1 // icf.cc -- Identical Code Folding.
3 // Copyright (C) 2009-2017 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
43 // int funcA () int funcB ()
45 // return foo(); return goo();
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
65 // int funcA (int a) int funcB (int a)
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
96 // Caveat with using function pointers :
97 // ------------------------------------
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
112 // Caveat with safe folding :
113 // ------------------------
115 // This applies only to x86_64.
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
135 // How to run : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications. Up to 6 % text size reductions.
146 #include "libiberty.h"
147 #include "demangle.h"
149 #include "int_encoding.h"
154 // This function determines if a section or a group of identical
155 // sections has unique contents. Such unique sections or groups can be
156 // declared final and need not be processed any further.
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 // sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 // that cannot be folded. SECTION_CONTENTS are NULL
163 // implies that this function is being called for the
164 // first time before the first iteration of icf.
167 preprocess_for_unique_sections(const std::vector
<Section_id
>& id_section
,
168 std::vector
<bool>* is_secn_or_group_unique
,
169 std::vector
<std::string
>* section_contents
)
171 Unordered_map
<uint32_t, unsigned int> uniq_map
;
172 std::pair
<Unordered_map
<uint32_t, unsigned int>::iterator
, bool>
175 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
177 if ((*is_secn_or_group_unique
)[i
])
181 Section_id secn
= id_section
[i
];
182 section_size_type plen
;
183 if (section_contents
== NULL
)
185 // Lock the object so we can read from it. This is only called
186 // single-threaded from queue_middle_tasks, so it is OK to lock.
187 // Unfortunately we have no way to pass in a Task token.
188 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
189 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
190 const unsigned char* contents
;
191 contents
= secn
.first
->section_contents(secn
.second
,
194 cksum
= xcrc32(contents
, plen
, 0xffffffff);
198 const unsigned char* contents_array
= reinterpret_cast
199 <const unsigned char*>((*section_contents
)[i
].c_str());
200 cksum
= xcrc32(contents_array
, (*section_contents
)[i
].length(),
203 uniq_map_insert
= uniq_map
.insert(std::make_pair(cksum
, i
));
204 if (uniq_map_insert
.second
)
206 (*is_secn_or_group_unique
)[i
] = true;
210 (*is_secn_or_group_unique
)[i
] = false;
211 (*is_secn_or_group_unique
)[uniq_map_insert
.first
->second
] = false;
216 // For SHF_MERGE sections that use REL relocations, the addend is stored in
217 // the text section at the relocation offset. Read the addend value given
218 // the pointer to the addend in the text section and the addend size.
219 // Update the addend value if a valid addend is found.
221 // RELOC_ADDEND_PTR : Pointer to the addend in the text section.
222 // ADDEND_SIZE : The size of the addend.
223 // RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
226 get_rel_addend(const unsigned char* reloc_addend_ptr
,
227 const unsigned int addend_size
,
228 uint64_t* reloc_addend_value
)
235 *reloc_addend_value
=
236 read_from_pointer
<8>(reloc_addend_ptr
);
239 *reloc_addend_value
=
240 read_from_pointer
<16>(reloc_addend_ptr
);
243 *reloc_addend_value
=
244 read_from_pointer
<32>(reloc_addend_ptr
);
247 *reloc_addend_value
=
248 read_from_pointer
<64>(reloc_addend_ptr
);
255 // This returns the buffer containing the section's contents, both
256 // text and relocs. Relocs are differentiated as those pointing to
257 // sections that could be folded and those that cannot. Only relocs
258 // pointing to sections that could be folded are recomputed on
259 // subsequent invocations of this function.
261 // FIRST_ITERATION : true if it is the first invocation.
262 // SECN : Section for which contents are desired.
263 // SECTION_NUM : Unique section number of this section.
264 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
266 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
267 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
271 get_section_contents(bool first_iteration
,
272 const Section_id
& secn
,
273 unsigned int section_num
,
274 unsigned int* num_tracked_relocs
,
275 Symbol_table
* symtab
,
276 const std::vector
<unsigned int>& kept_section_id
,
277 std::vector
<std::string
>* section_contents
)
279 // Lock the object so we can read from it. This is only called
280 // single-threaded from queue_middle_tasks, so it is OK to lock.
281 // Unfortunately we have no way to pass in a Task token.
282 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
283 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
285 section_size_type plen
;
286 const unsigned char* contents
= NULL
;
288 contents
= secn
.first
->section_contents(secn
.second
, &plen
, false);
290 // The buffer to hold all the contents including relocs. A checksum
291 // is then computed on this buffer.
293 std::string icf_reloc_buffer
;
295 if (num_tracked_relocs
)
296 *num_tracked_relocs
= 0;
298 Icf::Reloc_info_list
& reloc_info_list
=
299 symtab
->icf()->reloc_info_list();
301 Icf::Reloc_info_list::iterator it_reloc_info_list
=
302 reloc_info_list
.find(secn
);
305 icf_reloc_buffer
.clear();
307 // Process relocs and put them into the buffer.
309 if (it_reloc_info_list
!= reloc_info_list
.end())
311 Icf::Sections_reachable_info
&v
=
312 (it_reloc_info_list
->second
).section_info
;
313 // Stores the information of the symbol pointed to by the reloc.
314 const Icf::Symbol_info
&s
= (it_reloc_info_list
->second
).symbol_info
;
315 // Stores the addend and the symbol value.
316 Icf::Addend_info
&a
= (it_reloc_info_list
->second
).addend_info
;
317 // Stores the offset of the reloc.
318 const Icf::Offset_info
&o
= (it_reloc_info_list
->second
).offset_info
;
319 const Icf::Reloc_addend_size_info
&reloc_addend_size_info
=
320 (it_reloc_info_list
->second
).reloc_addend_size_info
;
321 Icf::Sections_reachable_info::iterator it_v
= v
.begin();
322 Icf::Symbol_info::const_iterator it_s
= s
.begin();
323 Icf::Addend_info::iterator it_a
= a
.begin();
324 Icf::Offset_info::const_iterator it_o
= o
.begin();
325 Icf::Reloc_addend_size_info::const_iterator it_addend_size
=
326 reloc_addend_size_info
.begin();
328 for (; it_v
!= v
.end(); ++it_v
, ++it_s
, ++it_a
, ++it_o
, ++it_addend_size
)
331 && it_v
->first
!= NULL
)
334 loc
.object
= it_v
->first
;
335 loc
.shndx
= it_v
->second
;
336 loc
.offset
= convert_types
<off_t
, long long>(it_a
->first
338 // Look through function descriptors
339 parameters
->target().function_location(&loc
);
340 if (loc
.shndx
!= it_v
->second
)
342 it_v
->second
= loc
.shndx
;
343 // Modify symvalue/addend to the code entry.
344 it_a
->first
= loc
.offset
;
349 // ADDEND_STR stores the symbol value and addend and offset,
350 // each at most 16 hex digits long. it_a points to a pair
351 // where first is the symbol value and second is the
355 // It would be nice if we could use format macros in inttypes.h
356 // here but there are not in ISO/IEC C++ 1998.
357 snprintf(addend_str
, sizeof(addend_str
), "%llx %llx %llux",
358 static_cast<long long>((*it_a
).first
),
359 static_cast<long long>((*it_a
).second
),
360 static_cast<unsigned long long>(*it_o
));
362 // If the symbol pointed to by the reloc is not in an ordinary
363 // section or if the symbol type is not FROM_OBJECT, then the
365 if (it_v
->first
== NULL
)
369 // If the symbol name is available, use it.
371 buffer
.append((*it_s
)->name());
372 // Append the addend.
373 buffer
.append(addend_str
);
379 Section_id
reloc_secn(it_v
->first
, it_v
->second
);
381 // If this reloc turns back and points to the same section,
382 // like a recursive call, use a special symbol to mark this.
383 if (reloc_secn
.first
== secn
.first
384 && reloc_secn
.second
== secn
.second
)
389 buffer
.append(addend_str
);
394 Icf::Uniq_secn_id_map
& section_id_map
=
395 symtab
->icf()->section_to_int_map();
396 Icf::Uniq_secn_id_map::iterator section_id_map_it
=
397 section_id_map
.find(reloc_secn
);
398 bool is_sym_preemptible
= (*it_s
!= NULL
399 && !(*it_s
)->is_from_dynobj()
400 && !(*it_s
)->is_undefined()
401 && (*it_s
)->is_preemptible());
402 if (!is_sym_preemptible
403 && section_id_map_it
!= section_id_map
.end())
405 // This is a reloc to a section that might be folded.
406 if (num_tracked_relocs
)
407 (*num_tracked_relocs
)++;
409 char kept_section_str
[10];
410 unsigned int secn_id
= section_id_map_it
->second
;
411 snprintf(kept_section_str
, sizeof(kept_section_str
), "%u",
412 kept_section_id
[secn_id
]);
415 buffer
.append("ICF_R");
416 buffer
.append(addend_str
);
418 icf_reloc_buffer
.append(kept_section_str
);
419 // Append the addend.
420 icf_reloc_buffer
.append(addend_str
);
421 icf_reloc_buffer
.append("@");
425 // This is a reloc to a section that cannot be folded.
426 // Process it only in the first iteration.
427 if (!first_iteration
)
430 uint64_t secn_flags
= (it_v
->first
)->section_flags(it_v
->second
);
431 // This reloc points to a merge section. Hash the
432 // contents of this section.
433 if ((secn_flags
& elfcpp::SHF_MERGE
) != 0
434 && parameters
->target().can_icf_inline_merge_sections())
437 (it_v
->first
)->section_entsize(it_v
->second
);
438 long long offset
= it_a
->first
;
439 // Handle SHT_RELA and SHT_REL addends, only one of these
441 // Get the SHT_RELA addend. For RELA relocations, we have
442 // the addend from the relocation.
443 uint64_t reloc_addend_value
= it_a
->second
;
445 // Handle SHT_REL addends.
446 // For REL relocations, we need to fetch the addend from the
448 const unsigned char* reloc_addend_ptr
=
449 contents
+ static_cast<unsigned long long>(*it_o
);
451 // Update the addend value with the SHT_REL addend if
453 get_rel_addend(reloc_addend_ptr
, *it_addend_size
,
454 &reloc_addend_value
);
456 // Ignore the addend when it is a negative value. See the
457 // comments in Merged_symbol_value::value in object.h.
458 if (reloc_addend_value
< 0xffffff00)
459 offset
= offset
+ reloc_addend_value
;
461 section_size_type secn_len
;
463 const unsigned char* str_contents
=
464 (it_v
->first
)->section_contents(it_v
->second
,
467 gold_assert (offset
< (long long) secn_len
);
469 if ((secn_flags
& elfcpp::SHF_STRINGS
) != 0)
471 // String merge section.
472 const char* str_char
=
473 reinterpret_cast<const char*>(str_contents
);
478 buffer
.append(str_char
);
483 const uint16_t* ptr_16
=
484 reinterpret_cast<const uint16_t*>(str_char
);
485 unsigned int strlen_16
= 0;
486 // Find the NULL character.
487 while(*(ptr_16
+ strlen_16
) != 0)
489 buffer
.append(str_char
, strlen_16
* 2);
494 const uint32_t* ptr_32
=
495 reinterpret_cast<const uint32_t*>(str_char
);
496 unsigned int strlen_32
= 0;
497 // Find the NULL character.
498 while(*(ptr_32
+ strlen_32
) != 0)
500 buffer
.append(str_char
, strlen_32
* 4);
509 // Use the entsize to determine the length to copy.
510 uint64_t bufsize
= entsize
;
511 // If entsize is too big, copy all the remaining bytes.
512 if ((offset
+ entsize
) > secn_len
)
513 bufsize
= secn_len
- offset
;
514 buffer
.append(reinterpret_cast<const
515 char*>(str_contents
),
520 else if ((*it_s
) != NULL
)
522 // If symbol name is available use that.
523 buffer
.append((*it_s
)->name());
524 // Append the addend.
525 buffer
.append(addend_str
);
530 // Symbol name is not available, like for a local symbol,
531 // use object and section id.
532 buffer
.append(it_v
->first
->name());
534 snprintf(secn_id
, sizeof(secn_id
), "%u",it_v
->second
);
535 buffer
.append(secn_id
);
536 // Append the addend.
537 buffer
.append(addend_str
);
546 buffer
.append("Contents = ");
547 buffer
.append(reinterpret_cast<const char*>(contents
), plen
);
548 // Store the section contents that don't change to avoid recomputing
549 // during the next call to this function.
550 (*section_contents
)[section_num
] = buffer
;
554 gold_assert(buffer
.empty());
555 // Reuse the contents computed in the previous iteration.
556 buffer
.append((*section_contents
)[section_num
]);
559 buffer
.append(icf_reloc_buffer
);
563 // This function computes a checksum on each section to detect and form
564 // groups of identical sections. The first iteration does this for all
566 // Further iterations do this only for the kept sections from each group to
567 // determine if larger groups of identical sections could be formed. The
568 // first section in each group is the kept section for that group.
570 // CRC32 is the checksumming algorithm and can have collisions. That is,
571 // two sections with different contents can have the same checksum. Hence,
572 // a multimap is used to maintain more than one group of checksum
573 // identical sections. A section is added to a group only after its
574 // contents are explicitly compared with the kept section of the group.
577 // ITERATION_NUM : Invocation instance of this function.
578 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
580 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
581 // ID_SECTION : Vector mapping a section to an unique integer.
582 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
583 // sections is already known to be unique.
584 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
588 match_sections(unsigned int iteration_num
,
589 Symbol_table
* symtab
,
590 std::vector
<unsigned int>* num_tracked_relocs
,
591 std::vector
<unsigned int>* kept_section_id
,
592 const std::vector
<Section_id
>& id_section
,
593 const std::vector
<uint64_t>& section_addraligns
,
594 std::vector
<bool>* is_secn_or_group_unique
,
595 std::vector
<std::string
>* section_contents
)
597 Unordered_multimap
<uint32_t, unsigned int> section_cksum
;
598 std::pair
<Unordered_multimap
<uint32_t, unsigned int>::iterator
,
599 Unordered_multimap
<uint32_t, unsigned int>::iterator
> key_range
;
600 bool converged
= true;
602 if (iteration_num
== 1)
603 preprocess_for_unique_sections(id_section
,
604 is_secn_or_group_unique
,
607 preprocess_for_unique_sections(id_section
,
608 is_secn_or_group_unique
,
611 std::vector
<std::string
> full_section_contents
;
613 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
615 full_section_contents
.push_back("");
616 if ((*is_secn_or_group_unique
)[i
])
619 Section_id secn
= id_section
[i
];
620 std::string this_secn_contents
;
622 if (iteration_num
== 1)
624 unsigned int num_relocs
= 0;
625 this_secn_contents
= get_section_contents(true, secn
, i
, &num_relocs
,
626 symtab
, (*kept_section_id
),
628 (*num_tracked_relocs
)[i
] = num_relocs
;
632 if ((*kept_section_id
)[i
] != i
)
634 // This section is already folded into something.
637 this_secn_contents
= get_section_contents(false, secn
, i
, NULL
,
638 symtab
, (*kept_section_id
),
642 const unsigned char* this_secn_contents_array
=
643 reinterpret_cast<const unsigned char*>(this_secn_contents
.c_str());
644 cksum
= xcrc32(this_secn_contents_array
, this_secn_contents
.length(),
646 size_t count
= section_cksum
.count(cksum
);
650 // Start a group with this cksum.
651 section_cksum
.insert(std::make_pair(cksum
, i
));
652 full_section_contents
[i
] = this_secn_contents
;
656 key_range
= section_cksum
.equal_range(cksum
);
657 Unordered_multimap
<uint32_t, unsigned int>::iterator it
;
658 // Search all the groups with this cksum for a match.
659 for (it
= key_range
.first
; it
!= key_range
.second
; ++it
)
661 unsigned int kept_section
= it
->second
;
662 if (full_section_contents
[kept_section
].length()
663 != this_secn_contents
.length())
665 if (memcmp(full_section_contents
[kept_section
].c_str(),
666 this_secn_contents
.c_str(),
667 this_secn_contents
.length()) != 0)
670 // Check section alignment here.
671 // The section with the larger alignment requirement
672 // should be kept. We assume alignment can only be
673 // zero or positive integral powers of two.
674 uint64_t align_i
= section_addraligns
[i
];
675 uint64_t align_kept
= section_addraligns
[kept_section
];
676 if (align_i
<= align_kept
)
678 (*kept_section_id
)[i
] = kept_section
;
682 (*kept_section_id
)[kept_section
] = i
;
684 full_section_contents
[kept_section
].swap(
685 full_section_contents
[i
]);
691 if (it
== key_range
.second
)
693 // Create a new group for this cksum.
694 section_cksum
.insert(std::make_pair(cksum
, i
));
695 full_section_contents
[i
] = this_secn_contents
;
698 // If there are no relocs to foldable sections do not process
699 // this section any further.
700 if (iteration_num
== 1 && (*num_tracked_relocs
)[i
] == 0)
701 (*is_secn_or_group_unique
)[i
] = true;
704 // If a section was folded into another section that was later folded
705 // again then the former has to be updated.
706 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
708 // Find the end of the folding chain
709 unsigned int kept
= i
;
710 while ((*kept_section_id
)[kept
] != kept
)
712 kept
= (*kept_section_id
)[kept
];
714 // Update every element of the chain
715 unsigned int current
= i
;
716 while ((*kept_section_id
)[current
] != kept
)
718 unsigned int next
= (*kept_section_id
)[current
];
719 (*kept_section_id
)[current
] = kept
;
727 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
728 // This function returns true if the section name is that of a ctor or a dtor.
731 is_function_ctor_or_dtor(const std::string
& section_name
)
733 const char* mangled_func_name
= strrchr(section_name
.c_str(), '.');
734 gold_assert(mangled_func_name
!= NULL
);
735 if ((is_prefix_of("._ZN", mangled_func_name
)
736 || is_prefix_of("._ZZ", mangled_func_name
))
737 && (is_gnu_v3_mangled_ctor(mangled_func_name
+ 1)
738 || is_gnu_v3_mangled_dtor(mangled_func_name
+ 1)))
745 // This is the main ICF function called in gold.cc. This does the
746 // initialization and calls match_sections repeatedly (twice by default)
747 // which computes the crc checksums and detects identical functions.
750 Icf::find_identical_sections(const Input_objects
* input_objects
,
751 Symbol_table
* symtab
)
753 unsigned int section_num
= 0;
754 std::vector
<unsigned int> num_tracked_relocs
;
755 std::vector
<uint64_t> section_addraligns
;
756 std::vector
<bool> is_secn_or_group_unique
;
757 std::vector
<std::string
> section_contents
;
758 const Target
& target
= parameters
->target();
760 // Decide which sections are possible candidates first.
762 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
763 p
!= input_objects
->relobj_end();
766 // Lock the object so we can read from it. This is only called
767 // single-threaded from queue_middle_tasks, so it is OK to lock.
768 // Unfortunately we have no way to pass in a Task token.
769 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
770 Task_lock_obj
<Object
> tl(dummy_task
, *p
);
772 for (unsigned int i
= 0;i
< (*p
)->shnum(); ++i
)
774 const std::string section_name
= (*p
)->section_name(i
);
775 if (!is_section_foldable_candidate(section_name
))
777 if (!(*p
)->is_section_included(i
))
779 if (parameters
->options().gc_sections()
780 && symtab
->gc()->is_section_garbage(*p
, i
))
782 // With --icf=safe, check if the mangled function name is a ctor
783 // or a dtor. The mangled function name can be obtained from the
784 // section name by stripping the section prefix.
785 if (parameters
->options().icf_safe_folding()
786 && !is_function_ctor_or_dtor(section_name
)
787 && (!target
.can_check_for_function_pointers()
788 || section_has_function_pointers(*p
, i
)))
792 this->id_section_
.push_back(Section_id(*p
, i
));
793 this->section_id_
[Section_id(*p
, i
)] = section_num
;
794 this->kept_section_id_
.push_back(section_num
);
795 num_tracked_relocs
.push_back(0);
796 section_addraligns
.push_back((*p
)->section_addralign(i
));
797 is_secn_or_group_unique
.push_back(false);
798 section_contents
.push_back("");
803 unsigned int num_iterations
= 0;
805 // Default number of iterations to run ICF is 2.
806 unsigned int max_iterations
= (parameters
->options().icf_iterations() > 0)
807 ? parameters
->options().icf_iterations()
810 bool converged
= false;
812 while (!converged
&& (num_iterations
< max_iterations
))
815 converged
= match_sections(num_iterations
, symtab
,
816 &num_tracked_relocs
, &this->kept_section_id_
,
817 this->id_section_
, section_addraligns
,
818 &is_secn_or_group_unique
, §ion_contents
);
821 if (parameters
->options().print_icf_sections())
824 gold_info(_("%s: ICF Converged after %u iteration(s)"),
825 program_name
, num_iterations
);
827 gold_info(_("%s: ICF stopped after %u iteration(s)"),
828 program_name
, num_iterations
);
831 // Unfold --keep-unique symbols.
832 for (options::String_set::const_iterator p
=
833 parameters
->options().keep_unique_begin();
834 p
!= parameters
->options().keep_unique_end();
837 const char* name
= p
->c_str();
838 Symbol
* sym
= symtab
->lookup(name
);
841 gold_warning(_("Could not find symbol %s to unfold\n"), name
);
843 else if (sym
->source() == Symbol::FROM_OBJECT
844 && !sym
->object()->is_dynamic())
846 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
848 unsigned int shndx
= sym
->shndx(&is_ordinary
);
851 this->unfold_section(obj
, shndx
);
860 // Unfolds the section denoted by OBJ and SHNDX if folded.
863 Icf::unfold_section(Relobj
* obj
, unsigned int shndx
)
865 Section_id
secn(obj
, shndx
);
866 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
867 if (it
== this->section_id_
.end())
869 unsigned int section_num
= it
->second
;
870 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
871 if (kept_section_id
!= section_num
)
872 this->kept_section_id_
[section_num
] = section_num
;
875 // This function determines if the section corresponding to the
876 // given object and index is folded based on if the kept section
877 // is different from this section.
880 Icf::is_section_folded(Relobj
* obj
, unsigned int shndx
)
882 Section_id
secn(obj
, shndx
);
883 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
884 if (it
== this->section_id_
.end())
886 unsigned int section_num
= it
->second
;
887 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
888 return kept_section_id
!= section_num
;
891 // This function returns the folded section for the given section.
894 Icf::get_folded_section(Relobj
* dup_obj
, unsigned int dup_shndx
)
896 Section_id
dup_secn(dup_obj
, dup_shndx
);
897 Uniq_secn_id_map::iterator it
= this->section_id_
.find(dup_secn
);
898 gold_assert(it
!= this->section_id_
.end());
899 unsigned int section_num
= it
->second
;
900 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
901 Section_id folded_section
= this->id_section_
[kept_section_id
];
902 return folded_section
;
905 } // End of namespace gold.