1 // arm.cc -- arm target support for gold.
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian
>
62 class Output_data_plt_arm
;
64 template<bool big_endian
>
65 class Output_data_plt_arm_standard
;
67 template<bool big_endian
>
70 template<bool big_endian
>
71 class Arm_input_section
;
73 class Arm_exidx_cantunwind
;
75 class Arm_exidx_merged_section
;
77 class Arm_exidx_fixup
;
79 template<bool big_endian
>
80 class Arm_output_section
;
82 class Arm_exidx_input_section
;
84 template<bool big_endian
>
87 template<bool big_endian
>
88 class Arm_relocate_functions
;
90 template<bool big_endian
>
91 class Arm_output_data_got
;
93 template<bool big_endian
>
97 typedef elfcpp::Elf_types
<32>::Elf_Addr Arm_address
;
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET
= ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET
= ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET
= ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET
= (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET
= (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET
= (-(1 << 24) + 4);
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE
= 8;
110 // The arm target class.
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
119 // There are probably a lot more.
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
133 Arm_reloc_property_table
* arm_reloc_property_table
= NULL
;
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
141 // Types of instruction templates.
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE
,
155 // Factory methods to create instruction templates in different formats.
157 static const Insn_template
158 thumb16_insn(uint32_t data
)
159 { return Insn_template(data
, THUMB16_TYPE
, elfcpp::R_ARM_NONE
, 0); }
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data
)
165 { return Insn_template(data
, THUMB16_SPECIAL_TYPE
, elfcpp::R_ARM_NONE
, 1); }
167 static const Insn_template
168 thumb32_insn(uint32_t data
)
169 { return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_NONE
, 0); }
171 static const Insn_template
172 thumb32_b_insn(uint32_t data
, int reloc_addend
)
174 return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_THM_JUMP24
,
178 static const Insn_template
179 arm_insn(uint32_t data
)
180 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_NONE
, 0); }
182 static const Insn_template
183 arm_rel_insn(unsigned data
, int reloc_addend
)
184 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_JUMP24
, reloc_addend
); }
186 static const Insn_template
187 data_word(unsigned data
, unsigned int r_type
, int reloc_addend
)
188 { return Insn_template(data
, DATA_TYPE
, r_type
, reloc_addend
); }
190 // Accessors. This class is used for read-only objects so no modifiers
195 { return this->data_
; }
197 // Return the instruction sequence type of this.
200 { return this->type_
; }
202 // Return the ARM relocation type of this.
205 { return this->r_type_
; }
209 { return this->reloc_addend_
; }
211 // Return size of instruction template in bytes.
215 // Return byte-alignment of instruction template.
220 // We make the constructor private to ensure that only the factory
223 Insn_template(unsigned data
, Type type
, unsigned int r_type
, int reloc_addend
)
224 : data_(data
), type_(type
), r_type_(r_type
), reloc_addend_(reloc_addend
)
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
230 // Instruction template type.
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_
;
234 // Relocation addend.
235 int32_t reloc_addend_
;
238 // Macro for generating code to stub types. One entry per long/short
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
262 #define DEF_STUB(x) arm_stub_##x,
268 // First reloc stub type.
269 arm_stub_reloc_first
= arm_stub_long_branch_any_any
,
270 // Last reloc stub type.
271 arm_stub_reloc_last
= arm_stub_long_branch_thumb_only_pic
,
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first
= arm_stub_a8_veneer_b_cond
,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last
= arm_stub_a8_veneer_blx
,
279 arm_stub_type_last
= arm_stub_v4_veneer_bx
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
290 Stub_template(Stub_type
, const Insn_template
*, size_t);
298 { return this->type_
; }
300 // Return an array of instruction templates.
303 { return this->insns_
; }
305 // Return size of template in number of instructions.
308 { return this->insn_count_
; }
310 // Return size of template in bytes.
313 { return this->size_
; }
315 // Return alignment of the stub template.
318 { return this->alignment_
; }
320 // Return whether entry point is in thumb mode.
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_
; }
325 // Return number of relocations in this template.
328 { return this->relocs_
.size(); }
330 // Return index of the I-th instruction with relocation.
332 reloc_insn_index(size_t i
) const
334 gold_assert(i
< this->relocs_
.size());
335 return this->relocs_
[i
].first
;
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
341 reloc_offset(size_t i
) const
343 gold_assert(i
< this->relocs_
.size());
344 return this->relocs_
[i
].second
;
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair
<size_t, section_size_type
> Reloc
;
352 // A Stub_template may not be copied. We want to share templates as much
354 Stub_template(const Stub_template
&);
355 Stub_template
& operator=(const Stub_template
&);
359 // Points to an array of Insn_templates.
360 const Insn_template
* insns_
;
361 // Number of Insn_templates in insns_[].
363 // Size of templated instructions in bytes.
365 // Alignment of templated instructions.
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_
;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector
<Reloc
> relocs_
;
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
383 static const section_offset_type invalid_offset
=
384 static_cast<section_offset_type
>(-1);
387 Stub(const Stub_template
* stub_template
)
388 : stub_template_(stub_template
), offset_(invalid_offset
)
395 // Return the stub template.
397 stub_template() const
398 { return this->stub_template_
; }
400 // Return offset of code stub from beginning of its containing stub table.
404 gold_assert(this->offset_
!= invalid_offset
);
405 return this->offset_
;
408 // Set offset of code stub from beginning of its containing stub table.
410 set_offset(section_offset_type offset
)
411 { this->offset_
= offset
; }
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
416 reloc_target(size_t i
)
417 { return this->do_reloc_target(i
); }
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
421 write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
422 { this->do_write(view
, view_size
, big_endian
); }
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
427 thumb16_special(size_t i
)
428 { return this->do_thumb16_special(i
); }
431 // This must be defined in the child class.
433 do_reloc_target(size_t) = 0;
435 // This may be overridden in the child class.
437 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
440 this->do_fixed_endian_write
<true>(view
, view_size
);
442 this->do_fixed_endian_write
<false>(view
, view_size
);
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
452 // A template to implement do_write.
453 template<bool big_endian
>
455 do_fixed_endian_write(unsigned char*, section_size_type
);
458 const Stub_template
* stub_template_
;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_
;
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
466 class Reloc_stub
: public Stub
469 static const unsigned int invalid_index
= static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
473 // Return destination address.
475 destination_address() const
477 gold_assert(this->destination_address_
!= this->invalid_address
);
478 return this->destination_address_
;
481 // Set destination address.
483 set_destination_address(Arm_address address
)
485 gold_assert(address
!= this->invalid_address
);
486 this->destination_address_
= address
;
489 // Reset destination address.
491 reset_destination_address()
492 { this->destination_address_
= this->invalid_address
; }
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
499 stub_type_for_reloc(unsigned int r_type
, Arm_address branch_address
,
500 Arm_address branch_target
, bool target_is_thumb
);
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type
, const Symbol
* symbol
, const Relobj
* relobj
,
513 unsigned int r_sym
, int32_t addend
)
514 : stub_type_(stub_type
), addend_(addend
)
518 this->r_sym_
= Reloc_stub::invalid_index
;
519 this->u_
.symbol
= symbol
;
523 gold_assert(relobj
!= NULL
&& r_sym
!= invalid_index
);
524 this->r_sym_
= r_sym
;
525 this->u_
.relobj
= relobj
;
532 // Accessors: Keys are meant to be read-only object so no modifiers are
538 { return this->stub_type_
; }
540 // Return the local symbol index or invalid_index.
543 { return this->r_sym_
; }
545 // Return the symbol if there is one.
548 { return this->r_sym_
== invalid_index
? this->u_
.symbol
: NULL
; }
550 // Return the relobj if there is one.
553 { return this->r_sym_
!= invalid_index
? this->u_
.relobj
: NULL
; }
555 // Whether this equals to another key k.
557 eq(const Key
& k
) const
559 return ((this->stub_type_
== k
.stub_type_
)
560 && (this->r_sym_
== k
.r_sym_
)
561 && ((this->r_sym_
!= Reloc_stub::invalid_index
)
562 ? (this->u_
.relobj
== k
.u_
.relobj
)
563 : (this->u_
.symbol
== k
.u_
.symbol
))
564 && (this->addend_
== k
.addend_
));
567 // Return a hash value.
571 return (this->stub_type_
573 ^ gold::string_hash
<char>(
574 (this->r_sym_
!= Reloc_stub::invalid_index
)
575 ? this->u_
.relobj
->name().c_str()
576 : this->u_
.symbol
->name())
580 // Functors for STL associative containers.
584 operator()(const Key
& k
) const
585 { return k
.hash_value(); }
591 operator()(const Key
& k1
, const Key
& k2
) const
592 { return k1
.eq(k2
); }
595 // Name of key. This is mainly for debugging.
601 Stub_type stub_type_
;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
613 const Symbol
* symbol
;
614 const Relobj
* relobj
;
616 // Addend associated with a reloc.
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template
* stub_template
)
623 : Stub(stub_template
), destination_address_(invalid_address
)
629 friend class Stub_factory
;
631 // Return the relocation target address of the i-th relocation in the
634 do_reloc_target(size_t i
)
636 // All reloc stub have only one relocation.
638 return this->destination_address_
;
642 // Address of destination.
643 Arm_address destination_address_
;
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
653 // 3. The branch follows a 32-bit instruction which is not a branch.
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
665 class Cortex_a8_stub
: public Stub
671 // Return the object of the code section containing the branch being fixed
675 { return this->relobj_
; }
677 // Return the section index of the code section containing the branch being
681 { return this->shndx_
; }
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
687 source_address() const
688 { return this->source_address_
; }
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
694 destination_address() const
695 { return this->destination_address_
; }
697 // Return the instruction being fixed up.
699 original_insn() const
700 { return this->original_insn_
; }
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template
* stub_template
, Relobj
* relobj
,
705 unsigned int shndx
, Arm_address source_address
,
706 Arm_address destination_address
, uint32_t original_insn
)
707 : Stub(stub_template
), relobj_(relobj
), shndx_(shndx
),
708 source_address_(source_address
| 1U),
709 destination_address_(destination_address
),
710 original_insn_(original_insn
)
713 friend class Stub_factory
;
715 // Return the relocation target address of the i-th relocation in the
718 do_reloc_target(size_t i
)
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond
)
722 // The conditional branch veneer has two relocations.
724 return i
== 0 ? this->source_address_
+ 4 : this->destination_address_
;
728 // All other Cortex-A8 stubs have only one relocation.
730 return this->destination_address_
;
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
736 do_thumb16_special(size_t);
739 // Object of the code section containing the branch being fixed up.
741 // Section index of the code section containing the branch begin fixed up.
743 // Source address of original branch.
744 Arm_address source_address_
;
745 // Destination address of the original branch.
746 Arm_address destination_address_
;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_
;
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub
: public Stub
759 // Return the associated register.
762 { return this->reg_
; }
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template
* stub_template
, const uint32_t reg
)
767 : Stub(stub_template
), reg_(reg
)
770 friend class Stub_factory
;
772 // Return the relocation target address of the i-th relocation in the
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
778 // This may be overridden in the child class.
780 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
783 this->do_fixed_endian_v4bx_write
<true>(view
, view_size
);
785 this->do_fixed_endian_v4bx_write
<false>(view
, view_size
);
789 // A template to implement do_write.
790 template<bool big_endian
>
792 do_fixed_endian_v4bx_write(unsigned char* view
, section_size_type
)
794 const Insn_template
* insns
= this->stub_template()->insns();
795 elfcpp::Swap
<32, big_endian
>::writeval(view
,
797 + (this->reg_
<< 16)));
798 view
+= insns
[0].size();
799 elfcpp::Swap
<32, big_endian
>::writeval(view
,
800 (insns
[1].data() + this->reg_
));
801 view
+= insns
[1].size();
802 elfcpp::Swap
<32, big_endian
>::writeval(view
,
803 (insns
[2].data() + this->reg_
));
806 // A register index (r0-r14), which is associated with the stub.
810 // Stub factory class.
815 // Return the unique instance of this class.
816 static const Stub_factory
&
819 static Stub_factory singleton
;
823 // Make a relocation stub.
825 make_reloc_stub(Stub_type stub_type
) const
827 gold_assert(stub_type
>= arm_stub_reloc_first
828 && stub_type
<= arm_stub_reloc_last
);
829 return new Reloc_stub(this->stub_templates_
[stub_type
]);
832 // Make a Cortex-A8 stub.
834 make_cortex_a8_stub(Stub_type stub_type
, Relobj
* relobj
, unsigned int shndx
,
835 Arm_address source
, Arm_address destination
,
836 uint32_t original_insn
) const
838 gold_assert(stub_type
>= arm_stub_cortex_a8_first
839 && stub_type
<= arm_stub_cortex_a8_last
);
840 return new Cortex_a8_stub(this->stub_templates_
[stub_type
], relobj
, shndx
,
841 source
, destination
, original_insn
);
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
847 make_arm_v4bx_stub(uint32_t reg
) const
849 gold_assert(reg
< 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_
[arm_stub_v4_veneer_bx
],
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory
&);
862 Stub_factory
& operator=(Stub_factory
&);
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template
* stub_templates_
[arm_stub_type_last
+1];
868 // A class to hold stubs for the ARM target.
870 template<bool big_endian
>
871 class Stub_table
: public Output_data
874 Stub_table(Arm_input_section
<big_endian
>* owner
)
875 : Output_data(), owner_(owner
), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
883 // Owner of this stub table.
884 Arm_input_section
<big_endian
>*
886 { return this->owner_
; }
888 // Whether this stub table is empty.
892 return (this->reloc_stubs_
.empty()
893 && this->cortex_a8_stubs_
.empty()
894 && this->arm_v4bx_stubs_
.empty());
897 // Return the current data size.
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
905 add_reloc_stub(Reloc_stub
* stub
, const Reloc_stub::Key
& key
)
907 const Stub_template
* stub_template
= stub
->stub_template();
908 gold_assert(stub_template
->type() == key
.stub_type());
909 this->reloc_stubs_
[key
] = stub
;
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align
= stub_template
->alignment();
914 this->reloc_stubs_size_
= align_address(this->reloc_stubs_size_
, align
);
915 stub
->set_offset(this->reloc_stubs_size_
);
916 this->reloc_stubs_size_
+= stub_template
->size();
917 this->reloc_stubs_addralign_
=
918 std::max(this->reloc_stubs_addralign_
, align
);
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
925 add_cortex_a8_stub(Arm_address address
, Cortex_a8_stub
* stub
)
927 std::pair
<Arm_address
, Cortex_a8_stub
*> value(address
, stub
);
928 this->cortex_a8_stubs_
.insert(value
);
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
934 add_arm_v4bx_stub(Arm_v4bx_stub
* stub
)
936 gold_assert(stub
!= NULL
&& this->arm_v4bx_stubs_
[stub
->reg()] == NULL
);
937 this->arm_v4bx_stubs_
[stub
->reg()] = stub
;
940 // Remove all Cortex-A8 stubs.
942 remove_all_cortex_a8_stubs();
944 // Look up a relocation stub using KEY. Return NULL if there is none.
946 find_reloc_stub(const Reloc_stub::Key
& key
) const
948 typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.find(key
);
949 return (p
!= this->reloc_stubs_
.end()) ? p
->second
: NULL
;
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
955 find_arm_v4bx_stub(const uint32_t reg
) const
957 gold_assert(reg
< 0xf);
958 return this->arm_v4bx_stubs_
[reg
];
961 // Relocate stubs in this stub table.
963 relocate_stubs(const Relocate_info
<32, big_endian
>*,
964 Target_arm
<big_endian
>*, Output_section
*,
965 unsigned char*, Arm_address
, section_size_type
);
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
971 update_data_size_and_addralign();
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
978 // Apply Cortex-A8 workaround to an address range.
980 apply_cortex_a8_workaround_to_address_range(Target_arm
<big_endian
>*,
981 unsigned char*, Arm_address
,
985 // Write out section contents.
987 do_write(Output_file
*);
989 // Return the required alignment.
992 { return this->prev_addralign_
; }
994 // Reset address and file offset.
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_
); }
999 // Set final data size.
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1005 // Relocate one stub.
1007 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
1008 Target_arm
<big_endian
>*, Output_section
*,
1009 unsigned char*, Arm_address
, section_size_type
);
1011 // Unordered map of relocation stubs.
1013 Unordered_map
<Reloc_stub::Key
, Reloc_stub
*, Reloc_stub::Key::hash
,
1014 Reloc_stub::Key::equal_to
>
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map
<Arm_address
, Cortex_a8_stub
*> Cortex_a8_stub_list
;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector
<Arm_v4bx_stub
*> Arm_v4bx_stub_list
;
1023 // Owner of this stub table.
1024 Arm_input_section
<big_endian
>* owner_
;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_
;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_
;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_
;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_
;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_
;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_
;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_
;
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1044 class Arm_exidx_cantunwind
: public Output_section_data
1047 Arm_exidx_cantunwind(Relobj
* relobj
, unsigned int shndx
)
1048 : Output_section_data(8, 4, true), relobj_(relobj
), shndx_(shndx
)
1051 // Return the object containing the section pointed by this.
1054 { return this->relobj_
; }
1056 // Return the section index of the section pointed by this.
1059 { return this->shndx_
; }
1063 do_write(Output_file
* of
)
1065 if (parameters
->target().is_big_endian())
1066 this->do_fixed_endian_write
<true>(of
);
1068 this->do_fixed_endian_write
<false>(of
);
1071 // Write to a map file.
1073 do_print_to_mapfile(Mapfile
* mapfile
) const
1074 { mapfile
->print_output_data(this, _("** ARM cantunwind")); }
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian
>
1080 do_fixed_endian_write(Output_file
*);
1082 // The object containing the section pointed by this.
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_
;
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1092 typedef std::map
<section_offset_type
, section_offset_type
>
1093 Arm_exidx_section_offset_map
;
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1098 class Arm_exidx_merged_section
: public Output_relaxed_input_section
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section
& exidx_input_section
,
1108 const Arm_exidx_section_offset_map
& section_offset_map
,
1109 uint32_t deleted_bytes
);
1111 // Build output contents.
1113 build_contents(const unsigned char*, section_size_type
);
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section
&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_
; }
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map
&
1122 section_offset_map() const
1123 { return this->section_offset_map_
; }
1126 // Write merged section into file OF.
1128 do_write(Output_file
* of
);
1131 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
1132 section_offset_type
*) const;
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section
& exidx_input_section_
;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map
& section_offset_map_
;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_
;
1145 // A class to wrap an ordinary input section containing executable code.
1147 template<bool big_endian
>
1148 class Arm_input_section
: public Output_relaxed_input_section
1151 Arm_input_section(Relobj
* relobj
, unsigned int shndx
)
1152 : Output_relaxed_input_section(relobj
, shndx
, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL
),
1154 original_contents_(NULL
)
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_
; }
1164 // Whether this is a stub table owner.
1166 is_stub_table_owner() const
1167 { return this->stub_table_
!= NULL
&& this->stub_table_
->owner() == this; }
1169 // Return the stub table.
1170 Stub_table
<big_endian
>*
1172 { return this->stub_table_
; }
1174 // Set the stub_table.
1176 set_stub_table(Stub_table
<big_endian
>* stub_table
)
1177 { this->stub_table_
= stub_table
; }
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section
<big_endian
>*
1182 as_arm_input_section(Output_relaxed_input_section
* poris
)
1183 { return static_cast<Arm_input_section
<big_endian
>*>(poris
); }
1185 // Return the original size of the section.
1187 original_size() const
1188 { return this->original_size_
; }
1191 // Write data to output file.
1193 do_write(Output_file
*);
1195 // Return required alignment of this.
1197 do_addralign() const
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_
->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_
));
1203 return this->original_addralign_
;
1206 // Finalize data size.
1208 set_final_data_size();
1210 // Reset address and file offset.
1212 do_reset_address_and_file_offset();
1216 do_output_offset(const Relobj
* object
, unsigned int shndx
,
1217 section_offset_type offset
,
1218 section_offset_type
* poutput
) const
1220 if ((object
== this->relobj())
1221 && (shndx
== this->shndx())
1224 convert_types
<section_offset_type
, uint32_t>(this->original_size_
)))
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section
&);
1236 Arm_input_section
& operator=(const Arm_input_section
&);
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_
;
1240 // Section size of the original input section.
1241 uint32_t original_size_
;
1243 Stub_table
<big_endian
>* stub_table_
;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1247 unsigned char* original_contents_
;
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1253 class Arm_exidx_fixup
1256 Arm_exidx_fixup(Output_section
* exidx_output_section
,
1257 bool merge_exidx_entries
= true)
1258 : exidx_output_section_(exidx_output_section
), last_unwind_type_(UT_NONE
),
1259 last_inlined_entry_(0), last_input_section_(NULL
),
1260 section_offset_map_(NULL
), first_output_text_section_(NULL
),
1261 merge_exidx_entries_(merge_exidx_entries
)
1265 { delete this->section_offset_map_
; }
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian
>
1275 process_exidx_section(const Arm_exidx_input_section
* exidx_input_section
,
1276 const unsigned char* section_contents
,
1277 section_size_type section_size
,
1278 Arm_exidx_section_offset_map
** psection_offset_map
);
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1283 add_exidx_cantunwind_as_needed();
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1288 first_output_text_section() const
1289 { return this->first_output_text_section_
; }
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup
&);
1294 Arm_exidx_fixup
& operator=(const Arm_exidx_fixup
&);
1296 // Type of EXIDX unwind entry.
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND
,
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1312 process_exidx_entry(uint32_t second_word
);
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1320 update_offset_map(section_offset_type input_offset
,
1321 section_size_type deleted_bytes
, bool delete_entry
);
1323 // EXIDX output section.
1324 Output_section
* exidx_output_section_
;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_
;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_
;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section
* last_input_section_
;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map
* section_offset_map_
;
1333 // Output section for the text section which is linked to the first exidx
1335 Output_section
* first_output_text_section_
;
1337 bool merge_exidx_entries_
;
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1343 template<bool big_endian
>
1344 class Arm_output_section
: public Output_section
1347 typedef std::vector
<std::pair
<Relobj
*, unsigned int> > Text_section_list
;
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name
, elfcpp::Elf_Word type
,
1351 elfcpp::Elf_Xword flags
)
1352 : Output_section(name
, type
,
1353 (type
== elfcpp::SHT_ARM_EXIDX
1354 ? flags
| elfcpp::SHF_LINK_ORDER
1357 if (type
== elfcpp::SHT_ARM_EXIDX
)
1358 this->set_always_keeps_input_sections();
1361 ~Arm_output_section()
1364 // Group input sections for stub generation.
1366 group_sections(section_size_type
, bool, Target_arm
<big_endian
>*, const Task
*);
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section
<big_endian
>*
1371 as_arm_output_section(Output_section
* os
)
1372 { return static_cast<Arm_output_section
<big_endian
>*>(os
); }
1374 // Append all input text sections in this into LIST.
1376 append_text_sections_to_list(Text_section_list
* list
);
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1382 fix_exidx_coverage(Layout
* layout
,
1383 const Text_section_list
& sorted_text_section
,
1384 Symbol_table
* symtab
,
1385 bool merge_exidx_entries
,
1388 // Link an EXIDX section into its corresponding text section.
1390 set_exidx_section_link();
1394 typedef Output_section::Input_section Input_section
;
1395 typedef Output_section::Input_section_list Input_section_list
;
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator
,
1399 Input_section_list::const_iterator
,
1400 Input_section_list::const_iterator
,
1401 Target_arm
<big_endian
>*,
1402 std::vector
<Output_relaxed_input_section
*>*,
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1408 class Arm_exidx_input_section
1411 static const section_offset_type invalid_offset
=
1412 static_cast<section_offset_type
>(-1);
1414 Arm_exidx_input_section(Relobj
* relobj
, unsigned int shndx
,
1415 unsigned int link
, uint32_t size
,
1416 uint32_t addralign
, uint32_t text_size
)
1417 : relobj_(relobj
), shndx_(shndx
), link_(link
), size_(size
),
1418 addralign_(addralign
), text_size_(text_size
), has_errors_(false)
1421 ~Arm_exidx_input_section()
1424 // Accessors: This is a read-only class.
1426 // Return the object containing this EXIDX input section.
1429 { return this->relobj_
; }
1431 // Return the section index of this EXIDX input section.
1434 { return this->shndx_
; }
1436 // Return the section index of linked text section in the same object.
1439 { return this->link_
; }
1441 // Return size of the EXIDX input section.
1444 { return this->size_
; }
1446 // Return address alignment of EXIDX input section.
1449 { return this->addralign_
; }
1451 // Return size of the associated text input section.
1454 { return this->text_size_
; }
1456 // Whether there are any errors in the EXIDX input section.
1459 { return this->has_errors_
; }
1461 // Set has-errors flag.
1464 { this->has_errors_
= true; }
1467 // Object containing this.
1469 // Section index of this.
1470 unsigned int shndx_
;
1471 // text section linked to this in the same object.
1473 // Size of this. For ARM 32-bit is sufficient.
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_
;
1477 // Size of associated text section.
1478 uint32_t text_size_
;
1479 // Whether this has any errors.
1483 // Arm_relobj class.
1485 template<bool big_endian
>
1486 class Arm_relobj
: public Sized_relobj_file
<32, big_endian
>
1489 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
1491 Arm_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1492 const typename
elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1493 : Sized_relobj_file
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL
), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL
), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1502 { delete this->attributes_section_data_
; }
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table
<big_endian
>*
1506 stub_table(unsigned int shndx
) const
1508 gold_assert(shndx
< this->stub_tables_
.size());
1509 return this->stub_tables_
[shndx
];
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1514 set_stub_table(unsigned int shndx
, Stub_table
<big_endian
>* stub_table
)
1516 gold_assert(shndx
< this->stub_tables_
.size());
1517 this->stub_tables_
[shndx
] = stub_table
;
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1523 local_symbol_is_thumb_function(unsigned int r_sym
) const
1525 gold_assert(r_sym
< this->local_symbol_is_thumb_function_
.size());
1526 return this->local_symbol_is_thumb_function_
[r_sym
];
1529 // Scan all relocation sections for stub generation.
1531 scan_sections_for_stubs(Target_arm
<big_endian
>*, const Symbol_table
*,
1534 // Convert regular input section with index SHNDX to a relaxed section.
1536 convert_input_section_to_relaxed_section(unsigned shndx
)
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx
, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj
<big_endian
>*
1547 as_arm_relobj(Relobj
* relobj
)
1548 { return static_cast<Arm_relobj
<big_endian
>*>(relobj
); }
1550 // Processor-specific flags in ELF file header. This is valid only after
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_
; }
1556 // Attribute section data This is the contents of the .ARM.attribute section
1558 const Attributes_section_data
*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_
; }
1562 // Mapping symbol location.
1563 typedef std::pair
<unsigned int, Arm_address
> Mapping_symbol_position
;
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1569 operator()(const Mapping_symbol_position
& p1
,
1570 const Mapping_symbol_position
& p2
) const
1572 return (p1
.first
< p2
.first
1573 || (p1
.first
== p2
.first
&& p1
.second
< p2
.second
));
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map
<Mapping_symbol_position
, char,
1580 Mapping_symbol_position_less
> Mapping_symbols_info
;
1582 // Whether a section contains any Cortex-A8 workaround.
1584 section_has_cortex_a8_workaround(unsigned int shndx
) const
1586 return (this->section_has_cortex_a8_workaround_
!= NULL
1587 && (*this->section_has_cortex_a8_workaround_
)[shndx
]);
1590 // Mark a section that has Cortex-A8 workaround.
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx
)
1594 if (this->section_has_cortex_a8_workaround_
== NULL
)
1595 this->section_has_cortex_a8_workaround_
=
1596 new std::vector
<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_
)[shndx
] = true;
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section
*
1603 exidx_input_section_by_link(unsigned int shndx
) const
1605 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1606 return ((p
!= this->exidx_section_map_
.end()
1607 && p
->second
->link() == shndx
)
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section
*
1614 exidx_input_section_by_shndx(unsigned shndx
) const
1616 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1617 return ((p
!= this->exidx_section_map_
.end()
1618 && p
->second
->shndx() == shndx
)
1623 // Whether output local symbol count needs updating.
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_
; }
1628 // Set output_local_symbol_count_needs_update flag to be true.
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_
= true; }
1633 // Update output local symbol count at the end of relaxation.
1635 update_output_local_symbol_count();
1637 // Whether we want to merge processor-specific flags and attributes.
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_
; }
1642 // Export list of EXIDX section indices.
1644 get_exidx_shndx_list(std::vector
<unsigned int>* list
) const
1647 for (Exidx_section_map::const_iterator p
= this->exidx_section_map_
.begin();
1648 p
!= this->exidx_section_map_
.end();
1651 if (p
->second
->shndx() == p
->first
)
1652 list
->push_back(p
->first
);
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list
->begin(), list
->end());
1659 // Post constructor setup.
1663 // Call parent's setup method.
1664 Sized_relobj_file
<32, big_endian
>::do_setup();
1666 // Initialize look-up tables.
1667 Stub_table_list
empty_stub_table_list(this->shnum(), NULL
);
1668 this->stub_tables_
.swap(empty_stub_table_list
);
1671 // Count the local symbols.
1673 do_count_local_symbols(Stringpool_template
<char>*,
1674 Stringpool_template
<char>*);
1677 do_relocate_sections(
1678 const Symbol_table
* symtab
, const Layout
* layout
,
1679 const unsigned char* pshdrs
, Output_file
* of
,
1680 typename Sized_relobj_file
<32, big_endian
>::Views
* pivews
);
1682 // Read the symbol information.
1684 do_read_symbols(Read_symbols_data
* sd
);
1686 // Process relocs for garbage collection.
1688 do_gc_process_relocs(Symbol_table
*, Layout
*, Read_relocs_data
*);
1692 // Whether a section needs to be scanned for relocation stubs.
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1695 const Relobj::Output_sections
&,
1696 const Symbol_table
*, const unsigned char*);
1698 // Whether a section is a scannable text section.
1700 section_is_scannable(const elfcpp::Shdr
<32, big_endian
>&, unsigned int,
1701 const Output_section
*, const Symbol_table
*);
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1706 unsigned int, Output_section
*,
1707 const Symbol_table
*);
1709 // Scan a section for the Cortex-A8 erratum.
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr
<32, big_endian
>&,
1712 unsigned int, Output_section
*,
1713 Target_arm
<big_endian
>*);
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1721 find_linked_text_section(const unsigned char* pshdr
,
1722 const unsigned char* psyms
, unsigned int* pshndx
);
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1729 make_exidx_input_section(unsigned int shndx
,
1730 const elfcpp::Shdr
<32, big_endian
>& shdr
,
1731 unsigned int text_shndx
,
1732 const elfcpp::Shdr
<32, big_endian
>& text_shdr
);
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1737 simple_input_section_output_address(unsigned int, Output_section
*);
1739 typedef std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
1740 typedef Unordered_map
<unsigned int, const Arm_exidx_input_section
*>
1743 // List of stub tables.
1744 Stub_table_list stub_tables_
;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector
<bool> local_symbol_is_thumb_function_
;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_
;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data
* attributes_section_data_
;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_
;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector
<bool>* section_has_cortex_a8_workaround_
;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_
;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_
;
1760 // Whether we merge processor flags and attributes of this object to
1762 bool merge_flags_and_attributes_
;
1765 // Arm_dynobj class.
1767 template<bool big_endian
>
1768 class Arm_dynobj
: public Sized_dynobj
<32, big_endian
>
1771 Arm_dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1772 const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1773 : Sized_dynobj
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1774 processor_specific_flags_(0), attributes_section_data_(NULL
)
1778 { delete this->attributes_section_data_
; }
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj
<big_endian
>*
1783 as_arm_dynobj(Dynobj
* dynobj
)
1784 { return static_cast<Arm_dynobj
<big_endian
>*>(dynobj
); }
1786 // Processor-specific flags in ELF file header. This is valid only after
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_
; }
1792 // Attributes section data.
1793 const Attributes_section_data
*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_
; }
1798 // Read the symbol information.
1800 do_read_symbols(Read_symbols_data
* sd
);
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_
;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data
* attributes_section_data_
;
1809 // Functor to read reloc addends during stub generation.
1811 template<int sh_type
, bool big_endian
>
1812 struct Stub_addend_reader
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types
<32>::Elf_Swxword
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types
<sh_type
,
1822 32, big_endian
>::Reloc
& /* reloc */) const;
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1827 template<bool big_endian
>
1828 struct Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>
1830 elfcpp::Elf_types
<32>::Elf_Swxword
1833 const unsigned char*,
1834 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const;
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1842 template<bool big_endian
>
1843 struct Stub_addend_reader
<elfcpp::SHT_RELA
, big_endian
>
1845 elfcpp::Elf_types
<32>::Elf_Swxword
1848 const unsigned char*,
1849 const typename Reloc_types
<elfcpp::SHT_RELA
, 32,
1850 big_endian
>::Reloc
& reloc
) const
1851 { return reloc
.get_r_addend(); }
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1857 class Cortex_a8_reloc
1860 Cortex_a8_reloc(Reloc_stub
* reloc_stub
, unsigned r_type
,
1861 Arm_address destination
)
1862 : reloc_stub_(reloc_stub
), r_type_(r_type
), destination_(destination
)
1868 // Accessors: This is a read-only class.
1870 // Return the relocation stub associated with this relocation if there is
1874 { return this->reloc_stub_
; }
1876 // Return the relocation type.
1879 { return this->r_type_
; }
1881 // Return the destination address of the relocation. LSB stores the THUMB
1885 { return this->destination_
; }
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub
* reloc_stub_
;
1891 unsigned int r_type_
;
1892 // Destination address of this relocation. LSB is used to distinguish
1894 Arm_address destination_
;
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1900 template<bool big_endian
>
1901 class Arm_output_data_got
: public Output_data_got
<32, big_endian
>
1904 Arm_output_data_got(Symbol_table
* symtab
, Layout
* layout
)
1905 : Output_data_got
<32, big_endian
>(), symbol_table_(symtab
), layout_(layout
)
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1912 add_static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1913 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1919 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
1920 Sized_relobj_file
<32, big_endian
>* relobj
,
1923 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type
, Symbol
* gsym
);
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1937 add_tls_gd32_with_static_reloc(unsigned int got_type
,
1938 Sized_relobj_file
<32, big_endian
>* object
,
1939 unsigned int index
);
1942 // Write out the GOT table.
1944 do_write(Output_file
*);
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1952 Static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1953 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
1954 { this->u_
.global
.symbol
= gsym
; }
1956 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
1957 Sized_relobj_file
<32, big_endian
>* relobj
, unsigned int index
)
1958 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
1960 this->u_
.local
.relobj
= relobj
;
1961 this->u_
.local
.index
= index
;
1964 // Return the GOT offset.
1967 { return this->got_offset_
; }
1972 { return this->r_type_
; }
1974 // Whether the symbol is global or not.
1976 symbol_is_global() const
1977 { return this->symbol_is_global_
; }
1979 // For a relocation against a global symbol, the global symbol.
1983 gold_assert(this->symbol_is_global_
);
1984 return this->u_
.global
.symbol
;
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file
<32, big_endian
>*
1991 gold_assert(!this->symbol_is_global_
);
1992 return this->u_
.local
.relobj
;
1995 // For a relocation against a local symbol, the local symbol index.
1999 gold_assert(!this->symbol_is_global_
);
2000 return this->u_
.local
.index
;
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_
;
2006 // Type of relocation.
2007 unsigned int r_type_
;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_
;
2010 // A global or local symbol.
2015 // For a global symbol, the symbol itself.
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file
<32, big_endian
>* relobj
;
2022 // For a local symbol, the symbol index.
2028 // Symbol table of the output object.
2029 Symbol_table
* symbol_table_
;
2030 // Layout of the output object.
2032 // Static relocs to be applied to the GOT.
2033 std::vector
<Static_reloc
> static_relocs_
;
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2040 template<bool big_endian
, int sh_type
, typename Classify_reloc
>
2041 class Arm_scan_relocatable_relocs
:
2042 public Default_scan_relocatable_relocs
<sh_type
, Classify_reloc
>
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type
, Relobj
*)
2050 if (sh_type
== elfcpp::SHT_RELA
)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA
;
2054 if (r_type
== elfcpp::R_ARM_TARGET1
2055 || r_type
== elfcpp::R_ARM_TARGET2
)
2057 const Target_arm
<big_endian
>* arm_target
=
2058 Target_arm
<big_endian
>::default_target();
2059 r_type
= arm_target
->get_real_reloc_type(r_type
);
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE
:
2067 case elfcpp::R_ARM_V4BX
:
2068 case elfcpp::R_ARM_TLS_GOTDESC
:
2069 case elfcpp::R_ARM_TLS_CALL
:
2070 case elfcpp::R_ARM_TLS_DESCSEQ
:
2071 case elfcpp::R_ARM_THM_TLS_CALL
:
2072 case elfcpp::R_ARM_GOTRELAX
:
2073 case elfcpp::R_ARM_GNU_VTENTRY
:
2074 case elfcpp::R_ARM_GNU_VTINHERIT
:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16
:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32
:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0
;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1
:
2080 case elfcpp::R_ARM_TARGET2
:
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32
:
2085 case elfcpp::R_ARM_REL32
:
2086 case elfcpp::R_ARM_SBREL32
:
2087 case elfcpp::R_ARM_GOTOFF32
:
2088 case elfcpp::R_ARM_BASE_PREL
:
2089 case elfcpp::R_ARM_GOT_BREL
:
2090 case elfcpp::R_ARM_BASE_ABS
:
2091 case elfcpp::R_ARM_ABS32_NOI
:
2092 case elfcpp::R_ARM_REL32_NOI
:
2093 case elfcpp::R_ARM_PLT32_ABS
:
2094 case elfcpp::R_ARM_GOT_ABS
:
2095 case elfcpp::R_ARM_GOT_PREL
:
2096 case elfcpp::R_ARM_TLS_GD32
:
2097 case elfcpp::R_ARM_TLS_LDM32
:
2098 case elfcpp::R_ARM_TLS_LDO32
:
2099 case elfcpp::R_ARM_TLS_IE32
:
2100 case elfcpp::R_ARM_TLS_LE32
:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED
;
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL
;
2110 template<bool big_endian
>
2111 class Target_arm
: public Sized_target
<32, big_endian
>
2114 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs
= static_cast<size_t>(-1);
2120 Target_arm(const Target::Target_info
* info
= &arm_info
)
2121 : Sized_target
<32, big_endian
>(info
),
2122 got_(NULL
), plt_(NULL
), got_plt_(NULL
), got_irelative_(NULL
),
2123 rel_dyn_(NULL
), rel_irelative_(NULL
), copy_relocs_(elfcpp::R_ARM_COPY
),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL
),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2131 // Whether we force PCI branch veneers.
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_
; }
2136 // Set PIC veneer flag.
2138 set_should_force_pic_veneer(bool value
)
2139 { this->should_force_pic_veneer_
= value
; }
2141 // Whether we use THUMB-2 instructions.
2143 using_thumb2() const
2145 Object_attribute
* attr
=
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2147 int arch
= attr
->int_value();
2148 return arch
== elfcpp::TAG_CPU_ARCH_V6T2
|| arch
>= elfcpp::TAG_CPU_ARCH_V7
;
2151 // Whether we use THUMB/THUMB-2 instructions only.
2153 using_thumb_only() const
2155 Object_attribute
* attr
=
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2158 if (attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M
)
2161 if (attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M
)
2164 attr
= this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
2165 return attr
->int_value() == 'M';
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2170 may_use_arm_nop() const
2172 Object_attribute
* attr
=
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2174 int arch
= attr
->int_value();
2175 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch
== elfcpp::TAG_CPU_ARCH_V6K
2177 || arch
== elfcpp::TAG_CPU_ARCH_V7
2178 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2181 // Whether we have THUMB-2 NOP.W instruction.
2183 may_use_thumb2_nop() const
2185 Object_attribute
* attr
=
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2187 int arch
= attr
->int_value();
2188 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch
== elfcpp::TAG_CPU_ARCH_V7
2190 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2193 // Whether we have v4T interworking instructions available.
2195 may_use_v4t_interworking() const
2197 Object_attribute
* attr
=
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2199 int arch
= attr
->int_value();
2200 return (arch
!= elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch
!= elfcpp::TAG_CPU_ARCH_V4
);
2204 // Whether we have v5T interworking instructions available.
2206 may_use_v5t_interworking() const
2208 Object_attribute
* attr
=
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2210 int arch
= attr
->int_value();
2211 if (parameters
->options().fix_arm1176())
2212 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch
== elfcpp::TAG_CPU_ARCH_V7
2214 || arch
== elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch
== elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2218 return (arch
!= elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch
!= elfcpp::TAG_CPU_ARCH_V4
2220 && arch
!= elfcpp::TAG_CPU_ARCH_V4T
);
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2226 gc_process_relocs(Symbol_table
* symtab
,
2228 Sized_relobj_file
<32, big_endian
>* object
,
2229 unsigned int data_shndx
,
2230 unsigned int sh_type
,
2231 const unsigned char* prelocs
,
2233 Output_section
* output_section
,
2234 bool needs_special_offset_handling
,
2235 size_t local_symbol_count
,
2236 const unsigned char* plocal_symbols
);
2238 // Scan the relocations to look for symbol adjustments.
2240 scan_relocs(Symbol_table
* symtab
,
2242 Sized_relobj_file
<32, big_endian
>* object
,
2243 unsigned int data_shndx
,
2244 unsigned int sh_type
,
2245 const unsigned char* prelocs
,
2247 Output_section
* output_section
,
2248 bool needs_special_offset_handling
,
2249 size_t local_symbol_count
,
2250 const unsigned char* plocal_symbols
);
2252 // Finalize the sections.
2254 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
2256 // Return the value to use for a dynamic symbol which requires special
2259 do_dynsym_value(const Symbol
*) const;
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2264 do_plt_address_for_global(const Symbol
* gsym
) const
2265 { return this->plt_section()->address_for_global(gsym
); }
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2270 do_plt_address_for_local(const Relobj
* relobj
, unsigned int symndx
) const
2271 { return this->plt_section()->address_for_local(relobj
, symndx
); }
2273 // Relocate a section.
2275 relocate_section(const Relocate_info
<32, big_endian
>*,
2276 unsigned int sh_type
,
2277 const unsigned char* prelocs
,
2279 Output_section
* output_section
,
2280 bool needs_special_offset_handling
,
2281 unsigned char* view
,
2282 Arm_address view_address
,
2283 section_size_type view_size
,
2284 const Reloc_symbol_changes
*);
2286 // Scan the relocs during a relocatable link.
2288 scan_relocatable_relocs(Symbol_table
* symtab
,
2290 Sized_relobj_file
<32, big_endian
>* object
,
2291 unsigned int data_shndx
,
2292 unsigned int sh_type
,
2293 const unsigned char* prelocs
,
2295 Output_section
* output_section
,
2296 bool needs_special_offset_handling
,
2297 size_t local_symbol_count
,
2298 const unsigned char* plocal_symbols
,
2299 Relocatable_relocs
*);
2301 // Emit relocations for a section.
2303 relocate_relocs(const Relocate_info
<32, big_endian
>*,
2304 unsigned int sh_type
,
2305 const unsigned char* prelocs
,
2307 Output_section
* output_section
,
2308 typename
elfcpp::Elf_types
<32>::Elf_Off
2309 offset_in_output_section
,
2310 const Relocatable_relocs
*,
2311 unsigned char* view
,
2312 Arm_address view_address
,
2313 section_size_type view_size
,
2314 unsigned char* reloc_view
,
2315 section_size_type reloc_view_size
);
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2320 relocate_special_relocatable(const Relocate_info
<32, big_endian
>* relinfo
,
2321 unsigned int sh_type
,
2322 const unsigned char* preloc_in
,
2324 Output_section
* output_section
,
2325 typename
elfcpp::Elf_types
<32>::Elf_Off
2326 offset_in_output_section
,
2327 unsigned char* view
,
2328 typename
elfcpp::Elf_types
<32>::Elf_Addr
2330 section_size_type view_size
,
2331 unsigned char* preloc_out
);
2333 // Return whether SYM is defined by the ABI.
2335 do_is_defined_by_abi(const Symbol
* sym
) const
2336 { return strcmp(sym
->name(), "__tls_get_addr") == 0; }
2338 // Return whether there is a GOT section.
2340 has_got_section() const
2341 { return this->got_
!= NULL
; }
2343 // Return the size of the GOT section.
2347 gold_assert(this->got_
!= NULL
);
2348 return this->got_
->data_size();
2351 // Return the number of entries in the GOT.
2353 got_entry_count() const
2355 if (!this->has_got_section())
2357 return this->got_size() / 4;
2360 // Return the number of entries in the PLT.
2362 plt_entry_count() const;
2364 // Return the offset of the first non-reserved PLT entry.
2366 first_plt_entry_offset() const;
2368 // Return the size of each PLT entry.
2370 plt_entry_size() const;
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2374 rel_irelative_section(Layout
*);
2376 // Map platform-specific reloc types
2378 get_real_reloc_type(unsigned int r_type
);
2381 // Methods to support stub-generations.
2384 // Return the stub factory
2386 stub_factory() const
2387 { return this->stub_factory_
; }
2389 // Make a new Arm_input_section object.
2390 Arm_input_section
<big_endian
>*
2391 new_arm_input_section(Relobj
*, unsigned int);
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section
<big_endian
>*
2396 find_arm_input_section(Relobj
* relobj
, unsigned int shndx
) const;
2398 // Make a new Stub_table
2399 Stub_table
<big_endian
>*
2400 new_stub_table(Arm_input_section
<big_endian
>*);
2402 // Scan a section for stub generation.
2404 scan_section_for_stubs(const Relocate_info
<32, big_endian
>*, unsigned int,
2405 const unsigned char*, size_t, Output_section
*,
2406 bool, const unsigned char*, Arm_address
,
2411 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
2412 Output_section
*, unsigned char*, Arm_address
,
2415 // Get the default ARM target.
2416 static Target_arm
<big_endian
>*
2419 gold_assert(parameters
->target().machine_code() == elfcpp::EM_ARM
2420 && parameters
->target().is_big_endian() == big_endian
);
2421 return static_cast<Target_arm
<big_endian
>*>(
2422 parameters
->sized_target
<32, big_endian
>());
2425 // Whether NAME belongs to a mapping symbol.
2427 is_mapping_symbol_name(const char* name
)
2431 && (name
[1] == 'a' || name
[1] == 't' || name
[1] == 'd')
2432 && (name
[2] == '\0' || name
[2] == '.'));
2435 // Whether we work around the Cortex-A8 erratum.
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_
; }
2440 // Whether we merge exidx entries in debuginfo.
2442 merge_exidx_entries() const
2443 { return parameters
->options().merge_exidx_entries(); }
2445 // Whether we fix R_ARM_V4BX relocation.
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
2449 General_options::Fix_v4bx
2451 { return parameters
->options().fix_v4bx(); }
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2455 scan_span_for_cortex_a8_erratum(Arm_relobj
<big_endian
>*, unsigned int,
2456 section_size_type
, section_size_type
,
2457 const unsigned char*, Arm_address
);
2459 // Apply Cortex-A8 workaround to a branch.
2461 apply_cortex_a8_workaround(const Cortex_a8_stub
*, Arm_address
,
2462 unsigned char*, Arm_address
);
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm
<big_endian
>*
2467 make_data_plt(Layout
* layout
,
2468 Arm_output_data_got
<big_endian
>* got
,
2469 Output_data_space
* got_plt
,
2470 Output_data_space
* got_irelative
)
2471 { return this->do_make_data_plt(layout
, got
, got_plt
, got_irelative
); }
2473 // Make an ELF object.
2475 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2476 const elfcpp::Ehdr
<32, big_endian
>& ehdr
);
2479 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2480 const elfcpp::Ehdr
<32, !big_endian
>&)
2481 { gold_unreachable(); }
2484 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2485 const elfcpp::Ehdr
<64, false>&)
2486 { gold_unreachable(); }
2489 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2490 const elfcpp::Ehdr
<64, true>&)
2491 { gold_unreachable(); }
2493 // Make an output section.
2495 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
2496 elfcpp::Elf_Xword flags
)
2497 { return new Arm_output_section
<big_endian
>(name
, type
, flags
); }
2500 do_adjust_elf_header(unsigned char* view
, int len
);
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2505 do_may_relax() const
2506 { return !parameters
->options().relocatable(); }
2509 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*, const Task
*);
2511 // Determine whether an object attribute tag takes an integer, a
2514 do_attribute_arg_type(int tag
) const;
2516 // Reorder tags during output.
2518 do_attributes_order(int num
) const;
2520 // This is called when the target is selected as the default.
2522 do_select_as_default_target()
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2527 gold_assert(arm_reloc_property_table
== NULL
);
2528 arm_reloc_property_table
= new Arm_reloc_property_table();
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2535 do_can_check_for_function_pointers() const
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name
) const
2543 return (!is_prefix_of(".ARM.exidx", section_name
)
2544 && !is_prefix_of(".ARM.extab", section_name
)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name
));
2549 do_define_standard_symbols(Symbol_table
*, Layout
*);
2551 virtual Output_data_plt_arm
<big_endian
>*
2552 do_make_data_plt(Layout
* layout
,
2553 Arm_output_data_got
<big_endian
>* got
,
2554 Output_data_space
* got_plt
,
2555 Output_data_space
* got_irelative
)
2557 gold_assert(got_plt
!= NULL
&& got_irelative
!= NULL
);
2558 return new Output_data_plt_arm_standard
<big_endian
>(
2559 layout
, got
, got_plt
, got_irelative
);
2563 // The class which scans relocations.
2568 : issued_non_pic_error_(false)
2572 get_reference_flags(unsigned int r_type
);
2575 local(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2576 Sized_relobj_file
<32, big_endian
>* object
,
2577 unsigned int data_shndx
,
2578 Output_section
* output_section
,
2579 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2580 const elfcpp::Sym
<32, big_endian
>& lsym
,
2584 global(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2585 Sized_relobj_file
<32, big_endian
>* object
,
2586 unsigned int data_shndx
,
2587 Output_section
* output_section
,
2588 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2592 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2593 Sized_relobj_file
<32, big_endian
>* ,
2596 const elfcpp::Rel
<32, big_endian
>& ,
2598 const elfcpp::Sym
<32, big_endian
>&);
2601 global_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2602 Sized_relobj_file
<32, big_endian
>* ,
2605 const elfcpp::Rel
<32, big_endian
>& ,
2606 unsigned int , Symbol
*);
2610 unsupported_reloc_local(Sized_relobj_file
<32, big_endian
>*,
2611 unsigned int r_type
);
2614 unsupported_reloc_global(Sized_relobj_file
<32, big_endian
>*,
2615 unsigned int r_type
, Symbol
*);
2618 check_non_pic(Relobj
*, unsigned int r_type
);
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2623 symbol_needs_plt_entry(const Symbol
* sym
)
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym
->is_undefined() && !parameters
->options().shared())
2629 if (sym
->type() == elfcpp::STT_GNU_IFUNC
)
2632 return (!parameters
->doing_static_link()
2633 && (sym
->type() == elfcpp::STT_FUNC
2634 || sym
->type() == elfcpp::STT_ARM_TFUNC
)
2635 && (sym
->is_from_dynobj()
2636 || sym
->is_undefined()
2637 || sym
->is_preemptible()));
2641 possible_function_pointer_reloc(unsigned int r_type
);
2643 // Whether a plt entry is needed for ifunc.
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file
<32, big_endian
>*,
2646 unsigned int r_type
);
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_
;
2652 // The class which implements relocation.
2662 // Return whether the static relocation needs to be applied.
2664 should_apply_static_reloc(const Sized_symbol
<32>* gsym
,
2665 unsigned int r_type
,
2667 Output_section
* output_section
);
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2672 relocate(const Relocate_info
<32, big_endian
>*, Target_arm
*,
2673 Output_section
*, size_t relnum
,
2674 const elfcpp::Rel
<32, big_endian
>&,
2675 unsigned int r_type
, const Sized_symbol
<32>*,
2676 const Symbol_value
<32>*,
2677 unsigned char*, Arm_address
,
2680 // Return whether we want to pass flag NON_PIC_REF for this
2681 // reloc. This means the relocation type accesses a symbol not via
2684 reloc_is_non_pic(unsigned int r_type
)
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL
:
2690 case elfcpp::R_ARM_GOT_ABS
:
2691 case elfcpp::R_ARM_GOT_PREL
:
2692 case elfcpp::R_ARM_GOT_BREL12
:
2693 case elfcpp::R_ARM_PLT32_ABS
:
2694 case elfcpp::R_ARM_TLS_GD32
:
2695 case elfcpp::R_ARM_TLS_LDM32
:
2696 case elfcpp::R_ARM_TLS_IE32
:
2697 case elfcpp::R_ARM_TLS_IE12GP
:
2699 // These relocate types may use PLT entries.
2700 case elfcpp::R_ARM_CALL
:
2701 case elfcpp::R_ARM_THM_CALL
:
2702 case elfcpp::R_ARM_JUMP24
:
2703 case elfcpp::R_ARM_THM_JUMP24
:
2704 case elfcpp::R_ARM_THM_JUMP19
:
2705 case elfcpp::R_ARM_PLT32
:
2706 case elfcpp::R_ARM_THM_XPC22
:
2707 case elfcpp::R_ARM_PREL31
:
2708 case elfcpp::R_ARM_SBREL31
:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions
<big_endian
>::Status
2719 relocate_tls(const Relocate_info
<32, big_endian
>*, Target_arm
<big_endian
>*,
2720 size_t, const elfcpp::Rel
<32, big_endian
>&, unsigned int,
2721 const Sized_symbol
<32>*, const Symbol_value
<32>*,
2722 unsigned char*, elfcpp::Elf_types
<32>::Elf_Addr
,
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2733 get_size_for_reloc(unsigned int, Relobj
*);
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final
, int r_type
);
2741 // Get the GOT section, creating it if necessary.
2742 Arm_output_data_got
<big_endian
>*
2743 got_section(Symbol_table
*, Layout
*);
2745 // Get the GOT PLT section.
2747 got_plt_section() const
2749 gold_assert(this->got_plt_
!= NULL
);
2750 return this->got_plt_
;
2753 // Create the PLT section.
2755 make_plt_section(Symbol_table
* symtab
, Layout
* layout
);
2757 // Create a PLT entry for a global symbol.
2759 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2763 make_local_ifunc_plt_entry(Symbol_table
*, Layout
*,
2764 Sized_relobj_file
<32, big_endian
>* relobj
,
2765 unsigned int local_sym_index
);
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2769 define_tls_base_symbol(Symbol_table
*, Layout
*);
2771 // Create a GOT entry for the TLS module index.
2773 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
2774 Sized_relobj_file
<32, big_endian
>* object
);
2776 // Get the PLT section.
2777 const Output_data_plt_arm
<big_endian
>*
2780 gold_assert(this->plt_
!= NULL
);
2784 // Get the dynamic reloc section, creating it if necessary.
2786 rel_dyn_section(Layout
*);
2788 // Get the section to use for TLS_DESC relocations.
2790 rel_tls_desc_section(Layout
*) const;
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2796 may_need_copy_reloc(Symbol
* gsym
)
2798 return (gsym
->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym
->may_need_copy_reloc());
2802 // Add a potential copy relocation.
2804 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
2805 Sized_relobj_file
<32, big_endian
>* object
,
2806 unsigned int shndx
, Output_section
* output_section
,
2807 Symbol
* sym
, const elfcpp::Rel
<32, big_endian
>& reloc
)
2809 this->copy_relocs_
.copy_reloc(symtab
, layout
,
2810 symtab
->get_sized_symbol
<32>(sym
),
2811 object
, shndx
, output_section
, reloc
,
2812 this->rel_dyn_section(layout
));
2815 // Whether two EABI versions are compatible.
2817 are_eabi_versions_compatible(elfcpp::Elf_Word v1
, elfcpp::Elf_Word v2
);
2819 // Merge processor-specific flags from input object and those in the ELF
2820 // header of the output.
2822 merge_processor_specific_flags(const std::string
&, elfcpp::Elf_Word
);
2824 // Get the secondary compatible architecture.
2826 get_secondary_compatible_arch(const Attributes_section_data
*);
2828 // Set the secondary compatible architecture.
2830 set_secondary_compatible_arch(Attributes_section_data
*, int);
2833 tag_cpu_arch_combine(const char*, int, int*, int, int);
2835 // Helper to print AEABI enum tag value.
2837 aeabi_enum_name(unsigned int);
2839 // Return string value for TAG_CPU_name.
2841 tag_cpu_name_value(unsigned int);
2843 // Query attributes object to see if integer divide instructions may be
2844 // present in an object.
2846 attributes_accept_div(int arch
, int profile
,
2847 const Object_attribute
* div_attr
);
2849 // Query attributes object to see if integer divide instructions are
2850 // forbidden to be in the object. This is not the inverse of
2851 // attributes_accept_div.
2853 attributes_forbid_div(const Object_attribute
* div_attr
);
2855 // Merge object attributes from input object and those in the output.
2857 merge_object_attributes(const char*, const Attributes_section_data
*);
2859 // Helper to get an AEABI object attribute
2861 get_aeabi_object_attribute(int tag
) const
2863 Attributes_section_data
* pasd
= this->attributes_section_data_
;
2864 gold_assert(pasd
!= NULL
);
2865 Object_attribute
* attr
=
2866 pasd
->get_attribute(Object_attribute::OBJ_ATTR_PROC
, tag
);
2867 gold_assert(attr
!= NULL
);
2872 // Methods to support stub-generations.
2875 // Group input sections for stub generation.
2877 group_sections(Layout
*, section_size_type
, bool, const Task
*);
2879 // Scan a relocation for stub generation.
2881 scan_reloc_for_stub(const Relocate_info
<32, big_endian
>*, unsigned int,
2882 const Sized_symbol
<32>*, unsigned int,
2883 const Symbol_value
<32>*,
2884 elfcpp::Elf_types
<32>::Elf_Swxword
, Arm_address
);
2886 // Scan a relocation section for stub.
2887 template<int sh_type
>
2889 scan_reloc_section_for_stubs(
2890 const Relocate_info
<32, big_endian
>* relinfo
,
2891 const unsigned char* prelocs
,
2893 Output_section
* output_section
,
2894 bool needs_special_offset_handling
,
2895 const unsigned char* view
,
2896 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
2899 // Fix .ARM.exidx section coverage.
2901 fix_exidx_coverage(Layout
*, const Input_objects
*,
2902 Arm_output_section
<big_endian
>*, Symbol_table
*,
2905 // Functors for STL set.
2906 struct output_section_address_less_than
2909 operator()(const Output_section
* s1
, const Output_section
* s2
) const
2910 { return s1
->address() < s2
->address(); }
2913 // Information about this specific target which we pass to the
2914 // general Target structure.
2915 static const Target::Target_info arm_info
;
2917 // The types of GOT entries needed for this platform.
2918 // These values are exposed to the ABI in an incremental link.
2919 // Do not renumber existing values without changing the version
2920 // number of the .gnu_incremental_inputs section.
2923 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
2924 GOT_TYPE_TLS_NOFFSET
= 1, // GOT entry for negative TLS offset
2925 GOT_TYPE_TLS_OFFSET
= 2, // GOT entry for positive TLS offset
2926 GOT_TYPE_TLS_PAIR
= 3, // GOT entry for TLS module/offset pair
2927 GOT_TYPE_TLS_DESC
= 4 // GOT entry for TLS_DESC pair
2930 typedef typename
std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
2932 // Map input section to Arm_input_section.
2933 typedef Unordered_map
<Section_id
,
2934 Arm_input_section
<big_endian
>*,
2936 Arm_input_section_map
;
2938 // Map output addresses to relocs for Cortex-A8 erratum.
2939 typedef Unordered_map
<Arm_address
, const Cortex_a8_reloc
*>
2940 Cortex_a8_relocs_info
;
2943 Arm_output_data_got
<big_endian
>* got_
;
2945 Output_data_plt_arm
<big_endian
>* plt_
;
2946 // The GOT PLT section.
2947 Output_data_space
* got_plt_
;
2948 // The GOT section for IRELATIVE relocations.
2949 Output_data_space
* got_irelative_
;
2950 // The dynamic reloc section.
2951 Reloc_section
* rel_dyn_
;
2952 // The section to use for IRELATIVE relocs.
2953 Reloc_section
* rel_irelative_
;
2954 // Relocs saved to avoid a COPY reloc.
2955 Copy_relocs
<elfcpp::SHT_REL
, 32, big_endian
> copy_relocs_
;
2956 // Offset of the GOT entry for the TLS module index.
2957 unsigned int got_mod_index_offset_
;
2958 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959 bool tls_base_symbol_defined_
;
2960 // Vector of Stub_tables created.
2961 Stub_table_list stub_tables_
;
2963 const Stub_factory
&stub_factory_
;
2964 // Whether we force PIC branch veneers.
2965 bool should_force_pic_veneer_
;
2966 // Map for locating Arm_input_sections.
2967 Arm_input_section_map arm_input_section_map_
;
2968 // Attributes section data in output.
2969 Attributes_section_data
* attributes_section_data_
;
2970 // Whether we want to fix code for Cortex-A8 erratum.
2971 bool fix_cortex_a8_
;
2972 // Map addresses to relocs for Cortex-A8 erratum.
2973 Cortex_a8_relocs_info cortex_a8_relocs_info_
;
2976 template<bool big_endian
>
2977 const Target::Target_info Target_arm
<big_endian
>::arm_info
=
2980 big_endian
, // is_big_endian
2981 elfcpp::EM_ARM
, // machine_code
2982 false, // has_make_symbol
2983 false, // has_resolve
2984 false, // has_code_fill
2985 true, // is_default_stack_executable
2986 false, // can_icf_inline_merge_sections
2988 "/usr/lib/libc.so.1", // dynamic_linker
2989 0x8000, // default_text_segment_address
2990 0x1000, // abi_pagesize (overridable by -z max-page-size)
2991 0x1000, // common_pagesize (overridable by -z common-page-size)
2992 false, // isolate_execinstr
2994 elfcpp::SHN_UNDEF
, // small_common_shndx
2995 elfcpp::SHN_UNDEF
, // large_common_shndx
2996 0, // small_common_section_flags
2997 0, // large_common_section_flags
2998 ".ARM.attributes", // attributes_section
2999 "aeabi", // attributes_vendor
3000 "_start" // entry_symbol_name
3003 // Arm relocate functions class
3006 template<bool big_endian
>
3007 class Arm_relocate_functions
: public Relocate_functions
<32, big_endian
>
3012 STATUS_OKAY
, // No error during relocation.
3013 STATUS_OVERFLOW
, // Relocation overflow.
3014 STATUS_BAD_RELOC
// Relocation cannot be applied.
3018 typedef Relocate_functions
<32, big_endian
> Base
;
3019 typedef Arm_relocate_functions
<big_endian
> This
;
3021 // Encoding of imm16 argument for movt and movw ARM instructions
3024 // imm16 := imm4 | imm12
3026 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3027 // +-------+---------------+-------+-------+-----------------------+
3028 // | | |imm4 | |imm12 |
3029 // +-------+---------------+-------+-------+-----------------------+
3031 // Extract the relocation addend from VAL based on the ARM
3032 // instruction encoding described above.
3033 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
3034 extract_arm_movw_movt_addend(
3035 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
3037 // According to the Elf ABI for ARM Architecture the immediate
3038 // field is sign-extended to form the addend.
3039 return Bits
<16>::sign_extend32(((val
>> 4) & 0xf000) | (val
& 0xfff));
3042 // Insert X into VAL based on the ARM instruction encoding described
3044 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
3045 insert_val_arm_movw_movt(
3046 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
3047 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
3051 val
|= (x
& 0xf000) << 4;
3055 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3058 // imm16 := imm4 | i | imm3 | imm8
3060 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3061 // +---------+-+-----------+-------++-+-----+-------+---------------+
3062 // | |i| |imm4 || |imm3 | |imm8 |
3063 // +---------+-+-----------+-------++-+-----+-------+---------------+
3065 // Extract the relocation addend from VAL based on the Thumb2
3066 // instruction encoding described above.
3067 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
3068 extract_thumb_movw_movt_addend(
3069 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
3071 // According to the Elf ABI for ARM Architecture the immediate
3072 // field is sign-extended to form the addend.
3073 return Bits
<16>::sign_extend32(((val
>> 4) & 0xf000)
3074 | ((val
>> 15) & 0x0800)
3075 | ((val
>> 4) & 0x0700)
3079 // Insert X into VAL based on the Thumb2 instruction encoding
3081 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
3082 insert_val_thumb_movw_movt(
3083 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
3084 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
3087 val
|= (x
& 0xf000) << 4;
3088 val
|= (x
& 0x0800) << 15;
3089 val
|= (x
& 0x0700) << 4;
3090 val
|= (x
& 0x00ff);
3094 // Calculate the smallest constant Kn for the specified residual.
3095 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3097 calc_grp_kn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
)
3103 // Determine the most significant bit in the residual and
3104 // align the resulting value to a 2-bit boundary.
3105 for (msb
= 30; (msb
>= 0) && !(residual
& (3 << msb
)); msb
-= 2)
3107 // The desired shift is now (msb - 6), or zero, whichever
3109 return (((msb
- 6) < 0) ? 0 : (msb
- 6));
3112 // Calculate the final residual for the specified group index.
3113 // If the passed group index is less than zero, the method will return
3114 // the value of the specified residual without any change.
3115 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3116 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
3117 calc_grp_residual(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
3120 for (int n
= 0; n
<= group
; n
++)
3122 // Calculate which part of the value to mask.
3123 uint32_t shift
= calc_grp_kn(residual
);
3124 // Calculate the residual for the next time around.
3125 residual
&= ~(residual
& (0xff << shift
));
3131 // Calculate the value of Gn for the specified group index.
3132 // We return it in the form of an encoded constant-and-rotation.
3133 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3134 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
3135 calc_grp_gn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
3138 typename
elfcpp::Swap
<32, big_endian
>::Valtype gn
= 0;
3141 for (int n
= 0; n
<= group
; n
++)
3143 // Calculate which part of the value to mask.
3144 shift
= calc_grp_kn(residual
);
3145 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3146 gn
= residual
& (0xff << shift
);
3147 // Calculate the residual for the next time around.
3150 // Return Gn in the form of an encoded constant-and-rotation.
3151 return ((gn
>> shift
) | ((gn
<= 0xff ? 0 : (32 - shift
) / 2) << 8));
3155 // Handle ARM long branches.
3156 static typename
This::Status
3157 arm_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
3158 unsigned char*, const Sized_symbol
<32>*,
3159 const Arm_relobj
<big_endian
>*, unsigned int,
3160 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
3162 // Handle THUMB long branches.
3163 static typename
This::Status
3164 thumb_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
3165 unsigned char*, const Sized_symbol
<32>*,
3166 const Arm_relobj
<big_endian
>*, unsigned int,
3167 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
3170 // Return the branch offset of a 32-bit THUMB branch.
3171 static inline int32_t
3172 thumb32_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
3174 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3175 // involving the J1 and J2 bits.
3176 uint32_t s
= (upper_insn
& (1U << 10)) >> 10;
3177 uint32_t upper
= upper_insn
& 0x3ffU
;
3178 uint32_t lower
= lower_insn
& 0x7ffU
;
3179 uint32_t j1
= (lower_insn
& (1U << 13)) >> 13;
3180 uint32_t j2
= (lower_insn
& (1U << 11)) >> 11;
3181 uint32_t i1
= j1
^ s
? 0 : 1;
3182 uint32_t i2
= j2
^ s
? 0 : 1;
3184 return Bits
<25>::sign_extend32((s
<< 24) | (i1
<< 23) | (i2
<< 22)
3185 | (upper
<< 12) | (lower
<< 1));
3188 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3189 // UPPER_INSN is the original upper instruction of the branch. Caller is
3190 // responsible for overflow checking and BLX offset adjustment.
3191 static inline uint16_t
3192 thumb32_branch_upper(uint16_t upper_insn
, int32_t offset
)
3194 uint32_t s
= offset
< 0 ? 1 : 0;
3195 uint32_t bits
= static_cast<uint32_t>(offset
);
3196 return (upper_insn
& ~0x7ffU
) | ((bits
>> 12) & 0x3ffU
) | (s
<< 10);
3199 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3200 // LOWER_INSN is the original lower instruction of the branch. Caller is
3201 // responsible for overflow checking and BLX offset adjustment.
3202 static inline uint16_t
3203 thumb32_branch_lower(uint16_t lower_insn
, int32_t offset
)
3205 uint32_t s
= offset
< 0 ? 1 : 0;
3206 uint32_t bits
= static_cast<uint32_t>(offset
);
3207 return ((lower_insn
& ~0x2fffU
)
3208 | ((((bits
>> 23) & 1) ^ !s
) << 13)
3209 | ((((bits
>> 22) & 1) ^ !s
) << 11)
3210 | ((bits
>> 1) & 0x7ffU
));
3213 // Return the branch offset of a 32-bit THUMB conditional branch.
3214 static inline int32_t
3215 thumb32_cond_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
3217 uint32_t s
= (upper_insn
& 0x0400U
) >> 10;
3218 uint32_t j1
= (lower_insn
& 0x2000U
) >> 13;
3219 uint32_t j2
= (lower_insn
& 0x0800U
) >> 11;
3220 uint32_t lower
= (lower_insn
& 0x07ffU
);
3221 uint32_t upper
= (s
<< 8) | (j2
<< 7) | (j1
<< 6) | (upper_insn
& 0x003fU
);
3223 return Bits
<21>::sign_extend32((upper
<< 12) | (lower
<< 1));
3226 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3227 // instruction. UPPER_INSN is the original upper instruction of the branch.
3228 // Caller is responsible for overflow checking.
3229 static inline uint16_t
3230 thumb32_cond_branch_upper(uint16_t upper_insn
, int32_t offset
)
3232 uint32_t s
= offset
< 0 ? 1 : 0;
3233 uint32_t bits
= static_cast<uint32_t>(offset
);
3234 return (upper_insn
& 0xfbc0U
) | (s
<< 10) | ((bits
& 0x0003f000U
) >> 12);
3237 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3238 // instruction. LOWER_INSN is the original lower instruction of the branch.
3239 // The caller is responsible for overflow checking.
3240 static inline uint16_t
3241 thumb32_cond_branch_lower(uint16_t lower_insn
, int32_t offset
)
3243 uint32_t bits
= static_cast<uint32_t>(offset
);
3244 uint32_t j2
= (bits
& 0x00080000U
) >> 19;
3245 uint32_t j1
= (bits
& 0x00040000U
) >> 18;
3246 uint32_t lo
= (bits
& 0x00000ffeU
) >> 1;
3248 return (lower_insn
& 0xd000U
) | (j1
<< 13) | (j2
<< 11) | lo
;
3251 // R_ARM_ABS8: S + A
3252 static inline typename
This::Status
3253 abs8(unsigned char* view
,
3254 const Sized_relobj_file
<32, big_endian
>* object
,
3255 const Symbol_value
<32>* psymval
)
3257 typedef typename
elfcpp::Swap
<8, big_endian
>::Valtype Valtype
;
3258 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3259 Valtype val
= elfcpp::Swap
<8, big_endian
>::readval(wv
);
3260 int32_t addend
= Bits
<8>::sign_extend32(val
);
3261 Arm_address x
= psymval
->value(object
, addend
);
3262 val
= Bits
<32>::bit_select32(val
, x
, 0xffU
);
3263 elfcpp::Swap
<8, big_endian
>::writeval(wv
, val
);
3265 // R_ARM_ABS8 permits signed or unsigned results.
3266 return (Bits
<8>::has_signed_unsigned_overflow32(x
)
3267 ? This::STATUS_OVERFLOW
3268 : This::STATUS_OKAY
);
3271 // R_ARM_THM_ABS5: S + A
3272 static inline typename
This::Status
3273 thm_abs5(unsigned char* view
,
3274 const Sized_relobj_file
<32, big_endian
>* object
,
3275 const Symbol_value
<32>* psymval
)
3277 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3278 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3279 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3280 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3281 Reltype addend
= (val
& 0x7e0U
) >> 6;
3282 Reltype x
= psymval
->value(object
, addend
);
3283 val
= Bits
<32>::bit_select32(val
, x
<< 6, 0x7e0U
);
3284 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3285 return (Bits
<5>::has_overflow32(x
)
3286 ? This::STATUS_OVERFLOW
3287 : This::STATUS_OKAY
);
3290 // R_ARM_ABS12: S + A
3291 static inline typename
This::Status
3292 abs12(unsigned char* view
,
3293 const Sized_relobj_file
<32, big_endian
>* object
,
3294 const Symbol_value
<32>* psymval
)
3296 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3297 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3298 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3299 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3300 Reltype addend
= val
& 0x0fffU
;
3301 Reltype x
= psymval
->value(object
, addend
);
3302 val
= Bits
<32>::bit_select32(val
, x
, 0x0fffU
);
3303 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3304 return (Bits
<12>::has_overflow32(x
)
3305 ? This::STATUS_OVERFLOW
3306 : This::STATUS_OKAY
);
3309 // R_ARM_ABS16: S + A
3310 static inline typename
This::Status
3311 abs16(unsigned char* view
,
3312 const Sized_relobj_file
<32, big_endian
>* object
,
3313 const Symbol_value
<32>* psymval
)
3315 typedef typename
elfcpp::Swap_unaligned
<16, big_endian
>::Valtype Valtype
;
3316 Valtype val
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(view
);
3317 int32_t addend
= Bits
<16>::sign_extend32(val
);
3318 Arm_address x
= psymval
->value(object
, addend
);
3319 val
= Bits
<32>::bit_select32(val
, x
, 0xffffU
);
3320 elfcpp::Swap_unaligned
<16, big_endian
>::writeval(view
, val
);
3322 // R_ARM_ABS16 permits signed or unsigned results.
3323 return (Bits
<16>::has_signed_unsigned_overflow32(x
)
3324 ? This::STATUS_OVERFLOW
3325 : This::STATUS_OKAY
);
3328 // R_ARM_ABS32: (S + A) | T
3329 static inline typename
This::Status
3330 abs32(unsigned char* view
,
3331 const Sized_relobj_file
<32, big_endian
>* object
,
3332 const Symbol_value
<32>* psymval
,
3333 Arm_address thumb_bit
)
3335 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3336 Valtype addend
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3337 Valtype x
= psymval
->value(object
, addend
) | thumb_bit
;
3338 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, x
);
3339 return This::STATUS_OKAY
;
3342 // R_ARM_REL32: (S + A) | T - P
3343 static inline typename
This::Status
3344 rel32(unsigned char* view
,
3345 const Sized_relobj_file
<32, big_endian
>* object
,
3346 const Symbol_value
<32>* psymval
,
3347 Arm_address address
,
3348 Arm_address thumb_bit
)
3350 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3351 Valtype addend
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3352 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3353 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, x
);
3354 return This::STATUS_OKAY
;
3357 // R_ARM_THM_JUMP24: (S + A) | T - P
3358 static typename
This::Status
3359 thm_jump19(unsigned char* view
, const Arm_relobj
<big_endian
>* object
,
3360 const Symbol_value
<32>* psymval
, Arm_address address
,
3361 Arm_address thumb_bit
);
3363 // R_ARM_THM_JUMP6: S + A – P
3364 static inline typename
This::Status
3365 thm_jump6(unsigned char* view
,
3366 const Sized_relobj_file
<32, big_endian
>* object
,
3367 const Symbol_value
<32>* psymval
,
3368 Arm_address address
)
3370 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3371 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3372 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3373 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3374 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3375 Reltype addend
= (((val
& 0x0200) >> 3) | ((val
& 0x00f8) >> 2));
3376 Reltype x
= (psymval
->value(object
, addend
) - address
);
3377 val
= (val
& 0xfd07) | ((x
& 0x0040) << 3) | ((val
& 0x003e) << 2);
3378 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3379 // CZB does only forward jumps.
3380 return ((x
> 0x007e)
3381 ? This::STATUS_OVERFLOW
3382 : This::STATUS_OKAY
);
3385 // R_ARM_THM_JUMP8: S + A – P
3386 static inline typename
This::Status
3387 thm_jump8(unsigned char* view
,
3388 const Sized_relobj_file
<32, big_endian
>* object
,
3389 const Symbol_value
<32>* psymval
,
3390 Arm_address address
)
3392 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3393 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3394 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3395 int32_t addend
= Bits
<8>::sign_extend32((val
& 0x00ff) << 1);
3396 int32_t x
= (psymval
->value(object
, addend
) - address
);
3397 elfcpp::Swap
<16, big_endian
>::writeval(wv
, ((val
& 0xff00)
3398 | ((x
& 0x01fe) >> 1)));
3399 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3400 return (Bits
<9>::has_overflow32(x
)
3401 ? This::STATUS_OVERFLOW
3402 : This::STATUS_OKAY
);
3405 // R_ARM_THM_JUMP11: S + A – P
3406 static inline typename
This::Status
3407 thm_jump11(unsigned char* view
,
3408 const Sized_relobj_file
<32, big_endian
>* object
,
3409 const Symbol_value
<32>* psymval
,
3410 Arm_address address
)
3412 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3413 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3414 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3415 int32_t addend
= Bits
<11>::sign_extend32((val
& 0x07ff) << 1);
3416 int32_t x
= (psymval
->value(object
, addend
) - address
);
3417 elfcpp::Swap
<16, big_endian
>::writeval(wv
, ((val
& 0xf800)
3418 | ((x
& 0x0ffe) >> 1)));
3419 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3420 return (Bits
<12>::has_overflow32(x
)
3421 ? This::STATUS_OVERFLOW
3422 : This::STATUS_OKAY
);
3425 // R_ARM_BASE_PREL: B(S) + A - P
3426 static inline typename
This::Status
3427 base_prel(unsigned char* view
,
3429 Arm_address address
)
3431 Base::rel32(view
, origin
- address
);
3435 // R_ARM_BASE_ABS: B(S) + A
3436 static inline typename
This::Status
3437 base_abs(unsigned char* view
,
3440 Base::rel32(view
, origin
);
3444 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3445 static inline typename
This::Status
3446 got_brel(unsigned char* view
,
3447 typename
elfcpp::Swap
<32, big_endian
>::Valtype got_offset
)
3449 Base::rel32(view
, got_offset
);
3450 return This::STATUS_OKAY
;
3453 // R_ARM_GOT_PREL: GOT(S) + A - P
3454 static inline typename
This::Status
3455 got_prel(unsigned char* view
,
3456 Arm_address got_entry
,
3457 Arm_address address
)
3459 Base::rel32(view
, got_entry
- address
);
3460 return This::STATUS_OKAY
;
3463 // R_ARM_PREL: (S + A) | T - P
3464 static inline typename
This::Status
3465 prel31(unsigned char* view
,
3466 const Sized_relobj_file
<32, big_endian
>* object
,
3467 const Symbol_value
<32>* psymval
,
3468 Arm_address address
,
3469 Arm_address thumb_bit
)
3471 typedef typename
elfcpp::Swap_unaligned
<32, big_endian
>::Valtype Valtype
;
3472 Valtype val
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(view
);
3473 Valtype addend
= Bits
<31>::sign_extend32(val
);
3474 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3475 val
= Bits
<32>::bit_select32(val
, x
, 0x7fffffffU
);
3476 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(view
, val
);
3477 return (Bits
<31>::has_overflow32(x
)
3478 ? This::STATUS_OVERFLOW
3479 : This::STATUS_OKAY
);
3482 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3483 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3484 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3486 static inline typename
This::Status
3487 movw(unsigned char* view
,
3488 const Sized_relobj_file
<32, big_endian
>* object
,
3489 const Symbol_value
<32>* psymval
,
3490 Arm_address relative_address_base
,
3491 Arm_address thumb_bit
,
3492 bool check_overflow
)
3494 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3495 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3496 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3497 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3498 Valtype x
= ((psymval
->value(object
, addend
) | thumb_bit
)
3499 - relative_address_base
);
3500 val
= This::insert_val_arm_movw_movt(val
, x
);
3501 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3502 return ((check_overflow
&& Bits
<16>::has_overflow32(x
))
3503 ? This::STATUS_OVERFLOW
3504 : This::STATUS_OKAY
);
3507 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3508 // R_ARM_MOVT_PREL: S + A - P
3509 // R_ARM_MOVT_BREL: S + A - B(S)
3510 static inline typename
This::Status
3511 movt(unsigned char* view
,
3512 const Sized_relobj_file
<32, big_endian
>* object
,
3513 const Symbol_value
<32>* psymval
,
3514 Arm_address relative_address_base
)
3516 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3517 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3518 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3519 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3520 Valtype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3521 val
= This::insert_val_arm_movw_movt(val
, x
);
3522 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3523 // FIXME: IHI0044D says that we should check for overflow.
3524 return This::STATUS_OKAY
;
3527 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3528 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3529 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3530 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3531 static inline typename
This::Status
3532 thm_movw(unsigned char* view
,
3533 const Sized_relobj_file
<32, big_endian
>* object
,
3534 const Symbol_value
<32>* psymval
,
3535 Arm_address relative_address_base
,
3536 Arm_address thumb_bit
,
3537 bool check_overflow
)
3539 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3540 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3541 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3542 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3543 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3544 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3546 (psymval
->value(object
, addend
) | thumb_bit
) - relative_address_base
;
3547 val
= This::insert_val_thumb_movw_movt(val
, x
);
3548 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3549 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3550 return ((check_overflow
&& Bits
<16>::has_overflow32(x
))
3551 ? This::STATUS_OVERFLOW
3552 : This::STATUS_OKAY
);
3555 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3556 // R_ARM_THM_MOVT_PREL: S + A - P
3557 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3558 static inline typename
This::Status
3559 thm_movt(unsigned char* view
,
3560 const Sized_relobj_file
<32, big_endian
>* object
,
3561 const Symbol_value
<32>* psymval
,
3562 Arm_address relative_address_base
)
3564 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3565 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3566 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3567 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3568 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3569 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3570 Reltype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3571 val
= This::insert_val_thumb_movw_movt(val
, x
);
3572 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3573 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3574 return This::STATUS_OKAY
;
3577 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3578 static inline typename
This::Status
3579 thm_alu11(unsigned char* view
,
3580 const Sized_relobj_file
<32, big_endian
>* object
,
3581 const Symbol_value
<32>* psymval
,
3582 Arm_address address
,
3583 Arm_address thumb_bit
)
3585 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3586 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3587 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3588 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3589 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3591 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3592 // -----------------------------------------------------------------------
3593 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3594 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3595 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3596 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3597 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3598 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3600 // Determine a sign for the addend.
3601 const int sign
= ((insn
& 0xf8ef0000) == 0xf0ad0000
3602 || (insn
& 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3603 // Thumb2 addend encoding:
3604 // imm12 := i | imm3 | imm8
3605 int32_t addend
= (insn
& 0xff)
3606 | ((insn
& 0x00007000) >> 4)
3607 | ((insn
& 0x04000000) >> 15);
3608 // Apply a sign to the added.
3611 int32_t x
= (psymval
->value(object
, addend
) | thumb_bit
)
3612 - (address
& 0xfffffffc);
3613 Reltype val
= abs(x
);
3614 // Mask out the value and a distinct part of the ADD/SUB opcode
3615 // (bits 7:5 of opword).
3616 insn
= (insn
& 0xfb0f8f00)
3618 | ((val
& 0x700) << 4)
3619 | ((val
& 0x800) << 15);
3620 // Set the opcode according to whether the value to go in the
3621 // place is negative.
3625 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3626 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3627 return ((val
> 0xfff) ?
3628 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3631 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3632 static inline typename
This::Status
3633 thm_pc8(unsigned char* view
,
3634 const Sized_relobj_file
<32, big_endian
>* object
,
3635 const Symbol_value
<32>* psymval
,
3636 Arm_address address
)
3638 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3639 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3640 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3641 Valtype insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3642 Reltype addend
= ((insn
& 0x00ff) << 2);
3643 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3644 Reltype val
= abs(x
);
3645 insn
= (insn
& 0xff00) | ((val
& 0x03fc) >> 2);
3647 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
);
3648 return ((val
> 0x03fc)
3649 ? This::STATUS_OVERFLOW
3650 : This::STATUS_OKAY
);
3653 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3654 static inline typename
This::Status
3655 thm_pc12(unsigned char* view
,
3656 const Sized_relobj_file
<32, big_endian
>* object
,
3657 const Symbol_value
<32>* psymval
,
3658 Arm_address address
)
3660 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3661 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3662 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3663 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3664 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3665 // Determine a sign for the addend (positive if the U bit is 1).
3666 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3667 int32_t addend
= (insn
& 0xfff);
3668 // Apply a sign to the added.
3671 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3672 Reltype val
= abs(x
);
3673 // Mask out and apply the value and the U bit.
3674 insn
= (insn
& 0xff7ff000) | (val
& 0xfff);
3675 // Set the U bit according to whether the value to go in the
3676 // place is positive.
3680 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3681 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3682 return ((val
> 0xfff) ?
3683 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3687 static inline typename
This::Status
3688 v4bx(const Relocate_info
<32, big_endian
>* relinfo
,
3689 unsigned char* view
,
3690 const Arm_relobj
<big_endian
>* object
,
3691 const Arm_address address
,
3692 const bool is_interworking
)
3695 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3696 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3697 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3699 // Ensure that we have a BX instruction.
3700 gold_assert((val
& 0x0ffffff0) == 0x012fff10);
3701 const uint32_t reg
= (val
& 0xf);
3702 if (is_interworking
&& reg
!= 0xf)
3704 Stub_table
<big_endian
>* stub_table
=
3705 object
->stub_table(relinfo
->data_shndx
);
3706 gold_assert(stub_table
!= NULL
);
3708 Arm_v4bx_stub
* stub
= stub_table
->find_arm_v4bx_stub(reg
);
3709 gold_assert(stub
!= NULL
);
3711 int32_t veneer_address
=
3712 stub_table
->address() + stub
->offset() - 8 - address
;
3713 gold_assert((veneer_address
<= ARM_MAX_FWD_BRANCH_OFFSET
)
3714 && (veneer_address
>= ARM_MAX_BWD_BRANCH_OFFSET
));
3715 // Replace with a branch to veneer (B <addr>)
3716 val
= (val
& 0xf0000000) | 0x0a000000
3717 | ((veneer_address
>> 2) & 0x00ffffff);
3721 // Preserve Rm (lowest four bits) and the condition code
3722 // (highest four bits). Other bits encode MOV PC,Rm.
3723 val
= (val
& 0xf000000f) | 0x01a0f000;
3725 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3726 return This::STATUS_OKAY
;
3729 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3730 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3734 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3735 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3739 static inline typename
This::Status
3740 arm_grp_alu(unsigned char* view
,
3741 const Sized_relobj_file
<32, big_endian
>* object
,
3742 const Symbol_value
<32>* psymval
,
3744 Arm_address address
,
3745 Arm_address thumb_bit
,
3746 bool check_overflow
)
3748 gold_assert(group
>= 0 && group
< 3);
3749 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3750 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3751 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3753 // ALU group relocations are allowed only for the ADD/SUB instructions.
3754 // (0x00800000 - ADD, 0x00400000 - SUB)
3755 const Valtype opcode
= insn
& 0x01e00000;
3756 if (opcode
!= 0x00800000 && opcode
!= 0x00400000)
3757 return This::STATUS_BAD_RELOC
;
3759 // Determine a sign for the addend.
3760 const int sign
= (opcode
== 0x00800000) ? 1 : -1;
3761 // shifter = rotate_imm * 2
3762 const uint32_t shifter
= (insn
& 0xf00) >> 7;
3763 // Initial addend value.
3764 int32_t addend
= insn
& 0xff;
3765 // Rotate addend right by shifter.
3766 addend
= (addend
>> shifter
) | (addend
<< (32 - shifter
));
3767 // Apply a sign to the added.
3770 int32_t x
= ((psymval
->value(object
, addend
) | thumb_bit
) - address
);
3771 Valtype gn
= Arm_relocate_functions::calc_grp_gn(abs(x
), group
);
3772 // Check for overflow if required
3774 && (Arm_relocate_functions::calc_grp_residual(abs(x
), group
) != 0))
3775 return This::STATUS_OVERFLOW
;
3777 // Mask out the value and the ADD/SUB part of the opcode; take care
3778 // not to destroy the S bit.
3780 // Set the opcode according to whether the value to go in the
3781 // place is negative.
3782 insn
|= ((x
< 0) ? 0x00400000 : 0x00800000);
3783 // Encode the offset (encoded Gn).
3786 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3787 return This::STATUS_OKAY
;
3790 // R_ARM_LDR_PC_G0: S + A - P
3791 // R_ARM_LDR_PC_G1: S + A - P
3792 // R_ARM_LDR_PC_G2: S + A - P
3793 // R_ARM_LDR_SB_G0: S + A - B(S)
3794 // R_ARM_LDR_SB_G1: S + A - B(S)
3795 // R_ARM_LDR_SB_G2: S + A - B(S)
3796 static inline typename
This::Status
3797 arm_grp_ldr(unsigned char* view
,
3798 const Sized_relobj_file
<32, big_endian
>* object
,
3799 const Symbol_value
<32>* psymval
,
3801 Arm_address address
)
3803 gold_assert(group
>= 0 && group
< 3);
3804 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3805 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3806 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3808 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3809 int32_t addend
= (insn
& 0xfff) * sign
;
3810 int32_t x
= (psymval
->value(object
, addend
) - address
);
3811 // Calculate the relevant G(n-1) value to obtain this stage residual.
3813 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3814 if (residual
>= 0x1000)
3815 return This::STATUS_OVERFLOW
;
3817 // Mask out the value and U bit.
3819 // Set the U bit for non-negative values.
3824 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3825 return This::STATUS_OKAY
;
3828 // R_ARM_LDRS_PC_G0: S + A - P
3829 // R_ARM_LDRS_PC_G1: S + A - P
3830 // R_ARM_LDRS_PC_G2: S + A - P
3831 // R_ARM_LDRS_SB_G0: S + A - B(S)
3832 // R_ARM_LDRS_SB_G1: S + A - B(S)
3833 // R_ARM_LDRS_SB_G2: S + A - B(S)
3834 static inline typename
This::Status
3835 arm_grp_ldrs(unsigned char* view
,
3836 const Sized_relobj_file
<32, big_endian
>* object
,
3837 const Symbol_value
<32>* psymval
,
3839 Arm_address address
)
3841 gold_assert(group
>= 0 && group
< 3);
3842 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3843 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3844 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3846 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3847 int32_t addend
= (((insn
& 0xf00) >> 4) + (insn
& 0xf)) * sign
;
3848 int32_t x
= (psymval
->value(object
, addend
) - address
);
3849 // Calculate the relevant G(n-1) value to obtain this stage residual.
3851 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3852 if (residual
>= 0x100)
3853 return This::STATUS_OVERFLOW
;
3855 // Mask out the value and U bit.
3857 // Set the U bit for non-negative values.
3860 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
3862 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3863 return This::STATUS_OKAY
;
3866 // R_ARM_LDC_PC_G0: S + A - P
3867 // R_ARM_LDC_PC_G1: S + A - P
3868 // R_ARM_LDC_PC_G2: S + A - P
3869 // R_ARM_LDC_SB_G0: S + A - B(S)
3870 // R_ARM_LDC_SB_G1: S + A - B(S)
3871 // R_ARM_LDC_SB_G2: S + A - B(S)
3872 static inline typename
This::Status
3873 arm_grp_ldc(unsigned char* view
,
3874 const Sized_relobj_file
<32, big_endian
>* object
,
3875 const Symbol_value
<32>* psymval
,
3877 Arm_address address
)
3879 gold_assert(group
>= 0 && group
< 3);
3880 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3881 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3882 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3884 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3885 int32_t addend
= ((insn
& 0xff) << 2) * sign
;
3886 int32_t x
= (psymval
->value(object
, addend
) - address
);
3887 // Calculate the relevant G(n-1) value to obtain this stage residual.
3889 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3890 if ((residual
& 0x3) != 0 || residual
>= 0x400)
3891 return This::STATUS_OVERFLOW
;
3893 // Mask out the value and U bit.
3895 // Set the U bit for non-negative values.
3898 insn
|= (residual
>> 2);
3900 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3901 return This::STATUS_OKAY
;
3905 // Relocate ARM long branches. This handles relocation types
3906 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3907 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3908 // undefined and we do not use PLT in this relocation. In such a case,
3909 // the branch is converted into an NOP.
3911 template<bool big_endian
>
3912 typename Arm_relocate_functions
<big_endian
>::Status
3913 Arm_relocate_functions
<big_endian
>::arm_branch_common(
3914 unsigned int r_type
,
3915 const Relocate_info
<32, big_endian
>* relinfo
,
3916 unsigned char* view
,
3917 const Sized_symbol
<32>* gsym
,
3918 const Arm_relobj
<big_endian
>* object
,
3920 const Symbol_value
<32>* psymval
,
3921 Arm_address address
,
3922 Arm_address thumb_bit
,
3923 bool is_weakly_undefined_without_plt
)
3925 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3926 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3927 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3929 bool insn_is_b
= (((val
>> 28) & 0xf) <= 0xe)
3930 && ((val
& 0x0f000000UL
) == 0x0a000000UL
);
3931 bool insn_is_uncond_bl
= (val
& 0xff000000UL
) == 0xeb000000UL
;
3932 bool insn_is_cond_bl
= (((val
>> 28) & 0xf) < 0xe)
3933 && ((val
& 0x0f000000UL
) == 0x0b000000UL
);
3934 bool insn_is_blx
= (val
& 0xfe000000UL
) == 0xfa000000UL
;
3935 bool insn_is_any_branch
= (val
& 0x0e000000UL
) == 0x0a000000UL
;
3937 // Check that the instruction is valid.
3938 if (r_type
== elfcpp::R_ARM_CALL
)
3940 if (!insn_is_uncond_bl
&& !insn_is_blx
)
3941 return This::STATUS_BAD_RELOC
;
3943 else if (r_type
== elfcpp::R_ARM_JUMP24
)
3945 if (!insn_is_b
&& !insn_is_cond_bl
)
3946 return This::STATUS_BAD_RELOC
;
3948 else if (r_type
== elfcpp::R_ARM_PLT32
)
3950 if (!insn_is_any_branch
)
3951 return This::STATUS_BAD_RELOC
;
3953 else if (r_type
== elfcpp::R_ARM_XPC25
)
3955 // FIXME: AAELF document IH0044C does not say much about it other
3956 // than it being obsolete.
3957 if (!insn_is_any_branch
)
3958 return This::STATUS_BAD_RELOC
;
3963 // A branch to an undefined weak symbol is turned into a jump to
3964 // the next instruction unless a PLT entry will be created.
3965 // Do the same for local undefined symbols.
3966 // The jump to the next instruction is optimized as a NOP depending
3967 // on the architecture.
3968 const Target_arm
<big_endian
>* arm_target
=
3969 Target_arm
<big_endian
>::default_target();
3970 if (is_weakly_undefined_without_plt
)
3972 gold_assert(!parameters
->options().relocatable());
3973 Valtype cond
= val
& 0xf0000000U
;
3974 if (arm_target
->may_use_arm_nop())
3975 val
= cond
| 0x0320f000;
3977 val
= cond
| 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3978 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3979 return This::STATUS_OKAY
;
3982 Valtype addend
= Bits
<26>::sign_extend32(val
<< 2);
3983 Valtype branch_target
= psymval
->value(object
, addend
);
3984 int32_t branch_offset
= branch_target
- address
;
3986 // We need a stub if the branch offset is too large or if we need
3988 bool may_use_blx
= arm_target
->may_use_v5t_interworking();
3989 Reloc_stub
* stub
= NULL
;
3991 if (!parameters
->options().relocatable()
3992 && (Bits
<26>::has_overflow32(branch_offset
)
3993 || ((thumb_bit
!= 0)
3994 && !(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
))))
3996 Valtype unadjusted_branch_target
= psymval
->value(object
, 0);
3998 Stub_type stub_type
=
3999 Reloc_stub::stub_type_for_reloc(r_type
, address
,
4000 unadjusted_branch_target
,
4002 if (stub_type
!= arm_stub_none
)
4004 Stub_table
<big_endian
>* stub_table
=
4005 object
->stub_table(relinfo
->data_shndx
);
4006 gold_assert(stub_table
!= NULL
);
4008 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
4009 stub
= stub_table
->find_reloc_stub(stub_key
);
4010 gold_assert(stub
!= NULL
);
4011 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4012 branch_target
= stub_table
->address() + stub
->offset() + addend
;
4013 branch_offset
= branch_target
- address
;
4014 gold_assert(!Bits
<26>::has_overflow32(branch_offset
));
4018 // At this point, if we still need to switch mode, the instruction
4019 // must either be a BLX or a BL that can be converted to a BLX.
4023 gold_assert(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
);
4024 val
= (val
& 0xffffff) | 0xfa000000 | ((branch_offset
& 2) << 23);
4027 val
= Bits
<32>::bit_select32(val
, (branch_offset
>> 2), 0xffffffUL
);
4028 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4029 return (Bits
<26>::has_overflow32(branch_offset
)
4030 ? This::STATUS_OVERFLOW
4031 : This::STATUS_OKAY
);
4034 // Relocate THUMB long branches. This handles relocation types
4035 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4036 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4037 // undefined and we do not use PLT in this relocation. In such a case,
4038 // the branch is converted into an NOP.
4040 template<bool big_endian
>
4041 typename Arm_relocate_functions
<big_endian
>::Status
4042 Arm_relocate_functions
<big_endian
>::thumb_branch_common(
4043 unsigned int r_type
,
4044 const Relocate_info
<32, big_endian
>* relinfo
,
4045 unsigned char* view
,
4046 const Sized_symbol
<32>* gsym
,
4047 const Arm_relobj
<big_endian
>* object
,
4049 const Symbol_value
<32>* psymval
,
4050 Arm_address address
,
4051 Arm_address thumb_bit
,
4052 bool is_weakly_undefined_without_plt
)
4054 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
4055 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
4056 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
4057 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
4059 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4061 bool is_bl_insn
= (lower_insn
& 0x1000U
) == 0x1000U
;
4062 bool is_blx_insn
= (lower_insn
& 0x1000U
) == 0x0000U
;
4064 // Check that the instruction is valid.
4065 if (r_type
== elfcpp::R_ARM_THM_CALL
)
4067 if (!is_bl_insn
&& !is_blx_insn
)
4068 return This::STATUS_BAD_RELOC
;
4070 else if (r_type
== elfcpp::R_ARM_THM_JUMP24
)
4072 // This cannot be a BLX.
4074 return This::STATUS_BAD_RELOC
;
4076 else if (r_type
== elfcpp::R_ARM_THM_XPC22
)
4078 // Check for Thumb to Thumb call.
4080 return This::STATUS_BAD_RELOC
;
4083 gold_warning(_("%s: Thumb BLX instruction targets "
4084 "thumb function '%s'."),
4085 object
->name().c_str(),
4086 (gsym
? gsym
->name() : "(local)"));
4087 // Convert BLX to BL.
4088 lower_insn
|= 0x1000U
;
4094 // A branch to an undefined weak symbol is turned into a jump to
4095 // the next instruction unless a PLT entry will be created.
4096 // The jump to the next instruction is optimized as a NOP.W for
4097 // Thumb-2 enabled architectures.
4098 const Target_arm
<big_endian
>* arm_target
=
4099 Target_arm
<big_endian
>::default_target();
4100 if (is_weakly_undefined_without_plt
)
4102 gold_assert(!parameters
->options().relocatable());
4103 if (arm_target
->may_use_thumb2_nop())
4105 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xf3af);
4106 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0x8000);
4110 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xe000);
4111 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0xbf00);
4113 return This::STATUS_OKAY
;
4116 int32_t addend
= This::thumb32_branch_offset(upper_insn
, lower_insn
);
4117 Arm_address branch_target
= psymval
->value(object
, addend
);
4119 // For BLX, bit 1 of target address comes from bit 1 of base address.
4120 bool may_use_blx
= arm_target
->may_use_v5t_interworking();
4121 if (thumb_bit
== 0 && may_use_blx
)
4122 branch_target
= Bits
<32>::bit_select32(branch_target
, address
, 0x2);
4124 int32_t branch_offset
= branch_target
- address
;
4126 // We need a stub if the branch offset is too large or if we need
4128 bool thumb2
= arm_target
->using_thumb2();
4129 if (!parameters
->options().relocatable()
4130 && ((!thumb2
&& Bits
<23>::has_overflow32(branch_offset
))
4131 || (thumb2
&& Bits
<25>::has_overflow32(branch_offset
))
4132 || ((thumb_bit
== 0)
4133 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
4134 || r_type
== elfcpp::R_ARM_THM_JUMP24
))))
4136 Arm_address unadjusted_branch_target
= psymval
->value(object
, 0);
4138 Stub_type stub_type
=
4139 Reloc_stub::stub_type_for_reloc(r_type
, address
,
4140 unadjusted_branch_target
,
4143 if (stub_type
!= arm_stub_none
)
4145 Stub_table
<big_endian
>* stub_table
=
4146 object
->stub_table(relinfo
->data_shndx
);
4147 gold_assert(stub_table
!= NULL
);
4149 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
4150 Reloc_stub
* stub
= stub_table
->find_reloc_stub(stub_key
);
4151 gold_assert(stub
!= NULL
);
4152 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4153 branch_target
= stub_table
->address() + stub
->offset() + addend
;
4154 if (thumb_bit
== 0 && may_use_blx
)
4155 branch_target
= Bits
<32>::bit_select32(branch_target
, address
, 0x2);
4156 branch_offset
= branch_target
- address
;
4160 // At this point, if we still need to switch mode, the instruction
4161 // must either be a BLX or a BL that can be converted to a BLX.
4164 gold_assert(may_use_blx
4165 && (r_type
== elfcpp::R_ARM_THM_CALL
4166 || r_type
== elfcpp::R_ARM_THM_XPC22
));
4167 // Make sure this is a BLX.
4168 lower_insn
&= ~0x1000U
;
4172 // Make sure this is a BL.
4173 lower_insn
|= 0x1000U
;
4176 // For a BLX instruction, make sure that the relocation is rounded up
4177 // to a word boundary. This follows the semantics of the instruction
4178 // which specifies that bit 1 of the target address will come from bit
4179 // 1 of the base address.
4180 if ((lower_insn
& 0x5000U
) == 0x4000U
)
4181 gold_assert((branch_offset
& 3) == 0);
4183 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4184 // We use the Thumb-2 encoding, which is safe even if dealing with
4185 // a Thumb-1 instruction by virtue of our overflow check above. */
4186 upper_insn
= This::thumb32_branch_upper(upper_insn
, branch_offset
);
4187 lower_insn
= This::thumb32_branch_lower(lower_insn
, branch_offset
);
4189 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
4190 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
4192 gold_assert(!Bits
<25>::has_overflow32(branch_offset
));
4195 ? Bits
<25>::has_overflow32(branch_offset
)
4196 : Bits
<23>::has_overflow32(branch_offset
))
4197 ? This::STATUS_OVERFLOW
4198 : This::STATUS_OKAY
);
4201 // Relocate THUMB-2 long conditional branches.
4202 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4203 // undefined and we do not use PLT in this relocation. In such a case,
4204 // the branch is converted into an NOP.
4206 template<bool big_endian
>
4207 typename Arm_relocate_functions
<big_endian
>::Status
4208 Arm_relocate_functions
<big_endian
>::thm_jump19(
4209 unsigned char* view
,
4210 const Arm_relobj
<big_endian
>* object
,
4211 const Symbol_value
<32>* psymval
,
4212 Arm_address address
,
4213 Arm_address thumb_bit
)
4215 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
4216 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
4217 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
4218 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
4219 int32_t addend
= This::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
4221 Arm_address branch_target
= psymval
->value(object
, addend
);
4222 int32_t branch_offset
= branch_target
- address
;
4224 // ??? Should handle interworking? GCC might someday try to
4225 // use this for tail calls.
4226 // FIXME: We do support thumb entry to PLT yet.
4229 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4230 return This::STATUS_BAD_RELOC
;
4233 // Put RELOCATION back into the insn.
4234 upper_insn
= This::thumb32_cond_branch_upper(upper_insn
, branch_offset
);
4235 lower_insn
= This::thumb32_cond_branch_lower(lower_insn
, branch_offset
);
4237 // Put the relocated value back in the object file:
4238 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
4239 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
4241 return (Bits
<21>::has_overflow32(branch_offset
)
4242 ? This::STATUS_OVERFLOW
4243 : This::STATUS_OKAY
);
4246 // Get the GOT section, creating it if necessary.
4248 template<bool big_endian
>
4249 Arm_output_data_got
<big_endian
>*
4250 Target_arm
<big_endian
>::got_section(Symbol_table
* symtab
, Layout
* layout
)
4252 if (this->got_
== NULL
)
4254 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
4256 // When using -z now, we can treat .got as a relro section.
4257 // Without -z now, it is modified after program startup by lazy
4259 bool is_got_relro
= parameters
->options().now();
4260 Output_section_order got_order
= (is_got_relro
4264 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4265 // .got.plt sections in output. The output .got section contains both
4266 // PLT and non-PLT GOT entries.
4267 this->got_
= new Arm_output_data_got
<big_endian
>(symtab
, layout
);
4269 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4270 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
4271 this->got_
, got_order
, is_got_relro
);
4273 // The old GNU linker creates a .got.plt section. We just
4274 // create another set of data in the .got section. Note that we
4275 // always create a PLT if we create a GOT, although the PLT
4277 this->got_plt_
= new Output_data_space(4, "** GOT PLT");
4278 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4279 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
4280 this->got_plt_
, got_order
, is_got_relro
);
4282 // The first three entries are reserved.
4283 this->got_plt_
->set_current_data_size(3 * 4);
4285 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4286 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
4287 Symbol_table::PREDEFINED
,
4289 0, 0, elfcpp::STT_OBJECT
,
4291 elfcpp::STV_HIDDEN
, 0,
4294 // If there are any IRELATIVE relocations, they get GOT entries
4295 // in .got.plt after the jump slot entries.
4296 this->got_irelative_
= new Output_data_space(4, "** GOT IRELATIVE PLT");
4297 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4298 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
4299 this->got_irelative_
,
4300 got_order
, is_got_relro
);
4306 // Get the dynamic reloc section, creating it if necessary.
4308 template<bool big_endian
>
4309 typename Target_arm
<big_endian
>::Reloc_section
*
4310 Target_arm
<big_endian
>::rel_dyn_section(Layout
* layout
)
4312 if (this->rel_dyn_
== NULL
)
4314 gold_assert(layout
!= NULL
);
4315 // Create both relocation sections in the same place, so as to ensure
4316 // their relative order in the output section.
4317 this->rel_dyn_
= new Reloc_section(parameters
->options().combreloc());
4318 this->rel_irelative_
= new Reloc_section(false);
4319 layout
->add_output_section_data(".rel.dyn", elfcpp::SHT_REL
,
4320 elfcpp::SHF_ALLOC
, this->rel_dyn_
,
4321 ORDER_DYNAMIC_RELOCS
, false);
4322 layout
->add_output_section_data(".rel.dyn", elfcpp::SHT_REL
,
4323 elfcpp::SHF_ALLOC
, this->rel_irelative_
,
4324 ORDER_DYNAMIC_RELOCS
, false);
4326 return this->rel_dyn_
;
4330 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4331 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4332 // follow the other dynamic relocations so that they can refer to global
4333 // variables initialized by those relocs.
4335 template<bool big_endian
>
4336 typename Target_arm
<big_endian
>::Reloc_section
*
4337 Target_arm
<big_endian
>::rel_irelative_section(Layout
* layout
)
4339 if (this->rel_irelative_
== NULL
)
4341 // Delegate the creation to rel_dyn_section so as to ensure their order in
4342 // the output section.
4343 this->rel_dyn_section(layout
);
4344 gold_assert(this->rel_irelative_
!= NULL
4345 && (this->rel_dyn_
->output_section()
4346 == this->rel_irelative_
->output_section()));
4348 return this->rel_irelative_
;
4352 // Insn_template methods.
4354 // Return byte size of an instruction template.
4357 Insn_template::size() const
4359 switch (this->type())
4362 case THUMB16_SPECIAL_TYPE
:
4373 // Return alignment of an instruction template.
4376 Insn_template::alignment() const
4378 switch (this->type())
4381 case THUMB16_SPECIAL_TYPE
:
4392 // Stub_template methods.
4394 Stub_template::Stub_template(
4395 Stub_type type
, const Insn_template
* insns
,
4397 : type_(type
), insns_(insns
), insn_count_(insn_count
), alignment_(1),
4398 entry_in_thumb_mode_(false), relocs_()
4402 // Compute byte size and alignment of stub template.
4403 for (size_t i
= 0; i
< insn_count
; i
++)
4405 unsigned insn_alignment
= insns
[i
].alignment();
4406 size_t insn_size
= insns
[i
].size();
4407 gold_assert((offset
& (insn_alignment
- 1)) == 0);
4408 this->alignment_
= std::max(this->alignment_
, insn_alignment
);
4409 switch (insns
[i
].type())
4411 case Insn_template::THUMB16_TYPE
:
4412 case Insn_template::THUMB16_SPECIAL_TYPE
:
4414 this->entry_in_thumb_mode_
= true;
4417 case Insn_template::THUMB32_TYPE
:
4418 if (insns
[i
].r_type() != elfcpp::R_ARM_NONE
)
4419 this->relocs_
.push_back(Reloc(i
, offset
));
4421 this->entry_in_thumb_mode_
= true;
4424 case Insn_template::ARM_TYPE
:
4425 // Handle cases where the target is encoded within the
4427 if (insns
[i
].r_type() == elfcpp::R_ARM_JUMP24
)
4428 this->relocs_
.push_back(Reloc(i
, offset
));
4431 case Insn_template::DATA_TYPE
:
4432 // Entry point cannot be data.
4433 gold_assert(i
!= 0);
4434 this->relocs_
.push_back(Reloc(i
, offset
));
4440 offset
+= insn_size
;
4442 this->size_
= offset
;
4447 // Template to implement do_write for a specific target endianness.
4449 template<bool big_endian
>
4451 Stub::do_fixed_endian_write(unsigned char* view
, section_size_type view_size
)
4453 const Stub_template
* stub_template
= this->stub_template();
4454 const Insn_template
* insns
= stub_template
->insns();
4456 // FIXME: We do not handle BE8 encoding yet.
4457 unsigned char* pov
= view
;
4458 for (size_t i
= 0; i
< stub_template
->insn_count(); i
++)
4460 switch (insns
[i
].type())
4462 case Insn_template::THUMB16_TYPE
:
4463 elfcpp::Swap
<16, big_endian
>::writeval(pov
, insns
[i
].data() & 0xffff);
4465 case Insn_template::THUMB16_SPECIAL_TYPE
:
4466 elfcpp::Swap
<16, big_endian
>::writeval(
4468 this->thumb16_special(i
));
4470 case Insn_template::THUMB32_TYPE
:
4472 uint32_t hi
= (insns
[i
].data() >> 16) & 0xffff;
4473 uint32_t lo
= insns
[i
].data() & 0xffff;
4474 elfcpp::Swap
<16, big_endian
>::writeval(pov
, hi
);
4475 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lo
);
4478 case Insn_template::ARM_TYPE
:
4479 case Insn_template::DATA_TYPE
:
4480 elfcpp::Swap
<32, big_endian
>::writeval(pov
, insns
[i
].data());
4485 pov
+= insns
[i
].size();
4487 gold_assert(static_cast<section_size_type
>(pov
- view
) == view_size
);
4490 // Reloc_stub::Key methods.
4492 // Dump a Key as a string for debugging.
4495 Reloc_stub::Key::name() const
4497 if (this->r_sym_
== invalid_index
)
4499 // Global symbol key name
4500 // <stub-type>:<symbol name>:<addend>.
4501 const std::string sym_name
= this->u_
.symbol
->name();
4502 // We need to print two hex number and two colons. So just add 100 bytes
4503 // to the symbol name size.
4504 size_t len
= sym_name
.size() + 100;
4505 char* buffer
= new char[len
];
4506 int c
= snprintf(buffer
, len
, "%d:%s:%x", this->stub_type_
,
4507 sym_name
.c_str(), this->addend_
);
4508 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4510 return std::string(buffer
);
4514 // local symbol key name
4515 // <stub-type>:<object>:<r_sym>:<addend>.
4516 const size_t len
= 200;
4518 int c
= snprintf(buffer
, len
, "%d:%p:%u:%x", this->stub_type_
,
4519 this->u_
.relobj
, this->r_sym_
, this->addend_
);
4520 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4521 return std::string(buffer
);
4525 // Reloc_stub methods.
4527 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4528 // LOCATION to DESTINATION.
4529 // This code is based on the arm_type_of_stub function in
4530 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4534 Reloc_stub::stub_type_for_reloc(
4535 unsigned int r_type
,
4536 Arm_address location
,
4537 Arm_address destination
,
4538 bool target_is_thumb
)
4540 Stub_type stub_type
= arm_stub_none
;
4542 // This is a bit ugly but we want to avoid using a templated class for
4543 // big and little endianities.
4545 bool should_force_pic_veneer
;
4548 if (parameters
->target().is_big_endian())
4550 const Target_arm
<true>* big_endian_target
=
4551 Target_arm
<true>::default_target();
4552 may_use_blx
= big_endian_target
->may_use_v5t_interworking();
4553 should_force_pic_veneer
= big_endian_target
->should_force_pic_veneer();
4554 thumb2
= big_endian_target
->using_thumb2();
4555 thumb_only
= big_endian_target
->using_thumb_only();
4559 const Target_arm
<false>* little_endian_target
=
4560 Target_arm
<false>::default_target();
4561 may_use_blx
= little_endian_target
->may_use_v5t_interworking();
4562 should_force_pic_veneer
= little_endian_target
->should_force_pic_veneer();
4563 thumb2
= little_endian_target
->using_thumb2();
4564 thumb_only
= little_endian_target
->using_thumb_only();
4567 int64_t branch_offset
;
4568 bool output_is_position_independent
=
4569 parameters
->options().output_is_position_independent();
4570 if (r_type
== elfcpp::R_ARM_THM_CALL
|| r_type
== elfcpp::R_ARM_THM_JUMP24
)
4572 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573 // base address (instruction address + 4).
4574 if ((r_type
== elfcpp::R_ARM_THM_CALL
) && may_use_blx
&& !target_is_thumb
)
4575 destination
= Bits
<32>::bit_select32(destination
, location
, 0x2);
4576 branch_offset
= static_cast<int64_t>(destination
) - location
;
4578 // Handle cases where:
4579 // - this call goes too far (different Thumb/Thumb2 max
4581 // - it's a Thumb->Arm call and blx is not available, or it's a
4582 // Thumb->Arm branch (not bl). A stub is needed in this case.
4584 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
4585 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
4587 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
4588 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
4589 || ((!target_is_thumb
)
4590 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
4591 || (r_type
== elfcpp::R_ARM_THM_JUMP24
))))
4593 if (target_is_thumb
)
4598 stub_type
= (output_is_position_independent
4599 || should_force_pic_veneer
)
4602 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4603 // V5T and above. Stub starts with ARM code, so
4604 // we must be able to switch mode before
4605 // reaching it, which is only possible for 'bl'
4606 // (ie R_ARM_THM_CALL relocation).
4607 ? arm_stub_long_branch_any_thumb_pic
4608 // On V4T, use Thumb code only.
4609 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
4613 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4614 ? arm_stub_long_branch_any_any
// V5T and above.
4615 : arm_stub_long_branch_v4t_thumb_thumb
); // V4T.
4619 stub_type
= (output_is_position_independent
4620 || should_force_pic_veneer
)
4621 ? arm_stub_long_branch_thumb_only_pic
// PIC stub.
4622 : arm_stub_long_branch_thumb_only
; // non-PIC stub.
4629 // FIXME: We should check that the input section is from an
4630 // object that has interwork enabled.
4632 stub_type
= (output_is_position_independent
4633 || should_force_pic_veneer
)
4636 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4637 ? arm_stub_long_branch_any_arm_pic
// V5T and above.
4638 : arm_stub_long_branch_v4t_thumb_arm_pic
) // V4T.
4642 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4643 ? arm_stub_long_branch_any_any
// V5T and above.
4644 : arm_stub_long_branch_v4t_thumb_arm
); // V4T.
4646 // Handle v4t short branches.
4647 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
4648 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
4649 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
4650 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
4654 else if (r_type
== elfcpp::R_ARM_CALL
4655 || r_type
== elfcpp::R_ARM_JUMP24
4656 || r_type
== elfcpp::R_ARM_PLT32
)
4658 branch_offset
= static_cast<int64_t>(destination
) - location
;
4659 if (target_is_thumb
)
4663 // FIXME: We should check that the input section is from an
4664 // object that has interwork enabled.
4666 // We have an extra 2-bytes reach because of
4667 // the mode change (bit 24 (H) of BLX encoding).
4668 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
4669 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
4670 || ((r_type
== elfcpp::R_ARM_CALL
) && !may_use_blx
)
4671 || (r_type
== elfcpp::R_ARM_JUMP24
)
4672 || (r_type
== elfcpp::R_ARM_PLT32
))
4674 stub_type
= (output_is_position_independent
4675 || should_force_pic_veneer
)
4678 ? arm_stub_long_branch_any_thumb_pic
// V5T and above.
4679 : arm_stub_long_branch_v4t_arm_thumb_pic
) // V4T stub.
4683 ? arm_stub_long_branch_any_any
// V5T and above.
4684 : arm_stub_long_branch_v4t_arm_thumb
); // V4T.
4690 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
4691 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
4693 stub_type
= (output_is_position_independent
4694 || should_force_pic_veneer
)
4695 ? arm_stub_long_branch_any_arm_pic
// PIC stubs.
4696 : arm_stub_long_branch_any_any
; /// non-PIC.
4704 // Cortex_a8_stub methods.
4706 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707 // I is the position of the instruction template in the stub template.
4710 Cortex_a8_stub::do_thumb16_special(size_t i
)
4712 // The only use of this is to copy condition code from a conditional
4713 // branch being worked around to the corresponding conditional branch in
4715 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4717 uint16_t data
= this->stub_template()->insns()[i
].data();
4718 gold_assert((data
& 0xff00U
) == 0xd000U
);
4719 data
|= ((this->original_insn_
>> 22) & 0xf) << 8;
4723 // Stub_factory methods.
4725 Stub_factory::Stub_factory()
4727 // The instruction template sequences are declared as static
4728 // objects and initialized first time the constructor runs.
4730 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731 // to reach the stub if necessary.
4732 static const Insn_template elf32_arm_stub_long_branch_any_any
[] =
4734 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4735 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4736 // dcd R_ARM_ABS32(X)
4739 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
4743 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4746 // dcd R_ARM_ABS32(X)
4749 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750 static const Insn_template elf32_arm_stub_long_branch_thumb_only
[] =
4752 Insn_template::thumb16_insn(0xb401), // push {r0}
4753 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4754 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4755 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4756 Insn_template::thumb16_insn(0x4760), // bx ip
4757 Insn_template::thumb16_insn(0xbf00), // nop
4758 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4759 // dcd R_ARM_ABS32(X)
4762 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4764 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
4766 Insn_template::thumb16_insn(0x4778), // bx pc
4767 Insn_template::thumb16_insn(0x46c0), // nop
4768 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4769 Insn_template::arm_insn(0xe12fff1c), // bx ip
4770 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4771 // dcd R_ARM_ABS32(X)
4774 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4776 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
4778 Insn_template::thumb16_insn(0x4778), // bx pc
4779 Insn_template::thumb16_insn(0x46c0), // nop
4780 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4781 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4782 // dcd R_ARM_ABS32(X)
4785 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786 // one, when the destination is close enough.
4787 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
4789 Insn_template::thumb16_insn(0x4778), // bx pc
4790 Insn_template::thumb16_insn(0x46c0), // nop
4791 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4794 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4795 // blx to reach the stub if necessary.
4796 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic
[] =
4798 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4799 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4800 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4801 // dcd R_ARM_REL32(X-4)
4804 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4805 // blx to reach the stub if necessary. We can not add into pc;
4806 // it is not guaranteed to mode switch (different in ARMv6 and
4808 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic
[] =
4810 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4811 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4812 Insn_template::arm_insn(0xe12fff1c), // bx ip
4813 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4814 // dcd R_ARM_REL32(X)
4817 // V4T ARM -> ARM long branch stub, PIC.
4818 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
4820 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4821 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4822 Insn_template::arm_insn(0xe12fff1c), // bx ip
4823 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4824 // dcd R_ARM_REL32(X)
4827 // V4T Thumb -> ARM long branch stub, PIC.
4828 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
4830 Insn_template::thumb16_insn(0x4778), // bx pc
4831 Insn_template::thumb16_insn(0x46c0), // nop
4832 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4833 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4834 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4835 // dcd R_ARM_REL32(X)
4838 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4840 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic
[] =
4842 Insn_template::thumb16_insn(0xb401), // push {r0}
4843 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4844 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4845 Insn_template::thumb16_insn(0x4484), // add ip, r0
4846 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4847 Insn_template::thumb16_insn(0x4760), // bx ip
4848 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 4),
4849 // dcd R_ARM_REL32(X)
4852 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4854 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
4856 Insn_template::thumb16_insn(0x4778), // bx pc
4857 Insn_template::thumb16_insn(0x46c0), // nop
4858 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4859 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4860 Insn_template::arm_insn(0xe12fff1c), // bx ip
4861 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4862 // dcd R_ARM_REL32(X)
4865 // Cortex-A8 erratum-workaround stubs.
4867 // Stub used for conditional branches (which may be beyond +/-1MB away,
4868 // so we can't use a conditional branch to reach this stub).
4875 static const Insn_template elf32_arm_stub_a8_veneer_b_cond
[] =
4877 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4878 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4879 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4883 // Stub used for b.w and bl.w instructions.
4885 static const Insn_template elf32_arm_stub_a8_veneer_b
[] =
4887 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4890 static const Insn_template elf32_arm_stub_a8_veneer_bl
[] =
4892 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4895 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4896 // instruction (which switches to ARM mode) to point to this stub. Jump to
4897 // the real destination using an ARM-mode branch.
4898 static const Insn_template elf32_arm_stub_a8_veneer_blx
[] =
4900 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4903 // Stub used to provide an interworking for R_ARM_V4BX relocation
4904 // (bx r[n] instruction).
4905 static const Insn_template elf32_arm_stub_v4_veneer_bx
[] =
4907 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4908 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4909 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4912 // Fill in the stub template look-up table. Stub templates are constructed
4913 // per instance of Stub_factory for fast look-up without locking
4914 // in a thread-enabled environment.
4916 this->stub_templates_
[arm_stub_none
] =
4917 new Stub_template(arm_stub_none
, NULL
, 0);
4919 #define DEF_STUB(x) \
4923 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924 Stub_type type = arm_stub_##x; \
4925 this->stub_templates_[type] = \
4926 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4934 // Stub_table methods.
4936 // Remove all Cortex-A8 stub.
4938 template<bool big_endian
>
4940 Stub_table
<big_endian
>::remove_all_cortex_a8_stubs()
4942 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
4943 p
!= this->cortex_a8_stubs_
.end();
4946 this->cortex_a8_stubs_
.clear();
4949 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4951 template<bool big_endian
>
4953 Stub_table
<big_endian
>::relocate_stub(
4955 const Relocate_info
<32, big_endian
>* relinfo
,
4956 Target_arm
<big_endian
>* arm_target
,
4957 Output_section
* output_section
,
4958 unsigned char* view
,
4959 Arm_address address
,
4960 section_size_type view_size
)
4962 const Stub_template
* stub_template
= stub
->stub_template();
4963 if (stub_template
->reloc_count() != 0)
4965 // Adjust view to cover the stub only.
4966 section_size_type offset
= stub
->offset();
4967 section_size_type stub_size
= stub_template
->size();
4968 gold_assert(offset
+ stub_size
<= view_size
);
4970 arm_target
->relocate_stub(stub
, relinfo
, output_section
, view
+ offset
,
4971 address
+ offset
, stub_size
);
4975 // Relocate all stubs in this stub table.
4977 template<bool big_endian
>
4979 Stub_table
<big_endian
>::relocate_stubs(
4980 const Relocate_info
<32, big_endian
>* relinfo
,
4981 Target_arm
<big_endian
>* arm_target
,
4982 Output_section
* output_section
,
4983 unsigned char* view
,
4984 Arm_address address
,
4985 section_size_type view_size
)
4987 // If we are passed a view bigger than the stub table's. we need to
4989 gold_assert(address
== this->address()
4991 == static_cast<section_size_type
>(this->data_size())));
4993 // Relocate all relocation stubs.
4994 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
4995 p
!= this->reloc_stubs_
.end();
4997 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
4998 address
, view_size
);
5000 // Relocate all Cortex-A8 stubs.
5001 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
5002 p
!= this->cortex_a8_stubs_
.end();
5004 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
5005 address
, view_size
);
5007 // Relocate all ARM V4BX stubs.
5008 for (Arm_v4bx_stub_list::iterator p
= this->arm_v4bx_stubs_
.begin();
5009 p
!= this->arm_v4bx_stubs_
.end();
5013 this->relocate_stub(*p
, relinfo
, arm_target
, output_section
, view
,
5014 address
, view_size
);
5018 // Write out the stubs to file.
5020 template<bool big_endian
>
5022 Stub_table
<big_endian
>::do_write(Output_file
* of
)
5024 off_t offset
= this->offset();
5025 const section_size_type oview_size
=
5026 convert_to_section_size_type(this->data_size());
5027 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5029 // Write relocation stubs.
5030 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
5031 p
!= this->reloc_stubs_
.end();
5034 Reloc_stub
* stub
= p
->second
;
5035 Arm_address address
= this->address() + stub
->offset();
5037 == align_address(address
,
5038 stub
->stub_template()->alignment()));
5039 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
5043 // Write Cortex-A8 stubs.
5044 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
5045 p
!= this->cortex_a8_stubs_
.end();
5048 Cortex_a8_stub
* stub
= p
->second
;
5049 Arm_address address
= this->address() + stub
->offset();
5051 == align_address(address
,
5052 stub
->stub_template()->alignment()));
5053 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
5057 // Write ARM V4BX relocation stubs.
5058 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
5059 p
!= this->arm_v4bx_stubs_
.end();
5065 Arm_address address
= this->address() + (*p
)->offset();
5067 == align_address(address
,
5068 (*p
)->stub_template()->alignment()));
5069 (*p
)->write(oview
+ (*p
)->offset(), (*p
)->stub_template()->size(),
5073 of
->write_output_view(this->offset(), oview_size
, oview
);
5076 // Update the data size and address alignment of the stub table at the end
5077 // of a relaxation pass. Return true if either the data size or the
5078 // alignment changed in this relaxation pass.
5080 template<bool big_endian
>
5082 Stub_table
<big_endian
>::update_data_size_and_addralign()
5084 // Go over all stubs in table to compute data size and address alignment.
5085 off_t size
= this->reloc_stubs_size_
;
5086 unsigned addralign
= this->reloc_stubs_addralign_
;
5088 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
5089 p
!= this->cortex_a8_stubs_
.end();
5092 const Stub_template
* stub_template
= p
->second
->stub_template();
5093 addralign
= std::max(addralign
, stub_template
->alignment());
5094 size
= (align_address(size
, stub_template
->alignment())
5095 + stub_template
->size());
5098 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
5099 p
!= this->arm_v4bx_stubs_
.end();
5105 const Stub_template
* stub_template
= (*p
)->stub_template();
5106 addralign
= std::max(addralign
, stub_template
->alignment());
5107 size
= (align_address(size
, stub_template
->alignment())
5108 + stub_template
->size());
5111 // Check if either data size or alignment changed in this pass.
5112 // Update prev_data_size_ and prev_addralign_. These will be used
5113 // as the current data size and address alignment for the next pass.
5114 bool changed
= size
!= this->prev_data_size_
;
5115 this->prev_data_size_
= size
;
5117 if (addralign
!= this->prev_addralign_
)
5119 this->prev_addralign_
= addralign
;
5124 // Finalize the stubs. This sets the offsets of the stubs within the stub
5125 // table. It also marks all input sections needing Cortex-A8 workaround.
5127 template<bool big_endian
>
5129 Stub_table
<big_endian
>::finalize_stubs()
5131 off_t off
= this->reloc_stubs_size_
;
5132 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
5133 p
!= this->cortex_a8_stubs_
.end();
5136 Cortex_a8_stub
* stub
= p
->second
;
5137 const Stub_template
* stub_template
= stub
->stub_template();
5138 uint64_t stub_addralign
= stub_template
->alignment();
5139 off
= align_address(off
, stub_addralign
);
5140 stub
->set_offset(off
);
5141 off
+= stub_template
->size();
5143 // Mark input section so that we can determine later if a code section
5144 // needs the Cortex-A8 workaround quickly.
5145 Arm_relobj
<big_endian
>* arm_relobj
=
5146 Arm_relobj
<big_endian
>::as_arm_relobj(stub
->relobj());
5147 arm_relobj
->mark_section_for_cortex_a8_workaround(stub
->shndx());
5150 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
5151 p
!= this->arm_v4bx_stubs_
.end();
5157 const Stub_template
* stub_template
= (*p
)->stub_template();
5158 uint64_t stub_addralign
= stub_template
->alignment();
5159 off
= align_address(off
, stub_addralign
);
5160 (*p
)->set_offset(off
);
5161 off
+= stub_template
->size();
5164 gold_assert(off
<= this->prev_data_size_
);
5167 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5169 // of the address range seen by the linker.
5171 template<bool big_endian
>
5173 Stub_table
<big_endian
>::apply_cortex_a8_workaround_to_address_range(
5174 Target_arm
<big_endian
>* arm_target
,
5175 unsigned char* view
,
5176 Arm_address view_address
,
5177 section_size_type view_size
)
5179 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180 for (Cortex_a8_stub_list::const_iterator p
=
5181 this->cortex_a8_stubs_
.lower_bound(view_address
);
5182 ((p
!= this->cortex_a8_stubs_
.end())
5183 && (p
->first
< (view_address
+ view_size
)));
5186 // We do not store the THUMB bit in the LSB of either the branch address
5187 // or the stub offset. There is no need to strip the LSB.
5188 Arm_address branch_address
= p
->first
;
5189 const Cortex_a8_stub
* stub
= p
->second
;
5190 Arm_address stub_address
= this->address() + stub
->offset();
5192 // Offset of the branch instruction relative to this view.
5193 section_size_type offset
=
5194 convert_to_section_size_type(branch_address
- view_address
);
5195 gold_assert((offset
+ 4) <= view_size
);
5197 arm_target
->apply_cortex_a8_workaround(stub
, stub_address
,
5198 view
+ offset
, branch_address
);
5202 // Arm_input_section methods.
5204 // Initialize an Arm_input_section.
5206 template<bool big_endian
>
5208 Arm_input_section
<big_endian
>::init()
5210 Relobj
* relobj
= this->relobj();
5211 unsigned int shndx
= this->shndx();
5213 // We have to cache original size, alignment and contents to avoid locking
5214 // the original file.
5215 this->original_addralign_
=
5216 convert_types
<uint32_t, uint64_t>(relobj
->section_addralign(shndx
));
5218 // This is not efficient but we expect only a small number of relaxed
5219 // input sections for stubs.
5220 section_size_type section_size
;
5221 const unsigned char* section_contents
=
5222 relobj
->section_contents(shndx
, §ion_size
, false);
5223 this->original_size_
=
5224 convert_types
<uint32_t, uint64_t>(relobj
->section_size(shndx
));
5226 gold_assert(this->original_contents_
== NULL
);
5227 this->original_contents_
= new unsigned char[section_size
];
5228 memcpy(this->original_contents_
, section_contents
, section_size
);
5230 // We want to make this look like the original input section after
5231 // output sections are finalized.
5232 Output_section
* os
= relobj
->output_section(shndx
);
5233 off_t offset
= relobj
->output_section_offset(shndx
);
5234 gold_assert(os
!= NULL
&& !relobj
->is_output_section_offset_invalid(shndx
));
5235 this->set_address(os
->address() + offset
);
5236 this->set_file_offset(os
->offset() + offset
);
5238 this->set_current_data_size(this->original_size_
);
5239 this->finalize_data_size();
5242 template<bool big_endian
>
5244 Arm_input_section
<big_endian
>::do_write(Output_file
* of
)
5246 // We have to write out the original section content.
5247 gold_assert(this->original_contents_
!= NULL
);
5248 of
->write(this->offset(), this->original_contents_
,
5249 this->original_size_
);
5251 // If this owns a stub table and it is not empty, write it.
5252 if (this->is_stub_table_owner() && !this->stub_table_
->empty())
5253 this->stub_table_
->write(of
);
5256 // Finalize data size.
5258 template<bool big_endian
>
5260 Arm_input_section
<big_endian
>::set_final_data_size()
5262 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
5264 if (this->is_stub_table_owner())
5266 this->stub_table_
->finalize_data_size();
5267 off
= align_address(off
, this->stub_table_
->addralign());
5268 off
+= this->stub_table_
->data_size();
5270 this->set_data_size(off
);
5273 // Reset address and file offset.
5275 template<bool big_endian
>
5277 Arm_input_section
<big_endian
>::do_reset_address_and_file_offset()
5279 // Size of the original input section contents.
5280 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
5282 // If this is a stub table owner, account for the stub table size.
5283 if (this->is_stub_table_owner())
5285 Stub_table
<big_endian
>* stub_table
= this->stub_table_
;
5287 // Reset the stub table's address and file offset. The
5288 // current data size for child will be updated after that.
5289 stub_table_
->reset_address_and_file_offset();
5290 off
= align_address(off
, stub_table_
->addralign());
5291 off
+= stub_table
->current_data_size();
5294 this->set_current_data_size(off
);
5297 // Arm_exidx_cantunwind methods.
5299 // Write this to Output file OF for a fixed endianness.
5301 template<bool big_endian
>
5303 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file
* of
)
5305 off_t offset
= this->offset();
5306 const section_size_type oview_size
= 8;
5307 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5309 Output_section
* os
= this->relobj_
->output_section(this->shndx_
);
5310 gold_assert(os
!= NULL
);
5312 Arm_relobj
<big_endian
>* arm_relobj
=
5313 Arm_relobj
<big_endian
>::as_arm_relobj(this->relobj_
);
5314 Arm_address output_offset
=
5315 arm_relobj
->get_output_section_offset(this->shndx_
);
5316 Arm_address section_start
;
5317 section_size_type section_size
;
5319 // Find out the end of the text section referred by this.
5320 if (output_offset
!= Arm_relobj
<big_endian
>::invalid_address
)
5322 section_start
= os
->address() + output_offset
;
5323 const Arm_exidx_input_section
* exidx_input_section
=
5324 arm_relobj
->exidx_input_section_by_link(this->shndx_
);
5325 gold_assert(exidx_input_section
!= NULL
);
5327 convert_to_section_size_type(exidx_input_section
->text_size());
5331 // Currently this only happens for a relaxed section.
5332 const Output_relaxed_input_section
* poris
=
5333 os
->find_relaxed_input_section(this->relobj_
, this->shndx_
);
5334 gold_assert(poris
!= NULL
);
5335 section_start
= poris
->address();
5336 section_size
= convert_to_section_size_type(poris
->data_size());
5339 // We always append this to the end of an EXIDX section.
5340 Arm_address output_address
= section_start
+ section_size
;
5342 // Write out the entry. The first word either points to the beginning
5343 // or after the end of a text section. The second word is the special
5344 // EXIDX_CANTUNWIND value.
5345 uint32_t prel31_offset
= output_address
- this->address();
5346 if (Bits
<31>::has_overflow32(offset
))
5347 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5348 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(oview
,
5349 prel31_offset
& 0x7fffffffU
);
5350 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(oview
+ 4,
5351 elfcpp::EXIDX_CANTUNWIND
);
5353 of
->write_output_view(this->offset(), oview_size
, oview
);
5356 // Arm_exidx_merged_section methods.
5358 // Constructor for Arm_exidx_merged_section.
5359 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360 // SECTION_OFFSET_MAP points to a section offset map describing how
5361 // parts of the input section are mapped to output. DELETED_BYTES is
5362 // the number of bytes deleted from the EXIDX input section.
5364 Arm_exidx_merged_section::Arm_exidx_merged_section(
5365 const Arm_exidx_input_section
& exidx_input_section
,
5366 const Arm_exidx_section_offset_map
& section_offset_map
,
5367 uint32_t deleted_bytes
)
5368 : Output_relaxed_input_section(exidx_input_section
.relobj(),
5369 exidx_input_section
.shndx(),
5370 exidx_input_section
.addralign()),
5371 exidx_input_section_(exidx_input_section
),
5372 section_offset_map_(section_offset_map
)
5374 // If we retain or discard the whole EXIDX input section, we would
5376 gold_assert(deleted_bytes
!= 0
5377 && deleted_bytes
!= this->exidx_input_section_
.size());
5379 // Fix size here so that we do not need to implement set_final_data_size.
5380 uint32_t size
= exidx_input_section
.size() - deleted_bytes
;
5381 this->set_data_size(size
);
5382 this->fix_data_size();
5384 // Allocate buffer for section contents and build contents.
5385 this->section_contents_
= new unsigned char[size
];
5388 // Build the contents of a merged EXIDX output section.
5391 Arm_exidx_merged_section::build_contents(
5392 const unsigned char* original_contents
,
5393 section_size_type original_size
)
5395 // Go over spans of input offsets and write only those that are not
5397 section_offset_type in_start
= 0;
5398 section_offset_type out_start
= 0;
5399 section_offset_type in_max
=
5400 convert_types
<section_offset_type
>(original_size
);
5401 section_offset_type out_max
=
5402 convert_types
<section_offset_type
>(this->data_size());
5403 for (Arm_exidx_section_offset_map::const_iterator p
=
5404 this->section_offset_map_
.begin();
5405 p
!= this->section_offset_map_
.end();
5408 section_offset_type in_end
= p
->first
;
5409 gold_assert(in_end
>= in_start
);
5410 section_offset_type out_end
= p
->second
;
5411 size_t in_chunk_size
= convert_types
<size_t>(in_end
- in_start
+ 1);
5414 size_t out_chunk_size
=
5415 convert_types
<size_t>(out_end
- out_start
+ 1);
5417 gold_assert(out_chunk_size
== in_chunk_size
5418 && in_end
< in_max
&& out_end
< out_max
);
5420 memcpy(this->section_contents_
+ out_start
,
5421 original_contents
+ in_start
,
5423 out_start
+= out_chunk_size
;
5425 in_start
+= in_chunk_size
;
5429 // Given an input OBJECT, an input section index SHNDX within that
5430 // object, and an OFFSET relative to the start of that input
5431 // section, return whether or not the corresponding offset within
5432 // the output section is known. If this function returns true, it
5433 // sets *POUTPUT to the output offset. The value -1 indicates that
5434 // this input offset is being discarded.
5437 Arm_exidx_merged_section::do_output_offset(
5438 const Relobj
* relobj
,
5440 section_offset_type offset
,
5441 section_offset_type
* poutput
) const
5443 // We only handle offsets for the original EXIDX input section.
5444 if (relobj
!= this->exidx_input_section_
.relobj()
5445 || shndx
!= this->exidx_input_section_
.shndx())
5448 section_offset_type section_size
=
5449 convert_types
<section_offset_type
>(this->exidx_input_section_
.size());
5450 if (offset
< 0 || offset
>= section_size
)
5451 // Input offset is out of valid range.
5455 // We need to look up the section offset map to determine the output
5456 // offset. Find the reference point in map that is first offset
5457 // bigger than or equal to this offset.
5458 Arm_exidx_section_offset_map::const_iterator p
=
5459 this->section_offset_map_
.lower_bound(offset
);
5461 // The section offset maps are build such that this should not happen if
5462 // input offset is in the valid range.
5463 gold_assert(p
!= this->section_offset_map_
.end());
5465 // We need to check if this is dropped.
5466 section_offset_type ref
= p
->first
;
5467 section_offset_type mapped_ref
= p
->second
;
5469 if (mapped_ref
!= Arm_exidx_input_section::invalid_offset
)
5470 // Offset is present in output.
5471 *poutput
= mapped_ref
+ (offset
- ref
);
5473 // Offset is discarded owing to EXIDX entry merging.
5480 // Write this to output file OF.
5483 Arm_exidx_merged_section::do_write(Output_file
* of
)
5485 off_t offset
= this->offset();
5486 const section_size_type oview_size
= this->data_size();
5487 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5489 Output_section
* os
= this->relobj()->output_section(this->shndx());
5490 gold_assert(os
!= NULL
);
5492 memcpy(oview
, this->section_contents_
, oview_size
);
5493 of
->write_output_view(this->offset(), oview_size
, oview
);
5496 // Arm_exidx_fixup methods.
5498 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5500 // points to the end of the last seen EXIDX section.
5503 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5505 if (this->last_unwind_type_
!= UT_EXIDX_CANTUNWIND
5506 && this->last_input_section_
!= NULL
)
5508 Relobj
* relobj
= this->last_input_section_
->relobj();
5509 unsigned int text_shndx
= this->last_input_section_
->link();
5510 Arm_exidx_cantunwind
* cantunwind
=
5511 new Arm_exidx_cantunwind(relobj
, text_shndx
);
5512 this->exidx_output_section_
->add_output_section_data(cantunwind
);
5513 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5517 // Process an EXIDX section entry in input. Return whether this entry
5518 // can be deleted in the output. SECOND_WORD in the second word of the
5522 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word
)
5525 if (second_word
== elfcpp::EXIDX_CANTUNWIND
)
5527 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528 delete_entry
= this->last_unwind_type_
== UT_EXIDX_CANTUNWIND
;
5529 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5531 else if ((second_word
& 0x80000000) != 0)
5533 // Inlined unwinding data. Merge if equal to previous.
5534 delete_entry
= (merge_exidx_entries_
5535 && this->last_unwind_type_
== UT_INLINED_ENTRY
5536 && this->last_inlined_entry_
== second_word
);
5537 this->last_unwind_type_
= UT_INLINED_ENTRY
;
5538 this->last_inlined_entry_
= second_word
;
5542 // Normal table entry. In theory we could merge these too,
5543 // but duplicate entries are likely to be much less common.
5544 delete_entry
= false;
5545 this->last_unwind_type_
= UT_NORMAL_ENTRY
;
5547 return delete_entry
;
5550 // Update the current section offset map during EXIDX section fix-up.
5551 // If there is no map, create one. INPUT_OFFSET is the offset of a
5552 // reference point, DELETED_BYTES is the number of deleted by in the
5553 // section so far. If DELETE_ENTRY is true, the reference point and
5554 // all offsets after the previous reference point are discarded.
5557 Arm_exidx_fixup::update_offset_map(
5558 section_offset_type input_offset
,
5559 section_size_type deleted_bytes
,
5562 if (this->section_offset_map_
== NULL
)
5563 this->section_offset_map_
= new Arm_exidx_section_offset_map();
5564 section_offset_type output_offset
;
5566 output_offset
= Arm_exidx_input_section::invalid_offset
;
5568 output_offset
= input_offset
- deleted_bytes
;
5569 (*this->section_offset_map_
)[input_offset
] = output_offset
;
5572 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5573 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5574 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575 // If some entries are merged, also store a pointer to a newly created
5576 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5577 // owns the map and is responsible for releasing it after use.
5579 template<bool big_endian
>
5581 Arm_exidx_fixup::process_exidx_section(
5582 const Arm_exidx_input_section
* exidx_input_section
,
5583 const unsigned char* section_contents
,
5584 section_size_type section_size
,
5585 Arm_exidx_section_offset_map
** psection_offset_map
)
5587 Relobj
* relobj
= exidx_input_section
->relobj();
5588 unsigned shndx
= exidx_input_section
->shndx();
5590 if ((section_size
% 8) != 0)
5592 // Something is wrong with this section. Better not touch it.
5593 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594 relobj
->name().c_str(), shndx
);
5595 this->last_input_section_
= exidx_input_section
;
5596 this->last_unwind_type_
= UT_NONE
;
5600 uint32_t deleted_bytes
= 0;
5601 bool prev_delete_entry
= false;
5602 gold_assert(this->section_offset_map_
== NULL
);
5604 for (section_size_type i
= 0; i
< section_size
; i
+= 8)
5606 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
5608 reinterpret_cast<const Valtype
*>(section_contents
+ i
+ 4);
5609 uint32_t second_word
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5611 bool delete_entry
= this->process_exidx_entry(second_word
);
5613 // Entry deletion causes changes in output offsets. We use a std::map
5614 // to record these. And entry (x, y) means input offset x
5615 // is mapped to output offset y. If y is invalid_offset, then x is
5616 // dropped in the output. Because of the way std::map::lower_bound
5617 // works, we record the last offset in a region w.r.t to keeping or
5618 // dropping. If there is no entry (x0, y0) for an input offset x0,
5619 // the output offset y0 of it is determined by the output offset y1 of
5620 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5621 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5623 if (delete_entry
!= prev_delete_entry
&& i
!= 0)
5624 this->update_offset_map(i
- 1, deleted_bytes
, prev_delete_entry
);
5626 // Update total deleted bytes for this entry.
5630 prev_delete_entry
= delete_entry
;
5633 // If section offset map is not NULL, make an entry for the end of
5635 if (this->section_offset_map_
!= NULL
)
5636 update_offset_map(section_size
- 1, deleted_bytes
, prev_delete_entry
);
5638 *psection_offset_map
= this->section_offset_map_
;
5639 this->section_offset_map_
= NULL
;
5640 this->last_input_section_
= exidx_input_section
;
5642 // Set the first output text section so that we can link the EXIDX output
5643 // section to it. Ignore any EXIDX input section that is completely merged.
5644 if (this->first_output_text_section_
== NULL
5645 && deleted_bytes
!= section_size
)
5647 unsigned int link
= exidx_input_section
->link();
5648 Output_section
* os
= relobj
->output_section(link
);
5649 gold_assert(os
!= NULL
);
5650 this->first_output_text_section_
= os
;
5653 return deleted_bytes
;
5656 // Arm_output_section methods.
5658 // Create a stub group for input sections from BEGIN to END. OWNER
5659 // points to the input section to be the owner a new stub table.
5661 template<bool big_endian
>
5663 Arm_output_section
<big_endian
>::create_stub_group(
5664 Input_section_list::const_iterator begin
,
5665 Input_section_list::const_iterator end
,
5666 Input_section_list::const_iterator owner
,
5667 Target_arm
<big_endian
>* target
,
5668 std::vector
<Output_relaxed_input_section
*>* new_relaxed_sections
,
5671 // We use a different kind of relaxed section in an EXIDX section.
5672 // The static casting from Output_relaxed_input_section to
5673 // Arm_input_section is invalid in an EXIDX section. We are okay
5674 // because we should not be calling this for an EXIDX section.
5675 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX
);
5677 // Currently we convert ordinary input sections into relaxed sections only
5678 // at this point but we may want to support creating relaxed input section
5679 // very early. So we check here to see if owner is already a relaxed
5682 Arm_input_section
<big_endian
>* arm_input_section
;
5683 if (owner
->is_relaxed_input_section())
5686 Arm_input_section
<big_endian
>::as_arm_input_section(
5687 owner
->relaxed_input_section());
5691 gold_assert(owner
->is_input_section());
5692 // Create a new relaxed input section. We need to lock the original
5694 Task_lock_obj
<Object
> tl(task
, owner
->relobj());
5696 target
->new_arm_input_section(owner
->relobj(), owner
->shndx());
5697 new_relaxed_sections
->push_back(arm_input_section
);
5700 // Create a stub table.
5701 Stub_table
<big_endian
>* stub_table
=
5702 target
->new_stub_table(arm_input_section
);
5704 arm_input_section
->set_stub_table(stub_table
);
5706 Input_section_list::const_iterator p
= begin
;
5707 Input_section_list::const_iterator prev_p
;
5709 // Look for input sections or relaxed input sections in [begin ... end].
5712 if (p
->is_input_section() || p
->is_relaxed_input_section())
5714 // The stub table information for input sections live
5715 // in their objects.
5716 Arm_relobj
<big_endian
>* arm_relobj
=
5717 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5718 arm_relobj
->set_stub_table(p
->shndx(), stub_table
);
5722 while (prev_p
!= end
);
5725 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5726 // of stub groups. We grow a stub group by adding input section until the
5727 // size is just below GROUP_SIZE. The last input section will be converted
5728 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729 // input section after the stub table, effectively double the group size.
5731 // This is similar to the group_sections() function in elf32-arm.c but is
5732 // implemented differently.
5734 template<bool big_endian
>
5736 Arm_output_section
<big_endian
>::group_sections(
5737 section_size_type group_size
,
5738 bool stubs_always_after_branch
,
5739 Target_arm
<big_endian
>* target
,
5742 // States for grouping.
5745 // No group is being built.
5747 // A group is being built but the stub table is not found yet.
5748 // We keep group a stub group until the size is just under GROUP_SIZE.
5749 // The last input section in the group will be used as the stub table.
5750 FINDING_STUB_SECTION
,
5751 // A group is being built and we have already found a stub table.
5752 // We enter this state to grow a stub group by adding input section
5753 // after the stub table. This effectively doubles the group size.
5757 // Any newly created relaxed sections are stored here.
5758 std::vector
<Output_relaxed_input_section
*> new_relaxed_sections
;
5760 State state
= NO_GROUP
;
5761 section_size_type off
= 0;
5762 section_size_type group_begin_offset
= 0;
5763 section_size_type group_end_offset
= 0;
5764 section_size_type stub_table_end_offset
= 0;
5765 Input_section_list::const_iterator group_begin
=
5766 this->input_sections().end();
5767 Input_section_list::const_iterator stub_table
=
5768 this->input_sections().end();
5769 Input_section_list::const_iterator group_end
= this->input_sections().end();
5770 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5771 p
!= this->input_sections().end();
5774 section_size_type section_begin_offset
=
5775 align_address(off
, p
->addralign());
5776 section_size_type section_end_offset
=
5777 section_begin_offset
+ p
->data_size();
5779 // Check to see if we should group the previously seen sections.
5785 case FINDING_STUB_SECTION
:
5786 // Adding this section makes the group larger than GROUP_SIZE.
5787 if (section_end_offset
- group_begin_offset
>= group_size
)
5789 if (stubs_always_after_branch
)
5791 gold_assert(group_end
!= this->input_sections().end());
5792 this->create_stub_group(group_begin
, group_end
, group_end
,
5793 target
, &new_relaxed_sections
,
5799 // But wait, there's more! Input sections up to
5800 // stub_group_size bytes after the stub table can be
5801 // handled by it too.
5802 state
= HAS_STUB_SECTION
;
5803 stub_table
= group_end
;
5804 stub_table_end_offset
= group_end_offset
;
5809 case HAS_STUB_SECTION
:
5810 // Adding this section makes the post stub-section group larger
5812 if (section_end_offset
- stub_table_end_offset
>= group_size
)
5814 gold_assert(group_end
!= this->input_sections().end());
5815 this->create_stub_group(group_begin
, group_end
, stub_table
,
5816 target
, &new_relaxed_sections
, task
);
5825 // If we see an input section and currently there is no group, start
5826 // a new one. Skip any empty sections. We look at the data size
5827 // instead of calling p->relobj()->section_size() to avoid locking.
5828 if ((p
->is_input_section() || p
->is_relaxed_input_section())
5829 && (p
->data_size() != 0))
5831 if (state
== NO_GROUP
)
5833 state
= FINDING_STUB_SECTION
;
5835 group_begin_offset
= section_begin_offset
;
5838 // Keep track of the last input section seen.
5840 group_end_offset
= section_end_offset
;
5843 off
= section_end_offset
;
5846 // Create a stub group for any ungrouped sections.
5847 if (state
== FINDING_STUB_SECTION
|| state
== HAS_STUB_SECTION
)
5849 gold_assert(group_end
!= this->input_sections().end());
5850 this->create_stub_group(group_begin
, group_end
,
5851 (state
== FINDING_STUB_SECTION
5854 target
, &new_relaxed_sections
, task
);
5857 // Convert input section into relaxed input section in a batch.
5858 if (!new_relaxed_sections
.empty())
5859 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections
);
5861 // Update the section offsets
5862 for (size_t i
= 0; i
< new_relaxed_sections
.size(); ++i
)
5864 Arm_relobj
<big_endian
>* arm_relobj
=
5865 Arm_relobj
<big_endian
>::as_arm_relobj(
5866 new_relaxed_sections
[i
]->relobj());
5867 unsigned int shndx
= new_relaxed_sections
[i
]->shndx();
5868 // Tell Arm_relobj that this input section is converted.
5869 arm_relobj
->convert_input_section_to_relaxed_section(shndx
);
5873 // Append non empty text sections in this to LIST in ascending
5874 // order of their position in this.
5876 template<bool big_endian
>
5878 Arm_output_section
<big_endian
>::append_text_sections_to_list(
5879 Text_section_list
* list
)
5881 gold_assert((this->flags() & elfcpp::SHF_ALLOC
) != 0);
5883 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5884 p
!= this->input_sections().end();
5887 // We only care about plain or relaxed input sections. We also
5888 // ignore any merged sections.
5889 if (p
->is_input_section() || p
->is_relaxed_input_section())
5890 list
->push_back(Text_section_list::value_type(p
->relobj(),
5895 template<bool big_endian
>
5897 Arm_output_section
<big_endian
>::fix_exidx_coverage(
5899 const Text_section_list
& sorted_text_sections
,
5900 Symbol_table
* symtab
,
5901 bool merge_exidx_entries
,
5904 // We should only do this for the EXIDX output section.
5905 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX
);
5907 // We don't want the relaxation loop to undo these changes, so we discard
5908 // the current saved states and take another one after the fix-up.
5909 this->discard_states();
5911 // Remove all input sections.
5912 uint64_t address
= this->address();
5913 typedef std::list
<Output_section::Input_section
> Input_section_list
;
5914 Input_section_list input_sections
;
5915 this->reset_address_and_file_offset();
5916 this->get_input_sections(address
, std::string(""), &input_sections
);
5918 if (!this->input_sections().empty())
5919 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5921 // Go through all the known input sections and record them.
5922 typedef Unordered_set
<Section_id
, Section_id_hash
> Section_id_set
;
5923 typedef Unordered_map
<Section_id
, const Output_section::Input_section
*,
5924 Section_id_hash
> Text_to_exidx_map
;
5925 Text_to_exidx_map text_to_exidx_map
;
5926 for (Input_section_list::const_iterator p
= input_sections
.begin();
5927 p
!= input_sections
.end();
5930 // This should never happen. At this point, we should only see
5931 // plain EXIDX input sections.
5932 gold_assert(!p
->is_relaxed_input_section());
5933 text_to_exidx_map
[Section_id(p
->relobj(), p
->shndx())] = &(*p
);
5936 Arm_exidx_fixup
exidx_fixup(this, merge_exidx_entries
);
5938 // Go over the sorted text sections.
5939 typedef Unordered_set
<Section_id
, Section_id_hash
> Section_id_set
;
5940 Section_id_set processed_input_sections
;
5941 for (Text_section_list::const_iterator p
= sorted_text_sections
.begin();
5942 p
!= sorted_text_sections
.end();
5945 Relobj
* relobj
= p
->first
;
5946 unsigned int shndx
= p
->second
;
5948 Arm_relobj
<big_endian
>* arm_relobj
=
5949 Arm_relobj
<big_endian
>::as_arm_relobj(relobj
);
5950 const Arm_exidx_input_section
* exidx_input_section
=
5951 arm_relobj
->exidx_input_section_by_link(shndx
);
5953 // If this text section has no EXIDX section or if the EXIDX section
5954 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955 // of the last seen EXIDX section.
5956 if (exidx_input_section
== NULL
|| exidx_input_section
->has_errors())
5958 exidx_fixup
.add_exidx_cantunwind_as_needed();
5962 Relobj
* exidx_relobj
= exidx_input_section
->relobj();
5963 unsigned int exidx_shndx
= exidx_input_section
->shndx();
5964 Section_id
sid(exidx_relobj
, exidx_shndx
);
5965 Text_to_exidx_map::const_iterator iter
= text_to_exidx_map
.find(sid
);
5966 if (iter
== text_to_exidx_map
.end())
5968 // This is odd. We have not seen this EXIDX input section before.
5969 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5970 // issue a warning instead. We assume the user knows what he
5971 // or she is doing. Otherwise, this is an error.
5972 if (layout
->script_options()->saw_sections_clause())
5973 gold_warning(_("unwinding may not work because EXIDX input section"
5974 " %u of %s is not in EXIDX output section"),
5975 exidx_shndx
, exidx_relobj
->name().c_str());
5977 gold_error(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx
, exidx_relobj
->name().c_str());
5981 exidx_fixup
.add_exidx_cantunwind_as_needed();
5985 // We need to access the contents of the EXIDX section, lock the
5987 Task_lock_obj
<Object
> tl(task
, exidx_relobj
);
5988 section_size_type exidx_size
;
5989 const unsigned char* exidx_contents
=
5990 exidx_relobj
->section_contents(exidx_shndx
, &exidx_size
, false);
5992 // Fix up coverage and append input section to output data list.
5993 Arm_exidx_section_offset_map
* section_offset_map
= NULL
;
5994 uint32_t deleted_bytes
=
5995 exidx_fixup
.process_exidx_section
<big_endian
>(exidx_input_section
,
5998 §ion_offset_map
);
6000 if (deleted_bytes
== exidx_input_section
->size())
6002 // The whole EXIDX section got merged. Remove it from output.
6003 gold_assert(section_offset_map
== NULL
);
6004 exidx_relobj
->set_output_section(exidx_shndx
, NULL
);
6006 // All local symbols defined in this input section will be dropped.
6007 // We need to adjust output local symbol count.
6008 arm_relobj
->set_output_local_symbol_count_needs_update();
6010 else if (deleted_bytes
> 0)
6012 // Some entries are merged. We need to convert this EXIDX input
6013 // section into a relaxed section.
6014 gold_assert(section_offset_map
!= NULL
);
6016 Arm_exidx_merged_section
* merged_section
=
6017 new Arm_exidx_merged_section(*exidx_input_section
,
6018 *section_offset_map
, deleted_bytes
);
6019 merged_section
->build_contents(exidx_contents
, exidx_size
);
6021 const std::string secname
= exidx_relobj
->section_name(exidx_shndx
);
6022 this->add_relaxed_input_section(layout
, merged_section
, secname
);
6023 arm_relobj
->convert_input_section_to_relaxed_section(exidx_shndx
);
6025 // All local symbols defined in discarded portions of this input
6026 // section will be dropped. We need to adjust output local symbol
6028 arm_relobj
->set_output_local_symbol_count_needs_update();
6032 // Just add back the EXIDX input section.
6033 gold_assert(section_offset_map
== NULL
);
6034 const Output_section::Input_section
* pis
= iter
->second
;
6035 gold_assert(pis
->is_input_section());
6036 this->add_script_input_section(*pis
);
6039 processed_input_sections
.insert(Section_id(exidx_relobj
, exidx_shndx
));
6042 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043 exidx_fixup
.add_exidx_cantunwind_as_needed();
6045 // Remove any known EXIDX input sections that are not processed.
6046 for (Input_section_list::const_iterator p
= input_sections
.begin();
6047 p
!= input_sections
.end();
6050 if (processed_input_sections
.find(Section_id(p
->relobj(), p
->shndx()))
6051 == processed_input_sections
.end())
6053 // We discard a known EXIDX section because its linked
6054 // text section has been folded by ICF. We also discard an
6055 // EXIDX section with error, the output does not matter in this
6056 // case. We do this to avoid triggering asserts.
6057 Arm_relobj
<big_endian
>* arm_relobj
=
6058 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
6059 const Arm_exidx_input_section
* exidx_input_section
=
6060 arm_relobj
->exidx_input_section_by_shndx(p
->shndx());
6061 gold_assert(exidx_input_section
!= NULL
);
6062 if (!exidx_input_section
->has_errors())
6064 unsigned int text_shndx
= exidx_input_section
->link();
6065 gold_assert(symtab
->is_section_folded(p
->relobj(), text_shndx
));
6068 // Remove this from link. We also need to recount the
6070 p
->relobj()->set_output_section(p
->shndx(), NULL
);
6071 arm_relobj
->set_output_local_symbol_count_needs_update();
6075 // Link exidx output section to the first seen output section and
6076 // set correct entry size.
6077 this->set_link_section(exidx_fixup
.first_output_text_section());
6078 this->set_entsize(8);
6080 // Make changes permanent.
6081 this->save_states();
6082 this->set_section_offsets_need_adjustment();
6085 // Link EXIDX output sections to text output sections.
6087 template<bool big_endian
>
6089 Arm_output_section
<big_endian
>::set_exidx_section_link()
6091 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX
);
6092 if (!this->input_sections().empty())
6094 Input_section_list::const_iterator p
= this->input_sections().begin();
6095 Arm_relobj
<big_endian
>* arm_relobj
=
6096 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
6097 unsigned exidx_shndx
= p
->shndx();
6098 const Arm_exidx_input_section
* exidx_input_section
=
6099 arm_relobj
->exidx_input_section_by_shndx(exidx_shndx
);
6100 gold_assert(exidx_input_section
!= NULL
);
6101 unsigned int text_shndx
= exidx_input_section
->link();
6102 Output_section
* os
= arm_relobj
->output_section(text_shndx
);
6103 this->set_link_section(os
);
6107 // Arm_relobj methods.
6109 // Determine if an input section is scannable for stub processing. SHDR is
6110 // the header of the section and SHNDX is the section index. OS is the output
6111 // section for the input section and SYMTAB is the global symbol table used to
6112 // look up ICF information.
6114 template<bool big_endian
>
6116 Arm_relobj
<big_endian
>::section_is_scannable(
6117 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6119 const Output_section
* os
,
6120 const Symbol_table
* symtab
)
6122 // Skip any empty sections, unallocated sections or sections whose
6123 // type are not SHT_PROGBITS.
6124 if (shdr
.get_sh_size() == 0
6125 || (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0
6126 || shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
6129 // Skip any discarded or ICF'ed sections.
6130 if (os
== NULL
|| symtab
->is_section_folded(this, shndx
))
6133 // If this requires special offset handling, check to see if it is
6134 // a relaxed section. If this is not, then it is a merged section that
6135 // we cannot handle.
6136 if (this->is_output_section_offset_invalid(shndx
))
6138 const Output_relaxed_input_section
* poris
=
6139 os
->find_relaxed_input_section(this, shndx
);
6147 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6148 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6150 template<bool big_endian
>
6152 Arm_relobj
<big_endian
>::section_needs_reloc_stub_scanning(
6153 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6154 const Relobj::Output_sections
& out_sections
,
6155 const Symbol_table
* symtab
,
6156 const unsigned char* pshdrs
)
6158 unsigned int sh_type
= shdr
.get_sh_type();
6159 if (sh_type
!= elfcpp::SHT_REL
&& sh_type
!= elfcpp::SHT_RELA
)
6162 // Ignore empty section.
6163 off_t sh_size
= shdr
.get_sh_size();
6167 // Ignore reloc section with unexpected symbol table. The
6168 // error will be reported in the final link.
6169 if (this->adjust_shndx(shdr
.get_sh_link()) != this->symtab_shndx())
6172 unsigned int reloc_size
;
6173 if (sh_type
== elfcpp::SHT_REL
)
6174 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6176 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6178 // Ignore reloc section with unexpected entsize or uneven size.
6179 // The error will be reported in the final link.
6180 if (reloc_size
!= shdr
.get_sh_entsize() || sh_size
% reloc_size
!= 0)
6183 // Ignore reloc section with bad info. This error will be
6184 // reported in the final link.
6185 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
6186 if (index
>= this->shnum())
6189 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6190 const elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
+ index
* shdr_size
);
6191 return this->section_is_scannable(text_shdr
, index
,
6192 out_sections
[index
], symtab
);
6195 // Return the output address of either a plain input section or a relaxed
6196 // input section. SHNDX is the section index. We define and use this
6197 // instead of calling Output_section::output_address because that is slow
6198 // for large output.
6200 template<bool big_endian
>
6202 Arm_relobj
<big_endian
>::simple_input_section_output_address(
6206 if (this->is_output_section_offset_invalid(shndx
))
6208 const Output_relaxed_input_section
* poris
=
6209 os
->find_relaxed_input_section(this, shndx
);
6210 // We do not handle merged sections here.
6211 gold_assert(poris
!= NULL
);
6212 return poris
->address();
6215 return os
->address() + this->get_output_section_offset(shndx
);
6218 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6221 template<bool big_endian
>
6223 Arm_relobj
<big_endian
>::section_needs_cortex_a8_stub_scanning(
6224 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6227 const Symbol_table
* symtab
)
6229 if (!this->section_is_scannable(shdr
, shndx
, os
, symtab
))
6232 // If the section does not cross any 4K-boundaries, it does not need to
6234 Arm_address address
= this->simple_input_section_output_address(shndx
, os
);
6235 if ((address
& ~0xfffU
) == ((address
+ shdr
.get_sh_size() - 1) & ~0xfffU
))
6241 // Scan a section for Cortex-A8 workaround.
6243 template<bool big_endian
>
6245 Arm_relobj
<big_endian
>::scan_section_for_cortex_a8_erratum(
6246 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6249 Target_arm
<big_endian
>* arm_target
)
6251 // Look for the first mapping symbol in this section. It should be
6253 Mapping_symbol_position
section_start(shndx
, 0);
6254 typename
Mapping_symbols_info::const_iterator p
=
6255 this->mapping_symbols_info_
.lower_bound(section_start
);
6257 // There are no mapping symbols for this section. Treat it as a data-only
6258 // section. Issue a warning if section is marked as containing
6260 if (p
== this->mapping_symbols_info_
.end() || p
->first
.first
!= shndx
)
6262 if ((this->section_flags(shndx
) & elfcpp::SHF_EXECINSTR
) != 0)
6263 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6264 "erratum because it has no mapping symbols."),
6265 shndx
, this->name().c_str());
6269 Arm_address output_address
=
6270 this->simple_input_section_output_address(shndx
, os
);
6272 // Get the section contents.
6273 section_size_type input_view_size
= 0;
6274 const unsigned char* input_view
=
6275 this->section_contents(shndx
, &input_view_size
, false);
6277 // We need to go through the mapping symbols to determine what to
6278 // scan. There are two reasons. First, we should look at THUMB code and
6279 // THUMB code only. Second, we only want to look at the 4K-page boundary
6280 // to speed up the scanning.
6282 while (p
!= this->mapping_symbols_info_
.end()
6283 && p
->first
.first
== shndx
)
6285 typename
Mapping_symbols_info::const_iterator next
=
6286 this->mapping_symbols_info_
.upper_bound(p
->first
);
6288 // Only scan part of a section with THUMB code.
6289 if (p
->second
== 't')
6291 // Determine the end of this range.
6292 section_size_type span_start
=
6293 convert_to_section_size_type(p
->first
.second
);
6294 section_size_type span_end
;
6295 if (next
!= this->mapping_symbols_info_
.end()
6296 && next
->first
.first
== shndx
)
6297 span_end
= convert_to_section_size_type(next
->first
.second
);
6299 span_end
= convert_to_section_size_type(shdr
.get_sh_size());
6301 if (((span_start
+ output_address
) & ~0xfffUL
)
6302 != ((span_end
+ output_address
- 1) & ~0xfffUL
))
6304 arm_target
->scan_span_for_cortex_a8_erratum(this, shndx
,
6305 span_start
, span_end
,
6315 // Scan relocations for stub generation.
6317 template<bool big_endian
>
6319 Arm_relobj
<big_endian
>::scan_sections_for_stubs(
6320 Target_arm
<big_endian
>* arm_target
,
6321 const Symbol_table
* symtab
,
6322 const Layout
* layout
)
6324 unsigned int shnum
= this->shnum();
6325 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6327 // Read the section headers.
6328 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
6332 // To speed up processing, we set up hash tables for fast lookup of
6333 // input offsets to output addresses.
6334 this->initialize_input_to_output_maps();
6336 const Relobj::Output_sections
& out_sections(this->output_sections());
6338 Relocate_info
<32, big_endian
> relinfo
;
6339 relinfo
.symtab
= symtab
;
6340 relinfo
.layout
= layout
;
6341 relinfo
.object
= this;
6343 // Do relocation stubs scanning.
6344 const unsigned char* p
= pshdrs
+ shdr_size
;
6345 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
6347 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
6348 if (this->section_needs_reloc_stub_scanning(shdr
, out_sections
, symtab
,
6351 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
6352 Arm_address output_offset
= this->get_output_section_offset(index
);
6353 Arm_address output_address
;
6354 if (output_offset
!= invalid_address
)
6355 output_address
= out_sections
[index
]->address() + output_offset
;
6358 // Currently this only happens for a relaxed section.
6359 const Output_relaxed_input_section
* poris
=
6360 out_sections
[index
]->find_relaxed_input_section(this, index
);
6361 gold_assert(poris
!= NULL
);
6362 output_address
= poris
->address();
6365 // Get the relocations.
6366 const unsigned char* prelocs
= this->get_view(shdr
.get_sh_offset(),
6370 // Get the section contents. This does work for the case in which
6371 // we modify the contents of an input section. We need to pass the
6372 // output view under such circumstances.
6373 section_size_type input_view_size
= 0;
6374 const unsigned char* input_view
=
6375 this->section_contents(index
, &input_view_size
, false);
6377 relinfo
.reloc_shndx
= i
;
6378 relinfo
.data_shndx
= index
;
6379 unsigned int sh_type
= shdr
.get_sh_type();
6380 unsigned int reloc_size
;
6381 if (sh_type
== elfcpp::SHT_REL
)
6382 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6384 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6386 Output_section
* os
= out_sections
[index
];
6387 arm_target
->scan_section_for_stubs(&relinfo
, sh_type
, prelocs
,
6388 shdr
.get_sh_size() / reloc_size
,
6390 output_offset
== invalid_address
,
6391 input_view
, output_address
,
6396 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6397 // after its relocation section, if there is one, is processed for
6398 // relocation stubs. Merging this loop with the one above would have been
6399 // complicated since we would have had to make sure that relocation stub
6400 // scanning is done first.
6401 if (arm_target
->fix_cortex_a8())
6403 const unsigned char* p
= pshdrs
+ shdr_size
;
6404 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
6406 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
6407 if (this->section_needs_cortex_a8_stub_scanning(shdr
, i
,
6410 this->scan_section_for_cortex_a8_erratum(shdr
, i
, out_sections
[i
],
6415 // After we've done the relocations, we release the hash tables,
6416 // since we no longer need them.
6417 this->free_input_to_output_maps();
6420 // Count the local symbols. The ARM backend needs to know if a symbol
6421 // is a THUMB function or not. For global symbols, it is easy because
6422 // the Symbol object keeps the ELF symbol type. For local symbol it is
6423 // harder because we cannot access this information. So we override the
6424 // do_count_local_symbol in parent and scan local symbols to mark
6425 // THUMB functions. This is not the most efficient way but I do not want to
6426 // slow down other ports by calling a per symbol target hook inside
6427 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6429 template<bool big_endian
>
6431 Arm_relobj
<big_endian
>::do_count_local_symbols(
6432 Stringpool_template
<char>* pool
,
6433 Stringpool_template
<char>* dynpool
)
6435 // We need to fix-up the values of any local symbols whose type are
6438 // Ask parent to count the local symbols.
6439 Sized_relobj_file
<32, big_endian
>::do_count_local_symbols(pool
, dynpool
);
6440 const unsigned int loccount
= this->local_symbol_count();
6444 // Initialize the thumb function bit-vector.
6445 std::vector
<bool> empty_vector(loccount
, false);
6446 this->local_symbol_is_thumb_function_
.swap(empty_vector
);
6448 // Read the symbol table section header.
6449 const unsigned int symtab_shndx
= this->symtab_shndx();
6450 elfcpp::Shdr
<32, big_endian
>
6451 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6452 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6454 // Read the local symbols.
6455 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6456 gold_assert(loccount
== symtabshdr
.get_sh_info());
6457 off_t locsize
= loccount
* sym_size
;
6458 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6459 locsize
, true, true);
6461 // For mapping symbol processing, we need to read the symbol names.
6462 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
6463 if (strtab_shndx
>= this->shnum())
6465 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
6469 elfcpp::Shdr
<32, big_endian
>
6470 strtabshdr(this, this->elf_file()->section_header(strtab_shndx
));
6471 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6473 this->error(_("symbol table name section has wrong type: %u"),
6474 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
6477 const char* pnames
=
6478 reinterpret_cast<const char*>(this->get_view(strtabshdr
.get_sh_offset(),
6479 strtabshdr
.get_sh_size(),
6482 // Loop over the local symbols and mark any local symbols pointing
6483 // to THUMB functions.
6485 // Skip the first dummy symbol.
6487 typename Sized_relobj_file
<32, big_endian
>::Local_values
* plocal_values
=
6488 this->local_values();
6489 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6491 elfcpp::Sym
<32, big_endian
> sym(psyms
);
6492 elfcpp::STT st_type
= sym
.get_st_type();
6493 Symbol_value
<32>& lv((*plocal_values
)[i
]);
6494 Arm_address input_value
= lv
.input_value();
6496 // Check to see if this is a mapping symbol.
6497 const char* sym_name
= pnames
+ sym
.get_st_name();
6498 if (Target_arm
<big_endian
>::is_mapping_symbol_name(sym_name
))
6501 unsigned int input_shndx
=
6502 this->adjust_sym_shndx(i
, sym
.get_st_shndx(), &is_ordinary
);
6503 gold_assert(is_ordinary
);
6505 // Strip of LSB in case this is a THUMB symbol.
6506 Mapping_symbol_position
msp(input_shndx
, input_value
& ~1U);
6507 this->mapping_symbols_info_
[msp
] = sym_name
[1];
6510 if (st_type
== elfcpp::STT_ARM_TFUNC
6511 || (st_type
== elfcpp::STT_FUNC
&& ((input_value
& 1) != 0)))
6513 // This is a THUMB function. Mark this and canonicalize the
6514 // symbol value by setting LSB.
6515 this->local_symbol_is_thumb_function_
[i
] = true;
6516 if ((input_value
& 1) == 0)
6517 lv
.set_input_value(input_value
| 1);
6522 // Relocate sections.
6523 template<bool big_endian
>
6525 Arm_relobj
<big_endian
>::do_relocate_sections(
6526 const Symbol_table
* symtab
,
6527 const Layout
* layout
,
6528 const unsigned char* pshdrs
,
6530 typename Sized_relobj_file
<32, big_endian
>::Views
* pviews
)
6532 // Call parent to relocate sections.
6533 Sized_relobj_file
<32, big_endian
>::do_relocate_sections(symtab
, layout
,
6534 pshdrs
, of
, pviews
);
6536 // We do not generate stubs if doing a relocatable link.
6537 if (parameters
->options().relocatable())
6540 // Relocate stub tables.
6541 unsigned int shnum
= this->shnum();
6543 Target_arm
<big_endian
>* arm_target
=
6544 Target_arm
<big_endian
>::default_target();
6546 Relocate_info
<32, big_endian
> relinfo
;
6547 relinfo
.symtab
= symtab
;
6548 relinfo
.layout
= layout
;
6549 relinfo
.object
= this;
6551 for (unsigned int i
= 1; i
< shnum
; ++i
)
6553 Arm_input_section
<big_endian
>* arm_input_section
=
6554 arm_target
->find_arm_input_section(this, i
);
6556 if (arm_input_section
!= NULL
6557 && arm_input_section
->is_stub_table_owner()
6558 && !arm_input_section
->stub_table()->empty())
6560 // We cannot discard a section if it owns a stub table.
6561 Output_section
* os
= this->output_section(i
);
6562 gold_assert(os
!= NULL
);
6564 relinfo
.reloc_shndx
= elfcpp::SHN_UNDEF
;
6565 relinfo
.reloc_shdr
= NULL
;
6566 relinfo
.data_shndx
= i
;
6567 relinfo
.data_shdr
= pshdrs
+ i
* elfcpp::Elf_sizes
<32>::shdr_size
;
6569 gold_assert((*pviews
)[i
].view
!= NULL
);
6571 // We are passed the output section view. Adjust it to cover the
6573 Stub_table
<big_endian
>* stub_table
= arm_input_section
->stub_table();
6574 gold_assert((stub_table
->address() >= (*pviews
)[i
].address
)
6575 && ((stub_table
->address() + stub_table
->data_size())
6576 <= (*pviews
)[i
].address
+ (*pviews
)[i
].view_size
));
6578 off_t offset
= stub_table
->address() - (*pviews
)[i
].address
;
6579 unsigned char* view
= (*pviews
)[i
].view
+ offset
;
6580 Arm_address address
= stub_table
->address();
6581 section_size_type view_size
= stub_table
->data_size();
6583 stub_table
->relocate_stubs(&relinfo
, arm_target
, os
, view
, address
,
6587 // Apply Cortex A8 workaround if applicable.
6588 if (this->section_has_cortex_a8_workaround(i
))
6590 unsigned char* view
= (*pviews
)[i
].view
;
6591 Arm_address view_address
= (*pviews
)[i
].address
;
6592 section_size_type view_size
= (*pviews
)[i
].view_size
;
6593 Stub_table
<big_endian
>* stub_table
= this->stub_tables_
[i
];
6595 // Adjust view to cover section.
6596 Output_section
* os
= this->output_section(i
);
6597 gold_assert(os
!= NULL
);
6598 Arm_address section_address
=
6599 this->simple_input_section_output_address(i
, os
);
6600 uint64_t section_size
= this->section_size(i
);
6602 gold_assert(section_address
>= view_address
6603 && ((section_address
+ section_size
)
6604 <= (view_address
+ view_size
)));
6606 unsigned char* section_view
= view
+ (section_address
- view_address
);
6608 // Apply the Cortex-A8 workaround to the output address range
6609 // corresponding to this input section.
6610 stub_table
->apply_cortex_a8_workaround_to_address_range(
6619 // Find the linked text section of an EXIDX section by looking at the first
6620 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6621 // must be linked to its associated code section via the sh_link field of
6622 // its section header. However, some tools are broken and the link is not
6623 // always set. LD just drops such an EXIDX section silently, causing the
6624 // associated code not unwindabled. Here we try a little bit harder to
6625 // discover the linked code section.
6627 // PSHDR points to the section header of a relocation section of an EXIDX
6628 // section. If we can find a linked text section, return true and
6629 // store the text section index in the location PSHNDX. Otherwise
6632 template<bool big_endian
>
6634 Arm_relobj
<big_endian
>::find_linked_text_section(
6635 const unsigned char* pshdr
,
6636 const unsigned char* psyms
,
6637 unsigned int* pshndx
)
6639 elfcpp::Shdr
<32, big_endian
> shdr(pshdr
);
6641 // If there is no relocation, we cannot find the linked text section.
6643 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6644 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6646 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6647 size_t reloc_count
= shdr
.get_sh_size() / reloc_size
;
6649 // Get the relocations.
6650 const unsigned char* prelocs
=
6651 this->get_view(shdr
.get_sh_offset(), shdr
.get_sh_size(), true, false);
6653 // Find the REL31 relocation for the first word of the first EXIDX entry.
6654 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
6656 Arm_address r_offset
;
6657 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
;
6658 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6660 typename
elfcpp::Rel
<32, big_endian
> reloc(prelocs
);
6661 r_info
= reloc
.get_r_info();
6662 r_offset
= reloc
.get_r_offset();
6666 typename
elfcpp::Rela
<32, big_endian
> reloc(prelocs
);
6667 r_info
= reloc
.get_r_info();
6668 r_offset
= reloc
.get_r_offset();
6671 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
6672 if (r_type
!= elfcpp::R_ARM_PREL31
&& r_type
!= elfcpp::R_ARM_SBREL31
)
6675 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
6677 || r_sym
>= this->local_symbol_count()
6681 // This is the relocation for the first word of the first EXIDX entry.
6682 // We expect to see a local section symbol.
6683 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6684 elfcpp::Sym
<32, big_endian
> sym(psyms
+ r_sym
* sym_size
);
6685 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
6689 this->adjust_sym_shndx(r_sym
, sym
.get_st_shndx(), &is_ordinary
);
6690 gold_assert(is_ordinary
);
6700 // Make an EXIDX input section object for an EXIDX section whose index is
6701 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6702 // is the section index of the linked text section.
6704 template<bool big_endian
>
6706 Arm_relobj
<big_endian
>::make_exidx_input_section(
6708 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6709 unsigned int text_shndx
,
6710 const elfcpp::Shdr
<32, big_endian
>& text_shdr
)
6712 // Create an Arm_exidx_input_section object for this EXIDX section.
6713 Arm_exidx_input_section
* exidx_input_section
=
6714 new Arm_exidx_input_section(this, shndx
, text_shndx
, shdr
.get_sh_size(),
6715 shdr
.get_sh_addralign(),
6716 text_shdr
.get_sh_size());
6718 gold_assert(this->exidx_section_map_
[shndx
] == NULL
);
6719 this->exidx_section_map_
[shndx
] = exidx_input_section
;
6721 if (text_shndx
== elfcpp::SHN_UNDEF
|| text_shndx
>= this->shnum())
6723 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6724 this->section_name(shndx
).c_str(), shndx
, text_shndx
,
6725 this->name().c_str());
6726 exidx_input_section
->set_has_errors();
6728 else if (this->exidx_section_map_
[text_shndx
] != NULL
)
6730 unsigned other_exidx_shndx
=
6731 this->exidx_section_map_
[text_shndx
]->shndx();
6732 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6734 this->section_name(shndx
).c_str(), shndx
,
6735 this->section_name(other_exidx_shndx
).c_str(),
6736 other_exidx_shndx
, this->section_name(text_shndx
).c_str(),
6737 text_shndx
, this->name().c_str());
6738 exidx_input_section
->set_has_errors();
6741 this->exidx_section_map_
[text_shndx
] = exidx_input_section
;
6743 // Check section flags of text section.
6744 if ((text_shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
6746 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6748 this->section_name(shndx
).c_str(), shndx
,
6749 this->section_name(text_shndx
).c_str(), text_shndx
,
6750 this->name().c_str());
6751 exidx_input_section
->set_has_errors();
6753 else if ((text_shdr
.get_sh_flags() & elfcpp::SHF_EXECINSTR
) == 0)
6754 // I would like to make this an error but currently ld just ignores
6756 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6758 this->section_name(shndx
).c_str(), shndx
,
6759 this->section_name(text_shndx
).c_str(), text_shndx
,
6760 this->name().c_str());
6763 // Read the symbol information.
6765 template<bool big_endian
>
6767 Arm_relobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6769 // Call parent class to read symbol information.
6770 this->base_read_symbols(sd
);
6772 // If this input file is a binary file, it has no processor
6773 // specific flags and attributes section.
6774 Input_file::Format format
= this->input_file()->format();
6775 if (format
!= Input_file::FORMAT_ELF
)
6777 gold_assert(format
== Input_file::FORMAT_BINARY
);
6778 this->merge_flags_and_attributes_
= false;
6782 // Read processor-specific flags in ELF file header.
6783 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6784 elfcpp::Elf_sizes
<32>::ehdr_size
,
6786 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
6787 this->processor_specific_flags_
= ehdr
.get_e_flags();
6789 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6791 std::vector
<unsigned int> deferred_exidx_sections
;
6792 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6793 const unsigned char* pshdrs
= sd
->section_headers
->data();
6794 const unsigned char* ps
= pshdrs
+ shdr_size
;
6795 bool must_merge_flags_and_attributes
= false;
6796 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6798 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6800 // Sometimes an object has no contents except the section name string
6801 // table and an empty symbol table with the undefined symbol. We
6802 // don't want to merge processor-specific flags from such an object.
6803 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
6805 // Symbol table is not empty.
6806 const elfcpp::Elf_types
<32>::Elf_WXword sym_size
=
6807 elfcpp::Elf_sizes
<32>::sym_size
;
6808 if (shdr
.get_sh_size() > sym_size
)
6809 must_merge_flags_and_attributes
= true;
6811 else if (shdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6812 // If this is neither an empty symbol table nor a string table,
6814 must_merge_flags_and_attributes
= true;
6816 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
6818 gold_assert(this->attributes_section_data_
== NULL
);
6819 section_offset_type section_offset
= shdr
.get_sh_offset();
6820 section_size_type section_size
=
6821 convert_to_section_size_type(shdr
.get_sh_size());
6822 const unsigned char* view
=
6823 this->get_view(section_offset
, section_size
, true, false);
6824 this->attributes_section_data_
=
6825 new Attributes_section_data(view
, section_size
);
6827 else if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6829 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6830 if (text_shndx
== elfcpp::SHN_UNDEF
)
6831 deferred_exidx_sections
.push_back(i
);
6834 elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
6835 + text_shndx
* shdr_size
);
6836 this->make_exidx_input_section(i
, shdr
, text_shndx
, text_shdr
);
6838 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6839 if ((shdr
.get_sh_flags() & elfcpp::SHF_LINK_ORDER
) == 0)
6840 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6841 this->section_name(i
).c_str(), this->name().c_str());
6846 if (!must_merge_flags_and_attributes
)
6848 gold_assert(deferred_exidx_sections
.empty());
6849 this->merge_flags_and_attributes_
= false;
6853 // Some tools are broken and they do not set the link of EXIDX sections.
6854 // We look at the first relocation to figure out the linked sections.
6855 if (!deferred_exidx_sections
.empty())
6857 // We need to go over the section headers again to find the mapping
6858 // from sections being relocated to their relocation sections. This is
6859 // a bit inefficient as we could do that in the loop above. However,
6860 // we do not expect any deferred EXIDX sections normally. So we do not
6861 // want to slow down the most common path.
6862 typedef Unordered_map
<unsigned int, unsigned int> Reloc_map
;
6863 Reloc_map reloc_map
;
6864 ps
= pshdrs
+ shdr_size
;
6865 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6867 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6868 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
6869 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
6871 unsigned int info_shndx
= this->adjust_shndx(shdr
.get_sh_info());
6872 if (info_shndx
>= this->shnum())
6873 gold_error(_("relocation section %u has invalid info %u"),
6875 Reloc_map::value_type
value(info_shndx
, i
);
6876 std::pair
<Reloc_map::iterator
, bool> result
=
6877 reloc_map
.insert(value
);
6879 gold_error(_("section %u has multiple relocation sections "
6881 info_shndx
, i
, reloc_map
[info_shndx
]);
6885 // Read the symbol table section header.
6886 const unsigned int symtab_shndx
= this->symtab_shndx();
6887 elfcpp::Shdr
<32, big_endian
>
6888 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6889 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6891 // Read the local symbols.
6892 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6893 const unsigned int loccount
= this->local_symbol_count();
6894 gold_assert(loccount
== symtabshdr
.get_sh_info());
6895 off_t locsize
= loccount
* sym_size
;
6896 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6897 locsize
, true, true);
6899 // Process the deferred EXIDX sections.
6900 for (unsigned int i
= 0; i
< deferred_exidx_sections
.size(); ++i
)
6902 unsigned int shndx
= deferred_exidx_sections
[i
];
6903 elfcpp::Shdr
<32, big_endian
> shdr(pshdrs
+ shndx
* shdr_size
);
6904 unsigned int text_shndx
= elfcpp::SHN_UNDEF
;
6905 Reloc_map::const_iterator it
= reloc_map
.find(shndx
);
6906 if (it
!= reloc_map
.end())
6907 find_linked_text_section(pshdrs
+ it
->second
* shdr_size
,
6908 psyms
, &text_shndx
);
6909 elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
6910 + text_shndx
* shdr_size
);
6911 this->make_exidx_input_section(shndx
, shdr
, text_shndx
, text_shdr
);
6916 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6917 // sections for unwinding. These sections are referenced implicitly by
6918 // text sections linked in the section headers. If we ignore these implicit
6919 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6920 // will be garbage-collected incorrectly. Hence we override the same function
6921 // in the base class to handle these implicit references.
6923 template<bool big_endian
>
6925 Arm_relobj
<big_endian
>::do_gc_process_relocs(Symbol_table
* symtab
,
6927 Read_relocs_data
* rd
)
6929 // First, call base class method to process relocations in this object.
6930 Sized_relobj_file
<32, big_endian
>::do_gc_process_relocs(symtab
, layout
, rd
);
6932 // If --gc-sections is not specified, there is nothing more to do.
6933 // This happens when --icf is used but --gc-sections is not.
6934 if (!parameters
->options().gc_sections())
6937 unsigned int shnum
= this->shnum();
6938 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6939 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
6943 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6944 // to these from the linked text sections.
6945 const unsigned char* ps
= pshdrs
+ shdr_size
;
6946 for (unsigned int i
= 1; i
< shnum
; ++i
, ps
+= shdr_size
)
6948 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6949 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6951 // Found an .ARM.exidx section, add it to the set of reachable
6952 // sections from its linked text section.
6953 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6954 symtab
->gc()->add_reference(this, text_shndx
, this, i
);
6959 // Update output local symbol count. Owing to EXIDX entry merging, some local
6960 // symbols will be removed in output. Adjust output local symbol count
6961 // accordingly. We can only changed the static output local symbol count. It
6962 // is too late to change the dynamic symbols.
6964 template<bool big_endian
>
6966 Arm_relobj
<big_endian
>::update_output_local_symbol_count()
6968 // Caller should check that this needs updating. We want caller checking
6969 // because output_local_symbol_count_needs_update() is most likely inlined.
6970 gold_assert(this->output_local_symbol_count_needs_update_
);
6972 gold_assert(this->symtab_shndx() != -1U);
6973 if (this->symtab_shndx() == 0)
6975 // This object has no symbols. Weird but legal.
6979 // Read the symbol table section header.
6980 const unsigned int symtab_shndx
= this->symtab_shndx();
6981 elfcpp::Shdr
<32, big_endian
>
6982 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6983 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6985 // Read the local symbols.
6986 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6987 const unsigned int loccount
= this->local_symbol_count();
6988 gold_assert(loccount
== symtabshdr
.get_sh_info());
6989 off_t locsize
= loccount
* sym_size
;
6990 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6991 locsize
, true, true);
6993 // Loop over the local symbols.
6995 typedef typename Sized_relobj_file
<32, big_endian
>::Output_sections
6997 const Output_sections
& out_sections(this->output_sections());
6998 unsigned int shnum
= this->shnum();
6999 unsigned int count
= 0;
7000 // Skip the first, dummy, symbol.
7002 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
7004 elfcpp::Sym
<32, big_endian
> sym(psyms
);
7006 Symbol_value
<32>& lv((*this->local_values())[i
]);
7008 // This local symbol was already discarded by do_count_local_symbols.
7009 if (lv
.is_output_symtab_index_set() && !lv
.has_output_symtab_entry())
7013 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
7018 Output_section
* os
= out_sections
[shndx
];
7020 // This local symbol no longer has an output section. Discard it.
7023 lv
.set_no_output_symtab_entry();
7027 // Currently we only discard parts of EXIDX input sections.
7028 // We explicitly check for a merged EXIDX input section to avoid
7029 // calling Output_section_data::output_offset unless necessary.
7030 if ((this->get_output_section_offset(shndx
) == invalid_address
)
7031 && (this->exidx_input_section_by_shndx(shndx
) != NULL
))
7033 section_offset_type output_offset
=
7034 os
->output_offset(this, shndx
, lv
.input_value());
7035 if (output_offset
== -1)
7037 // This symbol is defined in a part of an EXIDX input section
7038 // that is discarded due to entry merging.
7039 lv
.set_no_output_symtab_entry();
7048 this->set_output_local_symbol_count(count
);
7049 this->output_local_symbol_count_needs_update_
= false;
7052 // Arm_dynobj methods.
7054 // Read the symbol information.
7056 template<bool big_endian
>
7058 Arm_dynobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
7060 // Call parent class to read symbol information.
7061 this->base_read_symbols(sd
);
7063 // Read processor-specific flags in ELF file header.
7064 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
7065 elfcpp::Elf_sizes
<32>::ehdr_size
,
7067 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
7068 this->processor_specific_flags_
= ehdr
.get_e_flags();
7070 // Read the attributes section if there is one.
7071 // We read from the end because gas seems to put it near the end of
7072 // the section headers.
7073 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
7074 const unsigned char* ps
=
7075 sd
->section_headers
->data() + shdr_size
* (this->shnum() - 1);
7076 for (unsigned int i
= this->shnum(); i
> 0; --i
, ps
-= shdr_size
)
7078 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
7079 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
7081 section_offset_type section_offset
= shdr
.get_sh_offset();
7082 section_size_type section_size
=
7083 convert_to_section_size_type(shdr
.get_sh_size());
7084 const unsigned char* view
=
7085 this->get_view(section_offset
, section_size
, true, false);
7086 this->attributes_section_data_
=
7087 new Attributes_section_data(view
, section_size
);
7093 // Stub_addend_reader methods.
7095 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7097 template<bool big_endian
>
7098 elfcpp::Elf_types
<32>::Elf_Swxword
7099 Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>::operator()(
7100 unsigned int r_type
,
7101 const unsigned char* view
,
7102 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const
7104 typedef class Arm_relocate_functions
<big_endian
> RelocFuncs
;
7108 case elfcpp::R_ARM_CALL
:
7109 case elfcpp::R_ARM_JUMP24
:
7110 case elfcpp::R_ARM_PLT32
:
7112 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
7113 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
7114 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
7115 return Bits
<26>::sign_extend32(val
<< 2);
7118 case elfcpp::R_ARM_THM_CALL
:
7119 case elfcpp::R_ARM_THM_JUMP24
:
7120 case elfcpp::R_ARM_THM_XPC22
:
7122 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
7123 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
7124 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
7125 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
7126 return RelocFuncs::thumb32_branch_offset(upper_insn
, lower_insn
);
7129 case elfcpp::R_ARM_THM_JUMP19
:
7131 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
7132 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
7133 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
7134 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
7135 return RelocFuncs::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
7143 // Arm_output_data_got methods.
7145 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7146 // The first one is initialized to be 1, which is the module index for
7147 // the main executable and the second one 0. A reloc of the type
7148 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7149 // be applied by gold. GSYM is a global symbol.
7151 template<bool big_endian
>
7153 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
7154 unsigned int got_type
,
7157 if (gsym
->has_got_offset(got_type
))
7160 // We are doing a static link. Just mark it as belong to module 1,
7162 unsigned int got_offset
= this->add_constant(1);
7163 gsym
->set_got_offset(got_type
, got_offset
);
7164 got_offset
= this->add_constant(0);
7165 this->static_relocs_
.push_back(Static_reloc(got_offset
,
7166 elfcpp::R_ARM_TLS_DTPOFF32
,
7170 // Same as the above but for a local symbol.
7172 template<bool big_endian
>
7174 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
7175 unsigned int got_type
,
7176 Sized_relobj_file
<32, big_endian
>* object
,
7179 if (object
->local_has_got_offset(index
, got_type
))
7182 // We are doing a static link. Just mark it as belong to module 1,
7184 unsigned int got_offset
= this->add_constant(1);
7185 object
->set_local_got_offset(index
, got_type
, got_offset
);
7186 got_offset
= this->add_constant(0);
7187 this->static_relocs_
.push_back(Static_reloc(got_offset
,
7188 elfcpp::R_ARM_TLS_DTPOFF32
,
7192 template<bool big_endian
>
7194 Arm_output_data_got
<big_endian
>::do_write(Output_file
* of
)
7196 // Call parent to write out GOT.
7197 Output_data_got
<32, big_endian
>::do_write(of
);
7199 // We are done if there is no fix up.
7200 if (this->static_relocs_
.empty())
7203 gold_assert(parameters
->doing_static_link());
7205 const off_t offset
= this->offset();
7206 const section_size_type oview_size
=
7207 convert_to_section_size_type(this->data_size());
7208 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7210 Output_segment
* tls_segment
= this->layout_
->tls_segment();
7211 gold_assert(tls_segment
!= NULL
);
7213 // The thread pointer $tp points to the TCB, which is followed by the
7214 // TLS. So we need to adjust $tp relative addressing by this amount.
7215 Arm_address aligned_tcb_size
=
7216 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
7218 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
7220 Static_reloc
& reloc(this->static_relocs_
[i
]);
7223 if (!reloc
.symbol_is_global())
7225 Sized_relobj_file
<32, big_endian
>* object
= reloc
.relobj();
7226 const Symbol_value
<32>* psymval
=
7227 reloc
.relobj()->local_symbol(reloc
.index());
7229 // We are doing static linking. Issue an error and skip this
7230 // relocation if the symbol is undefined or in a discarded_section.
7232 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
7233 if ((shndx
== elfcpp::SHN_UNDEF
)
7235 && shndx
!= elfcpp::SHN_UNDEF
7236 && !object
->is_section_included(shndx
)
7237 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
7239 gold_error(_("undefined or discarded local symbol %u from "
7240 " object %s in GOT"),
7241 reloc
.index(), reloc
.relobj()->name().c_str());
7245 value
= psymval
->value(object
, 0);
7249 const Symbol
* gsym
= reloc
.symbol();
7250 gold_assert(gsym
!= NULL
);
7251 if (gsym
->is_forwarder())
7252 gsym
= this->symbol_table_
->resolve_forwards(gsym
);
7254 // We are doing static linking. Issue an error and skip this
7255 // relocation if the symbol is undefined or in a discarded_section
7256 // unless it is a weakly_undefined symbol.
7257 if ((gsym
->is_defined_in_discarded_section()
7258 || gsym
->is_undefined())
7259 && !gsym
->is_weak_undefined())
7261 gold_error(_("undefined or discarded symbol %s in GOT"),
7266 if (!gsym
->is_weak_undefined())
7268 const Sized_symbol
<32>* sym
=
7269 static_cast<const Sized_symbol
<32>*>(gsym
);
7270 value
= sym
->value();
7276 unsigned got_offset
= reloc
.got_offset();
7277 gold_assert(got_offset
< oview_size
);
7279 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
7280 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
7282 switch (reloc
.r_type())
7284 case elfcpp::R_ARM_TLS_DTPOFF32
:
7287 case elfcpp::R_ARM_TLS_TPOFF32
:
7288 x
= value
+ aligned_tcb_size
;
7293 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
7296 of
->write_output_view(offset
, oview_size
, oview
);
7299 // A class to handle the PLT data.
7300 // This is an abstract base class that handles most of the linker details
7301 // but does not know the actual contents of PLT entries. The derived
7302 // classes below fill in those details.
7304 template<bool big_endian
>
7305 class Output_data_plt_arm
: public Output_section_data
7308 // Unlike aarch64, which records symbol value in "addend" field of relocations
7309 // and could be done at the same time an IRelative reloc is created for the
7310 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7311 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7312 // to keep necessary symbol information for later use in do_write. We usually
7313 // have only a very limited number of ifuncs, so the extra data required here
7316 struct IRelative_data
7318 IRelative_data(Sized_symbol
<32>* sized_symbol
)
7319 : symbol_is_global_(true)
7321 u_
.global
= sized_symbol
;
7324 IRelative_data(Sized_relobj_file
<32, big_endian
>* relobj
,
7326 : symbol_is_global_(false)
7328 u_
.local
.relobj
= relobj
;
7329 u_
.local
.index
= index
;
7334 Sized_symbol
<32>* global
;
7338 Sized_relobj_file
<32, big_endian
>* relobj
;
7343 bool symbol_is_global_
;
7346 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
7349 Output_data_plt_arm(Layout
* layout
, uint64_t addralign
,
7350 Arm_output_data_got
<big_endian
>* got
,
7351 Output_data_space
* got_plt
,
7352 Output_data_space
* got_irelative
);
7354 // Add an entry to the PLT.
7356 add_entry(Symbol_table
* symtab
, Layout
* layout
, Symbol
* gsym
);
7358 // Add the relocation for a plt entry.
7360 add_relocation(Symbol_table
* symtab
, Layout
* layout
,
7361 Symbol
* gsym
, unsigned int got_offset
);
7363 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7365 add_local_ifunc_entry(Symbol_table
* symtab
, Layout
*,
7366 Sized_relobj_file
<32, big_endian
>* relobj
,
7367 unsigned int local_sym_index
);
7369 // Return the .rel.plt section data.
7370 const Reloc_section
*
7372 { return this->rel_
; }
7374 // Return the PLT relocation container for IRELATIVE.
7376 rel_irelative(Symbol_table
*, Layout
*);
7378 // Return the number of PLT entries.
7381 { return this->count_
+ this->irelative_count_
; }
7383 // Return the offset of the first non-reserved PLT entry.
7385 first_plt_entry_offset() const
7386 { return this->do_first_plt_entry_offset(); }
7388 // Return the size of a PLT entry.
7390 get_plt_entry_size() const
7391 { return this->do_get_plt_entry_size(); }
7393 // Return the PLT address for globals.
7395 address_for_global(const Symbol
*) const;
7397 // Return the PLT address for locals.
7399 address_for_local(const Relobj
*, unsigned int symndx
) const;
7402 // Fill in the first PLT entry.
7404 fill_first_plt_entry(unsigned char* pov
,
7405 Arm_address got_address
,
7406 Arm_address plt_address
)
7407 { this->do_fill_first_plt_entry(pov
, got_address
, plt_address
); }
7410 fill_plt_entry(unsigned char* pov
,
7411 Arm_address got_address
,
7412 Arm_address plt_address
,
7413 unsigned int got_offset
,
7414 unsigned int plt_offset
)
7415 { do_fill_plt_entry(pov
, got_address
, plt_address
, got_offset
, plt_offset
); }
7417 virtual unsigned int
7418 do_first_plt_entry_offset() const = 0;
7420 virtual unsigned int
7421 do_get_plt_entry_size() const = 0;
7424 do_fill_first_plt_entry(unsigned char* pov
,
7425 Arm_address got_address
,
7426 Arm_address plt_address
) = 0;
7429 do_fill_plt_entry(unsigned char* pov
,
7430 Arm_address got_address
,
7431 Arm_address plt_address
,
7432 unsigned int got_offset
,
7433 unsigned int plt_offset
) = 0;
7436 do_adjust_output_section(Output_section
* os
);
7438 // Write to a map file.
7440 do_print_to_mapfile(Mapfile
* mapfile
) const
7441 { mapfile
->print_output_data(this, _("** PLT")); }
7444 // Set the final size.
7446 set_final_data_size()
7448 this->set_data_size(this->first_plt_entry_offset()
7449 + ((this->count_
+ this->irelative_count_
)
7450 * this->get_plt_entry_size()));
7453 // Write out the PLT data.
7455 do_write(Output_file
*);
7457 // Record irelative symbol data.
7458 void insert_irelative_data(const IRelative_data
& idata
)
7459 { irelative_data_vec_
.push_back(idata
); }
7461 // The reloc section.
7462 Reloc_section
* rel_
;
7463 // The IRELATIVE relocs, if necessary. These must follow the
7464 // regular PLT relocations.
7465 Reloc_section
* irelative_rel_
;
7466 // The .got section.
7467 Arm_output_data_got
<big_endian
>* got_
;
7468 // The .got.plt section.
7469 Output_data_space
* got_plt_
;
7470 // The part of the .got.plt section used for IRELATIVE relocs.
7471 Output_data_space
* got_irelative_
;
7472 // The number of PLT entries.
7473 unsigned int count_
;
7474 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7475 // follow the regular PLT entries.
7476 unsigned int irelative_count_
;
7477 // Vector for irelative data.
7478 typedef std::vector
<IRelative_data
> IRelative_data_vec
;
7479 IRelative_data_vec irelative_data_vec_
;
7482 // Create the PLT section. The ordinary .got section is an argument,
7483 // since we need to refer to the start. We also create our own .got
7484 // section just for PLT entries.
7486 template<bool big_endian
>
7487 Output_data_plt_arm
<big_endian
>::Output_data_plt_arm(
7488 Layout
* layout
, uint64_t addralign
,
7489 Arm_output_data_got
<big_endian
>* got
,
7490 Output_data_space
* got_plt
,
7491 Output_data_space
* got_irelative
)
7492 : Output_section_data(addralign
), irelative_rel_(NULL
),
7493 got_(got
), got_plt_(got_plt
), got_irelative_(got_irelative
),
7494 count_(0), irelative_count_(0)
7496 this->rel_
= new Reloc_section(false);
7497 layout
->add_output_section_data(".rel.plt", elfcpp::SHT_REL
,
7498 elfcpp::SHF_ALLOC
, this->rel_
,
7499 ORDER_DYNAMIC_PLT_RELOCS
, false);
7502 template<bool big_endian
>
7504 Output_data_plt_arm
<big_endian
>::do_adjust_output_section(Output_section
* os
)
7509 // Add an entry to the PLT.
7511 template<bool big_endian
>
7513 Output_data_plt_arm
<big_endian
>::add_entry(Symbol_table
* symtab
,
7517 gold_assert(!gsym
->has_plt_offset());
7519 unsigned int* entry_count
;
7520 Output_section_data_build
* got
;
7522 // We have 2 different types of plt entry here, normal and ifunc.
7524 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7525 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7527 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7528 // second 12, third 24 ... etc.
7530 // IFunc plt entries *always* come after *normal* plt entries.
7532 // Notice, when computing the plt address of a certain symbol, "plt_address +
7533 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7534 // target->plt_address_for_local() instead.
7536 int begin_offset
= 0;
7537 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
7538 && gsym
->can_use_relative_reloc(false))
7540 entry_count
= &this->irelative_count_
;
7541 got
= this->got_irelative_
;
7542 // For irelative plt entries, offset is relative to the end of normal plt
7543 // entries, so it starts from 0.
7545 // Record symbol information.
7546 this->insert_irelative_data(
7547 IRelative_data(symtab
->get_sized_symbol
<32>(gsym
)));
7551 entry_count
= &this->count_
;
7552 got
= this->got_plt_
;
7553 // Note that for normal plt entries, when setting the PLT offset we skip
7554 // the initial reserved PLT entry.
7555 begin_offset
= this->first_plt_entry_offset();
7558 gsym
->set_plt_offset(begin_offset
7559 + (*entry_count
) * this->get_plt_entry_size());
7563 section_offset_type got_offset
= got
->current_data_size();
7565 // Every PLT entry needs a GOT entry which points back to the PLT
7566 // entry (this will be changed by the dynamic linker, normally
7567 // lazily when the function is called).
7568 got
->set_current_data_size(got_offset
+ 4);
7570 // Every PLT entry needs a reloc.
7571 this->add_relocation(symtab
, layout
, gsym
, got_offset
);
7573 // Note that we don't need to save the symbol. The contents of the
7574 // PLT are independent of which symbols are used. The symbols only
7575 // appear in the relocations.
7578 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7581 template<bool big_endian
>
7583 Output_data_plt_arm
<big_endian
>::add_local_ifunc_entry(
7584 Symbol_table
* symtab
,
7586 Sized_relobj_file
<32, big_endian
>* relobj
,
7587 unsigned int local_sym_index
)
7589 this->insert_irelative_data(IRelative_data(relobj
, local_sym_index
));
7591 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7592 // no longer correct. Use target->plt_address_for_local() instead.
7593 unsigned int plt_offset
= this->irelative_count_
* this->get_plt_entry_size();
7594 ++this->irelative_count_
;
7596 section_offset_type got_offset
= this->got_irelative_
->current_data_size();
7598 // Every PLT entry needs a GOT entry which points back to the PLT
7600 this->got_irelative_
->set_current_data_size(got_offset
+ 4);
7603 // Every PLT entry needs a reloc.
7604 Reloc_section
* rel
= this->rel_irelative(symtab
, layout
);
7605 rel
->add_symbolless_local_addend(relobj
, local_sym_index
,
7606 elfcpp::R_ARM_IRELATIVE
,
7607 this->got_irelative_
, got_offset
);
7612 // Add the relocation for a PLT entry.
7614 template<bool big_endian
>
7616 Output_data_plt_arm
<big_endian
>::add_relocation(
7617 Symbol_table
* symtab
, Layout
* layout
, Symbol
* gsym
, unsigned int got_offset
)
7619 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
7620 && gsym
->can_use_relative_reloc(false))
7622 Reloc_section
* rel
= this->rel_irelative(symtab
, layout
);
7623 rel
->add_symbolless_global_addend(gsym
, elfcpp::R_ARM_IRELATIVE
,
7624 this->got_irelative_
, got_offset
);
7628 gsym
->set_needs_dynsym_entry();
7629 this->rel_
->add_global(gsym
, elfcpp::R_ARM_JUMP_SLOT
, this->got_plt_
,
7635 // Create the irelative relocation data.
7637 template<bool big_endian
>
7638 typename Output_data_plt_arm
<big_endian
>::Reloc_section
*
7639 Output_data_plt_arm
<big_endian
>::rel_irelative(Symbol_table
* symtab
,
7642 if (this->irelative_rel_
== NULL
)
7644 // Since irelative relocations goes into 'rel.dyn', we delegate the
7645 // creation of irelative_rel_ to where rel_dyn section gets created.
7646 Target_arm
<big_endian
>* arm_target
=
7647 Target_arm
<big_endian
>::default_target();
7648 this->irelative_rel_
= arm_target
->rel_irelative_section(layout
);
7650 // Make sure we have a place for the TLSDESC relocations, in
7651 // case we see any later on.
7652 // this->rel_tlsdesc(layout);
7653 if (parameters
->doing_static_link())
7655 // A statically linked executable will only have a .rel.plt section to
7656 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7657 // will use these symbols to locate the IRELATIVE relocs at program
7659 symtab
->define_in_output_data("__rel_iplt_start", NULL
,
7660 Symbol_table::PREDEFINED
,
7661 this->irelative_rel_
, 0, 0,
7662 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
7663 elfcpp::STV_HIDDEN
, 0, false, true);
7664 symtab
->define_in_output_data("__rel_iplt_end", NULL
,
7665 Symbol_table::PREDEFINED
,
7666 this->irelative_rel_
, 0, 0,
7667 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
7668 elfcpp::STV_HIDDEN
, 0, true, true);
7671 return this->irelative_rel_
;
7675 // Return the PLT address for a global symbol.
7677 template<bool big_endian
>
7679 Output_data_plt_arm
<big_endian
>::address_for_global(const Symbol
* gsym
) const
7681 uint64_t begin_offset
= 0;
7682 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
7683 && gsym
->can_use_relative_reloc(false))
7685 begin_offset
= (this->first_plt_entry_offset() +
7686 this->count_
* this->get_plt_entry_size());
7688 return this->address() + begin_offset
+ gsym
->plt_offset();
7692 // Return the PLT address for a local symbol. These are always
7693 // IRELATIVE relocs.
7695 template<bool big_endian
>
7697 Output_data_plt_arm
<big_endian
>::address_for_local(
7698 const Relobj
* object
,
7699 unsigned int r_sym
) const
7701 return (this->address()
7702 + this->first_plt_entry_offset()
7703 + this->count_
* this->get_plt_entry_size()
7704 + object
->local_plt_offset(r_sym
));
7708 template<bool big_endian
>
7709 class Output_data_plt_arm_standard
: public Output_data_plt_arm
<big_endian
>
7712 Output_data_plt_arm_standard(Layout
* layout
,
7713 Arm_output_data_got
<big_endian
>* got
,
7714 Output_data_space
* got_plt
,
7715 Output_data_space
* got_irelative
)
7716 : Output_data_plt_arm
<big_endian
>(layout
, 4, got
, got_plt
, got_irelative
)
7720 // Return the offset of the first non-reserved PLT entry.
7721 virtual unsigned int
7722 do_first_plt_entry_offset() const
7723 { return sizeof(first_plt_entry
); }
7725 // Return the size of a PLT entry.
7726 virtual unsigned int
7727 do_get_plt_entry_size() const
7728 { return sizeof(plt_entry
); }
7731 do_fill_first_plt_entry(unsigned char* pov
,
7732 Arm_address got_address
,
7733 Arm_address plt_address
);
7736 do_fill_plt_entry(unsigned char* pov
,
7737 Arm_address got_address
,
7738 Arm_address plt_address
,
7739 unsigned int got_offset
,
7740 unsigned int plt_offset
);
7743 // Template for the first PLT entry.
7744 static const uint32_t first_plt_entry
[5];
7746 // Template for subsequent PLT entries.
7747 static const uint32_t plt_entry
[3];
7751 // FIXME: This is not very flexible. Right now this has only been tested
7752 // on armv5te. If we are to support additional architecture features like
7753 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7755 // The first entry in the PLT.
7756 template<bool big_endian
>
7757 const uint32_t Output_data_plt_arm_standard
<big_endian
>::first_plt_entry
[5] =
7759 0xe52de004, // str lr, [sp, #-4]!
7760 0xe59fe004, // ldr lr, [pc, #4]
7761 0xe08fe00e, // add lr, pc, lr
7762 0xe5bef008, // ldr pc, [lr, #8]!
7763 0x00000000, // &GOT[0] - .
7766 template<bool big_endian
>
7768 Output_data_plt_arm_standard
<big_endian
>::do_fill_first_plt_entry(
7770 Arm_address got_address
,
7771 Arm_address plt_address
)
7773 // Write first PLT entry. All but the last word are constants.
7774 const size_t num_first_plt_words
= (sizeof(first_plt_entry
)
7775 / sizeof(plt_entry
[0]));
7776 for (size_t i
= 0; i
< num_first_plt_words
- 1; i
++)
7777 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ i
* 4, first_plt_entry
[i
]);
7778 // Last word in first PLT entry is &GOT[0] - .
7779 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 16,
7780 got_address
- (plt_address
+ 16));
7783 // Subsequent entries in the PLT.
7785 template<bool big_endian
>
7786 const uint32_t Output_data_plt_arm_standard
<big_endian
>::plt_entry
[3] =
7788 0xe28fc600, // add ip, pc, #0xNN00000
7789 0xe28cca00, // add ip, ip, #0xNN000
7790 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7793 template<bool big_endian
>
7795 Output_data_plt_arm_standard
<big_endian
>::do_fill_plt_entry(
7797 Arm_address got_address
,
7798 Arm_address plt_address
,
7799 unsigned int got_offset
,
7800 unsigned int plt_offset
)
7802 int32_t offset
= ((got_address
+ got_offset
)
7803 - (plt_address
+ plt_offset
+ 8));
7805 gold_assert(offset
>= 0 && offset
< 0x0fffffff);
7806 uint32_t plt_insn0
= plt_entry
[0] | ((offset
>> 20) & 0xff);
7807 elfcpp::Swap
<32, big_endian
>::writeval(pov
, plt_insn0
);
7808 uint32_t plt_insn1
= plt_entry
[1] | ((offset
>> 12) & 0xff);
7809 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4, plt_insn1
);
7810 uint32_t plt_insn2
= plt_entry
[2] | (offset
& 0xfff);
7811 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8, plt_insn2
);
7814 // Write out the PLT. This uses the hand-coded instructions above,
7815 // and adjusts them as needed. This is all specified by the arm ELF
7816 // Processor Supplement.
7818 template<bool big_endian
>
7820 Output_data_plt_arm
<big_endian
>::do_write(Output_file
* of
)
7822 const off_t offset
= this->offset();
7823 const section_size_type oview_size
=
7824 convert_to_section_size_type(this->data_size());
7825 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7827 const off_t got_file_offset
= this->got_plt_
->offset();
7828 gold_assert(got_file_offset
+ this->got_plt_
->data_size()
7829 == this->got_irelative_
->offset());
7830 const section_size_type got_size
=
7831 convert_to_section_size_type(this->got_plt_
->data_size()
7832 + this->got_irelative_
->data_size());
7833 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
7835 unsigned char* pov
= oview
;
7837 Arm_address plt_address
= this->address();
7838 Arm_address got_address
= this->got_plt_
->address();
7840 // Write first PLT entry.
7841 this->fill_first_plt_entry(pov
, got_address
, plt_address
);
7842 pov
+= this->first_plt_entry_offset();
7844 unsigned char* got_pov
= got_view
;
7846 memset(got_pov
, 0, 12);
7849 unsigned int plt_offset
= this->first_plt_entry_offset();
7850 unsigned int got_offset
= 12;
7851 const unsigned int count
= this->count_
+ this->irelative_count_
;
7852 gold_assert(this->irelative_count_
== this->irelative_data_vec_
.size());
7853 for (unsigned int i
= 0;
7856 pov
+= this->get_plt_entry_size(),
7858 plt_offset
+= this->get_plt_entry_size(),
7861 // Set and adjust the PLT entry itself.
7862 this->fill_plt_entry(pov
, got_address
, plt_address
,
7863 got_offset
, plt_offset
);
7866 if (i
< this->count_
)
7868 // For non-irelative got entries, the value is the beginning of plt.
7869 value
= plt_address
;
7873 // For irelative got entries, the value is the (global/local) symbol
7875 const IRelative_data
& idata
=
7876 this->irelative_data_vec_
[i
- this->count_
];
7877 if (idata
.symbol_is_global_
)
7879 // Set the entry in the GOT for irelative symbols. The content is
7880 // the address of the ifunc, not the address of plt start.
7881 const Sized_symbol
<32>* sized_symbol
= idata
.u_
.global
;
7882 gold_assert(sized_symbol
->type() == elfcpp::STT_GNU_IFUNC
);
7883 value
= sized_symbol
->value();
7887 value
= idata
.u_
.local
.relobj
->local_symbol_value(
7888 idata
.u_
.local
.index
, 0);
7891 elfcpp::Swap
<32, big_endian
>::writeval(got_pov
, value
);
7894 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
7895 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
7897 of
->write_output_view(offset
, oview_size
, oview
);
7898 of
->write_output_view(got_file_offset
, got_size
, got_view
);
7902 // Create a PLT entry for a global symbol.
7904 template<bool big_endian
>
7906 Target_arm
<big_endian
>::make_plt_entry(Symbol_table
* symtab
, Layout
* layout
,
7909 if (gsym
->has_plt_offset())
7912 if (this->plt_
== NULL
)
7913 this->make_plt_section(symtab
, layout
);
7915 this->plt_
->add_entry(symtab
, layout
, gsym
);
7919 // Create the PLT section.
7920 template<bool big_endian
>
7922 Target_arm
<big_endian
>::make_plt_section(
7923 Symbol_table
* symtab
, Layout
* layout
)
7925 if (this->plt_
== NULL
)
7927 // Create the GOT section first.
7928 this->got_section(symtab
, layout
);
7930 // GOT for irelatives is create along with got.plt.
7931 gold_assert(this->got_
!= NULL
7932 && this->got_plt_
!= NULL
7933 && this->got_irelative_
!= NULL
);
7934 this->plt_
= this->make_data_plt(layout
, this->got_
, this->got_plt_
,
7935 this->got_irelative_
);
7937 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
7939 | elfcpp::SHF_EXECINSTR
),
7940 this->plt_
, ORDER_PLT
, false);
7941 symtab
->define_in_output_data("$a", NULL
,
7942 Symbol_table::PREDEFINED
,
7944 0, 0, elfcpp::STT_NOTYPE
,
7946 elfcpp::STV_DEFAULT
, 0,
7952 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7954 template<bool big_endian
>
7956 Target_arm
<big_endian
>::make_local_ifunc_plt_entry(
7957 Symbol_table
* symtab
, Layout
* layout
,
7958 Sized_relobj_file
<32, big_endian
>* relobj
,
7959 unsigned int local_sym_index
)
7961 if (relobj
->local_has_plt_offset(local_sym_index
))
7963 if (this->plt_
== NULL
)
7964 this->make_plt_section(symtab
, layout
);
7965 unsigned int plt_offset
= this->plt_
->add_local_ifunc_entry(symtab
, layout
,
7968 relobj
->set_local_plt_offset(local_sym_index
, plt_offset
);
7972 // Return the number of entries in the PLT.
7974 template<bool big_endian
>
7976 Target_arm
<big_endian
>::plt_entry_count() const
7978 if (this->plt_
== NULL
)
7980 return this->plt_
->entry_count();
7983 // Return the offset of the first non-reserved PLT entry.
7985 template<bool big_endian
>
7987 Target_arm
<big_endian
>::first_plt_entry_offset() const
7989 return this->plt_
->first_plt_entry_offset();
7992 // Return the size of each PLT entry.
7994 template<bool big_endian
>
7996 Target_arm
<big_endian
>::plt_entry_size() const
7998 return this->plt_
->get_plt_entry_size();
8001 // Get the section to use for TLS_DESC relocations.
8003 template<bool big_endian
>
8004 typename Target_arm
<big_endian
>::Reloc_section
*
8005 Target_arm
<big_endian
>::rel_tls_desc_section(Layout
* layout
) const
8007 return this->plt_section()->rel_tls_desc(layout
);
8010 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8012 template<bool big_endian
>
8014 Target_arm
<big_endian
>::define_tls_base_symbol(
8015 Symbol_table
* symtab
,
8018 if (this->tls_base_symbol_defined_
)
8021 Output_segment
* tls_segment
= layout
->tls_segment();
8022 if (tls_segment
!= NULL
)
8024 bool is_exec
= parameters
->options().output_is_executable();
8025 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
8026 Symbol_table::PREDEFINED
,
8030 elfcpp::STV_HIDDEN
, 0,
8032 ? Symbol::SEGMENT_END
8033 : Symbol::SEGMENT_START
),
8036 this->tls_base_symbol_defined_
= true;
8039 // Create a GOT entry for the TLS module index.
8041 template<bool big_endian
>
8043 Target_arm
<big_endian
>::got_mod_index_entry(
8044 Symbol_table
* symtab
,
8046 Sized_relobj_file
<32, big_endian
>* object
)
8048 if (this->got_mod_index_offset_
== -1U)
8050 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
8051 Arm_output_data_got
<big_endian
>* got
= this->got_section(symtab
, layout
);
8052 unsigned int got_offset
;
8053 if (!parameters
->doing_static_link())
8055 got_offset
= got
->add_constant(0);
8056 Reloc_section
* rel_dyn
= this->rel_dyn_section(layout
);
8057 rel_dyn
->add_local(object
, 0, elfcpp::R_ARM_TLS_DTPMOD32
, got
,
8062 // We are doing a static link. Just mark it as belong to module 1,
8064 got_offset
= got
->add_constant(1);
8067 got
->add_constant(0);
8068 this->got_mod_index_offset_
= got_offset
;
8070 return this->got_mod_index_offset_
;
8073 // Optimize the TLS relocation type based on what we know about the
8074 // symbol. IS_FINAL is true if the final address of this symbol is
8075 // known at link time.
8077 template<bool big_endian
>
8078 tls::Tls_optimization
8079 Target_arm
<big_endian
>::optimize_tls_reloc(bool, int)
8081 // FIXME: Currently we do not do any TLS optimization.
8082 return tls::TLSOPT_NONE
;
8085 // Get the Reference_flags for a particular relocation.
8087 template<bool big_endian
>
8089 Target_arm
<big_endian
>::Scan::get_reference_flags(unsigned int r_type
)
8093 case elfcpp::R_ARM_NONE
:
8094 case elfcpp::R_ARM_V4BX
:
8095 case elfcpp::R_ARM_GNU_VTENTRY
:
8096 case elfcpp::R_ARM_GNU_VTINHERIT
:
8097 // No symbol reference.
8100 case elfcpp::R_ARM_ABS32
:
8101 case elfcpp::R_ARM_ABS16
:
8102 case elfcpp::R_ARM_ABS12
:
8103 case elfcpp::R_ARM_THM_ABS5
:
8104 case elfcpp::R_ARM_ABS8
:
8105 case elfcpp::R_ARM_BASE_ABS
:
8106 case elfcpp::R_ARM_MOVW_ABS_NC
:
8107 case elfcpp::R_ARM_MOVT_ABS
:
8108 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8109 case elfcpp::R_ARM_THM_MOVT_ABS
:
8110 case elfcpp::R_ARM_ABS32_NOI
:
8111 return Symbol::ABSOLUTE_REF
;
8113 case elfcpp::R_ARM_REL32
:
8114 case elfcpp::R_ARM_LDR_PC_G0
:
8115 case elfcpp::R_ARM_SBREL32
:
8116 case elfcpp::R_ARM_THM_PC8
:
8117 case elfcpp::R_ARM_BASE_PREL
:
8118 case elfcpp::R_ARM_MOVW_PREL_NC
:
8119 case elfcpp::R_ARM_MOVT_PREL
:
8120 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8121 case elfcpp::R_ARM_THM_MOVT_PREL
:
8122 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
8123 case elfcpp::R_ARM_THM_PC12
:
8124 case elfcpp::R_ARM_REL32_NOI
:
8125 case elfcpp::R_ARM_ALU_PC_G0_NC
:
8126 case elfcpp::R_ARM_ALU_PC_G0
:
8127 case elfcpp::R_ARM_ALU_PC_G1_NC
:
8128 case elfcpp::R_ARM_ALU_PC_G1
:
8129 case elfcpp::R_ARM_ALU_PC_G2
:
8130 case elfcpp::R_ARM_LDR_PC_G1
:
8131 case elfcpp::R_ARM_LDR_PC_G2
:
8132 case elfcpp::R_ARM_LDRS_PC_G0
:
8133 case elfcpp::R_ARM_LDRS_PC_G1
:
8134 case elfcpp::R_ARM_LDRS_PC_G2
:
8135 case elfcpp::R_ARM_LDC_PC_G0
:
8136 case elfcpp::R_ARM_LDC_PC_G1
:
8137 case elfcpp::R_ARM_LDC_PC_G2
:
8138 case elfcpp::R_ARM_ALU_SB_G0_NC
:
8139 case elfcpp::R_ARM_ALU_SB_G0
:
8140 case elfcpp::R_ARM_ALU_SB_G1_NC
:
8141 case elfcpp::R_ARM_ALU_SB_G1
:
8142 case elfcpp::R_ARM_ALU_SB_G2
:
8143 case elfcpp::R_ARM_LDR_SB_G0
:
8144 case elfcpp::R_ARM_LDR_SB_G1
:
8145 case elfcpp::R_ARM_LDR_SB_G2
:
8146 case elfcpp::R_ARM_LDRS_SB_G0
:
8147 case elfcpp::R_ARM_LDRS_SB_G1
:
8148 case elfcpp::R_ARM_LDRS_SB_G2
:
8149 case elfcpp::R_ARM_LDC_SB_G0
:
8150 case elfcpp::R_ARM_LDC_SB_G1
:
8151 case elfcpp::R_ARM_LDC_SB_G2
:
8152 case elfcpp::R_ARM_MOVW_BREL_NC
:
8153 case elfcpp::R_ARM_MOVT_BREL
:
8154 case elfcpp::R_ARM_MOVW_BREL
:
8155 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8156 case elfcpp::R_ARM_THM_MOVT_BREL
:
8157 case elfcpp::R_ARM_THM_MOVW_BREL
:
8158 case elfcpp::R_ARM_GOTOFF32
:
8159 case elfcpp::R_ARM_GOTOFF12
:
8160 case elfcpp::R_ARM_SBREL31
:
8161 return Symbol::RELATIVE_REF
;
8163 case elfcpp::R_ARM_PLT32
:
8164 case elfcpp::R_ARM_CALL
:
8165 case elfcpp::R_ARM_JUMP24
:
8166 case elfcpp::R_ARM_THM_CALL
:
8167 case elfcpp::R_ARM_THM_JUMP24
:
8168 case elfcpp::R_ARM_THM_JUMP19
:
8169 case elfcpp::R_ARM_THM_JUMP6
:
8170 case elfcpp::R_ARM_THM_JUMP11
:
8171 case elfcpp::R_ARM_THM_JUMP8
:
8172 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8173 // in unwind tables. It may point to functions via PLTs.
8174 // So we treat it like call/jump relocations above.
8175 case elfcpp::R_ARM_PREL31
:
8176 return Symbol::FUNCTION_CALL
| Symbol::RELATIVE_REF
;
8178 case elfcpp::R_ARM_GOT_BREL
:
8179 case elfcpp::R_ARM_GOT_ABS
:
8180 case elfcpp::R_ARM_GOT_PREL
:
8182 return Symbol::ABSOLUTE_REF
;
8184 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8185 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8186 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8187 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8188 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8189 return Symbol::TLS_REF
;
8191 case elfcpp::R_ARM_TARGET1
:
8192 case elfcpp::R_ARM_TARGET2
:
8193 case elfcpp::R_ARM_COPY
:
8194 case elfcpp::R_ARM_GLOB_DAT
:
8195 case elfcpp::R_ARM_JUMP_SLOT
:
8196 case elfcpp::R_ARM_RELATIVE
:
8197 case elfcpp::R_ARM_PC24
:
8198 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
8199 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
8200 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
8202 // Not expected. We will give an error later.
8207 // Report an unsupported relocation against a local symbol.
8209 template<bool big_endian
>
8211 Target_arm
<big_endian
>::Scan::unsupported_reloc_local(
8212 Sized_relobj_file
<32, big_endian
>* object
,
8213 unsigned int r_type
)
8215 gold_error(_("%s: unsupported reloc %u against local symbol"),
8216 object
->name().c_str(), r_type
);
8219 // We are about to emit a dynamic relocation of type R_TYPE. If the
8220 // dynamic linker does not support it, issue an error. The GNU linker
8221 // only issues a non-PIC error for an allocated read-only section.
8222 // Here we know the section is allocated, but we don't know that it is
8223 // read-only. But we check for all the relocation types which the
8224 // glibc dynamic linker supports, so it seems appropriate to issue an
8225 // error even if the section is not read-only.
8227 template<bool big_endian
>
8229 Target_arm
<big_endian
>::Scan::check_non_pic(Relobj
* object
,
8230 unsigned int r_type
)
8234 // These are the relocation types supported by glibc for ARM.
8235 case elfcpp::R_ARM_RELATIVE
:
8236 case elfcpp::R_ARM_COPY
:
8237 case elfcpp::R_ARM_GLOB_DAT
:
8238 case elfcpp::R_ARM_JUMP_SLOT
:
8239 case elfcpp::R_ARM_ABS32
:
8240 case elfcpp::R_ARM_ABS32_NOI
:
8241 case elfcpp::R_ARM_IRELATIVE
:
8242 case elfcpp::R_ARM_PC24
:
8243 // FIXME: The following 3 types are not supported by Android's dynamic
8245 case elfcpp::R_ARM_TLS_DTPMOD32
:
8246 case elfcpp::R_ARM_TLS_DTPOFF32
:
8247 case elfcpp::R_ARM_TLS_TPOFF32
:
8252 // This prevents us from issuing more than one error per reloc
8253 // section. But we can still wind up issuing more than one
8254 // error per object file.
8255 if (this->issued_non_pic_error_
)
8257 const Arm_reloc_property
* reloc_property
=
8258 arm_reloc_property_table
->get_reloc_property(r_type
);
8259 gold_assert(reloc_property
!= NULL
);
8260 object
->error(_("requires unsupported dynamic reloc %s; "
8261 "recompile with -fPIC"),
8262 reloc_property
->name().c_str());
8263 this->issued_non_pic_error_
= true;
8267 case elfcpp::R_ARM_NONE
:
8273 // Return whether we need to make a PLT entry for a relocation of the
8274 // given type against a STT_GNU_IFUNC symbol.
8276 template<bool big_endian
>
8278 Target_arm
<big_endian
>::Scan::reloc_needs_plt_for_ifunc(
8279 Sized_relobj_file
<32, big_endian
>* object
,
8280 unsigned int r_type
)
8282 int flags
= Scan::get_reference_flags(r_type
);
8283 if (flags
& Symbol::TLS_REF
)
8285 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8286 object
->name().c_str(), r_type
);
8293 // Scan a relocation for a local symbol.
8294 // FIXME: This only handles a subset of relocation types used by Android
8295 // on ARM v5te devices.
8297 template<bool big_endian
>
8299 Target_arm
<big_endian
>::Scan::local(Symbol_table
* symtab
,
8302 Sized_relobj_file
<32, big_endian
>* object
,
8303 unsigned int data_shndx
,
8304 Output_section
* output_section
,
8305 const elfcpp::Rel
<32, big_endian
>& reloc
,
8306 unsigned int r_type
,
8307 const elfcpp::Sym
<32, big_endian
>& lsym
,
8313 r_type
= get_real_reloc_type(r_type
);
8315 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8316 bool is_ifunc
= lsym
.get_st_type() == elfcpp::STT_GNU_IFUNC
;
8317 if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object
, r_type
))
8319 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8320 target
->make_local_ifunc_plt_entry(symtab
, layout
, object
, r_sym
);
8325 case elfcpp::R_ARM_NONE
:
8326 case elfcpp::R_ARM_V4BX
:
8327 case elfcpp::R_ARM_GNU_VTENTRY
:
8328 case elfcpp::R_ARM_GNU_VTINHERIT
:
8331 case elfcpp::R_ARM_ABS32
:
8332 case elfcpp::R_ARM_ABS32_NOI
:
8333 // If building a shared library (or a position-independent
8334 // executable), we need to create a dynamic relocation for
8335 // this location. The relocation applied at link time will
8336 // apply the link-time value, so we flag the location with
8337 // an R_ARM_RELATIVE relocation so the dynamic loader can
8338 // relocate it easily.
8339 if (parameters
->options().output_is_position_independent())
8341 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8342 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8343 // If we are to add more other reloc types than R_ARM_ABS32,
8344 // we need to add check_non_pic(object, r_type) here.
8345 rel_dyn
->add_local_relative(object
, r_sym
, elfcpp::R_ARM_RELATIVE
,
8346 output_section
, data_shndx
,
8347 reloc
.get_r_offset(), is_ifunc
);
8351 case elfcpp::R_ARM_ABS16
:
8352 case elfcpp::R_ARM_ABS12
:
8353 case elfcpp::R_ARM_THM_ABS5
:
8354 case elfcpp::R_ARM_ABS8
:
8355 case elfcpp::R_ARM_BASE_ABS
:
8356 case elfcpp::R_ARM_MOVW_ABS_NC
:
8357 case elfcpp::R_ARM_MOVT_ABS
:
8358 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8359 case elfcpp::R_ARM_THM_MOVT_ABS
:
8360 // If building a shared library (or a position-independent
8361 // executable), we need to create a dynamic relocation for
8362 // this location. Because the addend needs to remain in the
8363 // data section, we need to be careful not to apply this
8364 // relocation statically.
8365 if (parameters
->options().output_is_position_independent())
8367 check_non_pic(object
, r_type
);
8368 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8369 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8370 if (lsym
.get_st_type() != elfcpp::STT_SECTION
)
8371 rel_dyn
->add_local(object
, r_sym
, r_type
, output_section
,
8372 data_shndx
, reloc
.get_r_offset());
8375 gold_assert(lsym
.get_st_value() == 0);
8376 unsigned int shndx
= lsym
.get_st_shndx();
8378 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
,
8381 object
->error(_("section symbol %u has bad shndx %u"),
8384 rel_dyn
->add_local_section(object
, shndx
,
8385 r_type
, output_section
,
8386 data_shndx
, reloc
.get_r_offset());
8391 case elfcpp::R_ARM_REL32
:
8392 case elfcpp::R_ARM_LDR_PC_G0
:
8393 case elfcpp::R_ARM_SBREL32
:
8394 case elfcpp::R_ARM_THM_CALL
:
8395 case elfcpp::R_ARM_THM_PC8
:
8396 case elfcpp::R_ARM_BASE_PREL
:
8397 case elfcpp::R_ARM_PLT32
:
8398 case elfcpp::R_ARM_CALL
:
8399 case elfcpp::R_ARM_JUMP24
:
8400 case elfcpp::R_ARM_THM_JUMP24
:
8401 case elfcpp::R_ARM_SBREL31
:
8402 case elfcpp::R_ARM_PREL31
:
8403 case elfcpp::R_ARM_MOVW_PREL_NC
:
8404 case elfcpp::R_ARM_MOVT_PREL
:
8405 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8406 case elfcpp::R_ARM_THM_MOVT_PREL
:
8407 case elfcpp::R_ARM_THM_JUMP19
:
8408 case elfcpp::R_ARM_THM_JUMP6
:
8409 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
8410 case elfcpp::R_ARM_THM_PC12
:
8411 case elfcpp::R_ARM_REL32_NOI
:
8412 case elfcpp::R_ARM_ALU_PC_G0_NC
:
8413 case elfcpp::R_ARM_ALU_PC_G0
:
8414 case elfcpp::R_ARM_ALU_PC_G1_NC
:
8415 case elfcpp::R_ARM_ALU_PC_G1
:
8416 case elfcpp::R_ARM_ALU_PC_G2
:
8417 case elfcpp::R_ARM_LDR_PC_G1
:
8418 case elfcpp::R_ARM_LDR_PC_G2
:
8419 case elfcpp::R_ARM_LDRS_PC_G0
:
8420 case elfcpp::R_ARM_LDRS_PC_G1
:
8421 case elfcpp::R_ARM_LDRS_PC_G2
:
8422 case elfcpp::R_ARM_LDC_PC_G0
:
8423 case elfcpp::R_ARM_LDC_PC_G1
:
8424 case elfcpp::R_ARM_LDC_PC_G2
:
8425 case elfcpp::R_ARM_ALU_SB_G0_NC
:
8426 case elfcpp::R_ARM_ALU_SB_G0
:
8427 case elfcpp::R_ARM_ALU_SB_G1_NC
:
8428 case elfcpp::R_ARM_ALU_SB_G1
:
8429 case elfcpp::R_ARM_ALU_SB_G2
:
8430 case elfcpp::R_ARM_LDR_SB_G0
:
8431 case elfcpp::R_ARM_LDR_SB_G1
:
8432 case elfcpp::R_ARM_LDR_SB_G2
:
8433 case elfcpp::R_ARM_LDRS_SB_G0
:
8434 case elfcpp::R_ARM_LDRS_SB_G1
:
8435 case elfcpp::R_ARM_LDRS_SB_G2
:
8436 case elfcpp::R_ARM_LDC_SB_G0
:
8437 case elfcpp::R_ARM_LDC_SB_G1
:
8438 case elfcpp::R_ARM_LDC_SB_G2
:
8439 case elfcpp::R_ARM_MOVW_BREL_NC
:
8440 case elfcpp::R_ARM_MOVT_BREL
:
8441 case elfcpp::R_ARM_MOVW_BREL
:
8442 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8443 case elfcpp::R_ARM_THM_MOVT_BREL
:
8444 case elfcpp::R_ARM_THM_MOVW_BREL
:
8445 case elfcpp::R_ARM_THM_JUMP11
:
8446 case elfcpp::R_ARM_THM_JUMP8
:
8447 // We don't need to do anything for a relative addressing relocation
8448 // against a local symbol if it does not reference the GOT.
8451 case elfcpp::R_ARM_GOTOFF32
:
8452 case elfcpp::R_ARM_GOTOFF12
:
8453 // We need a GOT section:
8454 target
->got_section(symtab
, layout
);
8457 case elfcpp::R_ARM_GOT_BREL
:
8458 case elfcpp::R_ARM_GOT_PREL
:
8460 // The symbol requires a GOT entry.
8461 Arm_output_data_got
<big_endian
>* got
=
8462 target
->got_section(symtab
, layout
);
8463 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8464 if (got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
))
8466 // If we are generating a shared object, we need to add a
8467 // dynamic RELATIVE relocation for this symbol's GOT entry.
8468 if (parameters
->options().output_is_position_independent())
8470 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8471 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8472 rel_dyn
->add_local_relative(
8473 object
, r_sym
, elfcpp::R_ARM_RELATIVE
, got
,
8474 object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
));
8480 case elfcpp::R_ARM_TARGET1
:
8481 case elfcpp::R_ARM_TARGET2
:
8482 // This should have been mapped to another type already.
8484 case elfcpp::R_ARM_COPY
:
8485 case elfcpp::R_ARM_GLOB_DAT
:
8486 case elfcpp::R_ARM_JUMP_SLOT
:
8487 case elfcpp::R_ARM_RELATIVE
:
8488 // These are relocations which should only be seen by the
8489 // dynamic linker, and should never be seen here.
8490 gold_error(_("%s: unexpected reloc %u in object file"),
8491 object
->name().c_str(), r_type
);
8495 // These are initial TLS relocs, which are expected when
8497 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8498 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8499 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8500 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8501 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8503 bool output_is_shared
= parameters
->options().shared();
8504 const tls::Tls_optimization optimized_type
8505 = Target_arm
<big_endian
>::optimize_tls_reloc(!output_is_shared
,
8509 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8510 if (optimized_type
== tls::TLSOPT_NONE
)
8512 // Create a pair of GOT entries for the module index and
8513 // dtv-relative offset.
8514 Arm_output_data_got
<big_endian
>* got
8515 = target
->got_section(symtab
, layout
);
8516 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8517 unsigned int shndx
= lsym
.get_st_shndx();
8519 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
, &is_ordinary
);
8522 object
->error(_("local symbol %u has bad shndx %u"),
8527 if (!parameters
->doing_static_link())
8528 got
->add_local_pair_with_rel(object
, r_sym
, shndx
,
8530 target
->rel_dyn_section(layout
),
8531 elfcpp::R_ARM_TLS_DTPMOD32
);
8533 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
,
8537 // FIXME: TLS optimization not supported yet.
8541 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8542 if (optimized_type
== tls::TLSOPT_NONE
)
8544 // Create a GOT entry for the module index.
8545 target
->got_mod_index_entry(symtab
, layout
, object
);
8548 // FIXME: TLS optimization not supported yet.
8552 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8555 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8556 layout
->set_has_static_tls();
8557 if (optimized_type
== tls::TLSOPT_NONE
)
8559 // Create a GOT entry for the tp-relative offset.
8560 Arm_output_data_got
<big_endian
>* got
8561 = target
->got_section(symtab
, layout
);
8562 unsigned int r_sym
=
8563 elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8564 if (!parameters
->doing_static_link())
8565 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
8566 target
->rel_dyn_section(layout
),
8567 elfcpp::R_ARM_TLS_TPOFF32
);
8568 else if (!object
->local_has_got_offset(r_sym
,
8569 GOT_TYPE_TLS_OFFSET
))
8571 got
->add_local(object
, r_sym
, GOT_TYPE_TLS_OFFSET
);
8572 unsigned int got_offset
=
8573 object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
);
8574 got
->add_static_reloc(got_offset
,
8575 elfcpp::R_ARM_TLS_TPOFF32
, object
,
8580 // FIXME: TLS optimization not supported yet.
8584 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8585 layout
->set_has_static_tls();
8586 if (output_is_shared
)
8588 // We need to create a dynamic relocation.
8589 gold_assert(lsym
.get_st_type() != elfcpp::STT_SECTION
);
8590 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
8591 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8592 rel_dyn
->add_local(object
, r_sym
, elfcpp::R_ARM_TLS_TPOFF32
,
8593 output_section
, data_shndx
,
8594 reloc
.get_r_offset());
8604 case elfcpp::R_ARM_PC24
:
8605 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
8606 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
8607 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
8609 unsupported_reloc_local(object
, r_type
);
8614 // Report an unsupported relocation against a global symbol.
8616 template<bool big_endian
>
8618 Target_arm
<big_endian
>::Scan::unsupported_reloc_global(
8619 Sized_relobj_file
<32, big_endian
>* object
,
8620 unsigned int r_type
,
8623 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8624 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
8627 template<bool big_endian
>
8629 Target_arm
<big_endian
>::Scan::possible_function_pointer_reloc(
8630 unsigned int r_type
)
8634 case elfcpp::R_ARM_PC24
:
8635 case elfcpp::R_ARM_THM_CALL
:
8636 case elfcpp::R_ARM_PLT32
:
8637 case elfcpp::R_ARM_CALL
:
8638 case elfcpp::R_ARM_JUMP24
:
8639 case elfcpp::R_ARM_THM_JUMP24
:
8640 case elfcpp::R_ARM_SBREL31
:
8641 case elfcpp::R_ARM_PREL31
:
8642 case elfcpp::R_ARM_THM_JUMP19
:
8643 case elfcpp::R_ARM_THM_JUMP6
:
8644 case elfcpp::R_ARM_THM_JUMP11
:
8645 case elfcpp::R_ARM_THM_JUMP8
:
8646 // All the relocations above are branches except SBREL31 and PREL31.
8650 // Be conservative and assume this is a function pointer.
8655 template<bool big_endian
>
8657 Target_arm
<big_endian
>::Scan::local_reloc_may_be_function_pointer(
8660 Target_arm
<big_endian
>* target
,
8661 Sized_relobj_file
<32, big_endian
>*,
8664 const elfcpp::Rel
<32, big_endian
>&,
8665 unsigned int r_type
,
8666 const elfcpp::Sym
<32, big_endian
>&)
8668 r_type
= target
->get_real_reloc_type(r_type
);
8669 return possible_function_pointer_reloc(r_type
);
8672 template<bool big_endian
>
8674 Target_arm
<big_endian
>::Scan::global_reloc_may_be_function_pointer(
8677 Target_arm
<big_endian
>* target
,
8678 Sized_relobj_file
<32, big_endian
>*,
8681 const elfcpp::Rel
<32, big_endian
>&,
8682 unsigned int r_type
,
8685 // GOT is not a function.
8686 if (strcmp(gsym
->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8689 r_type
= target
->get_real_reloc_type(r_type
);
8690 return possible_function_pointer_reloc(r_type
);
8693 // Scan a relocation for a global symbol.
8695 template<bool big_endian
>
8697 Target_arm
<big_endian
>::Scan::global(Symbol_table
* symtab
,
8700 Sized_relobj_file
<32, big_endian
>* object
,
8701 unsigned int data_shndx
,
8702 Output_section
* output_section
,
8703 const elfcpp::Rel
<32, big_endian
>& reloc
,
8704 unsigned int r_type
,
8707 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8708 // section. We check here to avoid creating a dynamic reloc against
8709 // _GLOBAL_OFFSET_TABLE_.
8710 if (!target
->has_got_section()
8711 && strcmp(gsym
->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8712 target
->got_section(symtab
, layout
);
8714 // A STT_GNU_IFUNC symbol may require a PLT entry.
8715 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
8716 && this->reloc_needs_plt_for_ifunc(object
, r_type
))
8717 target
->make_plt_entry(symtab
, layout
, gsym
);
8719 r_type
= get_real_reloc_type(r_type
);
8722 case elfcpp::R_ARM_NONE
:
8723 case elfcpp::R_ARM_V4BX
:
8724 case elfcpp::R_ARM_GNU_VTENTRY
:
8725 case elfcpp::R_ARM_GNU_VTINHERIT
:
8728 case elfcpp::R_ARM_ABS32
:
8729 case elfcpp::R_ARM_ABS16
:
8730 case elfcpp::R_ARM_ABS12
:
8731 case elfcpp::R_ARM_THM_ABS5
:
8732 case elfcpp::R_ARM_ABS8
:
8733 case elfcpp::R_ARM_BASE_ABS
:
8734 case elfcpp::R_ARM_MOVW_ABS_NC
:
8735 case elfcpp::R_ARM_MOVT_ABS
:
8736 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8737 case elfcpp::R_ARM_THM_MOVT_ABS
:
8738 case elfcpp::R_ARM_ABS32_NOI
:
8739 // Absolute addressing relocations.
8741 // Make a PLT entry if necessary.
8742 if (this->symbol_needs_plt_entry(gsym
))
8744 target
->make_plt_entry(symtab
, layout
, gsym
);
8745 // Since this is not a PC-relative relocation, we may be
8746 // taking the address of a function. In that case we need to
8747 // set the entry in the dynamic symbol table to the address of
8749 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
8750 gsym
->set_needs_dynsym_value();
8752 // Make a dynamic relocation if necessary.
8753 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
8755 if (!parameters
->options().output_is_position_independent()
8756 && gsym
->may_need_copy_reloc())
8758 target
->copy_reloc(symtab
, layout
, object
,
8759 data_shndx
, output_section
, gsym
, reloc
);
8761 else if ((r_type
== elfcpp::R_ARM_ABS32
8762 || r_type
== elfcpp::R_ARM_ABS32_NOI
)
8763 && gsym
->type() == elfcpp::STT_GNU_IFUNC
8764 && gsym
->can_use_relative_reloc(false)
8765 && !gsym
->is_from_dynobj()
8766 && !gsym
->is_undefined()
8767 && !gsym
->is_preemptible())
8769 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8770 // symbol. This makes a function address in a PIE executable
8771 // match the address in a shared library that it links against.
8772 Reloc_section
* rel_irelative
=
8773 target
->rel_irelative_section(layout
);
8774 unsigned int r_type
= elfcpp::R_ARM_IRELATIVE
;
8775 rel_irelative
->add_symbolless_global_addend(
8776 gsym
, r_type
, output_section
, object
,
8777 data_shndx
, reloc
.get_r_offset());
8779 else if ((r_type
== elfcpp::R_ARM_ABS32
8780 || r_type
== elfcpp::R_ARM_ABS32_NOI
)
8781 && gsym
->can_use_relative_reloc(false))
8783 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8784 rel_dyn
->add_global_relative(gsym
, elfcpp::R_ARM_RELATIVE
,
8785 output_section
, object
,
8786 data_shndx
, reloc
.get_r_offset());
8790 check_non_pic(object
, r_type
);
8791 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8792 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
8793 data_shndx
, reloc
.get_r_offset());
8799 case elfcpp::R_ARM_GOTOFF32
:
8800 case elfcpp::R_ARM_GOTOFF12
:
8801 // We need a GOT section.
8802 target
->got_section(symtab
, layout
);
8805 case elfcpp::R_ARM_REL32
:
8806 case elfcpp::R_ARM_LDR_PC_G0
:
8807 case elfcpp::R_ARM_SBREL32
:
8808 case elfcpp::R_ARM_THM_PC8
:
8809 case elfcpp::R_ARM_BASE_PREL
:
8810 case elfcpp::R_ARM_MOVW_PREL_NC
:
8811 case elfcpp::R_ARM_MOVT_PREL
:
8812 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8813 case elfcpp::R_ARM_THM_MOVT_PREL
:
8814 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
8815 case elfcpp::R_ARM_THM_PC12
:
8816 case elfcpp::R_ARM_REL32_NOI
:
8817 case elfcpp::R_ARM_ALU_PC_G0_NC
:
8818 case elfcpp::R_ARM_ALU_PC_G0
:
8819 case elfcpp::R_ARM_ALU_PC_G1_NC
:
8820 case elfcpp::R_ARM_ALU_PC_G1
:
8821 case elfcpp::R_ARM_ALU_PC_G2
:
8822 case elfcpp::R_ARM_LDR_PC_G1
:
8823 case elfcpp::R_ARM_LDR_PC_G2
:
8824 case elfcpp::R_ARM_LDRS_PC_G0
:
8825 case elfcpp::R_ARM_LDRS_PC_G1
:
8826 case elfcpp::R_ARM_LDRS_PC_G2
:
8827 case elfcpp::R_ARM_LDC_PC_G0
:
8828 case elfcpp::R_ARM_LDC_PC_G1
:
8829 case elfcpp::R_ARM_LDC_PC_G2
:
8830 case elfcpp::R_ARM_ALU_SB_G0_NC
:
8831 case elfcpp::R_ARM_ALU_SB_G0
:
8832 case elfcpp::R_ARM_ALU_SB_G1_NC
:
8833 case elfcpp::R_ARM_ALU_SB_G1
:
8834 case elfcpp::R_ARM_ALU_SB_G2
:
8835 case elfcpp::R_ARM_LDR_SB_G0
:
8836 case elfcpp::R_ARM_LDR_SB_G1
:
8837 case elfcpp::R_ARM_LDR_SB_G2
:
8838 case elfcpp::R_ARM_LDRS_SB_G0
:
8839 case elfcpp::R_ARM_LDRS_SB_G1
:
8840 case elfcpp::R_ARM_LDRS_SB_G2
:
8841 case elfcpp::R_ARM_LDC_SB_G0
:
8842 case elfcpp::R_ARM_LDC_SB_G1
:
8843 case elfcpp::R_ARM_LDC_SB_G2
:
8844 case elfcpp::R_ARM_MOVW_BREL_NC
:
8845 case elfcpp::R_ARM_MOVT_BREL
:
8846 case elfcpp::R_ARM_MOVW_BREL
:
8847 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8848 case elfcpp::R_ARM_THM_MOVT_BREL
:
8849 case elfcpp::R_ARM_THM_MOVW_BREL
:
8850 // Relative addressing relocations.
8852 // Make a dynamic relocation if necessary.
8853 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
8855 if (parameters
->options().output_is_executable()
8856 && target
->may_need_copy_reloc(gsym
))
8858 target
->copy_reloc(symtab
, layout
, object
,
8859 data_shndx
, output_section
, gsym
, reloc
);
8863 check_non_pic(object
, r_type
);
8864 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8865 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
8866 data_shndx
, reloc
.get_r_offset());
8872 case elfcpp::R_ARM_THM_CALL
:
8873 case elfcpp::R_ARM_PLT32
:
8874 case elfcpp::R_ARM_CALL
:
8875 case elfcpp::R_ARM_JUMP24
:
8876 case elfcpp::R_ARM_THM_JUMP24
:
8877 case elfcpp::R_ARM_SBREL31
:
8878 case elfcpp::R_ARM_PREL31
:
8879 case elfcpp::R_ARM_THM_JUMP19
:
8880 case elfcpp::R_ARM_THM_JUMP6
:
8881 case elfcpp::R_ARM_THM_JUMP11
:
8882 case elfcpp::R_ARM_THM_JUMP8
:
8883 // All the relocation above are branches except for the PREL31 ones.
8884 // A PREL31 relocation can point to a personality function in a shared
8885 // library. In that case we want to use a PLT because we want to
8886 // call the personality routine and the dynamic linkers we care about
8887 // do not support dynamic PREL31 relocations. An REL31 relocation may
8888 // point to a function whose unwinding behaviour is being described but
8889 // we will not mistakenly generate a PLT for that because we should use
8890 // a local section symbol.
8892 // If the symbol is fully resolved, this is just a relative
8893 // local reloc. Otherwise we need a PLT entry.
8894 if (gsym
->final_value_is_known())
8896 // If building a shared library, we can also skip the PLT entry
8897 // if the symbol is defined in the output file and is protected
8899 if (gsym
->is_defined()
8900 && !gsym
->is_from_dynobj()
8901 && !gsym
->is_preemptible())
8903 target
->make_plt_entry(symtab
, layout
, gsym
);
8906 case elfcpp::R_ARM_GOT_BREL
:
8907 case elfcpp::R_ARM_GOT_ABS
:
8908 case elfcpp::R_ARM_GOT_PREL
:
8910 // The symbol requires a GOT entry.
8911 Arm_output_data_got
<big_endian
>* got
=
8912 target
->got_section(symtab
, layout
);
8913 if (gsym
->final_value_is_known())
8915 // For a STT_GNU_IFUNC symbol we want the PLT address.
8916 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
8917 got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
8919 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
8923 // If this symbol is not fully resolved, we need to add a
8924 // GOT entry with a dynamic relocation.
8925 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
8926 if (gsym
->is_from_dynobj()
8927 || gsym
->is_undefined()
8928 || gsym
->is_preemptible()
8929 || (gsym
->visibility() == elfcpp::STV_PROTECTED
8930 && parameters
->options().shared())
8931 || (gsym
->type() == elfcpp::STT_GNU_IFUNC
8932 && parameters
->options().output_is_position_independent()))
8933 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
,
8934 rel_dyn
, elfcpp::R_ARM_GLOB_DAT
);
8937 // For a STT_GNU_IFUNC symbol we want to write the PLT
8938 // offset into the GOT, so that function pointer
8939 // comparisons work correctly.
8941 if (gsym
->type() != elfcpp::STT_GNU_IFUNC
)
8942 is_new
= got
->add_global(gsym
, GOT_TYPE_STANDARD
);
8945 is_new
= got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
8946 // Tell the dynamic linker to use the PLT address
8947 // when resolving relocations.
8948 if (gsym
->is_from_dynobj()
8949 && !parameters
->options().shared())
8950 gsym
->set_needs_dynsym_value();
8953 rel_dyn
->add_global_relative(
8954 gsym
, elfcpp::R_ARM_RELATIVE
, got
,
8955 gsym
->got_offset(GOT_TYPE_STANDARD
));
8961 case elfcpp::R_ARM_TARGET1
:
8962 case elfcpp::R_ARM_TARGET2
:
8963 // These should have been mapped to other types already.
8965 case elfcpp::R_ARM_COPY
:
8966 case elfcpp::R_ARM_GLOB_DAT
:
8967 case elfcpp::R_ARM_JUMP_SLOT
:
8968 case elfcpp::R_ARM_RELATIVE
:
8969 // These are relocations which should only be seen by the
8970 // dynamic linker, and should never be seen here.
8971 gold_error(_("%s: unexpected reloc %u in object file"),
8972 object
->name().c_str(), r_type
);
8975 // These are initial tls relocs, which are expected when
8977 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8978 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8979 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8980 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8981 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8983 const bool is_final
= gsym
->final_value_is_known();
8984 const tls::Tls_optimization optimized_type
8985 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
8988 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8989 if (optimized_type
== tls::TLSOPT_NONE
)
8991 // Create a pair of GOT entries for the module index and
8992 // dtv-relative offset.
8993 Arm_output_data_got
<big_endian
>* got
8994 = target
->got_section(symtab
, layout
);
8995 if (!parameters
->doing_static_link())
8996 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
8997 target
->rel_dyn_section(layout
),
8998 elfcpp::R_ARM_TLS_DTPMOD32
,
8999 elfcpp::R_ARM_TLS_DTPOFF32
);
9001 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
, gsym
);
9004 // FIXME: TLS optimization not supported yet.
9008 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
9009 if (optimized_type
== tls::TLSOPT_NONE
)
9011 // Create a GOT entry for the module index.
9012 target
->got_mod_index_entry(symtab
, layout
, object
);
9015 // FIXME: TLS optimization not supported yet.
9019 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
9022 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
9023 layout
->set_has_static_tls();
9024 if (optimized_type
== tls::TLSOPT_NONE
)
9026 // Create a GOT entry for the tp-relative offset.
9027 Arm_output_data_got
<big_endian
>* got
9028 = target
->got_section(symtab
, layout
);
9029 if (!parameters
->doing_static_link())
9030 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
9031 target
->rel_dyn_section(layout
),
9032 elfcpp::R_ARM_TLS_TPOFF32
);
9033 else if (!gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
))
9035 got
->add_global(gsym
, GOT_TYPE_TLS_OFFSET
);
9036 unsigned int got_offset
=
9037 gsym
->got_offset(GOT_TYPE_TLS_OFFSET
);
9038 got
->add_static_reloc(got_offset
,
9039 elfcpp::R_ARM_TLS_TPOFF32
, gsym
);
9043 // FIXME: TLS optimization not supported yet.
9047 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
9048 layout
->set_has_static_tls();
9049 if (parameters
->options().shared())
9051 // We need to create a dynamic relocation.
9052 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
9053 rel_dyn
->add_global(gsym
, elfcpp::R_ARM_TLS_TPOFF32
,
9054 output_section
, object
,
9055 data_shndx
, reloc
.get_r_offset());
9065 case elfcpp::R_ARM_PC24
:
9066 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
9067 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
9068 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
9070 unsupported_reloc_global(object
, r_type
, gsym
);
9075 // Process relocations for gc.
9077 template<bool big_endian
>
9079 Target_arm
<big_endian
>::gc_process_relocs(
9080 Symbol_table
* symtab
,
9082 Sized_relobj_file
<32, big_endian
>* object
,
9083 unsigned int data_shndx
,
9085 const unsigned char* prelocs
,
9087 Output_section
* output_section
,
9088 bool needs_special_offset_handling
,
9089 size_t local_symbol_count
,
9090 const unsigned char* plocal_symbols
)
9092 typedef Target_arm
<big_endian
> Arm
;
9093 typedef typename Target_arm
<big_endian
>::Scan Scan
;
9095 gold::gc_process_relocs
<32, big_endian
, Arm
, elfcpp::SHT_REL
, Scan
,
9096 typename
Target_arm::Relocatable_size_for_reloc
>(
9105 needs_special_offset_handling
,
9110 // Scan relocations for a section.
9112 template<bool big_endian
>
9114 Target_arm
<big_endian
>::scan_relocs(Symbol_table
* symtab
,
9116 Sized_relobj_file
<32, big_endian
>* object
,
9117 unsigned int data_shndx
,
9118 unsigned int sh_type
,
9119 const unsigned char* prelocs
,
9121 Output_section
* output_section
,
9122 bool needs_special_offset_handling
,
9123 size_t local_symbol_count
,
9124 const unsigned char* plocal_symbols
)
9126 typedef typename Target_arm
<big_endian
>::Scan Scan
;
9127 if (sh_type
== elfcpp::SHT_RELA
)
9129 gold_error(_("%s: unsupported RELA reloc section"),
9130 object
->name().c_str());
9134 gold::scan_relocs
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
, Scan
>(
9143 needs_special_offset_handling
,
9148 // Finalize the sections.
9150 template<bool big_endian
>
9152 Target_arm
<big_endian
>::do_finalize_sections(
9154 const Input_objects
* input_objects
,
9157 bool merged_any_attributes
= false;
9158 // Merge processor-specific flags.
9159 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
9160 p
!= input_objects
->relobj_end();
9163 Arm_relobj
<big_endian
>* arm_relobj
=
9164 Arm_relobj
<big_endian
>::as_arm_relobj(*p
);
9165 if (arm_relobj
->merge_flags_and_attributes())
9167 this->merge_processor_specific_flags(
9169 arm_relobj
->processor_specific_flags());
9170 this->merge_object_attributes(arm_relobj
->name().c_str(),
9171 arm_relobj
->attributes_section_data());
9172 merged_any_attributes
= true;
9176 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
9177 p
!= input_objects
->dynobj_end();
9180 Arm_dynobj
<big_endian
>* arm_dynobj
=
9181 Arm_dynobj
<big_endian
>::as_arm_dynobj(*p
);
9182 this->merge_processor_specific_flags(
9184 arm_dynobj
->processor_specific_flags());
9185 this->merge_object_attributes(arm_dynobj
->name().c_str(),
9186 arm_dynobj
->attributes_section_data());
9187 merged_any_attributes
= true;
9190 // Create an empty uninitialized attribute section if we still don't have it
9191 // at this moment. This happens if there is no attributes sections in all
9193 if (this->attributes_section_data_
== NULL
)
9194 this->attributes_section_data_
= new Attributes_section_data(NULL
, 0);
9196 const Object_attribute
* cpu_arch_attr
=
9197 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
9198 // Check if we need to use Cortex-A8 workaround.
9199 if (parameters
->options().user_set_fix_cortex_a8())
9200 this->fix_cortex_a8_
= parameters
->options().fix_cortex_a8();
9203 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9204 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9206 const Object_attribute
* cpu_arch_profile_attr
=
9207 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
9208 this->fix_cortex_a8_
=
9209 (cpu_arch_attr
->int_value() == elfcpp::TAG_CPU_ARCH_V7
9210 && (cpu_arch_profile_attr
->int_value() == 'A'
9211 || cpu_arch_profile_attr
->int_value() == 0));
9214 // Check if we can use V4BX interworking.
9215 // The V4BX interworking stub contains BX instruction,
9216 // which is not specified for some profiles.
9217 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9218 && !this->may_use_v4t_interworking())
9219 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9220 "the target profile does not support BX instruction"));
9222 // Fill in some more dynamic tags.
9223 const Reloc_section
* rel_plt
= (this->plt_
== NULL
9225 : this->plt_
->rel_plt());
9226 layout
->add_target_dynamic_tags(true, this->got_plt_
, rel_plt
,
9227 this->rel_dyn_
, true, false);
9229 // Emit any relocs we saved in an attempt to avoid generating COPY
9231 if (this->copy_relocs_
.any_saved_relocs())
9232 this->copy_relocs_
.emit(this->rel_dyn_section(layout
));
9234 // Handle the .ARM.exidx section.
9235 Output_section
* exidx_section
= layout
->find_output_section(".ARM.exidx");
9237 if (!parameters
->options().relocatable())
9239 if (exidx_section
!= NULL
9240 && exidx_section
->type() == elfcpp::SHT_ARM_EXIDX
)
9242 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9243 // the .ARM.exidx section.
9244 if (!layout
->script_options()->saw_phdrs_clause())
9246 gold_assert(layout
->find_output_segment(elfcpp::PT_ARM_EXIDX
, 0,
9249 Output_segment
* exidx_segment
=
9250 layout
->make_output_segment(elfcpp::PT_ARM_EXIDX
, elfcpp::PF_R
);
9251 exidx_segment
->add_output_section_to_nonload(exidx_section
,
9257 // Create an .ARM.attributes section if we have merged any attributes
9259 if (merged_any_attributes
)
9261 Output_attributes_section_data
* attributes_section
=
9262 new Output_attributes_section_data(*this->attributes_section_data_
);
9263 layout
->add_output_section_data(".ARM.attributes",
9264 elfcpp::SHT_ARM_ATTRIBUTES
, 0,
9265 attributes_section
, ORDER_INVALID
,
9269 // Fix up links in section EXIDX headers.
9270 for (Layout::Section_list::const_iterator p
= layout
->section_list().begin();
9271 p
!= layout
->section_list().end();
9273 if ((*p
)->type() == elfcpp::SHT_ARM_EXIDX
)
9275 Arm_output_section
<big_endian
>* os
=
9276 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
9277 os
->set_exidx_section_link();
9281 // Return whether a direct absolute static relocation needs to be applied.
9282 // In cases where Scan::local() or Scan::global() has created
9283 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9284 // of the relocation is carried in the data, and we must not
9285 // apply the static relocation.
9287 template<bool big_endian
>
9289 Target_arm
<big_endian
>::Relocate::should_apply_static_reloc(
9290 const Sized_symbol
<32>* gsym
,
9291 unsigned int r_type
,
9293 Output_section
* output_section
)
9295 // If the output section is not allocated, then we didn't call
9296 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9298 if ((output_section
->flags() & elfcpp::SHF_ALLOC
) == 0)
9301 int ref_flags
= Scan::get_reference_flags(r_type
);
9303 // For local symbols, we will have created a non-RELATIVE dynamic
9304 // relocation only if (a) the output is position independent,
9305 // (b) the relocation is absolute (not pc- or segment-relative), and
9306 // (c) the relocation is not 32 bits wide.
9308 return !(parameters
->options().output_is_position_independent()
9309 && (ref_flags
& Symbol::ABSOLUTE_REF
)
9312 // For global symbols, we use the same helper routines used in the
9313 // scan pass. If we did not create a dynamic relocation, or if we
9314 // created a RELATIVE dynamic relocation, we should apply the static
9316 bool has_dyn
= gsym
->needs_dynamic_reloc(ref_flags
);
9317 bool is_rel
= (ref_flags
& Symbol::ABSOLUTE_REF
)
9318 && gsym
->can_use_relative_reloc(ref_flags
9319 & Symbol::FUNCTION_CALL
);
9320 return !has_dyn
|| is_rel
;
9323 // Perform a relocation.
9325 template<bool big_endian
>
9327 Target_arm
<big_endian
>::Relocate::relocate(
9328 const Relocate_info
<32, big_endian
>* relinfo
,
9330 Output_section
* output_section
,
9332 const elfcpp::Rel
<32, big_endian
>& rel
,
9333 unsigned int r_type
,
9334 const Sized_symbol
<32>* gsym
,
9335 const Symbol_value
<32>* psymval
,
9336 unsigned char* view
,
9337 Arm_address address
,
9338 section_size_type view_size
)
9343 typedef Arm_relocate_functions
<big_endian
> Arm_relocate_functions
;
9345 r_type
= get_real_reloc_type(r_type
);
9346 const Arm_reloc_property
* reloc_property
=
9347 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
9348 if (reloc_property
== NULL
)
9350 std::string reloc_name
=
9351 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
9352 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
9353 _("cannot relocate %s in object file"),
9354 reloc_name
.c_str());
9358 const Arm_relobj
<big_endian
>* object
=
9359 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
9361 // If the final branch target of a relocation is THUMB instruction, this
9362 // is 1. Otherwise it is 0.
9363 Arm_address thumb_bit
= 0;
9364 Symbol_value
<32> symval
;
9365 bool is_weakly_undefined_without_plt
= false;
9366 bool have_got_offset
= false;
9367 unsigned int got_offset
= 0;
9369 // If the relocation uses the GOT entry of a symbol instead of the symbol
9370 // itself, we don't care about whether the symbol is defined or what kind
9372 if (reloc_property
->uses_got_entry())
9374 // Get the GOT offset.
9375 // The GOT pointer points to the end of the GOT section.
9376 // We need to subtract the size of the GOT section to get
9377 // the actual offset to use in the relocation.
9378 // TODO: We should move GOT offset computing code in TLS relocations
9382 case elfcpp::R_ARM_GOT_BREL
:
9383 case elfcpp::R_ARM_GOT_PREL
:
9386 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
9387 got_offset
= (gsym
->got_offset(GOT_TYPE_STANDARD
)
9388 - target
->got_size());
9392 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9393 gold_assert(object
->local_has_got_offset(r_sym
,
9394 GOT_TYPE_STANDARD
));
9395 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
9396 - target
->got_size());
9398 have_got_offset
= true;
9405 else if (relnum
!= Target_arm
<big_endian
>::fake_relnum_for_stubs
)
9409 // This is a global symbol. Determine if we use PLT and if the
9410 // final target is THUMB.
9411 if (gsym
->use_plt_offset(Scan::get_reference_flags(r_type
)))
9413 // This uses a PLT, change the symbol value.
9414 symval
.set_output_value(target
->plt_address_for_global(gsym
));
9417 else if (gsym
->is_weak_undefined())
9419 // This is a weakly undefined symbol and we do not use PLT
9420 // for this relocation. A branch targeting this symbol will
9421 // be converted into an NOP.
9422 is_weakly_undefined_without_plt
= true;
9424 else if (gsym
->is_undefined() && reloc_property
->uses_symbol())
9426 // This relocation uses the symbol value but the symbol is
9427 // undefined. Exit early and have the caller reporting an
9433 // Set thumb bit if symbol:
9434 // -Has type STT_ARM_TFUNC or
9435 // -Has type STT_FUNC, is defined and with LSB in value set.
9437 (((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
9438 || (gsym
->type() == elfcpp::STT_FUNC
9439 && !gsym
->is_undefined()
9440 && ((psymval
->value(object
, 0) & 1) != 0)))
9447 // This is a local symbol. Determine if the final target is THUMB.
9448 // We saved this information when all the local symbols were read.
9449 elfcpp::Elf_types
<32>::Elf_WXword r_info
= rel
.get_r_info();
9450 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
9451 thumb_bit
= object
->local_symbol_is_thumb_function(r_sym
) ? 1 : 0;
9453 if (psymval
->is_ifunc_symbol() && object
->local_has_plt_offset(r_sym
))
9455 symval
.set_output_value(
9456 target
->plt_address_for_local(object
, r_sym
));
9463 // This is a fake relocation synthesized for a stub. It does not have
9464 // a real symbol. We just look at the LSB of the symbol value to
9465 // determine if the target is THUMB or not.
9466 thumb_bit
= ((psymval
->value(object
, 0) & 1) != 0);
9469 // Strip LSB if this points to a THUMB target.
9471 && reloc_property
->uses_thumb_bit()
9472 && ((psymval
->value(object
, 0) & 1) != 0))
9474 Arm_address stripped_value
=
9475 psymval
->value(object
, 0) & ~static_cast<Arm_address
>(1);
9476 symval
.set_output_value(stripped_value
);
9480 // To look up relocation stubs, we need to pass the symbol table index of
9482 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9484 // Get the addressing origin of the output segment defining the
9485 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9486 Arm_address sym_origin
= 0;
9487 if (reloc_property
->uses_symbol_base())
9489 if (r_type
== elfcpp::R_ARM_BASE_ABS
&& gsym
== NULL
)
9490 // R_ARM_BASE_ABS with the NULL symbol will give the
9491 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9492 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9493 sym_origin
= target
->got_plt_section()->address();
9494 else if (gsym
== NULL
)
9496 else if (gsym
->source() == Symbol::IN_OUTPUT_SEGMENT
)
9497 sym_origin
= gsym
->output_segment()->vaddr();
9498 else if (gsym
->source() == Symbol::IN_OUTPUT_DATA
)
9499 sym_origin
= gsym
->output_data()->address();
9501 // TODO: Assumes the segment base to be zero for the global symbols
9502 // till the proper support for the segment-base-relative addressing
9503 // will be implemented. This is consistent with GNU ld.
9506 // For relative addressing relocation, find out the relative address base.
9507 Arm_address relative_address_base
= 0;
9508 switch(reloc_property
->relative_address_base())
9510 case Arm_reloc_property::RAB_NONE
:
9511 // Relocations with relative address bases RAB_TLS and RAB_tp are
9512 // handled by relocate_tls. So we do not need to do anything here.
9513 case Arm_reloc_property::RAB_TLS
:
9514 case Arm_reloc_property::RAB_tp
:
9516 case Arm_reloc_property::RAB_B_S
:
9517 relative_address_base
= sym_origin
;
9519 case Arm_reloc_property::RAB_GOT_ORG
:
9520 relative_address_base
= target
->got_plt_section()->address();
9522 case Arm_reloc_property::RAB_P
:
9523 relative_address_base
= address
;
9525 case Arm_reloc_property::RAB_Pa
:
9526 relative_address_base
= address
& 0xfffffffcU
;
9532 typename
Arm_relocate_functions::Status reloc_status
=
9533 Arm_relocate_functions::STATUS_OKAY
;
9534 bool check_overflow
= reloc_property
->checks_overflow();
9537 case elfcpp::R_ARM_NONE
:
9540 case elfcpp::R_ARM_ABS8
:
9541 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9542 reloc_status
= Arm_relocate_functions::abs8(view
, object
, psymval
);
9545 case elfcpp::R_ARM_ABS12
:
9546 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9547 reloc_status
= Arm_relocate_functions::abs12(view
, object
, psymval
);
9550 case elfcpp::R_ARM_ABS16
:
9551 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9552 reloc_status
= Arm_relocate_functions::abs16(view
, object
, psymval
);
9555 case elfcpp::R_ARM_ABS32
:
9556 if (should_apply_static_reloc(gsym
, r_type
, true, output_section
))
9557 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
9561 case elfcpp::R_ARM_ABS32_NOI
:
9562 if (should_apply_static_reloc(gsym
, r_type
, true, output_section
))
9563 // No thumb bit for this relocation: (S + A)
9564 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
9568 case elfcpp::R_ARM_MOVW_ABS_NC
:
9569 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9570 reloc_status
= Arm_relocate_functions::movw(view
, object
, psymval
,
9575 case elfcpp::R_ARM_MOVT_ABS
:
9576 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9577 reloc_status
= Arm_relocate_functions::movt(view
, object
, psymval
, 0);
9580 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
9581 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9582 reloc_status
= Arm_relocate_functions::thm_movw(view
, object
, psymval
,
9583 0, thumb_bit
, false);
9586 case elfcpp::R_ARM_THM_MOVT_ABS
:
9587 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9588 reloc_status
= Arm_relocate_functions::thm_movt(view
, object
,
9592 case elfcpp::R_ARM_MOVW_PREL_NC
:
9593 case elfcpp::R_ARM_MOVW_BREL_NC
:
9594 case elfcpp::R_ARM_MOVW_BREL
:
9596 Arm_relocate_functions::movw(view
, object
, psymval
,
9597 relative_address_base
, thumb_bit
,
9601 case elfcpp::R_ARM_MOVT_PREL
:
9602 case elfcpp::R_ARM_MOVT_BREL
:
9604 Arm_relocate_functions::movt(view
, object
, psymval
,
9605 relative_address_base
);
9608 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
9609 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
9610 case elfcpp::R_ARM_THM_MOVW_BREL
:
9612 Arm_relocate_functions::thm_movw(view
, object
, psymval
,
9613 relative_address_base
,
9614 thumb_bit
, check_overflow
);
9617 case elfcpp::R_ARM_THM_MOVT_PREL
:
9618 case elfcpp::R_ARM_THM_MOVT_BREL
:
9620 Arm_relocate_functions::thm_movt(view
, object
, psymval
,
9621 relative_address_base
);
9624 case elfcpp::R_ARM_REL32
:
9625 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
9626 address
, thumb_bit
);
9629 case elfcpp::R_ARM_THM_ABS5
:
9630 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9631 reloc_status
= Arm_relocate_functions::thm_abs5(view
, object
, psymval
);
9634 // Thumb long branches.
9635 case elfcpp::R_ARM_THM_CALL
:
9636 case elfcpp::R_ARM_THM_XPC22
:
9637 case elfcpp::R_ARM_THM_JUMP24
:
9639 Arm_relocate_functions::thumb_branch_common(
9640 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
9641 thumb_bit
, is_weakly_undefined_without_plt
);
9644 case elfcpp::R_ARM_GOTOFF32
:
9646 Arm_address got_origin
;
9647 got_origin
= target
->got_plt_section()->address();
9648 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
9649 got_origin
, thumb_bit
);
9653 case elfcpp::R_ARM_BASE_PREL
:
9654 gold_assert(gsym
!= NULL
);
9656 Arm_relocate_functions::base_prel(view
, sym_origin
, address
);
9659 case elfcpp::R_ARM_BASE_ABS
:
9660 if (should_apply_static_reloc(gsym
, r_type
, false, output_section
))
9661 reloc_status
= Arm_relocate_functions::base_abs(view
, sym_origin
);
9664 case elfcpp::R_ARM_GOT_BREL
:
9665 gold_assert(have_got_offset
);
9666 reloc_status
= Arm_relocate_functions::got_brel(view
, got_offset
);
9669 case elfcpp::R_ARM_GOT_PREL
:
9670 gold_assert(have_got_offset
);
9671 // Get the address origin for GOT PLT, which is allocated right
9672 // after the GOT section, to calculate an absolute address of
9673 // the symbol GOT entry (got_origin + got_offset).
9674 Arm_address got_origin
;
9675 got_origin
= target
->got_plt_section()->address();
9676 reloc_status
= Arm_relocate_functions::got_prel(view
,
9677 got_origin
+ got_offset
,
9681 case elfcpp::R_ARM_PLT32
:
9682 case elfcpp::R_ARM_CALL
:
9683 case elfcpp::R_ARM_JUMP24
:
9684 case elfcpp::R_ARM_XPC25
:
9685 gold_assert(gsym
== NULL
9686 || gsym
->has_plt_offset()
9687 || gsym
->final_value_is_known()
9688 || (gsym
->is_defined()
9689 && !gsym
->is_from_dynobj()
9690 && !gsym
->is_preemptible()));
9692 Arm_relocate_functions::arm_branch_common(
9693 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
9694 thumb_bit
, is_weakly_undefined_without_plt
);
9697 case elfcpp::R_ARM_THM_JUMP19
:
9699 Arm_relocate_functions::thm_jump19(view
, object
, psymval
, address
,
9703 case elfcpp::R_ARM_THM_JUMP6
:
9705 Arm_relocate_functions::thm_jump6(view
, object
, psymval
, address
);
9708 case elfcpp::R_ARM_THM_JUMP8
:
9710 Arm_relocate_functions::thm_jump8(view
, object
, psymval
, address
);
9713 case elfcpp::R_ARM_THM_JUMP11
:
9715 Arm_relocate_functions::thm_jump11(view
, object
, psymval
, address
);
9718 case elfcpp::R_ARM_PREL31
:
9719 reloc_status
= Arm_relocate_functions::prel31(view
, object
, psymval
,
9720 address
, thumb_bit
);
9723 case elfcpp::R_ARM_V4BX
:
9724 if (target
->fix_v4bx() > General_options::FIX_V4BX_NONE
)
9726 const bool is_v4bx_interworking
=
9727 (target
->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
);
9729 Arm_relocate_functions::v4bx(relinfo
, view
, object
, address
,
9730 is_v4bx_interworking
);
9734 case elfcpp::R_ARM_THM_PC8
:
9736 Arm_relocate_functions::thm_pc8(view
, object
, psymval
, address
);
9739 case elfcpp::R_ARM_THM_PC12
:
9741 Arm_relocate_functions::thm_pc12(view
, object
, psymval
, address
);
9744 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
9746 Arm_relocate_functions::thm_alu11(view
, object
, psymval
, address
,
9750 case elfcpp::R_ARM_ALU_PC_G0_NC
:
9751 case elfcpp::R_ARM_ALU_PC_G0
:
9752 case elfcpp::R_ARM_ALU_PC_G1_NC
:
9753 case elfcpp::R_ARM_ALU_PC_G1
:
9754 case elfcpp::R_ARM_ALU_PC_G2
:
9755 case elfcpp::R_ARM_ALU_SB_G0_NC
:
9756 case elfcpp::R_ARM_ALU_SB_G0
:
9757 case elfcpp::R_ARM_ALU_SB_G1_NC
:
9758 case elfcpp::R_ARM_ALU_SB_G1
:
9759 case elfcpp::R_ARM_ALU_SB_G2
:
9761 Arm_relocate_functions::arm_grp_alu(view
, object
, psymval
,
9762 reloc_property
->group_index(),
9763 relative_address_base
,
9764 thumb_bit
, check_overflow
);
9767 case elfcpp::R_ARM_LDR_PC_G0
:
9768 case elfcpp::R_ARM_LDR_PC_G1
:
9769 case elfcpp::R_ARM_LDR_PC_G2
:
9770 case elfcpp::R_ARM_LDR_SB_G0
:
9771 case elfcpp::R_ARM_LDR_SB_G1
:
9772 case elfcpp::R_ARM_LDR_SB_G2
:
9774 Arm_relocate_functions::arm_grp_ldr(view
, object
, psymval
,
9775 reloc_property
->group_index(),
9776 relative_address_base
);
9779 case elfcpp::R_ARM_LDRS_PC_G0
:
9780 case elfcpp::R_ARM_LDRS_PC_G1
:
9781 case elfcpp::R_ARM_LDRS_PC_G2
:
9782 case elfcpp::R_ARM_LDRS_SB_G0
:
9783 case elfcpp::R_ARM_LDRS_SB_G1
:
9784 case elfcpp::R_ARM_LDRS_SB_G2
:
9786 Arm_relocate_functions::arm_grp_ldrs(view
, object
, psymval
,
9787 reloc_property
->group_index(),
9788 relative_address_base
);
9791 case elfcpp::R_ARM_LDC_PC_G0
:
9792 case elfcpp::R_ARM_LDC_PC_G1
:
9793 case elfcpp::R_ARM_LDC_PC_G2
:
9794 case elfcpp::R_ARM_LDC_SB_G0
:
9795 case elfcpp::R_ARM_LDC_SB_G1
:
9796 case elfcpp::R_ARM_LDC_SB_G2
:
9798 Arm_relocate_functions::arm_grp_ldc(view
, object
, psymval
,
9799 reloc_property
->group_index(),
9800 relative_address_base
);
9803 // These are initial tls relocs, which are expected when
9805 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
9806 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
9807 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
9808 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
9809 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
9811 this->relocate_tls(relinfo
, target
, relnum
, rel
, r_type
, gsym
, psymval
,
9812 view
, address
, view_size
);
9815 // The known and unknown unsupported and/or deprecated relocations.
9816 case elfcpp::R_ARM_PC24
:
9817 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
9818 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
9819 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
9821 // Just silently leave the method. We should get an appropriate error
9822 // message in the scan methods.
9826 // Report any errors.
9827 switch (reloc_status
)
9829 case Arm_relocate_functions::STATUS_OKAY
:
9831 case Arm_relocate_functions::STATUS_OVERFLOW
:
9832 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
9833 _("relocation overflow in %s"),
9834 reloc_property
->name().c_str());
9836 case Arm_relocate_functions::STATUS_BAD_RELOC
:
9837 gold_error_at_location(
9841 _("unexpected opcode while processing relocation %s"),
9842 reloc_property
->name().c_str());
9851 // Perform a TLS relocation.
9853 template<bool big_endian
>
9854 inline typename Arm_relocate_functions
<big_endian
>::Status
9855 Target_arm
<big_endian
>::Relocate::relocate_tls(
9856 const Relocate_info
<32, big_endian
>* relinfo
,
9857 Target_arm
<big_endian
>* target
,
9859 const elfcpp::Rel
<32, big_endian
>& rel
,
9860 unsigned int r_type
,
9861 const Sized_symbol
<32>* gsym
,
9862 const Symbol_value
<32>* psymval
,
9863 unsigned char* view
,
9864 elfcpp::Elf_types
<32>::Elf_Addr address
,
9865 section_size_type
/*view_size*/ )
9867 typedef Arm_relocate_functions
<big_endian
> ArmRelocFuncs
;
9868 typedef Relocate_functions
<32, big_endian
> RelocFuncs
;
9869 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
9871 const Sized_relobj_file
<32, big_endian
>* object
= relinfo
->object
;
9873 elfcpp::Elf_types
<32>::Elf_Addr value
= psymval
->value(object
, 0);
9875 const bool is_final
= (gsym
== NULL
9876 ? !parameters
->options().shared()
9877 : gsym
->final_value_is_known());
9878 const tls::Tls_optimization optimized_type
9879 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
9882 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
9884 unsigned int got_type
= GOT_TYPE_TLS_PAIR
;
9885 unsigned int got_offset
;
9888 gold_assert(gsym
->has_got_offset(got_type
));
9889 got_offset
= gsym
->got_offset(got_type
) - target
->got_size();
9893 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9894 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
9895 got_offset
= (object
->local_got_offset(r_sym
, got_type
)
9896 - target
->got_size());
9898 if (optimized_type
== tls::TLSOPT_NONE
)
9900 Arm_address got_entry
=
9901 target
->got_plt_section()->address() + got_offset
;
9903 // Relocate the field with the PC relative offset of the pair of
9905 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9906 return ArmRelocFuncs::STATUS_OKAY
;
9911 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
9912 if (optimized_type
== tls::TLSOPT_NONE
)
9914 // Relocate the field with the offset of the GOT entry for
9915 // the module index.
9916 unsigned int got_offset
;
9917 got_offset
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
)
9918 - target
->got_size());
9919 Arm_address got_entry
=
9920 target
->got_plt_section()->address() + got_offset
;
9922 // Relocate the field with the PC relative offset of the pair of
9924 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9925 return ArmRelocFuncs::STATUS_OKAY
;
9929 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
9930 RelocFuncs::rel32_unaligned(view
, value
);
9931 return ArmRelocFuncs::STATUS_OKAY
;
9933 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
9934 if (optimized_type
== tls::TLSOPT_NONE
)
9936 // Relocate the field with the offset of the GOT entry for
9937 // the tp-relative offset of the symbol.
9938 unsigned int got_type
= GOT_TYPE_TLS_OFFSET
;
9939 unsigned int got_offset
;
9942 gold_assert(gsym
->has_got_offset(got_type
));
9943 got_offset
= gsym
->got_offset(got_type
);
9947 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
9948 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
9949 got_offset
= object
->local_got_offset(r_sym
, got_type
);
9952 // All GOT offsets are relative to the end of the GOT.
9953 got_offset
-= target
->got_size();
9955 Arm_address got_entry
=
9956 target
->got_plt_section()->address() + got_offset
;
9958 // Relocate the field with the PC relative offset of the GOT entry.
9959 RelocFuncs::pcrel32_unaligned(view
, got_entry
, address
);
9960 return ArmRelocFuncs::STATUS_OKAY
;
9964 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
9965 // If we're creating a shared library, a dynamic relocation will
9966 // have been created for this location, so do not apply it now.
9967 if (!parameters
->options().shared())
9969 gold_assert(tls_segment
!= NULL
);
9971 // $tp points to the TCB, which is followed by the TLS, so we
9972 // need to add TCB size to the offset.
9973 Arm_address aligned_tcb_size
=
9974 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
9975 RelocFuncs::rel32_unaligned(view
, value
+ aligned_tcb_size
);
9978 return ArmRelocFuncs::STATUS_OKAY
;
9984 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
9985 _("unsupported reloc %u"),
9987 return ArmRelocFuncs::STATUS_BAD_RELOC
;
9990 // Relocate section data.
9992 template<bool big_endian
>
9994 Target_arm
<big_endian
>::relocate_section(
9995 const Relocate_info
<32, big_endian
>* relinfo
,
9996 unsigned int sh_type
,
9997 const unsigned char* prelocs
,
9999 Output_section
* output_section
,
10000 bool needs_special_offset_handling
,
10001 unsigned char* view
,
10002 Arm_address address
,
10003 section_size_type view_size
,
10004 const Reloc_symbol_changes
* reloc_symbol_changes
)
10006 typedef typename Target_arm
<big_endian
>::Relocate Arm_relocate
;
10007 gold_assert(sh_type
== elfcpp::SHT_REL
);
10009 // See if we are relocating a relaxed input section. If so, the view
10010 // covers the whole output section and we need to adjust accordingly.
10011 if (needs_special_offset_handling
)
10013 const Output_relaxed_input_section
* poris
=
10014 output_section
->find_relaxed_input_section(relinfo
->object
,
10015 relinfo
->data_shndx
);
10018 Arm_address section_address
= poris
->address();
10019 section_size_type section_size
= poris
->data_size();
10021 gold_assert((section_address
>= address
)
10022 && ((section_address
+ section_size
)
10023 <= (address
+ view_size
)));
10025 off_t offset
= section_address
- address
;
10028 view_size
= section_size
;
10032 gold::relocate_section
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
,
10033 Arm_relocate
, gold::Default_comdat_behavior
>(
10039 needs_special_offset_handling
,
10043 reloc_symbol_changes
);
10046 // Return the size of a relocation while scanning during a relocatable
10049 template<bool big_endian
>
10051 Target_arm
<big_endian
>::Relocatable_size_for_reloc::get_size_for_reloc(
10052 unsigned int r_type
,
10055 r_type
= get_real_reloc_type(r_type
);
10056 const Arm_reloc_property
* arp
=
10057 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
10059 return arp
->size();
10062 std::string reloc_name
=
10063 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
10064 gold_error(_("%s: unexpected %s in object file"),
10065 object
->name().c_str(), reloc_name
.c_str());
10070 // Scan the relocs during a relocatable link.
10072 template<bool big_endian
>
10074 Target_arm
<big_endian
>::scan_relocatable_relocs(
10075 Symbol_table
* symtab
,
10077 Sized_relobj_file
<32, big_endian
>* object
,
10078 unsigned int data_shndx
,
10079 unsigned int sh_type
,
10080 const unsigned char* prelocs
,
10081 size_t reloc_count
,
10082 Output_section
* output_section
,
10083 bool needs_special_offset_handling
,
10084 size_t local_symbol_count
,
10085 const unsigned char* plocal_symbols
,
10086 Relocatable_relocs
* rr
)
10088 gold_assert(sh_type
== elfcpp::SHT_REL
);
10090 typedef Arm_scan_relocatable_relocs
<big_endian
, elfcpp::SHT_REL
,
10091 Relocatable_size_for_reloc
> Scan_relocatable_relocs
;
10093 gold::scan_relocatable_relocs
<32, big_endian
, elfcpp::SHT_REL
,
10094 Scan_relocatable_relocs
>(
10102 needs_special_offset_handling
,
10103 local_symbol_count
,
10108 // Emit relocations for a section.
10110 template<bool big_endian
>
10112 Target_arm
<big_endian
>::relocate_relocs(
10113 const Relocate_info
<32, big_endian
>* relinfo
,
10114 unsigned int sh_type
,
10115 const unsigned char* prelocs
,
10116 size_t reloc_count
,
10117 Output_section
* output_section
,
10118 typename
elfcpp::Elf_types
<32>::Elf_Off offset_in_output_section
,
10119 const Relocatable_relocs
* rr
,
10120 unsigned char* view
,
10121 Arm_address view_address
,
10122 section_size_type view_size
,
10123 unsigned char* reloc_view
,
10124 section_size_type reloc_view_size
)
10126 gold_assert(sh_type
== elfcpp::SHT_REL
);
10128 gold::relocate_relocs
<32, big_endian
, elfcpp::SHT_REL
>(
10133 offset_in_output_section
,
10142 // Perform target-specific processing in a relocatable link. This is
10143 // only used if we use the relocation strategy RELOC_SPECIAL.
10145 template<bool big_endian
>
10147 Target_arm
<big_endian
>::relocate_special_relocatable(
10148 const Relocate_info
<32, big_endian
>* relinfo
,
10149 unsigned int sh_type
,
10150 const unsigned char* preloc_in
,
10152 Output_section
* output_section
,
10153 typename
elfcpp::Elf_types
<32>::Elf_Off offset_in_output_section
,
10154 unsigned char* view
,
10155 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
10157 unsigned char* preloc_out
)
10159 // We can only handle REL type relocation sections.
10160 gold_assert(sh_type
== elfcpp::SHT_REL
);
10162 typedef typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc Reltype
;
10163 typedef typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc_write
10165 const Arm_address invalid_address
= static_cast<Arm_address
>(0) - 1;
10167 const Arm_relobj
<big_endian
>* object
=
10168 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
10169 const unsigned int local_count
= object
->local_symbol_count();
10171 Reltype
reloc(preloc_in
);
10172 Reltype_write
reloc_write(preloc_out
);
10174 elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
10175 const unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
10176 const unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
10178 const Arm_reloc_property
* arp
=
10179 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
10180 gold_assert(arp
!= NULL
);
10182 // Get the new symbol index.
10183 // We only use RELOC_SPECIAL strategy in local relocations.
10184 gold_assert(r_sym
< local_count
);
10186 // We are adjusting a section symbol. We need to find
10187 // the symbol table index of the section symbol for
10188 // the output section corresponding to input section
10189 // in which this symbol is defined.
10191 unsigned int shndx
= object
->local_symbol_input_shndx(r_sym
, &is_ordinary
);
10192 gold_assert(is_ordinary
);
10193 Output_section
* os
= object
->output_section(shndx
);
10194 gold_assert(os
!= NULL
);
10195 gold_assert(os
->needs_symtab_index());
10196 unsigned int new_symndx
= os
->symtab_index();
10198 // Get the new offset--the location in the output section where
10199 // this relocation should be applied.
10201 Arm_address offset
= reloc
.get_r_offset();
10202 Arm_address new_offset
;
10203 if (offset_in_output_section
!= invalid_address
)
10204 new_offset
= offset
+ offset_in_output_section
;
10207 section_offset_type sot_offset
=
10208 convert_types
<section_offset_type
, Arm_address
>(offset
);
10209 section_offset_type new_sot_offset
=
10210 output_section
->output_offset(object
, relinfo
->data_shndx
,
10212 gold_assert(new_sot_offset
!= -1);
10213 new_offset
= new_sot_offset
;
10216 // In an object file, r_offset is an offset within the section.
10217 // In an executable or dynamic object, generated by
10218 // --emit-relocs, r_offset is an absolute address.
10219 if (!parameters
->options().relocatable())
10221 new_offset
+= view_address
;
10222 if (offset_in_output_section
!= invalid_address
)
10223 new_offset
-= offset_in_output_section
;
10226 reloc_write
.put_r_offset(new_offset
);
10227 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(new_symndx
, r_type
));
10229 // Handle the reloc addend.
10230 // The relocation uses a section symbol in the input file.
10231 // We are adjusting it to use a section symbol in the output
10232 // file. The input section symbol refers to some address in
10233 // the input section. We need the relocation in the output
10234 // file to refer to that same address. This adjustment to
10235 // the addend is the same calculation we use for a simple
10236 // absolute relocation for the input section symbol.
10238 const Symbol_value
<32>* psymval
= object
->local_symbol(r_sym
);
10240 // Handle THUMB bit.
10241 Symbol_value
<32> symval
;
10242 Arm_address thumb_bit
=
10243 object
->local_symbol_is_thumb_function(r_sym
) ? 1 : 0;
10245 && arp
->uses_thumb_bit()
10246 && ((psymval
->value(object
, 0) & 1) != 0))
10248 Arm_address stripped_value
=
10249 psymval
->value(object
, 0) & ~static_cast<Arm_address
>(1);
10250 symval
.set_output_value(stripped_value
);
10254 unsigned char* paddend
= view
+ offset
;
10255 typename Arm_relocate_functions
<big_endian
>::Status reloc_status
=
10256 Arm_relocate_functions
<big_endian
>::STATUS_OKAY
;
10259 case elfcpp::R_ARM_ABS8
:
10260 reloc_status
= Arm_relocate_functions
<big_endian
>::abs8(paddend
, object
,
10264 case elfcpp::R_ARM_ABS12
:
10265 reloc_status
= Arm_relocate_functions
<big_endian
>::abs12(paddend
, object
,
10269 case elfcpp::R_ARM_ABS16
:
10270 reloc_status
= Arm_relocate_functions
<big_endian
>::abs16(paddend
, object
,
10274 case elfcpp::R_ARM_THM_ABS5
:
10275 reloc_status
= Arm_relocate_functions
<big_endian
>::thm_abs5(paddend
,
10280 case elfcpp::R_ARM_MOVW_ABS_NC
:
10281 case elfcpp::R_ARM_MOVW_PREL_NC
:
10282 case elfcpp::R_ARM_MOVW_BREL_NC
:
10283 case elfcpp::R_ARM_MOVW_BREL
:
10284 reloc_status
= Arm_relocate_functions
<big_endian
>::movw(
10285 paddend
, object
, psymval
, 0, thumb_bit
, arp
->checks_overflow());
10288 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
10289 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
10290 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
10291 case elfcpp::R_ARM_THM_MOVW_BREL
:
10292 reloc_status
= Arm_relocate_functions
<big_endian
>::thm_movw(
10293 paddend
, object
, psymval
, 0, thumb_bit
, arp
->checks_overflow());
10296 case elfcpp::R_ARM_THM_CALL
:
10297 case elfcpp::R_ARM_THM_XPC22
:
10298 case elfcpp::R_ARM_THM_JUMP24
:
10300 Arm_relocate_functions
<big_endian
>::thumb_branch_common(
10301 r_type
, relinfo
, paddend
, NULL
, object
, 0, psymval
, 0, thumb_bit
,
10305 case elfcpp::R_ARM_PLT32
:
10306 case elfcpp::R_ARM_CALL
:
10307 case elfcpp::R_ARM_JUMP24
:
10308 case elfcpp::R_ARM_XPC25
:
10310 Arm_relocate_functions
<big_endian
>::arm_branch_common(
10311 r_type
, relinfo
, paddend
, NULL
, object
, 0, psymval
, 0, thumb_bit
,
10315 case elfcpp::R_ARM_THM_JUMP19
:
10317 Arm_relocate_functions
<big_endian
>::thm_jump19(paddend
, object
,
10318 psymval
, 0, thumb_bit
);
10321 case elfcpp::R_ARM_THM_JUMP6
:
10323 Arm_relocate_functions
<big_endian
>::thm_jump6(paddend
, object
, psymval
,
10327 case elfcpp::R_ARM_THM_JUMP8
:
10329 Arm_relocate_functions
<big_endian
>::thm_jump8(paddend
, object
, psymval
,
10333 case elfcpp::R_ARM_THM_JUMP11
:
10335 Arm_relocate_functions
<big_endian
>::thm_jump11(paddend
, object
, psymval
,
10339 case elfcpp::R_ARM_PREL31
:
10341 Arm_relocate_functions
<big_endian
>::prel31(paddend
, object
, psymval
, 0,
10345 case elfcpp::R_ARM_THM_PC8
:
10347 Arm_relocate_functions
<big_endian
>::thm_pc8(paddend
, object
, psymval
,
10351 case elfcpp::R_ARM_THM_PC12
:
10353 Arm_relocate_functions
<big_endian
>::thm_pc12(paddend
, object
, psymval
,
10357 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
10359 Arm_relocate_functions
<big_endian
>::thm_alu11(paddend
, object
, psymval
,
10363 // These relocation truncate relocation results so we cannot handle them
10364 // in a relocatable link.
10365 case elfcpp::R_ARM_MOVT_ABS
:
10366 case elfcpp::R_ARM_THM_MOVT_ABS
:
10367 case elfcpp::R_ARM_MOVT_PREL
:
10368 case elfcpp::R_ARM_MOVT_BREL
:
10369 case elfcpp::R_ARM_THM_MOVT_PREL
:
10370 case elfcpp::R_ARM_THM_MOVT_BREL
:
10371 case elfcpp::R_ARM_ALU_PC_G0_NC
:
10372 case elfcpp::R_ARM_ALU_PC_G0
:
10373 case elfcpp::R_ARM_ALU_PC_G1_NC
:
10374 case elfcpp::R_ARM_ALU_PC_G1
:
10375 case elfcpp::R_ARM_ALU_PC_G2
:
10376 case elfcpp::R_ARM_ALU_SB_G0_NC
:
10377 case elfcpp::R_ARM_ALU_SB_G0
:
10378 case elfcpp::R_ARM_ALU_SB_G1_NC
:
10379 case elfcpp::R_ARM_ALU_SB_G1
:
10380 case elfcpp::R_ARM_ALU_SB_G2
:
10381 case elfcpp::R_ARM_LDR_PC_G0
:
10382 case elfcpp::R_ARM_LDR_PC_G1
:
10383 case elfcpp::R_ARM_LDR_PC_G2
:
10384 case elfcpp::R_ARM_LDR_SB_G0
:
10385 case elfcpp::R_ARM_LDR_SB_G1
:
10386 case elfcpp::R_ARM_LDR_SB_G2
:
10387 case elfcpp::R_ARM_LDRS_PC_G0
:
10388 case elfcpp::R_ARM_LDRS_PC_G1
:
10389 case elfcpp::R_ARM_LDRS_PC_G2
:
10390 case elfcpp::R_ARM_LDRS_SB_G0
:
10391 case elfcpp::R_ARM_LDRS_SB_G1
:
10392 case elfcpp::R_ARM_LDRS_SB_G2
:
10393 case elfcpp::R_ARM_LDC_PC_G0
:
10394 case elfcpp::R_ARM_LDC_PC_G1
:
10395 case elfcpp::R_ARM_LDC_PC_G2
:
10396 case elfcpp::R_ARM_LDC_SB_G0
:
10397 case elfcpp::R_ARM_LDC_SB_G1
:
10398 case elfcpp::R_ARM_LDC_SB_G2
:
10399 gold_error(_("cannot handle %s in a relocatable link"),
10400 arp
->name().c_str());
10404 gold_unreachable();
10407 // Report any errors.
10408 switch (reloc_status
)
10410 case Arm_relocate_functions
<big_endian
>::STATUS_OKAY
:
10412 case Arm_relocate_functions
<big_endian
>::STATUS_OVERFLOW
:
10413 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
10414 _("relocation overflow in %s"),
10415 arp
->name().c_str());
10417 case Arm_relocate_functions
<big_endian
>::STATUS_BAD_RELOC
:
10418 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
10419 _("unexpected opcode while processing relocation %s"),
10420 arp
->name().c_str());
10423 gold_unreachable();
10427 // Return the value to use for a dynamic symbol which requires special
10428 // treatment. This is how we support equality comparisons of function
10429 // pointers across shared library boundaries, as described in the
10430 // processor specific ABI supplement.
10432 template<bool big_endian
>
10434 Target_arm
<big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
10436 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
10437 return this->plt_address_for_global(gsym
);
10440 // Map platform-specific relocs to real relocs
10442 template<bool big_endian
>
10444 Target_arm
<big_endian
>::get_real_reloc_type(unsigned int r_type
)
10448 case elfcpp::R_ARM_TARGET1
:
10449 // This is either R_ARM_ABS32 or R_ARM_REL32;
10450 return elfcpp::R_ARM_ABS32
;
10452 case elfcpp::R_ARM_TARGET2
:
10453 // This can be any reloc type but usually is R_ARM_GOT_PREL
10454 return elfcpp::R_ARM_GOT_PREL
;
10461 // Whether if two EABI versions V1 and V2 are compatible.
10463 template<bool big_endian
>
10465 Target_arm
<big_endian
>::are_eabi_versions_compatible(
10466 elfcpp::Elf_Word v1
,
10467 elfcpp::Elf_Word v2
)
10469 // v4 and v5 are the same spec before and after it was released,
10470 // so allow mixing them.
10471 if ((v1
== elfcpp::EF_ARM_EABI_UNKNOWN
|| v2
== elfcpp::EF_ARM_EABI_UNKNOWN
)
10472 || (v1
== elfcpp::EF_ARM_EABI_VER4
&& v2
== elfcpp::EF_ARM_EABI_VER5
)
10473 || (v1
== elfcpp::EF_ARM_EABI_VER5
&& v2
== elfcpp::EF_ARM_EABI_VER4
))
10479 // Combine FLAGS from an input object called NAME and the processor-specific
10480 // flags in the ELF header of the output. Much of this is adapted from the
10481 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10482 // in bfd/elf32-arm.c.
10484 template<bool big_endian
>
10486 Target_arm
<big_endian
>::merge_processor_specific_flags(
10487 const std::string
& name
,
10488 elfcpp::Elf_Word flags
)
10490 if (this->are_processor_specific_flags_set())
10492 elfcpp::Elf_Word out_flags
= this->processor_specific_flags();
10494 // Nothing to merge if flags equal to those in output.
10495 if (flags
== out_flags
)
10498 // Complain about various flag mismatches.
10499 elfcpp::Elf_Word version1
= elfcpp::arm_eabi_version(flags
);
10500 elfcpp::Elf_Word version2
= elfcpp::arm_eabi_version(out_flags
);
10501 if (!this->are_eabi_versions_compatible(version1
, version2
)
10502 && parameters
->options().warn_mismatch())
10503 gold_error(_("Source object %s has EABI version %d but output has "
10504 "EABI version %d."),
10506 (flags
& elfcpp::EF_ARM_EABIMASK
) >> 24,
10507 (out_flags
& elfcpp::EF_ARM_EABIMASK
) >> 24);
10511 // If the input is the default architecture and had the default
10512 // flags then do not bother setting the flags for the output
10513 // architecture, instead allow future merges to do this. If no
10514 // future merges ever set these flags then they will retain their
10515 // uninitialised values, which surprise surprise, correspond
10516 // to the default values.
10520 // This is the first time, just copy the flags.
10521 // We only copy the EABI version for now.
10522 this->set_processor_specific_flags(flags
& elfcpp::EF_ARM_EABIMASK
);
10526 // Adjust ELF file header.
10527 template<bool big_endian
>
10529 Target_arm
<big_endian
>::do_adjust_elf_header(
10530 unsigned char* view
,
10533 gold_assert(len
== elfcpp::Elf_sizes
<32>::ehdr_size
);
10535 elfcpp::Ehdr
<32, big_endian
> ehdr(view
);
10536 elfcpp::Elf_Word flags
= this->processor_specific_flags();
10537 unsigned char e_ident
[elfcpp::EI_NIDENT
];
10538 memcpy(e_ident
, ehdr
.get_e_ident(), elfcpp::EI_NIDENT
);
10540 if (elfcpp::arm_eabi_version(flags
)
10541 == elfcpp::EF_ARM_EABI_UNKNOWN
)
10542 e_ident
[elfcpp::EI_OSABI
] = elfcpp::ELFOSABI_ARM
;
10544 e_ident
[elfcpp::EI_OSABI
] = 0;
10545 e_ident
[elfcpp::EI_ABIVERSION
] = 0;
10547 // FIXME: Do EF_ARM_BE8 adjustment.
10549 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10551 if (elfcpp::arm_eabi_version(flags
) == elfcpp::EF_ARM_EABI_VER5
)
10553 elfcpp::Elf_Half type
= ehdr
.get_e_type();
10554 if (type
== elfcpp::ET_EXEC
|| type
== elfcpp::ET_DYN
)
10556 Object_attribute
* attr
= this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args
);
10557 if (attr
->int_value() == elfcpp::AEABI_VFP_args_vfp
)
10558 flags
|= elfcpp::EF_ARM_ABI_FLOAT_HARD
;
10560 flags
|= elfcpp::EF_ARM_ABI_FLOAT_SOFT
;
10561 this->set_processor_specific_flags(flags
);
10564 elfcpp::Ehdr_write
<32, big_endian
> oehdr(view
);
10565 oehdr
.put_e_ident(e_ident
);
10568 // do_make_elf_object to override the same function in the base class.
10569 // We need to use a target-specific sub-class of
10570 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10571 // Hence we need to have our own ELF object creation.
10573 template<bool big_endian
>
10575 Target_arm
<big_endian
>::do_make_elf_object(
10576 const std::string
& name
,
10577 Input_file
* input_file
,
10578 off_t offset
, const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
10580 int et
= ehdr
.get_e_type();
10581 // ET_EXEC files are valid input for --just-symbols/-R,
10582 // and we treat them as relocatable objects.
10583 if (et
== elfcpp::ET_REL
10584 || (et
== elfcpp::ET_EXEC
&& input_file
->just_symbols()))
10586 Arm_relobj
<big_endian
>* obj
=
10587 new Arm_relobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
10591 else if (et
== elfcpp::ET_DYN
)
10593 Sized_dynobj
<32, big_endian
>* obj
=
10594 new Arm_dynobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
10600 gold_error(_("%s: unsupported ELF file type %d"),
10606 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10607 // Returns -1 if no architecture could be read.
10608 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10610 template<bool big_endian
>
10612 Target_arm
<big_endian
>::get_secondary_compatible_arch(
10613 const Attributes_section_data
* pasd
)
10615 const Object_attribute
* known_attributes
=
10616 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
10618 // Note: the tag and its argument below are uleb128 values, though
10619 // currently-defined values fit in one byte for each.
10620 const std::string
& sv
=
10621 known_attributes
[elfcpp::Tag_also_compatible_with
].string_value();
10623 && sv
.data()[0] == elfcpp::Tag_CPU_arch
10624 && (sv
.data()[1] & 128) != 128)
10625 return sv
.data()[1];
10627 // This tag is "safely ignorable", so don't complain if it looks funny.
10631 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10632 // The tag is removed if ARCH is -1.
10633 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10635 template<bool big_endian
>
10637 Target_arm
<big_endian
>::set_secondary_compatible_arch(
10638 Attributes_section_data
* pasd
,
10641 Object_attribute
* known_attributes
=
10642 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
10646 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value("");
10650 // Note: the tag and its argument below are uleb128 values, though
10651 // currently-defined values fit in one byte for each.
10653 sv
[0] = elfcpp::Tag_CPU_arch
;
10654 gold_assert(arch
!= 0);
10658 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value(sv
);
10661 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10663 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10665 template<bool big_endian
>
10667 Target_arm
<big_endian
>::tag_cpu_arch_combine(
10670 int* secondary_compat_out
,
10672 int secondary_compat
)
10674 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10675 static const int v6t2
[] =
10677 T(V6T2
), // PRE_V4.
10687 static const int v6k
[] =
10700 static const int v7
[] =
10714 static const int v6_m
[] =
10729 static const int v6s_m
[] =
10745 static const int v7e_m
[] =
10752 T(V7E_M
), // V5TEJ.
10759 T(V7E_M
), // V6S_M.
10762 static const int v8
[] =
10780 static const int v4t_plus_v6_m
[] =
10787 T(V5TEJ
), // V5TEJ.
10794 T(V6S_M
), // V6S_M.
10795 T(V7E_M
), // V7E_M.
10797 T(V4T_PLUS_V6_M
) // V4T plus V6_M.
10799 static const int* comb
[] =
10808 // Pseudo-architecture.
10812 // Check we've not got a higher architecture than we know about.
10814 if (oldtag
> elfcpp::MAX_TAG_CPU_ARCH
|| newtag
> elfcpp::MAX_TAG_CPU_ARCH
)
10816 gold_error(_("%s: unknown CPU architecture"), name
);
10820 // Override old tag if we have a Tag_also_compatible_with on the output.
10822 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
10823 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
10824 oldtag
= T(V4T_PLUS_V6_M
);
10826 // And override the new tag if we have a Tag_also_compatible_with on the
10829 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
10830 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
10831 newtag
= T(V4T_PLUS_V6_M
);
10833 // Architectures before V6KZ add features monotonically.
10834 int tagh
= std::max(oldtag
, newtag
);
10835 if (tagh
<= elfcpp::TAG_CPU_ARCH_V6KZ
)
10838 int tagl
= std::min(oldtag
, newtag
);
10839 int result
= comb
[tagh
- T(V6T2
)][tagl
];
10841 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10842 // as the canonical version.
10843 if (result
== T(V4T_PLUS_V6_M
))
10846 *secondary_compat_out
= T(V6_M
);
10849 *secondary_compat_out
= -1;
10853 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10854 name
, oldtag
, newtag
);
10862 // Helper to print AEABI enum tag value.
10864 template<bool big_endian
>
10866 Target_arm
<big_endian
>::aeabi_enum_name(unsigned int value
)
10868 static const char* aeabi_enum_names
[] =
10869 { "", "variable-size", "32-bit", "" };
10870 const size_t aeabi_enum_names_size
=
10871 sizeof(aeabi_enum_names
) / sizeof(aeabi_enum_names
[0]);
10873 if (value
< aeabi_enum_names_size
)
10874 return std::string(aeabi_enum_names
[value
]);
10878 sprintf(buffer
, "<unknown value %u>", value
);
10879 return std::string(buffer
);
10883 // Return the string value to store in TAG_CPU_name.
10885 template<bool big_endian
>
10887 Target_arm
<big_endian
>::tag_cpu_name_value(unsigned int value
)
10889 static const char* name_table
[] = {
10890 // These aren't real CPU names, but we can't guess
10891 // that from the architecture version alone.
10908 const size_t name_table_size
= sizeof(name_table
) / sizeof(name_table
[0]);
10910 if (value
< name_table_size
)
10911 return std::string(name_table
[value
]);
10915 sprintf(buffer
, "<unknown CPU value %u>", value
);
10916 return std::string(buffer
);
10920 // Query attributes object to see if integer divide instructions may be
10921 // present in an object.
10923 template<bool big_endian
>
10925 Target_arm
<big_endian
>::attributes_accept_div(int arch
, int profile
,
10926 const Object_attribute
* div_attr
)
10928 switch (div_attr
->int_value())
10931 // Integer divide allowed if instruction contained in
10933 if (arch
== elfcpp::TAG_CPU_ARCH_V7
&& (profile
== 'R' || profile
== 'M'))
10935 else if (arch
>= elfcpp::TAG_CPU_ARCH_V7E_M
)
10941 // Integer divide explicitly prohibited.
10945 // Unrecognised case - treat as allowing divide everywhere.
10947 // Integer divide allowed in ARM state.
10952 // Query attributes object to see if integer divide instructions are
10953 // forbidden to be in the object. This is not the inverse of
10954 // attributes_accept_div.
10956 template<bool big_endian
>
10958 Target_arm
<big_endian
>::attributes_forbid_div(const Object_attribute
* div_attr
)
10960 return div_attr
->int_value() == 1;
10963 // Merge object attributes from input file called NAME with those of the
10964 // output. The input object attributes are in the object pointed by PASD.
10966 template<bool big_endian
>
10968 Target_arm
<big_endian
>::merge_object_attributes(
10970 const Attributes_section_data
* pasd
)
10972 // Return if there is no attributes section data.
10976 // If output has no object attributes, just copy.
10977 const int vendor
= Object_attribute::OBJ_ATTR_PROC
;
10978 if (this->attributes_section_data_
== NULL
)
10980 this->attributes_section_data_
= new Attributes_section_data(*pasd
);
10981 Object_attribute
* out_attr
=
10982 this->attributes_section_data_
->known_attributes(vendor
);
10984 // We do not output objects with Tag_MPextension_use_legacy - we move
10985 // the attribute's value to Tag_MPextension_use. */
10986 if (out_attr
[elfcpp::Tag_MPextension_use_legacy
].int_value() != 0)
10988 if (out_attr
[elfcpp::Tag_MPextension_use
].int_value() != 0
10989 && out_attr
[elfcpp::Tag_MPextension_use_legacy
].int_value()
10990 != out_attr
[elfcpp::Tag_MPextension_use
].int_value())
10992 gold_error(_("%s has both the current and legacy "
10993 "Tag_MPextension_use attributes"),
10997 out_attr
[elfcpp::Tag_MPextension_use
] =
10998 out_attr
[elfcpp::Tag_MPextension_use_legacy
];
10999 out_attr
[elfcpp::Tag_MPextension_use_legacy
].set_type(0);
11000 out_attr
[elfcpp::Tag_MPextension_use_legacy
].set_int_value(0);
11006 const Object_attribute
* in_attr
= pasd
->known_attributes(vendor
);
11007 Object_attribute
* out_attr
=
11008 this->attributes_section_data_
->known_attributes(vendor
);
11010 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11011 if (in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value()
11012 != out_attr
[elfcpp::Tag_ABI_VFP_args
].int_value())
11014 // Ignore mismatches if the object doesn't use floating point. */
11015 if (out_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value()
11016 == elfcpp::AEABI_FP_number_model_none
11017 || (in_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value()
11018 != elfcpp::AEABI_FP_number_model_none
11019 && out_attr
[elfcpp::Tag_ABI_VFP_args
].int_value()
11020 == elfcpp::AEABI_VFP_args_compatible
))
11021 out_attr
[elfcpp::Tag_ABI_VFP_args
].set_int_value(
11022 in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value());
11023 else if (in_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value()
11024 != elfcpp::AEABI_FP_number_model_none
11025 && in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value()
11026 != elfcpp::AEABI_VFP_args_compatible
11027 && parameters
->options().warn_mismatch())
11028 gold_error(_("%s uses VFP register arguments, output does not"),
11032 for (int i
= 4; i
< Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES
; ++i
)
11034 // Merge this attribute with existing attributes.
11037 case elfcpp::Tag_CPU_raw_name
:
11038 case elfcpp::Tag_CPU_name
:
11039 // These are merged after Tag_CPU_arch.
11042 case elfcpp::Tag_ABI_optimization_goals
:
11043 case elfcpp::Tag_ABI_FP_optimization_goals
:
11044 // Use the first value seen.
11047 case elfcpp::Tag_CPU_arch
:
11049 unsigned int saved_out_attr
= out_attr
->int_value();
11050 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11051 int secondary_compat
=
11052 this->get_secondary_compatible_arch(pasd
);
11053 int secondary_compat_out
=
11054 this->get_secondary_compatible_arch(
11055 this->attributes_section_data_
);
11056 out_attr
[i
].set_int_value(
11057 tag_cpu_arch_combine(name
, out_attr
[i
].int_value(),
11058 &secondary_compat_out
,
11059 in_attr
[i
].int_value(),
11060 secondary_compat
));
11061 this->set_secondary_compatible_arch(this->attributes_section_data_
,
11062 secondary_compat_out
);
11064 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11065 if (out_attr
[i
].int_value() == saved_out_attr
)
11066 ; // Leave the names alone.
11067 else if (out_attr
[i
].int_value() == in_attr
[i
].int_value())
11069 // The output architecture has been changed to match the
11070 // input architecture. Use the input names.
11071 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(
11072 in_attr
[elfcpp::Tag_CPU_name
].string_value());
11073 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value(
11074 in_attr
[elfcpp::Tag_CPU_raw_name
].string_value());
11078 out_attr
[elfcpp::Tag_CPU_name
].set_string_value("");
11079 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value("");
11082 // If we still don't have a value for Tag_CPU_name,
11083 // make one up now. Tag_CPU_raw_name remains blank.
11084 if (out_attr
[elfcpp::Tag_CPU_name
].string_value() == "")
11086 const std::string cpu_name
=
11087 this->tag_cpu_name_value(out_attr
[i
].int_value());
11088 // FIXME: If we see an unknown CPU, this will be set
11089 // to "<unknown CPU n>", where n is the attribute value.
11090 // This is different from BFD, which leaves the name alone.
11091 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(cpu_name
);
11096 case elfcpp::Tag_ARM_ISA_use
:
11097 case elfcpp::Tag_THUMB_ISA_use
:
11098 case elfcpp::Tag_WMMX_arch
:
11099 case elfcpp::Tag_Advanced_SIMD_arch
:
11100 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11101 case elfcpp::Tag_ABI_FP_rounding
:
11102 case elfcpp::Tag_ABI_FP_exceptions
:
11103 case elfcpp::Tag_ABI_FP_user_exceptions
:
11104 case elfcpp::Tag_ABI_FP_number_model
:
11105 case elfcpp::Tag_VFP_HP_extension
:
11106 case elfcpp::Tag_CPU_unaligned_access
:
11107 case elfcpp::Tag_T2EE_use
:
11108 case elfcpp::Tag_Virtualization_use
:
11109 case elfcpp::Tag_MPextension_use
:
11110 // Use the largest value specified.
11111 if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
11112 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11115 case elfcpp::Tag_ABI_align8_preserved
:
11116 case elfcpp::Tag_ABI_PCS_RO_data
:
11117 // Use the smallest value specified.
11118 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
11119 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11122 case elfcpp::Tag_ABI_align8_needed
:
11123 if ((in_attr
[i
].int_value() > 0 || out_attr
[i
].int_value() > 0)
11124 && (in_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value() == 0
11125 || (out_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value()
11128 // This error message should be enabled once all non-conforming
11129 // binaries in the toolchain have had the attributes set
11131 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11135 case elfcpp::Tag_ABI_FP_denormal
:
11136 case elfcpp::Tag_ABI_PCS_GOT_use
:
11138 // These tags have 0 = don't care, 1 = strong requirement,
11139 // 2 = weak requirement.
11140 static const int order_021
[3] = {0, 2, 1};
11142 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11143 // value if greater than 2 (for future-proofing).
11144 if ((in_attr
[i
].int_value() > 2
11145 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
11146 || (in_attr
[i
].int_value() <= 2
11147 && out_attr
[i
].int_value() <= 2
11148 && (order_021
[in_attr
[i
].int_value()]
11149 > order_021
[out_attr
[i
].int_value()])))
11150 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11154 case elfcpp::Tag_CPU_arch_profile
:
11155 if (out_attr
[i
].int_value() != in_attr
[i
].int_value())
11157 // 0 will merge with anything.
11158 // 'A' and 'S' merge to 'A'.
11159 // 'R' and 'S' merge to 'R'.
11160 // 'M' and 'A|R|S' is an error.
11161 if (out_attr
[i
].int_value() == 0
11162 || (out_attr
[i
].int_value() == 'S'
11163 && (in_attr
[i
].int_value() == 'A'
11164 || in_attr
[i
].int_value() == 'R')))
11165 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11166 else if (in_attr
[i
].int_value() == 0
11167 || (in_attr
[i
].int_value() == 'S'
11168 && (out_attr
[i
].int_value() == 'A'
11169 || out_attr
[i
].int_value() == 'R')))
11171 else if (parameters
->options().warn_mismatch())
11174 (_("conflicting architecture profiles %c/%c"),
11175 in_attr
[i
].int_value() ? in_attr
[i
].int_value() : '0',
11176 out_attr
[i
].int_value() ? out_attr
[i
].int_value() : '0');
11180 case elfcpp::Tag_VFP_arch
:
11182 static const struct
11186 } vfp_versions
[7] =
11197 // Values greater than 6 aren't defined, so just pick the
11199 if (in_attr
[i
].int_value() > 6
11200 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
11202 *out_attr
= *in_attr
;
11205 // The output uses the superset of input features
11206 // (ISA version) and registers.
11207 int ver
= std::max(vfp_versions
[in_attr
[i
].int_value()].ver
,
11208 vfp_versions
[out_attr
[i
].int_value()].ver
);
11209 int regs
= std::max(vfp_versions
[in_attr
[i
].int_value()].regs
,
11210 vfp_versions
[out_attr
[i
].int_value()].regs
);
11211 // This assumes all possible supersets are also a valid
11214 for (newval
= 6; newval
> 0; newval
--)
11216 if (regs
== vfp_versions
[newval
].regs
11217 && ver
== vfp_versions
[newval
].ver
)
11220 out_attr
[i
].set_int_value(newval
);
11223 case elfcpp::Tag_PCS_config
:
11224 if (out_attr
[i
].int_value() == 0)
11225 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11226 else if (in_attr
[i
].int_value() != 0
11227 && out_attr
[i
].int_value() != 0
11228 && parameters
->options().warn_mismatch())
11230 // It's sometimes ok to mix different configs, so this is only
11232 gold_warning(_("%s: conflicting platform configuration"), name
);
11235 case elfcpp::Tag_ABI_PCS_R9_use
:
11236 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
11237 && out_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
11238 && in_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
11239 && parameters
->options().warn_mismatch())
11241 gold_error(_("%s: conflicting use of R9"), name
);
11243 if (out_attr
[i
].int_value() == elfcpp::AEABI_R9_unused
)
11244 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11246 case elfcpp::Tag_ABI_PCS_RW_data
:
11247 if (in_attr
[i
].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11248 && (in_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
11249 != elfcpp::AEABI_R9_SB
)
11250 && (out_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
11251 != elfcpp::AEABI_R9_unused
)
11252 && parameters
->options().warn_mismatch())
11254 gold_error(_("%s: SB relative addressing conflicts with use "
11258 // Use the smallest value specified.
11259 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
11260 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11262 case elfcpp::Tag_ABI_PCS_wchar_t
:
11263 if (out_attr
[i
].int_value()
11264 && in_attr
[i
].int_value()
11265 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
11266 && parameters
->options().warn_mismatch()
11267 && parameters
->options().wchar_size_warning())
11269 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11270 "use %u-byte wchar_t; use of wchar_t values "
11271 "across objects may fail"),
11272 name
, in_attr
[i
].int_value(),
11273 out_attr
[i
].int_value());
11275 else if (in_attr
[i
].int_value() && !out_attr
[i
].int_value())
11276 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11278 case elfcpp::Tag_ABI_enum_size
:
11279 if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_unused
)
11281 if (out_attr
[i
].int_value() == elfcpp::AEABI_enum_unused
11282 || out_attr
[i
].int_value() == elfcpp::AEABI_enum_forced_wide
)
11284 // The existing object is compatible with anything.
11285 // Use whatever requirements the new object has.
11286 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11288 else if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_forced_wide
11289 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
11290 && parameters
->options().warn_mismatch()
11291 && parameters
->options().enum_size_warning())
11293 unsigned int in_value
= in_attr
[i
].int_value();
11294 unsigned int out_value
= out_attr
[i
].int_value();
11295 gold_warning(_("%s uses %s enums yet the output is to use "
11296 "%s enums; use of enum values across objects "
11299 this->aeabi_enum_name(in_value
).c_str(),
11300 this->aeabi_enum_name(out_value
).c_str());
11304 case elfcpp::Tag_ABI_VFP_args
:
11307 case elfcpp::Tag_ABI_WMMX_args
:
11308 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
11309 && parameters
->options().warn_mismatch())
11311 gold_error(_("%s uses iWMMXt register arguments, output does "
11316 case Object_attribute::Tag_compatibility
:
11317 // Merged in target-independent code.
11319 case elfcpp::Tag_ABI_HardFP_use
:
11320 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11321 if ((in_attr
[i
].int_value() == 1 && out_attr
[i
].int_value() == 2)
11322 || (in_attr
[i
].int_value() == 2 && out_attr
[i
].int_value() == 1))
11323 out_attr
[i
].set_int_value(3);
11324 else if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
11325 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11327 case elfcpp::Tag_ABI_FP_16bit_format
:
11328 if (in_attr
[i
].int_value() != 0 && out_attr
[i
].int_value() != 0)
11330 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
11331 && parameters
->options().warn_mismatch())
11332 gold_error(_("fp16 format mismatch between %s and output"),
11335 if (in_attr
[i
].int_value() != 0)
11336 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11339 case elfcpp::Tag_DIV_use
:
11341 // A value of zero on input means that the divide
11342 // instruction may be used if available in the base
11343 // architecture as specified via Tag_CPU_arch and
11344 // Tag_CPU_arch_profile. A value of 1 means that the user
11345 // did not want divide instructions. A value of 2
11346 // explicitly means that divide instructions were allowed
11347 // in ARM and Thumb state.
11349 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
)->
11351 int profile
= this->
11352 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
)->
11354 if (in_attr
[i
].int_value() == out_attr
[i
].int_value())
11358 else if (attributes_forbid_div(&in_attr
[i
])
11359 && !attributes_accept_div(arch
, profile
, &out_attr
[i
]))
11360 out_attr
[i
].set_int_value(1);
11361 else if (attributes_forbid_div(&out_attr
[i
])
11362 && attributes_accept_div(arch
, profile
, &in_attr
[i
]))
11363 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11364 else if (in_attr
[i
].int_value() == 2)
11365 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
11369 case elfcpp::Tag_MPextension_use_legacy
:
11370 // We don't output objects with Tag_MPextension_use_legacy - we
11371 // move the value to Tag_MPextension_use.
11372 if (in_attr
[i
].int_value() != 0
11373 && in_attr
[elfcpp::Tag_MPextension_use
].int_value() != 0)
11375 if (in_attr
[elfcpp::Tag_MPextension_use
].int_value()
11376 != in_attr
[i
].int_value())
11378 gold_error(_("%s has has both the current and legacy "
11379 "Tag_MPextension_use attributes"),
11384 if (in_attr
[i
].int_value()
11385 > out_attr
[elfcpp::Tag_MPextension_use
].int_value())
11386 out_attr
[elfcpp::Tag_MPextension_use
] = in_attr
[i
];
11390 case elfcpp::Tag_nodefaults
:
11391 // This tag is set if it exists, but the value is unused (and is
11392 // typically zero). We don't actually need to do anything here -
11393 // the merge happens automatically when the type flags are merged
11396 case elfcpp::Tag_also_compatible_with
:
11397 // Already done in Tag_CPU_arch.
11399 case elfcpp::Tag_conformance
:
11400 // Keep the attribute if it matches. Throw it away otherwise.
11401 // No attribute means no claim to conform.
11402 if (in_attr
[i
].string_value() != out_attr
[i
].string_value())
11403 out_attr
[i
].set_string_value("");
11408 const char* err_object
= NULL
;
11410 // The "known_obj_attributes" table does contain some undefined
11411 // attributes. Ensure that there are unused.
11412 if (out_attr
[i
].int_value() != 0
11413 || out_attr
[i
].string_value() != "")
11414 err_object
= "output";
11415 else if (in_attr
[i
].int_value() != 0
11416 || in_attr
[i
].string_value() != "")
11419 if (err_object
!= NULL
11420 && parameters
->options().warn_mismatch())
11422 // Attribute numbers >=64 (mod 128) can be safely ignored.
11423 if ((i
& 127) < 64)
11424 gold_error(_("%s: unknown mandatory EABI object attribute "
11428 gold_warning(_("%s: unknown EABI object attribute %d"),
11432 // Only pass on attributes that match in both inputs.
11433 if (!in_attr
[i
].matches(out_attr
[i
]))
11435 out_attr
[i
].set_int_value(0);
11436 out_attr
[i
].set_string_value("");
11441 // If out_attr was copied from in_attr then it won't have a type yet.
11442 if (in_attr
[i
].type() && !out_attr
[i
].type())
11443 out_attr
[i
].set_type(in_attr
[i
].type());
11446 // Merge Tag_compatibility attributes and any common GNU ones.
11447 this->attributes_section_data_
->merge(name
, pasd
);
11449 // Check for any attributes not known on ARM.
11450 typedef Vendor_object_attributes::Other_attributes Other_attributes
;
11451 const Other_attributes
* in_other_attributes
= pasd
->other_attributes(vendor
);
11452 Other_attributes::const_iterator in_iter
= in_other_attributes
->begin();
11453 Other_attributes
* out_other_attributes
=
11454 this->attributes_section_data_
->other_attributes(vendor
);
11455 Other_attributes::iterator out_iter
= out_other_attributes
->begin();
11457 while (in_iter
!= in_other_attributes
->end()
11458 || out_iter
!= out_other_attributes
->end())
11460 const char* err_object
= NULL
;
11463 // The tags for each list are in numerical order.
11464 // If the tags are equal, then merge.
11465 if (out_iter
!= out_other_attributes
->end()
11466 && (in_iter
== in_other_attributes
->end()
11467 || in_iter
->first
> out_iter
->first
))
11469 // This attribute only exists in output. We can't merge, and we
11470 // don't know what the tag means, so delete it.
11471 err_object
= "output";
11472 err_tag
= out_iter
->first
;
11473 int saved_tag
= out_iter
->first
;
11474 delete out_iter
->second
;
11475 out_other_attributes
->erase(out_iter
);
11476 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
11478 else if (in_iter
!= in_other_attributes
->end()
11479 && (out_iter
!= out_other_attributes
->end()
11480 || in_iter
->first
< out_iter
->first
))
11482 // This attribute only exists in input. We can't merge, and we
11483 // don't know what the tag means, so ignore it.
11485 err_tag
= in_iter
->first
;
11488 else // The tags are equal.
11490 // As present, all attributes in the list are unknown, and
11491 // therefore can't be merged meaningfully.
11492 err_object
= "output";
11493 err_tag
= out_iter
->first
;
11495 // Only pass on attributes that match in both inputs.
11496 if (!in_iter
->second
->matches(*(out_iter
->second
)))
11498 // No match. Delete the attribute.
11499 int saved_tag
= out_iter
->first
;
11500 delete out_iter
->second
;
11501 out_other_attributes
->erase(out_iter
);
11502 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
11506 // Matched. Keep the attribute and move to the next.
11512 if (err_object
&& parameters
->options().warn_mismatch())
11514 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11515 if ((err_tag
& 127) < 64)
11517 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11518 err_object
, err_tag
);
11522 gold_warning(_("%s: unknown EABI object attribute %d"),
11523 err_object
, err_tag
);
11529 // Stub-generation methods for Target_arm.
11531 // Make a new Arm_input_section object.
11533 template<bool big_endian
>
11534 Arm_input_section
<big_endian
>*
11535 Target_arm
<big_endian
>::new_arm_input_section(
11537 unsigned int shndx
)
11539 Section_id
sid(relobj
, shndx
);
11541 Arm_input_section
<big_endian
>* arm_input_section
=
11542 new Arm_input_section
<big_endian
>(relobj
, shndx
);
11543 arm_input_section
->init();
11545 // Register new Arm_input_section in map for look-up.
11546 std::pair
<typename
Arm_input_section_map::iterator
, bool> ins
=
11547 this->arm_input_section_map_
.insert(std::make_pair(sid
, arm_input_section
));
11549 // Make sure that it we have not created another Arm_input_section
11550 // for this input section already.
11551 gold_assert(ins
.second
);
11553 return arm_input_section
;
11556 // Find the Arm_input_section object corresponding to the SHNDX-th input
11557 // section of RELOBJ.
11559 template<bool big_endian
>
11560 Arm_input_section
<big_endian
>*
11561 Target_arm
<big_endian
>::find_arm_input_section(
11563 unsigned int shndx
) const
11565 Section_id
sid(relobj
, shndx
);
11566 typename
Arm_input_section_map::const_iterator p
=
11567 this->arm_input_section_map_
.find(sid
);
11568 return (p
!= this->arm_input_section_map_
.end()) ? p
->second
: NULL
;
11571 // Make a new stub table.
11573 template<bool big_endian
>
11574 Stub_table
<big_endian
>*
11575 Target_arm
<big_endian
>::new_stub_table(Arm_input_section
<big_endian
>* owner
)
11577 Stub_table
<big_endian
>* stub_table
=
11578 new Stub_table
<big_endian
>(owner
);
11579 this->stub_tables_
.push_back(stub_table
);
11581 stub_table
->set_address(owner
->address() + owner
->data_size());
11582 stub_table
->set_file_offset(owner
->offset() + owner
->data_size());
11583 stub_table
->finalize_data_size();
11588 // Scan a relocation for stub generation.
11590 template<bool big_endian
>
11592 Target_arm
<big_endian
>::scan_reloc_for_stub(
11593 const Relocate_info
<32, big_endian
>* relinfo
,
11594 unsigned int r_type
,
11595 const Sized_symbol
<32>* gsym
,
11596 unsigned int r_sym
,
11597 const Symbol_value
<32>* psymval
,
11598 elfcpp::Elf_types
<32>::Elf_Swxword addend
,
11599 Arm_address address
)
11601 const Arm_relobj
<big_endian
>* arm_relobj
=
11602 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
11604 bool target_is_thumb
;
11605 Symbol_value
<32> symval
;
11608 // This is a global symbol. Determine if we use PLT and if the
11609 // final target is THUMB.
11610 if (gsym
->use_plt_offset(Scan::get_reference_flags(r_type
)))
11612 // This uses a PLT, change the symbol value.
11613 symval
.set_output_value(this->plt_address_for_global(gsym
));
11615 target_is_thumb
= false;
11617 else if (gsym
->is_undefined())
11618 // There is no need to generate a stub symbol is undefined.
11623 ((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
11624 || (gsym
->type() == elfcpp::STT_FUNC
11625 && !gsym
->is_undefined()
11626 && ((psymval
->value(arm_relobj
, 0) & 1) != 0)));
11631 // This is a local symbol. Determine if the final target is THUMB.
11632 target_is_thumb
= arm_relobj
->local_symbol_is_thumb_function(r_sym
);
11635 // Strip LSB if this points to a THUMB target.
11636 const Arm_reloc_property
* reloc_property
=
11637 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
11638 gold_assert(reloc_property
!= NULL
);
11639 if (target_is_thumb
11640 && reloc_property
->uses_thumb_bit()
11641 && ((psymval
->value(arm_relobj
, 0) & 1) != 0))
11643 Arm_address stripped_value
=
11644 psymval
->value(arm_relobj
, 0) & ~static_cast<Arm_address
>(1);
11645 symval
.set_output_value(stripped_value
);
11649 // Get the symbol value.
11650 Symbol_value
<32>::Value value
= psymval
->value(arm_relobj
, 0);
11652 // Owing to pipelining, the PC relative branches below actually skip
11653 // two instructions when the branch offset is 0.
11654 Arm_address destination
;
11657 case elfcpp::R_ARM_CALL
:
11658 case elfcpp::R_ARM_JUMP24
:
11659 case elfcpp::R_ARM_PLT32
:
11661 destination
= value
+ addend
+ 8;
11663 case elfcpp::R_ARM_THM_CALL
:
11664 case elfcpp::R_ARM_THM_XPC22
:
11665 case elfcpp::R_ARM_THM_JUMP24
:
11666 case elfcpp::R_ARM_THM_JUMP19
:
11668 destination
= value
+ addend
+ 4;
11671 gold_unreachable();
11674 Reloc_stub
* stub
= NULL
;
11675 Stub_type stub_type
=
11676 Reloc_stub::stub_type_for_reloc(r_type
, address
, destination
,
11678 if (stub_type
!= arm_stub_none
)
11680 // Try looking up an existing stub from a stub table.
11681 Stub_table
<big_endian
>* stub_table
=
11682 arm_relobj
->stub_table(relinfo
->data_shndx
);
11683 gold_assert(stub_table
!= NULL
);
11685 // Locate stub by destination.
11686 Reloc_stub::Key
stub_key(stub_type
, gsym
, arm_relobj
, r_sym
, addend
);
11688 // Create a stub if there is not one already
11689 stub
= stub_table
->find_reloc_stub(stub_key
);
11692 // create a new stub and add it to stub table.
11693 stub
= this->stub_factory().make_reloc_stub(stub_type
);
11694 stub_table
->add_reloc_stub(stub
, stub_key
);
11697 // Record the destination address.
11698 stub
->set_destination_address(destination
11699 | (target_is_thumb
? 1 : 0));
11702 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11703 if (this->fix_cortex_a8_
11704 && (r_type
== elfcpp::R_ARM_THM_JUMP24
11705 || r_type
== elfcpp::R_ARM_THM_JUMP19
11706 || r_type
== elfcpp::R_ARM_THM_CALL
11707 || r_type
== elfcpp::R_ARM_THM_XPC22
)
11708 && (address
& 0xfffU
) == 0xffeU
)
11710 // Found a candidate. Note we haven't checked the destination is
11711 // within 4K here: if we do so (and don't create a record) we can't
11712 // tell that a branch should have been relocated when scanning later.
11713 this->cortex_a8_relocs_info_
[address
] =
11714 new Cortex_a8_reloc(stub
, r_type
,
11715 destination
| (target_is_thumb
? 1 : 0));
11719 // This function scans a relocation sections for stub generation.
11720 // The template parameter Relocate must be a class type which provides
11721 // a single function, relocate(), which implements the machine
11722 // specific part of a relocation.
11724 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11725 // SHT_REL or SHT_RELA.
11727 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11728 // of relocs. OUTPUT_SECTION is the output section.
11729 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11730 // mapped to output offsets.
11732 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11733 // VIEW_SIZE is the size. These refer to the input section, unless
11734 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11735 // the output section.
11737 template<bool big_endian
>
11738 template<int sh_type
>
11740 Target_arm
<big_endian
>::scan_reloc_section_for_stubs(
11741 const Relocate_info
<32, big_endian
>* relinfo
,
11742 const unsigned char* prelocs
,
11743 size_t reloc_count
,
11744 Output_section
* output_section
,
11745 bool needs_special_offset_handling
,
11746 const unsigned char* view
,
11747 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
11750 typedef typename Reloc_types
<sh_type
, 32, big_endian
>::Reloc Reltype
;
11751 const int reloc_size
=
11752 Reloc_types
<sh_type
, 32, big_endian
>::reloc_size
;
11754 Arm_relobj
<big_endian
>* arm_object
=
11755 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
11756 unsigned int local_count
= arm_object
->local_symbol_count();
11758 gold::Default_comdat_behavior default_comdat_behavior
;
11759 Comdat_behavior comdat_behavior
= CB_UNDETERMINED
;
11761 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
11763 Reltype
reloc(prelocs
);
11765 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
11766 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
11767 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
11769 r_type
= this->get_real_reloc_type(r_type
);
11771 // Only a few relocation types need stubs.
11772 if ((r_type
!= elfcpp::R_ARM_CALL
)
11773 && (r_type
!= elfcpp::R_ARM_JUMP24
)
11774 && (r_type
!= elfcpp::R_ARM_PLT32
)
11775 && (r_type
!= elfcpp::R_ARM_THM_CALL
)
11776 && (r_type
!= elfcpp::R_ARM_THM_XPC22
)
11777 && (r_type
!= elfcpp::R_ARM_THM_JUMP24
)
11778 && (r_type
!= elfcpp::R_ARM_THM_JUMP19
)
11779 && (r_type
!= elfcpp::R_ARM_V4BX
))
11782 section_offset_type offset
=
11783 convert_to_section_size_type(reloc
.get_r_offset());
11785 if (needs_special_offset_handling
)
11787 offset
= output_section
->output_offset(relinfo
->object
,
11788 relinfo
->data_shndx
,
11794 // Create a v4bx stub if --fix-v4bx-interworking is used.
11795 if (r_type
== elfcpp::R_ARM_V4BX
)
11797 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
)
11799 // Get the BX instruction.
11800 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
11801 const Valtype
* wv
=
11802 reinterpret_cast<const Valtype
*>(view
+ offset
);
11803 elfcpp::Elf_types
<32>::Elf_Swxword insn
=
11804 elfcpp::Swap
<32, big_endian
>::readval(wv
);
11805 const uint32_t reg
= (insn
& 0xf);
11809 // Try looking up an existing stub from a stub table.
11810 Stub_table
<big_endian
>* stub_table
=
11811 arm_object
->stub_table(relinfo
->data_shndx
);
11812 gold_assert(stub_table
!= NULL
);
11814 if (stub_table
->find_arm_v4bx_stub(reg
) == NULL
)
11816 // create a new stub and add it to stub table.
11817 Arm_v4bx_stub
* stub
=
11818 this->stub_factory().make_arm_v4bx_stub(reg
);
11819 gold_assert(stub
!= NULL
);
11820 stub_table
->add_arm_v4bx_stub(stub
);
11828 Stub_addend_reader
<sh_type
, big_endian
> stub_addend_reader
;
11829 elfcpp::Elf_types
<32>::Elf_Swxword addend
=
11830 stub_addend_reader(r_type
, view
+ offset
, reloc
);
11832 const Sized_symbol
<32>* sym
;
11834 Symbol_value
<32> symval
;
11835 const Symbol_value
<32> *psymval
;
11836 bool is_defined_in_discarded_section
;
11837 unsigned int shndx
;
11838 if (r_sym
< local_count
)
11841 psymval
= arm_object
->local_symbol(r_sym
);
11843 // If the local symbol belongs to a section we are discarding,
11844 // and that section is a debug section, try to find the
11845 // corresponding kept section and map this symbol to its
11846 // counterpart in the kept section. The symbol must not
11847 // correspond to a section we are folding.
11849 shndx
= psymval
->input_shndx(&is_ordinary
);
11850 is_defined_in_discarded_section
=
11852 && shndx
!= elfcpp::SHN_UNDEF
11853 && !arm_object
->is_section_included(shndx
)
11854 && !relinfo
->symtab
->is_section_folded(arm_object
, shndx
));
11856 // We need to compute the would-be final value of this local
11858 if (!is_defined_in_discarded_section
)
11860 typedef Sized_relobj_file
<32, big_endian
> ObjType
;
11861 typename
ObjType::Compute_final_local_value_status status
=
11862 arm_object
->compute_final_local_value(r_sym
, psymval
, &symval
,
11864 if (status
== ObjType::CFLV_OK
)
11866 // Currently we cannot handle a branch to a target in
11867 // a merged section. If this is the case, issue an error
11868 // and also free the merge symbol value.
11869 if (!symval
.has_output_value())
11871 const std::string
& section_name
=
11872 arm_object
->section_name(shndx
);
11873 arm_object
->error(_("cannot handle branch to local %u "
11874 "in a merged section %s"),
11875 r_sym
, section_name
.c_str());
11881 // We cannot determine the final value.
11888 const Symbol
* gsym
;
11889 gsym
= arm_object
->global_symbol(r_sym
);
11890 gold_assert(gsym
!= NULL
);
11891 if (gsym
->is_forwarder())
11892 gsym
= relinfo
->symtab
->resolve_forwards(gsym
);
11894 sym
= static_cast<const Sized_symbol
<32>*>(gsym
);
11895 if (sym
->has_symtab_index() && sym
->symtab_index() != -1U)
11896 symval
.set_output_symtab_index(sym
->symtab_index());
11898 symval
.set_no_output_symtab_entry();
11900 // We need to compute the would-be final value of this global
11902 const Symbol_table
* symtab
= relinfo
->symtab
;
11903 const Sized_symbol
<32>* sized_symbol
=
11904 symtab
->get_sized_symbol
<32>(gsym
);
11905 Symbol_table::Compute_final_value_status status
;
11906 Arm_address value
=
11907 symtab
->compute_final_value
<32>(sized_symbol
, &status
);
11909 // Skip this if the symbol has not output section.
11910 if (status
== Symbol_table::CFVS_NO_OUTPUT_SECTION
)
11912 symval
.set_output_value(value
);
11914 if (gsym
->type() == elfcpp::STT_TLS
)
11915 symval
.set_is_tls_symbol();
11916 else if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
11917 symval
.set_is_ifunc_symbol();
11920 is_defined_in_discarded_section
=
11921 (gsym
->is_defined_in_discarded_section()
11922 && gsym
->is_undefined());
11926 Symbol_value
<32> symval2
;
11927 if (is_defined_in_discarded_section
)
11929 if (comdat_behavior
== CB_UNDETERMINED
)
11931 std::string name
= arm_object
->section_name(relinfo
->data_shndx
);
11932 comdat_behavior
= default_comdat_behavior
.get(name
.c_str());
11934 if (comdat_behavior
== CB_PRETEND
)
11936 // FIXME: This case does not work for global symbols.
11937 // We have no place to store the original section index.
11938 // Fortunately this does not matter for comdat sections,
11939 // only for sections explicitly discarded by a linker
11942 typename
elfcpp::Elf_types
<32>::Elf_Addr value
=
11943 arm_object
->map_to_kept_section(shndx
, &found
);
11945 symval2
.set_output_value(value
+ psymval
->input_value());
11947 symval2
.set_output_value(0);
11951 if (comdat_behavior
== CB_WARNING
)
11952 gold_warning_at_location(relinfo
, i
, offset
,
11953 _("relocation refers to discarded "
11955 symval2
.set_output_value(0);
11957 symval2
.set_no_output_symtab_entry();
11958 psymval
= &symval2
;
11961 // If symbol is a section symbol, we don't know the actual type of
11962 // destination. Give up.
11963 if (psymval
->is_section_symbol())
11966 this->scan_reloc_for_stub(relinfo
, r_type
, sym
, r_sym
, psymval
,
11967 addend
, view_address
+ offset
);
11971 // Scan an input section for stub generation.
11973 template<bool big_endian
>
11975 Target_arm
<big_endian
>::scan_section_for_stubs(
11976 const Relocate_info
<32, big_endian
>* relinfo
,
11977 unsigned int sh_type
,
11978 const unsigned char* prelocs
,
11979 size_t reloc_count
,
11980 Output_section
* output_section
,
11981 bool needs_special_offset_handling
,
11982 const unsigned char* view
,
11983 Arm_address view_address
,
11984 section_size_type view_size
)
11986 if (sh_type
== elfcpp::SHT_REL
)
11987 this->scan_reloc_section_for_stubs
<elfcpp::SHT_REL
>(
11992 needs_special_offset_handling
,
11996 else if (sh_type
== elfcpp::SHT_RELA
)
11997 // We do not support RELA type relocations yet. This is provided for
11999 this->scan_reloc_section_for_stubs
<elfcpp::SHT_RELA
>(
12004 needs_special_offset_handling
,
12009 gold_unreachable();
12012 // Group input sections for stub generation.
12014 // We group input sections in an output section so that the total size,
12015 // including any padding space due to alignment is smaller than GROUP_SIZE
12016 // unless the only input section in group is bigger than GROUP_SIZE already.
12017 // Then an ARM stub table is created to follow the last input section
12018 // in group. For each group an ARM stub table is created an is placed
12019 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12020 // extend the group after the stub table.
12022 template<bool big_endian
>
12024 Target_arm
<big_endian
>::group_sections(
12026 section_size_type group_size
,
12027 bool stubs_always_after_branch
,
12030 // Group input sections and insert stub table
12031 Layout::Section_list section_list
;
12032 layout
->get_executable_sections(§ion_list
);
12033 for (Layout::Section_list::const_iterator p
= section_list
.begin();
12034 p
!= section_list
.end();
12037 Arm_output_section
<big_endian
>* output_section
=
12038 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
12039 output_section
->group_sections(group_size
, stubs_always_after_branch
,
12044 // Relaxation hook. This is where we do stub generation.
12046 template<bool big_endian
>
12048 Target_arm
<big_endian
>::do_relax(
12050 const Input_objects
* input_objects
,
12051 Symbol_table
* symtab
,
12055 // No need to generate stubs if this is a relocatable link.
12056 gold_assert(!parameters
->options().relocatable());
12058 // If this is the first pass, we need to group input sections into
12060 bool done_exidx_fixup
= false;
12061 typedef typename
Stub_table_list::iterator Stub_table_iterator
;
12064 // Determine the stub group size. The group size is the absolute
12065 // value of the parameter --stub-group-size. If --stub-group-size
12066 // is passed a negative value, we restrict stubs to be always after
12067 // the stubbed branches.
12068 int32_t stub_group_size_param
=
12069 parameters
->options().stub_group_size();
12070 bool stubs_always_after_branch
= stub_group_size_param
< 0;
12071 section_size_type stub_group_size
= abs(stub_group_size_param
);
12073 if (stub_group_size
== 1)
12076 // Thumb branch range is +-4MB has to be used as the default
12077 // maximum size (a given section can contain both ARM and Thumb
12078 // code, so the worst case has to be taken into account). If we are
12079 // fixing cortex-a8 errata, the branch range has to be even smaller,
12080 // since wide conditional branch has a range of +-1MB only.
12082 // This value is 48K less than that, which allows for 4096
12083 // 12-byte stubs. If we exceed that, then we will fail to link.
12084 // The user will have to relink with an explicit group size
12086 stub_group_size
= 4145152;
12089 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12090 // page as the first half of a 32-bit branch straddling two 4K pages.
12091 // This is a crude way of enforcing that. In addition, long conditional
12092 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12093 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12094 // cortex-A8 stubs from long conditional branches.
12095 if (this->fix_cortex_a8_
)
12097 stubs_always_after_branch
= true;
12098 const section_size_type cortex_a8_group_size
= 1024 * (1024 - 12);
12099 stub_group_size
= std::max(stub_group_size
, cortex_a8_group_size
);
12102 group_sections(layout
, stub_group_size
, stubs_always_after_branch
, task
);
12104 // Also fix .ARM.exidx section coverage.
12105 Arm_output_section
<big_endian
>* exidx_output_section
= NULL
;
12106 for (Layout::Section_list::const_iterator p
=
12107 layout
->section_list().begin();
12108 p
!= layout
->section_list().end();
12110 if ((*p
)->type() == elfcpp::SHT_ARM_EXIDX
)
12112 if (exidx_output_section
== NULL
)
12113 exidx_output_section
=
12114 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
12116 // We cannot handle this now.
12117 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12118 "non-relocatable link"),
12119 exidx_output_section
->name(),
12123 if (exidx_output_section
!= NULL
)
12125 this->fix_exidx_coverage(layout
, input_objects
, exidx_output_section
,
12127 done_exidx_fixup
= true;
12132 // If this is not the first pass, addresses and file offsets have
12133 // been reset at this point, set them here.
12134 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
12135 sp
!= this->stub_tables_
.end();
12138 Arm_input_section
<big_endian
>* owner
= (*sp
)->owner();
12139 off_t off
= align_address(owner
->original_size(),
12140 (*sp
)->addralign());
12141 (*sp
)->set_address_and_file_offset(owner
->address() + off
,
12142 owner
->offset() + off
);
12146 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12147 // beginning of each relaxation pass, just blow away all the stubs.
12148 // Alternatively, we could selectively remove only the stubs and reloc
12149 // information for code sections that have moved since the last pass.
12150 // That would require more book-keeping.
12151 if (this->fix_cortex_a8_
)
12153 // Clear all Cortex-A8 reloc information.
12154 for (typename
Cortex_a8_relocs_info::const_iterator p
=
12155 this->cortex_a8_relocs_info_
.begin();
12156 p
!= this->cortex_a8_relocs_info_
.end();
12159 this->cortex_a8_relocs_info_
.clear();
12161 // Remove all Cortex-A8 stubs.
12162 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
12163 sp
!= this->stub_tables_
.end();
12165 (*sp
)->remove_all_cortex_a8_stubs();
12168 // Scan relocs for relocation stubs
12169 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
12170 op
!= input_objects
->relobj_end();
12173 Arm_relobj
<big_endian
>* arm_relobj
=
12174 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
12175 // Lock the object so we can read from it. This is only called
12176 // single-threaded from Layout::finalize, so it is OK to lock.
12177 Task_lock_obj
<Object
> tl(task
, arm_relobj
);
12178 arm_relobj
->scan_sections_for_stubs(this, symtab
, layout
);
12181 // Check all stub tables to see if any of them have their data sizes
12182 // or addresses alignments changed. These are the only things that
12184 bool any_stub_table_changed
= false;
12185 Unordered_set
<const Output_section
*> sections_needing_adjustment
;
12186 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
12187 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
12190 if ((*sp
)->update_data_size_and_addralign())
12192 // Update data size of stub table owner.
12193 Arm_input_section
<big_endian
>* owner
= (*sp
)->owner();
12194 uint64_t address
= owner
->address();
12195 off_t offset
= owner
->offset();
12196 owner
->reset_address_and_file_offset();
12197 owner
->set_address_and_file_offset(address
, offset
);
12199 sections_needing_adjustment
.insert(owner
->output_section());
12200 any_stub_table_changed
= true;
12204 // Output_section_data::output_section() returns a const pointer but we
12205 // need to update output sections, so we record all output sections needing
12206 // update above and scan the sections here to find out what sections need
12208 for (Layout::Section_list::const_iterator p
= layout
->section_list().begin();
12209 p
!= layout
->section_list().end();
12212 if (sections_needing_adjustment
.find(*p
)
12213 != sections_needing_adjustment
.end())
12214 (*p
)->set_section_offsets_need_adjustment();
12217 // Stop relaxation if no EXIDX fix-up and no stub table change.
12218 bool continue_relaxation
= done_exidx_fixup
|| any_stub_table_changed
;
12220 // Finalize the stubs in the last relaxation pass.
12221 if (!continue_relaxation
)
12223 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
12224 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
12226 (*sp
)->finalize_stubs();
12228 // Update output local symbol counts of objects if necessary.
12229 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
12230 op
!= input_objects
->relobj_end();
12233 Arm_relobj
<big_endian
>* arm_relobj
=
12234 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
12236 // Update output local symbol counts. We need to discard local
12237 // symbols defined in parts of input sections that are discarded by
12239 if (arm_relobj
->output_local_symbol_count_needs_update())
12241 // We need to lock the object's file to update it.
12242 Task_lock_obj
<Object
> tl(task
, arm_relobj
);
12243 arm_relobj
->update_output_local_symbol_count();
12248 return continue_relaxation
;
12251 // Relocate a stub.
12253 template<bool big_endian
>
12255 Target_arm
<big_endian
>::relocate_stub(
12257 const Relocate_info
<32, big_endian
>* relinfo
,
12258 Output_section
* output_section
,
12259 unsigned char* view
,
12260 Arm_address address
,
12261 section_size_type view_size
)
12264 const Stub_template
* stub_template
= stub
->stub_template();
12265 for (size_t i
= 0; i
< stub_template
->reloc_count(); i
++)
12267 size_t reloc_insn_index
= stub_template
->reloc_insn_index(i
);
12268 const Insn_template
* insn
= &stub_template
->insns()[reloc_insn_index
];
12270 unsigned int r_type
= insn
->r_type();
12271 section_size_type reloc_offset
= stub_template
->reloc_offset(i
);
12272 section_size_type reloc_size
= insn
->size();
12273 gold_assert(reloc_offset
+ reloc_size
<= view_size
);
12275 // This is the address of the stub destination.
12276 Arm_address target
= stub
->reloc_target(i
) + insn
->reloc_addend();
12277 Symbol_value
<32> symval
;
12278 symval
.set_output_value(target
);
12280 // Synthesize a fake reloc just in case. We don't have a symbol so
12282 unsigned char reloc_buffer
[elfcpp::Elf_sizes
<32>::rel_size
];
12283 memset(reloc_buffer
, 0, sizeof(reloc_buffer
));
12284 elfcpp::Rel_write
<32, big_endian
> reloc_write(reloc_buffer
);
12285 reloc_write
.put_r_offset(reloc_offset
);
12286 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(0, r_type
));
12287 elfcpp::Rel
<32, big_endian
> rel(reloc_buffer
);
12289 relocate
.relocate(relinfo
, this, output_section
,
12290 this->fake_relnum_for_stubs
, rel
, r_type
,
12291 NULL
, &symval
, view
+ reloc_offset
,
12292 address
+ reloc_offset
, reloc_size
);
12296 // Determine whether an object attribute tag takes an integer, a
12299 template<bool big_endian
>
12301 Target_arm
<big_endian
>::do_attribute_arg_type(int tag
) const
12303 if (tag
== Object_attribute::Tag_compatibility
)
12304 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12305 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL
);
12306 else if (tag
== elfcpp::Tag_nodefaults
)
12307 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12308 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT
);
12309 else if (tag
== elfcpp::Tag_CPU_raw_name
|| tag
== elfcpp::Tag_CPU_name
)
12310 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL
;
12312 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL
;
12314 return ((tag
& 1) != 0
12315 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12316 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL
);
12319 // Reorder attributes.
12321 // The ABI defines that Tag_conformance should be emitted first, and that
12322 // Tag_nodefaults should be second (if either is defined). This sets those
12323 // two positions, and bumps up the position of all the remaining tags to
12326 template<bool big_endian
>
12328 Target_arm
<big_endian
>::do_attributes_order(int num
) const
12330 // Reorder the known object attributes in output. We want to move
12331 // Tag_conformance to position 4 and Tag_conformance to position 5
12332 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12334 return elfcpp::Tag_conformance
;
12336 return elfcpp::Tag_nodefaults
;
12337 if ((num
- 2) < elfcpp::Tag_nodefaults
)
12339 if ((num
- 1) < elfcpp::Tag_conformance
)
12344 // Scan a span of THUMB code for Cortex-A8 erratum.
12346 template<bool big_endian
>
12348 Target_arm
<big_endian
>::scan_span_for_cortex_a8_erratum(
12349 Arm_relobj
<big_endian
>* arm_relobj
,
12350 unsigned int shndx
,
12351 section_size_type span_start
,
12352 section_size_type span_end
,
12353 const unsigned char* view
,
12354 Arm_address address
)
12356 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12358 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12359 // The branch target is in the same 4KB region as the
12360 // first half of the branch.
12361 // The instruction before the branch is a 32-bit
12362 // length non-branch instruction.
12363 section_size_type i
= span_start
;
12364 bool last_was_32bit
= false;
12365 bool last_was_branch
= false;
12366 while (i
< span_end
)
12368 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
12369 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
+ i
);
12370 uint32_t insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
12371 bool is_blx
= false, is_b
= false;
12372 bool is_bl
= false, is_bcc
= false;
12374 bool insn_32bit
= (insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000;
12377 // Load the rest of the insn (in manual-friendly order).
12378 insn
= (insn
<< 16) | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
12380 // Encoding T4: B<c>.W.
12381 is_b
= (insn
& 0xf800d000U
) == 0xf0009000U
;
12382 // Encoding T1: BL<c>.W.
12383 is_bl
= (insn
& 0xf800d000U
) == 0xf000d000U
;
12384 // Encoding T2: BLX<c>.W.
12385 is_blx
= (insn
& 0xf800d000U
) == 0xf000c000U
;
12386 // Encoding T3: B<c>.W (not permitted in IT block).
12387 is_bcc
= ((insn
& 0xf800d000U
) == 0xf0008000U
12388 && (insn
& 0x07f00000U
) != 0x03800000U
);
12391 bool is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
12393 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12394 // page boundary and it follows 32-bit non-branch instruction,
12395 // we need to work around.
12396 if (is_32bit_branch
12397 && ((address
+ i
) & 0xfffU
) == 0xffeU
12399 && !last_was_branch
)
12401 // Check to see if there is a relocation stub for this branch.
12402 bool force_target_arm
= false;
12403 bool force_target_thumb
= false;
12404 const Cortex_a8_reloc
* cortex_a8_reloc
= NULL
;
12405 Cortex_a8_relocs_info::const_iterator p
=
12406 this->cortex_a8_relocs_info_
.find(address
+ i
);
12408 if (p
!= this->cortex_a8_relocs_info_
.end())
12410 cortex_a8_reloc
= p
->second
;
12411 bool target_is_thumb
= (cortex_a8_reloc
->destination() & 1) != 0;
12413 if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
12414 && !target_is_thumb
)
12415 force_target_arm
= true;
12416 else if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
12417 && target_is_thumb
)
12418 force_target_thumb
= true;
12422 Stub_type stub_type
= arm_stub_none
;
12424 // Check if we have an offending branch instruction.
12425 uint16_t upper_insn
= (insn
>> 16) & 0xffffU
;
12426 uint16_t lower_insn
= insn
& 0xffffU
;
12427 typedef class Arm_relocate_functions
<big_endian
> RelocFuncs
;
12429 if (cortex_a8_reloc
!= NULL
12430 && cortex_a8_reloc
->reloc_stub() != NULL
)
12431 // We've already made a stub for this instruction, e.g.
12432 // it's a long branch or a Thumb->ARM stub. Assume that
12433 // stub will suffice to work around the A8 erratum (see
12434 // setting of always_after_branch above).
12438 offset
= RelocFuncs::thumb32_cond_branch_offset(upper_insn
,
12440 stub_type
= arm_stub_a8_veneer_b_cond
;
12442 else if (is_b
|| is_bl
|| is_blx
)
12444 offset
= RelocFuncs::thumb32_branch_offset(upper_insn
,
12449 stub_type
= (is_blx
12450 ? arm_stub_a8_veneer_blx
12452 ? arm_stub_a8_veneer_bl
12453 : arm_stub_a8_veneer_b
));
12456 if (stub_type
!= arm_stub_none
)
12458 Arm_address pc_for_insn
= address
+ i
+ 4;
12460 // The original instruction is a BL, but the target is
12461 // an ARM instruction. If we were not making a stub,
12462 // the BL would have been converted to a BLX. Use the
12463 // BLX stub instead in that case.
12464 if (this->may_use_v5t_interworking() && force_target_arm
12465 && stub_type
== arm_stub_a8_veneer_bl
)
12467 stub_type
= arm_stub_a8_veneer_blx
;
12471 // Conversely, if the original instruction was
12472 // BLX but the target is Thumb mode, use the BL stub.
12473 else if (force_target_thumb
12474 && stub_type
== arm_stub_a8_veneer_blx
)
12476 stub_type
= arm_stub_a8_veneer_bl
;
12484 // If we found a relocation, use the proper destination,
12485 // not the offset in the (unrelocated) instruction.
12486 // Note this is always done if we switched the stub type above.
12487 if (cortex_a8_reloc
!= NULL
)
12488 offset
= (off_t
) (cortex_a8_reloc
->destination() - pc_for_insn
);
12490 Arm_address target
= (pc_for_insn
+ offset
) | (is_blx
? 0 : 1);
12492 // Add a new stub if destination address in in the same page.
12493 if (((address
+ i
) & ~0xfffU
) == (target
& ~0xfffU
))
12495 Cortex_a8_stub
* stub
=
12496 this->stub_factory_
.make_cortex_a8_stub(stub_type
,
12500 Stub_table
<big_endian
>* stub_table
=
12501 arm_relobj
->stub_table(shndx
);
12502 gold_assert(stub_table
!= NULL
);
12503 stub_table
->add_cortex_a8_stub(address
+ i
, stub
);
12508 i
+= insn_32bit
? 4 : 2;
12509 last_was_32bit
= insn_32bit
;
12510 last_was_branch
= is_32bit_branch
;
12514 // Apply the Cortex-A8 workaround.
12516 template<bool big_endian
>
12518 Target_arm
<big_endian
>::apply_cortex_a8_workaround(
12519 const Cortex_a8_stub
* stub
,
12520 Arm_address stub_address
,
12521 unsigned char* insn_view
,
12522 Arm_address insn_address
)
12524 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
12525 Valtype
* wv
= reinterpret_cast<Valtype
*>(insn_view
);
12526 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
12527 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
12528 off_t branch_offset
= stub_address
- (insn_address
+ 4);
12530 typedef class Arm_relocate_functions
<big_endian
> RelocFuncs
;
12531 switch (stub
->stub_template()->type())
12533 case arm_stub_a8_veneer_b_cond
:
12534 // For a conditional branch, we re-write it to be an unconditional
12535 // branch to the stub. We use the THUMB-2 encoding here.
12536 upper_insn
= 0xf000U
;
12537 lower_insn
= 0xb800U
;
12539 case arm_stub_a8_veneer_b
:
12540 case arm_stub_a8_veneer_bl
:
12541 case arm_stub_a8_veneer_blx
:
12542 if ((lower_insn
& 0x5000U
) == 0x4000U
)
12543 // For a BLX instruction, make sure that the relocation is
12544 // rounded up to a word boundary. This follows the semantics of
12545 // the instruction which specifies that bit 1 of the target
12546 // address will come from bit 1 of the base address.
12547 branch_offset
= (branch_offset
+ 2) & ~3;
12549 // Put BRANCH_OFFSET back into the insn.
12550 gold_assert(!Bits
<25>::has_overflow32(branch_offset
));
12551 upper_insn
= RelocFuncs::thumb32_branch_upper(upper_insn
, branch_offset
);
12552 lower_insn
= RelocFuncs::thumb32_branch_lower(lower_insn
, branch_offset
);
12556 gold_unreachable();
12559 // Put the relocated value back in the object file:
12560 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
12561 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
12564 // Target selector for ARM. Note this is never instantiated directly.
12565 // It's only used in Target_selector_arm_nacl, below.
12567 template<bool big_endian
>
12568 class Target_selector_arm
: public Target_selector
12571 Target_selector_arm()
12572 : Target_selector(elfcpp::EM_ARM
, 32, big_endian
,
12573 (big_endian
? "elf32-bigarm" : "elf32-littlearm"),
12574 (big_endian
? "armelfb" : "armelf"))
12578 do_instantiate_target()
12579 { return new Target_arm
<big_endian
>(); }
12582 // Fix .ARM.exidx section coverage.
12584 template<bool big_endian
>
12586 Target_arm
<big_endian
>::fix_exidx_coverage(
12588 const Input_objects
* input_objects
,
12589 Arm_output_section
<big_endian
>* exidx_section
,
12590 Symbol_table
* symtab
,
12593 // We need to look at all the input sections in output in ascending
12594 // order of of output address. We do that by building a sorted list
12595 // of output sections by addresses. Then we looks at the output sections
12596 // in order. The input sections in an output section are already sorted
12597 // by addresses within the output section.
12599 typedef std::set
<Output_section
*, output_section_address_less_than
>
12600 Sorted_output_section_list
;
12601 Sorted_output_section_list sorted_output_sections
;
12603 // Find out all the output sections of input sections pointed by
12604 // EXIDX input sections.
12605 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
12606 p
!= input_objects
->relobj_end();
12609 Arm_relobj
<big_endian
>* arm_relobj
=
12610 Arm_relobj
<big_endian
>::as_arm_relobj(*p
);
12611 std::vector
<unsigned int> shndx_list
;
12612 arm_relobj
->get_exidx_shndx_list(&shndx_list
);
12613 for (size_t i
= 0; i
< shndx_list
.size(); ++i
)
12615 const Arm_exidx_input_section
* exidx_input_section
=
12616 arm_relobj
->exidx_input_section_by_shndx(shndx_list
[i
]);
12617 gold_assert(exidx_input_section
!= NULL
);
12618 if (!exidx_input_section
->has_errors())
12620 unsigned int text_shndx
= exidx_input_section
->link();
12621 Output_section
* os
= arm_relobj
->output_section(text_shndx
);
12622 if (os
!= NULL
&& (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
12623 sorted_output_sections
.insert(os
);
12628 // Go over the output sections in ascending order of output addresses.
12629 typedef typename Arm_output_section
<big_endian
>::Text_section_list
12631 Text_section_list sorted_text_sections
;
12632 for (typename
Sorted_output_section_list::iterator p
=
12633 sorted_output_sections
.begin();
12634 p
!= sorted_output_sections
.end();
12637 Arm_output_section
<big_endian
>* arm_output_section
=
12638 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
12639 arm_output_section
->append_text_sections_to_list(&sorted_text_sections
);
12642 exidx_section
->fix_exidx_coverage(layout
, sorted_text_sections
, symtab
,
12643 merge_exidx_entries(), task
);
12646 template<bool big_endian
>
12648 Target_arm
<big_endian
>::do_define_standard_symbols(
12649 Symbol_table
* symtab
,
12652 // Handle the .ARM.exidx section.
12653 Output_section
* exidx_section
= layout
->find_output_section(".ARM.exidx");
12655 if (exidx_section
!= NULL
)
12657 // Create __exidx_start and __exidx_end symbols.
12658 symtab
->define_in_output_data("__exidx_start",
12660 Symbol_table::PREDEFINED
,
12664 elfcpp::STT_NOTYPE
,
12665 elfcpp::STB_GLOBAL
,
12666 elfcpp::STV_HIDDEN
,
12668 false, // offset_is_from_end
12669 true); // only_if_ref
12671 symtab
->define_in_output_data("__exidx_end",
12673 Symbol_table::PREDEFINED
,
12677 elfcpp::STT_NOTYPE
,
12678 elfcpp::STB_GLOBAL
,
12679 elfcpp::STV_HIDDEN
,
12681 true, // offset_is_from_end
12682 true); // only_if_ref
12686 // Define __exidx_start and __exidx_end even when .ARM.exidx
12687 // section is missing to match ld's behaviour.
12688 symtab
->define_as_constant("__exidx_start", NULL
,
12689 Symbol_table::PREDEFINED
,
12690 0, 0, elfcpp::STT_OBJECT
,
12691 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
12693 symtab
->define_as_constant("__exidx_end", NULL
,
12694 Symbol_table::PREDEFINED
,
12695 0, 0, elfcpp::STT_OBJECT
,
12696 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
12701 // NaCl variant. It uses different PLT contents.
12703 template<bool big_endian
>
12704 class Output_data_plt_arm_nacl
;
12706 template<bool big_endian
>
12707 class Target_arm_nacl
: public Target_arm
<big_endian
>
12711 : Target_arm
<big_endian
>(&arm_nacl_info
)
12715 virtual Output_data_plt_arm
<big_endian
>*
12718 Arm_output_data_got
<big_endian
>* got
,
12719 Output_data_space
* got_plt
,
12720 Output_data_space
* got_irelative
)
12721 { return new Output_data_plt_arm_nacl
<big_endian
>(
12722 layout
, got
, got_plt
, got_irelative
); }
12725 static const Target::Target_info arm_nacl_info
;
12728 template<bool big_endian
>
12729 const Target::Target_info Target_arm_nacl
<big_endian
>::arm_nacl_info
=
12732 big_endian
, // is_big_endian
12733 elfcpp::EM_ARM
, // machine_code
12734 false, // has_make_symbol
12735 false, // has_resolve
12736 false, // has_code_fill
12737 true, // is_default_stack_executable
12738 false, // can_icf_inline_merge_sections
12740 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12741 0x20000, // default_text_segment_address
12742 0x10000, // abi_pagesize (overridable by -z max-page-size)
12743 0x10000, // common_pagesize (overridable by -z common-page-size)
12744 true, // isolate_execinstr
12745 0x10000000, // rosegment_gap
12746 elfcpp::SHN_UNDEF
, // small_common_shndx
12747 elfcpp::SHN_UNDEF
, // large_common_shndx
12748 0, // small_common_section_flags
12749 0, // large_common_section_flags
12750 ".ARM.attributes", // attributes_section
12751 "aeabi", // attributes_vendor
12752 "_start" // entry_symbol_name
12755 template<bool big_endian
>
12756 class Output_data_plt_arm_nacl
: public Output_data_plt_arm
<big_endian
>
12759 Output_data_plt_arm_nacl(
12761 Arm_output_data_got
<big_endian
>* got
,
12762 Output_data_space
* got_plt
,
12763 Output_data_space
* got_irelative
)
12764 : Output_data_plt_arm
<big_endian
>(layout
, 16, got
, got_plt
, got_irelative
)
12768 // Return the offset of the first non-reserved PLT entry.
12769 virtual unsigned int
12770 do_first_plt_entry_offset() const
12771 { return sizeof(first_plt_entry
); }
12773 // Return the size of a PLT entry.
12774 virtual unsigned int
12775 do_get_plt_entry_size() const
12776 { return sizeof(plt_entry
); }
12779 do_fill_first_plt_entry(unsigned char* pov
,
12780 Arm_address got_address
,
12781 Arm_address plt_address
);
12784 do_fill_plt_entry(unsigned char* pov
,
12785 Arm_address got_address
,
12786 Arm_address plt_address
,
12787 unsigned int got_offset
,
12788 unsigned int plt_offset
);
12791 inline uint32_t arm_movw_immediate(uint32_t value
)
12793 return (value
& 0x00000fff) | ((value
& 0x0000f000) << 4);
12796 inline uint32_t arm_movt_immediate(uint32_t value
)
12798 return ((value
& 0x0fff0000) >> 16) | ((value
& 0xf0000000) >> 12);
12801 // Template for the first PLT entry.
12802 static const uint32_t first_plt_entry
[16];
12804 // Template for subsequent PLT entries.
12805 static const uint32_t plt_entry
[4];
12808 // The first entry in the PLT.
12809 template<bool big_endian
>
12810 const uint32_t Output_data_plt_arm_nacl
<big_endian
>::first_plt_entry
[16] =
12813 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12814 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12815 0xe08cc00f, // add ip, ip, pc
12816 0xe52dc008, // str ip, [sp, #-8]!
12818 0xe3ccc103, // bic ip, ip, #0xc0000000
12819 0xe59cc000, // ldr ip, [ip]
12820 0xe3ccc13f, // bic ip, ip, #0xc000000f
12821 0xe12fff1c, // bx ip
12827 0xe50dc004, // str ip, [sp, #-4]
12829 0xe3ccc103, // bic ip, ip, #0xc0000000
12830 0xe59cc000, // ldr ip, [ip]
12831 0xe3ccc13f, // bic ip, ip, #0xc000000f
12832 0xe12fff1c, // bx ip
12835 template<bool big_endian
>
12837 Output_data_plt_arm_nacl
<big_endian
>::do_fill_first_plt_entry(
12838 unsigned char* pov
,
12839 Arm_address got_address
,
12840 Arm_address plt_address
)
12842 // Write first PLT entry. All but first two words are constants.
12843 const size_t num_first_plt_words
= (sizeof(first_plt_entry
)
12844 / sizeof(first_plt_entry
[0]));
12846 int32_t got_displacement
= got_address
+ 8 - (plt_address
+ 16);
12848 elfcpp::Swap
<32, big_endian
>::writeval
12849 (pov
+ 0, first_plt_entry
[0] | arm_movw_immediate (got_displacement
));
12850 elfcpp::Swap
<32, big_endian
>::writeval
12851 (pov
+ 4, first_plt_entry
[1] | arm_movt_immediate (got_displacement
));
12853 for (size_t i
= 2; i
< num_first_plt_words
; ++i
)
12854 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ i
* 4, first_plt_entry
[i
]);
12857 // Subsequent entries in the PLT.
12859 template<bool big_endian
>
12860 const uint32_t Output_data_plt_arm_nacl
<big_endian
>::plt_entry
[4] =
12862 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12863 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12864 0xe08cc00f, // add ip, ip, pc
12865 0xea000000, // b .Lplt_tail
12868 template<bool big_endian
>
12870 Output_data_plt_arm_nacl
<big_endian
>::do_fill_plt_entry(
12871 unsigned char* pov
,
12872 Arm_address got_address
,
12873 Arm_address plt_address
,
12874 unsigned int got_offset
,
12875 unsigned int plt_offset
)
12877 // Calculate the displacement between the PLT slot and the
12878 // common tail that's part of the special initial PLT slot.
12879 int32_t tail_displacement
= (plt_address
+ (11 * sizeof(uint32_t))
12880 - (plt_address
+ plt_offset
12881 + sizeof(plt_entry
) + sizeof(uint32_t)));
12882 gold_assert((tail_displacement
& 3) == 0);
12883 tail_displacement
>>= 2;
12885 gold_assert ((tail_displacement
& 0xff000000) == 0
12886 || (-tail_displacement
& 0xff000000) == 0);
12888 // Calculate the displacement between the PLT slot and the entry
12889 // in the GOT. The offset accounts for the value produced by
12890 // adding to pc in the penultimate instruction of the PLT stub.
12891 const int32_t got_displacement
= (got_address
+ got_offset
12892 - (plt_address
+ sizeof(plt_entry
)));
12894 elfcpp::Swap
<32, big_endian
>::writeval
12895 (pov
+ 0, plt_entry
[0] | arm_movw_immediate (got_displacement
));
12896 elfcpp::Swap
<32, big_endian
>::writeval
12897 (pov
+ 4, plt_entry
[1] | arm_movt_immediate (got_displacement
));
12898 elfcpp::Swap
<32, big_endian
>::writeval
12899 (pov
+ 8, plt_entry
[2]);
12900 elfcpp::Swap
<32, big_endian
>::writeval
12901 (pov
+ 12, plt_entry
[3] | (tail_displacement
& 0x00ffffff));
12904 // Target selectors.
12906 template<bool big_endian
>
12907 class Target_selector_arm_nacl
12908 : public Target_selector_nacl
<Target_selector_arm
<big_endian
>,
12909 Target_arm_nacl
<big_endian
> >
12912 Target_selector_arm_nacl()
12913 : Target_selector_nacl
<Target_selector_arm
<big_endian
>,
12914 Target_arm_nacl
<big_endian
> >(
12916 big_endian
? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12917 big_endian
? "armelfb_nacl" : "armelf_nacl")
12921 Target_selector_arm_nacl
<false> target_selector_arm
;
12922 Target_selector_arm_nacl
<true> target_selector_armbe
;
12924 } // End anonymous namespace.