gas/
[deliverable/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38
39 namespace
40 {
41
42 using namespace gold;
43
44 class Output_data_plt_i386;
45
46 // The i386 target class.
47
48 class Target_i386 : public Sized_target<32, false>
49 {
50 public:
51 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
52
53 Target_i386()
54 : Sized_target<32, false>(&i386_info),
55 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
56 copy_relocs_(NULL), dynbss_(NULL)
57 { }
58
59 // Scan the relocations to look for symbol adjustments.
60 void
61 scan_relocs(const General_options& options,
62 Symbol_table* symtab,
63 Layout* layout,
64 Sized_relobj<32, false>* object,
65 unsigned int data_shndx,
66 unsigned int sh_type,
67 const unsigned char* prelocs,
68 size_t reloc_count,
69 size_t local_symbol_count,
70 const unsigned char* plocal_symbols,
71 Symbol** global_symbols);
72
73 // Finalize the sections.
74 void
75 do_finalize_sections(Layout*);
76
77 // Return the value to use for a dynamic which requires special
78 // treatment.
79 uint64_t
80 do_dynsym_value(const Symbol*) const;
81
82 // Relocate a section.
83 void
84 relocate_section(const Relocate_info<32, false>*,
85 unsigned int sh_type,
86 const unsigned char* prelocs,
87 size_t reloc_count,
88 unsigned char* view,
89 elfcpp::Elf_types<32>::Elf_Addr view_address,
90 off_t view_size);
91
92 // Return a string used to fill a code section with nops.
93 std::string
94 do_code_fill(off_t length);
95
96 private:
97 // The class which scans relocations.
98 struct Scan
99 {
100 inline void
101 local(const General_options& options, Symbol_table* symtab,
102 Layout* layout, Target_i386* target,
103 Sized_relobj<32, false>* object,
104 unsigned int data_shndx,
105 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
106 const elfcpp::Sym<32, false>& lsym);
107
108 inline void
109 global(const General_options& options, Symbol_table* symtab,
110 Layout* layout, Target_i386* target,
111 Sized_relobj<32, false>* object,
112 unsigned int data_shndx,
113 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
114 Symbol* gsym);
115 };
116
117 // The class which implements relocation.
118 class Relocate
119 {
120 public:
121 Relocate()
122 : skip_call_tls_get_addr_(false)
123 { }
124
125 ~Relocate()
126 {
127 if (this->skip_call_tls_get_addr_)
128 {
129 // FIXME: This needs to specify the location somehow.
130 fprintf(stderr, _("%s: missing expected TLS relocation\n"),
131 program_name);
132 gold_exit(false);
133 }
134 }
135
136 // Do a relocation. Return false if the caller should not issue
137 // any warnings about this relocation.
138 inline bool
139 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
140 const elfcpp::Rel<32, false>&,
141 unsigned int r_type, const Sized_symbol<32>*,
142 const Symbol_value<32>*,
143 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
144 off_t);
145
146 private:
147 // Do a TLS relocation.
148 inline void
149 relocate_tls(const Relocate_info<32, false>*, size_t relnum,
150 const elfcpp::Rel<32, false>&,
151 unsigned int r_type, const Sized_symbol<32>*,
152 const Symbol_value<32>*,
153 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
154
155 // Do a TLS Initial-Exec to Local-Exec transition.
156 static inline void
157 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
158 Output_segment* tls_segment,
159 const elfcpp::Rel<32, false>&, unsigned int r_type,
160 elfcpp::Elf_types<32>::Elf_Addr value,
161 unsigned char* view,
162 off_t view_size);
163
164 // Do a TLS Global-Dynamic to Local-Exec transition.
165 inline void
166 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
167 Output_segment* tls_segment,
168 const elfcpp::Rel<32, false>&, unsigned int r_type,
169 elfcpp::Elf_types<32>::Elf_Addr value,
170 unsigned char* view,
171 off_t view_size);
172
173 // Check the range for a TLS relocation.
174 static inline void
175 check_range(const Relocate_info<32, false>*, size_t relnum,
176 const elfcpp::Rel<32, false>&, off_t, off_t);
177
178 // Check the validity of a TLS relocation. This is like assert.
179 static inline void
180 check_tls(const Relocate_info<32, false>*, size_t relnum,
181 const elfcpp::Rel<32, false>&, bool);
182
183 // This is set if we should skip the next reloc, which should be a
184 // PLT32 reloc against ___tls_get_addr.
185 bool skip_call_tls_get_addr_;
186 };
187
188 // Adjust TLS relocation type based on the options and whether this
189 // is a local symbol.
190 static unsigned int
191 optimize_tls_reloc(bool is_final, int r_type);
192
193 // Get the GOT section, creating it if necessary.
194 Output_data_got<32, false>*
195 got_section(Symbol_table*, Layout*);
196
197 // Create a PLT entry for a global symbol.
198 void
199 make_plt_entry(Symbol_table*, Layout*, Symbol*);
200
201 // Get the PLT section.
202 Output_data_plt_i386*
203 plt_section() const
204 {
205 gold_assert(this->plt_ != NULL);
206 return this->plt_;
207 }
208
209 // Get the dynamic reloc section, creating it if necessary.
210 Reloc_section*
211 rel_dyn_section(Layout*);
212
213 // Copy a relocation against a global symbol.
214 void
215 copy_reloc(const General_options*, Symbol_table*, Layout*,
216 Sized_relobj<32, false>*, unsigned int,
217 Symbol*, const elfcpp::Rel<32, false>&);
218
219 // Information about this specific target which we pass to the
220 // general Target structure.
221 static const Target::Target_info i386_info;
222
223 // The GOT section.
224 Output_data_got<32, false>* got_;
225 // The PLT section.
226 Output_data_plt_i386* plt_;
227 // The GOT PLT section.
228 Output_data_space* got_plt_;
229 // The dynamic reloc section.
230 Reloc_section* rel_dyn_;
231 // Relocs saved to avoid a COPY reloc.
232 Copy_relocs<32, false>* copy_relocs_;
233 // Space for variables copied with a COPY reloc.
234 Output_data_space* dynbss_;
235 };
236
237 const Target::Target_info Target_i386::i386_info =
238 {
239 32, // size
240 false, // is_big_endian
241 elfcpp::EM_386, // machine_code
242 false, // has_make_symbol
243 false, // has_resolve
244 true, // has_code_fill
245 "/usr/lib/libc.so.1", // dynamic_linker
246 0x08048000, // text_segment_address
247 0x1000, // abi_pagesize
248 0x1000 // common_pagesize
249 };
250
251 // Get the GOT section, creating it if necessary.
252
253 Output_data_got<32, false>*
254 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
255 {
256 if (this->got_ == NULL)
257 {
258 gold_assert(symtab != NULL && layout != NULL);
259
260 this->got_ = new Output_data_got<32, false>();
261
262 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
263 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
264 this->got_);
265
266 // The old GNU linker creates a .got.plt section. We just
267 // create another set of data in the .got section. Note that we
268 // always create a PLT if we create a GOT, although the PLT
269 // might be empty.
270 this->got_plt_ = new Output_data_space(4);
271 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
272 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
273 this->got_plt_);
274
275 // The first three entries are reserved.
276 this->got_plt_->set_space_size(3 * 4);
277
278 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
279 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
280 this->got_plt_,
281 0, 0, elfcpp::STT_OBJECT,
282 elfcpp::STB_LOCAL,
283 elfcpp::STV_HIDDEN, 0,
284 false, false);
285 }
286
287 return this->got_;
288 }
289
290 // Get the dynamic reloc section, creating it if necessary.
291
292 Target_i386::Reloc_section*
293 Target_i386::rel_dyn_section(Layout* layout)
294 {
295 if (this->rel_dyn_ == NULL)
296 {
297 gold_assert(layout != NULL);
298 this->rel_dyn_ = new Reloc_section();
299 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
300 elfcpp::SHF_ALLOC, this->rel_dyn_);
301 }
302 return this->rel_dyn_;
303 }
304
305 // A class to handle the PLT data.
306
307 class Output_data_plt_i386 : public Output_section_data
308 {
309 public:
310 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
311
312 Output_data_plt_i386(Layout*, Output_data_space*);
313
314 // Add an entry to the PLT.
315 void
316 add_entry(Symbol* gsym);
317
318 // Return the .rel.plt section data.
319 const Reloc_section*
320 rel_plt() const
321 { return this->rel_; }
322
323 protected:
324 void
325 do_adjust_output_section(Output_section* os);
326
327 private:
328 // The size of an entry in the PLT.
329 static const int plt_entry_size = 16;
330
331 // The first entry in the PLT for an executable.
332 static unsigned char exec_first_plt_entry[plt_entry_size];
333
334 // The first entry in the PLT for a shared object.
335 static unsigned char dyn_first_plt_entry[plt_entry_size];
336
337 // Other entries in the PLT for an executable.
338 static unsigned char exec_plt_entry[plt_entry_size];
339
340 // Other entries in the PLT for a shared object.
341 static unsigned char dyn_plt_entry[plt_entry_size];
342
343 // Set the final size.
344 void
345 do_set_address(uint64_t, off_t)
346 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
347
348 // Write out the PLT data.
349 void
350 do_write(Output_file*);
351
352 // The reloc section.
353 Reloc_section* rel_;
354 // The .got.plt section.
355 Output_data_space* got_plt_;
356 // The number of PLT entries.
357 unsigned int count_;
358 };
359
360 // Create the PLT section. The ordinary .got section is an argument,
361 // since we need to refer to the start. We also create our own .got
362 // section just for PLT entries.
363
364 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
365 Output_data_space* got_plt)
366 : Output_section_data(4), got_plt_(got_plt), count_(0)
367 {
368 this->rel_ = new Reloc_section();
369 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
370 elfcpp::SHF_ALLOC, this->rel_);
371 }
372
373 // For some reason
374
375 void
376 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
377 {
378 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
379 // linker, and so do we.
380 os->set_entsize(4);
381 }
382
383 // Add an entry to the PLT.
384
385 void
386 Output_data_plt_i386::add_entry(Symbol* gsym)
387 {
388 gold_assert(!gsym->has_plt_offset());
389
390 // Note that when setting the PLT offset we skip the initial
391 // reserved PLT entry.
392 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
393
394 ++this->count_;
395
396 off_t got_offset = this->got_plt_->data_size();
397
398 // Every PLT entry needs a GOT entry which points back to the PLT
399 // entry (this will be changed by the dynamic linker, normally
400 // lazily when the function is called).
401 this->got_plt_->set_space_size(got_offset + 4);
402
403 // Every PLT entry needs a reloc.
404 gsym->set_needs_dynsym_entry();
405 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
406 got_offset);
407
408 // Note that we don't need to save the symbol. The contents of the
409 // PLT are independent of which symbols are used. The symbols only
410 // appear in the relocations.
411 }
412
413 // The first entry in the PLT for an executable.
414
415 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
416 {
417 0xff, 0x35, // pushl contents of memory address
418 0, 0, 0, 0, // replaced with address of .got + 4
419 0xff, 0x25, // jmp indirect
420 0, 0, 0, 0, // replaced with address of .got + 8
421 0, 0, 0, 0 // unused
422 };
423
424 // The first entry in the PLT for a shared object.
425
426 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
427 {
428 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
429 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
430 0, 0, 0, 0 // unused
431 };
432
433 // Subsequent entries in the PLT for an executable.
434
435 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
436 {
437 0xff, 0x25, // jmp indirect
438 0, 0, 0, 0, // replaced with address of symbol in .got
439 0x68, // pushl immediate
440 0, 0, 0, 0, // replaced with offset into relocation table
441 0xe9, // jmp relative
442 0, 0, 0, 0 // replaced with offset to start of .plt
443 };
444
445 // Subsequent entries in the PLT for a shared object.
446
447 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
448 {
449 0xff, 0xa3, // jmp *offset(%ebx)
450 0, 0, 0, 0, // replaced with offset of symbol in .got
451 0x68, // pushl immediate
452 0, 0, 0, 0, // replaced with offset into relocation table
453 0xe9, // jmp relative
454 0, 0, 0, 0 // replaced with offset to start of .plt
455 };
456
457 // Write out the PLT. This uses the hand-coded instructions above,
458 // and adjusts them as needed. This is all specified by the i386 ELF
459 // Processor Supplement.
460
461 void
462 Output_data_plt_i386::do_write(Output_file* of)
463 {
464 const off_t offset = this->offset();
465 const off_t oview_size = this->data_size();
466 unsigned char* const oview = of->get_output_view(offset, oview_size);
467
468 const off_t got_file_offset = this->got_plt_->offset();
469 const off_t got_size = this->got_plt_->data_size();
470 unsigned char* const got_view = of->get_output_view(got_file_offset,
471 got_size);
472
473 unsigned char* pov = oview;
474
475 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
476 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
477
478 if (parameters->output_is_shared())
479 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
480 else
481 {
482 memcpy(pov, exec_first_plt_entry, plt_entry_size);
483 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
484 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
485 }
486 pov += plt_entry_size;
487
488 unsigned char* got_pov = got_view;
489
490 memset(got_pov, 0, 12);
491 got_pov += 12;
492
493 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
494
495 unsigned int plt_offset = plt_entry_size;
496 unsigned int plt_rel_offset = 0;
497 unsigned int got_offset = 12;
498 const unsigned int count = this->count_;
499 for (unsigned int i = 0;
500 i < count;
501 ++i,
502 pov += plt_entry_size,
503 got_pov += 4,
504 plt_offset += plt_entry_size,
505 plt_rel_offset += rel_size,
506 got_offset += 4)
507 {
508 // Set and adjust the PLT entry itself.
509
510 if (parameters->output_is_shared())
511 {
512 memcpy(pov, dyn_plt_entry, plt_entry_size);
513 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
514 }
515 else
516 {
517 memcpy(pov, exec_plt_entry, plt_entry_size);
518 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
519 (got_address
520 + got_offset));
521 }
522
523 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
524 elfcpp::Swap<32, false>::writeval(pov + 12,
525 - (plt_offset + plt_entry_size));
526
527 // Set the entry in the GOT.
528 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
529 }
530
531 gold_assert(pov - oview == oview_size);
532 gold_assert(got_pov - got_view == got_size);
533
534 of->write_output_view(offset, oview_size, oview);
535 of->write_output_view(got_file_offset, got_size, got_view);
536 }
537
538 // Create a PLT entry for a global symbol.
539
540 void
541 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
542 {
543 if (gsym->has_plt_offset())
544 return;
545
546 if (this->plt_ == NULL)
547 {
548 // Create the GOT sections first.
549 this->got_section(symtab, layout);
550
551 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
552 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
553 (elfcpp::SHF_ALLOC
554 | elfcpp::SHF_EXECINSTR),
555 this->plt_);
556 }
557
558 this->plt_->add_entry(gsym);
559 }
560
561 // Handle a relocation against a non-function symbol defined in a
562 // dynamic object. The traditional way to handle this is to generate
563 // a COPY relocation to copy the variable at runtime from the shared
564 // object into the executable's data segment. However, this is
565 // undesirable in general, as if the size of the object changes in the
566 // dynamic object, the executable will no longer work correctly. If
567 // this relocation is in a writable section, then we can create a
568 // dynamic reloc and the dynamic linker will resolve it to the correct
569 // address at runtime. However, we do not want do that if the
570 // relocation is in a read-only section, as it would prevent the
571 // readonly segment from being shared. And if we have to eventually
572 // generate a COPY reloc, then any dynamic relocations will be
573 // useless. So this means that if this is a writable section, we need
574 // to save the relocation until we see whether we have to create a
575 // COPY relocation for this symbol for any other relocation.
576
577 void
578 Target_i386::copy_reloc(const General_options* options,
579 Symbol_table* symtab,
580 Layout* layout,
581 Sized_relobj<32, false>* object,
582 unsigned int data_shndx, Symbol* gsym,
583 const elfcpp::Rel<32, false>& rel)
584 {
585 Sized_symbol<32>* ssym;
586 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
587 SELECT_SIZE(32));
588
589 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
590 data_shndx, ssym))
591 {
592 // So far we do not need a COPY reloc. Save this relocation.
593 // If it turns out that we never need a COPY reloc for this
594 // symbol, then we will emit the relocation.
595 if (this->copy_relocs_ == NULL)
596 this->copy_relocs_ = new Copy_relocs<32, false>();
597 this->copy_relocs_->save(ssym, object, data_shndx, rel);
598 }
599 else
600 {
601 // Allocate space for this symbol in the .bss section.
602
603 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
604
605 // There is no defined way to determine the required alignment
606 // of the symbol. We pick the alignment based on the size. We
607 // set an arbitrary maximum of 256.
608 unsigned int align;
609 for (align = 1; align < 512; align <<= 1)
610 if ((symsize & align) != 0)
611 break;
612
613 if (this->dynbss_ == NULL)
614 {
615 this->dynbss_ = new Output_data_space(align);
616 layout->add_output_section_data(".bss",
617 elfcpp::SHT_NOBITS,
618 (elfcpp::SHF_ALLOC
619 | elfcpp::SHF_WRITE),
620 this->dynbss_);
621 }
622
623 Output_data_space* dynbss = this->dynbss_;
624
625 if (align > dynbss->addralign())
626 dynbss->set_space_alignment(align);
627
628 off_t dynbss_size = dynbss->data_size();
629 dynbss_size = align_address(dynbss_size, align);
630 off_t offset = dynbss_size;
631 dynbss->set_space_size(dynbss_size + symsize);
632
633 // Define the symbol in the .dynbss section.
634 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
635 dynbss, offset, symsize, ssym->type(),
636 ssym->binding(), ssym->visibility(),
637 ssym->nonvis(), false, false);
638
639 // Add the COPY reloc.
640 ssym->set_needs_dynsym_entry();
641 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
642 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
643 }
644 }
645
646 // Optimize the TLS relocation type based on what we know about the
647 // symbol. IS_FINAL is true if the final address of this symbol is
648 // known at link time.
649
650 unsigned int
651 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
652 {
653 // If we are generating a shared library, then we can't do anything
654 // in the linker.
655 if (parameters->output_is_shared())
656 return r_type;
657
658 switch (r_type)
659 {
660 case elfcpp::R_386_TLS_GD:
661 case elfcpp::R_386_TLS_GOTDESC:
662 case elfcpp::R_386_TLS_DESC_CALL:
663 // These are Global-Dynamic which permits fully general TLS
664 // access. Since we know that we are generating an executable,
665 // we can convert this to Initial-Exec. If we also know that
666 // this is a local symbol, we can further switch to Local-Exec.
667 if (is_final)
668 return elfcpp::R_386_TLS_LE_32;
669 return elfcpp::R_386_TLS_IE_32;
670
671 case elfcpp::R_386_TLS_LDM:
672 // This is Local-Dynamic, which refers to a local symbol in the
673 // dynamic TLS block. Since we know that we generating an
674 // executable, we can switch to Local-Exec.
675 return elfcpp::R_386_TLS_LE_32;
676
677 case elfcpp::R_386_TLS_LDO_32:
678 // Another type of Local-Dynamic relocation.
679 return elfcpp::R_386_TLS_LE;
680
681 case elfcpp::R_386_TLS_IE:
682 case elfcpp::R_386_TLS_GOTIE:
683 case elfcpp::R_386_TLS_IE_32:
684 // These are Initial-Exec relocs which get the thread offset
685 // from the GOT. If we know that we are linking against the
686 // local symbol, we can switch to Local-Exec, which links the
687 // thread offset into the instruction.
688 if (is_final)
689 return elfcpp::R_386_TLS_LE_32;
690 return r_type;
691
692 case elfcpp::R_386_TLS_LE:
693 case elfcpp::R_386_TLS_LE_32:
694 // When we already have Local-Exec, there is nothing further we
695 // can do.
696 return r_type;
697
698 default:
699 gold_unreachable();
700 }
701 }
702
703 // Scan a relocation for a local symbol.
704
705 inline void
706 Target_i386::Scan::local(const General_options&,
707 Symbol_table* symtab,
708 Layout* layout,
709 Target_i386* target,
710 Sized_relobj<32, false>* object,
711 unsigned int,
712 const elfcpp::Rel<32, false>&,
713 unsigned int r_type,
714 const elfcpp::Sym<32, false>&)
715 {
716 switch (r_type)
717 {
718 case elfcpp::R_386_NONE:
719 case elfcpp::R_386_GNU_VTINHERIT:
720 case elfcpp::R_386_GNU_VTENTRY:
721 break;
722
723 case elfcpp::R_386_32:
724 case elfcpp::R_386_16:
725 case elfcpp::R_386_8:
726 // FIXME: If we are generating a shared object we need to copy
727 // this relocation into the object.
728 gold_assert(!parameters->output_is_shared());
729 break;
730
731 case elfcpp::R_386_PC32:
732 case elfcpp::R_386_PC16:
733 case elfcpp::R_386_PC8:
734 break;
735
736 case elfcpp::R_386_GOTOFF:
737 case elfcpp::R_386_GOTPC:
738 // We need a GOT section.
739 target->got_section(symtab, layout);
740 break;
741
742 case elfcpp::R_386_COPY:
743 case elfcpp::R_386_GLOB_DAT:
744 case elfcpp::R_386_JUMP_SLOT:
745 case elfcpp::R_386_RELATIVE:
746 case elfcpp::R_386_TLS_TPOFF:
747 case elfcpp::R_386_TLS_DTPMOD32:
748 case elfcpp::R_386_TLS_DTPOFF32:
749 case elfcpp::R_386_TLS_TPOFF32:
750 case elfcpp::R_386_TLS_DESC:
751 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
752 program_name, object->name().c_str(), r_type);
753 gold_exit(false);
754 break;
755
756 case elfcpp::R_386_TLS_IE:
757 case elfcpp::R_386_TLS_GOTIE:
758 case elfcpp::R_386_TLS_LE:
759 case elfcpp::R_386_TLS_GD:
760 case elfcpp::R_386_TLS_LDM:
761 case elfcpp::R_386_TLS_LDO_32:
762 case elfcpp::R_386_TLS_IE_32:
763 case elfcpp::R_386_TLS_LE_32:
764 case elfcpp::R_386_TLS_GOTDESC:
765 case elfcpp::R_386_TLS_DESC_CALL:
766 {
767 bool output_is_shared = parameters->output_is_shared();
768 r_type = Target_i386::optimize_tls_reloc(!output_is_shared,
769 r_type);
770 switch (r_type)
771 {
772 case elfcpp::R_386_TLS_LE:
773 case elfcpp::R_386_TLS_LE_32:
774 // FIXME: If generating a shared object, we need to copy
775 // this relocation into the object.
776 gold_assert(!output_is_shared);
777 break;
778
779 case elfcpp::R_386_TLS_IE:
780 case elfcpp::R_386_TLS_GOTIE:
781 case elfcpp::R_386_TLS_GD:
782 case elfcpp::R_386_TLS_LDM:
783 case elfcpp::R_386_TLS_LDO_32:
784 case elfcpp::R_386_TLS_IE_32:
785 case elfcpp::R_386_TLS_GOTDESC:
786 case elfcpp::R_386_TLS_DESC_CALL:
787 fprintf(stderr,
788 _("%s: %s: unsupported reloc %u against local symbol\n"),
789 program_name, object->name().c_str(), r_type);
790 break;
791 }
792 }
793 break;
794
795 case elfcpp::R_386_GOT32:
796 case elfcpp::R_386_PLT32:
797 case elfcpp::R_386_32PLT:
798 case elfcpp::R_386_TLS_GD_32:
799 case elfcpp::R_386_TLS_GD_PUSH:
800 case elfcpp::R_386_TLS_GD_CALL:
801 case elfcpp::R_386_TLS_GD_POP:
802 case elfcpp::R_386_TLS_LDM_32:
803 case elfcpp::R_386_TLS_LDM_PUSH:
804 case elfcpp::R_386_TLS_LDM_CALL:
805 case elfcpp::R_386_TLS_LDM_POP:
806 case elfcpp::R_386_USED_BY_INTEL_200:
807 default:
808 fprintf(stderr, _("%s: %s: unsupported reloc %u against local symbol\n"),
809 program_name, object->name().c_str(), r_type);
810 break;
811 }
812 }
813
814 // Scan a relocation for a global symbol.
815
816 inline void
817 Target_i386::Scan::global(const General_options& options,
818 Symbol_table* symtab,
819 Layout* layout,
820 Target_i386* target,
821 Sized_relobj<32, false>* object,
822 unsigned int data_shndx,
823 const elfcpp::Rel<32, false>& reloc,
824 unsigned int r_type,
825 Symbol* gsym)
826 {
827 switch (r_type)
828 {
829 case elfcpp::R_386_NONE:
830 case elfcpp::R_386_GNU_VTINHERIT:
831 case elfcpp::R_386_GNU_VTENTRY:
832 break;
833
834 case elfcpp::R_386_32:
835 case elfcpp::R_386_PC32:
836 case elfcpp::R_386_16:
837 case elfcpp::R_386_PC16:
838 case elfcpp::R_386_8:
839 case elfcpp::R_386_PC8:
840 // FIXME: If we are generating a shared object we may need to
841 // copy this relocation into the object. If this symbol is
842 // defined in a shared object, we may need to copy this
843 // relocation in order to avoid a COPY relocation.
844 gold_assert(!parameters->output_is_shared());
845
846 if (gsym->is_from_dynobj())
847 {
848 // This symbol is defined in a dynamic object. If it is a
849 // function, we make a PLT entry. Otherwise we need to
850 // either generate a COPY reloc or copy this reloc.
851 if (gsym->type() == elfcpp::STT_FUNC)
852 {
853 target->make_plt_entry(symtab, layout, gsym);
854
855 // If this is not a PC relative reference, then we may
856 // be taking the address of the function. In that case
857 // we need to set the entry in the dynamic symbol table
858 // to the address of the PLT entry.
859 if (r_type != elfcpp::R_386_PC32
860 && r_type != elfcpp::R_386_PC16
861 && r_type != elfcpp::R_386_PC8)
862 gsym->set_needs_dynsym_value();
863 }
864 else
865 target->copy_reloc(&options, symtab, layout, object, data_shndx,
866 gsym, reloc);
867 }
868
869 break;
870
871 case elfcpp::R_386_GOT32:
872 {
873 // The symbol requires a GOT entry.
874 Output_data_got<32, false>* got = target->got_section(symtab, layout);
875 if (got->add_global(gsym))
876 {
877 // If this symbol is not fully resolved, we need to add a
878 // dynamic relocation for it.
879 if (!gsym->final_value_is_known())
880 {
881 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
882 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
883 gsym->got_offset());
884 }
885 }
886 }
887 break;
888
889 case elfcpp::R_386_PLT32:
890 // If the symbol is fully resolved, this is just a PC32 reloc.
891 // Otherwise we need a PLT entry.
892 if (gsym->final_value_is_known())
893 break;
894 target->make_plt_entry(symtab, layout, gsym);
895 break;
896
897 case elfcpp::R_386_GOTOFF:
898 case elfcpp::R_386_GOTPC:
899 // We need a GOT section.
900 target->got_section(symtab, layout);
901 break;
902
903 case elfcpp::R_386_COPY:
904 case elfcpp::R_386_GLOB_DAT:
905 case elfcpp::R_386_JUMP_SLOT:
906 case elfcpp::R_386_RELATIVE:
907 case elfcpp::R_386_TLS_TPOFF:
908 case elfcpp::R_386_TLS_DTPMOD32:
909 case elfcpp::R_386_TLS_DTPOFF32:
910 case elfcpp::R_386_TLS_TPOFF32:
911 case elfcpp::R_386_TLS_DESC:
912 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
913 program_name, object->name().c_str(), r_type);
914 gold_exit(false);
915 break;
916
917 case elfcpp::R_386_TLS_IE:
918 case elfcpp::R_386_TLS_GOTIE:
919 case elfcpp::R_386_TLS_LE:
920 case elfcpp::R_386_TLS_GD:
921 case elfcpp::R_386_TLS_LDM:
922 case elfcpp::R_386_TLS_LDO_32:
923 case elfcpp::R_386_TLS_IE_32:
924 case elfcpp::R_386_TLS_LE_32:
925 case elfcpp::R_386_TLS_GOTDESC:
926 case elfcpp::R_386_TLS_DESC_CALL:
927 {
928 const bool is_final = gsym->final_value_is_known();
929 r_type = Target_i386::optimize_tls_reloc(is_final, r_type);
930 switch (r_type)
931 {
932 case elfcpp::R_386_TLS_LE:
933 case elfcpp::R_386_TLS_LE_32:
934 // FIXME: If generating a shared object, we need to copy
935 // this relocation into the object.
936 gold_assert(!parameters->output_is_shared());
937 break;
938
939 case elfcpp::R_386_TLS_IE:
940 case elfcpp::R_386_TLS_GOTIE:
941 case elfcpp::R_386_TLS_GD:
942 case elfcpp::R_386_TLS_LDM:
943 case elfcpp::R_386_TLS_LDO_32:
944 case elfcpp::R_386_TLS_IE_32:
945 case elfcpp::R_386_TLS_GOTDESC:
946 case elfcpp::R_386_TLS_DESC_CALL:
947 fprintf(stderr,
948 _("%s: %s: unsupported reloc %u "
949 "against global symbol %s\n"),
950 program_name, object->name().c_str(), r_type,
951 gsym->name());
952 break;
953 }
954 }
955 break;
956
957 case elfcpp::R_386_32PLT:
958 case elfcpp::R_386_TLS_GD_32:
959 case elfcpp::R_386_TLS_GD_PUSH:
960 case elfcpp::R_386_TLS_GD_CALL:
961 case elfcpp::R_386_TLS_GD_POP:
962 case elfcpp::R_386_TLS_LDM_32:
963 case elfcpp::R_386_TLS_LDM_PUSH:
964 case elfcpp::R_386_TLS_LDM_CALL:
965 case elfcpp::R_386_TLS_LDM_POP:
966 case elfcpp::R_386_USED_BY_INTEL_200:
967 default:
968 fprintf(stderr,
969 _("%s: %s: unsupported reloc %u against global symbol %s\n"),
970 program_name, object->name().c_str(), r_type, gsym->name());
971 break;
972 }
973 }
974
975 // Scan relocations for a section.
976
977 void
978 Target_i386::scan_relocs(const General_options& options,
979 Symbol_table* symtab,
980 Layout* layout,
981 Sized_relobj<32, false>* object,
982 unsigned int data_shndx,
983 unsigned int sh_type,
984 const unsigned char* prelocs,
985 size_t reloc_count,
986 size_t local_symbol_count,
987 const unsigned char* plocal_symbols,
988 Symbol** global_symbols)
989 {
990 if (sh_type == elfcpp::SHT_RELA)
991 {
992 fprintf(stderr, _("%s: %s: unsupported RELA reloc section\n"),
993 program_name, object->name().c_str());
994 gold_exit(false);
995 }
996
997 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
998 Target_i386::Scan>(
999 options,
1000 symtab,
1001 layout,
1002 this,
1003 object,
1004 data_shndx,
1005 prelocs,
1006 reloc_count,
1007 local_symbol_count,
1008 plocal_symbols,
1009 global_symbols);
1010 }
1011
1012 // Finalize the sections.
1013
1014 void
1015 Target_i386::do_finalize_sections(Layout* layout)
1016 {
1017 // Fill in some more dynamic tags.
1018 Output_data_dynamic* const odyn = layout->dynamic_data();
1019 if (odyn != NULL)
1020 {
1021 if (this->got_plt_ != NULL)
1022 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1023
1024 if (this->plt_ != NULL)
1025 {
1026 const Output_data* od = this->plt_->rel_plt();
1027 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1028 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1029 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1030 }
1031
1032 if (this->rel_dyn_ != NULL)
1033 {
1034 const Output_data* od = this->rel_dyn_;
1035 odyn->add_section_address(elfcpp::DT_REL, od);
1036 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1037 odyn->add_constant(elfcpp::DT_RELENT,
1038 elfcpp::Elf_sizes<32>::rel_size);
1039 }
1040
1041 if (!parameters->output_is_shared())
1042 {
1043 // The value of the DT_DEBUG tag is filled in by the dynamic
1044 // linker at run time, and used by the debugger.
1045 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1046 }
1047 }
1048
1049 // Emit any relocs we saved in an attempt to avoid generating COPY
1050 // relocs.
1051 if (this->copy_relocs_ == NULL)
1052 return;
1053 if (this->copy_relocs_->any_to_emit())
1054 {
1055 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1056 this->copy_relocs_->emit(rel_dyn);
1057 }
1058 delete this->copy_relocs_;
1059 this->copy_relocs_ = NULL;
1060 }
1061
1062 // Perform a relocation.
1063
1064 inline bool
1065 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1066 Target_i386* target,
1067 size_t relnum,
1068 const elfcpp::Rel<32, false>& rel,
1069 unsigned int r_type,
1070 const Sized_symbol<32>* gsym,
1071 const Symbol_value<32>* psymval,
1072 unsigned char* view,
1073 elfcpp::Elf_types<32>::Elf_Addr address,
1074 off_t view_size)
1075 {
1076 if (this->skip_call_tls_get_addr_)
1077 {
1078 if (r_type != elfcpp::R_386_PLT32
1079 || gsym == NULL
1080 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1081 {
1082 fprintf(stderr, _("%s: %s: missing expected TLS relocation\n"),
1083 program_name,
1084 relinfo->location(relnum, rel.get_r_offset()).c_str());
1085 gold_exit(false);
1086 }
1087
1088 this->skip_call_tls_get_addr_ = false;
1089
1090 return false;
1091 }
1092
1093 // Pick the value to use for symbols defined in shared objects.
1094 Symbol_value<32> symval;
1095 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1096 {
1097 symval.set_output_value(target->plt_section()->address()
1098 + gsym->plt_offset());
1099 psymval = &symval;
1100 }
1101
1102 const Sized_relobj<32, false>* object = relinfo->object;
1103
1104 switch (r_type)
1105 {
1106 case elfcpp::R_386_NONE:
1107 case elfcpp::R_386_GNU_VTINHERIT:
1108 case elfcpp::R_386_GNU_VTENTRY:
1109 break;
1110
1111 case elfcpp::R_386_32:
1112 Relocate_functions<32, false>::rel32(view, object, psymval);
1113 break;
1114
1115 case elfcpp::R_386_PC32:
1116 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1117 break;
1118
1119 case elfcpp::R_386_16:
1120 Relocate_functions<32, false>::rel16(view, object, psymval);
1121 break;
1122
1123 case elfcpp::R_386_PC16:
1124 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1125 break;
1126
1127 case elfcpp::R_386_8:
1128 Relocate_functions<32, false>::rel8(view, object, psymval);
1129 break;
1130
1131 case elfcpp::R_386_PC8:
1132 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1133 break;
1134
1135 case elfcpp::R_386_PLT32:
1136 gold_assert(gsym->has_plt_offset()
1137 || gsym->final_value_is_known());
1138 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1139 break;
1140
1141 case elfcpp::R_386_GOT32:
1142 // Local GOT offsets not yet supported.
1143 gold_assert(gsym);
1144 gold_assert(gsym->has_got_offset());
1145 Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1146 break;
1147
1148 case elfcpp::R_386_GOTOFF:
1149 {
1150 elfcpp::Elf_types<32>::Elf_Addr value;
1151 value = (psymval->value(object, 0)
1152 - target->got_section(NULL, NULL)->address());
1153 Relocate_functions<32, false>::rel32(view, value);
1154 }
1155 break;
1156
1157 case elfcpp::R_386_GOTPC:
1158 {
1159 elfcpp::Elf_types<32>::Elf_Addr value;
1160 value = target->got_section(NULL, NULL)->address();
1161 Relocate_functions<32, false>::pcrel32(view, value, address);
1162 }
1163 break;
1164
1165 case elfcpp::R_386_COPY:
1166 case elfcpp::R_386_GLOB_DAT:
1167 case elfcpp::R_386_JUMP_SLOT:
1168 case elfcpp::R_386_RELATIVE:
1169 case elfcpp::R_386_TLS_TPOFF:
1170 case elfcpp::R_386_TLS_DTPMOD32:
1171 case elfcpp::R_386_TLS_DTPOFF32:
1172 case elfcpp::R_386_TLS_TPOFF32:
1173 case elfcpp::R_386_TLS_DESC:
1174 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
1175 program_name,
1176 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1177 r_type);
1178 gold_exit(false);
1179 break;
1180
1181 case elfcpp::R_386_TLS_IE:
1182 case elfcpp::R_386_TLS_GOTIE:
1183 case elfcpp::R_386_TLS_LE:
1184 case elfcpp::R_386_TLS_GD:
1185 case elfcpp::R_386_TLS_LDM:
1186 case elfcpp::R_386_TLS_LDO_32:
1187 case elfcpp::R_386_TLS_IE_32:
1188 case elfcpp::R_386_TLS_LE_32:
1189 case elfcpp::R_386_TLS_GOTDESC:
1190 case elfcpp::R_386_TLS_DESC_CALL:
1191 this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1192 address, view_size);
1193 break;
1194
1195 case elfcpp::R_386_32PLT:
1196 case elfcpp::R_386_TLS_GD_32:
1197 case elfcpp::R_386_TLS_GD_PUSH:
1198 case elfcpp::R_386_TLS_GD_CALL:
1199 case elfcpp::R_386_TLS_GD_POP:
1200 case elfcpp::R_386_TLS_LDM_32:
1201 case elfcpp::R_386_TLS_LDM_PUSH:
1202 case elfcpp::R_386_TLS_LDM_CALL:
1203 case elfcpp::R_386_TLS_LDM_POP:
1204 case elfcpp::R_386_USED_BY_INTEL_200:
1205 default:
1206 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1207 program_name,
1208 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1209 r_type);
1210 // gold_exit(false);
1211 break;
1212 }
1213
1214 return true;
1215 }
1216
1217 // Perform a TLS relocation.
1218
1219 inline void
1220 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1221 size_t relnum,
1222 const elfcpp::Rel<32, false>& rel,
1223 unsigned int r_type,
1224 const Sized_symbol<32>* gsym,
1225 const Symbol_value<32>* psymval,
1226 unsigned char* view,
1227 elfcpp::Elf_types<32>::Elf_Addr,
1228 off_t view_size)
1229 {
1230 Output_segment* tls_segment = relinfo->layout->tls_segment();
1231 if (tls_segment == NULL)
1232 {
1233 fprintf(stderr, _("%s: %s: TLS reloc but no TLS segment\n"),
1234 program_name,
1235 relinfo->location(relnum, rel.get_r_offset()).c_str());
1236 gold_exit(false);
1237 }
1238
1239 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1240
1241 const bool is_final = (gsym == NULL
1242 ? !parameters->output_is_shared()
1243 : gsym->final_value_is_known());
1244 const unsigned int opt_r_type =
1245 Target_i386::optimize_tls_reloc(is_final, r_type);
1246 switch (r_type)
1247 {
1248 case elfcpp::R_386_TLS_LE_32:
1249 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1250 Relocate_functions<32, false>::rel32(view, value);
1251 break;
1252
1253 case elfcpp::R_386_TLS_LE:
1254 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1255 Relocate_functions<32, false>::rel32(view, value);
1256 break;
1257
1258 case elfcpp::R_386_TLS_IE:
1259 case elfcpp::R_386_TLS_GOTIE:
1260 case elfcpp::R_386_TLS_IE_32:
1261 if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1262 {
1263 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1264 rel, r_type, value, view,
1265 view_size);
1266 break;
1267 }
1268 fprintf(stderr, _("%s: %s: unsupported reloc type %u\n"),
1269 program_name,
1270 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1271 r_type);
1272 // gold_exit(false);
1273 break;
1274
1275 case elfcpp::R_386_TLS_GD:
1276 if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1277 {
1278 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1279 rel, r_type, value, view,
1280 view_size);
1281 break;
1282 }
1283 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1284 program_name,
1285 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1286 r_type);
1287 // gold_exit(false);
1288 break;
1289
1290 case elfcpp::R_386_TLS_LDM:
1291 case elfcpp::R_386_TLS_LDO_32:
1292 case elfcpp::R_386_TLS_GOTDESC:
1293 case elfcpp::R_386_TLS_DESC_CALL:
1294 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1295 program_name,
1296 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1297 r_type);
1298 // gold_exit(false);
1299 break;
1300 }
1301 }
1302
1303 // Do a relocation in which we convert a TLS Initial-Exec to a
1304 // Local-Exec.
1305
1306 inline void
1307 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1308 size_t relnum,
1309 Output_segment* tls_segment,
1310 const elfcpp::Rel<32, false>& rel,
1311 unsigned int r_type,
1312 elfcpp::Elf_types<32>::Elf_Addr value,
1313 unsigned char* view,
1314 off_t view_size)
1315 {
1316 // We have to actually change the instructions, which means that we
1317 // need to examine the opcodes to figure out which instruction we
1318 // are looking at.
1319 if (r_type == elfcpp::R_386_TLS_IE)
1320 {
1321 // movl %gs:XX,%eax ==> movl $YY,%eax
1322 // movl %gs:XX,%reg ==> movl $YY,%reg
1323 // addl %gs:XX,%reg ==> addl $YY,%reg
1324 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -1);
1325 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1326
1327 unsigned char op1 = view[-1];
1328 if (op1 == 0xa1)
1329 {
1330 // movl XX,%eax ==> movl $YY,%eax
1331 view[-1] = 0xb8;
1332 }
1333 else
1334 {
1335 Target_i386::Relocate::check_range(relinfo, relnum, rel,
1336 view_size, -2);
1337
1338 unsigned char op2 = view[-2];
1339 if (op2 == 0x8b)
1340 {
1341 // movl XX,%reg ==> movl $YY,%reg
1342 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1343 (op1 & 0xc7) == 0x05);
1344 view[-2] = 0xc7;
1345 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1346 }
1347 else if (op2 == 0x03)
1348 {
1349 // addl XX,%reg ==> addl $YY,%reg
1350 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1351 (op1 & 0xc7) == 0x05);
1352 view[-2] = 0x81;
1353 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1354 }
1355 else
1356 Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1357 }
1358 }
1359 else
1360 {
1361 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1362 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1363 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1364 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1365 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1366
1367 unsigned char op1 = view[-1];
1368 unsigned char op2 = view[-2];
1369 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1370 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1371 if (op2 == 0x8b)
1372 {
1373 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1374 view[-2] = 0xc7;
1375 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1376 }
1377 else if (op2 == 0x2b)
1378 {
1379 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1380 view[-2] = 0x81;
1381 view[-1] = 0xe8 | ((op1 >> 3) & 7);
1382 }
1383 else if (op2 == 0x03)
1384 {
1385 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1386 view[-2] = 0x81;
1387 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1388 }
1389 else
1390 Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1391 }
1392
1393 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1394 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1395 value = - value;
1396
1397 Relocate_functions<32, false>::rel32(view, value);
1398 }
1399
1400 // Do a relocation in which we convert a TLS Global-Dynamic to a
1401 // Local-Exec.
1402
1403 inline void
1404 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1405 size_t relnum,
1406 Output_segment* tls_segment,
1407 const elfcpp::Rel<32, false>& rel,
1408 unsigned int,
1409 elfcpp::Elf_types<32>::Elf_Addr value,
1410 unsigned char* view,
1411 off_t view_size)
1412 {
1413 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1414 // ==> movl %gs,0,%eax; subl $foo@tpoff,%eax
1415 // leal foo(%reg),%eax; call ___tls_get_addr
1416 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1417
1418 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1419 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1420
1421 unsigned char op1 = view[-1];
1422 unsigned char op2 = view[-2];
1423
1424 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1425 op2 == 0x8d || op2 == 0x04);
1426 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1427 view[4] == 0xe8);
1428
1429 int roff = 5;
1430
1431 if (op2 == 0x04)
1432 {
1433 Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1434 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1435 view[-3] == 0x8d);
1436 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1437 ((op1 & 0xc7) == 0x05
1438 && op1 != (4 << 3)));
1439 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1440 }
1441 else
1442 {
1443 Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1444 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1445 if (rel.get_r_offset() + 9 < view_size && view[9] == 0x90)
1446 {
1447 // There is a trailing nop. Use the size byte subl.
1448 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1449 roff = 6;
1450 }
1451 else
1452 {
1453 // Use the five byte subl.
1454 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1455 }
1456 }
1457
1458 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1459 Relocate_functions<32, false>::rel32(view + roff, value);
1460
1461 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1462 // We can skip it.
1463 this->skip_call_tls_get_addr_ = true;
1464 }
1465
1466 // Check the range for a TLS relocation.
1467
1468 inline void
1469 Target_i386::Relocate::check_range(const Relocate_info<32, false>* relinfo,
1470 size_t relnum,
1471 const elfcpp::Rel<32, false>& rel,
1472 off_t view_size, off_t off)
1473 {
1474 off_t offset = rel.get_r_offset() + off;
1475 if (offset < 0 || offset > view_size)
1476 {
1477 fprintf(stderr, _("%s: %s: TLS relocation out of range\n"),
1478 program_name,
1479 relinfo->location(relnum, rel.get_r_offset()).c_str());
1480 gold_exit(false);
1481 }
1482 }
1483
1484 // Check the validity of a TLS relocation. This is like assert.
1485
1486 inline void
1487 Target_i386::Relocate::check_tls(const Relocate_info<32, false>* relinfo,
1488 size_t relnum,
1489 const elfcpp::Rel<32, false>& rel,
1490 bool valid)
1491 {
1492 if (!valid)
1493 {
1494 fprintf(stderr,
1495 _("%s: %s: TLS relocation against invalid instruction\n"),
1496 program_name,
1497 relinfo->location(relnum, rel.get_r_offset()).c_str());
1498 gold_exit(false);
1499 }
1500 }
1501
1502 // Relocate section data.
1503
1504 void
1505 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1506 unsigned int sh_type,
1507 const unsigned char* prelocs,
1508 size_t reloc_count,
1509 unsigned char* view,
1510 elfcpp::Elf_types<32>::Elf_Addr address,
1511 off_t view_size)
1512 {
1513 gold_assert(sh_type == elfcpp::SHT_REL);
1514
1515 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1516 Target_i386::Relocate>(
1517 relinfo,
1518 this,
1519 prelocs,
1520 reloc_count,
1521 view,
1522 address,
1523 view_size);
1524 }
1525
1526 // Return the value to use for a dynamic which requires special
1527 // treatment. This is how we support equality comparisons of function
1528 // pointers across shared library boundaries, as described in the
1529 // processor specific ABI supplement.
1530
1531 uint64_t
1532 Target_i386::do_dynsym_value(const Symbol* gsym) const
1533 {
1534 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1535 return this->plt_section()->address() + gsym->plt_offset();
1536 }
1537
1538 // Return a string used to fill a code section with nops to take up
1539 // the specified length.
1540
1541 std::string
1542 Target_i386::do_code_fill(off_t length)
1543 {
1544 if (length >= 16)
1545 {
1546 // Build a jmp instruction to skip over the bytes.
1547 unsigned char jmp[5];
1548 jmp[0] = 0xe9;
1549 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1550 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1551 + std::string(length - 5, '\0'));
1552 }
1553
1554 // Nop sequences of various lengths.
1555 const char nop1[1] = { 0x90 }; // nop
1556 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1557 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1558 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1559 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1560 0x00 }; // leal 0(%esi,1),%esi
1561 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1562 0x00, 0x00 };
1563 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1564 0x00, 0x00, 0x00 };
1565 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1566 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1567 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1568 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1569 0x00 };
1570 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1571 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1572 0x00, 0x00 };
1573 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1574 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1575 0x00, 0x00, 0x00 };
1576 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1577 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1578 0x00, 0x00, 0x00, 0x00 };
1579 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1580 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1581 0x27, 0x00, 0x00, 0x00,
1582 0x00 };
1583 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1584 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1585 0xbc, 0x27, 0x00, 0x00,
1586 0x00, 0x00 };
1587 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1588 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1589 0x90, 0x90, 0x90, 0x90,
1590 0x90, 0x90, 0x90 };
1591
1592 const char* nops[16] = {
1593 NULL,
1594 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1595 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1596 };
1597
1598 return std::string(nops[length], length);
1599 }
1600
1601 // The selector for i386 object files.
1602
1603 class Target_selector_i386 : public Target_selector
1604 {
1605 public:
1606 Target_selector_i386()
1607 : Target_selector(elfcpp::EM_386, 32, false)
1608 { }
1609
1610 Target*
1611 recognize(int machine, int osabi, int abiversion);
1612
1613 private:
1614 Target_i386* target_;
1615 };
1616
1617 // Recognize an i386 object file when we already know that the machine
1618 // number is EM_386.
1619
1620 Target*
1621 Target_selector_i386::recognize(int, int, int)
1622 {
1623 if (this->target_ == NULL)
1624 this->target_ = new Target_i386();
1625 return this->target_;
1626 }
1627
1628 Target_selector_i386 target_selector_i386;
1629
1630 } // End anonymous namespace.
This page took 0.062186 seconds and 4 git commands to generate.