daily update
[deliverable/binutils-gdb.git] / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright 2006, 2007, 2008, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the file.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 switch (parameters->size_and_endianness())
113 {
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
117 break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
122 break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
127 break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
132 break;
133 #endif
134 default:
135 gold_unreachable();
136 }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
148
149 // Version number.
150 oview[0] = 1;
151
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
163 {
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
166 // sorted table.
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
169
170 gold_assert(oview_size == 8);
171 }
172 else
173 {
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
179
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
186
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189 &fde_addresses);
190
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
193
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
196
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
200 ++p)
201 {
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
206 pfde += 8;
207 }
208
209 gold_assert(pfde - oview == oview_size);
210 }
211
212 of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
227 {
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
236 {
237 if (size == 32)
238 pc_size = elfcpp::DW_EH_PE_udata4;
239 else if (size == 64)
240 pc_size = elfcpp::DW_EH_PE_udata8;
241 else
242 gold_unreachable();
243 }
244
245 switch (pc_size)
246 {
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
249 if (is_signed)
250 pc = (pc ^ 0x8000) - 0x8000;
251 break;
252
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
257 break;
258
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262 break;
263
264 default:
265 // All other cases were rejected in Eh_frame::read_cie.
266 gold_unreachable();
267 }
268
269 switch (fde_encoding & 0x70)
270 {
271 case 0:
272 break;
273
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
276 break;
277
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
280 break;
281
282 default:
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
285 gold_unreachable();
286 }
287
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290 return pc;
291 }
292
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
298
299 template<int size, bool big_endian>
300 void
301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
304 {
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310 eh_frame_size);
311
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
314 ++p)
315 {
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318 eh_frame_contents,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321 }
322
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324 }
325
326 // Class Fde.
327
328 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
329 // offset of the CIE in OVIEW. FDE_ENCODING is the encoding, from the
330 // CIE. ADDRALIGN is the required alignment. ADDRESS is the virtual
331 // address of OVIEW. Record the FDE pc for EH_FRAME_HDR. Return the
332 // new offset.
333
334 template<int size, bool big_endian>
335 section_offset_type
336 Fde::write(unsigned char* oview, section_offset_type offset,
337 uint64_t address, unsigned int addralign,
338 section_offset_type cie_offset, unsigned char fde_encoding,
339 Eh_frame_hdr* eh_frame_hdr)
340 {
341 gold_assert((offset & (addralign - 1)) == 0);
342
343 size_t length = this->contents_.length();
344
345 // We add 8 when getting the aligned length to account for the
346 // length word and the CIE offset.
347 size_t aligned_full_length = align_address(length + 8, addralign);
348
349 // Write the length of the FDE as a 32-bit word. The length word
350 // does not include the four bytes of the length word itself, but it
351 // does include the offset to the CIE.
352 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
353 aligned_full_length - 4);
354
355 // Write the offset to the CIE as a 32-bit word. This is the
356 // difference between the address of the offset word itself and the
357 // CIE address.
358 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
359 offset + 4 - cie_offset);
360
361 // Copy the rest of the FDE. Note that this is run before
362 // relocation processing is done on this section, so the relocations
363 // will later be applied to the FDE data.
364 memcpy(oview + offset + 8, this->contents_.data(), length);
365
366 // If this FDE is associated with a PLT, fill in the PLT's address
367 // and size.
368 if (this->object_ == NULL)
369 {
370 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
371 Output_data* plt = this->u_.from_linker.plt;
372 uint64_t poffset = plt->address() - (address + offset + 8);
373 int32_t spoffset = static_cast<int32_t>(poffset);
374 off_t psize = plt->data_size();
375 uint32_t upsize = static_cast<uint32_t>(psize);
376 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
377 || static_cast<off_t>(upsize) != psize)
378 gold_warning(_("overflow in PLT unwind data; "
379 "unwinding through PLT may fail"));
380 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
381 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
382 }
383
384 if (aligned_full_length > length + 8)
385 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
386
387 // Tell the exception frame header about this FDE.
388 if (eh_frame_hdr != NULL)
389 eh_frame_hdr->record_fde(offset, fde_encoding);
390
391 return offset + aligned_full_length;
392 }
393
394 // Class Cie.
395
396 // Destructor.
397
398 Cie::~Cie()
399 {
400 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
401 p != this->fdes_.end();
402 ++p)
403 delete *p;
404 }
405
406 // Set the output offset of a CIE. Return the new output offset.
407
408 section_offset_type
409 Cie::set_output_offset(section_offset_type output_offset,
410 unsigned int addralign,
411 Merge_map* merge_map)
412 {
413 size_t length = this->contents_.length();
414
415 // Add 4 for length and 4 for zero CIE identifier tag.
416 length += 8;
417
418 if (this->object_ != NULL)
419 {
420 // Add a mapping so that relocations are applied correctly.
421 merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
422 length, output_offset);
423 }
424
425 length = align_address(length, addralign);
426
427 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
428 p != this->fdes_.end();
429 ++p)
430 {
431 (*p)->add_mapping(output_offset + length, merge_map);
432
433 size_t fde_length = (*p)->length();
434 fde_length = align_address(fde_length, addralign);
435 length += fde_length;
436 }
437
438 return output_offset + length;
439 }
440
441 // Write the CIE to OVIEW starting at OFFSET. EH_FRAME_HDR is for FDE
442 // recording. Round up the bytes to ADDRALIGN. Return the new
443 // offset.
444
445 template<int size, bool big_endian>
446 section_offset_type
447 Cie::write(unsigned char* oview, section_offset_type offset,
448 uint64_t address, unsigned int addralign,
449 Eh_frame_hdr* eh_frame_hdr)
450 {
451 gold_assert((offset & (addralign - 1)) == 0);
452
453 section_offset_type cie_offset = offset;
454
455 size_t length = this->contents_.length();
456
457 // We add 8 when getting the aligned length to account for the
458 // length word and the CIE tag.
459 size_t aligned_full_length = align_address(length + 8, addralign);
460
461 // Write the length of the CIE as a 32-bit word. The length word
462 // does not include the four bytes of the length word itself.
463 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
464 aligned_full_length - 4);
465
466 // Write the tag which marks this as a CIE: a 32-bit zero.
467 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
468
469 // Write out the CIE data.
470 memcpy(oview + offset + 8, this->contents_.data(), length);
471
472 if (aligned_full_length > length + 8)
473 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
474
475 offset += aligned_full_length;
476
477 // Write out the associated FDEs.
478 unsigned char fde_encoding = this->fde_encoding_;
479 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
480 p != this->fdes_.end();
481 ++p)
482 offset = (*p)->write<size, big_endian>(oview, offset, address, addralign,
483 cie_offset, fde_encoding,
484 eh_frame_hdr);
485
486 return offset;
487 }
488
489 // We track all the CIEs we see, and merge them when possible. This
490 // works because each FDE holds an offset to the relevant CIE: we
491 // rewrite the FDEs to point to the merged CIE. This is worthwhile
492 // because in a typical C++ program many FDEs in many different object
493 // files will use the same CIE.
494
495 // An equality operator for Cie.
496
497 bool
498 operator==(const Cie& cie1, const Cie& cie2)
499 {
500 return (cie1.personality_name_ == cie2.personality_name_
501 && cie1.contents_ == cie2.contents_);
502 }
503
504 // A less-than operator for Cie.
505
506 bool
507 operator<(const Cie& cie1, const Cie& cie2)
508 {
509 if (cie1.personality_name_ != cie2.personality_name_)
510 return cie1.personality_name_ < cie2.personality_name_;
511 return cie1.contents_ < cie2.contents_;
512 }
513
514 // Class Eh_frame.
515
516 Eh_frame::Eh_frame()
517 : Output_section_data(Output_data::default_alignment()),
518 eh_frame_hdr_(NULL),
519 cie_offsets_(),
520 unmergeable_cie_offsets_(),
521 merge_map_(),
522 mappings_are_done_(false),
523 final_data_size_(0)
524 {
525 }
526
527 // Skip an LEB128, updating *PP to point to the next character.
528 // Return false if we ran off the end of the string.
529
530 bool
531 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
532 {
533 const unsigned char* p;
534 for (p = *pp; p < pend; ++p)
535 {
536 if ((*p & 0x80) == 0)
537 {
538 *pp = p + 1;
539 return true;
540 }
541 }
542 return false;
543 }
544
545 // Add input section SHNDX in OBJECT to an exception frame section.
546 // SYMBOLS is the contents of the symbol table section (size
547 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
548 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
549 // section applying to SHNDX, or 0 if none, or -1U if more than one.
550 // RELOC_TYPE is the type of the reloc section if there is one, either
551 // SHT_REL or SHT_RELA. We try to parse the input exception frame
552 // data into our data structures. If we can't do it, we return false
553 // to mean that the section should be handled as a normal input
554 // section.
555
556 template<int size, bool big_endian>
557 bool
558 Eh_frame::add_ehframe_input_section(
559 Sized_relobj_file<size, big_endian>* object,
560 const unsigned char* symbols,
561 section_size_type symbols_size,
562 const unsigned char* symbol_names,
563 section_size_type symbol_names_size,
564 unsigned int shndx,
565 unsigned int reloc_shndx,
566 unsigned int reloc_type)
567 {
568 // Get the section contents.
569 section_size_type contents_len;
570 const unsigned char* pcontents = object->section_contents(shndx,
571 &contents_len,
572 false);
573 if (contents_len == 0)
574 return false;
575
576 // If this is the marker section for the end of the data, then
577 // return false to force it to be handled as an ordinary input
578 // section. If we don't do this, we won't correctly handle the case
579 // of unrecognized .eh_frame sections.
580 if (contents_len == 4
581 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
582 return false;
583
584 New_cies new_cies;
585 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
586 symbol_names, symbol_names_size,
587 shndx, reloc_shndx,
588 reloc_type, pcontents,
589 contents_len, &new_cies))
590 {
591 if (this->eh_frame_hdr_ != NULL)
592 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
593
594 for (New_cies::iterator p = new_cies.begin();
595 p != new_cies.end();
596 ++p)
597 delete p->first;
598
599 return false;
600 }
601
602 // Now that we know we are using this section, record any new CIEs
603 // that we found.
604 for (New_cies::const_iterator p = new_cies.begin();
605 p != new_cies.end();
606 ++p)
607 {
608 if (p->second)
609 this->cie_offsets_.insert(p->first);
610 else
611 this->unmergeable_cie_offsets_.push_back(p->first);
612 }
613
614 return true;
615 }
616
617 // The bulk of the implementation of add_ehframe_input_section.
618
619 template<int size, bool big_endian>
620 bool
621 Eh_frame::do_add_ehframe_input_section(
622 Sized_relobj_file<size, big_endian>* object,
623 const unsigned char* symbols,
624 section_size_type symbols_size,
625 const unsigned char* symbol_names,
626 section_size_type symbol_names_size,
627 unsigned int shndx,
628 unsigned int reloc_shndx,
629 unsigned int reloc_type,
630 const unsigned char* pcontents,
631 section_size_type contents_len,
632 New_cies* new_cies)
633 {
634 Track_relocs<size, big_endian> relocs;
635
636 const unsigned char* p = pcontents;
637 const unsigned char* pend = p + contents_len;
638
639 // Get the contents of the reloc section if any.
640 if (!relocs.initialize(object, reloc_shndx, reloc_type))
641 return false;
642
643 // Keep track of which CIEs are at which offsets.
644 Offsets_to_cie cies;
645
646 while (p < pend)
647 {
648 if (pend - p < 4)
649 return false;
650
651 // There shouldn't be any relocations here.
652 if (relocs.advance(p + 4 - pcontents) > 0)
653 return false;
654
655 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
656 p += 4;
657 if (len == 0)
658 {
659 // We should only find a zero-length entry at the end of the
660 // section.
661 if (p < pend)
662 return false;
663 break;
664 }
665 // We don't support a 64-bit .eh_frame.
666 if (len == 0xffffffff)
667 return false;
668 if (static_cast<unsigned int>(pend - p) < len)
669 return false;
670
671 const unsigned char* const pentend = p + len;
672
673 if (pend - p < 4)
674 return false;
675 if (relocs.advance(p + 4 - pcontents) > 0)
676 return false;
677
678 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
679 p += 4;
680
681 if (id == 0)
682 {
683 // CIE.
684 if (!this->read_cie(object, shndx, symbols, symbols_size,
685 symbol_names, symbol_names_size,
686 pcontents, p, pentend, &relocs, &cies,
687 new_cies))
688 return false;
689 }
690 else
691 {
692 // FDE.
693 if (!this->read_fde(object, shndx, symbols, symbols_size,
694 pcontents, id, p, pentend, &relocs, &cies))
695 return false;
696 }
697
698 p = pentend;
699 }
700
701 return true;
702 }
703
704 // Read a CIE. Return false if we can't parse the information.
705
706 template<int size, bool big_endian>
707 bool
708 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
709 unsigned int shndx,
710 const unsigned char* symbols,
711 section_size_type symbols_size,
712 const unsigned char* symbol_names,
713 section_size_type symbol_names_size,
714 const unsigned char* pcontents,
715 const unsigned char* pcie,
716 const unsigned char* pcieend,
717 Track_relocs<size, big_endian>* relocs,
718 Offsets_to_cie* cies,
719 New_cies* new_cies)
720 {
721 bool mergeable = true;
722
723 // We need to find the personality routine if there is one, since we
724 // can only merge CIEs which use the same routine. We also need to
725 // find the FDE encoding if there is one, so that we can read the PC
726 // from the FDE.
727
728 const unsigned char* p = pcie;
729
730 if (pcieend - p < 1)
731 return false;
732 unsigned char version = *p++;
733 if (version != 1 && version != 3)
734 return false;
735
736 const unsigned char* paug = p;
737 const void* paugendv = memchr(p, '\0', pcieend - p);
738 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
739 if (paugend == NULL)
740 return false;
741 p = paugend + 1;
742
743 if (paug[0] == 'e' && paug[1] == 'h')
744 {
745 // This is a CIE from gcc before version 3.0. We can't merge
746 // these. We can still read the FDEs.
747 mergeable = false;
748 paug += 2;
749 if (*paug != '\0')
750 return false;
751 if (pcieend - p < size / 8)
752 return false;
753 p += size / 8;
754 }
755
756 // Skip the code alignment.
757 if (!skip_leb128(&p, pcieend))
758 return false;
759
760 // Skip the data alignment.
761 if (!skip_leb128(&p, pcieend))
762 return false;
763
764 // Skip the return column.
765 if (version == 1)
766 {
767 if (pcieend - p < 1)
768 return false;
769 ++p;
770 }
771 else
772 {
773 if (!skip_leb128(&p, pcieend))
774 return false;
775 }
776
777 if (*paug == 'z')
778 {
779 ++paug;
780 // Skip the augmentation size.
781 if (!skip_leb128(&p, pcieend))
782 return false;
783 }
784
785 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
786 int per_offset = -1;
787 while (*paug != '\0')
788 {
789 switch (*paug)
790 {
791 case 'L': // LSDA encoding.
792 if (pcieend - p < 1)
793 return false;
794 ++p;
795 break;
796
797 case 'R': // FDE encoding.
798 if (pcieend - p < 1)
799 return false;
800 fde_encoding = *p;
801 switch (fde_encoding & 7)
802 {
803 case elfcpp::DW_EH_PE_absptr:
804 case elfcpp::DW_EH_PE_udata2:
805 case elfcpp::DW_EH_PE_udata4:
806 case elfcpp::DW_EH_PE_udata8:
807 break;
808 default:
809 // We don't expect to see any other cases here, and
810 // we're not prepared to handle them.
811 return false;
812 }
813 ++p;
814 break;
815
816 case 'S':
817 break;
818
819 case 'P':
820 // Personality encoding.
821 {
822 if (pcieend - p < 1)
823 return false;
824 unsigned char per_encoding = *p;
825 ++p;
826
827 if ((per_encoding & 0x60) == 0x60)
828 return false;
829 unsigned int per_width;
830 switch (per_encoding & 7)
831 {
832 case elfcpp::DW_EH_PE_udata2:
833 per_width = 2;
834 break;
835 case elfcpp::DW_EH_PE_udata4:
836 per_width = 4;
837 break;
838 case elfcpp::DW_EH_PE_udata8:
839 per_width = 8;
840 break;
841 case elfcpp::DW_EH_PE_absptr:
842 per_width = size / 8;
843 break;
844 default:
845 return false;
846 }
847
848 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
849 {
850 unsigned int len = p - pcie;
851 len += per_width - 1;
852 len &= ~ (per_width - 1);
853 if (static_cast<unsigned int>(pcieend - p) < len)
854 return false;
855 p += len;
856 }
857
858 per_offset = p - pcontents;
859
860 if (static_cast<unsigned int>(pcieend - p) < per_width)
861 return false;
862 p += per_width;
863 }
864 break;
865
866 default:
867 return false;
868 }
869
870 ++paug;
871 }
872
873 const char* personality_name = "";
874 if (per_offset != -1)
875 {
876 if (relocs->advance(per_offset) > 0)
877 return false;
878 if (relocs->next_offset() != per_offset)
879 return false;
880
881 unsigned int personality_symndx = relocs->next_symndx();
882 if (personality_symndx == -1U)
883 return false;
884
885 if (personality_symndx < object->local_symbol_count())
886 {
887 // We can only merge this CIE if the personality routine is
888 // a global symbol. We can still read the FDEs.
889 mergeable = false;
890 }
891 else
892 {
893 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
894 if (personality_symndx >= symbols_size / sym_size)
895 return false;
896 elfcpp::Sym<size, big_endian> sym(symbols
897 + (personality_symndx * sym_size));
898 unsigned int name_offset = sym.get_st_name();
899 if (name_offset >= symbol_names_size)
900 return false;
901 personality_name = (reinterpret_cast<const char*>(symbol_names)
902 + name_offset);
903 }
904
905 int r = relocs->advance(per_offset + 1);
906 gold_assert(r == 1);
907 }
908
909 if (relocs->advance(pcieend - pcontents) > 0)
910 return false;
911
912 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
913 personality_name, pcie, pcieend - pcie);
914 Cie* cie_pointer = NULL;
915 if (mergeable)
916 {
917 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
918 if (find_cie != this->cie_offsets_.end())
919 cie_pointer = *find_cie;
920 else
921 {
922 // See if we already saw this CIE in this object file.
923 for (New_cies::const_iterator pc = new_cies->begin();
924 pc != new_cies->end();
925 ++pc)
926 {
927 if (*(pc->first) == cie)
928 {
929 cie_pointer = pc->first;
930 break;
931 }
932 }
933 }
934 }
935
936 if (cie_pointer == NULL)
937 {
938 cie_pointer = new Cie(cie);
939 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
940 }
941 else
942 {
943 // We are deleting this CIE. Record that in our mapping from
944 // input sections to the output section. At this point we don't
945 // know for sure that we are doing a special mapping for this
946 // input section, but that's OK--if we don't do a special
947 // mapping, nobody will ever ask for the mapping we add here.
948 this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
949 pcieend - (pcie - 8), -1);
950 }
951
952 // Record this CIE plus the offset in the input section.
953 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
954
955 return true;
956 }
957
958 // Read an FDE. Return false if we can't parse the information.
959
960 template<int size, bool big_endian>
961 bool
962 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
963 unsigned int shndx,
964 const unsigned char* symbols,
965 section_size_type symbols_size,
966 const unsigned char* pcontents,
967 unsigned int offset,
968 const unsigned char* pfde,
969 const unsigned char* pfdeend,
970 Track_relocs<size, big_endian>* relocs,
971 Offsets_to_cie* cies)
972 {
973 // OFFSET is the distance between the 4 bytes before PFDE to the
974 // start of the CIE. The offset we recorded for the CIE is 8 bytes
975 // after the start of the CIE--after the length and the zero tag.
976 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
977 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
978 if (pcie == cies->end())
979 return false;
980 Cie* cie = pcie->second;
981
982 // The FDE should start with a reloc to the start of the code which
983 // it describes.
984 if (relocs->advance(pfde - pcontents) > 0)
985 return false;
986
987 if (relocs->next_offset() != pfde - pcontents)
988 return false;
989
990 unsigned int symndx = relocs->next_symndx();
991 if (symndx == -1U)
992 return false;
993
994 // There can be another reloc in the FDE, if the CIE specifies an
995 // LSDA (language specific data area). We currently don't care. We
996 // will care later if we want to optimize the LSDA from an absolute
997 // pointer to a PC relative offset when generating a shared library.
998 relocs->advance(pfdeend - pcontents);
999
1000 unsigned int fde_shndx;
1001 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1002 if (symndx >= symbols_size / sym_size)
1003 return false;
1004 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1005 bool is_ordinary;
1006 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1007 &is_ordinary);
1008
1009 if (is_ordinary
1010 && fde_shndx != elfcpp::SHN_UNDEF
1011 && fde_shndx < object->shnum()
1012 && !object->is_section_included(fde_shndx))
1013 {
1014 // This FDE applies to a section which we are discarding. We
1015 // can discard this FDE.
1016 this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
1017 pfdeend - (pfde - 8), -1);
1018 return true;
1019 }
1020
1021 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1022 pfde, pfdeend - pfde));
1023
1024 return true;
1025 }
1026
1027 // Add unwind information for a PLT.
1028
1029 void
1030 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1031 size_t cie_length, const unsigned char* fde_data,
1032 size_t fde_length)
1033 {
1034 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1035 cie_data, cie_length);
1036 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1037 Cie* pcie;
1038 if (find_cie != this->cie_offsets_.end())
1039 pcie = *find_cie;
1040 else
1041 {
1042 pcie = new Cie(cie);
1043 this->cie_offsets_.insert(pcie);
1044 }
1045
1046 Fde* fde = new Fde(plt, fde_data, fde_length);
1047 pcie->add_fde(fde);
1048 }
1049
1050 // Return the number of FDEs.
1051
1052 unsigned int
1053 Eh_frame::fde_count() const
1054 {
1055 unsigned int ret = 0;
1056 for (Unmergeable_cie_offsets::const_iterator p =
1057 this->unmergeable_cie_offsets_.begin();
1058 p != this->unmergeable_cie_offsets_.end();
1059 ++p)
1060 ret += (*p)->fde_count();
1061 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1062 p != this->cie_offsets_.end();
1063 ++p)
1064 ret += (*p)->fde_count();
1065 return ret;
1066 }
1067
1068 // Set the final data size.
1069
1070 void
1071 Eh_frame::set_final_data_size()
1072 {
1073 // We can be called more than once if Layout::set_segment_offsets
1074 // finds a better mapping. We don't want to add all the mappings
1075 // again.
1076 if (this->mappings_are_done_)
1077 {
1078 this->set_data_size(this->final_data_size_);
1079 return;
1080 }
1081
1082 section_offset_type output_offset = 0;
1083
1084 for (Unmergeable_cie_offsets::iterator p =
1085 this->unmergeable_cie_offsets_.begin();
1086 p != this->unmergeable_cie_offsets_.end();
1087 ++p)
1088 output_offset = (*p)->set_output_offset(output_offset,
1089 this->addralign(),
1090 &this->merge_map_);
1091
1092 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1093 p != this->cie_offsets_.end();
1094 ++p)
1095 output_offset = (*p)->set_output_offset(output_offset,
1096 this->addralign(),
1097 &this->merge_map_);
1098
1099 this->mappings_are_done_ = true;
1100 this->final_data_size_ = output_offset;
1101
1102 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1103 this->set_data_size(output_offset);
1104 }
1105
1106 // Return an output offset for an input offset.
1107
1108 bool
1109 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1110 section_offset_type offset,
1111 section_offset_type* poutput) const
1112 {
1113 return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1114 }
1115
1116 // Return whether this is the merge section for an input section.
1117
1118 bool
1119 Eh_frame::do_is_merge_section_for(const Relobj* object,
1120 unsigned int shndx) const
1121 {
1122 return this->merge_map_.is_merge_section_for(object, shndx);
1123 }
1124
1125 // Write the data to the output file.
1126
1127 void
1128 Eh_frame::do_write(Output_file* of)
1129 {
1130 const off_t offset = this->offset();
1131 const off_t oview_size = this->data_size();
1132 unsigned char* const oview = of->get_output_view(offset, oview_size);
1133
1134 switch (parameters->size_and_endianness())
1135 {
1136 #ifdef HAVE_TARGET_32_LITTLE
1137 case Parameters::TARGET_32_LITTLE:
1138 this->do_sized_write<32, false>(oview);
1139 break;
1140 #endif
1141 #ifdef HAVE_TARGET_32_BIG
1142 case Parameters::TARGET_32_BIG:
1143 this->do_sized_write<32, true>(oview);
1144 break;
1145 #endif
1146 #ifdef HAVE_TARGET_64_LITTLE
1147 case Parameters::TARGET_64_LITTLE:
1148 this->do_sized_write<64, false>(oview);
1149 break;
1150 #endif
1151 #ifdef HAVE_TARGET_64_BIG
1152 case Parameters::TARGET_64_BIG:
1153 this->do_sized_write<64, true>(oview);
1154 break;
1155 #endif
1156 default:
1157 gold_unreachable();
1158 }
1159
1160 of->write_output_view(offset, oview_size, oview);
1161 }
1162
1163 // Write the data to the output file--template version.
1164
1165 template<int size, bool big_endian>
1166 void
1167 Eh_frame::do_sized_write(unsigned char* oview)
1168 {
1169 uint64_t address = this->address();
1170 unsigned int addralign = this->addralign();
1171 section_offset_type o = 0;
1172 for (Unmergeable_cie_offsets::iterator p =
1173 this->unmergeable_cie_offsets_.begin();
1174 p != this->unmergeable_cie_offsets_.end();
1175 ++p)
1176 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1177 this->eh_frame_hdr_);
1178 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1179 p != this->cie_offsets_.end();
1180 ++p)
1181 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1182 this->eh_frame_hdr_);
1183 }
1184
1185 #ifdef HAVE_TARGET_32_LITTLE
1186 template
1187 bool
1188 Eh_frame::add_ehframe_input_section<32, false>(
1189 Sized_relobj_file<32, false>* object,
1190 const unsigned char* symbols,
1191 section_size_type symbols_size,
1192 const unsigned char* symbol_names,
1193 section_size_type symbol_names_size,
1194 unsigned int shndx,
1195 unsigned int reloc_shndx,
1196 unsigned int reloc_type);
1197 #endif
1198
1199 #ifdef HAVE_TARGET_32_BIG
1200 template
1201 bool
1202 Eh_frame::add_ehframe_input_section<32, true>(
1203 Sized_relobj_file<32, true>* object,
1204 const unsigned char* symbols,
1205 section_size_type symbols_size,
1206 const unsigned char* symbol_names,
1207 section_size_type symbol_names_size,
1208 unsigned int shndx,
1209 unsigned int reloc_shndx,
1210 unsigned int reloc_type);
1211 #endif
1212
1213 #ifdef HAVE_TARGET_64_LITTLE
1214 template
1215 bool
1216 Eh_frame::add_ehframe_input_section<64, false>(
1217 Sized_relobj_file<64, false>* object,
1218 const unsigned char* symbols,
1219 section_size_type symbols_size,
1220 const unsigned char* symbol_names,
1221 section_size_type symbol_names_size,
1222 unsigned int shndx,
1223 unsigned int reloc_shndx,
1224 unsigned int reloc_type);
1225 #endif
1226
1227 #ifdef HAVE_TARGET_64_BIG
1228 template
1229 bool
1230 Eh_frame::add_ehframe_input_section<64, true>(
1231 Sized_relobj_file<64, true>* object,
1232 const unsigned char* symbols,
1233 section_size_type symbols_size,
1234 const unsigned char* symbol_names,
1235 section_size_type symbol_names_size,
1236 unsigned int shndx,
1237 unsigned int reloc_shndx,
1238 unsigned int reloc_type);
1239 #endif
1240
1241 } // End namespace gold.
This page took 0.058685 seconds and 4 git commands to generate.