty())
6093 {
6094 Input_section_list::const_iterator p = this->input_sections().begin();
6095 Arm_relobj<big_endian>* arm_relobj =
6096 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6097 unsigned exidx_shndx = p->shndx();
6098 const Arm_exidx_input_section* exidx_input_section =
6099 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6100 gold_assert(exidx_input_section != NULL);
6101 unsigned int text_shndx = exidx_input_section->link();
6102 Output_section* os = arm_relobj->output_section(text_shndx);
6103 this->set_link_section(os);
6104 }
6105 }
6106
6107 // Arm_relobj methods.
6108
6109 // Determine if an input section is scannable for stub processing. SHDR is
6110 // the header of the section and SHNDX is the section index. OS is the output
6111 // section for the input section and SYMTAB is the global symbol table used to
6112 // look up ICF information.
6113
6114 template<bool big_endian>
6115 bool
6116 Arm_relobj<big_endian>::section_is_scannable(
6117 const elfcpp::Shdr<32, big_endian>& shdr,
6118 unsigned int shndx,
6119 const Output_section* os,
6120 const Symbol_table* symtab)
6121 {
6122 // Skip any empty sections, unallocated sections or sections whose
6123 // type are not SHT_PROGBITS.
6124 if (shdr.get_sh_size() == 0
6125 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6126 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6127 return false;
6128
6129 // Skip any discarded or ICF'ed sections.
6130 if (os == NULL || symtab->is_section_folded(this, shndx))
6131 return false;
6132
6133 // If this requires special offset handling, check to see if it is
6134 // a relaxed section. If this is not, then it is a merged section that
6135 // we cannot handle.
6136 if (this->is_output_section_offset_invalid(shndx))
6137 {
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6140 if (poris == NULL)
6141 return false;
6142 }
6143
6144 return true;
6145 }
6146
6147 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6148 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6149
6150 template<bool big_endian>
6151 bool
6152 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6153 const elfcpp::Shdr<32, big_endian>& shdr,
6154 const Relobj::Output_sections& out_sections,
6155 const Symbol_table* symtab,
6156 const unsigned char* pshdrs)
6157 {
6158 unsigned int sh_type = shdr.get_sh_type();
6159 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6160 return false;
6161
6162 // Ignore empty section.
6163 off_t sh_size = shdr.get_sh_size();
6164 if (sh_size == 0)
6165 return false;
6166
6167 // Ignore reloc section with unexpected symbol table. The
6168 // error will be reported in the final link.
6169 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6170 return false;
6171
6172 unsigned int reloc_size;
6173 if (sh_type == elfcpp::SHT_REL)
6174 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6175 else
6176 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6177
6178 // Ignore reloc section with unexpected entsize or uneven size.
6179 // The error will be reported in the final link.
6180 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6181 return false;
6182
6183 // Ignore reloc section with bad info. This error will be
6184 // reported in the final link.
6185 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6186 if (index >= this->shnum())
6187 return false;
6188
6189 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6190 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6191 return this->section_is_scannable(text_shdr, index,
6192 out_sections[index], symtab);
6193 }
6194
6195 // Return the output address of either a plain input section or a relaxed
6196 // input section. SHNDX is the section index. We define and use this
6197 // instead of calling Output_section::output_address because that is slow
6198 // for large output.
6199
6200 template<bool big_endian>
6201 Arm_address
6202 Arm_relobj<big_endian>::simple_input_section_output_address(
6203 unsigned int shndx,
6204 Output_section* os)
6205 {
6206 if (this->is_output_section_offset_invalid(shndx))
6207 {
6208 const Output_relaxed_input_section* poris =
6209 os->find_relaxed_input_section(this, shndx);
6210 // We do not handle merged sections here.
6211 gold_assert(poris != NULL);
6212 return poris->address();
6213 }
6214 else
6215 return os->address() + this->get_output_section_offset(shndx);
6216 }
6217
6218 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6220
6221 template<bool big_endian>
6222 bool
6223 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6224 const elfcpp::Shdr<32, big_endian>& shdr,
6225 unsigned int shndx,
6226 Output_section* os,
6227 const Symbol_table* symtab)
6228 {
6229 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6230 return false;
6231
6232 // If the section does not cross any 4K-boundaries, it does not need to
6233 // be scanned.
6234 Arm_address address = this->simple_input_section_output_address(shndx, os);
6235 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6236 return false;
6237
6238 return true;
6239 }
6240
6241 // Scan a section for Cortex-A8 workaround.
6242
6243 template<bool big_endian>
6244 void
6245 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6246 const elfcpp::Shdr<32, big_endian>& shdr,
6247 unsigned int shndx,
6248 Output_section* os,
6249 Target_arm<big_endian>* arm_target)
6250 {
6251 // Look for the first mapping symbol in this section. It should be
6252 // at (shndx, 0).
6253 Mapping_symbol_position section_start(shndx, 0);
6254 typename Mapping_symbols_info::const_iterator p =
6255 this->mapping_symbols_info_.lower_bound(section_start);
6256
6257 // There are no mapping symbols for this section. Treat it as a data-only
6258 // section. Issue a warning if section is marked as containing
6259 // instructions.
6260 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6261 {
6262 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6263 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6264 "erratum because it has no mapping symbols."),
6265 shndx, this->name().c_str());
6266 return;
6267 }
6268
6269 Arm_address output_address =
6270 this->simple_input_section_output_address(shndx, os);
6271
6272 // Get the section contents.
6273 section_size_type input_view_size = 0;
6274 const unsigned char* input_view =
6275 this->section_contents(shndx, &input_view_size, false);
6276
6277 // We need to go through the mapping symbols to determine what to
6278 // scan. There are two reasons. First, we should look at THUMB code and
6279 // THUMB code only. Second, we only want to look at the 4K-page boundary
6280 // to speed up the scanning.
6281
6282 while (p != this->mapping_symbols_info_.end()
6283 && p->first.first == shndx)
6284 {
6285 typename Mapping_symbols_info::const_iterator next =
6286 this->mapping_symbols_info_.upper_bound(p->first);
6287
6288 // Only scan part of a section with THUMB code.
6289 if (p->second == 't')
6290 {
6291 // Determine the end of this range.
6292 section_size_type span_start =
6293 convert_to_section_size_type(p->first.second);
6294 section_size_type span_end;
6295 if (next != this->mapping_symbols_info_.end()
6296 && next->first.first == shndx)
6297 span_end = convert_to_section_size_type(next->first.second);
6298 else
6299 span_end = convert_to_section_size_type(shdr.get_sh_size());
6300
6301 if (((span_start + output_address) & ~0xfffUL)
6302 != ((span_end + output_address - 1) & ~0xfffUL))
6303 {
6304 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6305 span_start, span_end,
6306 input_view,
6307 output_address);
6308 }
6309 }
6310
6311 p = next;
6312 }
6313 }
6314
6315 // Scan relocations for stub generation.
6316
6317 template<bool big_endian>
6318 void
6319 Arm_relobj<big_endian>::scan_sections_for_stubs(
6320 Target_arm<big_endian>* arm_target,
6321 const Symbol_table* symtab,
6322 const Layout* layout)
6323 {
6324 unsigned int shnum = this->shnum();
6325 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6326
6327 // Read the section headers.
6328 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6329 shnum * shdr_size,
6330 true, true);
6331
6332 // To speed up processing, we set up hash tables for fast lookup of
6333 // input offsets to output addresses.
6334 this->initialize_input_to_output_maps();
6335
6336 const Relobj::Output_sections& out_sections(this->output_sections());
6337
6338 Relocate_info<32, big_endian> relinfo;
6339 relinfo.symtab = symtab;
6340 relinfo.layout = layout;
6341 relinfo.object = this;
6342
6343 // Do relocation stubs scanning.
6344 const unsigned char* p = pshdrs + shdr_size;
6345 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6346 {
6347 const elfcpp::Shdr<32, big_endian> shdr(p);
6348 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6349 pshdrs))
6350 {
6351 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6352 Arm_address output_offset = this->get_output_section_offset(index);
6353 Arm_address output_address;
6354 if (output_offset != invalid_address)
6355 output_address = out_sections[index]->address() + output_offset;
6356 else
6357 {
6358 // Currently this only happens for a relaxed section.
6359 const Output_relaxed_input_section* poris =
6360 out_sections[index]->find_relaxed_input_section(this, index);
6361 gold_assert(poris != NULL);
6362 output_address = poris->address();
6363 }
6364
6365 // Get the relocations.
6366 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6367 shdr.get_sh_size(),
6368 true, false);
6369
6370 // Get the section contents. This does work for the case in which
6371 // we modify the contents of an input section. We need to pass the
6372 // output view under such circumstances.
6373 section_size_type input_view_size = 0;
6374 const unsigned char* input_view =
6375 this->section_contents(index, &input_view_size, false);
6376
6377 relinfo.reloc_shndx = i;
6378 relinfo.data_shndx = index;
6379 unsigned int sh_type = shdr.get_sh_type();
6380 unsigned int reloc_size;
6381 if (sh_type == elfcpp::SHT_REL)
6382 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6383 else
6384 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6385
6386 Output_section* os = out_sections[index];
6387 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6388 shdr.get_sh_size() / reloc_size,
6389 os,
6390 output_offset == invalid_address,
6391 input_view, output_address,
6392 input_view_size);
6393 }
6394 }
6395
6396 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6397 // after its relocation section, if there is one, is processed for
6398 // relocation stubs. Merging this loop with the one above would have been
6399 // complicated since we would have had to make sure that relocation stub
6400 // scanning is done first.
6401 if (arm_target->fix_cortex_a8())
6402 {
6403 const unsigned char* p = pshdrs + shdr_size;
6404 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6405 {
6406 const elfcpp::Shdr<32, big_endian> shdr(p);
6407 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6408 out_sections[i],
6409 symtab))
6410 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6411 arm_target);
6412 }
6413 }
6414
6415 // After we've done the relocations, we release the hash tables,
6416 // since we no longer need them.
6417 this->free_input_to_output_maps();
6418 }
6419
6420 // Count the local symbols. The ARM backend needs to know if a symbol
6421 // is a THUMB function or not. For global symbols, it is easy because
6422 // the Symbol object keeps the ELF symbol type. For local symbol it is
6423 // harder because we cannot access this information. So we override the
6424 // do_count_local_symbol in parent and scan local symbols to mark
6425 // THUMB functions. This is not the most efficient way but I do not want to
6426 // slow down other ports by calling a per symbol target hook inside
6427 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6428
6429 template<bool big_endian>
6430 void
6431 Arm_relobj<big_endian>::do_count_local_symbols(
6432 Stringpool_template<char>* pool,
6433 Stringpool_template<char>* dynpool)
6434 {
6435 // We need to fix-up the values of any local symbols whose type are
6436 // STT_ARM_TFUNC.
6437
6438 // Ask parent to count the local symbols.
6439 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6440 const unsigned int loccount = this->local_symbol_count();
6441 if (loccount == 0)
6442 return;
6443
6444 // Initialize the thumb function bit-vector.
6445 std::vector<bool> empty_vector(loccount, false);
6446 this->local_symbol_is_thumb_function_.swap(empty_vector);
6447
6448 // Read the symbol table section header.
6449 const unsigned int symtab_shndx = this->symtab_shndx();
6450 elfcpp::Shdr<32, big_endian>
6451 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6452 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6453
6454 // Read the local symbols.
6455 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6456 gold_assert(loccount == symtabshdr.get_sh_info());
6457 off_t locsize = loccount * sym_size;
6458 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6459 locsize, true, true);
6460
6461 // For mapping symbol processing, we need to read the symbol names.
6462 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6463 if (strtab_shndx >= this->shnum())
6464 {
6465 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6466 return;
6467 }
6468
6469 elfcpp::Shdr<32, big_endian>
6470 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6471 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6472 {
6473 this->error(_("symbol table name section has wrong type: %u"),
6474 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6475 return;
6476 }
6477 const char* pnames =
6478 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6479 strtabshdr.get_sh_size(),
6480 false, false));
6481
6482 // Loop over the local symbols and mark any local symbols pointing
6483 // to THUMB functions.
6484
6485 // Skip the first dummy symbol.
6486 psyms += sym_size;
6487 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6488 this->local_values();
6489 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6490 {
6491 elfcpp::Sym<32, big_endian> sym(psyms);
6492 elfcpp::STT st_type = sym.get_st_type();
6493 Symbol_value<32>& lv((*plocal_values)[i]);
6494 Arm_address input_value = lv.input_value();
6495
6496 // Check to see if this is a mapping symbol.
6497 const char* sym_name = pnames + sym.get_st_name();
6498 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6499 {
6500 bool is_ordinary;
6501 unsigned int input_shndx =
6502 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6503 gold_assert(is_ordinary);
6504
6505 // Strip of LSB in case this is a THUMB symbol.
6506 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6507 this->mapping_symbols_info_[msp] = sym_name[1];
6508 }
6509
6510 if (st_type == elfcpp::STT_ARM_TFUNC
6511 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6512 {
6513 // This is a THUMB function. Mark this and canonicalize the
6514 // symbol value by setting LSB.
6515 this->local_symbol_is_thumb_function_[i] = true;
6516 if ((input_value & 1) == 0)
6517 lv.set_input_value(input_value | 1);
6518 }
6519 }
6520 }
6521
6522 // Relocate sections.
6523 template<bool big_endian>
6524 void
6525 Arm_relobj<big_endian>::do_relocate_sections(
6526 const Symbol_table* symtab,
6527 const Layout* layout,
6528 const unsigned char* pshdrs,
6529 Output_file* of,
6530 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6531 {
6532 // Call parent to relocate sections.
6533 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6534 pshdrs, of, pviews);
6535
6536 // We do not generate stubs if doing a relocatable link.
6537 if (parameters->options().relocatable())
6538 return;
6539
6540 // Relocate stub tables.
6541 unsigned int shnum = this->shnum();
6542
6543 Target_arm<big_endian>* arm_target =
6544 Target_arm<big_endian>::default_target();
6545
6546 Relocate_info<32, big_endian> relinfo;
6547 relinfo.symtab = symtab;
6548 relinfo.layout = layout;
6549 relinfo.object = this;
6550
6551 for (unsigned int i = 1; i < shnum; ++i)
6552 {
6553 Arm_input_section<big_endian>* arm_input_section =
6554 arm_target->find_arm_input_section(this, i);
6555
6556 if (arm_input_section != NULL
6557 && arm_input_section->is_stub_table_owner()
6558 && !arm_input_section->stub_table()->empty())
6559 {
6560 // We cannot discard a section if it owns a stub table.
6561 Output_section* os = this->output_section(i);
6562 gold_assert(os != NULL);
6563
6564 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6565 relinfo.reloc_shdr = NULL;
6566 relinfo.data_shndx = i;
6567 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6568
6569 gold_assert((*pviews)[i].view != NULL);
6570
6571 // We are passed the output section view. Adjust it to cover the
6572 // stub table only.
6573 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6574 gold_assert((stub_table->address() >= (*pviews)[i].address)
6575 && ((stub_table->address() + stub_table->data_size())
6576 <= (*pviews)[i].address + (*pviews)[i].view_size));
6577
6578 off_t offset = stub_table->address() - (*pviews)[i].address;
6579 unsigned char* view = (*pviews)[i].view + offset;
6580 Arm_address address = stub_table->address();
6581 section_size_type view_size = stub_table->data_size();
6582
6583 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6584 view_size);
6585 }
6586
6587 // Apply Cortex A8 workaround if applicable.
6588 if (this->section_has_cortex_a8_workaround(i))
6589 {
6590 unsigned char* view = (*pviews)[i].view;
6591 Arm_address view_address = (*pviews)[i].address;
6592 section_size_type view_size = (*pviews)[i].view_size;
6593 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6594
6595 // Adjust view to cover section.
6596 Output_section* os = this->output_section(i);
6597 gold_assert(os != NULL);
6598 Arm_address section_address =
6599 this->simple_input_section_output_address(i, os);
6600 uint64_t section_size = this->section_size(i);
6601
6602 gold_assert(section_address >= view_address
6603 && ((section_address + section_size)
6604 <= (view_address + view_size)));
6605
6606 unsigned char* section_view = view + (section_address - view_address);
6607
6608 // Apply the Cortex-A8 workaround to the output address range
6609 // corresponding to this input section.
6610 stub_table->apply_cortex_a8_workaround_to_address_range(
6611 arm_target,
6612 section_view,
6613 section_address,
6614 section_size);
6615 }
6616 }
6617 }
6618
6619 // Find the linked text section of an EXIDX section by looking at the first
6620 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6621 // must be linked to its associated code section via the sh_link field of
6622 // its section header. However, some tools are broken and the link is not
6623 // always set. LD just drops such an EXIDX section silently, causing the
6624 // associated code not unwindabled. Here we try a little bit harder to
6625 // discover the linked code section.
6626 //
6627 // PSHDR points to the section header of a relocation section of an EXIDX
6628 // section. If we can find a linked text section, return true and
6629 // store the text section index in the location PSHNDX. Otherwise
6630 // return false.
6631
6632 template<bool big_endian>
6633 bool
6634 Arm_relobj<big_endian>::find_linked_text_section(
6635 const unsigned char* pshdr,
6636 const unsigned char* psyms,
6637 unsigned int* pshndx)
6638 {
6639 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6640
6641 // If there is no relocation, we cannot find the linked text section.
6642 size_t reloc_size;
6643 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6644 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6645 else
6646 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6647 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6648
6649 // Get the relocations.
6650 const unsigned char* prelocs =
6651 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6652
6653 // Find the REL31 relocation for the first word of the first EXIDX entry.
6654 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6655 {
6656 Arm_address r_offset;
6657 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6658 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6659 {
6660 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6661 r_info = reloc.get_r_info();
6662 r_offset = reloc.get_r_offset();
6663 }
6664 else
6665 {
6666 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6667 r_info = reloc.get_r_info();
6668 r_offset = reloc.get_r_offset();
6669 }
6670
6671 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6672 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6673 continue;
6674
6675 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6676 if (r_sym == 0
6677 || r_sym >= this->local_symbol_count()
6678 || r_offset != 0)
6679 continue;
6680
6681 // This is the relocation for the first word of the first EXIDX entry.
6682 // We expect to see a local section symbol.
6683 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6684 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6685 if (sym.get_st_type() == elfcpp::STT_SECTION)
6686 {
6687 bool is_ordinary;
6688 *pshndx =
6689 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6690 gold_assert(is_ordinary);
6691 return true;
6692 }
6693 else
6694 return false;
6695 }
6696
6697 return false;
6698 }
6699
6700 // Make an EXIDX input section object for an EXIDX section whose index is
6701 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6702 // is the section index of the linked text section.
6703
6704 template<bool big_endian>
6705 void
6706 Arm_relobj<big_endian>::make_exidx_input_section(
6707 unsigned int shndx,
6708 const elfcpp::Shdr<32, big_endian>& shdr,
6709 unsigned int text_shndx,
6710 const elfcpp::Shdr<32, big_endian>& text_shdr)
6711 {
6712 // Create an Arm_exidx_input_section object for this EXIDX section.
6713 Arm_exidx_input_section* exidx_input_section =
6714 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6715 shdr.get_sh_addralign(),
6716 text_shdr.get_sh_size());
6717
6718 gold_assert(this->exidx_section_map_[shndx] == NULL);
6719 this->exidx_section_map_[shndx] = exidx_input_section;
6720
6721 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6722 {
6723 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6724 this->section_name(shndx).c_str(), shndx, text_shndx,
6725 this->name().c_str());
6726 exidx_input_section->set_has_errors();
6727 }
6728 else if (this->exidx_section_map_[text_shndx] != NULL)
6729 {
6730 unsigned other_exidx_shndx =
6731 this->exidx_section_map_[text_shndx]->shndx();
6732 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6733 "%s(%u) in %s"),
6734 this->section_name(shndx).c_str(), shndx,
6735 this->section_name(other_exidx_shndx).c_str(),
6736 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6737 text_shndx, this->name().c_str());
6738 exidx_input_section->set_has_errors();
6739 }
6740 else
6741 this->exidx_section_map_[text_shndx] = exidx_input_section;
6742
6743 // Check section flags of text section.
6744 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6745 {
6746 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6747 " in %s"),
6748 this->section_name(shndx).c_str(), shndx,
6749 this->section_name(text_shndx).c_str(), text_shndx,
6750 this->name().c_str());
6751 exidx_input_section->set_has_errors();
6752 }
6753 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6754 // I would like to make this an error but currently ld just ignores
6755 // this.
6756 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6757 "%s(%u) in %s"),
6758 this->section_name(shndx).c_str(), shndx,
6759 this->section_name(text_shndx).c_str(), text_shndx,
6760 this->name().c_str());
6761 }
6762
6763 // Read the symbol information.
6764
6765 template<bool big_endian>
6766 void
6767 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6768 {
6769 // Call parent class to read symbol information.
6770 this->base_read_symbols(sd);
6771
6772 // If this input file is a binary file, it has no processor
6773 // specific flags and attributes section.
6774 Input_file::Format format = this->input_file()->format();
6775 if (format != Input_file::FORMAT_ELF)
6776 {
6777 gold_assert(format == Input_file::FORMAT_BINARY);
6778 this->merge_flags_and_attributes_ = false;
6779 return;
6780 }
6781
6782 // Read processor-specific flags in ELF file header.
6783 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6784 elfcpp::Elf_sizes<32>::ehdr_size,
6785 true, false);
6786 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6787 this->processor_specific_flags_ = ehdr.get_e_flags();
6788
6789 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6790 // sections.
6791 std::vector<unsigned int> deferred_exidx_sections;
6792 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6793 const unsigned char* pshdrs = sd->section_headers->data();
6794 const unsigned char* ps = pshdrs + shdr_size;
6795 bool must_merge_flags_and_attributes = false;
6796 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6797 {
6798 elfcpp::Shdr<32, big_endian> shdr(ps);
6799
6800 // Sometimes an object has no contents except the section name string
6801 // table and an empty symbol table with the undefined symbol. We
6802 // don't want to merge processor-specific flags from such an object.
6803 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6804 {
6805 // Symbol table is not empty.
6806 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6807 elfcpp::Elf_sizes<32>::sym_size;
6808 if (shdr.get_sh_size() > sym_size)
6809 must_merge_flags_and_attributes = true;
6810 }
6811 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6812 // If this is neither an empty symbol table nor a string table,
6813 // be conservative.
6814 must_merge_flags_and_attributes = true;
6815
6816 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6817 {
6818 gold_assert(this->attributes_section_data_ == NULL);
6819 section_offset_type section_offset = shdr.get_sh_offset();
6820 section_size_type section_size =
6821 convert_to_section_size_type(shdr.get_sh_size());
6822 const unsigned char* view =
6823 this->get_view(section_offset, section_size, true, false);
6824 this->attributes_section_data_ =
6825 new Attributes_section_data(view, section_size);
6826 }
6827 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6828 {
6829 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6830 if (text_shndx == elfcpp::SHN_UNDEF)
6831 deferred_exidx_sections.push_back(i);
6832 else
6833 {
6834 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6835 + text_shndx * shdr_size);
6836 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6837 }
6838 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6839 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6840 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6841 this->section_name(i).c_str(), this->name().c_str());
6842 }
6843 }
6844
6845 // This is rare.
6846 if (!must_merge_flags_and_attributes)
6847 {
6848 gold_assert(deferred_exidx_sections.empty());
6849 this->merge_flags_and_attributes_ = false;
6850 return;
6851 }
6852
6853 // Some tools are broken and they do not set the link of EXIDX sections.
6854 // We look at the first relocation to figure out the linked sections.
6855 if (!deferred_exidx_sections.empty())
6856 {
6857 // We need to go over the section headers again to find the mapping
6858 // from sections being relocated to their relocation sections. This is
6859 // a bit inefficient as we could do that in the loop above. However,
6860 // we do not expect any deferred EXIDX sections normally. So we do not
6861 // want to slow down the most common path.
6862 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6863 Reloc_map reloc_map;
6864 ps = pshdrs + shdr_size;
6865 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6866 {
6867 elfcpp::Shdr<32, big_endian> shdr(ps);
6868 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6869 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6870 {
6871 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6872 if (info_shndx >= this->shnum())
6873 gold_error(_("relocation section %u has invalid info %u"),
6874 i, info_shndx);
6875 Reloc_map::value_type value(info_shndx, i);
6876 std::pair<Reloc_map::iterator, bool> result =
6877 reloc_map.insert(value);
6878 if (!result.second)
6879 gold_error(_("section %u has multiple relocation sections "
6880 "%u and %u"),
6881 info_shndx, i, reloc_map[info_shndx]);
6882 }
6883 }
6884
6885 // Read the symbol table section header.
6886 const unsigned int symtab_shndx = this->symtab_shndx();
6887 elfcpp::Shdr<32, big_endian>
6888 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6889 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6890
6891 // Read the local symbols.
6892 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6893 const unsigned int loccount = this->local_symbol_count();
6894 gold_assert(loccount == symtabshdr.get_sh_info());
6895 off_t locsize = loccount * sym_size;
6896 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6897 locsize, true, true);
6898
6899 // Process the deferred EXIDX sections.
6900 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6901 {
6902 unsigned int shndx = deferred_exidx_sections[i];
6903 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6904 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6905 Reloc_map::const_iterator it = reloc_map.find(shndx);
6906 if (it != reloc_map.end())
6907 find_linked_text_section(pshdrs + it->second * shdr_size,
6908 psyms, &text_shndx);
6909 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6910 + text_shndx * shdr_size);
6911 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6912 }
6913 }
6914 }
6915
6916 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6917 // sections for unwinding. These sections are referenced implicitly by
6918 // text sections linked in the section headers. If we ignore these implicit
6919 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6920 // will be garbage-collected incorrectly. Hence we override the same function
6921 // in the base class to handle these implicit references.
6922
6923 template<bool big_endian>
6924 void
6925 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6926 Layout* layout,
6927 Read_relocs_data* rd)
6928 {
6929 // First, call base class method to process relocations in this object.
6930 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6931
6932 // If --gc-sections is not specified, there is nothing more to do.
6933 // This happens when --icf is used but --gc-sections is not.
6934 if (!parameters->options().gc_sections())
6935 return;
6936
6937 unsigned int shnum = this->shnum();
6938 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6939 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6940 shnum * shdr_size,
6941 true, true);
6942
6943 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6944 // to these from the linked text sections.
6945 const unsigned char* ps = pshdrs + shdr_size;
6946 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6947 {
6948 elfcpp::Shdr<32, big_endian> shdr(ps);
6949 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6950 {
6951 // Found an .ARM.exidx section, add it to the set of reachable
6952 // sections from its linked text section.
6953 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6954 symtab->gc()->add_reference(this, text_shndx, this, i);
6955 }
6956 }
6957 }
6958
6959 // Update output local symbol count. Owing to EXIDX entry merging, some local
6960 // symbols will be removed in output. Adjust output local symbol count
6961 // accordingly. We can only changed the static output local symbol count. It
6962 // is too late to change the dynamic symbols.
6963
6964 template<bool big_endian>
6965 void
6966 Arm_relobj<big_endian>::update_output_local_symbol_count()
6967 {
6968 // Caller should check that this needs updating. We want caller checking
6969 // because output_local_symbol_count_needs_update() is most likely inlined.
6970 gold_assert(this->output_local_symbol_count_needs_update_);
6971
6972 gold_assert(this->symtab_shndx() != -1U);
6973 if (this->symtab_shndx() == 0)
6974 {
6975 // This object has no symbols. Weird but legal.
6976 return;
6977 }
6978
6979 // Read the symbol table section header.
6980 const unsigned int symtab_shndx = this->symtab_shndx();
6981 elfcpp::Shdr<32, big_endian>
6982 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6983 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6984
6985 // Read the local symbols.
6986 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6987 const unsigned int loccount = this->local_symbol_count();
6988 gold_assert(loccount == symtabshdr.get_sh_info());
6989 off_t locsize = loccount * sym_size;
6990 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6991 locsize, true, true);
6992
6993 // Loop over the local symbols.
6994
6995 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6996 Output_sections;
6997 const Output_sections& out_sections(this->output_sections());
6998 unsigned int shnum = this->shnum();
6999 unsigned int count = 0;
7000 // Skip the first, dummy, symbol.
7001 psyms += sym_size;
7002 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7003 {
7004 elfcpp::Sym<32, big_endian> sym(psyms);
7005
7006 Symbol_value<32>& lv((*this->local_values())[i]);
7007
7008 // This local symbol was already discarded by do_count_local_symbols.
7009 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7010 continue;
7011
7012 bool is_ordinary;
7013 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7014 &is_ordinary);
7015
7016 if (shndx < shnum)
7017 {
7018 Output_section* os = out_sections[shndx];
7019
7020 // This local symbol no longer has an output section. Discard it.
7021 if (os == NULL)
7022 {
7023 lv.set_no_output_symtab_entry();
7024 continue;
7025 }
7026
7027 // Currently we only discard parts of EXIDX input sections.
7028 // We explicitly check for a merged EXIDX input section to avoid
7029 // calling Output_section_data::output_offset unless necessary.
7030 if ((this->get_output_section_offset(shndx) == invalid_address)
7031 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7032 {
7033 section_offset_type output_offset =
7034 os->output_offset(this, shndx, lv.input_value());
7035 if (output_offset == -1)
7036 {
7037 // This symbol is defined in a part of an EXIDX input section
7038 // that is discarded due to entry merging.
7039 lv.set_no_output_symtab_entry();
7040 continue;
7041 }
7042 }
7043 }
7044
7045 ++count;
7046 }
7047
7048 this->set_output_local_symbol_count(count);
7049 this->output_local_symbol_count_needs_update_ = false;
7050 }
7051
7052 // Arm_dynobj methods.
7053
7054 // Read the symbol information.
7055
7056 template<bool big_endian>
7057 void
7058 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7059 {
7060 // Call parent class to read symbol information.
7061 this->base_read_symbols(sd);
7062
7063 // Read processor-specific flags in ELF file header.
7064 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7065 elfcpp::Elf_sizes<32>::ehdr_size,
7066 true, false);
7067 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7068 this->processor_specific_flags_ = ehdr.get_e_flags();
7069
7070 // Read the attributes section if there is one.
7071 // We read from the end because gas seems to put it near the end of
7072 // the section headers.
7073 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7074 const unsigned char* ps =
7075 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7076 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7077 {
7078 elfcpp::Shdr<32, big_endian> shdr(ps);
7079 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7080 {
7081 section_offset_type section_offset = shdr.get_sh_offset();
7082 section_size_type section_size =
7083 convert_to_section_size_type(shdr.get_sh_size());
7084 const unsigned char* view =
7085 this->get_view(section_offset, section_size, true, false);
7086 this->attributes_section_data_ =
7087 new Attributes_section_data(view, section_size);
7088 break;
7089 }
7090 }
7091 }
7092
7093 // Stub_addend_reader methods.
7094
7095 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7096
7097 template<bool big_endian>
7098 elfcpp::Elf_types<32>::Elf_Swxword
7099 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7100 unsigned int r_type,
7101 const unsigned char* view,
7102 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7103 {
7104 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7105
7106 switch (r_type)
7107 {
7108 case elfcpp::R_ARM_CALL:
7109 case elfcpp::R_ARM_JUMP24:
7110 case elfcpp::R_ARM_PLT32:
7111 {
7112 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7113 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7114 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7115 return Bits<26>::sign_extend32(val << 2);
7116 }
7117
7118 case elfcpp::R_ARM_THM_CALL:
7119 case elfcpp::R_ARM_THM_JUMP24:
7120 case elfcpp::R_ARM_THM_XPC22:
7121 {
7122 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7123 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7124 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7125 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7126 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7127 }
7128
7129 case elfcpp::R_ARM_THM_JUMP19:
7130 {
7131 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7132 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7133 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7134 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7135 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7136 }
7137
7138 default:
7139 gold_unreachable();
7140 }
7141 }
7142
7143 // Arm_output_data_got methods.
7144
7145 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7146 // The first one is initialized to be 1, which is the module index for
7147 // the main executable and the second one 0. A reloc of the type
7148 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7149 // be applied by gold. GSYM is a global symbol.
7150 //
7151 template<bool big_endian>
7152 void
7153 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7154 unsigned int got_type,
7155 Symbol* gsym)
7156 {
7157 if (gsym->has_got_offset(got_type))
7158 return;
7159
7160 // We are doing a static link. Just mark it as belong to module 1,
7161 // the executable.
7162 unsigned int got_offset = this->add_constant(1);
7163 gsym->set_got_offset(got_type, got_offset);
7164 got_offset = this->add_constant(0);
7165 this->static_relocs_.push_back(Static_reloc(got_offset,
7166 elfcpp::R_ARM_TLS_DTPOFF32,
7167 gsym));
7168 }
7169
7170 // Same as the above but for a local symbol.
7171
7172 template<bool big_endian>
7173 void
7174 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7175 unsigned int got_type,
7176 Sized_relobj_file<32, big_endian>* object,
7177 unsigned int index)
7178 {
7179 if (object->local_has_got_offset(index, got_type))
7180 return;
7181
7182 // We are doing a static link. Just mark it as belong to module 1,
7183 // the executable.
7184 unsigned int got_offset = this->add_constant(1);
7185 object->set_local_got_offset(index, got_type, got_offset);
7186 got_offset = this->add_constant(0);
7187 this->static_relocs_.push_back(Static_reloc(got_offset,
7188 elfcpp::R_ARM_TLS_DTPOFF32,
7189 object, index));
7190 }
7191
7192 template<bool big_endian>
7193 void
7194 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7195 {
7196 // Call parent to write out GOT.
7197 Output_data_got<32, big_endian>::do_write(of);
7198
7199 // We are done if there is no fix up.
7200 if (this->static_relocs_.empty())
7201 return;
7202
7203 gold_assert(parameters->doing_static_link());
7204
7205 const off_t offset = this->offset();
7206 const section_size_type oview_size =
7207 convert_to_section_size_type(this->data_size());
7208 unsigned char* const oview = of->get_output_view(offset, oview_size);
7209
7210 Output_segment* tls_segment = this->layout_->tls_segment();
7211 gold_assert(tls_segment != NULL);
7212
7213 // The thread pointer $tp points to the TCB, which is followed by the
7214 // TLS. So we need to adjust $tp relative addressing by this amount.
7215 Arm_address aligned_tcb_size =
7216 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7217
7218 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7219 {
7220 Static_reloc& reloc(this->static_relocs_[i]);
7221
7222 Arm_address value;
7223 if (!reloc.symbol_is_global())
7224 {
7225 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7226 const Symbol_value<32>* psymval =
7227 reloc.relobj()->local_symbol(reloc.index());
7228
7229 // We are doing static linking. Issue an error and skip this
7230 // relocation if the symbol is undefined or in a discarded_section.
7231 bool is_ordinary;
7232 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7233 if ((shndx == elfcpp::SHN_UNDEF)
7234 || (is_ordinary
7235 && shndx != elfcpp::SHN_UNDEF
7236 && !object->is_section_included(shndx)
7237 && !this->symbol_table_->is_section_folded(object, shndx)))
7238 {
7239 gold_error(_("undefined or discarded local symbol %u from "
7240 " object %s in GOT"),
7241 reloc.index(), reloc.relobj()->name().c_str());
7242 continue;
7243 }
7244
7245 value = psymval->value(object, 0);
7246 }
7247 else
7248 {
7249 const Symbol* gsym = reloc.symbol();
7250 gold_assert(gsym != NULL);
7251 if (gsym->is_forwarder())
7252 gsym = this->symbol_table_->resolve_forwards(gsym);
7253
7254 // We are doing static linking. Issue an error and skip this
7255 // relocation if the symbol is undefined or in a discarded_section
7256 // unless it is a weakly_undefined symbol.
7257 if ((gsym->is_defined_in_discarded_section()
7258 || gsym->is_undefined())
7259 && !gsym->is_weak_undefined())
7260 {
7261 gold_error(_("undefined or discarded symbol %s in GOT"),
7262 gsym->name());
7263 continue;
7264 }
7265
7266 if (!gsym->is_weak_undefined())
7267 {
7268 const Sized_symbol<32>* sym =
7269 static_cast<const Sized_symbol<32>*>(gsym);
7270 value = sym->value();
7271 }
7272 else
7273 value = 0;
7274 }
7275
7276 unsigned got_offset = reloc.got_offset();
7277 gold_assert(got_offset < oview_size);
7278
7279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7280 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7281 Valtype x;
7282 switch (reloc.r_type())
7283 {
7284 case elfcpp::R_ARM_TLS_DTPOFF32:
7285 x = value;
7286 break;
7287 case elfcpp::R_ARM_TLS_TPOFF32:
7288 x = value + aligned_tcb_size;
7289 break;
7290 default:
7291 gold_unreachable();
7292 }
7293 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7294 }
7295
7296 of->write_output_view(offset, oview_size, oview);
7297 }
7298
7299 // A class to handle the PLT data.
7300 // This is an abstract base class that handles most of the linker details
7301 // but does not know the actual contents of PLT entries. The derived
7302 // classes below fill in those details.
7303
7304 template<bool big_endian>
7305 class Output_data_plt_arm : public Output_section_data
7306 {
7307 public:
7308 // Unlike aarch64, which records symbol value in "addend" field of relocations
7309 // and could be done at the same time an IRelative reloc is created for the
7310 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7311 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7312 // to keep necessary symbol information for later use in do_write. We usually
7313 // have only a very limited number of ifuncs, so the extra data required here
7314 // is also limited.
7315
7316 struct IRelative_data
7317 {
7318 IRelative_data(Sized_symbol<32>* sized_symbol)
7319 : symbol_is_global_(true)
7320 {
7321 u_.global = sized_symbol;
7322 }
7323
7324 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7325 unsigned int index)
7326 : symbol_is_global_(false)
7327 {
7328 u_.local.relobj = relobj;
7329 u_.local.index = index;
7330 }
7331
7332 union
7333 {
7334 Sized_symbol<32>* global;
7335
7336 struct
7337 {
7338 Sized_relobj_file<32, big_endian>* relobj;
7339 unsigned int index;
7340 } local;
7341 } u_;
7342
7343 bool symbol_is_global_;
7344 };
7345
7346 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7347 Reloc_section;
7348
7349 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7350 Arm_output_data_got<big_endian>* got,
7351 Output_data_space* got_plt,
7352 Output_data_space* got_irelative);
7353
7354 // Add an entry to the PLT.
7355 void
7356 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7357
7358 // Add the relocation for a plt entry.
7359 void
7360 add_relocation(Symbol_table* symtab, Layout* layout,
7361 Symbol* gsym, unsigned int got_offset);
7362
7363 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7364 unsigned int
7365 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7366 Sized_relobj_file<32, big_endian>* relobj,
7367 unsigned int local_sym_index);
7368
7369 // Return the .rel.plt section data.
7370 const Reloc_section*
7371 rel_plt() const
7372 { return this->rel_; }
7373
7374 // Return the PLT relocation container for IRELATIVE.
7375 Reloc_section*
7376 rel_irelative(Symbol_table*, Layout*);
7377
7378 // Return the number of PLT entries.
7379 unsigned int
7380 entry_count() const
7381 { return this->count_ + this->irelative_count_; }
7382
7383 // Return the offset of the first non-reserved PLT entry.
7384 unsigned int
7385 first_plt_entry_offset() const
7386 { return this->do_first_plt_entry_offset(); }
7387
7388 // Return the size of a PLT entry.
7389 unsigned int
7390 get_plt_entry_size() const
7391 { return this->do_get_plt_entry_size(); }
7392
7393 // Return the PLT address for globals.
7394 uint32_t
7395 address_for_global(const Symbol*) const;
7396
7397 // Return the PLT address for locals.
7398 uint32_t
7399 address_for_local(const Relobj*, unsigned int symndx) const;
7400
7401 protected:
7402 // Fill in the first PLT entry.
7403 void
7404 fill_first_plt_entry(unsigned char* pov,
7405 Arm_address got_address,
7406 Arm_address plt_address)
7407 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7408
7409 void
7410 fill_plt_entry(unsigned char* pov,
7411 Arm_address got_address,
7412 Arm_address plt_address,
7413 unsigned int got_offset,
7414 unsigned int plt_offset)
7415 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7416
7417 virtual unsigned int
7418 do_first_plt_entry_offset() const = 0;
7419
7420 virtual unsigned int
7421 do_get_plt_entry_size() const = 0;
7422
7423 virtual void
7424 do_fill_first_plt_entry(unsigned char* pov,
7425 Arm_address got_address,
7426 Arm_address plt_address) = 0;
7427
7428 virtual void
7429 do_fill_plt_entry(unsigned char* pov,
7430 Arm_address got_address,
7431 Arm_address plt_address,
7432 unsigned int got_offset,
7433 unsigned int plt_offset) = 0;
7434
7435 void
7436 do_adjust_output_section(Output_section* os);
7437
7438 // Write to a map file.
7439 void
7440 do_print_to_mapfile(Mapfile* mapfile) const
7441 { mapfile->print_output_data(this, _("** PLT")); }
7442
7443 private:
7444 // Set the final size.
7445 void
7446 set_final_data_size()
7447 {
7448 this->set_data_size(this->first_plt_entry_offset()
7449 + ((this->count_ + this->irelative_count_)
7450 * this->get_plt_entry_size()));
7451 }
7452
7453 // Write out the PLT data.
7454 void
7455 do_write(Output_file*);
7456
7457 // Record irelative symbol data.
7458 void insert_irelative_data(const IRelative_data& idata)
7459 { irelative_data_vec_.push_back(idata); }
7460
7461 // The reloc section.
7462 Reloc_section* rel_;
7463 // The IRELATIVE relocs, if necessary. These must follow the
7464 // regular PLT relocations.
7465 Reloc_section* irelative_rel_;
7466 // The .got section.
7467 Arm_output_data_got<big_endian>* got_;
7468 // The .got.plt section.
7469 Output_data_space* got_plt_;
7470 // The part of the .got.plt section used for IRELATIVE relocs.
7471 Output_data_space* got_irelative_;
7472 // The number of PLT entries.
7473 unsigned int count_;
7474 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7475 // follow the regular PLT entries.
7476 unsigned int irelative_count_;
7477 // Vector for irelative data.
7478 typedef std::vector<IRelative_data> IRelative_data_vec;
7479 IRelative_data_vec irelative_data_vec_;
7480 };
7481
7482 // Create the PLT section. The ordinary .got section is an argument,
7483 // since we need to refer to the start. We also create our own .got
7484 // section just for PLT entries.
7485
7486 template<bool big_endian>
7487 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7488 Layout* layout, uint64_t addralign,
7489 Arm_output_data_got<big_endian>* got,
7490 Output_data_space* got_plt,
7491 Output_data_space* got_irelative)
7492 : Output_section_data(addralign), irelative_rel_(NULL),
7493 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7494 count_(0), irelative_count_(0)
7495 {
7496 this->rel_ = new Reloc_section(false);
7497 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7498 elfcpp::SHF_ALLOC, this->rel_,
7499 ORDER_DYNAMIC_PLT_RELOCS, false);
7500 }
7501
7502 template<bool big_endian>
7503 void
7504 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7505 {
7506 os->set_entsize(0);
7507 }
7508
7509 // Add an entry to the PLT.
7510
7511 template<bool big_endian>
7512 void
7513 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7514 Layout* layout,
7515 Symbol* gsym)
7516 {
7517 gold_assert(!gsym->has_plt_offset());
7518
7519 unsigned int* entry_count;
7520 Output_section_data_build* got;
7521
7522 // We have 2 different types of plt entry here, normal and ifunc.
7523
7524 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7525 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7526
7527 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7528 // second 12, third 24 ... etc.
7529
7530 // IFunc plt entries *always* come after *normal* plt entries.
7531
7532 // Notice, when computing the plt address of a certain symbol, "plt_address +
7533 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7534 // target->plt_address_for_local() instead.
7535
7536 int begin_offset = 0;
7537 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7538 && gsym->can_use_relative_reloc(false))
7539 {
7540 entry_count = &this->irelative_count_;
7541 got = this->got_irelative_;
7542 // For irelative plt entries, offset is relative to the end of normal plt
7543 // entries, so it starts from 0.
7544 begin_offset = 0;
7545 // Record symbol information.
7546 this->insert_irelative_data(
7547 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7548 }
7549 else
7550 {
7551 entry_count = &this->count_;
7552 got = this->got_plt_;
7553 // Note that for normal plt entries, when setting the PLT offset we skip
7554 // the initial reserved PLT entry.
7555 begin_offset = this->first_plt_entry_offset();
7556 }
7557
7558 gsym->set_plt_offset(begin_offset
7559 + (*entry_count) * this->get_plt_entry_size());
7560
7561 ++(*entry_count);
7562
7563 section_offset_type got_offset = got->current_data_size();
7564
7565 // Every PLT entry needs a GOT entry which points back to the PLT
7566 // entry (this will be changed by the dynamic linker, normally
7567 // lazily when the function is called).
7568 got->set_current_data_size(got_offset + 4);
7569
7570 // Every PLT entry needs a reloc.
7571 this->add_relocation(symtab, layout, gsym, got_offset);
7572
7573 // Note that we don't need to save the symbol. The contents of the
7574 // PLT are independent of which symbols are used. The symbols only
7575 // appear in the relocations.
7576 }
7577
7578 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7579 // the PLT offset.
7580
7581 template<bool big_endian>
7582 unsigned int
7583 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7584 Symbol_table* symtab,
7585 Layout* layout,
7586 Sized_relobj_file<32, big_endian>* relobj,
7587 unsigned int local_sym_index)
7588 {
7589 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7590
7591 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7592 // no longer correct. Use target->plt_address_for_local() instead.
7593 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7594 ++this->irelative_count_;
7595
7596 section_offset_type got_offset = this->got_irelative_->current_data_size();
7597
7598 // Every PLT entry needs a GOT entry which points back to the PLT
7599 // entry.
7600 this->got_irelative_->set_current_data_size(got_offset + 4);
7601
7602
7603 // Every PLT entry needs a reloc.
7604 Reloc_section* rel = this->rel_irelative(symtab, layout);
7605 rel->add_symbolless_local_addend(relobj, local_sym_index,
7606 elfcpp::R_ARM_IRELATIVE,
7607 this->got_irelative_, got_offset);
7608 return plt_offset;
7609 }
7610
7611
7612 // Add the relocation for a PLT entry.
7613
7614 template<bool big_endian>
7615 void
7616 Output_data_plt_arm<big_endian>::add_relocation(
7617 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7618 {
7619 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7620 && gsym->can_use_relative_reloc(false))
7621 {
7622 Reloc_section* rel = this->rel_irelative(symtab, layout);
7623 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7624 this->got_irelative_, got_offset);
7625 }
7626 else
7627 {
7628 gsym->set_needs_dynsym_entry();
7629 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7630 got_offset);
7631 }
7632 }
7633
7634
7635 // Create the irelative relocation data.
7636
7637 template<bool big_endian>
7638 typename Output_data_plt_arm<big_endian>::Reloc_section*
7639 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7640 Layout* layout)
7641 {
7642 if (this->irelative_rel_ == NULL)
7643 {
7644 // Since irelative relocations goes into 'rel.dyn', we delegate the
7645 // creation of irelative_rel_ to where rel_dyn section gets created.
7646 Target_arm<big_endian>* arm_target =
7647 Target_arm<big_endian>::default_target();
7648 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7649
7650 // Make sure we have a place for the TLSDESC relocations, in
7651 // case we see any later on.
7652 // this->rel_tlsdesc(layout);
7653 if (parameters->doing_static_link())
7654 {
7655 // A statically linked executable will only have a .rel.plt section to
7656 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7657 // will use these symbols to locate the IRELATIVE relocs at program
7658 // startup time.
7659 symtab->define_in_output_data("__rel_iplt_start", NULL,
7660 Symbol_table::PREDEFINED,
7661 this->irelative_rel_, 0, 0,
7662 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7663 elfcpp::STV_HIDDEN, 0, false, true);
7664 symtab->define_in_output_data("__rel_iplt_end", NULL,
7665 Symbol_table::PREDEFINED,
7666 this->irelative_rel_, 0, 0,
7667 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7668 elfcpp::STV_HIDDEN, 0, true, true);
7669 }
7670 }
7671 return this->irelative_rel_;
7672 }
7673
7674
7675 // Return the PLT address for a global symbol.
7676
7677 template<bool big_endian>
7678 uint32_t
7679 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7680 {
7681 uint64_t begin_offset = 0;
7682 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7683 && gsym->can_use_relative_reloc(false))
7684 {
7685 begin_offset = (this->first_plt_entry_offset() +
7686 this->count_ * this->get_plt_entry_size());
7687 }
7688 return this->address() + begin_offset + gsym->plt_offset();
7689 }
7690
7691
7692 // Return the PLT address for a local symbol. These are always
7693 // IRELATIVE relocs.
7694
7695 template<bool big_endian>
7696 uint32_t
7697 Output_data_plt_arm<big_endian>::address_for_local(
7698 const Relobj* object,
7699 unsigned int r_sym) const
7700 {
7701 return (this->address()
7702 + this->first_plt_entry_offset()
7703 + this->count_ * this->get_plt_entry_size()
7704 + object->local_plt_offset(r_sym));
7705 }
7706
7707
7708 template<bool big_endian>
7709 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7710 {
7711 public:
7712 Output_data_plt_arm_standard(Layout* layout,
7713 Arm_output_data_got<big_endian>* got,
7714 Output_data_space* got_plt,
7715 Output_data_space* got_irelative)
7716 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7717 { }
7718
7719 protected:
7720 // Return the offset of the first non-reserved PLT entry.
7721 virtual unsigned int
7722 do_first_plt_entry_offset() const
7723 { return sizeof(first_plt_entry); }
7724
7725 // Return the size of a PLT entry.
7726 virtual unsigned int
7727 do_get_plt_entry_size() const
7728 { return sizeof(plt_entry); }
7729
7730 virtual void
7731 do_fill_first_plt_entry(unsigned char* pov,
7732 Arm_address got_address,
7733 Arm_address plt_address);
7734
7735 virtual void
7736 do_fill_plt_entry(unsigned char* pov,
7737 Arm_address got_address,
7738 Arm_address plt_address,
7739 unsigned int got_offset,
7740 unsigned int plt_offset);
7741
7742 private:
7743 // Template for the first PLT entry.
7744 static const uint32_t first_plt_entry[5];
7745
7746 // Template for subsequent PLT entries.
7747 static const uint32_t plt_entry[3];
7748 };
7749
7750 // ARM PLTs.
7751 // FIXME: This is not very flexible. Right now this has only been tested
7752 // on armv5te. If we are to support additional architecture features like
7753 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7754
7755 // The first entry in the PLT.
7756 template<bool big_endian>
7757 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7758 {
7759 0xe52de004, // str lr, [sp, #-4]!
7760 0xe59fe004, // ldr lr, [pc, #4]
7761 0xe08fe00e, // add lr, pc, lr
7762 0xe5bef008, // ldr pc, [lr, #8]!
7763 0x00000000, // &GOT[0] - .
7764 };
7765
7766 template<bool big_endian>
7767 void
7768 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7769 unsigned char* pov,
7770 Arm_address got_address,
7771 Arm_address plt_address)
7772 {
7773 // Write first PLT entry. All but the last word are constants.
7774 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7775 / sizeof(plt_entry[0]));
7776 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7777 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7778 // Last word in first PLT entry is &GOT[0] - .
7779 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7780 got_address - (plt_address + 16));
7781 }
7782
7783 // Subsequent entries in the PLT.
7784
7785 template<bool big_endian>
7786 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7787 {
7788 0xe28fc600, // add ip, pc, #0xNN00000
7789 0xe28cca00, // add ip, ip, #0xNN000
7790 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7791 };
7792
7793 template<bool big_endian>
7794 void
7795 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7796 unsigned char* pov,
7797 Arm_address got_address,
7798 Arm_address plt_address,
7799 unsigned int got_offset,
7800 unsigned int plt_offset)
7801 {
7802 int32_t offset = ((got_address + got_offset)
7803 - (plt_address + plt_offset + 8));
7804
7805 gold_assert(offset >= 0 && offset < 0x0fffffff);
7806 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7807 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7808 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7809 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7810 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7811 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7812 }
7813
7814 // Write out the PLT. This uses the hand-coded instructions above,
7815 // and adjusts them as needed. This is all specified by the arm ELF
7816 // Processor Supplement.
7817
7818 template<bool big_endian>
7819 void
7820 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7821 {
7822 const off_t offset = this->offset();
7823 const section_size_type oview_size =
7824 convert_to_section_size_type(this->data_size());
7825 unsigned char* const oview = of->get_output_view(offset, oview_size);
7826
7827 const off_t got_file_offset = this->got_plt_->offset();
7828 gold_assert(got_file_offset + this->got_plt_->data_size()
7829 == this->got_irelative_->offset());
7830 const section_size_type got_size =
7831 convert_to_section_size_type(this->got_plt_->data_size()
7832 + this->got_irelative_->data_size());
7833 unsigned char* const got_view = of->get_output_view(got_file_offset,
7834 got_size);
7835 unsigned char* pov = oview;
7836
7837 Arm_address plt_address = this->address();
7838 Arm_address got_address = this->got_plt_->address();
7839
7840 // Write first PLT entry.
7841 this->fill_first_plt_entry(pov, got_address, plt_address);
7842 pov += this->first_plt_entry_offset();
7843
7844 unsigned char* got_pov = got_view;
7845
7846 memset(got_pov, 0, 12);
7847 got_pov += 12;
7848
7849 unsigned int plt_offset = this->first_plt_entry_offset();
7850 unsigned int got_offset = 12;
7851 const unsigned int count = this->count_ + this->irelative_count_;
7852 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7853 for (unsigned int i = 0;
7854 i < count;
7855 ++i,
7856 pov += this->get_plt_entry_size(),
7857 got_pov += 4,
7858 plt_offset += this->get_plt_entry_size(),
7859 got_offset += 4)
7860 {
7861 // Set and adjust the PLT entry itself.
7862 this->fill_plt_entry(pov, got_address, plt_address,
7863 got_offset, plt_offset);
7864
7865 Arm_address value;
7866 if (i < this->count_)
7867 {
7868 // For non-irelative got entries, the value is the beginning of plt.
7869 value = plt_address;
7870 }
7871 else
7872 {
7873 // For irelative got entries, the value is the (global/local) symbol
7874 // address.
7875 const IRelative_data& idata =
7876 this->irelative_data_vec_[i - this->count_];
7877 if (idata.symbol_is_global_)
7878 {
7879 // Set the entry in the GOT for irelative symbols. The content is
7880 // the address of the ifunc, not the address of plt start.
7881 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7882 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7883 value = sized_symbol->value();
7884 }
7885 else
7886 {
7887 value = idata.u_.local.relobj->local_symbol_value(
7888 idata.u_.local.index, 0);
7889 }
7890 }
7891 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7892 }
7893
7894 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7895 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7896
7897 of->write_output_view(offset, oview_size, oview);
7898 of->write_output_view(got_file_offset, got_size, got_view);
7899 }
7900
7901
7902 // Create a PLT entry for a global symbol.
7903
7904 template<bool big_endian>
7905 void
7906 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7907 Symbol* gsym)
7908 {
7909 if (gsym->has_plt_offset())
7910 return;
7911
7912 if (this->plt_ == NULL)
7913 this->make_plt_section(symtab, layout);
7914
7915 this->plt_->add_entry(symtab, layout, gsym);
7916 }
7917
7918
7919 // Create the PLT section.
7920 template<bool big_endian>
7921 void
7922 Target_arm<big_endian>::make_plt_section(
7923 Symbol_table* symtab, Layout* layout)
7924 {
7925 if (this->plt_ == NULL)
7926 {
7927 // Create the GOT section first.
7928 this->got_section(symtab, layout);
7929
7930 // GOT for irelatives is create along with got.plt.
7931 gold_assert(this->got_ != NULL
7932 && this->got_plt_ != NULL
7933 && this->got_irelative_ != NULL);
7934 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7935 this->got_irelative_);
7936
7937 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7938 (elfcpp::SHF_ALLOC
7939 | elfcpp::SHF_EXECINSTR),
7940 this->plt_, ORDER_PLT, false);
7941 symtab->define_in_output_data("$a", NULL,
7942 Symbol_table::PREDEFINED,
7943 this->plt_,
7944 0, 0, elfcpp::STT_NOTYPE,
7945 elfcpp::STB_LOCAL,
7946 elfcpp::STV_DEFAULT, 0,
7947 false, false);
7948 }
7949 }
7950
7951
7952 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7953
7954 template<bool big_endian>
7955 void
7956 Target_arm<big_endian>::make_local_ifunc_plt_entry(
7957 Symbol_table* symtab, Layout* layout,
7958 Sized_relobj_file<32, big_endian>* relobj,
7959 unsigned int local_sym_index)
7960 {
7961 if (relobj->local_has_plt_offset(local_sym_index))
7962 return;
7963 if (this->plt_ == NULL)
7964 this->make_plt_section(symtab, layout);
7965 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7966 relobj,
7967 local_sym_index);
7968 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7969 }
7970
7971
7972 // Return the number of entries in the PLT.
7973
7974 template<bool big_endian>
7975 unsigned int
7976 Target_arm<big_endian>::plt_entry_count() const
7977 {
7978 if (this->plt_ == NULL)
7979 return 0;
7980 return this->plt_->entry_count();
7981 }
7982
7983 // Return the offset of the first non-reserved PLT entry.
7984
7985 template<bool big_endian>
7986 unsigned int
7987 Target_arm<big_endian>::first_plt_entry_offset() const
7988 {
7989 return this->plt_->first_plt_entry_offset();
7990 }
7991
7992 // Return the size of each PLT entry.
7993
7994 template<bool big_endian>
7995 unsigned int
7996 Target_arm<big_endian>::plt_entry_size() const
7997 {
7998 return this->plt_->get_plt_entry_size();
7999 }
8000
8001 // Get the section to use for TLS_DESC relocations.
8002
8003 template<bool big_endian>
8004 typename Target_arm<big_endian>::Reloc_section*
8005 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8006 {
8007 return this->plt_section()->rel_tls_desc(layout);
8008 }
8009
8010 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8011
8012 template<bool big_endian>
8013 void
8014 Target_arm<big_endian>::define_tls_base_symbol(
8015 Symbol_table* symtab,
8016 Layout* layout)
8017 {
8018 if (this->tls_base_symbol_defined_)
8019 return;
8020
8021 Output_segment* tls_segment = layout->tls_segment();
8022 if (tls_segment != NULL)
8023 {
8024 bool is_exec = parameters->options().output_is_executable();
8025 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8026 Symbol_table::PREDEFINED,
8027 tls_segment, 0, 0,
8028 elfcpp::STT_TLS,
8029 elfcpp::STB_LOCAL,
8030 elfcpp::STV_HIDDEN, 0,
8031 (is_exec
8032 ? Symbol::SEGMENT_END
8033 : Symbol::SEGMENT_START),
8034 true);
8035 }
8036 this->tls_base_symbol_defined_ = true;
8037 }
8038
8039 // Create a GOT entry for the TLS module index.
8040
8041 template<bool big_endian>
8042 unsigned int
8043 Target_arm<big_endian>::got_mod_index_entry(
8044 Symbol_table* symtab,
8045 Layout* layout,
8046 Sized_relobj_file<32, big_endian>* object)
8047 {
8048 if (this->got_mod_index_offset_ == -1U)
8049 {
8050 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8051 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8052 unsigned int got_offset;
8053 if (!parameters->doing_static_link())
8054 {
8055 got_offset = got->add_constant(0);
8056 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8057 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8058 got_offset);
8059 }
8060 else
8061 {
8062 // We are doing a static link. Just mark it as belong to module 1,
8063 // the executable.
8064 got_offset = got->add_constant(1);
8065 }
8066
8067 got->add_constant(0);
8068 this->got_mod_index_offset_ = got_offset;
8069 }
8070 return this->got_mod_index_offset_;
8071 }
8072
8073 // Optimize the TLS relocation type based on what we know about the
8074 // symbol. IS_FINAL is true if the final address of this symbol is
8075 // known at link time.
8076
8077 template<bool big_endian>
8078 tls::Tls_optimization
8079 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8080 {
8081 // FIXME: Currently we do not do any TLS optimization.
8082 return tls::TLSOPT_NONE;
8083 }
8084
8085 // Get the Reference_flags for a particular relocation.
8086
8087 template<bool big_endian>
8088 int
8089 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8090 {
8091 switch (r_type)
8092 {
8093 case elfcpp::R_ARM_NONE:
8094 case elfcpp::R_ARM_V4BX:
8095 case elfcpp::R_ARM_GNU_VTENTRY:
8096 case elfcpp::R_ARM_GNU_VTINHERIT:
8097 // No symbol reference.
8098 return 0;
8099
8100 case elfcpp::R_ARM_ABS32:
8101 case elfcpp::R_ARM_ABS16:
8102 case elfcpp::R_ARM_ABS12:
8103 case elfcpp::R_ARM_THM_ABS5:
8104 case elfcpp::R_ARM_ABS8:
8105 case elfcpp::R_ARM_BASE_ABS:
8106 case elfcpp::R_ARM_MOVW_ABS_NC:
8107 case elfcpp::R_ARM_MOVT_ABS:
8108 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8109 case elfcpp::R_ARM_THM_MOVT_ABS:
8110 case elfcpp::R_ARM_ABS32_NOI:
8111 return Symbol::ABSOLUTE_REF;
8112
8113 case elfcpp::R_ARM_REL32:
8114 case elfcpp::R_ARM_LDR_PC_G0:
8115 case elfcpp::R_ARM_SBREL32:
8116 case elfcpp::R_ARM_THM_PC8:
8117 case elfcpp::R_ARM_BASE_PREL:
8118 case elfcpp::R_ARM_MOVW_PREL_NC:
8119 case elfcpp::R_ARM_MOVT_PREL:
8120 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8121 case elfcpp::R_ARM_THM_MOVT_PREL:
8122 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8123 case elfcpp::R_ARM_THM_PC12:
8124 case elfcpp::R_ARM_REL32_NOI:
8125 case elfcpp::R_ARM_ALU_PC_G0_NC:
8126 case elfcpp::R_ARM_ALU_PC_G0:
8127 case elfcpp::R_ARM_ALU_PC_G1_NC:
8128 case elfcpp::R_ARM_ALU_PC_G1:
8129 case elfcpp::R_ARM_ALU_PC_G2:
8130 case elfcpp::R_ARM_LDR_PC_G1:
8131 case elfcpp::R_ARM_LDR_PC_G2:
8132 case elfcpp::R_ARM_LDRS_PC_G0:
8133 case elfcpp::R_ARM_LDRS_PC_G1:
8134 case elfcpp::R_ARM_LDRS_PC_G2:
8135 case elfcpp::R_ARM_LDC_PC_G0:
8136 case elfcpp::R_ARM_LDC_PC_G1:
8137 case elfcpp::R_ARM_LDC_PC_G2:
8138 case elfcpp::R_ARM_ALU_SB_G0_NC:
8139 case elfcpp::R_ARM_ALU_SB_G0:
8140 case elfcpp::R_ARM_ALU_SB_G1_NC:
8141 case elfcpp::R_ARM_ALU_SB_G1:
8142 case elfcpp::R_ARM_ALU_SB_G2:
8143 case elfcpp::R_ARM_LDR_SB_G0:
8144 case elfcpp::R_ARM_LDR_SB_G1:
8145 case elfcpp::R_ARM_LDR_SB_G2:
8146 case elfcpp::R_ARM_LDRS_SB_G0:
8147 case elfcpp::R_ARM_LDRS_SB_G1:
8148 case elfcpp::R_ARM_LDRS_SB_G2:
8149 case elfcpp::R_ARM_LDC_SB_G0:
8150 case elfcpp::R_ARM_LDC_SB_G1:
8151 case elfcpp::R_ARM_LDC_SB_G2:
8152 case elfcpp::R_ARM_MOVW_BREL_NC:
8153 case elfcpp::R_ARM_MOVT_BREL:
8154 case elfcpp::R_ARM_MOVW_BREL:
8155 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8156 case elfcpp::R_ARM_THM_MOVT_BREL:
8157 case elfcpp::R_ARM_THM_MOVW_BREL:
8158 case elfcpp::R_ARM_GOTOFF32:
8159 case elfcpp::R_ARM_GOTOFF12:
8160 case elfcpp::R_ARM_SBREL31:
8161 return Symbol::RELATIVE_REF;
8162
8163 case elfcpp::R_ARM_PLT32:
8164 case elfcpp::R_ARM_CALL:
8165 case elfcpp::R_ARM_JUMP24:
8166 case elfcpp::R_ARM_THM_CALL:
8167 case elfcpp::R_ARM_THM_JUMP24:
8168 case elfcpp::R_ARM_THM_JUMP19:
8169 case elfcpp::R_ARM_THM_JUMP6:
8170 case elfcpp::R_ARM_THM_JUMP11:
8171 case elfcpp::R_ARM_THM_JUMP8:
8172 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8173 // in unwind tables. It may point to functions via PLTs.
8174 // So we treat it like call/jump relocations above.
8175 case elfcpp::R_ARM_PREL31:
8176 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8177
8178 case elfcpp::R_ARM_GOT_BREL:
8179 case elfcpp::R_ARM_GOT_ABS:
8180 case elfcpp::R_ARM_GOT_PREL:
8181 // Absolute in GOT.
8182 return Symbol::ABSOLUTE_REF;
8183
8184 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8185 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8186 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8187 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8188 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8189 return Symbol::TLS_REF;
8190
8191 case elfcpp::R_ARM_TARGET1:
8192 case elfcpp::R_ARM_TARGET2:
8193 case elfcpp::R_ARM_COPY:
8194 case elfcpp::R_ARM_GLOB_DAT:
8195 case elfcpp::R_ARM_JUMP_SLOT:
8196 case elfcpp::R_ARM_RELATIVE:
8197 case elfcpp::R_ARM_PC24:
8198 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8199 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8200 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8201 default:
8202 // Not expected. We will give an error later.
8203 return 0;
8204 }
8205 }
8206
8207 // Report an unsupported relocation against a local symbol.
8208
8209 template<bool big_endian>
8210 void
8211 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8212 Sized_relobj_file<32, big_endian>* object,
8213 unsigned int r_type)
8214 {
8215 gold_error(_("%s: unsupported reloc %u against local symbol"),
8216 object->name().c_str(), r_type);
8217 }
8218
8219 // We are about to emit a dynamic relocation of type R_TYPE. If the
8220 // dynamic linker does not support it, issue an error. The GNU linker
8221 // only issues a non-PIC error for an allocated read-only section.
8222 // Here we know the section is allocated, but we don't know that it is
8223 // read-only. But we check for all the relocation types which the
8224 // glibc dynamic linker supports, so it seems appropriate to issue an
8225 // error even if the section is not read-only.
8226
8227 template<bool big_endian>
8228 void
8229 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8230 unsigned int r_type)
8231 {
8232 switch (r_type)
8233 {
8234 // These are the relocation types supported by glibc for ARM.
8235 case elfcpp::R_ARM_RELATIVE:
8236 case elfcpp::R_ARM_COPY:
8237 case elfcpp::R_ARM_GLOB_DAT:
8238 case elfcpp::R_ARM_JUMP_SLOT:
8239 case elfcpp::R_ARM_ABS32:
8240 case elfcpp::R_ARM_ABS32_NOI:
8241 case elfcpp::R_ARM_IRELATIVE:
8242 case elfcpp::R_ARM_PC24:
8243 // FIXME: The following 3 types are not supported by Android's dynamic
8244 // linker.
8245 case elfcpp::R_ARM_TLS_DTPMOD32:
8246 case elfcpp::R_ARM_TLS_DTPOFF32:
8247 case elfcpp::R_ARM_TLS_TPOFF32:
8248 return;
8249
8250 default:
8251 {
8252 // This prevents us from issuing more than one error per reloc
8253 // section. But we can still wind up issuing more than one
8254 // error per object file.
8255 if (this->issued_non_pic_error_)
8256 return;
8257 const Arm_reloc_property* reloc_property =
8258 arm_reloc_property_table->get_reloc_property(r_type);
8259 gold_assert(reloc_property != NULL);
8260 object->error(_("requires unsupported dynamic reloc %s; "
8261 "recompile with -fPIC"),
8262 reloc_property->name().c_str());
8263 this->issued_non_pic_error_ = true;
8264 return;
8265 }
8266
8267 case elfcpp::R_ARM_NONE:
8268 gold_unreachable();
8269 }
8270 }
8271
8272
8273 // Return whether we need to make a PLT entry for a relocation of the
8274 // given type against a STT_GNU_IFUNC symbol.
8275
8276 template<bool big_endian>
8277 bool
8278 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8279 Sized_relobj_file<32, big_endian>* object,
8280 unsigned int r_type)
8281 {
8282 int flags = Scan::get_reference_flags(r_type);
8283 if (flags & Symbol::TLS_REF)
8284 {
8285 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8286 object->name().c_str(), r_type);
8287 return false;
8288 }
8289 return flags != 0;
8290 }
8291
8292
8293 // Scan a relocation for a local symbol.
8294 // FIXME: This only handles a subset of relocation types used by Android
8295 // on ARM v5te devices.
8296
8297 template<bool big_endian>
8298 inline void
8299 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8300 Layout* layout,
8301 Target_arm* target,
8302 Sized_relobj_file<32, big_endian>* object,
8303 unsigned int data_shndx,
8304 Output_section* output_section,
8305 const elfcpp::Rel<32, big_endian>& reloc,
8306 unsigned int r_type,
8307 const elfcpp::Sym<32, big_endian>& lsym,
8308 bool is_discarded)
8309 {
8310 if (is_discarded)
8311 return;
8312
8313 r_type = get_real_reloc_type(r_type);
8314
8315 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8316 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8317 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8318 {
8319 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8320 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8321 }
8322
8323 switch (r_type)
8324 {
8325 case elfcpp::R_ARM_NONE:
8326 case elfcpp::R_ARM_V4BX:
8327 case elfcpp::R_ARM_GNU_VTENTRY:
8328 case elfcpp::R_ARM_GNU_VTINHERIT:
8329 break;
8330
8331 case elfcpp::R_ARM_ABS32:
8332 case elfcpp::R_ARM_ABS32_NOI:
8333 // If building a shared library (or a position-independent
8334 // executable), we need to create a dynamic relocation for
8335 // this location. The relocation applied at link time will
8336 // apply the link-time value, so we flag the location with
8337 // an R_ARM_RELATIVE relocation so the dynamic loader can
8338 // relocate it easily.
8339 if (parameters->options().output_is_position_independent())
8340 {
8341 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8342 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8343 // If we are to add more other reloc types than R_ARM_ABS32,
8344 // we need to add check_non_pic(object, r_type) here.
8345 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8346 output_section, data_shndx,
8347 reloc.get_r_offset(), is_ifunc);
8348 }
8349 break;
8350
8351 case elfcpp::R_ARM_ABS16:
8352 case elfcpp::R_ARM_ABS12:
8353 case elfcpp::R_ARM_THM_ABS5:
8354 case elfcpp::R_ARM_ABS8:
8355 case elfcpp::R_ARM_BASE_ABS:
8356 case elfcpp::R_ARM_MOVW_ABS_NC:
8357 case elfcpp::R_ARM_MOVT_ABS:
8358 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8359 case elfcpp::R_ARM_THM_MOVT_ABS:
8360 // If building a shared library (or a position-independent
8361 // executable), we need to create a dynamic relocation for
8362 // this location. Because the addend needs to remain in the
8363 // data section, we need to be careful not to apply this
8364 // relocation statically.
8365 if (parameters->options().output_is_position_independent())
8366 {
8367 check_non_pic(object, r_type);
8368 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8369 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8370 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8371 rel_dyn->add_local(object, r_sym, r_type, output_section,
8372 data_shndx, reloc.get_r_offset());
8373 else
8374 {
8375 gold_assert(lsym.get_st_value() == 0);
8376 unsigned int shndx = lsym.get_st_shndx();
8377 bool is_ordinary;
8378 shndx = object->adjust_sym_shndx(r_sym, shndx,
8379 &is_ordinary);
8380 if (!is_ordinary)
8381 object->error(_("section symbol %u has bad shndx %u"),
8382 r_sym, shndx);
8383 else
8384 rel_dyn->add_local_section(object, shndx,
8385 r_type, output_section,
8386 data_shndx, reloc.get_r_offset());
8387 }
8388 }
8389 break;
8390
8391 case elfcpp::R_ARM_REL32:
8392 case elfcpp::R_ARM_LDR_PC_G0:
8393 case elfcpp::R_ARM_SBREL32:
8394 case elfcpp::R_ARM_THM_CALL:
8395 case elfcpp::R_ARM_THM_PC8:
8396 case elfcpp::R_ARM_BASE_PREL:
8397 case elfcpp::R_ARM_PLT32:
8398 case elfcpp::R_ARM_CALL:
8399 case elfcpp::R_ARM_JUMP24:
8400 case elfcpp::R_ARM_THM_JUMP24:
8401 case elfcpp::R_ARM_SBREL31:
8402 case elfcpp::R_ARM_PREL31:
8403 case elfcpp::R_ARM_MOVW_PREL_NC:
8404 case elfcpp::R_ARM_MOVT_PREL:
8405 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8406 case elfcpp::R_ARM_THM_MOVT_PREL:
8407 case elfcpp::R_ARM_THM_JUMP19:
8408 case elfcpp::R_ARM_THM_JUMP6:
8409 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8410 case elfcpp::R_ARM_THM_PC12:
8411 case elfcpp::R_ARM_REL32_NOI:
8412 case elfcpp::R_ARM_ALU_PC_G0_NC:
8413 case elfcpp::R_ARM_ALU_PC_G0:
8414 case elfcpp::R_ARM_ALU_PC_G1_NC:
8415 case elfcpp::R_ARM_ALU_PC_G1:
8416 case elfcpp::R_ARM_ALU_PC_G2:
8417 case elfcpp::R_ARM_LDR_PC_G1:
8418 case elfcpp::R_ARM_LDR_PC_G2:
8419 case elfcpp::R_ARM_LDRS_PC_G0:
8420 case elfcpp::R_ARM_LDRS_PC_G1:
8421 case elfcpp::R_ARM_LDRS_PC_G2:
8422 case elfcpp::R_ARM_LDC_PC_G0:
8423 case elfcpp::R_ARM_LDC_PC_G1:
8424 case elfcpp::R_ARM_LDC_PC_G2:
8425 case elfcpp::R_ARM_ALU_SB_G0_NC:
8426 case elfcpp::R_ARM_ALU_SB_G0:
8427 case elfcpp::R_ARM_ALU_SB_G1_NC:
8428 case elfcpp::R_ARM_ALU_SB_G1:
8429 case elfcpp::R_ARM_ALU_SB_G2:
8430 case elfcpp::R_ARM_LDR_SB_G0:
8431 case elfcpp::R_ARM_LDR_SB_G1:
8432 case elfcpp::R_ARM_LDR_SB_G2:
8433 case elfcpp::R_ARM_LDRS_SB_G0:
8434 case elfcpp::R_ARM_LDRS_SB_G1:
8435 case elfcpp::R_ARM_LDRS_SB_G2:
8436 case elfcpp::R_ARM_LDC_SB_G0:
8437 case elfcpp::R_ARM_LDC_SB_G1:
8438 case elfcpp::R_ARM_LDC_SB_G2:
8439 case elfcpp::R_ARM_MOVW_BREL_NC:
8440 case elfcpp::R_ARM_MOVT_BREL:
8441 case elfcpp::R_ARM_MOVW_BREL:
8442 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8443 case elfcpp::R_ARM_THM_MOVT_BREL:
8444 case elfcpp::R_ARM_THM_MOVW_BREL:
8445 case elfcpp::R_ARM_THM_JUMP11:
8446 case elfcpp::R_ARM_THM_JUMP8:
8447 // We don't need to do anything for a relative addressing relocation
8448 // against a local symbol if it does not reference the GOT.
8449 break;
8450
8451 case elfcpp::R_ARM_GOTOFF32:
8452 case elfcpp::R_ARM_GOTOFF12:
8453 // We need a GOT section:
8454 target->got_section(symtab, layout);
8455 break;
8456
8457 case elfcpp::R_ARM_GOT_BREL:
8458 case elfcpp::R_ARM_GOT_PREL:
8459 {
8460 // The symbol requires a GOT entry.
8461 Arm_output_data_got<big_endian>* got =
8462 target->got_section(symtab, layout);
8463 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8464 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8465 {
8466 // If we are generating a shared object, we need to add a
8467 // dynamic RELATIVE relocation for this symbol's GOT entry.
8468 if (parameters->options().output_is_position_independent())
8469 {
8470 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8471 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8472 rel_dyn->add_local_relative(
8473 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8474 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8475 }
8476 }
8477 }
8478 break;
8479
8480 case elfcpp::R_ARM_TARGET1:
8481 case elfcpp::R_ARM_TARGET2:
8482 // This should have been mapped to another type already.
8483 // Fall through.
8484 case elfcpp::R_ARM_COPY:
8485 case elfcpp::R_ARM_GLOB_DAT:
8486 case elfcpp::R_ARM_JUMP_SLOT:
8487 case elfcpp::R_ARM_RELATIVE:
8488 // These are relocations which should only be seen by the
8489 // dynamic linker, and should never be seen here.
8490 gold_error(_("%s: unexpected reloc %u in object file"),
8491 object->name().c_str(), r_type);
8492 break;
8493
8494
8495 // These are initial TLS relocs, which are expected when
8496 // linking.
8497 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8498 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8499 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8500 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8501 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8502 {
8503 bool output_is_shared = parameters->options().shared();
8504 const tls::Tls_optimization optimized_type
8505 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8506 r_type);
8507 switch (r_type)
8508 {
8509 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8510 if (optimized_type == tls::TLSOPT_NONE)
8511 {
8512 // Create a pair of GOT entries for the module index and
8513 // dtv-relative offset.
8514 Arm_output_data_got<big_endian>* got
8515 = target->got_section(symtab, layout);
8516 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8517 unsigned int shndx = lsym.get_st_shndx();
8518 bool is_ordinary;
8519 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8520 if (!is_ordinary)
8521 {
8522 object->error(_("local symbol %u has bad shndx %u"),
8523 r_sym, shndx);
8524 break;
8525 }
8526
8527 if (!parameters->doing_static_link())
8528 got->add_local_pair_with_rel(object, r_sym, shndx,
8529 GOT_TYPE_TLS_PAIR,
8530 target->rel_dyn_section(layout),
8531 elfcpp::R_ARM_TLS_DTPMOD32);
8532 else
8533 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8534 object, r_sym);
8535 }
8536 else
8537 // FIXME: TLS optimization not supported yet.
8538 gold_unreachable();
8539 break;
8540
8541 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8542 if (optimized_type == tls::TLSOPT_NONE)
8543 {
8544 // Create a GOT entry for the module index.
8545 target->got_mod_index_entry(symtab, layout, object);
8546 }
8547 else
8548 // FIXME: TLS optimization not supported yet.
8549 gold_unreachable();
8550 break;
8551
8552 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8553 break;
8554
8555 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8556 layout->set_has_static_tls();
8557 if (optimized_type == tls::TLSOPT_NONE)
8558 {
8559 // Create a GOT entry for the tp-relative offset.
8560 Arm_output_data_got<big_endian>* got
8561 = target->got_section(symtab, layout);
8562 unsigned int r_sym =
8563 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8564 if (!parameters->doing_static_link())
8565 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8566 target->rel_dyn_section(layout),
8567 elfcpp::R_ARM_TLS_TPOFF32);
8568 else if (!object->local_has_got_offset(r_sym,
8569 GOT_TYPE_TLS_OFFSET))
8570 {
8571 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8572 unsigned int got_offset =
8573 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8574 got->add_static_reloc(got_offset,
8575 elfcpp::R_ARM_TLS_TPOFF32, object,
8576 r_sym);
8577 }
8578 }
8579 else
8580 // FIXME: TLS optimization not supported yet.
8581 gold_unreachable();
8582 break;
8583
8584 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8585 layout->set_has_static_tls();
8586 if (output_is_shared)
8587 {
8588 // We need to create a dynamic relocation.
8589 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8590 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8591 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8592 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8593 output_section, data_shndx,
8594 reloc.get_r_offset());
8595 }
8596 break;
8597
8598 default:
8599 gold_unreachable();
8600 }
8601 }
8602 break;
8603
8604 case elfcpp::R_ARM_PC24:
8605 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8606 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8607 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8608 default:
8609 unsupported_reloc_local(object, r_type);
8610 break;
8611 }
8612 }
8613
8614 // Report an unsupported relocation against a global symbol.
8615
8616 template<bool big_endian>
8617 void
8618 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8619 Sized_relobj_file<32, big_endian>* object,
8620 unsigned int r_type,
8621 Symbol* gsym)
8622 {
8623 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8624 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8625 }
8626
8627 template<bool big_endian>
8628 inline bool
8629 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8630 unsigned int r_type)
8631 {
8632 switch (r_type)
8633 {
8634 case elfcpp::R_ARM_PC24:
8635 case elfcpp::R_ARM_THM_CALL:
8636 case elfcpp::R_ARM_PLT32:
8637 case elfcpp::R_ARM_CALL:
8638 case elfcpp::R_ARM_JUMP24:
8639 case elfcpp::R_ARM_THM_JUMP24:
8640 case elfcpp::R_ARM_SBREL31:
8641 case elfcpp::R_ARM_PREL31:
8642 case elfcpp::R_ARM_THM_JUMP19:
8643 case elfcpp::R_ARM_THM_JUMP6:
8644 case elfcpp::R_ARM_THM_JUMP11:
8645 case elfcpp::R_ARM_THM_JUMP8:
8646 // All the relocations above are branches except SBREL31 and PREL31.
8647 return false;
8648
8649 default:
8650 // Be conservative and assume this is a function pointer.
8651 return true;
8652 }
8653 }
8654
8655 template<bool big_endian>
8656 inline bool
8657 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8658 Symbol_table*,
8659 Layout*,
8660 Target_arm<big_endian>* target,
8661 Sized_relobj_file<32, big_endian>*,
8662 unsigned int,
8663 Output_section*,
8664 const elfcpp::Rel<32, big_endian>&,
8665 unsigned int r_type,
8666 const elfcpp::Sym<32, big_endian>&)
8667 {
8668 r_type = target->get_real_reloc_type(r_type);
8669 return possible_function_pointer_reloc(r_type);
8670 }
8671
8672 template<bool big_endian>
8673 inline bool
8674 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8675 Symbol_table*,
8676 Layout*,
8677 Target_arm<big_endian>* target,
8678 Sized_relobj_file<32, big_endian>*,
8679 unsigned int,
8680 Output_section*,
8681 const elfcpp::Rel<32, big_endian>&,
8682 unsigned int r_type,
8683 Symbol* gsym)
8684 {
8685 // GOT is not a function.
8686 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8687 return false;
8688
8689 r_type = target->get_real_reloc_type(r_type);
8690 return possible_function_pointer_reloc(r_type);
8691 }
8692
8693 // Scan a relocation for a global symbol.
8694
8695 template<bool big_endian>
8696 inline void
8697 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8698 Layout* layout,
8699 Target_arm* target,
8700 Sized_relobj_file<32, big_endian>* object,
8701 unsigned int data_shndx,
8702 Output_section* output_section,
8703 const elfcpp::Rel<32, big_endian>& reloc,
8704 unsigned int r_type,
8705 Symbol* gsym)
8706 {
8707 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8708 // section. We check here to avoid creating a dynamic reloc against
8709 // _GLOBAL_OFFSET_TABLE_.
8710 if (!target->has_got_section()
8711 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8712 target->got_section(symtab, layout);
8713
8714 // A STT_GNU_IFUNC symbol may require a PLT entry.
8715 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8716 && this->reloc_needs_plt_for_ifunc(object, r_type))
8717 target->make_plt_entry(symtab, layout, gsym);
8718
8719 r_type = get_real_reloc_type(r_type);
8720 switch (r_type)
8721 {
8722 case elfcpp::R_ARM_NONE:
8723 case elfcpp::R_ARM_V4BX:
8724 case elfcpp::R_ARM_GNU_VTENTRY:
8725 case elfcpp::R_ARM_GNU_VTINHERIT:
8726 break;
8727
8728 case elfcpp::R_ARM_ABS32:
8729 case elfcpp::R_ARM_ABS16:
8730 case elfcpp::R_ARM_ABS12:
8731 case elfcpp::R_ARM_THM_ABS5:
8732 case elfcpp::R_ARM_ABS8:
8733 case elfcpp::R_ARM_BASE_ABS:
8734 case elfcpp::R_ARM_MOVW_ABS_NC:
8735 case elfcpp::R_ARM_MOVT_ABS:
8736 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8737 case elfcpp::R_ARM_THM_MOVT_ABS:
8738 case elfcpp::R_ARM_ABS32_NOI:
8739 // Absolute addressing relocations.
8740 {
8741 // Make a PLT entry if necessary.
8742 if (this->symbol_needs_plt_entry(gsym))
8743 {
8744 target->make_plt_entry(symtab, layout, gsym);
8745 // Since this is not a PC-relative relocation, we may be
8746 // taking the address of a function. In that case we need to
8747 // set the entry in the dynamic symbol table to the address of
8748 // the PLT entry.
8749 if (gsym->is_from_dynobj() && !parameters->options().shared())
8750 gsym->set_needs_dynsym_value();
8751 }
8752 // Make a dynamic relocation if necessary.
8753 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8754 {
8755 if (!parameters->options().output_is_position_independent()
8756 && gsym->may_need_copy_reloc())
8757 {
8758 target->copy_reloc(symtab, layout, object,
8759 data_shndx, output_section, gsym, reloc);
8760 }
8761 else if ((r_type == elfcpp::R_ARM_ABS32
8762 || r_type == elfcpp::R_ARM_ABS32_NOI)
8763 && gsym->type() == elfcpp::STT_GNU_IFUNC
8764 && gsym->can_use_relative_reloc(false)
8765 && !gsym->is_from_dynobj()
8766 && !gsym->is_undefined()
8767 && !gsym->is_preemptible())
8768 {
8769 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8770 // symbol. This makes a function address in a PIE executable
8771 // match the address in a shared library that it links against.
8772 Reloc_section* rel_irelative =
8773 target->rel_irelative_section(layout);
8774 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8775 rel_irelative->add_symbolless_global_addend(
8776 gsym, r_type, output_section, object,
8777 data_shndx, reloc.get_r_offset());
8778 }
8779 else if ((r_type == elfcpp::R_ARM_ABS32
8780 || r_type == elfcpp::R_ARM_ABS32_NOI)
8781 && gsym->can_use_relative_reloc(false))
8782 {
8783 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8784 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8785 output_section, object,
8786 data_shndx, reloc.get_r_offset());
8787 }
8788 else
8789 {
8790 check_non_pic(object, r_type);
8791 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8792 rel_dyn->add_global(gsym, r_type, output_section, object,
8793 data_shndx, reloc.get_r_offset());
8794 }
8795 }
8796 }
8797 break;
8798
8799 case elfcpp::R_ARM_GOTOFF32:
8800 case elfcpp::R_ARM_GOTOFF12:
8801 // We need a GOT section.
8802 target->got_section(symtab, layout);
8803 break;
8804
8805 case elfcpp::R_ARM_REL32:
8806 case elfcpp::R_ARM_LDR_PC_G0:
8807 case elfcpp::R_ARM_SBREL32:
8808 case elfcpp::R_ARM_THM_PC8:
8809 case elfcpp::R_ARM_BASE_PREL:
8810 case elfcpp::R_ARM_MOVW_PREL_NC:
8811 case elfcpp::R_ARM_MOVT_PREL:
8812 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8813 case elfcpp::R_ARM_THM_MOVT_PREL:
8814 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8815 case elfcpp::R_ARM_THM_PC12:
8816 case elfcpp::R_ARM_REL32_NOI:
8817 case elfcpp::R_ARM_ALU_PC_G0_NC:
8818 case elfcpp::R_ARM_ALU_PC_G0:
8819 case elfcpp::R_ARM_ALU_PC_G1_NC:
8820 case elfcpp::R_ARM_ALU_PC_G1:
8821 case elfcpp::R_ARM_ALU_PC_G2:
8822 case elfcpp::R_ARM_LDR_PC_G1:
8823 case elfcpp::R_ARM_LDR_PC_G2:
8824 case elfcpp::R_ARM_LDRS_PC_G0:
8825 case elfcpp::R_ARM_LDRS_PC_G1:
8826 case elfcpp::R_ARM_LDRS_PC_G2:
8827 case elfcpp::R_ARM_LDC_PC_G0:
8828 case elfcpp::R_ARM_LDC_PC_G1:
8829 case elfcpp::R_ARM_LDC_PC_G2:
8830 case elfcpp::R_ARM_ALU_SB_G0_NC:
8831 case elfcpp::R_ARM_ALU_SB_G0:
8832 case elfcpp::R_ARM_ALU_SB_G1_NC:
8833 case elfcpp::R_ARM_ALU_SB_G1:
8834 case elfcpp::R_ARM_ALU_SB_G2:
8835 case elfcpp::R_ARM_LDR_SB_G0:
8836 case elfcpp::R_ARM_LDR_SB_G1:
8837 case elfcpp::R_ARM_LDR_SB_G2:
8838 case elfcpp::R_ARM_LDRS_SB_G0:
8839 case elfcpp::R_ARM_LDRS_SB_G1:
8840 case elfcpp::R_ARM_LDRS_SB_G2:
8841 case elfcpp::R_ARM_LDC_SB_G0:
8842 case elfcpp::R_ARM_LDC_SB_G1:
8843 case elfcpp::R_ARM_LDC_SB_G2:
8844 case elfcpp::R_ARM_MOVW_BREL_NC:
8845 case elfcpp::R_ARM_MOVT_BREL:
8846 case elfcpp::R_ARM_MOVW_BREL:
8847 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8848 case elfcpp::R_ARM_THM_MOVT_BREL:
8849 case elfcpp::R_ARM_THM_MOVW_BREL:
8850 // Relative addressing relocations.
8851 {
8852 // Make a dynamic relocation if necessary.
8853 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8854 {
8855 if (parameters->options().output_is_executable()
8856 && target->may_need_copy_reloc(gsym))
8857 {
8858 target->copy_reloc(symtab, layout, object,
8859 data_shndx, output_section, gsym, reloc);
8860 }
8861 else
8862 {
8863 check_non_pic(object, r_type);
8864 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8865 rel_dyn->add_global(gsym, r_type, output_section, object,
8866 data_shndx, reloc.get_r_offset());
8867 }
8868 }
8869 }
8870 break;
8871
8872 case elfcpp::R_ARM_THM_CALL:
8873 case elfcpp::R_ARM_PLT32:
8874 case elfcpp::R_ARM_CALL:
8875 case elfcpp::R_ARM_JUMP24:
8876 case elfcpp::R_ARM_THM_JUMP24:
8877 case elfcpp::R_ARM_SBREL31:
8878 case elfcpp::R_ARM_PREL31:
8879 case elfcpp::R_ARM_THM_JUMP19:
8880 case elfcpp::R_ARM_THM_JUMP6:
8881 case elfcpp::R_ARM_THM_JUMP11:
8882 case elfcpp::R_ARM_THM_JUMP8:
8883 // All the relocation above are branches except for the PREL31 ones.
8884 // A PREL31 relocation can point to a personality function in a shared
8885 // library. In that case we want to use a PLT because we want to
8886 // call the personality routine and the dynamic linkers we care about
8887 // do not support dynamic PREL31 relocations. An REL31 relocation may
8888 // point to a function whose unwinding behaviour is being described but
8889 // we will not mistakenly generate a PLT for that because we should use
8890 // a local section symbol.
8891
8892 // If the symbol is fully resolved, this is just a relative
8893 // local reloc. Otherwise we need a PLT entry.
8894 if (gsym->final_value_is_known())
8895 break;
8896 // If building a shared library, we can also skip the PLT entry
8897 // if the symbol is defined in the output file and is protected
8898 // or hidden.
8899 if (gsym->is_defined()
8900 && !gsym->is_from_dynobj()
8901 && !gsym->is_preemptible())
8902 break;
8903 target->make_plt_entry(symtab, layout, gsym);
8904 break;
8905
8906 case elfcpp::R_ARM_GOT_BREL:
8907 case elfcpp::R_ARM_GOT_ABS:
8908 case elfcpp::R_ARM_GOT_PREL:
8909 {
8910 // The symbol requires a GOT entry.
8911 Arm_output_data_got<big_endian>* got =
8912 target->got_section(symtab, layout);
8913 if (gsym->final_value_is_known())
8914 {
8915 // For a STT_GNU_IFUNC symbol we want the PLT address.
8916 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8917 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8918 else
8919 got->add_global(gsym, GOT_TYPE_STANDARD);
8920 }
8921 else
8922 {
8923 // If this symbol is not fully resolved, we need to add a
8924 // GOT entry with a dynamic relocation.
8925 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8926 if (gsym->is_from_dynobj()
8927 || gsym->is_undefined()
8928 || gsym->is_preemptible()
8929 || (gsym->visibility() == elfcpp::STV_PROTECTED
8930 && parameters->options().shared())
8931 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8932 && parameters->options().output_is_position_independent()))
8933 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8934 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8935 else
8936 {
8937 // For a STT_GNU_IFUNC symbol we want to write the PLT
8938 // offset into the GOT, so that function pointer
8939 // comparisons work correctly.
8940 bool is_new;
8941 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8942 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8943 else
8944 {
8945 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8946 // Tell the dynamic linker to use the PLT address
8947 // when resolving relocations.
8948 if (gsym->is_from_dynobj()
8949 && !parameters->options().shared())
8950 gsym->set_needs_dynsym_value();
8951 }
8952 if (is_new)
8953 rel_dyn->add_global_relative(
8954 gsym, elfcpp::R_ARM_RELATIVE, got,
8955 gsym->got_offset(GOT_TYPE_STANDARD));
8956 }
8957 }
8958 }
8959 break;
8960
8961 case elfcpp::R_ARM_TARGET1:
8962 case elfcpp::R_ARM_TARGET2:
8963 // These should have been mapped to other types already.
8964 // Fall through.
8965 case elfcpp::R_ARM_COPY:
8966 case elfcpp::R_ARM_GLOB_DAT:
8967 case elfcpp::R_ARM_JUMP_SLOT:
8968 case elfcpp::R_ARM_RELATIVE:
8969 // These are relocations which should only be seen by the
8970 // dynamic linker, and should never be seen here.
8971 gold_error(_("%s: unexpected reloc %u in object file"),
8972 object->name().c_str(), r_type);
8973 break;
8974
8975 // These are initial tls relocs, which are expected when
8976 // linking.
8977 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8978 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8979 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8980 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8981 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8982 {
8983 const bool is_final = gsym->final_value_is_known();
8984 const tls::Tls_optimization optimized_type
8985 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8986 switch (r_type)
8987 {
8988 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8989 if (optimized_type == tls::TLSOPT_NONE)
8990 {
8991 // Create a pair of GOT entries for the module index and
8992 // dtv-relative offset.
8993 Arm_output_data_got<big_endian>* got
8994 = target->got_section(symtab, layout);
8995 if (!parameters->doing_static_link())
8996 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8997 target->rel_dyn_section(layout),
8998 elfcpp::R_ARM_TLS_DTPMOD32,
8999 elfcpp::R_ARM_TLS_DTPOFF32);
9000 else
9001 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9002 }
9003 else
9004 // FIXME: TLS optimization not supported yet.
9005 gold_unreachable();
9006 break;
9007
9008 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9009 if (optimized_type == tls::TLSOPT_NONE)
9010 {
9011 // Create a GOT entry for the module index.
9012 target->got_mod_index_entry(symtab, layout, object);
9013 }
9014 else
9015 // FIXME: TLS optimization not supported yet.
9016 gold_unreachable();
9017 break;
9018
9019 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9020 break;
9021
9022 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9023 layout->set_has_static_tls();
9024 if (optimized_type == tls::TLSOPT_NONE)
9025 {
9026 // Create a GOT entry for the tp-relative offset.
9027 Arm_output_data_got<big_endian>* got
9028 = target->got_section(symtab, layout);
9029 if (!parameters->doing_static_link())
9030 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9031 target->rel_dyn_section(layout),
9032 elfcpp::R_ARM_TLS_TPOFF32);
9033 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9034 {
9035 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9036 unsigned int got_offset =
9037 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9038 got->add_static_reloc(got_offset,
9039 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9040 }
9041 }
9042 else
9043 // FIXME: TLS optimization not supported yet.
9044 gold_unreachable();
9045 break;
9046
9047 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9048 layout->set_has_static_tls();
9049 if (parameters->options().shared())
9050 {
9051 // We need to create a dynamic relocation.
9052 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9053 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9054 output_section, object,
9055 data_shndx, reloc.get_r_offset());
9056 }
9057 break;
9058
9059 default:
9060 gold_unreachable();
9061 }
9062 }
9063 break;
9064
9065 case elfcpp::R_ARM_PC24:
9066 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9067 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9068 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9069 default:
9070 unsupported_reloc_global(object, r_type, gsym);
9071 break;
9072 }
9073 }
9074
9075 // Process relocations for gc.
9076
9077 template<bool big_endian>
9078 void
9079 Target_arm<big_endian>::gc_process_relocs(
9080 Symbol_table* symtab,
9081 Layout* layout,
9082 Sized_relobj_file<32, big_endian>* object,
9083 unsigned int data_shndx,
9084 unsigned int,
9085 const unsigned char* prelocs,
9086 size_t reloc_count,
9087 Output_section* output_section,
9088 bool needs_special_offset_handling,
9089 size_t local_symbol_count,
9090 const unsigned char* plocal_symbols)
9091 {
9092 typedef Target_arm<big_endian> Arm;
9093 typedef typename Target_arm<big_endian>::Scan Scan;
9094
9095 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
9096 typename Target_arm::Relocatable_size_for_reloc>(
9097 symtab,
9098 layout,
9099 this,
9100 object,
9101 data_shndx,
9102 prelocs,
9103 reloc_count,
9104 output_section,
9105 needs_special_offset_handling,
9106 local_symbol_count,
9107 plocal_symbols);
9108 }
9109
9110 // Scan relocations for a section.
9111
9112 template<bool big_endian>
9113 void
9114 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9115 Layout* layout,
9116 Sized_relobj_file<32, big_endian>* object,
9117 unsigned int data_shndx,
9118 unsigned int sh_type,
9119 const unsigned char* prelocs,
9120 size_t reloc_count,
9121 Output_section* output_section,
9122 bool needs_special_offset_handling,
9123 size_t local_symbol_count,
9124 const unsigned char* plocal_symbols)
9125 {
9126 typedef typename Target_arm<big_endian>::Scan Scan;
9127 if (sh_type == elfcpp::SHT_RELA)
9128 {
9129 gold_error(_("%s: unsupported RELA reloc section"),
9130 object->name().c_str());
9131 return;
9132 }
9133
9134 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
9135 symtab,
9136 layout,
9137 this,
9138 object,
9139 data_shndx,
9140 prelocs,
9141 reloc_count,
9142 output_section,
9143 needs_special_offset_handling,
9144 local_symbol_count,
9145 plocal_symbols);
9146 }
9147
9148 // Finalize the sections.
9149
9150 template<bool big_endian>
9151 void
9152 Target_arm<big_endian>::do_finalize_sections(
9153 Layout* layout,
9154 const Input_objects* input_objects,
9155 Symbol_table*)
9156 {
9157 bool merged_any_attributes = false;
9158 // Merge processor-specific flags.
9159 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9160 p != input_objects->relobj_end();
9161 ++p)
9162 {
9163 Arm_relobj<big_endian>* arm_relobj =
9164 Arm_relobj<big_endian>::as_arm_relobj(*p);
9165 if (arm_relobj->merge_flags_and_attributes())
9166 {
9167 this->merge_processor_specific_flags(
9168 arm_relobj->name(),
9169 arm_relobj->processor_specific_flags());
9170 this->merge_object_attributes(arm_relobj->name().c_str(),
9171 arm_relobj->attributes_section_data());
9172 merged_any_attributes = true;
9173 }
9174 }
9175
9176 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9177 p != input_objects->dynobj_end();
9178 ++p)
9179 {
9180 Arm_dynobj<big_endian>* arm_dynobj =
9181 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9182 this->merge_processor_specific_flags(
9183 arm_dynobj->name(),
9184 arm_dynobj->processor_specific_flags());
9185 this->merge_object_attributes(arm_dynobj->name().c_str(),
9186 arm_dynobj->attributes_section_data());
9187 merged_any_attributes = true;
9188 }
9189
9190 // Create an empty uninitialized attribute section if we still don't have it
9191 // at this moment. This happens if there is no attributes sections in all
9192 // inputs.
9193 if (this->attributes_section_data_ == NULL)
9194 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9195
9196 const Object_attribute* cpu_arch_attr =
9197 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9198 // Check if we need to use Cortex-A8 workaround.
9199 if (parameters->options().user_set_fix_cortex_a8())
9200 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9201 else
9202 {
9203 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9204 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9205 // profile.
9206 const Object_attribute* cpu_arch_profile_attr =
9207 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9208 this->fix_cortex_a8_ =
9209 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9210 && (cpu_arch_profile_attr->int_value() == 'A'
9211 || cpu_arch_profile_attr->int_value() == 0));
9212 }
9213
9214 // Check if we can use V4BX interworking.
9215 // The V4BX interworking stub contains BX instruction,
9216 // which is not specified for some profiles.
9217 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9218 && !this->may_use_v4t_interworking())
9219 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9220 "the target profile does not support BX instruction"));
9221
9222 // Fill in some more dynamic tags.
9223 const Reloc_section* rel_plt = (this->plt_ == NULL
9224 ? NULL
9225 : this->plt_->rel_plt());
9226 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9227 this->rel_dyn_, true, false);
9228
9229 // Emit any relocs we saved in an attempt to avoid generating COPY
9230 // relocs.
9231 if (this->copy_relocs_.any_saved_relocs())
9232 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9233
9234 // Handle the .ARM.exidx section.
9235 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9236
9237 if (!parameters->options().relocatable())
9238 {
9239 if (exidx_section != NULL
9240 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9241 {
9242 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9243 // the .ARM.exidx section.
9244 if (!layout->script_options()->saw_phdrs_clause())
9245 {
9246 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9247 0)
9248 == NULL);
9249 Output_segment* exidx_segment =
9250 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9251 exidx_segment->add_output_section_to_nonload(exidx_section,
9252 elfcpp::PF_R);
9253 }
9254 }
9255 }
9256
9257 // Create an .ARM.attributes section if we have merged any attributes
9258 // from inputs.
9259 if (merged_any_attributes)
9260 {
9261 Output_attributes_section_data* attributes_section =
9262 new Output_attributes_section_data(*this->attributes_section_data_);
9263 layout->add_output_section_data(".ARM.attributes",
9264 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9265 attributes_section, ORDER_INVALID,
9266 false);
9267 }
9268
9269 // Fix up links in section EXIDX headers.
9270 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9271 p != layout->section_list().end();
9272 ++p)
9273 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9274 {
9275 Arm_output_section<big_endian>* os =
9276 Arm_output_section<big_endian>::as_arm_output_section(*p);
9277 os->set_exidx_section_link();
9278 }
9279 }
9280
9281 // Return whether a direct absolute static relocation needs to be applied.
9282 // In cases where Scan::local() or Scan::global() has created
9283 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9284 // of the relocation is carried in the data, and we must not
9285 // apply the static relocation.
9286
9287 template<bool big_endian>
9288 inline bool
9289 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9290 const Sized_symbol<32>* gsym,
9291 unsigned int r_type,
9292 bool is_32bit,
9293 Output_section* output_section)
9294 {
9295 // If the output section is not allocated, then we didn't call
9296 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9297 // the reloc here.
9298 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9299 return true;
9300
9301 int ref_flags = Scan::get_reference_flags(r_type);
9302
9303 // For local symbols, we will have created a non-RELATIVE dynamic
9304 // relocation only if (a) the output is position independent,
9305 // (b) the relocation is absolute (not pc- or segment-relative), and
9306 // (c) the relocation is not 32 bits wide.
9307 if (gsym == NULL)
9308 return !(parameters->options().output_is_position_independent()
9309 && (ref_flags & Symbol::ABSOLUTE_REF)
9310 && !is_32bit);
9311
9312 // For global symbols, we use the same helper routines used in the
9313 // scan pass. If we did not create a dynamic relocation, or if we
9314 // created a RELATIVE dynamic relocation, we should apply the static
9315 // relocation.
9316 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9317 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9318 && gsym->can_use_relative_reloc(ref_flags
9319 & Symbol::FUNCTION_CALL);
9320 return !has_dyn || is_rel;
9321 }
9322
9323 // Perform a relocation.
9324
9325 template<bool big_endian>
9326 inline bool
9327 Target_arm<big_endian>::Relocate::relocate(
9328 const Relocate_info<32, big_endian>* relinfo,
9329 Target_arm* target,
9330 Output_section* output_section,
9331 size_t relnum,
9332 const elfcpp::Rel<32, big_endian>& rel,
9333 unsigned int r_type,
9334 const Sized_symbol<32>* gsym,
9335 const Symbol_value<32>* psymval,
9336 unsigned char* view,
9337 Arm_address address,
9338 section_size_type view_size)
9339 {
9340 if (view == NULL)
9341 return true;
9342
9343 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9344
9345 r_type = get_real_reloc_type(r_type);
9346 const Arm_reloc_property* reloc_property =
9347 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9348 if (reloc_property == NULL)
9349 {
9350 std::string reloc_name =
9351 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9352 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9353 _("cannot relocate %s in object file"),
9354 reloc_name.c_str());
9355 return true;
9356 }
9357
9358 const Arm_relobj<big_endian>* object =
9359 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9360
9361 // If the final branch target of a relocation is THUMB instruction, this
9362 // is 1. Otherwise it is 0.
9363 Arm_address thumb_bit = 0;
9364 Symbol_value<32> symval;
9365 bool is_weakly_undefined_without_plt = false;
9366 bool have_got_offset = false;
9367 unsigned int got_offset = 0;
9368
9369 // If the relocation uses the GOT entry of a symbol instead of the symbol
9370 // itself, we don't care about whether the symbol is defined or what kind
9371 // of symbol it is.
9372 if (reloc_property->uses_got_entry())
9373 {
9374 // Get the GOT offset.
9375 // The GOT pointer points to the end of the GOT section.
9376 // We need to subtract the size of the GOT section to get
9377 // the actual offset to use in the relocation.
9378 // TODO: We should move GOT offset computing code in TLS relocations
9379 // to here.
9380 switch (r_type)
9381 {
9382 case elfcpp::R_ARM_GOT_BREL:
9383 case elfcpp::R_ARM_GOT_PREL:
9384 if (gsym != NULL)
9385 {
9386 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9387 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9388 - target->got_size());
9389 }
9390 else
9391 {
9392 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9393 gold_assert(object->local_has_got_offset(r_sym,
9394 GOT_TYPE_STANDARD));
9395 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9396 - target->got_size());
9397 }
9398 have_got_offset = true;
9399 break;
9400
9401 default:
9402 break;
9403 }
9404 }
9405 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9406 {
9407 if (gsym != NULL)
9408 {
9409 // This is a global symbol. Determine if we use PLT and if the
9410 // final target is THUMB.
9411 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9412 {
9413 // This uses a PLT, change the symbol value.
9414 symval.set_output_value(target->plt_address_for_global(gsym));
9415 psymval = &symval;
9416 }
9417 else if (gsym->is_weak_undefined())
9418 {
9419 // This is a weakly undefined symbol and we do not use PLT
9420 // for this relocation. A branch targeting this symbol will
9421 // be converted into an NOP.
9422 is_weakly_undefined_without_plt = true;
9423 }
9424 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9425 {
9426 // This relocation uses the symbol value but the symbol is
9427 // undefined. Exit early and have the caller reporting an
9428 // error.
9429 return true;
9430 }
9431 else
9432 {
9433 // Set thumb bit if symbol:
9434 // -Has type STT_ARM_TFUNC or
9435 // -Has type STT_FUNC, is defined and with LSB in value set.
9436 thumb_bit =
9437 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9438 || (gsym->type() == elfcpp::STT_FUNC
9439 && !gsym->is_undefined()
9440 && ((psymval->value(object, 0) & 1) != 0)))
9441 ? 1
9442 : 0);
9443 }
9444 }
9445 else
9446 {
9447 // This is a local symbol. Determine if the final target is THUMB.
9448 // We saved this information when all the local symbols were read.
9449 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9450 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9451 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9452
9453 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9454 {
9455 symval.set_output_value(
9456 target->plt_address_for_local(object, r_sym));
9457 psymval = &symval;
9458 }
9459 }
9460 }
9461 else
9462 {
9463 // This is a fake relocation synthesized for a stub. It does not have
9464 // a real symbol. We just look at the LSB of the symbol value to
9465 // determine if the target is THUMB or not.
9466 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9467 }
9468
9469 // Strip LSB if this points to a THUMB target.
9470 if (thumb_bit != 0
9471 && reloc_property->uses_thumb_bit()
9472 && ((psymval->value(object, 0) & 1) != 0))
9473 {
9474 Arm_address stripped_value =
9475 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9476 symval.set_output_value(stripped_value);
9477 psymval = &symval;
9478 }
9479
9480 // To look up relocation stubs, we need to pass the symbol table index of
9481 // a local symbol.
9482 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9483
9484 // Get the addressing origin of the output segment defining the
9485 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9486 Arm_address sym_origin = 0;
9487 if (reloc_property->uses_symbol_base())
9488 {
9489 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9490 // R_ARM_BASE_ABS with the NULL symbol will give the
9491 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9492 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9493 sym_origin = target->got_plt_section()->address();
9494 else if (gsym == NULL)
9495 sym_origin = 0;
9496 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9497 sym_origin = gsym->output_segment()->vaddr();
9498 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9499 sym_origin = gsym->output_data()->address();
9500
9501 // TODO: Assumes the segment base to be zero for the global symbols
9502 // till the proper support for the segment-base-relative addressing
9503 // will be implemented. This is consistent with GNU ld.
9504 }
9505
9506 // For relative addressing relocation, find out the relative address base.
9507 Arm_address relative_address_base = 0;
9508 switch(reloc_property->relative_address_base())
9509 {
9510 case Arm_reloc_property::RAB_NONE:
9511 // Relocations with relative address bases RAB_TLS and RAB_tp are
9512 // handled by relocate_tls. So we do not need to do anything here.
9513 case Arm_reloc_property::RAB_TLS:
9514 case Arm_reloc_property::RAB_tp:
9515 break;
9516 case Arm_reloc_property::RAB_B_S:
9517 relative_address_base = sym_origin;
9518 break;
9519 case Arm_reloc_property::RAB_GOT_ORG:
9520 relative_address_base = target->got_plt_section()->address();
9521 break;
9522 case Arm_reloc_property::RAB_P:
9523 relative_address_base = address;
9524 break;
9525 case Arm_reloc_property::RAB_Pa:
9526 relative_address_base = address & 0xfffffffcU;
9527 break;
9528 default:
9529 gold_unreachable();
9530 }
9531
9532 typename Arm_relocate_functions::Status reloc_status =
9533 Arm_relocate_functions::STATUS_OKAY;
9534 bool check_overflow = reloc_property->checks_overflow();
9535 switch (r_type)
9536 {
9537 case elfcpp::R_ARM_NONE:
9538 break;
9539
9540 case elfcpp::R_ARM_ABS8:
9541 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9542 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9543 break;
9544
9545 case elfcpp::R_ARM_ABS12:
9546 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9547 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9548 break;
9549
9550 case elfcpp::R_ARM_ABS16:
9551 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9552 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9553 break;
9554
9555 case elfcpp::R_ARM_ABS32:
9556 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9557 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9558 thumb_bit);
9559 break;
9560
9561 case elfcpp::R_ARM_ABS32_NOI:
9562 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9563 // No thumb bit for this relocation: (S + A)
9564 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9565 0);
9566 break;
9567
9568 case elfcpp::R_ARM_MOVW_ABS_NC:
9569 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9570 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9571 0, thumb_bit,
9572 check_overflow);
9573 break;
9574
9575 case elfcpp::R_ARM_MOVT_ABS:
9576 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9577 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9578 break;
9579
9580 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9581 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9582 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9583 0, thumb_bit, false);
9584 break;
9585
9586 case elfcpp::R_ARM_THM_MOVT_ABS:
9587 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9588 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9589 psymval, 0);
9590 break;
9591
9592 case elfcpp::R_ARM_MOVW_PREL_NC:
9593 case elfcpp::R_ARM_MOVW_BREL_NC:
9594 case elfcpp::R_ARM_MOVW_BREL:
9595 reloc_status =
9596 Arm_relocate_functions::movw(view, object, psymval,
9597 relative_address_base, thumb_bit,
9598 check_overflow);
9599 break;
9600
9601 case elfcpp::R_ARM_MOVT_PREL:
9602 case elfcpp::R_ARM_MOVT_BREL:
9603 reloc_status =
9604 Arm_relocate_functions::movt(view, object, psymval,
9605 relative_address_base);
9606 break;
9607
9608 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9609 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9610 case elfcpp::R_ARM_THM_MOVW_BREL:
9611 reloc_status =
9612 Arm_relocate_functions::thm_movw(view, object, psymval,
9613 relative_address_base,
9614 thumb_bit, check_overflow);
9615 break;
9616
9617 case elfcpp::R_ARM_THM_MOVT_PREL:
9618 case elfcpp::R_ARM_THM_MOVT_BREL:
9619 reloc_status =
9620 Arm_relocate_functions::thm_movt(view, object, psymval,
9621 relative_address_base);
9622 break;
9623
9624 case elfcpp::R_ARM_REL32:
9625 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9626 address, thumb_bit);
9627 break;
9628
9629 case elfcpp::R_ARM_THM_ABS5:
9630 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9631 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9632 break;
9633
9634 // Thumb long branches.
9635 case elfcpp::R_ARM_THM_CALL:
9636 case elfcpp::R_ARM_THM_XPC22:
9637 case elfcpp::R_ARM_THM_JUMP24:
9638 reloc_status =
9639 Arm_relocate_functions::thumb_branch_common(
9640 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9641 thumb_bit, is_weakly_undefined_without_plt);
9642 break;
9643
9644 case elfcpp::R_ARM_GOTOFF32:
9645 {
9646 Arm_address got_origin;
9647 got_origin = target->got_plt_section()->address();
9648 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9649 got_origin, thumb_bit);
9650 }
9651 break;
9652
9653 case elfcpp::R_ARM_BASE_PREL:
9654 gold_assert(gsym != NULL);
9655 reloc_status =
9656 Arm_relocate_functions::base_prel(view, sym_origin, address);
9657 break;
9658
9659 case elfcpp::R_ARM_BASE_ABS:
9660 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9661 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9662 break;
9663
9664 case elfcpp::R_ARM_GOT_BREL:
9665 gold_assert(have_got_offset);
9666 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9667 break;
9668
9669 case elfcpp::R_ARM_GOT_PREL:
9670 gold_assert(have_got_offset);
9671 // Get the address origin for GOT PLT, which is allocated right
9672 // after the GOT section, to calculate an absolute address of
9673 // the symbol GOT entry (got_origin + got_offset).
9674 Arm_address got_origin;
9675 got_origin = target->got_plt_section()->address();
9676 reloc_status = Arm_relocate_functions::got_prel(view,
9677 got_origin + got_offset,
9678 address);
9679 break;
9680
9681 case elfcpp::R_ARM_PLT32:
9682 case elfcpp::R_ARM_CALL:
9683 case elfcpp::R_ARM_JUMP24:
9684 case elfcpp::R_ARM_XPC25:
9685 gold_assert(gsym == NULL
9686 || gsym->has_plt_offset()
9687 || gsym->final_value_is_known()
9688 || (gsym->is_defined()
9689 && !gsym->is_from_dynobj()
9690 && !gsym->is_preemptible()));
9691 reloc_status =
9692 Arm_relocate_functions::arm_branch_common(
9693 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9694 thumb_bit, is_weakly_undefined_without_plt);
9695 break;
9696
9697 case elfcpp::R_ARM_THM_JUMP19:
9698 reloc_status =
9699 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9700 thumb_bit);
9701 break;
9702
9703 case elfcpp::R_ARM_THM_JUMP6:
9704 reloc_status =
9705 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9706 break;
9707
9708 case elfcpp::R_ARM_THM_JUMP8:
9709 reloc_status =
9710 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9711 break;
9712
9713 case elfcpp::R_ARM_THM_JUMP11:
9714 reloc_status =
9715 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9716 break;
9717
9718 case elfcpp::R_ARM_PREL31:
9719 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9720 address, thumb_bit);
9721 break;
9722
9723 case elfcpp::R_ARM_V4BX:
9724 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9725 {
9726 const bool is_v4bx_interworking =
9727 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9728 reloc_status =
9729 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9730 is_v4bx_interworking);
9731 }
9732 break;
9733
9734 case elfcpp::R_ARM_THM_PC8:
9735 reloc_status =
9736 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9737 break;
9738
9739 case elfcpp::R_ARM_THM_PC12:
9740 reloc_status =
9741 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9742 break;
9743
9744 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9745 reloc_status =
9746 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9747 thumb_bit);
9748 break;
9749
9750 case elfcpp::R_ARM_ALU_PC_G0_NC:
9751 case elfcpp::R_ARM_ALU_PC_G0:
9752 case elfcpp::R_ARM_ALU_PC_G1_NC:
9753 case elfcpp::R_ARM_ALU_PC_G1:
9754 case elfcpp::R_ARM_ALU_PC_G2:
9755 case elfcpp::R_ARM_ALU_SB_G0_NC:
9756 case elfcpp::R_ARM_ALU_SB_G0:
9757 case elfcpp::R_ARM_ALU_SB_G1_NC:
9758 case elfcpp::R_ARM_ALU_SB_G1:
9759 case elfcpp::R_ARM_ALU_SB_G2:
9760 reloc_status =
9761 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9762 reloc_property->group_index(),
9763 relative_address_base,
9764 thumb_bit, check_overflow);
9765 break;
9766
9767 case elfcpp::R_ARM_LDR_PC_G0:
9768 case elfcpp::R_ARM_LDR_PC_G1:
9769 case elfcpp::R_ARM_LDR_PC_G2:
9770 case elfcpp::R_ARM_LDR_SB_G0:
9771 case elfcpp::R_ARM_LDR_SB_G1:
9772 case elfcpp::R_ARM_LDR_SB_G2:
9773 reloc_status =
9774 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9775 reloc_property->group_index(),
9776 relative_address_base);
9777 break;
9778
9779 case elfcpp::R_ARM_LDRS_PC_G0:
9780 case elfcpp::R_ARM_LDRS_PC_G1:
9781 case elfcpp::R_ARM_LDRS_PC_G2:
9782 case elfcpp::R_ARM_LDRS_SB_G0:
9783 case elfcpp::R_ARM_LDRS_SB_G1:
9784 case elfcpp::R_ARM_LDRS_SB_G2:
9785 reloc_status =
9786 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9787 reloc_property->group_index(),
9788 relative_address_base);
9789 break;
9790
9791 case elfcpp::R_ARM_LDC_PC_G0:
9792 case elfcpp::R_ARM_LDC_PC_G1:
9793 case elfcpp::R_ARM_LDC_PC_G2:
9794 case elfcpp::R_ARM_LDC_SB_G0:
9795 case elfcpp::R_ARM_LDC_SB_G1:
9796 case elfcpp::R_ARM_LDC_SB_G2:
9797 reloc_status =
9798 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9799 reloc_property->group_index(),
9800 relative_address_base);
9801 break;
9802
9803 // These are initial tls relocs, which are expected when
9804 // linking.
9805 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9806 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9807 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9808 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9809 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9810 reloc_status =
9811 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9812 view, address, view_size);
9813 break;
9814
9815 // The known and unknown unsupported and/or deprecated relocations.
9816 case elfcpp::R_ARM_PC24:
9817 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9818 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9819 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9820 default:
9821 // Just silently leave the method. We should get an appropriate error
9822 // message in the scan methods.
9823 break;
9824 }
9825
9826 // Report any errors.
9827 switch (reloc_status)
9828 {
9829 case Arm_relocate_functions::STATUS_OKAY:
9830 break;
9831 case Arm_relocate_functions::STATUS_OVERFLOW:
9832 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9833 _("relocation overflow in %s"),
9834 reloc_property->name().c_str());
9835 break;
9836 case Arm_relocate_functions::STATUS_BAD_RELOC:
9837 gold_error_at_location(
9838 relinfo,
9839 relnum,
9840 rel.get_r_offset(),
9841 _("unexpected opcode while processing relocation %s"),
9842 reloc_property->name().c_str());
9843 break;
9844 default:
9845 gold_unreachable();
9846 }
9847
9848 return true;
9849 }
9850
9851 // Perform a TLS relocation.
9852
9853 template<bool big_endian>
9854 inline typename Arm_relocate_functions<big_endian>::Status
9855 Target_arm<big_endian>::Relocate::relocate_tls(
9856 const Relocate_info<32, big_endian>* relinfo,
9857 Target_arm<big_endian>* target,
9858 size_t relnum,
9859 const elfcpp::Rel<32, big_endian>& rel,
9860 unsigned int r_type,
9861 const Sized_symbol<32>* gsym,
9862 const Symbol_value<32>* psymval,
9863 unsigned char* view,
9864 elfcpp::Elf_types<32>::Elf_Addr address,
9865 section_size_type /*view_size*/ )
9866 {
9867 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9868 typedef Relocate_functions<32, big_endian> RelocFuncs;
9869 Output_segment* tls_segment = relinfo->layout->tls_segment();
9870
9871 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9872
9873 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9874
9875 const bool is_final = (gsym == NULL
9876 ? !parameters->options().shared()
9877 : gsym->final_value_is_known());
9878 const tls::Tls_optimization optimized_type
9879 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9880 switch (r_type)
9881 {
9882 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9883 {
9884 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9885 unsigned int got_offset;
9886 if (gsym != NULL)
9887 {
9888 gold_assert(gsym->has_got_offset(got_type));
9889 got_offset = gsym->got_offset(got_type) - target->got_size();
9890 }
9891 else
9892 {
9893 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9894 gold_assert(object->local_has_got_offset(r_sym, got_type));
9895 got_offset = (object->local_got_offset(r_sym, got_type)
9896 - target->got_size());
9897 }
9898 if (optimized_type == tls::TLSOPT_NONE)
9899 {
9900 Arm_address got_entry =
9901 target->got_plt_section()->address() + got_offset;
9902
9903 // Relocate the field with the PC relative offset of the pair of
9904 // GOT entries.
9905 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9906 return ArmRelocFuncs::STATUS_OKAY;
9907 }
9908 }
9909 break;
9910
9911 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9912 if (optimized_type == tls::TLSOPT_NONE)
9913 {
9914 // Relocate the field with the offset of the GOT entry for
9915 // the module index.
9916 unsigned int got_offset;
9917 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9918 - target->got_size());
9919 Arm_address got_entry =
9920 target->got_plt_section()->address() + got_offset;
9921
9922 // Relocate the field with the PC relative offset of the pair of
9923 // GOT entries.
9924 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9925 return ArmRelocFuncs::STATUS_OKAY;
9926 }
9927 break;
9928
9929 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9930 RelocFuncs::rel32_unaligned(view, value);
9931 return ArmRelocFuncs::STATUS_OKAY;
9932
9933 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9934 if (optimized_type == tls::TLSOPT_NONE)
9935 {
9936 // Relocate the field with the offset of the GOT entry for
9937 // the tp-relative offset of the symbol.
9938 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9939 unsigned int got_offset;
9940 if (gsym != NULL)
9941 {
9942 gold_assert(gsym->has_got_offset(got_type));
9943 got_offset = gsym->got_offset(got_type);
9944 }
9945 else
9946 {
9947 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9948 gold_assert(object->local_has_got_offset(r_sym, got_type));
9949 got_offset = object->local_got_offset(r_sym, got_type);
9950 }
9951
9952 // All GOT offsets are relative to the end of the GOT.
9953 got_offset -= target->got_size();
9954
9955 Arm_address got_entry =
9956 target->got_plt_section()->address() + got_offset;
9957
9958 // Relocate the field with the PC relative offset of the GOT entry.
9959 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9960 return ArmRelocFuncs::STATUS_OKAY;
9961 }
9962 break;
9963
9964 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9965 // If we're creating a shared library, a dynamic relocation will
9966 // have been created for this location, so do not apply it now.
9967 if (!parameters->options().shared())
9968 {
9969 gold_assert(tls_segment != NULL);
9970
9971 // $tp points to the TCB, which is followed by the TLS, so we
9972 // need to add TCB size to the offset.
9973 Arm_address aligned_tcb_size =
9974 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9975 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9976
9977 }
9978 return ArmRelocFuncs::STATUS_OKAY;
9979
9980 default:
9981 gold_unreachable();
9982 }
9983
9984 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9985 _("unsupported reloc %u"),
9986 r_type);
9987 return ArmRelocFuncs::STATUS_BAD_RELOC;
9988 }
9989
9990 // Relocate section data.
9991
9992 template<bool big_endian>
9993 void
9994 Target_arm<big_endian>::relocate_section(
9995 const Relocate_info<32, big_endian>* relinfo,
9996 unsigned int sh_type,
9997 const unsigned char* prelocs,
9998 size_t reloc_count,
9999 Output_section* output_section,
10000 bool needs_special_offset_handling,
10001 unsigned char* view,
10002 Arm_address address,
10003 section_size_type view_size,
10004 const Reloc_symbol_changes* reloc_symbol_changes)
10005 {
10006 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10007 gold_assert(sh_type == elfcpp::SHT_REL);
10008
10009 // See if we are relocating a relaxed input section. If so, the view
10010 // covers the whole output section and we need to adjust accordingly.
10011 if (needs_special_offset_handling)
10012 {
10013 const Output_relaxed_input_section* poris =
10014 output_section->find_relaxed_input_section(relinfo->object,
10015 relinfo->data_shndx);
10016 if (poris != NULL)
10017 {
10018 Arm_address section_address = poris->address();
10019 section_size_type section_size = poris->data_size();
10020
10021 gold_assert((section_address >= address)
10022 && ((section_address + section_size)
10023 <= (address + view_size)));
10024
10025 off_t offset = section_address - address;
10026 view += offset;
10027 address += offset;
10028 view_size = section_size;
10029 }
10030 }
10031
10032 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
10033 Arm_relocate, gold::Default_comdat_behavior>(
10034 relinfo,
10035 this,
10036 prelocs,
10037 reloc_count,
10038 output_section,
10039 needs_special_offset_handling,
10040 view,
10041 address,
10042 view_size,
10043 reloc_symbol_changes);
10044 }
10045
10046 // Return the size of a relocation while scanning during a relocatable
10047 // link.
10048
10049 template<bool big_endian>
10050 unsigned int
10051 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10052 unsigned int r_type,
10053 Relobj* object)
10054 {
10055 r_type = get_real_reloc_type(r_type);
10056 const Arm_reloc_property* arp =
10057 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10058 if (arp != NULL)
10059 return arp->size();
10060 else
10061 {
10062 std::string reloc_name =
10063 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10064 gold_error(_("%s: unexpected %s in object file"),
10065 object->name().c_str(), reloc_name.c_str());
10066 return 0;
10067 }
10068 }
10069
10070 // Scan the relocs during a relocatable link.
10071
10072 template<bool big_endian>
10073 void
10074 Target_arm<big_endian>::scan_relocatable_relocs(
10075 Symbol_table* symtab,
10076 Layout* layout,
10077 Sized_relobj_file<32, big_endian>* object,
10078 unsigned int data_shndx,
10079 unsigned int sh_type,
10080 const unsigned char* prelocs,
10081 size_t reloc_count,
10082 Output_section* output_section,
10083 bool needs_special_offset_handling,
10084 size_t local_symbol_count,
10085 const unsigned char* plocal_symbols,
10086 Relocatable_relocs* rr)
10087 {
10088 gold_assert(sh_type == elfcpp::SHT_REL);
10089
10090 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
10091 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10092
10093 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10094 Scan_relocatable_relocs>(
10095 symtab,
10096 layout,
10097 object,
10098 data_shndx,
10099 prelocs,
10100 reloc_count,
10101 output_section,
10102 needs_special_offset_handling,
10103 local_symbol_count,
10104 plocal_symbols,
10105 rr);
10106 }
10107
10108 // Emit relocations for a section.
10109
10110 template<bool big_endian>
10111 void
10112 Target_arm<big_endian>::relocate_relocs(
10113 const Relocate_info<32, big_endian>* relinfo,
10114 unsigned int sh_type,
10115 const unsigned char* prelocs,
10116 size_t reloc_count,
10117 Output_section* output_section,
10118 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10119 const Relocatable_relocs* rr,
10120 unsigned char* view,
10121 Arm_address view_address,
10122 section_size_type view_size,
10123 unsigned char* reloc_view,
10124 section_size_type reloc_view_size)
10125 {
10126 gold_assert(sh_type == elfcpp::SHT_REL);
10127
10128 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
10129 relinfo,
10130 prelocs,
10131 reloc_count,
10132 output_section,
10133 offset_in_output_section,
10134 rr,
10135 view,
10136 view_address,
10137 view_size,
10138 reloc_view,
10139 reloc_view_size);
10140 }
10141
10142 // Perform target-specific processing in a relocatable link. This is
10143 // only used if we use the relocation strategy RELOC_SPECIAL.
10144
10145 template<bool big_endian>
10146 void
10147 Target_arm<big_endian>::relocate_special_relocatable(
10148 const Relocate_info<32, big_endian>* relinfo,
10149 unsigned int sh_type,
10150 const unsigned char* preloc_in,
10151 size_t relnum,
10152 Output_section* output_section,
10153 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10154 unsigned char* view,
10155 elfcpp::Elf_types<32>::Elf_Addr view_address,
10156 section_size_type,
10157 unsigned char* preloc_out)
10158 {
10159 // We can only handle REL type relocation sections.
10160 gold_assert(sh_type == elfcpp::SHT_REL);
10161
10162 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10163 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10164 Reltype_write;
10165 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10166
10167 const Arm_relobj<big_endian>* object =
10168 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10169 const unsigned int local_count = object->local_symbol_count();
10170
10171 Reltype reloc(preloc_in);
10172 Reltype_write reloc_write(preloc_out);
10173
10174 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10175 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10176 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10177
10178 const Arm_reloc_property* arp =
10179 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10180 gold_assert(arp != NULL);
10181
10182 // Get the new symbol index.
10183 // We only use RELOC_SPECIAL strategy in local relocations.
10184 gold_assert(r_sym < local_count);
10185
10186 // We are adjusting a section symbol. We need to find
10187 // the symbol table index of the section symbol for
10188 // the output section corresponding to input section
10189 // in which this symbol is defined.
10190 bool is_ordinary;
10191 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10192 gold_assert(is_ordinary);
10193 Output_section* os = object->output_section(shndx);
10194 gold_assert(os != NULL);
10195 gold_assert(os->needs_symtab_index());
10196 unsigned int new_symndx = os->symtab_index();
10197
10198 // Get the new offset--the location in the output section where
10199 // this relocation should be applied.
10200
10201 Arm_address offset = reloc.get_r_offset();
10202 Arm_address new_offset;
10203 if (offset_in_output_section != invalid_address)
10204 new_offset = offset + offset_in_output_section;
10205 else
10206 {
10207 section_offset_type sot_offset =
10208 convert_types<section_offset_type, Arm_address>(offset);
10209 section_offset_type new_sot_offset =
10210 output_section->output_offset(object, relinfo->data_shndx,
10211 sot_offset);
10212 gold_assert(new_sot_offset != -1);
10213 new_offset = new_sot_offset;
10214 }
10215
10216 // In an object file, r_offset is an offset within the section.
10217 // In an executable or dynamic object, generated by
10218 // --emit-relocs, r_offset is an absolute address.
10219 if (!parameters->options().relocatable())
10220 {
10221 new_offset += view_address;
10222 if (offset_in_output_section != invalid_address)
10223 new_offset -= offset_in_output_section;
10224 }
10225
10226 reloc_write.put_r_offset(new_offset);
10227 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10228
10229 // Handle the reloc addend.
10230 // The relocation uses a section symbol in the input file.
10231 // We are adjusting it to use a section symbol in the output
10232 // file. The input section symbol refers to some address in
10233 // the input section. We need the relocation in the output
10234 // file to refer to that same address. This adjustment to
10235 // the addend is the same calculation we use for a simple
10236 // absolute relocation for the input section symbol.
10237
10238 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10239
10240 // Handle THUMB bit.
10241 Symbol_value<32> symval;
10242 Arm_address thumb_bit =
10243 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10244 if (thumb_bit != 0
10245 && arp->uses_thumb_bit()
10246 && ((psymval->value(object, 0) & 1) != 0))
10247 {
10248 Arm_address stripped_value =
10249 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10250 symval.set_output_value(stripped_value);
10251 psymval = &symval;
10252 }
10253
10254 unsigned char* paddend = view + offset;
10255 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10256 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10257 switch (r_type)
10258 {
10259 case elfcpp::R_ARM_ABS8:
10260 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10261 psymval);
10262 break;
10263
10264 case elfcpp::R_ARM_ABS12:
10265 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10266 psymval);
10267 break;
10268
10269 case elfcpp::R_ARM_ABS16:
10270 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10271 psymval);
10272 break;
10273
10274 case elfcpp::R_ARM_THM_ABS5:
10275 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10276 object,
10277 psymval);
10278 break;
10279
10280 case elfcpp::R_ARM_MOVW_ABS_NC:
10281 case elfcpp::R_ARM_MOVW_PREL_NC:
10282 case elfcpp::R_ARM_MOVW_BREL_NC:
10283 case elfcpp::R_ARM_MOVW_BREL:
10284 reloc_status = Arm_relocate_functions<big_endian>::movw(
10285 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10286 break;
10287
10288 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10289 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10290 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10291 case elfcpp::R_ARM_THM_MOVW_BREL:
10292 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10293 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10294 break;
10295
10296 case elfcpp::R_ARM_THM_CALL:
10297 case elfcpp::R_ARM_THM_XPC22:
10298 case elfcpp::R_ARM_THM_JUMP24:
10299 reloc_status =
10300 Arm_relocate_functions<big_endian>::thumb_branch_common(
10301 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10302 false);
10303 break;
10304
10305 case elfcpp::R_ARM_PLT32:
10306 case elfcpp::R_ARM_CALL:
10307 case elfcpp::R_ARM_JUMP24:
10308 case elfcpp::R_ARM_XPC25:
10309 reloc_status =
10310 Arm_relocate_functions<big_endian>::arm_branch_common(
10311 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10312 false);
10313 break;
10314
10315 case elfcpp::R_ARM_THM_JUMP19:
10316 reloc_status =
10317 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10318 psymval, 0, thumb_bit);
10319 break;
10320
10321 case elfcpp::R_ARM_THM_JUMP6:
10322 reloc_status =
10323 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10324 0);
10325 break;
10326
10327 case elfcpp::R_ARM_THM_JUMP8:
10328 reloc_status =
10329 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10330 0);
10331 break;
10332
10333 case elfcpp::R_ARM_THM_JUMP11:
10334 reloc_status =
10335 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10336 0);
10337 break;
10338
10339 case elfcpp::R_ARM_PREL31:
10340 reloc_status =
10341 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10342 thumb_bit);
10343 break;
10344
10345 case elfcpp::R_ARM_THM_PC8:
10346 reloc_status =
10347 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10348 0);
10349 break;
10350
10351 case elfcpp::R_ARM_THM_PC12:
10352 reloc_status =
10353 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10354 0);
10355 break;
10356
10357 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10358 reloc_status =
10359 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10360 0, thumb_bit);
10361 break;
10362
10363 // These relocation truncate relocation results so we cannot handle them
10364 // in a relocatable link.
10365 case elfcpp::R_ARM_MOVT_ABS:
10366 case elfcpp::R_ARM_THM_MOVT_ABS:
10367 case elfcpp::R_ARM_MOVT_PREL:
10368 case elfcpp::R_ARM_MOVT_BREL:
10369 case elfcpp::R_ARM_THM_MOVT_PREL:
10370 case elfcpp::R_ARM_THM_MOVT_BREL:
10371 case elfcpp::R_ARM_ALU_PC_G0_NC:
10372 case elfcpp::R_ARM_ALU_PC_G0:
10373 case elfcpp::R_ARM_ALU_PC_G1_NC:
10374 case elfcpp::R_ARM_ALU_PC_G1:
10375 case elfcpp::R_ARM_ALU_PC_G2:
10376 case elfcpp::R_ARM_ALU_SB_G0_NC:
10377 case elfcpp::R_ARM_ALU_SB_G0:
10378 case elfcpp::R_ARM_ALU_SB_G1_NC:
10379 case elfcpp::R_ARM_ALU_SB_G1:
10380 case elfcpp::R_ARM_ALU_SB_G2:
10381 case elfcpp::R_ARM_LDR_PC_G0:
10382 case elfcpp::R_ARM_LDR_PC_G1:
10383 case elfcpp::R_ARM_LDR_PC_G2:
10384 case elfcpp::R_ARM_LDR_SB_G0:
10385 case elfcpp::R_ARM_LDR_SB_G1:
10386 case elfcpp::R_ARM_LDR_SB_G2:
10387 case elfcpp::R_ARM_LDRS_PC_G0:
10388 case elfcpp::R_ARM_LDRS_PC_G1:
10389 case elfcpp::R_ARM_LDRS_PC_G2:
10390 case elfcpp::R_ARM_LDRS_SB_G0:
10391 case elfcpp::R_ARM_LDRS_SB_G1:
10392 case elfcpp::R_ARM_LDRS_SB_G2:
10393 case elfcpp::R_ARM_LDC_PC_G0:
10394 case elfcpp::R_ARM_LDC_PC_G1:
10395 case elfcpp::R_ARM_LDC_PC_G2:
10396 case elfcpp::R_ARM_LDC_SB_G0:
10397 case elfcpp::R_ARM_LDC_SB_G1:
10398 case elfcpp::R_ARM_LDC_SB_G2:
10399 gold_error(_("cannot handle %s in a relocatable link"),
10400 arp->name().c_str());
10401 break;
10402
10403 default:
10404 gold_unreachable();
10405 }
10406
10407 // Report any errors.
10408 switch (reloc_status)
10409 {
10410 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10411 break;
10412 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10413 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10414 _("relocation overflow in %s"),
10415 arp->name().c_str());
10416 break;
10417 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10418 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10419 _("unexpected opcode while processing relocation %s"),
10420 arp->name().c_str());
10421 break;
10422 default:
10423 gold_unreachable();
10424 }
10425 }
10426
10427 // Return the value to use for a dynamic symbol which requires special
10428 // treatment. This is how we support equality comparisons of function
10429 // pointers across shared library boundaries, as described in the
10430 // processor specific ABI supplement.
10431
10432 template<bool big_endian>
10433 uint64_t
10434 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10435 {
10436 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10437 return this->plt_address_for_global(gsym);
10438 }
10439
10440 // Map platform-specific relocs to real relocs
10441 //
10442 template<bool big_endian>
10443 unsigned int
10444 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10445 {
10446 switch (r_type)
10447 {
10448 case elfcpp::R_ARM_TARGET1:
10449 // This is either R_ARM_ABS32 or R_ARM_REL32;
10450 return elfcpp::R_ARM_ABS32;
10451
10452 case elfcpp::R_ARM_TARGET2:
10453 // This can be any reloc type but usually is R_ARM_GOT_PREL
10454 return elfcpp::R_ARM_GOT_PREL;
10455
10456 default:
10457 return r_type;
10458 }
10459 }
10460
10461 // Whether if two EABI versions V1 and V2 are compatible.
10462
10463 template<bool big_endian>
10464 bool
10465 Target_arm<big_endian>::are_eabi_versions_compatible(
10466 elfcpp::Elf_Word v1,
10467 elfcpp::Elf_Word v2)
10468 {
10469 // v4 and v5 are the same spec before and after it was released,
10470 // so allow mixing them.
10471 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10472 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10473 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10474 return true;
10475
10476 return v1 == v2;
10477 }
10478
10479 // Combine FLAGS from an input object called NAME and the processor-specific
10480 // flags in the ELF header of the output. Much of this is adapted from the
10481 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10482 // in bfd/elf32-arm.c.
10483
10484 template<bool big_endian>
10485 void
10486 Target_arm<big_endian>::merge_processor_specific_flags(
10487 const std::string& name,
10488 elfcpp::Elf_Word flags)
10489 {
10490 if (this->are_processor_specific_flags_set())
10491 {
10492 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10493
10494 // Nothing to merge if flags equal to those in output.
10495 if (flags == out_flags)
10496 return;
10497
10498 // Complain about various flag mismatches.
10499 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10500 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10501 if (!this->are_eabi_versions_compatible(version1, version2)
10502 && parameters->options().warn_mismatch())
10503 gold_error(_("Source object %s has EABI version %d but output has "
10504 "EABI version %d."),
10505 name.c_str(),
10506 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10507 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10508 }
10509 else
10510 {
10511 // If the input is the default architecture and had the default
10512 // flags then do not bother setting the flags for the output
10513 // architecture, instead allow future merges to do this. If no
10514 // future merges ever set these flags then they will retain their
10515 // uninitialised values, which surprise surprise, correspond
10516 // to the default values.
10517 if (flags == 0)
10518 return;
10519
10520 // This is the first time, just copy the flags.
10521 // We only copy the EABI version for now.
10522 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10523 }
10524 }
10525
10526 // Adjust ELF file header.
10527 template<bool big_endian>
10528 void
10529 Target_arm<big_endian>::do_adjust_elf_header(
10530 unsigned char* view,
10531 int len)
10532 {
10533 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10534
10535 elfcpp::Ehdr<32, big_endian> ehdr(view);
10536 elfcpp::Elf_Word flags = this->processor_specific_flags();
10537 unsigned char e_ident[elfcpp::EI_NIDENT];
10538 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10539
10540 if (elfcpp::arm_eabi_version(flags)
10541 == elfcpp::EF_ARM_EABI_UNKNOWN)
10542 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10543 else
10544 e_ident[elfcpp::EI_OSABI] = 0;
10545 e_ident[elfcpp::EI_ABIVERSION] = 0;
10546
10547 // FIXME: Do EF_ARM_BE8 adjustment.
10548
10549 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10550 // as appropriate.
10551 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10552 {
10553 elfcpp::Elf_Half type = ehdr.get_e_type();
10554 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10555 {
10556 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10557 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10558 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10559 else
10560 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10561 this->set_processor_specific_flags(flags);
10562 }
10563 }
10564 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10565 oehdr.put_e_ident(e_ident);
10566 }
10567
10568 // do_make_elf_object to override the same function in the base class.
10569 // We need to use a target-specific sub-class of
10570 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10571 // Hence we need to have our own ELF object creation.
10572
10573 template<bool big_endian>
10574 Object*
10575 Target_arm<big_endian>::do_make_elf_object(
10576 const std::string& name,
10577 Input_file* input_file,
10578 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10579 {
10580 int et = ehdr.get_e_type();
10581 // ET_EXEC files are valid input for --just-symbols/-R,
10582 // and we treat them as relocatable objects.
10583 if (et == elfcpp::ET_REL
10584 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10585 {
10586 Arm_relobj<big_endian>* obj =
10587 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10588 obj->setup();
10589 return obj;
10590 }
10591 else if (et == elfcpp::ET_DYN)
10592 {
10593 Sized_dynobj<32, big_endian>* obj =
10594 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10595 obj->setup();
10596 return obj;
10597 }
10598 else
10599 {
10600 gold_error(_("%s: unsupported ELF file type %d"),
10601 name.c_str(), et);
10602 return NULL;
10603 }
10604 }
10605
10606 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10607 // Returns -1 if no architecture could be read.
10608 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10609
10610 template<bool big_endian>
10611 int
10612 Target_arm<big_endian>::get_secondary_compatible_arch(
10613 const Attributes_section_data* pasd)
10614 {
10615 const Object_attribute* known_attributes =
10616 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10617
10618 // Note: the tag and its argument below are uleb128 values, though
10619 // currently-defined values fit in one byte for each.
10620 const std::string& sv =
10621 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10622 if (sv.size() == 2
10623 && sv.data()[0] == elfcpp::Tag_CPU_arch
10624 && (sv.data()[1] & 128) != 128)
10625 return sv.data()[1];
10626
10627 // This tag is "safely ignorable", so don't complain if it looks funny.
10628 return -1;
10629 }
10630
10631 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10632 // The tag is removed if ARCH is -1.
10633 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10634
10635 template<bool big_endian>
10636 void
10637 Target_arm<big_endian>::set_secondary_compatible_arch(
10638 Attributes_section_data* pasd,
10639 int arch)
10640 {
10641 Object_attribute* known_attributes =
10642 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10643
10644 if (arch == -1)
10645 {
10646 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10647 return;
10648 }
10649
10650 // Note: the tag and its argument below are uleb128 values, though
10651 // currently-defined values fit in one byte for each.
10652 char sv[3];
10653 sv[0] = elfcpp::Tag_CPU_arch;
10654 gold_assert(arch != 0);
10655 sv[1] = arch;
10656 sv[2] = '\0';
10657
10658 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10659 }
10660
10661 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10662 // into account.
10663 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10664
10665 template<bool big_endian>
10666 int
10667 Target_arm<big_endian>::tag_cpu_arch_combine(
10668 const char* name,
10669 int oldtag,
10670 int* secondary_compat_out,
10671 int newtag,
10672 int secondary_compat)
10673 {
10674 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10675 static const int v6t2[] =
10676 {
10677 T(V6T2), // PRE_V4.
10678 T(V6T2), // V4.
10679 T(V6T2), // V4T.
10680 T(V6T2), // V5T.
10681 T(V6T2), // V5TE.
10682 T(V6T2), // V5TEJ.
10683 T(V6T2), // V6.
10684 T(V7), // V6KZ.
10685 T(V6T2) // V6T2.
10686 };
10687 static const int v6k[] =
10688 {
10689 T(V6K), // PRE_V4.
10690 T(V6K), // V4.
10691 T(V6K), // V4T.
10692 T(V6K), // V5T.
10693 T(V6K), // V5TE.
10694 T(V6K), // V5TEJ.
10695 T(V6K), // V6.
10696 T(V6KZ), // V6KZ.
10697 T(V7), // V6T2.
10698 T(V6K) // V6K.
10699 };
10700 static const int v7[] =
10701 {
10702 T(V7), // PRE_V4.
10703 T(V7), // V4.
10704 T(V7), // V4T.
10705 T(V7), // V5T.
10706 T(V7), // V5TE.
10707 T(V7), // V5TEJ.
10708 T(V7), // V6.
10709 T(V7), // V6KZ.
10710 T(V7), // V6T2.
10711 T(V7), // V6K.
10712 T(V7) // V7.
10713 };
10714 static const int v6_m[] =
10715 {
10716 -1, // PRE_V4.
10717 -1, // V4.
10718 T(V6K), // V4T.
10719 T(V6K), // V5T.
10720 T(V6K), // V5TE.
10721 T(V6K), // V5TEJ.
10722 T(V6K), // V6.
10723 T(V6KZ), // V6KZ.
10724 T(V7), // V6T2.
10725 T(V6K), // V6K.
10726 T(V7), // V7.
10727 T(V6_M) // V6_M.
10728 };
10729 static const int v6s_m[] =
10730 {
10731 -1, // PRE_V4.
10732 -1, // V4.
10733 T(V6K), // V4T.
10734 T(V6K), // V5T.
10735 T(V6K), // V5TE.
10736 T(V6K), // V5TEJ.
10737 T(V6K), // V6.
10738 T(V6KZ), // V6KZ.
10739 T(V7), // V6T2.
10740 T(V6K), // V6K.
10741 T(V7), // V7.
10742 T(V6S_M), // V6_M.
10743 T(V6S_M) // V6S_M.
10744 };
10745 static const int v7e_m[] =
10746 {
10747 -1, // PRE_V4.
10748 -1, // V4.
10749 T(V7E_M), // V4T.
10750 T(V7E_M), // V5T.
10751 T(V7E_M), // V5TE.
10752 T(V7E_M), // V5TEJ.
10753 T(V7E_M), // V6.
10754 T(V7E_M), // V6KZ.
10755 T(V7E_M), // V6T2.
10756 T(V7E_M), // V6K.
10757 T(V7E_M), // V7.
10758 T(V7E_M), // V6_M.
10759 T(V7E_M), // V6S_M.
10760 T(V7E_M) // V7E_M.
10761 };
10762 static const int v8[] =
10763 {
10764 T(V8), // PRE_V4.
10765 T(V8), // V4.
10766 T(V8), // V4T.
10767 T(V8), // V5T.
10768 T(V8), // V5TE.
10769 T(V8), // V5TEJ.
10770 T(V8), // V6.
10771 T(V8), // V6KZ.
10772 T(V8), // V6T2.
10773 T(V8), // V6K.
10774 T(V8), // V7.
10775 T(V8), // V6_M.
10776 T(V8), // V6S_M.
10777 T(V8), // V7E_M.
10778 T(V8) // V8.
10779 };
10780 static const int v4t_plus_v6_m[] =
10781 {
10782 -1, // PRE_V4.
10783 -1, // V4.
10784 T(V4T), // V4T.
10785 T(V5T), // V5T.
10786 T(V5TE), // V5TE.
10787 T(V5TEJ), // V5TEJ.
10788 T(V6), // V6.
10789 T(V6KZ), // V6KZ.
10790 T(V6T2), // V6T2.
10791 T(V6K), // V6K.
10792 T(V7), // V7.
10793 T(V6_M), // V6_M.
10794 T(V6S_M), // V6S_M.
10795 T(V7E_M), // V7E_M.
10796 T(V8), // V8.
10797 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10798 };
10799 static const int* comb[] =
10800 {
10801 v6t2,
10802 v6k,
10803 v7,
10804 v6_m,
10805 v6s_m,
10806 v7e_m,
10807 v8,
10808 // Pseudo-architecture.
10809 v4t_plus_v6_m
10810 };
10811
10812 // Check we've not got a higher architecture than we know about.
10813
10814 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10815 {
10816 gold_error(_("%s: unknown CPU architecture"), name);
10817 return -1;
10818 }
10819
10820 // Override old tag if we have a Tag_also_compatible_with on the output.
10821
10822 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10823 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10824 oldtag = T(V4T_PLUS_V6_M);
10825
10826 // And override the new tag if we have a Tag_also_compatible_with on the
10827 // input.
10828
10829 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10830 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10831 newtag = T(V4T_PLUS_V6_M);
10832
10833 // Architectures before V6KZ add features monotonically.
10834 int tagh = std::max(oldtag, newtag);
10835 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10836 return tagh;
10837
10838 int tagl = std::min(oldtag, newtag);
10839 int result = comb[tagh - T(V6T2)][tagl];
10840
10841 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10842 // as the canonical version.
10843 if (result == T(V4T_PLUS_V6_M))
10844 {
10845 result = T(V4T);
10846 *secondary_compat_out = T(V6_M);
10847 }
10848 else
10849 *secondary_compat_out = -1;
10850
10851 if (result == -1)
10852 {
10853 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10854 name, oldtag, newtag);
10855 return -1;
10856 }
10857
10858 return result;
10859 #undef T
10860 }
10861
10862 // Helper to print AEABI enum tag value.
10863
10864 template<bool big_endian>
10865 std::string
10866 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10867 {
10868 static const char* aeabi_enum_names[] =
10869 { "", "variable-size", "32-bit", "" };
10870 const size_t aeabi_enum_names_size =
10871 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10872
10873 if (value < aeabi_enum_names_size)
10874 return std::string(aeabi_enum_names[value]);
10875 else
10876 {
10877 char buffer[100];
10878 sprintf(buffer, "<unknown value %u>", value);
10879 return std::string(buffer);
10880 }
10881 }
10882
10883 // Return the string value to store in TAG_CPU_name.
10884
10885 template<bool big_endian>
10886 std::string
10887 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10888 {
10889 static const char* name_table[] = {
10890 // These aren't real CPU names, but we can't guess
10891 // that from the architecture version alone.
10892 "Pre v4",
10893 "ARM v4",
10894 "ARM v4T",
10895 "ARM v5T",
10896 "ARM v5TE",
10897 "ARM v5TEJ",
10898 "ARM v6",
10899 "ARM v6KZ",
10900 "ARM v6T2",
10901 "ARM v6K",
10902 "ARM v7",
10903 "ARM v6-M",
10904 "ARM v6S-M",
10905 "ARM v7E-M",
10906 "ARM v8"
10907 };
10908 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10909
10910 if (value < name_table_size)
10911 return std::string(name_table[value]);
10912 else
10913 {
10914 char buffer[100];
10915 sprintf(buffer, "<unknown CPU value %u>", value);
10916 return std::string(buffer);
10917 }
10918 }
10919
10920 // Query attributes object to see if integer divide instructions may be
10921 // present in an object.
10922
10923 template<bool big_endian>
10924 bool
10925 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10926 const Object_attribute* div_attr)
10927 {
10928 switch (div_attr->int_value())
10929 {
10930 case 0:
10931 // Integer divide allowed if instruction contained in
10932 // archetecture.
10933 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10934 return true;
10935 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10936 return true;
10937 else
10938 return false;
10939
10940 case 1:
10941 // Integer divide explicitly prohibited.
10942 return false;
10943
10944 default:
10945 // Unrecognised case - treat as allowing divide everywhere.
10946 case 2:
10947 // Integer divide allowed in ARM state.
10948 return true;
10949 }
10950 }
10951
10952 // Query attributes object to see if integer divide instructions are
10953 // forbidden to be in the object. This is not the inverse of
10954 // attributes_accept_div.
10955
10956 template<bool big_endian>
10957 bool
10958 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10959 {
10960 return div_attr->int_value() == 1;
10961 }
10962
10963 // Merge object attributes from input file called NAME with those of the
10964 // output. The input object attributes are in the object pointed by PASD.
10965
10966 template<bool big_endian>
10967 void
10968 Target_arm<big_endian>::merge_object_attributes(
10969 const char* name,
10970 const Attributes_section_data* pasd)
10971 {
10972 // Return if there is no attributes section data.
10973 if (pasd == NULL)
10974 return;
10975
10976 // If output has no object attributes, just copy.
10977 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10978 if (this->attributes_section_data_ == NULL)
10979 {
10980 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10981 Object_attribute* out_attr =
10982 this->attributes_section_data_->known_attributes(vendor);
10983
10984 // We do not output objects with Tag_MPextension_use_legacy - we move
10985 // the attribute's value to Tag_MPextension_use. */
10986 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10987 {
10988 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10989 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10990 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10991 {
10992 gold_error(_("%s has both the current and legacy "
10993 "Tag_MPextension_use attributes"),
10994 name);
10995 }
10996
10997 out_attr[elfcpp::Tag_MPextension_use] =
10998 out_attr[elfcpp::Tag_MPextension_use_legacy];
10999 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11000 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11001 }
11002
11003 return;
11004 }
11005
11006 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11007 Object_attribute* out_attr =
11008 this->attributes_section_data_->known_attributes(vendor);
11009
11010 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11011 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11012 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11013 {
11014 // Ignore mismatches if the object doesn't use floating point. */
11015 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11016 == elfcpp::AEABI_FP_number_model_none
11017 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11018 != elfcpp::AEABI_FP_number_model_none
11019 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11020 == elfcpp::AEABI_VFP_args_compatible))
11021 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11022 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11023 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11024 != elfcpp::AEABI_FP_number_model_none
11025 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11026 != elfcpp::AEABI_VFP_args_compatible
11027 && parameters->options().warn_mismatch())
11028 gold_error(_("%s uses VFP register arguments, output does not"),
11029 name);
11030 }
11031
11032 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11033 {
11034 // Merge this attribute with existing attributes.
11035 switch (i)
11036 {
11037 case elfcpp::Tag_CPU_raw_name:
11038 case elfcpp::Tag_CPU_name:
11039 // These are merged after Tag_CPU_arch.
11040 break;
11041
11042 case elfcpp::Tag_ABI_optimization_goals:
11043 case elfcpp::Tag_ABI_FP_optimization_goals:
11044 // Use the first value seen.
11045 break;
11046
11047 case elfcpp::Tag_CPU_arch:
11048 {
11049 unsigned int saved_out_attr = out_attr->int_value();
11050 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11051 int secondary_compat =
11052 this->get_secondary_compatible_arch(pasd);
11053 int secondary_compat_out =
11054 this->get_secondary_compatible_arch(
11055 this->attributes_section_data_);
11056 out_attr[i].set_int_value(
11057 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11058 &secondary_compat_out,
11059 in_attr[i].int_value(),
11060 secondary_compat));
11061 this->set_secondary_compatible_arch(this->attributes_section_data_,
11062 secondary_compat_out);
11063
11064 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11065 if (out_attr[i].int_value() == saved_out_attr)
11066 ; // Leave the names alone.
11067 else if (out_attr[i].int_value() == in_attr[i].int_value())
11068 {
11069 // The output architecture has been changed to match the
11070 // input architecture. Use the input names.
11071 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11072 in_attr[elfcpp::Tag_CPU_name].string_value());
11073 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11074 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11075 }
11076 else
11077 {
11078 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11079 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11080 }
11081
11082 // If we still don't have a value for Tag_CPU_name,
11083 // make one up now. Tag_CPU_raw_name remains blank.
11084 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11085 {
11086 const std::string cpu_name =
11087 this->tag_cpu_name_value(out_attr[i].int_value());
11088 // FIXME: If we see an unknown CPU, this will be set
11089 // to "<unknown CPU n>", where n is the attribute value.
11090 // This is different from BFD, which leaves the name alone.
11091 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11092 }
11093 }
11094 break;
11095
11096 case elfcpp::Tag_ARM_ISA_use:
11097 case elfcpp::Tag_THUMB_ISA_use:
11098 case elfcpp::Tag_WMMX_arch:
11099 case elfcpp::Tag_Advanced_SIMD_arch:
11100 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11101 case elfcpp::Tag_ABI_FP_rounding:
11102 case elfcpp::Tag_ABI_FP_exceptions:
11103 case elfcpp::Tag_ABI_FP_user_exceptions:
11104 case elfcpp::Tag_ABI_FP_number_model:
11105 case elfcpp::Tag_VFP_HP_extension:
11106 case elfcpp::Tag_CPU_unaligned_access:
11107 case elfcpp::Tag_T2EE_use:
11108 case elfcpp::Tag_Virtualization_use:
11109 case elfcpp::Tag_MPextension_use:
11110 // Use the largest value specified.
11111 if (in_attr[i].int_value() > out_attr[i].int_value())
11112 out_attr[i].set_int_value(in_attr[i].int_value());
11113 break;
11114
11115 case elfcpp::Tag_ABI_align8_preserved:
11116 case elfcpp::Tag_ABI_PCS_RO_data:
11117 // Use the smallest value specified.
11118 if (in_attr[i].int_value() < out_attr[i].int_value())
11119 out_attr[i].set_int_value(in_attr[i].int_value());
11120 break;
11121
11122 case elfcpp::Tag_ABI_align8_needed:
11123 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11124 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11125 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11126 == 0)))
11127 {
11128 // This error message should be enabled once all non-conforming
11129 // binaries in the toolchain have had the attributes set
11130 // properly.
11131 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11132 // name);
11133 }
11134 // Fall through.
11135 case elfcpp::Tag_ABI_FP_denormal:
11136 case elfcpp::Tag_ABI_PCS_GOT_use:
11137 {
11138 // These tags have 0 = don't care, 1 = strong requirement,
11139 // 2 = weak requirement.
11140 static const int order_021[3] = {0, 2, 1};
11141
11142 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11143 // value if greater than 2 (for future-proofing).
11144 if ((in_attr[i].int_value() > 2
11145 && in_attr[i].int_value() > out_attr[i].int_value())
11146 || (in_attr[i].int_value() <= 2
11147 && out_attr[i].int_value() <= 2
11148 && (order_021[in_attr[i].int_value()]
11149 > order_021[out_attr[i].int_value()])))
11150 out_attr[i].set_int_value(in_attr[i].int_value());
11151 }
11152 break;
11153
11154 case elfcpp::Tag_CPU_arch_profile:
11155 if (out_attr[i].int_value() != in_attr[i].int_value())
11156 {
11157 // 0 will merge with anything.
11158 // 'A' and 'S' merge to 'A'.
11159 // 'R' and 'S' merge to 'R'.
11160 // 'M' and 'A|R|S' is an error.
11161 if (out_attr[i].int_value() == 0
11162 || (out_attr[i].int_value() == 'S'
11163 && (in_attr[i].int_value() == 'A'
11164 || in_attr[i].int_value() == 'R')))
11165 out_attr[i].set_int_value(in_attr[i].int_value());
11166 else if (in_attr[i].int_value() == 0
11167 || (in_attr[i].int_value() == 'S'
11168 && (out_attr[i].int_value() == 'A'
11169 || out_attr[i].int_value() == 'R')))
11170 ; // Do nothing.
11171 else if (parameters->options().warn_mismatch())
11172 {
11173 gold_error
11174 (_("conflicting architecture profiles %c/%c"),
11175 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11176 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11177 }
11178 }
11179 break;
11180 case elfcpp::Tag_VFP_arch:
11181 {
11182 static const struct
11183 {
11184 int ver;
11185 int regs;
11186 } vfp_versions[7] =
11187 {
11188 {0, 0},
11189 {1, 16},
11190 {2, 16},
11191 {3, 32},
11192 {3, 16},
11193 {4, 32},
11194 {4, 16}
11195 };
11196
11197 // Values greater than 6 aren't defined, so just pick the
11198 // biggest.
11199 if (in_attr[i].int_value() > 6
11200 && in_attr[i].int_value() > out_attr[i].int_value())
11201 {
11202 *out_attr = *in_attr;
11203 break;
11204 }
11205 // The output uses the superset of input features
11206 // (ISA version) and registers.
11207 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11208 vfp_versions[out_attr[i].int_value()].ver);
11209 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11210 vfp_versions[out_attr[i].int_value()].regs);
11211 // This assumes all possible supersets are also a valid
11212 // options.
11213 int newval;
11214 for (newval = 6; newval > 0; newval--)
11215 {
11216 if (regs == vfp_versions[newval].regs
11217 && ver == vfp_versions[newval].ver)
11218 break;
11219 }
11220 out_attr[i].set_int_value(newval);
11221 }
11222 break;
11223 case elfcpp::Tag_PCS_config:
11224 if (out_attr[i].int_value() == 0)
11225 out_attr[i].set_int_value(in_attr[i].int_value());
11226 else if (in_attr[i].int_value() != 0
11227 && out_attr[i].int_value() != 0
11228 && parameters->options().warn_mismatch())
11229 {
11230 // It's sometimes ok to mix different configs, so this is only
11231 // a warning.
11232 gold_warning(_("%s: conflicting platform configuration"), name);
11233 }
11234 break;
11235 case elfcpp::Tag_ABI_PCS_R9_use:
11236 if (in_attr[i].int_value() != out_attr[i].int_value()
11237 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11238 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11239 && parameters->options().warn_mismatch())
11240 {
11241 gold_error(_("%s: conflicting use of R9"), name);
11242 }
11243 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11244 out_attr[i].set_int_value(in_attr[i].int_value());
11245 break;
11246 case elfcpp::Tag_ABI_PCS_RW_data:
11247 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11248 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11249 != elfcpp::AEABI_R9_SB)
11250 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11251 != elfcpp::AEABI_R9_unused)
11252 && parameters->options().warn_mismatch())
11253 {
11254 gold_error(_("%s: SB relative addressing conflicts with use "
11255 "of R9"),
11256 name);
11257 }
11258 // Use the smallest value specified.
11259 if (in_attr[i].int_value() < out_attr[i].int_value())
11260 out_attr[i].set_int_value(in_attr[i].int_value());
11261 break;
11262 case elfcpp::Tag_ABI_PCS_wchar_t:
11263 if (out_attr[i].int_value()
11264 && in_attr[i].int_value()
11265 && out_attr[i].int_value() != in_attr[i].int_value()
11266 && parameters->options().warn_mismatch()
11267 && parameters->options().wchar_size_warning())
11268 {
11269 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11270 "use %u-byte wchar_t; use of wchar_t values "
11271 "across objects may fail"),
11272 name, in_attr[i].int_value(),
11273 out_attr[i].int_value());
11274 }
11275 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11276 out_attr[i].set_int_value(in_attr[i].int_value());
11277 break;
11278 case elfcpp::Tag_ABI_enum_size:
11279 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11280 {
11281 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11282 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11283 {
11284 // The existing object is compatible with anything.
11285 // Use whatever requirements the new object has.
11286 out_attr[i].set_int_value(in_attr[i].int_value());
11287 }
11288 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11289 && out_attr[i].int_value() != in_attr[i].int_value()
11290 && parameters->options().warn_mismatch()
11291 && parameters->options().enum_size_warning())
11292 {
11293 unsigned int in_value = in_attr[i].int_value();
11294 unsigned int out_value = out_attr[i].int_value();
11295 gold_warning(_("%s uses %s enums yet the output is to use "
11296 "%s enums; use of enum values across objects "
11297 "may fail"),
11298 name,
11299 this->aeabi_enum_name(in_value).c_str(),
11300 this->aeabi_enum_name(out_value).c_str());
11301 }
11302 }
11303 break;
11304 case elfcpp::Tag_ABI_VFP_args:
11305 // Already done.
11306 break;
11307 case elfcpp::Tag_ABI_WMMX_args:
11308 if (in_attr[i].int_value() != out_attr[i].int_value()
11309 && parameters->options().warn_mismatch())
11310 {
11311 gold_error(_("%s uses iWMMXt register arguments, output does "
11312 "not"),
11313 name);
11314 }
11315 break;
11316 case Object_attribute::Tag_compatibility:
11317 // Merged in target-independent code.
11318 break;
11319 case elfcpp::Tag_ABI_HardFP_use:
11320 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11321 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11322 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11323 out_attr[i].set_int_value(3);
11324 else if (in_attr[i].int_value() > out_attr[i].int_value())
11325 out_attr[i].set_int_value(in_attr[i].int_value());
11326 break;
11327 case elfcpp::Tag_ABI_FP_16bit_format:
11328 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11329 {
11330 if (in_attr[i].int_value() != out_attr[i].int_value()
11331 && parameters->options().warn_mismatch())
11332 gold_error(_("fp16 format mismatch between %s and output"),
11333 name);
11334 }
11335 if (in_attr[i].int_value() != 0)
11336 out_attr[i].set_int_value(in_attr[i].int_value());
11337 break;
11338
11339 case elfcpp::Tag_DIV_use:
11340 {
11341 // A value of zero on input means that the divide
11342 // instruction may be used if available in the base
11343 // architecture as specified via Tag_CPU_arch and
11344 // Tag_CPU_arch_profile. A value of 1 means that the user
11345 // did not want divide instructions. A value of 2
11346 // explicitly means that divide instructions were allowed
11347 // in ARM and Thumb state.
11348 int arch = this->
11349 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11350 int_value();
11351 int profile = this->
11352 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11353 int_value();
11354 if (in_attr[i].int_value() == out_attr[i].int_value())
11355 {
11356 // Do nothing.
11357 }
11358 else if (attributes_forbid_div(&in_attr[i])
11359 && !attributes_accept_div(arch, profile, &out_attr[i]))
11360 out_attr[i].set_int_value(1);
11361 else if (attributes_forbid_div(&out_attr[i])
11362 && attributes_accept_div(arch, profile, &in_attr[i]))
11363 out_attr[i].set_int_value(in_attr[i].int_value());
11364 else if (in_attr[i].int_value() == 2)
11365 out_attr[i].set_int_value(in_attr[i].int_value());
11366 }
11367 break;
11368
11369 case elfcpp::Tag_MPextension_use_legacy:
11370 // We don't output objects with Tag_MPextension_use_legacy - we
11371 // move the value to Tag_MPextension_use.
11372 if (in_attr[i].int_value() != 0
11373 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11374 {
11375 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11376 != in_attr[i].int_value())
11377 {
11378 gold_error(_("%s has has both the current and legacy "
11379 "Tag_MPextension_use attributes"),
11380 name);
11381 }
11382 }
11383
11384 if (in_attr[i].int_value()
11385 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11386 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11387
11388 break;
11389
11390 case elfcpp::Tag_nodefaults:
11391 // This tag is set if it exists, but the value is unused (and is
11392 // typically zero). We don't actually need to do anything here -
11393 // the merge happens automatically when the type flags are merged
11394 // below.
11395 break;
11396 case elfcpp::Tag_also_compatible_with:
11397 // Already done in Tag_CPU_arch.
11398 break;
11399 case elfcpp::Tag_conformance:
11400 // Keep the attribute if it matches. Throw it away otherwise.
11401 // No attribute means no claim to conform.
11402 if (in_attr[i].string_value() != out_attr[i].string_value())
11403 out_attr[i].set_string_value("");
11404 break;
11405
11406 default:
11407 {
11408 const char* err_object = NULL;
11409
11410 // The "known_obj_attributes" table does contain some undefined
11411 // attributes. Ensure that there are unused.
11412 if (out_attr[i].int_value() != 0
11413 || out_attr[i].string_value() != "")
11414 err_object = "output";
11415 else if (in_attr[i].int_value() != 0
11416 || in_attr[i].string_value() != "")
11417 err_object = name;
11418
11419 if (err_object != NULL
11420 && parameters->options().warn_mismatch())
11421 {
11422 // Attribute numbers >=64 (mod 128) can be safely ignored.
11423 if ((i & 127) < 64)
11424 gold_error(_("%s: unknown mandatory EABI object attribute "
11425 "%d"),
11426 err_object, i);
11427 else
11428 gold_warning(_("%s: unknown EABI object attribute %d"),
11429 err_object, i);
11430 }
11431
11432 // Only pass on attributes that match in both inputs.
11433 if (!in_attr[i].matches(out_attr[i]))
11434 {
11435 out_attr[i].set_int_value(0);
11436 out_attr[i].set_string_value("");
11437 }
11438 }
11439 }
11440
11441 // If out_attr was copied from in_attr then it won't have a type yet.
11442 if (in_attr[i].type() && !out_attr[i].type())
11443 out_attr[i].set_type(in_attr[i].type());
11444 }
11445
11446 // Merge Tag_compatibility attributes and any common GNU ones.
11447 this->attributes_section_data_->merge(name, pasd);
11448
11449 // Check for any attributes not known on ARM.
11450 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11451 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11452 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11453 Other_attributes* out_other_attributes =
11454 this->attributes_section_data_->other_attributes(vendor);
11455 Other_attributes::iterator out_iter = out_other_attributes->begin();
11456
11457 while (in_iter != in_other_attributes->end()
11458 || out_iter != out_other_attributes->end())
11459 {
11460 const char* err_object = NULL;
11461 int err_tag = 0;
11462
11463 // The tags for each list are in numerical order.
11464 // If the tags are equal, then merge.
11465 if (out_iter != out_other_attributes->end()
11466 && (in_iter == in_other_attributes->end()
11467 || in_iter->first > out_iter->first))
11468 {
11469 // This attribute only exists in output. We can't merge, and we
11470 // don't know what the tag means, so delete it.
11471 err_object = "output";
11472 err_tag = out_iter->first;
11473 int saved_tag = out_iter->first;
11474 delete out_iter->second;
11475 out_other_attributes->erase(out_iter);
11476 out_iter = out_other_attributes->upper_bound(saved_tag);
11477 }
11478 else if (in_iter != in_other_attributes->end()
11479 && (out_iter != out_other_attributes->end()
11480 || in_iter->first < out_iter->first))
11481 {
11482 // This attribute only exists in input. We can't merge, and we
11483 // don't know what the tag means, so ignore it.
11484 err_object = name;
11485 err_tag = in_iter->first;
11486 ++in_iter;
11487 }
11488 else // The tags are equal.
11489 {
11490 // As present, all attributes in the list are unknown, and
11491 // therefore can't be merged meaningfully.
11492 err_object = "output";
11493 err_tag = out_iter->first;
11494
11495 // Only pass on attributes that match in both inputs.
11496 if (!in_iter->second->matches(*(out_iter->second)))
11497 {
11498 // No match. Delete the attribute.
11499 int saved_tag = out_iter->first;
11500 delete out_iter->second;
11501 out_other_attributes->erase(out_iter);
11502 out_iter = out_other_attributes->upper_bound(saved_tag);
11503 }
11504 else
11505 {
11506 // Matched. Keep the attribute and move to the next.
11507 ++out_iter;
11508 ++in_iter;
11509 }
11510 }
11511
11512 if (err_object && parameters->options().warn_mismatch())
11513 {
11514 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11515 if ((err_tag & 127) < 64)
11516 {
11517 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11518 err_object, err_tag);
11519 }
11520 else
11521 {
11522 gold_warning(_("%s: unknown EABI object attribute %d"),
11523 err_object, err_tag);
11524 }
11525 }
11526 }
11527 }
11528
11529 // Stub-generation methods for Target_arm.
11530
11531 // Make a new Arm_input_section object.
11532
11533 template<bool big_endian>
11534 Arm_input_section<big_endian>*
11535 Target_arm<big_endian>::new_arm_input_section(
11536 Relobj* relobj,
11537 unsigned int shndx)
11538 {
11539 Section_id sid(relobj, shndx);
11540
11541 Arm_input_section<big_endian>* arm_input_section =
11542 new Arm_input_section<big_endian>(relobj, shndx);
11543 arm_input_section->init();
11544
11545 // Register new Arm_input_section in map for look-up.
11546 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11547 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11548
11549 // Make sure that it we have not created another Arm_input_section
11550 // for this input section already.
11551 gold_assert(ins.second);
11552
11553 return arm_input_section;
11554 }
11555
11556 // Find the Arm_input_section object corresponding to the SHNDX-th input
11557 // section of RELOBJ.
11558
11559 template<bool big_endian>
11560 Arm_input_section<big_endian>*
11561 Target_arm<big_endian>::find_arm_input_section(
11562 Relobj* relobj,
11563 unsigned int shndx) const
11564 {
11565 Section_id sid(relobj, shndx);
11566 typename Arm_input_section_map::const_iterator p =
11567 this->arm_input_section_map_.find(sid);
11568 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11569 }
11570
11571 // Make a new stub table.
11572
11573 template<bool big_endian>
11574 Stub_table<big_endian>*
11575 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11576 {
11577 Stub_table<big_endian>* stub_table =
11578 new Stub_table<big_endian>(owner);
11579 this->stub_tables_.push_back(stub_table);
11580
11581 stub_table->set_address(owner->address() + owner->data_size());
11582 stub_table->set_file_offset(owner->offset() + owner->data_size());
11583 stub_table->finalize_data_size();
11584
11585 return stub_table;
11586 }
11587
11588 // Scan a relocation for stub generation.
11589
11590 template<bool big_endian>
11591 void
11592 Target_arm<big_endian>::scan_reloc_for_stub(
11593 const Relocate_info<32, big_endian>* relinfo,
11594 unsigned int r_type,
11595 const Sized_symbol<32>* gsym,
11596 unsigned int r_sym,
11597 const Symbol_value<32>* psymval,
11598 elfcpp::Elf_types<32>::Elf_Swxword addend,
11599 Arm_address address)
11600 {
11601 const Arm_relobj<big_endian>* arm_relobj =
11602 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11603
11604 bool target_is_thumb;
11605 Symbol_value<32> symval;
11606 if (gsym != NULL)
11607 {
11608 // This is a global symbol. Determine if we use PLT and if the
11609 // final target is THUMB.
11610 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11611 {
11612 // This uses a PLT, change the symbol value.
11613 symval.set_output_value(this->plt_address_for_global(gsym));
11614 psymval = &symval;
11615 target_is_thumb = false;
11616 }
11617 else if (gsym->is_undefined())
11618 // There is no need to generate a stub symbol is undefined.
11619 return;
11620 else
11621 {
11622 target_is_thumb =
11623 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11624 || (gsym->type() == elfcpp::STT_FUNC
11625 && !gsym->is_undefined()
11626 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11627 }
11628 }
11629 else
11630 {
11631 // This is a local symbol. Determine if the final target is THUMB.
11632 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11633 }
11634
11635 // Strip LSB if this points to a THUMB target.
11636 const Arm_reloc_property* reloc_property =
11637 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11638 gold_assert(reloc_property != NULL);
11639 if (target_is_thumb
11640 && reloc_property->uses_thumb_bit()
11641 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11642 {
11643 Arm_address stripped_value =
11644 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11645 symval.set_output_value(stripped_value);
11646 psymval = &symval;
11647 }
11648
11649 // Get the symbol value.
11650 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11651
11652 // Owing to pipelining, the PC relative branches below actually skip
11653 // two instructions when the branch offset is 0.
11654 Arm_address destination;
11655 switch (r_type)
11656 {
11657 case elfcpp::R_ARM_CALL:
11658 case elfcpp::R_ARM_JUMP24:
11659 case elfcpp::R_ARM_PLT32:
11660 // ARM branches.
11661 destination = value + addend + 8;
11662 break;
11663 case elfcpp::R_ARM_THM_CALL:
11664 case elfcpp::R_ARM_THM_XPC22:
11665 case elfcpp::R_ARM_THM_JUMP24:
11666 case elfcpp::R_ARM_THM_JUMP19:
11667 // THUMB branches.
11668 destination = value + addend + 4;
11669 break;
11670 default:
11671 gold_unreachable();
11672 }
11673
11674 Reloc_stub* stub = NULL;
11675 Stub_type stub_type =
11676 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11677 target_is_thumb);
11678 if (stub_type != arm_stub_none)
11679 {
11680 // Try looking up an existing stub from a stub table.
11681 Stub_table<big_endian>* stub_table =
11682 arm_relobj->stub_table(relinfo->data_shndx);
11683 gold_assert(stub_table != NULL);
11684
11685 // Locate stub by destination.
11686 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11687
11688 // Create a stub if there is not one already
11689 stub = stub_table->find_reloc_stub(stub_key);
11690 if (stub == NULL)
11691 {
11692 // create a new stub and add it to stub table.
11693 stub = this->stub_factory().make_reloc_stub(stub_type);
11694 stub_table->add_reloc_stub(stub, stub_key);
11695 }
11696
11697 // Record the destination address.
11698 stub->set_destination_address(destination
11699 | (target_is_thumb ? 1 : 0));
11700 }
11701
11702 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11703 if (this->fix_cortex_a8_
11704 && (r_type == elfcpp::R_ARM_THM_JUMP24
11705 || r_type == elfcpp::R_ARM_THM_JUMP19
11706 || r_type == elfcpp::R_ARM_THM_CALL
11707 || r_type == elfcpp::R_ARM_THM_XPC22)
11708 && (address & 0xfffU) == 0xffeU)
11709 {
11710 // Found a candidate. Note we haven't checked the destination is
11711 // within 4K here: if we do so (and don't create a record) we can't
11712 // tell that a branch should have been relocated when scanning later.
11713 this->cortex_a8_relocs_info_[address] =
11714 new Cortex_a8_reloc(stub, r_type,
11715 destination | (target_is_thumb ? 1 : 0));
11716 }
11717 }
11718
11719 // This function scans a relocation sections for stub generation.
11720 // The template parameter Relocate must be a class type which provides
11721 // a single function, relocate(), which implements the machine
11722 // specific part of a relocation.
11723
11724 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11725 // SHT_REL or SHT_RELA.
11726
11727 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11728 // of relocs. OUTPUT_SECTION is the output section.
11729 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11730 // mapped to output offsets.
11731
11732 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11733 // VIEW_SIZE is the size. These refer to the input section, unless
11734 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11735 // the output section.
11736
11737 template<bool big_endian>
11738 template<int sh_type>
11739 void inline
11740 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11741 const Relocate_info<32, big_endian>* relinfo,
11742 const unsigned char* prelocs,
11743 size_t reloc_count,
11744 Output_section* output_section,
11745 bool needs_special_offset_handling,
11746 const unsigned char* view,
11747 elfcpp::Elf_types<32>::Elf_Addr view_address,
11748 section_size_type)
11749 {
11750 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11751 const int reloc_size =
11752 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11753
11754 Arm_relobj<big_endian>* arm_object =
11755 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11756 unsigned int local_count = arm_object->local_symbol_count();
11757
11758 gold::Default_comdat_behavior default_comdat_behavior;
11759 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11760
11761 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11762 {
11763 Reltype reloc(prelocs);
11764
11765 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11766 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11767 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11768
11769 r_type = this->get_real_reloc_type(r_type);
11770
11771 // Only a few relocation types need stubs.
11772 if ((r_type != elfcpp::R_ARM_CALL)
11773 && (r_type != elfcpp::R_ARM_JUMP24)
11774 && (r_type != elfcpp::R_ARM_PLT32)
11775 && (r_type != elfcpp::R_ARM_THM_CALL)
11776 && (r_type != elfcpp::R_ARM_THM_XPC22)
11777 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11778 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11779 && (r_type != elfcpp::R_ARM_V4BX))
11780 continue;
11781
11782 section_offset_type offset =
11783 convert_to_section_size_type(reloc.get_r_offset());
11784
11785 if (needs_special_offset_handling)
11786 {
11787 offset = output_section->output_offset(relinfo->object,
11788 relinfo->data_shndx,
11789 offset);
11790 if (offset == -1)
11791 continue;
11792 }
11793
11794 // Create a v4bx stub if --fix-v4bx-interworking is used.
11795 if (r_type == elfcpp::R_ARM_V4BX)
11796 {
11797 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11798 {
11799 // Get the BX instruction.
11800 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11801 const Valtype* wv =
11802 reinterpret_cast<const Valtype*>(view + offset);
11803 elfcpp::Elf_types<32>::Elf_Swxword insn =
11804 elfcpp::Swap<32, big_endian>::readval(wv);
11805 const uint32_t reg = (insn & 0xf);
11806
11807 if (reg < 0xf)
11808 {
11809 // Try looking up an existing stub from a stub table.
11810 Stub_table<big_endian>* stub_table =
11811 arm_object->stub_table(relinfo->data_shndx);
11812 gold_assert(stub_table != NULL);
11813
11814 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11815 {
11816 // create a new stub and add it to stub table.
11817 Arm_v4bx_stub* stub =
11818 this->stub_factory().make_arm_v4bx_stub(reg);
11819 gold_assert(stub != NULL);
11820 stub_table->add_arm_v4bx_stub(stub);
11821 }
11822 }
11823 }
11824 continue;
11825 }
11826
11827 // Get the addend.
11828 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11829 elfcpp::Elf_types<32>::Elf_Swxword addend =
11830 stub_addend_reader(r_type, view + offset, reloc);
11831
11832 const Sized_symbol<32>* sym;
11833
11834 Symbol_value<32> symval;
11835 const Symbol_value<32> *psymval;
11836 bool is_defined_in_discarded_section;
11837 unsigned int shndx;
11838 if (r_sym < local_count)
11839 {
11840 sym = NULL;
11841 psymval = arm_object->local_symbol(r_sym);
11842
11843 // If the local symbol belongs to a section we are discarding,
11844 // and that section is a debug section, try to find the
11845 // corresponding kept section and map this symbol to its
11846 // counterpart in the kept section. The symbol must not
11847 // correspond to a section we are folding.
11848 bool is_ordinary;
11849 shndx = psymval->input_shndx(&is_ordinary);
11850 is_defined_in_discarded_section =
11851 (is_ordinary
11852 && shndx != elfcpp::SHN_UNDEF
11853 && !arm_object->is_section_included(shndx)
11854 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11855
11856 // We need to compute the would-be final value of this local
11857 // symbol.
11858 if (!is_defined_in_discarded_section)
11859 {
11860 typedef Sized_relobj_file<32, big_endian> ObjType;
11861 typename ObjType::Compute_final_local_value_status status =
11862 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11863 relinfo->symtab);
11864 if (status == ObjType::CFLV_OK)
11865 {
11866 // Currently we cannot handle a branch to a target in
11867 // a merged section. If this is the case, issue an error
11868 // and also free the merge symbol value.
11869 if (!symval.has_output_value())
11870 {
11871 const std::string& section_name =
11872 arm_object->section_name(shndx);
11873 arm_object->error(_("cannot handle branch to local %u "
11874 "in a merged section %s"),
11875 r_sym, section_name.c_str());
11876 }
11877 psymval = &symval;
11878 }
11879 else
11880 {
11881 // We cannot determine the final value.
11882 continue;
11883 }
11884 }
11885 }
11886 else
11887 {
11888 const Symbol* gsym;
11889 gsym = arm_object->global_symbol(r_sym);
11890 gold_assert(gsym != NULL);
11891 if (gsym->is_forwarder())
11892 gsym = relinfo->symtab->resolve_forwards(gsym);
11893
11894 sym = static_cast<const Sized_symbol<32>*>(gsym);
11895 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11896 symval.set_output_symtab_index(sym->symtab_index());
11897 else
11898 symval.set_no_output_symtab_entry();
11899
11900 // We need to compute the would-be final value of this global
11901 // symbol.
11902 const Symbol_table* symtab = relinfo->symtab;
11903 const Sized_symbol<32>* sized_symbol =
11904 symtab->get_sized_symbol<32>(gsym);
11905 Symbol_table::Compute_final_value_status status;
11906 Arm_address value =
11907 symtab->compute_final_value<32>(sized_symbol, &status);
11908
11909 // Skip this if the symbol has not output section.
11910 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11911 continue;
11912 symval.set_output_value(value);
11913
11914 if (gsym->type() == elfcpp::STT_TLS)
11915 symval.set_is_tls_symbol();
11916 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11917 symval.set_is_ifunc_symbol();
11918 psymval = &symval;
11919
11920 is_defined_in_discarded_section =
11921 (gsym->is_defined_in_discarded_section()
11922 && gsym->is_undefined());
11923 shndx = 0;
11924 }
11925
11926 Symbol_value<32> symval2;
11927 if (is_defined_in_discarded_section)
11928 {
11929 if (comdat_behavior == CB_UNDETERMINED)
11930 {
11931 std::string name = arm_object->section_name(relinfo->data_shndx);
11932 comdat_behavior = default_comdat_behavior.get(name.c_str());
11933 }
11934 if (comdat_behavior == CB_PRETEND)
11935 {
11936 // FIXME: This case does not work for global symbols.
11937 // We have no place to store the original section index.
11938 // Fortunately this does not matter for comdat sections,
11939 // only for sections explicitly discarded by a linker
11940 // script.
11941 bool found;
11942 typename elfcpp::Elf_types<32>::Elf_Addr value =
11943 arm_object->map_to_kept_section(shndx, &found);
11944 if (found)
11945 symval2.set_output_value(value + psymval->input_value());
11946 else
11947 symval2.set_output_value(0);
11948 }
11949 else
11950 {
11951 if (comdat_behavior == CB_WARNING)
11952 gold_warning_at_location(relinfo, i, offset,
11953 _("relocation refers to discarded "
11954 "section"));
11955 symval2.set_output_value(0);
11956 }
11957 symval2.set_no_output_symtab_entry();
11958 psymval = &symval2;
11959 }
11960
11961 // If symbol is a section symbol, we don't know the actual type of
11962 // destination. Give up.
11963 if (psymval->is_section_symbol())
11964 continue;
11965
11966 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11967 addend, view_address + offset);
11968 }
11969 }
11970
11971 // Scan an input section for stub generation.
11972
11973 template<bool big_endian>
11974 void
11975 Target_arm<big_endian>::scan_section_for_stubs(
11976 const Relocate_info<32, big_endian>* relinfo,
11977 unsigned int sh_type,
11978 const unsigned char* prelocs,
11979 size_t reloc_count,
11980 Output_section* output_section,
11981 bool needs_special_offset_handling,
11982 const unsigned char* view,
11983 Arm_address view_address,
11984 section_size_type view_size)
11985 {
11986 if (sh_type == elfcpp::SHT_REL)
11987 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11988 relinfo,
11989 prelocs,
11990 reloc_count,
11991 output_section,
11992 needs_special_offset_handling,
11993 view,
11994 view_address,
11995 view_size);
11996 else if (sh_type == elfcpp::SHT_RELA)
11997 // We do not support RELA type relocations yet. This is provided for
11998 // completeness.
11999 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12000 relinfo,
12001 prelocs,
12002 reloc_count,
12003 output_section,
12004 needs_special_offset_handling,
12005 view,
12006 view_address,
12007 view_size);
12008 else
12009 gold_unreachable();
12010 }
12011
12012 // Group input sections for stub generation.
12013 //
12014 // We group input sections in an output section so that the total size,
12015 // including any padding space due to alignment is smaller than GROUP_SIZE
12016 // unless the only input section in group is bigger than GROUP_SIZE already.
12017 // Then an ARM stub table is created to follow the last input section
12018 // in group. For each group an ARM stub table is created an is placed
12019 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12020 // extend the group after the stub table.
12021
12022 template<bool big_endian>
12023 void
12024 Target_arm<big_endian>::group_sections(
12025 Layout* layout,
12026 section_size_type group_size,
12027 bool stubs_always_after_branch,
12028 const Task* task)
12029 {
12030 // Group input sections and insert stub table
12031 Layout::Section_list section_list;
12032 layout->get_executable_sections(&section_list);
12033 for (Layout::Section_list::const_iterator p = section_list.begin();
12034 p != section_list.end();
12035 ++p)
12036 {
12037 Arm_output_section<big_endian>* output_section =
12038 Arm_output_section<big_endian>::as_arm_output_section(*p);
12039 output_section->group_sections(group_size, stubs_always_after_branch,
12040 this, task);
12041 }
12042 }
12043
12044 // Relaxation hook. This is where we do stub generation.
12045
12046 template<bool big_endian>
12047 bool
12048 Target_arm<big_endian>::do_relax(
12049 int pass,
12050 const Input_objects* input_objects,
12051 Symbol_table* symtab,
12052 Layout* layout,
12053 const Task* task)
12054 {
12055 // No need to generate stubs if this is a relocatable link.
12056 gold_assert(!parameters->options().relocatable());
12057
12058 // If this is the first pass, we need to group input sections into
12059 // stub groups.
12060 bool done_exidx_fixup = false;
12061 typedef typename Stub_table_list::iterator Stub_table_iterator;
12062 if (pass == 1)
12063 {
12064 // Determine the stub group size. The group size is the absolute
12065 // value of the parameter --stub-group-size. If --stub-group-size
12066 // is passed a negative value, we restrict stubs to be always after
12067 // the stubbed branches.
12068 int32_t stub_group_size_param =
12069 parameters->options().stub_group_size();
12070 bool stubs_always_after_branch = stub_group_size_param < 0;
12071 section_size_type stub_group_size = abs(stub_group_size_param);
12072
12073 if (stub_group_size == 1)
12074 {
12075 // Default value.
12076 // Thumb branch range is +-4MB has to be used as the default
12077 // maximum size (a given section can contain both ARM and Thumb
12078 // code, so the worst case has to be taken into account). If we are
12079 // fixing cortex-a8 errata, the branch range has to be even smaller,
12080 // since wide conditional branch has a range of +-1MB only.
12081 //
12082 // This value is 48K less than that, which allows for 4096
12083 // 12-byte stubs. If we exceed that, then we will fail to link.
12084 // The user will have to relink with an explicit group size
12085 // option.
12086 stub_group_size = 4145152;
12087 }
12088
12089 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12090 // page as the first half of a 32-bit branch straddling two 4K pages.
12091 // This is a crude way of enforcing that. In addition, long conditional
12092 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12093 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12094 // cortex-A8 stubs from long conditional branches.
12095 if (this->fix_cortex_a8_)
12096 {
12097 stubs_always_after_branch = true;
12098 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12099 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12100 }
12101
12102 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12103
12104 // Also fix .ARM.exidx section coverage.
12105 Arm_output_section<big_endian>* exidx_output_section = NULL;
12106 for (Layout::Section_list::const_iterator p =
12107 layout->section_list().begin();
12108 p != layout->section_list().end();
12109 ++p)
12110 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12111 {
12112 if (exidx_output_section == NULL)
12113 exidx_output_section =
12114 Arm_output_section<big_endian>::as_arm_output_section(*p);
12115 else
12116 // We cannot handle this now.
12117 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12118 "non-relocatable link"),
12119 exidx_output_section->name(),
12120 (*p)->name());
12121 }
12122
12123 if (exidx_output_section != NULL)
12124 {
12125 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12126 symtab, task);
12127 done_exidx_fixup = true;
12128 }
12129 }
12130 else
12131 {
12132 // If this is not the first pass, addresses and file offsets have
12133 // been reset at this point, set them here.
12134 for (Stub_table_iterator sp = this->stub_tables_.begin();
12135 sp != this->stub_tables_.end();
12136 ++sp)
12137 {
12138 Arm_input_section<big_endian>* owner = (*sp)->owner();
12139 off_t off = align_address(owner->original_size(),
12140 (*sp)->addralign());
12141 (*sp)->set_address_and_file_offset(owner->address() + off,
12142 owner->offset() + off);
12143 }
12144 }
12145
12146 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12147 // beginning of each relaxation pass, just blow away all the stubs.
12148 // Alternatively, we could selectively remove only the stubs and reloc
12149 // information for code sections that have moved since the last pass.
12150 // That would require more book-keeping.
12151 if (this->fix_cortex_a8_)
12152 {
12153 // Clear all Cortex-A8 reloc information.
12154 for (typename Cortex_a8_relocs_info::const_iterator p =
12155 this->cortex_a8_relocs_info_.begin();
12156 p != this->cortex_a8_relocs_info_.end();
12157 ++p)
12158 delete p->second;
12159 this->cortex_a8_relocs_info_.clear();
12160
12161 // Remove all Cortex-A8 stubs.
12162 for (Stub_table_iterator sp = this->stub_tables_.begin();
12163 sp != this->stub_tables_.end();
12164 ++sp)
12165 (*sp)->remove_all_cortex_a8_stubs();
12166 }
12167
12168 // Scan relocs for relocation stubs
12169 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12170 op != input_objects->relobj_end();
12171 ++op)
12172 {
12173 Arm_relobj<big_endian>* arm_relobj =
12174 Arm_relobj<big_endian>::as_arm_relobj(*op);
12175 // Lock the object so we can read from it. This is only called
12176 // single-threaded from Layout::finalize, so it is OK to lock.
12177 Task_lock_obj<Object> tl(task, arm_relobj);
12178 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12179 }
12180
12181 // Check all stub tables to see if any of them have their data sizes
12182 // or addresses alignments changed. These are the only things that
12183 // matter.
12184 bool any_stub_table_changed = false;
12185 Unordered_set<const Output_section*> sections_needing_adjustment;
12186 for (Stub_table_iterator sp = this->stub_tables_.begin();
12187 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12188 ++sp)
12189 {
12190 if ((*sp)->update_data_size_and_addralign())
12191 {
12192 // Update data size of stub table owner.
12193 Arm_input_section<big_endian>* owner = (*sp)->owner();
12194 uint64_t address = owner->address();
12195 off_t offset = owner->offset();
12196 owner->reset_address_and_file_offset();
12197 owner->set_address_and_file_offset(address, offset);
12198
12199 sections_needing_adjustment.insert(owner->output_section());
12200 any_stub_table_changed = true;
12201 }
12202 }
12203
12204 // Output_section_data::output_section() returns a const pointer but we
12205 // need to update output sections, so we record all output sections needing
12206 // update above and scan the sections here to find out what sections need
12207 // to be updated.
12208 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12209 p != layout->section_list().end();
12210 ++p)
12211 {
12212 if (sections_needing_adjustment.find(*p)
12213 != sections_needing_adjustment.end())
12214 (*p)->set_section_offsets_need_adjustment();
12215 }
12216
12217 // Stop relaxation if no EXIDX fix-up and no stub table change.
12218 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12219
12220 // Finalize the stubs in the last relaxation pass.
12221 if (!continue_relaxation)
12222 {
12223 for (Stub_table_iterator sp = this->stub_tables_.begin();
12224 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12225 ++sp)
12226 (*sp)->finalize_stubs();
12227
12228 // Update output local symbol counts of objects if necessary.
12229 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12230 op != input_objects->relobj_end();
12231 ++op)
12232 {
12233 Arm_relobj<big_endian>* arm_relobj =
12234 Arm_relobj<big_endian>::as_arm_relobj(*op);
12235
12236 // Update output local symbol counts. We need to discard local
12237 // symbols defined in parts of input sections that are discarded by
12238 // relaxation.
12239 if (arm_relobj->output_local_symbol_count_needs_update())
12240 {
12241 // We need to lock the object's file to update it.
12242 Task_lock_obj<Object> tl(task, arm_relobj);
12243 arm_relobj->update_output_local_symbol_count();
12244 }
12245 }
12246 }
12247
12248 return continue_relaxation;
12249 }
12250
12251 // Relocate a stub.
12252
12253 template<bool big_endian>
12254 void
12255 Target_arm<big_endian>::relocate_stub(
12256 Stub* stub,
12257 const Relocate_info<32, big_endian>* relinfo,
12258 Output_section* output_section,
12259 unsigned char* view,
12260 Arm_address address,
12261 section_size_type view_size)
12262 {
12263 Relocate relocate;
12264 const Stub_template* stub_template = stub->stub_template();
12265 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12266 {
12267 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12268 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12269
12270 unsigned int r_type = insn->r_type();
12271 section_size_type reloc_offset = stub_template->reloc_offset(i);
12272 section_size_type reloc_size = insn->size();
12273 gold_assert(reloc_offset + reloc_size <= view_size);
12274
12275 // This is the address of the stub destination.
12276 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12277 Symbol_value<32> symval;
12278 symval.set_output_value(target);
12279
12280 // Synthesize a fake reloc just in case. We don't have a symbol so
12281 // we use 0.
12282 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12283 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12284 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12285 reloc_write.put_r_offset(reloc_offset);
12286 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12287 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12288
12289 relocate.relocate(relinfo, this, output_section,
12290 this->fake_relnum_for_stubs, rel, r_type,
12291 NULL, &symval, view + reloc_offset,
12292 address + reloc_offset, reloc_size);
12293 }
12294 }
12295
12296 // Determine whether an object attribute tag takes an integer, a
12297 // string or both.
12298
12299 template<bool big_endian>
12300 int
12301 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12302 {
12303 if (tag == Object_attribute::Tag_compatibility)
12304 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12305 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12306 else if (tag == elfcpp::Tag_nodefaults)
12307 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12308 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12309 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12310 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12311 else if (tag < 32)
12312 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12313 else
12314 return ((tag & 1) != 0
12315 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12316 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12317 }
12318
12319 // Reorder attributes.
12320 //
12321 // The ABI defines that Tag_conformance should be emitted first, and that
12322 // Tag_nodefaults should be second (if either is defined). This sets those
12323 // two positions, and bumps up the position of all the remaining tags to
12324 // compensate.
12325
12326 template<bool big_endian>
12327 int
12328 Target_arm<big_endian>::do_attributes_order(int num) const
12329 {
12330 // Reorder the known object attributes in output. We want to move
12331 // Tag_conformance to position 4 and Tag_conformance to position 5
12332 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12333 if (num == 4)
12334 return elfcpp::Tag_conformance;
12335 if (num == 5)
12336 return elfcpp::Tag_nodefaults;
12337 if ((num - 2) < elfcpp::Tag_nodefaults)
12338 return num - 2;
12339 if ((num - 1) < elfcpp::Tag_conformance)
12340 return num - 1;
12341 return num;
12342 }
12343
12344 // Scan a span of THUMB code for Cortex-A8 erratum.
12345
12346 template<bool big_endian>
12347 void
12348 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12349 Arm_relobj<big_endian>* arm_relobj,
12350 unsigned int shndx,
12351 section_size_type span_start,
12352 section_size_type span_end,
12353 const unsigned char* view,
12354 Arm_address address)
12355 {
12356 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12357 //
12358 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12359 // The branch target is in the same 4KB region as the
12360 // first half of the branch.
12361 // The instruction before the branch is a 32-bit
12362 // length non-branch instruction.
12363 section_size_type i = span_start;
12364 bool last_was_32bit = false;
12365 bool last_was_branch = false;
12366 while (i < span_end)
12367 {
12368 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12369 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12370 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12371 bool is_blx = false, is_b = false;
12372 bool is_bl = false, is_bcc = false;
12373
12374 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12375 if (insn_32bit)
12376 {
12377 // Load the rest of the insn (in manual-friendly order).
12378 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12379
12380 // Encoding T4: B<c>.W.
12381 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12382 // Encoding T1: BL<c>.W.
12383 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12384 // Encoding T2: BLX<c>.W.
12385 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12386 // Encoding T3: B<c>.W (not permitted in IT block).
12387 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12388 && (insn & 0x07f00000U) != 0x03800000U);
12389 }
12390
12391 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12392
12393 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12394 // page boundary and it follows 32-bit non-branch instruction,
12395 // we need to work around.
12396 if (is_32bit_branch
12397 && ((address + i) & 0xfffU) == 0xffeU
12398 && last_was_32bit
12399 && !last_was_branch)
12400 {
12401 // Check to see if there is a relocation stub for this branch.
12402 bool force_target_arm = false;
12403 bool force_target_thumb = false;
12404 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12405 Cortex_a8_relocs_info::const_iterator p =
12406 this->cortex_a8_relocs_info_.find(address + i);
12407
12408 if (p != this->cortex_a8_relocs_info_.end())
12409 {
12410 cortex_a8_reloc = p->second;
12411 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12412
12413 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12414 && !target_is_thumb)
12415 force_target_arm = true;
12416 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12417 && target_is_thumb)
12418 force_target_thumb = true;
12419 }
12420
12421 off_t offset;
12422 Stub_type stub_type = arm_stub_none;
12423
12424 // Check if we have an offending branch instruction.
12425 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12426 uint16_t lower_insn = insn & 0xffffU;
12427 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12428
12429 if (cortex_a8_reloc != NULL
12430 && cortex_a8_reloc->reloc_stub() != NULL)
12431 // We've already made a stub for this instruction, e.g.
12432 // it's a long branch or a Thumb->ARM stub. Assume that
12433 // stub will suffice to work around the A8 erratum (see
12434 // setting of always_after_branch above).
12435 ;
12436 else if (is_bcc)
12437 {
12438 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12439 lower_insn);
12440 stub_type = arm_stub_a8_veneer_b_cond;
12441 }
12442 else if (is_b || is_bl || is_blx)
12443 {
12444 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12445 lower_insn);
12446 if (is_blx)
12447 offset &= ~3;
12448
12449 stub_type = (is_blx
12450 ? arm_stub_a8_veneer_blx
12451 : (is_bl
12452 ? arm_stub_a8_veneer_bl
12453 : arm_stub_a8_veneer_b));
12454 }
12455
12456 if (stub_type != arm_stub_none)
12457 {
12458 Arm_address pc_for_insn = address + i + 4;
12459
12460 // The original instruction is a BL, but the target is
12461 // an ARM instruction. If we were not making a stub,
12462 // the BL would have been converted to a BLX. Use the
12463 // BLX stub instead in that case.
12464 if (this->may_use_v5t_interworking() && force_target_arm
12465 && stub_type == arm_stub_a8_veneer_bl)
12466 {
12467 stub_type = arm_stub_a8_veneer_blx;
12468 is_blx = true;
12469 is_bl = false;
12470 }
12471 // Conversely, if the original instruction was
12472 // BLX but the target is Thumb mode, use the BL stub.
12473 else if (force_target_thumb
12474 && stub_type == arm_stub_a8_veneer_blx)
12475 {
12476 stub_type = arm_stub_a8_veneer_bl;
12477 is_blx = false;
12478 is_bl = true;
12479 }
12480
12481 if (is_blx)
12482 pc_for_insn &= ~3;
12483
12484 // If we found a relocation, use the proper destination,
12485 // not the offset in the (unrelocated) instruction.
12486 // Note this is always done if we switched the stub type above.
12487 if (cortex_a8_reloc != NULL)
12488 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12489
12490 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12491
12492 // Add a new stub if destination address in in the same page.
12493 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12494 {
12495 Cortex_a8_stub* stub =
12496 this->stub_factory_.make_cortex_a8_stub(stub_type,
12497 arm_relobj, shndx,
12498 address + i,
12499 target, insn);
12500 Stub_table<big_endian>* stub_table =
12501 arm_relobj->stub_table(shndx);
12502 gold_assert(stub_table != NULL);
12503 stub_table->add_cortex_a8_stub(address + i, stub);
12504 }
12505 }
12506 }
12507
12508 i += insn_32bit ? 4 : 2;
12509 last_was_32bit = insn_32bit;
12510 last_was_branch = is_32bit_branch;
12511 }
12512 }
12513
12514 // Apply the Cortex-A8 workaround.
12515
12516 template<bool big_endian>
12517 void
12518 Target_arm<big_endian>::apply_cortex_a8_workaround(
12519 const Cortex_a8_stub* stub,
12520 Arm_address stub_address,
12521 unsigned char* insn_view,
12522 Arm_address insn_address)
12523 {
12524 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12525 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12526 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12527 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12528 off_t branch_offset = stub_address - (insn_address + 4);
12529
12530 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12531 switch (stub->stub_template()->type())
12532 {
12533 case arm_stub_a8_veneer_b_cond:
12534 // For a conditional branch, we re-write it to be an unconditional
12535 // branch to the stub. We use the THUMB-2 encoding here.
12536 upper_insn = 0xf000U;
12537 lower_insn = 0xb800U;
12538 // Fall through
12539 case arm_stub_a8_veneer_b:
12540 case arm_stub_a8_veneer_bl:
12541 case arm_stub_a8_veneer_blx:
12542 if ((lower_insn & 0x5000U) == 0x4000U)
12543 // For a BLX instruction, make sure that the relocation is
12544 // rounded up to a word boundary. This follows the semantics of
12545 // the instruction which specifies that bit 1 of the target
12546 // address will come from bit 1 of the base address.
12547 branch_offset = (branch_offset + 2) & ~3;
12548
12549 // Put BRANCH_OFFSET back into the insn.
12550 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12551 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12552 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12553 break;
12554
12555 default:
12556 gold_unreachable();
12557 }
12558
12559 // Put the relocated value back in the object file:
12560 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12561 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12562 }
12563
12564 // Target selector for ARM. Note this is never instantiated directly.
12565 // It's only used in Target_selector_arm_nacl, below.
12566
12567 template<bool big_endian>
12568 class Target_selector_arm : public Target_selector
12569 {
12570 public:
12571 Target_selector_arm()
12572 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12573 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12574 (big_endian ? "armelfb" : "armelf"))
12575 { }
12576
12577 Target*
12578 do_instantiate_target()
12579 { return new Target_arm<big_endian>(); }
12580 };
12581
12582 // Fix .ARM.exidx section coverage.
12583
12584 template<bool big_endian>
12585 void
12586 Target_arm<big_endian>::fix_exidx_coverage(
12587 Layout* layout,
12588 const Input_objects* input_objects,
12589 Arm_output_section<big_endian>* exidx_section,
12590 Symbol_table* symtab,
12591 const Task* task)
12592 {
12593 // We need to look at all the input sections in output in ascending
12594 // order of of output address. We do that by building a sorted list
12595 // of output sections by addresses. Then we looks at the output sections
12596 // in order. The input sections in an output section are already sorted
12597 // by addresses within the output section.
12598
12599 typedef std::set<Output_section*, output_section_address_less_than>
12600 Sorted_output_section_list;
12601 Sorted_output_section_list sorted_output_sections;
12602
12603 // Find out all the output sections of input sections pointed by
12604 // EXIDX input sections.
12605 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12606 p != input_objects->relobj_end();
12607 ++p)
12608 {
12609 Arm_relobj<big_endian>* arm_relobj =
12610 Arm_relobj<big_endian>::as_arm_relobj(*p);
12611 std::vector<unsigned int> shndx_list;
12612 arm_relobj->get_exidx_shndx_list(&shndx_list);
12613 for (size_t i = 0; i < shndx_list.size(); ++i)
12614 {
12615 const Arm_exidx_input_section* exidx_input_section =
12616 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12617 gold_assert(exidx_input_section != NULL);
12618 if (!exidx_input_section->has_errors())
12619 {
12620 unsigned int text_shndx = exidx_input_section->link();
12621 Output_section* os = arm_relobj->output_section(text_shndx);
12622 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12623 sorted_output_sections.insert(os);
12624 }
12625 }
12626 }
12627
12628 // Go over the output sections in ascending order of output addresses.
12629 typedef typename Arm_output_section<big_endian>::Text_section_list
12630 Text_section_list;
12631 Text_section_list sorted_text_sections;
12632 for (typename Sorted_output_section_list::iterator p =
12633 sorted_output_sections.begin();
12634 p != sorted_output_sections.end();
12635 ++p)
12636 {
12637 Arm_output_section<big_endian>* arm_output_section =
12638 Arm_output_section<big_endian>::as_arm_output_section(*p);
12639 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12640 }
12641
12642 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12643 merge_exidx_entries(), task);
12644 }
12645
12646 template<bool big_endian>
12647 void
12648 Target_arm<big_endian>::do_define_standard_symbols(
12649 Symbol_table* symtab,
12650 Layout* layout)
12651 {
12652 // Handle the .ARM.exidx section.
12653 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12654
12655 if (exidx_section != NULL)
12656 {
12657 // Create __exidx_start and __exidx_end symbols.
12658 symtab->define_in_output_data("__exidx_start",
12659 NULL, // version
12660 Symbol_table::PREDEFINED,
12661 exidx_section,
12662 0, // value
12663 0, // symsize
12664 elfcpp::STT_NOTYPE,
12665 elfcpp::STB_GLOBAL,
12666 elfcpp::STV_HIDDEN,
12667 0, // nonvis
12668 false, // offset_is_from_end
12669 true); // only_if_ref
12670
12671 symtab->define_in_output_data("__exidx_end",
12672 NULL, // version
12673 Symbol_table::PREDEFINED,
12674 exidx_section,
12675 0, // value
12676 0, // symsize
12677 elfcpp::STT_NOTYPE,
12678 elfcpp::STB_GLOBAL,
12679 elfcpp::STV_HIDDEN,
12680 0, // nonvis
12681 true, // offset_is_from_end
12682 true); // only_if_ref
12683 }
12684 else
12685 {
12686 // Define __exidx_start and __exidx_end even when .ARM.exidx
12687 // section is missing to match ld's behaviour.
12688 symtab->define_as_constant("__exidx_start", NULL,
12689 Symbol_table::PREDEFINED,
12690 0, 0, elfcpp::STT_OBJECT,
12691 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12692 true, false);
12693 symtab->define_as_constant("__exidx_end", NULL,
12694 Symbol_table::PREDEFINED,
12695 0, 0, elfcpp::STT_OBJECT,
12696 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12697 true, false);
12698 }
12699 }
12700
12701 // NaCl variant. It uses different PLT contents.
12702
12703 template<bool big_endian>
12704 class Output_data_plt_arm_nacl;
12705
12706 template<bool big_endian>
12707 class Target_arm_nacl : public Target_arm<big_endian>
12708 {
12709 public:
12710 Target_arm_nacl()
12711 : Target_arm<big_endian>(&arm_nacl_info)
12712 { }
12713
12714 protected:
12715 virtual Output_data_plt_arm<big_endian>*
12716 do_make_data_plt(
12717 Layout* layout,
12718 Arm_output_data_got<big_endian>* got,
12719 Output_data_space* got_plt,
12720 Output_data_space* got_irelative)
12721 { return new Output_data_plt_arm_nacl<big_endian>(
12722 layout, got, got_plt, got_irelative); }
12723
12724 private:
12725 static const Target::Target_info arm_nacl_info;
12726 };
12727
12728 template<bool big_endian>
12729 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12730 {
12731 32, // size
12732 big_endian, // is_big_endian
12733 elfcpp::EM_ARM, // machine_code
12734 false, // has_make_symbol
12735 false, // has_resolve
12736 false, // has_code_fill
12737 true, // is_default_stack_executable
12738 false, // can_icf_inline_merge_sections
12739 '\0', // wrap_char
12740 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12741 0x20000, // default_text_segment_address
12742 0x10000, // abi_pagesize (overridable by -z max-page-size)
12743 0x10000, // common_pagesize (overridable by -z common-page-size)
12744 true, // isolate_execinstr
12745 0x10000000, // rosegment_gap
12746 elfcpp::SHN_UNDEF, // small_common_shndx
12747 elfcpp::SHN_UNDEF, // large_common_shndx
12748 0, // small_common_section_flags
12749 0, // large_common_section_flags
12750 ".ARM.attributes", // attributes_section
12751 "aeabi", // attributes_vendor
12752 "_start" // entry_symbol_name
12753 };
12754
12755 template<bool big_endian>
12756 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12757 {
12758 public:
12759 Output_data_plt_arm_nacl(
12760 Layout* layout,
12761 Arm_output_data_got<big_endian>* got,
12762 Output_data_space* got_plt,
12763 Output_data_space* got_irelative)
12764 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12765 { }
12766
12767 protected:
12768 // Return the offset of the first non-reserved PLT entry.
12769 virtual unsigned int
12770 do_first_plt_entry_offset() const
12771 { return sizeof(first_plt_entry); }
12772
12773 // Return the size of a PLT entry.
12774 virtual unsigned int
12775 do_get_plt_entry_size() const
12776 { return sizeof(plt_entry); }
12777
12778 virtual void
12779 do_fill_first_plt_entry(unsigned char* pov,
12780 Arm_address got_address,
12781 Arm_address plt_address);
12782
12783 virtual void
12784 do_fill_plt_entry(unsigned char* pov,
12785 Arm_address got_address,
12786 Arm_address plt_address,
12787 unsigned int got_offset,
12788 unsigned int plt_offset);
12789
12790 private:
12791 inline uint32_t arm_movw_immediate(uint32_t value)
12792 {
12793 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12794 }
12795
12796 inline uint32_t arm_movt_immediate(uint32_t value)
12797 {
12798 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12799 }
12800
12801 // Template for the first PLT entry.
12802 static const uint32_t first_plt_entry[16];
12803
12804 // Template for subsequent PLT entries.
12805 static const uint32_t plt_entry[4];
12806 };
12807
12808 // The first entry in the PLT.
12809 template<bool big_endian>
12810 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12811 {
12812 // First bundle:
12813 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12814 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12815 0xe08cc00f, // add ip, ip, pc
12816 0xe52dc008, // str ip, [sp, #-8]!
12817 // Second bundle:
12818 0xe3ccc103, // bic ip, ip, #0xc0000000
12819 0xe59cc000, // ldr ip, [ip]
12820 0xe3ccc13f, // bic ip, ip, #0xc000000f
12821 0xe12fff1c, // bx ip
12822 // Third bundle:
12823 0xe320f000, // nop
12824 0xe320f000, // nop
12825 0xe320f000, // nop
12826 // .Lplt_tail:
12827 0xe50dc004, // str ip, [sp, #-4]
12828 // Fourth bundle:
12829 0xe3ccc103, // bic ip, ip, #0xc0000000
12830 0xe59cc000, // ldr ip, [ip]
12831 0xe3ccc13f, // bic ip, ip, #0xc000000f
12832 0xe12fff1c, // bx ip
12833 };
12834
12835 template<bool big_endian>
12836 void
12837 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12838 unsigned char* pov,
12839 Arm_address got_address,
12840 Arm_address plt_address)
12841 {
12842 // Write first PLT entry. All but first two words are constants.
12843 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12844 / sizeof(first_plt_entry[0]));
12845
12846 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12847
12848 elfcpp::Swap<32, big_endian>::writeval
12849 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12850 elfcpp::Swap<32, big_endian>::writeval
12851 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12852
12853 for (size_t i = 2; i < num_first_plt_words; ++i)
12854 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12855 }
12856
12857 // Subsequent entries in the PLT.
12858
12859 template<bool big_endian>
12860 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12861 {
12862 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12863 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12864 0xe08cc00f, // add ip, ip, pc
12865 0xea000000, // b .Lplt_tail
12866 };
12867
12868 template<bool big_endian>
12869 void
12870 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12871 unsigned char* pov,
12872 Arm_address got_address,
12873 Arm_address plt_address,
12874 unsigned int got_offset,
12875 unsigned int plt_offset)
12876 {
12877 // Calculate the displacement between the PLT slot and the
12878 // common tail that's part of the special initial PLT slot.
12879 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12880 - (plt_address + plt_offset
12881 + sizeof(plt_entry) + sizeof(uint32_t)));
12882 gold_assert((tail_displacement & 3) == 0);
12883 tail_displacement >>= 2;
12884
12885 gold_assert ((tail_displacement & 0xff000000) == 0
12886 || (-tail_displacement & 0xff000000) == 0);
12887
12888 // Calculate the displacement between the PLT slot and the entry
12889 // in the GOT. The offset accounts for the value produced by
12890 // adding to pc in the penultimate instruction of the PLT stub.
12891 const int32_t got_displacement = (got_address + got_offset
12892 - (plt_address + sizeof(plt_entry)));
12893
12894 elfcpp::Swap<32, big_endian>::writeval
12895 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12896 elfcpp::Swap<32, big_endian>::writeval
12897 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12898 elfcpp::Swap<32, big_endian>::writeval
12899 (pov + 8, plt_entry[2]);
12900 elfcpp::Swap<32, big_endian>::writeval
12901 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12902 }
12903
12904 // Target selectors.
12905
12906 template<bool big_endian>
12907 class Target_selector_arm_nacl
12908 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12909 Target_arm_nacl<big_endian> >
12910 {
12911 public:
12912 Target_selector_arm_nacl()
12913 : Target_selector_nacl<Target_selector_arm<big_endian>,
12914 Target_arm_nacl<big_endian> >(
12915 "arm",
12916 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12917 big_endian ? "armelfb_nacl" : "armelf_nacl")
12918 { }
12919 };
12920
12921 Target_selector_arm_nacl<false> target_selector_arm;
12922 Target_selector_arm_nacl<true> target_selector_armbe;
12923
12924 } // End anonymous namespace.
This page took 0.350847 seconds and 4 git commands to generate.