Always display addend as signed hex number
[deliverable/binutils-gdb.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether to check assertions.
58 bool check_assertions;
59 // Whether expressions can refer to the dot symbol. The dot symbol
60 // is only available within a SECTIONS clause.
61 bool is_dot_available;
62 // The current value of the dot symbol.
63 uint64_t dot_value;
64 // The section in which the dot symbol is defined; this is NULL if
65 // it is absolute.
66 Output_section* dot_section;
67 // Points to where the section of the result should be stored.
68 Output_section** result_section_pointer;
69 // Pointer to where the alignment of the result should be stored.
70 uint64_t* result_alignment_pointer;
71 };
72
73 // Evaluate an expression.
74
75 uint64_t
76 Expression::eval(const Symbol_table* symtab, const Layout* layout,
77 bool check_assertions)
78 {
79 return this->eval_maybe_dot(symtab, layout, check_assertions,
80 false, 0, NULL, NULL, NULL, false);
81 }
82
83 // Evaluate an expression which may refer to the dot symbol.
84
85 uint64_t
86 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
87 bool check_assertions, uint64_t dot_value,
88 Output_section* dot_section,
89 Output_section** result_section_pointer,
90 uint64_t* result_alignment_pointer,
91 bool is_section_dot_assignment)
92 {
93 return this->eval_maybe_dot(symtab, layout, check_assertions, true,
94 dot_value, dot_section, result_section_pointer,
95 result_alignment_pointer,
96 is_section_dot_assignment);
97 }
98
99 // Evaluate an expression which may or may not refer to the dot
100 // symbol.
101
102 uint64_t
103 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
104 bool check_assertions, bool is_dot_available,
105 uint64_t dot_value, Output_section* dot_section,
106 Output_section** result_section_pointer,
107 uint64_t* result_alignment_pointer,
108 bool is_section_dot_assignment)
109 {
110 Expression_eval_info eei;
111 eei.symtab = symtab;
112 eei.layout = layout;
113 eei.check_assertions = check_assertions;
114 eei.is_dot_available = is_dot_available;
115 eei.dot_value = dot_value;
116 eei.dot_section = dot_section;
117
118 // We assume the value is absolute, and only set this to a section
119 // if we find a section-relative reference.
120 if (result_section_pointer != NULL)
121 *result_section_pointer = NULL;
122 eei.result_section_pointer = result_section_pointer;
123
124 eei.result_alignment_pointer = result_alignment_pointer;
125
126 uint64_t val = this->value(&eei);
127
128 // If this is an assignment to dot within a section, and the value
129 // is absolute, treat it as a section-relative offset.
130 if (is_section_dot_assignment && *result_section_pointer == NULL)
131 {
132 gold_assert(dot_section != NULL);
133 val += dot_section->address();
134 *result_section_pointer = dot_section;
135 }
136 return val;
137 }
138
139 // A number.
140
141 class Integer_expression : public Expression
142 {
143 public:
144 Integer_expression(uint64_t val)
145 : val_(val)
146 { }
147
148 uint64_t
149 value(const Expression_eval_info*)
150 { return this->val_; }
151
152 void
153 print(FILE* f) const
154 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
155
156 private:
157 uint64_t val_;
158 };
159
160 extern "C" Expression*
161 script_exp_integer(uint64_t val)
162 {
163 return new Integer_expression(val);
164 }
165
166 // An expression whose value is the value of a symbol.
167
168 class Symbol_expression : public Expression
169 {
170 public:
171 Symbol_expression(const char* name, size_t length)
172 : name_(name, length)
173 { }
174
175 uint64_t
176 value(const Expression_eval_info*);
177
178 void
179 print(FILE* f) const
180 { fprintf(f, "%s", this->name_.c_str()); }
181
182 private:
183 std::string name_;
184 };
185
186 uint64_t
187 Symbol_expression::value(const Expression_eval_info* eei)
188 {
189 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
190 if (sym == NULL || !sym->is_defined())
191 {
192 gold_error(_("undefined symbol '%s' referenced in expression"),
193 this->name_.c_str());
194 return 0;
195 }
196
197 if (eei->result_section_pointer != NULL)
198 *eei->result_section_pointer = sym->output_section();
199
200 if (parameters->target().get_size() == 32)
201 return eei->symtab->get_sized_symbol<32>(sym)->value();
202 else if (parameters->target().get_size() == 64)
203 return eei->symtab->get_sized_symbol<64>(sym)->value();
204 else
205 gold_unreachable();
206 }
207
208 // An expression whose value is the value of the special symbol ".".
209 // This is only valid within a SECTIONS clause.
210
211 class Dot_expression : public Expression
212 {
213 public:
214 Dot_expression()
215 { }
216
217 uint64_t
218 value(const Expression_eval_info*);
219
220 void
221 print(FILE* f) const
222 { fprintf(f, "."); }
223 };
224
225 uint64_t
226 Dot_expression::value(const Expression_eval_info* eei)
227 {
228 if (!eei->is_dot_available)
229 {
230 gold_error(_("invalid reference to dot symbol outside of "
231 "SECTIONS clause"));
232 return 0;
233 }
234 if (eei->result_section_pointer != NULL)
235 *eei->result_section_pointer = eei->dot_section;
236 return eei->dot_value;
237 }
238
239 // A string. This is either the name of a symbol, or ".".
240
241 extern "C" Expression*
242 script_exp_string(const char* name, size_t length)
243 {
244 if (length == 1 && name[0] == '.')
245 return new Dot_expression();
246 else
247 return new Symbol_expression(name, length);
248 }
249
250 // A unary expression.
251
252 class Unary_expression : public Expression
253 {
254 public:
255 Unary_expression(Expression* arg)
256 : arg_(arg)
257 { }
258
259 ~Unary_expression()
260 { delete this->arg_; }
261
262 protected:
263 uint64_t
264 arg_value(const Expression_eval_info* eei,
265 Output_section** arg_section_pointer) const
266 {
267 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
268 eei->check_assertions,
269 eei->is_dot_available,
270 eei->dot_value,
271 eei->dot_section,
272 arg_section_pointer,
273 eei->result_alignment_pointer,
274 false);
275 }
276
277 void
278 arg_print(FILE* f) const
279 { this->arg_->print(f); }
280
281 private:
282 Expression* arg_;
283 };
284
285 // Handle unary operators. We use a preprocessor macro as a hack to
286 // capture the C operator.
287
288 #define UNARY_EXPRESSION(NAME, OPERATOR) \
289 class Unary_ ## NAME : public Unary_expression \
290 { \
291 public: \
292 Unary_ ## NAME(Expression* arg) \
293 : Unary_expression(arg) \
294 { } \
295 \
296 uint64_t \
297 value(const Expression_eval_info* eei) \
298 { \
299 Output_section* arg_section; \
300 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
301 if (arg_section != NULL && parameters->options().relocatable()) \
302 gold_warning(_("unary " #NAME " applied to section " \
303 "relative value")); \
304 return ret; \
305 } \
306 \
307 void \
308 print(FILE* f) const \
309 { \
310 fprintf(f, "(%s ", #OPERATOR); \
311 this->arg_print(f); \
312 fprintf(f, ")"); \
313 } \
314 }; \
315 \
316 extern "C" Expression* \
317 script_exp_unary_ ## NAME(Expression* arg) \
318 { \
319 return new Unary_ ## NAME(arg); \
320 }
321
322 UNARY_EXPRESSION(minus, -)
323 UNARY_EXPRESSION(logical_not, !)
324 UNARY_EXPRESSION(bitwise_not, ~)
325
326 // A binary expression.
327
328 class Binary_expression : public Expression
329 {
330 public:
331 Binary_expression(Expression* left, Expression* right)
332 : left_(left), right_(right)
333 { }
334
335 ~Binary_expression()
336 {
337 delete this->left_;
338 delete this->right_;
339 }
340
341 protected:
342 uint64_t
343 left_value(const Expression_eval_info* eei,
344 Output_section** section_pointer,
345 uint64_t* alignment_pointer) const
346 {
347 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
348 eei->check_assertions,
349 eei->is_dot_available,
350 eei->dot_value,
351 eei->dot_section,
352 section_pointer,
353 alignment_pointer,
354 false);
355 }
356
357 uint64_t
358 right_value(const Expression_eval_info* eei,
359 Output_section** section_pointer,
360 uint64_t* alignment_pointer) const
361 {
362 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
363 eei->check_assertions,
364 eei->is_dot_available,
365 eei->dot_value,
366 eei->dot_section,
367 section_pointer,
368 alignment_pointer,
369 false);
370 }
371
372 void
373 left_print(FILE* f) const
374 { this->left_->print(f); }
375
376 void
377 right_print(FILE* f) const
378 { this->right_->print(f); }
379
380 // This is a call to function FUNCTION_NAME. Print it. This is for
381 // debugging.
382 void
383 print_function(FILE* f, const char* function_name) const
384 {
385 fprintf(f, "%s(", function_name);
386 this->left_print(f);
387 fprintf(f, ", ");
388 this->right_print(f);
389 fprintf(f, ")");
390 }
391
392 private:
393 Expression* left_;
394 Expression* right_;
395 };
396
397 // Handle binary operators. We use a preprocessor macro as a hack to
398 // capture the C operator. KEEP_LEFT means that if the left operand
399 // is section relative and the right operand is not, the result uses
400 // the same section as the left operand. KEEP_RIGHT is the same with
401 // left and right swapped. IS_DIV means that we need to give an error
402 // if the right operand is zero. WARN means that we should warn if
403 // used on section relative values in a relocatable link. We always
404 // warn if used on values in different sections in a relocatable link.
405
406 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
407 class Binary_ ## NAME : public Binary_expression \
408 { \
409 public: \
410 Binary_ ## NAME(Expression* left, Expression* right) \
411 : Binary_expression(left, right) \
412 { } \
413 \
414 uint64_t \
415 value(const Expression_eval_info* eei) \
416 { \
417 Output_section* left_section; \
418 uint64_t left_alignment = 0; \
419 uint64_t left = this->left_value(eei, &left_section, \
420 &left_alignment); \
421 Output_section* right_section; \
422 uint64_t right_alignment = 0; \
423 uint64_t right = this->right_value(eei, &right_section, \
424 &right_alignment); \
425 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
426 { \
427 if (eei->result_section_pointer != NULL) \
428 *eei->result_section_pointer = right_section; \
429 if (eei->result_alignment_pointer != NULL \
430 && right_alignment > *eei->result_alignment_pointer) \
431 *eei->result_alignment_pointer = right_alignment; \
432 } \
433 else if (KEEP_LEFT \
434 && left_section != NULL \
435 && right_section == NULL) \
436 { \
437 if (eei->result_section_pointer != NULL) \
438 *eei->result_section_pointer = left_section; \
439 if (eei->result_alignment_pointer != NULL \
440 && left_alignment > *eei->result_alignment_pointer) \
441 *eei->result_alignment_pointer = left_alignment; \
442 } \
443 else if ((WARN || left_section != right_section) \
444 && (left_section != NULL || right_section != NULL) \
445 && parameters->options().relocatable()) \
446 gold_warning(_("binary " #NAME " applied to section " \
447 "relative value")); \
448 if (IS_DIV && right == 0) \
449 { \
450 gold_error(_(#NAME " by zero")); \
451 return 0; \
452 } \
453 return left OPERATOR right; \
454 } \
455 \
456 void \
457 print(FILE* f) const \
458 { \
459 fprintf(f, "("); \
460 this->left_print(f); \
461 fprintf(f, " %s ", #OPERATOR); \
462 this->right_print(f); \
463 fprintf(f, ")"); \
464 } \
465 }; \
466 \
467 extern "C" Expression* \
468 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
469 { \
470 return new Binary_ ## NAME(left, right); \
471 }
472
473 BINARY_EXPRESSION(mult, *, false, false, false, true)
474 BINARY_EXPRESSION(div, /, false, false, true, true)
475 BINARY_EXPRESSION(mod, %, false, false, true, true)
476 BINARY_EXPRESSION(add, +, true, true, false, true)
477 BINARY_EXPRESSION(sub, -, true, false, false, false)
478 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
479 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
480 BINARY_EXPRESSION(eq, ==, false, false, false, false)
481 BINARY_EXPRESSION(ne, !=, false, false, false, false)
482 BINARY_EXPRESSION(le, <=, false, false, false, false)
483 BINARY_EXPRESSION(ge, >=, false, false, false, false)
484 BINARY_EXPRESSION(lt, <, false, false, false, false)
485 BINARY_EXPRESSION(gt, >, false, false, false, false)
486 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
487 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
488 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
489 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
490 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
491
492 // A trinary expression.
493
494 class Trinary_expression : public Expression
495 {
496 public:
497 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
498 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
499 { }
500
501 ~Trinary_expression()
502 {
503 delete this->arg1_;
504 delete this->arg2_;
505 delete this->arg3_;
506 }
507
508 protected:
509 uint64_t
510 arg1_value(const Expression_eval_info* eei,
511 Output_section** section_pointer) const
512 {
513 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
514 eei->check_assertions,
515 eei->is_dot_available,
516 eei->dot_value,
517 eei->dot_section,
518 section_pointer,
519 NULL,
520 false);
521 }
522
523 uint64_t
524 arg2_value(const Expression_eval_info* eei,
525 Output_section** section_pointer,
526 uint64_t* alignment_pointer) const
527 {
528 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
529 eei->check_assertions,
530 eei->is_dot_available,
531 eei->dot_value,
532 eei->dot_section,
533 section_pointer,
534 alignment_pointer,
535 false);
536 }
537
538 uint64_t
539 arg3_value(const Expression_eval_info* eei,
540 Output_section** section_pointer,
541 uint64_t* alignment_pointer) const
542 {
543 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
544 eei->check_assertions,
545 eei->is_dot_available,
546 eei->dot_value,
547 eei->dot_section,
548 section_pointer,
549 alignment_pointer,
550 false);
551 }
552
553 void
554 arg1_print(FILE* f) const
555 { this->arg1_->print(f); }
556
557 void
558 arg2_print(FILE* f) const
559 { this->arg2_->print(f); }
560
561 void
562 arg3_print(FILE* f) const
563 { this->arg3_->print(f); }
564
565 private:
566 Expression* arg1_;
567 Expression* arg2_;
568 Expression* arg3_;
569 };
570
571 // The conditional operator.
572
573 class Trinary_cond : public Trinary_expression
574 {
575 public:
576 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
577 : Trinary_expression(arg1, arg2, arg3)
578 { }
579
580 uint64_t
581 value(const Expression_eval_info* eei)
582 {
583 Output_section* arg1_section;
584 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
585 return (arg1
586 ? this->arg2_value(eei, eei->result_section_pointer,
587 eei->result_alignment_pointer)
588 : this->arg3_value(eei, eei->result_section_pointer,
589 eei->result_alignment_pointer));
590 }
591
592 void
593 print(FILE* f) const
594 {
595 fprintf(f, "(");
596 this->arg1_print(f);
597 fprintf(f, " ? ");
598 this->arg2_print(f);
599 fprintf(f, " : ");
600 this->arg3_print(f);
601 fprintf(f, ")");
602 }
603 };
604
605 extern "C" Expression*
606 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
607 {
608 return new Trinary_cond(arg1, arg2, arg3);
609 }
610
611 // Max function.
612
613 class Max_expression : public Binary_expression
614 {
615 public:
616 Max_expression(Expression* left, Expression* right)
617 : Binary_expression(left, right)
618 { }
619
620 uint64_t
621 value(const Expression_eval_info* eei)
622 {
623 Output_section* left_section;
624 uint64_t left_alignment;
625 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
626 Output_section* right_section;
627 uint64_t right_alignment;
628 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
629 if (left_section == right_section)
630 {
631 if (eei->result_section_pointer != NULL)
632 *eei->result_section_pointer = left_section;
633 }
634 else if ((left_section != NULL || right_section != NULL)
635 && parameters->options().relocatable())
636 gold_warning(_("max applied to section relative value"));
637 if (eei->result_alignment_pointer != NULL)
638 {
639 uint64_t ra = *eei->result_alignment_pointer;
640 if (left > right)
641 ra = std::max(ra, left_alignment);
642 else if (right > left)
643 ra = std::max(ra, right_alignment);
644 else
645 ra = std::max(ra, std::max(left_alignment, right_alignment));
646 *eei->result_alignment_pointer = ra;
647 }
648 return std::max(left, right);
649 }
650
651 void
652 print(FILE* f) const
653 { this->print_function(f, "MAX"); }
654 };
655
656 extern "C" Expression*
657 script_exp_function_max(Expression* left, Expression* right)
658 {
659 return new Max_expression(left, right);
660 }
661
662 // Min function.
663
664 class Min_expression : public Binary_expression
665 {
666 public:
667 Min_expression(Expression* left, Expression* right)
668 : Binary_expression(left, right)
669 { }
670
671 uint64_t
672 value(const Expression_eval_info* eei)
673 {
674 Output_section* left_section;
675 uint64_t left_alignment;
676 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
677 Output_section* right_section;
678 uint64_t right_alignment;
679 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
680 if (left_section == right_section)
681 {
682 if (eei->result_section_pointer != NULL)
683 *eei->result_section_pointer = left_section;
684 }
685 else if ((left_section != NULL || right_section != NULL)
686 && parameters->options().relocatable())
687 gold_warning(_("min applied to section relative value"));
688 if (eei->result_alignment_pointer != NULL)
689 {
690 uint64_t ra = *eei->result_alignment_pointer;
691 if (left < right)
692 ra = std::max(ra, left_alignment);
693 else if (right < left)
694 ra = std::max(ra, right_alignment);
695 else
696 ra = std::max(ra, std::max(left_alignment, right_alignment));
697 *eei->result_alignment_pointer = ra;
698 }
699 return std::min(left, right);
700 }
701
702 void
703 print(FILE* f) const
704 { this->print_function(f, "MIN"); }
705 };
706
707 extern "C" Expression*
708 script_exp_function_min(Expression* left, Expression* right)
709 {
710 return new Min_expression(left, right);
711 }
712
713 // Class Section_expression. This is a parent class used for
714 // functions which take the name of an output section.
715
716 class Section_expression : public Expression
717 {
718 public:
719 Section_expression(const char* section_name, size_t section_name_len)
720 : section_name_(section_name, section_name_len)
721 { }
722
723 uint64_t
724 value(const Expression_eval_info*);
725
726 void
727 print(FILE* f) const
728 { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
729
730 protected:
731 // The child class must implement this.
732 virtual uint64_t
733 value_from_output_section(const Expression_eval_info*,
734 Output_section*) = 0;
735
736 // The child class must implement this.
737 virtual uint64_t
738 value_from_script_output_section(uint64_t address, uint64_t load_address,
739 uint64_t addralign, uint64_t size) = 0;
740
741 // The child class must implement this.
742 virtual const char*
743 function_name() const = 0;
744
745 private:
746 std::string section_name_;
747 };
748
749 uint64_t
750 Section_expression::value(const Expression_eval_info* eei)
751 {
752 const char* section_name = this->section_name_.c_str();
753 Output_section* os = eei->layout->find_output_section(section_name);
754 if (os != NULL)
755 return this->value_from_output_section(eei, os);
756
757 uint64_t address;
758 uint64_t load_address;
759 uint64_t addralign;
760 uint64_t size;
761 const Script_options* ss = eei->layout->script_options();
762 if (ss->saw_sections_clause())
763 {
764 if (ss->script_sections()->get_output_section_info(section_name,
765 &address,
766 &load_address,
767 &addralign,
768 &size))
769 return this->value_from_script_output_section(address, load_address,
770 addralign, size);
771 }
772
773 gold_error("%s called on nonexistent output section '%s'",
774 this->function_name(), section_name);
775 return 0;
776 }
777
778 // ABSOLUTE function.
779
780 class Absolute_expression : public Unary_expression
781 {
782 public:
783 Absolute_expression(Expression* arg)
784 : Unary_expression(arg)
785 { }
786
787 uint64_t
788 value(const Expression_eval_info* eei)
789 {
790 uint64_t ret = this->arg_value(eei, NULL);
791 // Force the value to be absolute.
792 if (eei->result_section_pointer != NULL)
793 *eei->result_section_pointer = NULL;
794 return ret;
795 }
796
797 void
798 print(FILE* f) const
799 {
800 fprintf(f, "ABSOLUTE(");
801 this->arg_print(f);
802 fprintf(f, ")");
803 }
804 };
805
806 extern "C" Expression*
807 script_exp_function_absolute(Expression* arg)
808 {
809 return new Absolute_expression(arg);
810 }
811
812 // ALIGN function.
813
814 class Align_expression : public Binary_expression
815 {
816 public:
817 Align_expression(Expression* left, Expression* right)
818 : Binary_expression(left, right)
819 { }
820
821 uint64_t
822 value(const Expression_eval_info* eei)
823 {
824 Output_section* align_section;
825 uint64_t align = this->right_value(eei, &align_section, NULL);
826 if (align_section != NULL
827 && parameters->options().relocatable())
828 gold_warning(_("aligning to section relative value"));
829
830 if (eei->result_alignment_pointer != NULL
831 && align > *eei->result_alignment_pointer)
832 {
833 uint64_t a = align;
834 while ((a & (a - 1)) != 0)
835 a &= a - 1;
836 *eei->result_alignment_pointer = a;
837 }
838
839 uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
840 if (align <= 1)
841 return value;
842 return ((value + align - 1) / align) * align;
843 }
844
845 void
846 print(FILE* f) const
847 { this->print_function(f, "ALIGN"); }
848 };
849
850 extern "C" Expression*
851 script_exp_function_align(Expression* left, Expression* right)
852 {
853 return new Align_expression(left, right);
854 }
855
856 // ASSERT function.
857
858 class Assert_expression : public Unary_expression
859 {
860 public:
861 Assert_expression(Expression* arg, const char* message, size_t length)
862 : Unary_expression(arg), message_(message, length)
863 { }
864
865 uint64_t
866 value(const Expression_eval_info* eei)
867 {
868 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
869 if (!value && eei->check_assertions)
870 gold_error("%s", this->message_.c_str());
871 return value;
872 }
873
874 void
875 print(FILE* f) const
876 {
877 fprintf(f, "ASSERT(");
878 this->arg_print(f);
879 fprintf(f, ", %s)", this->message_.c_str());
880 }
881
882 private:
883 std::string message_;
884 };
885
886 extern "C" Expression*
887 script_exp_function_assert(Expression* expr, const char* message,
888 size_t length)
889 {
890 return new Assert_expression(expr, message, length);
891 }
892
893 // ADDR function.
894
895 class Addr_expression : public Section_expression
896 {
897 public:
898 Addr_expression(const char* section_name, size_t section_name_len)
899 : Section_expression(section_name, section_name_len)
900 { }
901
902 protected:
903 uint64_t
904 value_from_output_section(const Expression_eval_info* eei,
905 Output_section* os)
906 {
907 if (eei->result_section_pointer != NULL)
908 *eei->result_section_pointer = os;
909 return os->address();
910 }
911
912 uint64_t
913 value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
914 uint64_t)
915 { return address; }
916
917 const char*
918 function_name() const
919 { return "ADDR"; }
920 };
921
922 extern "C" Expression*
923 script_exp_function_addr(const char* section_name, size_t section_name_len)
924 {
925 return new Addr_expression(section_name, section_name_len);
926 }
927
928 // ALIGNOF.
929
930 class Alignof_expression : public Section_expression
931 {
932 public:
933 Alignof_expression(const char* section_name, size_t section_name_len)
934 : Section_expression(section_name, section_name_len)
935 { }
936
937 protected:
938 uint64_t
939 value_from_output_section(const Expression_eval_info*,
940 Output_section* os)
941 { return os->addralign(); }
942
943 uint64_t
944 value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
945 uint64_t)
946 { return addralign; }
947
948 const char*
949 function_name() const
950 { return "ALIGNOF"; }
951 };
952
953 extern "C" Expression*
954 script_exp_function_alignof(const char* section_name, size_t section_name_len)
955 {
956 return new Alignof_expression(section_name, section_name_len);
957 }
958
959 // CONSTANT. It would be nice if we could simply evaluate this
960 // immediately and return an Integer_expression, but unfortunately we
961 // don't know the target.
962
963 class Constant_expression : public Expression
964 {
965 public:
966 Constant_expression(const char* name, size_t length);
967
968 uint64_t
969 value(const Expression_eval_info*);
970
971 void
972 print(FILE* f) const;
973
974 private:
975 enum Constant_function
976 {
977 CONSTANT_MAXPAGESIZE,
978 CONSTANT_COMMONPAGESIZE
979 };
980
981 Constant_function function_;
982 };
983
984 Constant_expression::Constant_expression(const char* name, size_t length)
985 {
986 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
987 this->function_ = CONSTANT_MAXPAGESIZE;
988 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
989 this->function_ = CONSTANT_COMMONPAGESIZE;
990 else
991 {
992 std::string s(name, length);
993 gold_error(_("unknown constant %s"), s.c_str());
994 this->function_ = CONSTANT_MAXPAGESIZE;
995 }
996 }
997
998 uint64_t
999 Constant_expression::value(const Expression_eval_info*)
1000 {
1001 switch (this->function_)
1002 {
1003 case CONSTANT_MAXPAGESIZE:
1004 return parameters->target().abi_pagesize();
1005 case CONSTANT_COMMONPAGESIZE:
1006 return parameters->target().common_pagesize();
1007 default:
1008 gold_unreachable();
1009 }
1010 }
1011
1012 void
1013 Constant_expression::print(FILE* f) const
1014 {
1015 const char* name;
1016 switch (this->function_)
1017 {
1018 case CONSTANT_MAXPAGESIZE:
1019 name = "MAXPAGESIZE";
1020 break;
1021 case CONSTANT_COMMONPAGESIZE:
1022 name = "COMMONPAGESIZE";
1023 break;
1024 default:
1025 gold_unreachable();
1026 }
1027 fprintf(f, "CONSTANT(%s)", name);
1028 }
1029
1030 extern "C" Expression*
1031 script_exp_function_constant(const char* name, size_t length)
1032 {
1033 return new Constant_expression(name, length);
1034 }
1035
1036 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
1037 // back to the general case.
1038
1039 extern "C" Expression*
1040 script_exp_function_data_segment_align(Expression* left, Expression*)
1041 {
1042 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1043 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1044 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1045 e2);
1046 return script_exp_binary_add(e1, e3);
1047 }
1048
1049 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
1050
1051 extern "C" Expression*
1052 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1053 {
1054 return right;
1055 }
1056
1057 // DATA_SEGMENT_END. FIXME: This is not implemented.
1058
1059 extern "C" Expression*
1060 script_exp_function_data_segment_end(Expression* val)
1061 {
1062 return val;
1063 }
1064
1065 // DEFINED function.
1066
1067 class Defined_expression : public Expression
1068 {
1069 public:
1070 Defined_expression(const char* symbol_name, size_t symbol_name_len)
1071 : symbol_name_(symbol_name, symbol_name_len)
1072 { }
1073
1074 uint64_t
1075 value(const Expression_eval_info* eei)
1076 {
1077 Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1078 return sym != NULL && sym->is_defined();
1079 }
1080
1081 void
1082 print(FILE* f) const
1083 { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1084
1085 private:
1086 std::string symbol_name_;
1087 };
1088
1089 extern "C" Expression*
1090 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1091 {
1092 return new Defined_expression(symbol_name, symbol_name_len);
1093 }
1094
1095 // LOADADDR function
1096
1097 class Loadaddr_expression : public Section_expression
1098 {
1099 public:
1100 Loadaddr_expression(const char* section_name, size_t section_name_len)
1101 : Section_expression(section_name, section_name_len)
1102 { }
1103
1104 protected:
1105 uint64_t
1106 value_from_output_section(const Expression_eval_info* eei,
1107 Output_section* os)
1108 {
1109 if (os->has_load_address())
1110 return os->load_address();
1111 else
1112 {
1113 if (eei->result_section_pointer != NULL)
1114 *eei->result_section_pointer = os;
1115 return os->address();
1116 }
1117 }
1118
1119 uint64_t
1120 value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1121 uint64_t)
1122 { return load_address; }
1123
1124 const char*
1125 function_name() const
1126 { return "LOADADDR"; }
1127 };
1128
1129 extern "C" Expression*
1130 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1131 {
1132 return new Loadaddr_expression(section_name, section_name_len);
1133 }
1134
1135 // SIZEOF function
1136
1137 class Sizeof_expression : public Section_expression
1138 {
1139 public:
1140 Sizeof_expression(const char* section_name, size_t section_name_len)
1141 : Section_expression(section_name, section_name_len)
1142 { }
1143
1144 protected:
1145 uint64_t
1146 value_from_output_section(const Expression_eval_info*,
1147 Output_section* os)
1148 {
1149 // We can not use data_size here, as the size of the section may
1150 // not have been finalized. Instead we get whatever the current
1151 // size is. This will work correctly for backward references in
1152 // linker scripts.
1153 return os->current_data_size();
1154 }
1155
1156 uint64_t
1157 value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1158 uint64_t size)
1159 { return size; }
1160
1161 const char*
1162 function_name() const
1163 { return "SIZEOF"; }
1164 };
1165
1166 extern "C" Expression*
1167 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1168 {
1169 return new Sizeof_expression(section_name, section_name_len);
1170 }
1171
1172 // SIZEOF_HEADERS.
1173
1174 class Sizeof_headers_expression : public Expression
1175 {
1176 public:
1177 Sizeof_headers_expression()
1178 { }
1179
1180 uint64_t
1181 value(const Expression_eval_info*);
1182
1183 void
1184 print(FILE* f) const
1185 { fprintf(f, "SIZEOF_HEADERS"); }
1186 };
1187
1188 uint64_t
1189 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1190 {
1191 unsigned int ehdr_size;
1192 unsigned int phdr_size;
1193 if (parameters->target().get_size() == 32)
1194 {
1195 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1196 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1197 }
1198 else if (parameters->target().get_size() == 64)
1199 {
1200 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1201 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1202 }
1203 else
1204 gold_unreachable();
1205
1206 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1207 }
1208
1209 extern "C" Expression*
1210 script_exp_function_sizeof_headers()
1211 {
1212 return new Sizeof_headers_expression();
1213 }
1214
1215 // SEGMENT_START.
1216
1217 class Segment_start_expression : public Unary_expression
1218 {
1219 public:
1220 Segment_start_expression(const char* segment_name, size_t segment_name_len,
1221 Expression* default_value)
1222 : Unary_expression(default_value),
1223 segment_name_(segment_name, segment_name_len)
1224 { }
1225
1226 uint64_t
1227 value(const Expression_eval_info*);
1228
1229 void
1230 print(FILE* f) const
1231 {
1232 fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1233 this->arg_print(f);
1234 fprintf(f, ")");
1235 }
1236
1237 private:
1238 std::string segment_name_;
1239 };
1240
1241 uint64_t
1242 Segment_start_expression::value(const Expression_eval_info* eei)
1243 {
1244 // Check for command line overrides.
1245 if (parameters->options().user_set_Ttext()
1246 && this->segment_name_ == ".text")
1247 return parameters->options().Ttext();
1248 else if (parameters->options().user_set_Tdata()
1249 && this->segment_name_ == ".data")
1250 return parameters->options().Tdata();
1251 else if (parameters->options().user_set_Tbss()
1252 && this->segment_name_ == ".bss")
1253 return parameters->options().Tbss();
1254 else
1255 {
1256 uint64_t ret = this->arg_value(eei, NULL);
1257 // Force the value to be absolute.
1258 if (eei->result_section_pointer != NULL)
1259 *eei->result_section_pointer = NULL;
1260 return ret;
1261 }
1262 }
1263
1264 extern "C" Expression*
1265 script_exp_function_segment_start(const char* segment_name,
1266 size_t segment_name_len,
1267 Expression* default_value)
1268 {
1269 return new Segment_start_expression(segment_name, segment_name_len,
1270 default_value);
1271 }
1272
1273 } // End namespace gold.
This page took 0.070423 seconds and 4 git commands to generate.