Fix handling of __ehdr_start when it cannot be defined.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 "ranges",
536 "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543 "abbrev",
544 // "addr", // Fission extension
545 // "aranges", // not used by gdb as of 7.4
546 // "frame",
547 "info",
548 // "types",
549 "line",
550 // "loc",
551 // "macinfo",
552 // "macro",
553 // "pubnames", // not used by gdb as of 7.4
554 // "pubtypes", // not used by gdb as of 7.4
555 // "ranges",
556 "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564 "aranges",
565 "pubnames",
566 "pubtypes",
567 };
568
569 // Returns whether the given debug section is in the list of
570 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
571 // portion of the name following ".debug_" or ".zdebug_".
572
573 static inline bool
574 is_gdb_debug_section(const char* suffix)
575 {
576 // We can do this faster: binary search or a hashtable. But why bother?
577 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
578 if (strcmp(suffix, gdb_sections[i]) == 0)
579 return true;
580 return false;
581 }
582
583 // Returns whether the given section is needed for lines-only debugging.
584
585 static inline bool
586 is_lines_only_debug_section(const char* suffix)
587 {
588 // We can do this faster: binary search or a hashtable. But why bother?
589 for (size_t i = 0;
590 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
591 ++i)
592 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
593 return true;
594 return false;
595 }
596
597 // Returns whether the given section is a fast-lookup section that
598 // will not be needed when building a .gdb_index section.
599
600 static inline bool
601 is_gdb_fast_lookup_section(const char* suffix)
602 {
603 // We can do this faster: binary search or a hashtable. But why bother?
604 for (size_t i = 0;
605 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
606 ++i)
607 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
608 return true;
609 return false;
610 }
611
612 // Sometimes we compress sections. This is typically done for
613 // sections that are not part of normal program execution (such as
614 // .debug_* sections), and where the readers of these sections know
615 // how to deal with compressed sections. This routine doesn't say for
616 // certain whether we'll compress -- it depends on commandline options
617 // as well -- just whether this section is a candidate for compression.
618 // (The Output_compressed_section class decides whether to compress
619 // a given section, and picks the name of the compressed section.)
620
621 static bool
622 is_compressible_debug_section(const char* secname)
623 {
624 return (is_prefix_of(".debug", secname));
625 }
626
627 // We may see compressed debug sections in input files. Return TRUE
628 // if this is the name of a compressed debug section.
629
630 bool
631 is_compressed_debug_section(const char* secname)
632 {
633 return (is_prefix_of(".zdebug", secname));
634 }
635
636 // Whether to include this section in the link.
637
638 template<int size, bool big_endian>
639 bool
640 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
641 const elfcpp::Shdr<size, big_endian>& shdr)
642 {
643 if (!parameters->options().relocatable()
644 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
645 return false;
646
647 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
648
649 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
650 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
651 return parameters->target().should_include_section(sh_type);
652
653 switch (sh_type)
654 {
655 case elfcpp::SHT_NULL:
656 case elfcpp::SHT_SYMTAB:
657 case elfcpp::SHT_DYNSYM:
658 case elfcpp::SHT_HASH:
659 case elfcpp::SHT_DYNAMIC:
660 case elfcpp::SHT_SYMTAB_SHNDX:
661 return false;
662
663 case elfcpp::SHT_STRTAB:
664 // Discard the sections which have special meanings in the ELF
665 // ABI. Keep others (e.g., .stabstr). We could also do this by
666 // checking the sh_link fields of the appropriate sections.
667 return (strcmp(name, ".dynstr") != 0
668 && strcmp(name, ".strtab") != 0
669 && strcmp(name, ".shstrtab") != 0);
670
671 case elfcpp::SHT_RELA:
672 case elfcpp::SHT_REL:
673 case elfcpp::SHT_GROUP:
674 // If we are emitting relocations these should be handled
675 // elsewhere.
676 gold_assert(!parameters->options().relocatable());
677 return false;
678
679 case elfcpp::SHT_PROGBITS:
680 if (parameters->options().strip_debug()
681 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
682 {
683 if (is_debug_info_section(name))
684 return false;
685 }
686 if (parameters->options().strip_debug_non_line()
687 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
688 {
689 // Debugging sections can only be recognized by name.
690 if (is_prefix_of(".debug_", name)
691 && !is_lines_only_debug_section(name + 7))
692 return false;
693 if (is_prefix_of(".zdebug_", name)
694 && !is_lines_only_debug_section(name + 8))
695 return false;
696 }
697 if (parameters->options().strip_debug_gdb()
698 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
699 {
700 // Debugging sections can only be recognized by name.
701 if (is_prefix_of(".debug_", name)
702 && !is_gdb_debug_section(name + 7))
703 return false;
704 if (is_prefix_of(".zdebug_", name)
705 && !is_gdb_debug_section(name + 8))
706 return false;
707 }
708 if (parameters->options().gdb_index()
709 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
710 {
711 // When building .gdb_index, we can strip .debug_pubnames,
712 // .debug_pubtypes, and .debug_aranges sections.
713 if (is_prefix_of(".debug_", name)
714 && is_gdb_fast_lookup_section(name + 7))
715 return false;
716 if (is_prefix_of(".zdebug_", name)
717 && is_gdb_fast_lookup_section(name + 8))
718 return false;
719 }
720 if (parameters->options().strip_lto_sections()
721 && !parameters->options().relocatable()
722 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
723 {
724 // Ignore LTO sections containing intermediate code.
725 if (is_prefix_of(".gnu.lto_", name))
726 return false;
727 }
728 // The GNU linker strips .gnu_debuglink sections, so we do too.
729 // This is a feature used to keep debugging information in
730 // separate files.
731 if (strcmp(name, ".gnu_debuglink") == 0)
732 return false;
733 return true;
734
735 default:
736 return true;
737 }
738 }
739
740 // Return an output section named NAME, or NULL if there is none.
741
742 Output_section*
743 Layout::find_output_section(const char* name) const
744 {
745 for (Section_list::const_iterator p = this->section_list_.begin();
746 p != this->section_list_.end();
747 ++p)
748 if (strcmp((*p)->name(), name) == 0)
749 return *p;
750 return NULL;
751 }
752
753 // Return an output segment of type TYPE, with segment flags SET set
754 // and segment flags CLEAR clear. Return NULL if there is none.
755
756 Output_segment*
757 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
758 elfcpp::Elf_Word clear) const
759 {
760 for (Segment_list::const_iterator p = this->segment_list_.begin();
761 p != this->segment_list_.end();
762 ++p)
763 if (static_cast<elfcpp::PT>((*p)->type()) == type
764 && ((*p)->flags() & set) == set
765 && ((*p)->flags() & clear) == 0)
766 return *p;
767 return NULL;
768 }
769
770 // When we put a .ctors or .dtors section with more than one word into
771 // a .init_array or .fini_array section, we need to reverse the words
772 // in the .ctors/.dtors section. This is because .init_array executes
773 // constructors front to back, where .ctors executes them back to
774 // front, and vice-versa for .fini_array/.dtors. Although we do want
775 // to remap .ctors/.dtors into .init_array/.fini_array because it can
776 // be more efficient, we don't want to change the order in which
777 // constructors/destructors are run. This set just keeps track of
778 // these sections which need to be reversed. It is only changed by
779 // Layout::layout. It should be a private member of Layout, but that
780 // would require layout.h to #include object.h to get the definition
781 // of Section_id.
782 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
783
784 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
785 // .init_array/.fini_array section.
786
787 bool
788 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
789 {
790 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
791 != ctors_sections_in_init_array.end());
792 }
793
794 // Return the output section to use for section NAME with type TYPE
795 // and section flags FLAGS. NAME must be canonicalized in the string
796 // pool, and NAME_KEY is the key. ORDER is where this should appear
797 // in the output sections. IS_RELRO is true for a relro section.
798
799 Output_section*
800 Layout::get_output_section(const char* name, Stringpool::Key name_key,
801 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
802 Output_section_order order, bool is_relro)
803 {
804 elfcpp::Elf_Word lookup_type = type;
805
806 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
807 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
808 // .init_array, .fini_array, and .preinit_array sections by name
809 // whatever their type in the input file. We do this because the
810 // types are not always right in the input files.
811 if (lookup_type == elfcpp::SHT_INIT_ARRAY
812 || lookup_type == elfcpp::SHT_FINI_ARRAY
813 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
814 lookup_type = elfcpp::SHT_PROGBITS;
815
816 elfcpp::Elf_Xword lookup_flags = flags;
817
818 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
819 // read-write with read-only sections. Some other ELF linkers do
820 // not do this. FIXME: Perhaps there should be an option
821 // controlling this.
822 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
823
824 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
825 const std::pair<Key, Output_section*> v(key, NULL);
826 std::pair<Section_name_map::iterator, bool> ins(
827 this->section_name_map_.insert(v));
828
829 if (!ins.second)
830 return ins.first->second;
831 else
832 {
833 // This is the first time we've seen this name/type/flags
834 // combination. For compatibility with the GNU linker, we
835 // combine sections with contents and zero flags with sections
836 // with non-zero flags. This is a workaround for cases where
837 // assembler code forgets to set section flags. FIXME: Perhaps
838 // there should be an option to control this.
839 Output_section* os = NULL;
840
841 if (lookup_type == elfcpp::SHT_PROGBITS)
842 {
843 if (flags == 0)
844 {
845 Output_section* same_name = this->find_output_section(name);
846 if (same_name != NULL
847 && (same_name->type() == elfcpp::SHT_PROGBITS
848 || same_name->type() == elfcpp::SHT_INIT_ARRAY
849 || same_name->type() == elfcpp::SHT_FINI_ARRAY
850 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
851 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
852 os = same_name;
853 }
854 else if ((flags & elfcpp::SHF_TLS) == 0)
855 {
856 elfcpp::Elf_Xword zero_flags = 0;
857 const Key zero_key(name_key, std::make_pair(lookup_type,
858 zero_flags));
859 Section_name_map::iterator p =
860 this->section_name_map_.find(zero_key);
861 if (p != this->section_name_map_.end())
862 os = p->second;
863 }
864 }
865
866 if (os == NULL)
867 os = this->make_output_section(name, type, flags, order, is_relro);
868
869 ins.first->second = os;
870 return os;
871 }
872 }
873
874 // Returns TRUE iff NAME (an input section from RELOBJ) will
875 // be mapped to an output section that should be KEPT.
876
877 bool
878 Layout::keep_input_section(const Relobj* relobj, const char* name)
879 {
880 if (! this->script_options_->saw_sections_clause())
881 return false;
882
883 Script_sections* ss = this->script_options_->script_sections();
884 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
885 Output_section** output_section_slot;
886 Script_sections::Section_type script_section_type;
887 bool keep;
888
889 name = ss->output_section_name(file_name, name, &output_section_slot,
890 &script_section_type, &keep);
891 return name != NULL && keep;
892 }
893
894 // Clear the input section flags that should not be copied to the
895 // output section.
896
897 elfcpp::Elf_Xword
898 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
899 {
900 // Some flags in the input section should not be automatically
901 // copied to the output section.
902 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
903 | elfcpp::SHF_GROUP
904 | elfcpp::SHF_MERGE
905 | elfcpp::SHF_STRINGS);
906
907 // We only clear the SHF_LINK_ORDER flag in for
908 // a non-relocatable link.
909 if (!parameters->options().relocatable())
910 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
911
912 return input_section_flags;
913 }
914
915 // Pick the output section to use for section NAME, in input file
916 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
917 // linker created section. IS_INPUT_SECTION is true if we are
918 // choosing an output section for an input section found in a input
919 // file. ORDER is where this section should appear in the output
920 // sections. IS_RELRO is true for a relro section. This will return
921 // NULL if the input section should be discarded.
922
923 Output_section*
924 Layout::choose_output_section(const Relobj* relobj, const char* name,
925 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
926 bool is_input_section, Output_section_order order,
927 bool is_relro)
928 {
929 // We should not see any input sections after we have attached
930 // sections to segments.
931 gold_assert(!is_input_section || !this->sections_are_attached_);
932
933 flags = this->get_output_section_flags(flags);
934
935 if (this->script_options_->saw_sections_clause())
936 {
937 // We are using a SECTIONS clause, so the output section is
938 // chosen based only on the name.
939
940 Script_sections* ss = this->script_options_->script_sections();
941 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
942 Output_section** output_section_slot;
943 Script_sections::Section_type script_section_type;
944 const char* orig_name = name;
945 bool keep;
946 name = ss->output_section_name(file_name, name, &output_section_slot,
947 &script_section_type, &keep);
948
949 if (name == NULL)
950 {
951 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
952 "because it is not allowed by the "
953 "SECTIONS clause of the linker script"),
954 orig_name);
955 // The SECTIONS clause says to discard this input section.
956 return NULL;
957 }
958
959 // We can only handle script section types ST_NONE and ST_NOLOAD.
960 switch (script_section_type)
961 {
962 case Script_sections::ST_NONE:
963 break;
964 case Script_sections::ST_NOLOAD:
965 flags &= elfcpp::SHF_ALLOC;
966 break;
967 default:
968 gold_unreachable();
969 }
970
971 // If this is an orphan section--one not mentioned in the linker
972 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
973 // default processing below.
974
975 if (output_section_slot != NULL)
976 {
977 if (*output_section_slot != NULL)
978 {
979 (*output_section_slot)->update_flags_for_input_section(flags);
980 return *output_section_slot;
981 }
982
983 // We don't put sections found in the linker script into
984 // SECTION_NAME_MAP_. That keeps us from getting confused
985 // if an orphan section is mapped to a section with the same
986 // name as one in the linker script.
987
988 name = this->namepool_.add(name, false, NULL);
989
990 Output_section* os = this->make_output_section(name, type, flags,
991 order, is_relro);
992
993 os->set_found_in_sections_clause();
994
995 // Special handling for NOLOAD sections.
996 if (script_section_type == Script_sections::ST_NOLOAD)
997 {
998 os->set_is_noload();
999
1000 // The constructor of Output_section sets addresses of non-ALLOC
1001 // sections to 0 by default. We don't want that for NOLOAD
1002 // sections even if they have no SHF_ALLOC flag.
1003 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1004 && os->is_address_valid())
1005 {
1006 gold_assert(os->address() == 0
1007 && !os->is_offset_valid()
1008 && !os->is_data_size_valid());
1009 os->reset_address_and_file_offset();
1010 }
1011 }
1012
1013 *output_section_slot = os;
1014 return os;
1015 }
1016 }
1017
1018 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1019
1020 size_t len = strlen(name);
1021 char* uncompressed_name = NULL;
1022
1023 // Compressed debug sections should be mapped to the corresponding
1024 // uncompressed section.
1025 if (is_compressed_debug_section(name))
1026 {
1027 uncompressed_name = new char[len];
1028 uncompressed_name[0] = '.';
1029 gold_assert(name[0] == '.' && name[1] == 'z');
1030 strncpy(&uncompressed_name[1], &name[2], len - 2);
1031 uncompressed_name[len - 1] = '\0';
1032 len -= 1;
1033 name = uncompressed_name;
1034 }
1035
1036 // Turn NAME from the name of the input section into the name of the
1037 // output section.
1038 if (is_input_section
1039 && !this->script_options_->saw_sections_clause()
1040 && !parameters->options().relocatable())
1041 {
1042 const char *orig_name = name;
1043 name = parameters->target().output_section_name(relobj, name, &len);
1044 if (name == NULL)
1045 name = Layout::output_section_name(relobj, orig_name, &len);
1046 }
1047
1048 Stringpool::Key name_key;
1049 name = this->namepool_.add_with_length(name, len, true, &name_key);
1050
1051 if (uncompressed_name != NULL)
1052 delete[] uncompressed_name;
1053
1054 // Find or make the output section. The output section is selected
1055 // based on the section name, type, and flags.
1056 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1057 }
1058
1059 // For incremental links, record the initial fixed layout of a section
1060 // from the base file, and return a pointer to the Output_section.
1061
1062 template<int size, bool big_endian>
1063 Output_section*
1064 Layout::init_fixed_output_section(const char* name,
1065 elfcpp::Shdr<size, big_endian>& shdr)
1066 {
1067 unsigned int sh_type = shdr.get_sh_type();
1068
1069 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1070 // PRE_INIT_ARRAY, and NOTE sections.
1071 // All others will be created from scratch and reallocated.
1072 if (!can_incremental_update(sh_type))
1073 return NULL;
1074
1075 // If we're generating a .gdb_index section, we need to regenerate
1076 // it from scratch.
1077 if (parameters->options().gdb_index()
1078 && sh_type == elfcpp::SHT_PROGBITS
1079 && strcmp(name, ".gdb_index") == 0)
1080 return NULL;
1081
1082 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1083 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1084 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1085 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1086 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1087 shdr.get_sh_addralign();
1088
1089 // Make the output section.
1090 Stringpool::Key name_key;
1091 name = this->namepool_.add(name, true, &name_key);
1092 Output_section* os = this->get_output_section(name, name_key, sh_type,
1093 sh_flags, ORDER_INVALID, false);
1094 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1095 if (sh_type != elfcpp::SHT_NOBITS)
1096 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1097 return os;
1098 }
1099
1100 // Return the index by which an input section should be ordered. This
1101 // is used to sort some .text sections, for compatibility with GNU ld.
1102
1103 int
1104 Layout::special_ordering_of_input_section(const char* name)
1105 {
1106 // The GNU linker has some special handling for some sections that
1107 // wind up in the .text section. Sections that start with these
1108 // prefixes must appear first, and must appear in the order listed
1109 // here.
1110 static const char* const text_section_sort[] =
1111 {
1112 ".text.unlikely",
1113 ".text.exit",
1114 ".text.startup",
1115 ".text.hot"
1116 };
1117
1118 for (size_t i = 0;
1119 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1120 i++)
1121 if (is_prefix_of(text_section_sort[i], name))
1122 return i;
1123
1124 return -1;
1125 }
1126
1127 // Return the output section to use for input section SHNDX, with name
1128 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1129 // index of a relocation section which applies to this section, or 0
1130 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1131 // relocation section if there is one. Set *OFF to the offset of this
1132 // input section without the output section. Return NULL if the
1133 // section should be discarded. Set *OFF to -1 if the section
1134 // contents should not be written directly to the output file, but
1135 // will instead receive special handling.
1136
1137 template<int size, bool big_endian>
1138 Output_section*
1139 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1140 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1141 unsigned int reloc_shndx, unsigned int, off_t* off)
1142 {
1143 *off = 0;
1144
1145 if (!this->include_section(object, name, shdr))
1146 return NULL;
1147
1148 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1149
1150 // In a relocatable link a grouped section must not be combined with
1151 // any other sections.
1152 Output_section* os;
1153 if (parameters->options().relocatable()
1154 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1155 {
1156 name = this->namepool_.add(name, true, NULL);
1157 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1158 ORDER_INVALID, false);
1159 }
1160 else
1161 {
1162 // Plugins can choose to place one or more subsets of sections in
1163 // unique segments and this is done by mapping these section subsets
1164 // to unique output sections. Check if this section needs to be
1165 // remapped to a unique output section.
1166 Section_segment_map::iterator it
1167 = this->section_segment_map_.find(Const_section_id(object, shndx));
1168 if (it == this->section_segment_map_.end())
1169 {
1170 os = this->choose_output_section(object, name, sh_type,
1171 shdr.get_sh_flags(), true,
1172 ORDER_INVALID, false);
1173 }
1174 else
1175 {
1176 // We know the name of the output section, directly call
1177 // get_output_section here by-passing choose_output_section.
1178 elfcpp::Elf_Xword flags
1179 = this->get_output_section_flags(shdr.get_sh_flags());
1180
1181 const char* os_name = it->second->name;
1182 Stringpool::Key name_key;
1183 os_name = this->namepool_.add(os_name, true, &name_key);
1184 os = this->get_output_section(os_name, name_key, sh_type, flags,
1185 ORDER_INVALID, false);
1186 if (!os->is_unique_segment())
1187 {
1188 os->set_is_unique_segment();
1189 os->set_extra_segment_flags(it->second->flags);
1190 os->set_segment_alignment(it->second->align);
1191 }
1192 }
1193 if (os == NULL)
1194 return NULL;
1195 }
1196
1197 // By default the GNU linker sorts input sections whose names match
1198 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1199 // sections are sorted by name. This is used to implement
1200 // constructor priority ordering. We are compatible. When we put
1201 // .ctor sections in .init_array and .dtor sections in .fini_array,
1202 // we must also sort plain .ctor and .dtor sections.
1203 if (!this->script_options_->saw_sections_clause()
1204 && !parameters->options().relocatable()
1205 && (is_prefix_of(".ctors.", name)
1206 || is_prefix_of(".dtors.", name)
1207 || is_prefix_of(".init_array.", name)
1208 || is_prefix_of(".fini_array.", name)
1209 || (parameters->options().ctors_in_init_array()
1210 && (strcmp(name, ".ctors") == 0
1211 || strcmp(name, ".dtors") == 0))))
1212 os->set_must_sort_attached_input_sections();
1213
1214 // By default the GNU linker sorts some special text sections ahead
1215 // of others. We are compatible.
1216 if (parameters->options().text_reorder()
1217 && !this->script_options_->saw_sections_clause()
1218 && !this->is_section_ordering_specified()
1219 && !parameters->options().relocatable()
1220 && Layout::special_ordering_of_input_section(name) >= 0)
1221 os->set_must_sort_attached_input_sections();
1222
1223 // If this is a .ctors or .ctors.* section being mapped to a
1224 // .init_array section, or a .dtors or .dtors.* section being mapped
1225 // to a .fini_array section, we will need to reverse the words if
1226 // there is more than one. Record this section for later. See
1227 // ctors_sections_in_init_array above.
1228 if (!this->script_options_->saw_sections_clause()
1229 && !parameters->options().relocatable()
1230 && shdr.get_sh_size() > size / 8
1231 && (((strcmp(name, ".ctors") == 0
1232 || is_prefix_of(".ctors.", name))
1233 && strcmp(os->name(), ".init_array") == 0)
1234 || ((strcmp(name, ".dtors") == 0
1235 || is_prefix_of(".dtors.", name))
1236 && strcmp(os->name(), ".fini_array") == 0)))
1237 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1238
1239 // FIXME: Handle SHF_LINK_ORDER somewhere.
1240
1241 elfcpp::Elf_Xword orig_flags = os->flags();
1242
1243 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1244 this->script_options_->saw_sections_clause());
1245
1246 // If the flags changed, we may have to change the order.
1247 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1248 {
1249 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1250 elfcpp::Elf_Xword new_flags =
1251 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1252 if (orig_flags != new_flags)
1253 os->set_order(this->default_section_order(os, false));
1254 }
1255
1256 this->have_added_input_section_ = true;
1257
1258 return os;
1259 }
1260
1261 // Maps section SECN to SEGMENT s.
1262 void
1263 Layout::insert_section_segment_map(Const_section_id secn,
1264 Unique_segment_info *s)
1265 {
1266 gold_assert(this->unique_segment_for_sections_specified_);
1267 this->section_segment_map_[secn] = s;
1268 }
1269
1270 // Handle a relocation section when doing a relocatable link.
1271
1272 template<int size, bool big_endian>
1273 Output_section*
1274 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1275 unsigned int,
1276 const elfcpp::Shdr<size, big_endian>& shdr,
1277 Output_section* data_section,
1278 Relocatable_relocs* rr)
1279 {
1280 gold_assert(parameters->options().relocatable()
1281 || parameters->options().emit_relocs());
1282
1283 int sh_type = shdr.get_sh_type();
1284
1285 std::string name;
1286 if (sh_type == elfcpp::SHT_REL)
1287 name = ".rel";
1288 else if (sh_type == elfcpp::SHT_RELA)
1289 name = ".rela";
1290 else
1291 gold_unreachable();
1292 name += data_section->name();
1293
1294 // In a relocatable link relocs for a grouped section must not be
1295 // combined with other reloc sections.
1296 Output_section* os;
1297 if (!parameters->options().relocatable()
1298 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1299 os = this->choose_output_section(object, name.c_str(), sh_type,
1300 shdr.get_sh_flags(), false,
1301 ORDER_INVALID, false);
1302 else
1303 {
1304 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1305 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1306 ORDER_INVALID, false);
1307 }
1308
1309 os->set_should_link_to_symtab();
1310 os->set_info_section(data_section);
1311
1312 Output_section_data* posd;
1313 if (sh_type == elfcpp::SHT_REL)
1314 {
1315 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1316 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1317 size,
1318 big_endian>(rr);
1319 }
1320 else if (sh_type == elfcpp::SHT_RELA)
1321 {
1322 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1323 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1324 size,
1325 big_endian>(rr);
1326 }
1327 else
1328 gold_unreachable();
1329
1330 os->add_output_section_data(posd);
1331 rr->set_output_data(posd);
1332
1333 return os;
1334 }
1335
1336 // Handle a group section when doing a relocatable link.
1337
1338 template<int size, bool big_endian>
1339 void
1340 Layout::layout_group(Symbol_table* symtab,
1341 Sized_relobj_file<size, big_endian>* object,
1342 unsigned int,
1343 const char* group_section_name,
1344 const char* signature,
1345 const elfcpp::Shdr<size, big_endian>& shdr,
1346 elfcpp::Elf_Word flags,
1347 std::vector<unsigned int>* shndxes)
1348 {
1349 gold_assert(parameters->options().relocatable());
1350 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1351 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1352 Output_section* os = this->make_output_section(group_section_name,
1353 elfcpp::SHT_GROUP,
1354 shdr.get_sh_flags(),
1355 ORDER_INVALID, false);
1356
1357 // We need to find a symbol with the signature in the symbol table.
1358 // If we don't find one now, we need to look again later.
1359 Symbol* sym = symtab->lookup(signature, NULL);
1360 if (sym != NULL)
1361 os->set_info_symndx(sym);
1362 else
1363 {
1364 // Reserve some space to minimize reallocations.
1365 if (this->group_signatures_.empty())
1366 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1367
1368 // We will wind up using a symbol whose name is the signature.
1369 // So just put the signature in the symbol name pool to save it.
1370 signature = symtab->canonicalize_name(signature);
1371 this->group_signatures_.push_back(Group_signature(os, signature));
1372 }
1373
1374 os->set_should_link_to_symtab();
1375 os->set_entsize(4);
1376
1377 section_size_type entry_count =
1378 convert_to_section_size_type(shdr.get_sh_size() / 4);
1379 Output_section_data* posd =
1380 new Output_data_group<size, big_endian>(object, entry_count, flags,
1381 shndxes);
1382 os->add_output_section_data(posd);
1383 }
1384
1385 // Special GNU handling of sections name .eh_frame. They will
1386 // normally hold exception frame data as defined by the C++ ABI
1387 // (http://codesourcery.com/cxx-abi/).
1388
1389 template<int size, bool big_endian>
1390 Output_section*
1391 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1392 const unsigned char* symbols,
1393 off_t symbols_size,
1394 const unsigned char* symbol_names,
1395 off_t symbol_names_size,
1396 unsigned int shndx,
1397 const elfcpp::Shdr<size, big_endian>& shdr,
1398 unsigned int reloc_shndx, unsigned int reloc_type,
1399 off_t* off)
1400 {
1401 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1402 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1403 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1404
1405 Output_section* os = this->make_eh_frame_section(object);
1406 if (os == NULL)
1407 return NULL;
1408
1409 gold_assert(this->eh_frame_section_ == os);
1410
1411 elfcpp::Elf_Xword orig_flags = os->flags();
1412
1413 if (!parameters->incremental()
1414 && this->eh_frame_data_->add_ehframe_input_section(object,
1415 symbols,
1416 symbols_size,
1417 symbol_names,
1418 symbol_names_size,
1419 shndx,
1420 reloc_shndx,
1421 reloc_type))
1422 {
1423 os->update_flags_for_input_section(shdr.get_sh_flags());
1424
1425 // A writable .eh_frame section is a RELRO section.
1426 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1427 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1428 {
1429 os->set_is_relro();
1430 os->set_order(ORDER_RELRO);
1431 }
1432
1433 // We found a .eh_frame section we are going to optimize, so now
1434 // we can add the set of optimized sections to the output
1435 // section. We need to postpone adding this until we've found a
1436 // section we can optimize so that the .eh_frame section in
1437 // crtbegin.o winds up at the start of the output section.
1438 if (!this->added_eh_frame_data_)
1439 {
1440 os->add_output_section_data(this->eh_frame_data_);
1441 this->added_eh_frame_data_ = true;
1442 }
1443 *off = -1;
1444 }
1445 else
1446 {
1447 // We couldn't handle this .eh_frame section for some reason.
1448 // Add it as a normal section.
1449 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1450 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1451 reloc_shndx, saw_sections_clause);
1452 this->have_added_input_section_ = true;
1453
1454 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1455 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1456 os->set_order(this->default_section_order(os, false));
1457 }
1458
1459 return os;
1460 }
1461
1462 // Create and return the magic .eh_frame section. Create
1463 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1464 // input .eh_frame section; it may be NULL.
1465
1466 Output_section*
1467 Layout::make_eh_frame_section(const Relobj* object)
1468 {
1469 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1470 // SHT_PROGBITS.
1471 Output_section* os = this->choose_output_section(object, ".eh_frame",
1472 elfcpp::SHT_PROGBITS,
1473 elfcpp::SHF_ALLOC, false,
1474 ORDER_EHFRAME, false);
1475 if (os == NULL)
1476 return NULL;
1477
1478 if (this->eh_frame_section_ == NULL)
1479 {
1480 this->eh_frame_section_ = os;
1481 this->eh_frame_data_ = new Eh_frame();
1482
1483 // For incremental linking, we do not optimize .eh_frame sections
1484 // or create a .eh_frame_hdr section.
1485 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1486 {
1487 Output_section* hdr_os =
1488 this->choose_output_section(NULL, ".eh_frame_hdr",
1489 elfcpp::SHT_PROGBITS,
1490 elfcpp::SHF_ALLOC, false,
1491 ORDER_EHFRAME, false);
1492
1493 if (hdr_os != NULL)
1494 {
1495 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1496 this->eh_frame_data_);
1497 hdr_os->add_output_section_data(hdr_posd);
1498
1499 hdr_os->set_after_input_sections();
1500
1501 if (!this->script_options_->saw_phdrs_clause())
1502 {
1503 Output_segment* hdr_oseg;
1504 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1505 elfcpp::PF_R);
1506 hdr_oseg->add_output_section_to_nonload(hdr_os,
1507 elfcpp::PF_R);
1508 }
1509
1510 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1511 }
1512 }
1513 }
1514
1515 return os;
1516 }
1517
1518 // Add an exception frame for a PLT. This is called from target code.
1519
1520 void
1521 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1522 size_t cie_length, const unsigned char* fde_data,
1523 size_t fde_length)
1524 {
1525 if (parameters->incremental())
1526 {
1527 // FIXME: Maybe this could work some day....
1528 return;
1529 }
1530 Output_section* os = this->make_eh_frame_section(NULL);
1531 if (os == NULL)
1532 return;
1533 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1534 fde_data, fde_length);
1535 if (!this->added_eh_frame_data_)
1536 {
1537 os->add_output_section_data(this->eh_frame_data_);
1538 this->added_eh_frame_data_ = true;
1539 }
1540 }
1541
1542 // Scan a .debug_info or .debug_types section, and add summary
1543 // information to the .gdb_index section.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Layout::add_to_gdb_index(bool is_type_unit,
1548 Sized_relobj<size, big_endian>* object,
1549 const unsigned char* symbols,
1550 off_t symbols_size,
1551 unsigned int shndx,
1552 unsigned int reloc_shndx,
1553 unsigned int reloc_type)
1554 {
1555 if (this->gdb_index_data_ == NULL)
1556 {
1557 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1558 elfcpp::SHT_PROGBITS, 0,
1559 false, ORDER_INVALID,
1560 false);
1561 if (os == NULL)
1562 return;
1563
1564 this->gdb_index_data_ = new Gdb_index(os);
1565 os->add_output_section_data(this->gdb_index_data_);
1566 os->set_after_input_sections();
1567 }
1568
1569 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1570 symbols_size, shndx, reloc_shndx,
1571 reloc_type);
1572 }
1573
1574 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1575 // the output section.
1576
1577 Output_section*
1578 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1579 elfcpp::Elf_Xword flags,
1580 Output_section_data* posd,
1581 Output_section_order order, bool is_relro)
1582 {
1583 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1584 false, order, is_relro);
1585 if (os != NULL)
1586 os->add_output_section_data(posd);
1587 return os;
1588 }
1589
1590 // Map section flags to segment flags.
1591
1592 elfcpp::Elf_Word
1593 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1594 {
1595 elfcpp::Elf_Word ret = elfcpp::PF_R;
1596 if ((flags & elfcpp::SHF_WRITE) != 0)
1597 ret |= elfcpp::PF_W;
1598 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1599 ret |= elfcpp::PF_X;
1600 return ret;
1601 }
1602
1603 // Make a new Output_section, and attach it to segments as
1604 // appropriate. ORDER is the order in which this section should
1605 // appear in the output segment. IS_RELRO is true if this is a relro
1606 // (read-only after relocations) section.
1607
1608 Output_section*
1609 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1610 elfcpp::Elf_Xword flags,
1611 Output_section_order order, bool is_relro)
1612 {
1613 Output_section* os;
1614 if ((flags & elfcpp::SHF_ALLOC) == 0
1615 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1616 && is_compressible_debug_section(name))
1617 os = new Output_compressed_section(&parameters->options(), name, type,
1618 flags);
1619 else if ((flags & elfcpp::SHF_ALLOC) == 0
1620 && parameters->options().strip_debug_non_line()
1621 && strcmp(".debug_abbrev", name) == 0)
1622 {
1623 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1624 name, type, flags);
1625 if (this->debug_info_)
1626 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627 }
1628 else if ((flags & elfcpp::SHF_ALLOC) == 0
1629 && parameters->options().strip_debug_non_line()
1630 && strcmp(".debug_info", name) == 0)
1631 {
1632 os = this->debug_info_ = new Output_reduced_debug_info_section(
1633 name, type, flags);
1634 if (this->debug_abbrev_)
1635 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1636 }
1637 else
1638 {
1639 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1640 // not have correct section types. Force them here.
1641 if (type == elfcpp::SHT_PROGBITS)
1642 {
1643 if (is_prefix_of(".init_array", name))
1644 type = elfcpp::SHT_INIT_ARRAY;
1645 else if (is_prefix_of(".preinit_array", name))
1646 type = elfcpp::SHT_PREINIT_ARRAY;
1647 else if (is_prefix_of(".fini_array", name))
1648 type = elfcpp::SHT_FINI_ARRAY;
1649 }
1650
1651 // FIXME: const_cast is ugly.
1652 Target* target = const_cast<Target*>(&parameters->target());
1653 os = target->make_output_section(name, type, flags);
1654 }
1655
1656 // With -z relro, we have to recognize the special sections by name.
1657 // There is no other way.
1658 bool is_relro_local = false;
1659 if (!this->script_options_->saw_sections_clause()
1660 && parameters->options().relro()
1661 && (flags & elfcpp::SHF_ALLOC) != 0
1662 && (flags & elfcpp::SHF_WRITE) != 0)
1663 {
1664 if (type == elfcpp::SHT_PROGBITS)
1665 {
1666 if ((flags & elfcpp::SHF_TLS) != 0)
1667 is_relro = true;
1668 else if (strcmp(name, ".data.rel.ro") == 0)
1669 is_relro = true;
1670 else if (strcmp(name, ".data.rel.ro.local") == 0)
1671 {
1672 is_relro = true;
1673 is_relro_local = true;
1674 }
1675 else if (strcmp(name, ".ctors") == 0
1676 || strcmp(name, ".dtors") == 0
1677 || strcmp(name, ".jcr") == 0)
1678 is_relro = true;
1679 }
1680 else if (type == elfcpp::SHT_INIT_ARRAY
1681 || type == elfcpp::SHT_FINI_ARRAY
1682 || type == elfcpp::SHT_PREINIT_ARRAY)
1683 is_relro = true;
1684 }
1685
1686 if (is_relro)
1687 os->set_is_relro();
1688
1689 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1690 order = this->default_section_order(os, is_relro_local);
1691
1692 os->set_order(order);
1693
1694 parameters->target().new_output_section(os);
1695
1696 this->section_list_.push_back(os);
1697
1698 // The GNU linker by default sorts some sections by priority, so we
1699 // do the same. We need to know that this might happen before we
1700 // attach any input sections.
1701 if (!this->script_options_->saw_sections_clause()
1702 && !parameters->options().relocatable()
1703 && (strcmp(name, ".init_array") == 0
1704 || strcmp(name, ".fini_array") == 0
1705 || (!parameters->options().ctors_in_init_array()
1706 && (strcmp(name, ".ctors") == 0
1707 || strcmp(name, ".dtors") == 0))))
1708 os->set_may_sort_attached_input_sections();
1709
1710 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1711 // sections before other .text sections. We are compatible. We
1712 // need to know that this might happen before we attach any input
1713 // sections.
1714 if (parameters->options().text_reorder()
1715 && !this->script_options_->saw_sections_clause()
1716 && !this->is_section_ordering_specified()
1717 && !parameters->options().relocatable()
1718 && strcmp(name, ".text") == 0)
1719 os->set_may_sort_attached_input_sections();
1720
1721 // GNU linker sorts section by name with --sort-section=name.
1722 if (strcmp(parameters->options().sort_section(), "name") == 0)
1723 os->set_must_sort_attached_input_sections();
1724
1725 // Check for .stab*str sections, as .stab* sections need to link to
1726 // them.
1727 if (type == elfcpp::SHT_STRTAB
1728 && !this->have_stabstr_section_
1729 && strncmp(name, ".stab", 5) == 0
1730 && strcmp(name + strlen(name) - 3, "str") == 0)
1731 this->have_stabstr_section_ = true;
1732
1733 // During a full incremental link, we add patch space to most
1734 // PROGBITS and NOBITS sections. Flag those that may be
1735 // arbitrarily padded.
1736 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1737 && order != ORDER_INTERP
1738 && order != ORDER_INIT
1739 && order != ORDER_PLT
1740 && order != ORDER_FINI
1741 && order != ORDER_RELRO_LAST
1742 && order != ORDER_NON_RELRO_FIRST
1743 && strcmp(name, ".eh_frame") != 0
1744 && strcmp(name, ".ctors") != 0
1745 && strcmp(name, ".dtors") != 0
1746 && strcmp(name, ".jcr") != 0)
1747 {
1748 os->set_is_patch_space_allowed();
1749
1750 // Certain sections require "holes" to be filled with
1751 // specific fill patterns. These fill patterns may have
1752 // a minimum size, so we must prevent allocations from the
1753 // free list that leave a hole smaller than the minimum.
1754 if (strcmp(name, ".debug_info") == 0)
1755 os->set_free_space_fill(new Output_fill_debug_info(false));
1756 else if (strcmp(name, ".debug_types") == 0)
1757 os->set_free_space_fill(new Output_fill_debug_info(true));
1758 else if (strcmp(name, ".debug_line") == 0)
1759 os->set_free_space_fill(new Output_fill_debug_line());
1760 }
1761
1762 // If we have already attached the sections to segments, then we
1763 // need to attach this one now. This happens for sections created
1764 // directly by the linker.
1765 if (this->sections_are_attached_)
1766 this->attach_section_to_segment(&parameters->target(), os);
1767
1768 return os;
1769 }
1770
1771 // Return the default order in which a section should be placed in an
1772 // output segment. This function captures a lot of the ideas in
1773 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1774 // linker created section is normally set when the section is created;
1775 // this function is used for input sections.
1776
1777 Output_section_order
1778 Layout::default_section_order(Output_section* os, bool is_relro_local)
1779 {
1780 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1781 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1782 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1783 bool is_bss = false;
1784
1785 switch (os->type())
1786 {
1787 default:
1788 case elfcpp::SHT_PROGBITS:
1789 break;
1790 case elfcpp::SHT_NOBITS:
1791 is_bss = true;
1792 break;
1793 case elfcpp::SHT_RELA:
1794 case elfcpp::SHT_REL:
1795 if (!is_write)
1796 return ORDER_DYNAMIC_RELOCS;
1797 break;
1798 case elfcpp::SHT_HASH:
1799 case elfcpp::SHT_DYNAMIC:
1800 case elfcpp::SHT_SHLIB:
1801 case elfcpp::SHT_DYNSYM:
1802 case elfcpp::SHT_GNU_HASH:
1803 case elfcpp::SHT_GNU_verdef:
1804 case elfcpp::SHT_GNU_verneed:
1805 case elfcpp::SHT_GNU_versym:
1806 if (!is_write)
1807 return ORDER_DYNAMIC_LINKER;
1808 break;
1809 case elfcpp::SHT_NOTE:
1810 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1811 }
1812
1813 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1814 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1815
1816 if (!is_bss && !is_write)
1817 {
1818 if (is_execinstr)
1819 {
1820 if (strcmp(os->name(), ".init") == 0)
1821 return ORDER_INIT;
1822 else if (strcmp(os->name(), ".fini") == 0)
1823 return ORDER_FINI;
1824 }
1825 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1826 }
1827
1828 if (os->is_relro())
1829 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1830
1831 if (os->is_small_section())
1832 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1833 if (os->is_large_section())
1834 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1835
1836 return is_bss ? ORDER_BSS : ORDER_DATA;
1837 }
1838
1839 // Attach output sections to segments. This is called after we have
1840 // seen all the input sections.
1841
1842 void
1843 Layout::attach_sections_to_segments(const Target* target)
1844 {
1845 for (Section_list::iterator p = this->section_list_.begin();
1846 p != this->section_list_.end();
1847 ++p)
1848 this->attach_section_to_segment(target, *p);
1849
1850 this->sections_are_attached_ = true;
1851 }
1852
1853 // Attach an output section to a segment.
1854
1855 void
1856 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1857 {
1858 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1859 this->unattached_section_list_.push_back(os);
1860 else
1861 this->attach_allocated_section_to_segment(target, os);
1862 }
1863
1864 // Attach an allocated output section to a segment.
1865
1866 void
1867 Layout::attach_allocated_section_to_segment(const Target* target,
1868 Output_section* os)
1869 {
1870 elfcpp::Elf_Xword flags = os->flags();
1871 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1872
1873 if (parameters->options().relocatable())
1874 return;
1875
1876 // If we have a SECTIONS clause, we can't handle the attachment to
1877 // segments until after we've seen all the sections.
1878 if (this->script_options_->saw_sections_clause())
1879 return;
1880
1881 gold_assert(!this->script_options_->saw_phdrs_clause());
1882
1883 // This output section goes into a PT_LOAD segment.
1884
1885 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1886
1887 // If this output section's segment has extra flags that need to be set,
1888 // coming from a linker plugin, do that.
1889 seg_flags |= os->extra_segment_flags();
1890
1891 // Check for --section-start.
1892 uint64_t addr;
1893 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1894
1895 // In general the only thing we really care about for PT_LOAD
1896 // segments is whether or not they are writable or executable,
1897 // so that is how we search for them.
1898 // Large data sections also go into their own PT_LOAD segment.
1899 // People who need segments sorted on some other basis will
1900 // have to use a linker script.
1901
1902 Segment_list::const_iterator p;
1903 if (!os->is_unique_segment())
1904 {
1905 for (p = this->segment_list_.begin();
1906 p != this->segment_list_.end();
1907 ++p)
1908 {
1909 if ((*p)->type() != elfcpp::PT_LOAD)
1910 continue;
1911 if ((*p)->is_unique_segment())
1912 continue;
1913 if (!parameters->options().omagic()
1914 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1915 continue;
1916 if ((target->isolate_execinstr() || parameters->options().rosegment())
1917 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1918 continue;
1919 // If -Tbss was specified, we need to separate the data and BSS
1920 // segments.
1921 if (parameters->options().user_set_Tbss())
1922 {
1923 if ((os->type() == elfcpp::SHT_NOBITS)
1924 == (*p)->has_any_data_sections())
1925 continue;
1926 }
1927 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1928 continue;
1929
1930 if (is_address_set)
1931 {
1932 if ((*p)->are_addresses_set())
1933 continue;
1934
1935 (*p)->add_initial_output_data(os);
1936 (*p)->update_flags_for_output_section(seg_flags);
1937 (*p)->set_addresses(addr, addr);
1938 break;
1939 }
1940
1941 (*p)->add_output_section_to_load(this, os, seg_flags);
1942 break;
1943 }
1944 }
1945
1946 if (p == this->segment_list_.end()
1947 || os->is_unique_segment())
1948 {
1949 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1950 seg_flags);
1951 if (os->is_large_data_section())
1952 oseg->set_is_large_data_segment();
1953 oseg->add_output_section_to_load(this, os, seg_flags);
1954 if (is_address_set)
1955 oseg->set_addresses(addr, addr);
1956 // Check if segment should be marked unique. For segments marked
1957 // unique by linker plugins, set the new alignment if specified.
1958 if (os->is_unique_segment())
1959 {
1960 oseg->set_is_unique_segment();
1961 if (os->segment_alignment() != 0)
1962 oseg->set_minimum_p_align(os->segment_alignment());
1963 }
1964 }
1965
1966 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1967 // segment.
1968 if (os->type() == elfcpp::SHT_NOTE)
1969 {
1970 // See if we already have an equivalent PT_NOTE segment.
1971 for (p = this->segment_list_.begin();
1972 p != segment_list_.end();
1973 ++p)
1974 {
1975 if ((*p)->type() == elfcpp::PT_NOTE
1976 && (((*p)->flags() & elfcpp::PF_W)
1977 == (seg_flags & elfcpp::PF_W)))
1978 {
1979 (*p)->add_output_section_to_nonload(os, seg_flags);
1980 break;
1981 }
1982 }
1983
1984 if (p == this->segment_list_.end())
1985 {
1986 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1987 seg_flags);
1988 oseg->add_output_section_to_nonload(os, seg_flags);
1989 }
1990 }
1991
1992 // If we see a loadable SHF_TLS section, we create a PT_TLS
1993 // segment. There can only be one such segment.
1994 if ((flags & elfcpp::SHF_TLS) != 0)
1995 {
1996 if (this->tls_segment_ == NULL)
1997 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1998 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1999 }
2000
2001 // If -z relro is in effect, and we see a relro section, we create a
2002 // PT_GNU_RELRO segment. There can only be one such segment.
2003 if (os->is_relro() && parameters->options().relro())
2004 {
2005 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2006 if (this->relro_segment_ == NULL)
2007 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2008 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2009 }
2010
2011 // If we see a section named .interp, put it into a PT_INTERP
2012 // segment. This seems broken to me, but this is what GNU ld does,
2013 // and glibc expects it.
2014 if (strcmp(os->name(), ".interp") == 0
2015 && !this->script_options_->saw_phdrs_clause())
2016 {
2017 if (this->interp_segment_ == NULL)
2018 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2019 else
2020 gold_warning(_("multiple '.interp' sections in input files "
2021 "may cause confusing PT_INTERP segment"));
2022 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2023 }
2024 }
2025
2026 // Make an output section for a script.
2027
2028 Output_section*
2029 Layout::make_output_section_for_script(
2030 const char* name,
2031 Script_sections::Section_type section_type)
2032 {
2033 name = this->namepool_.add(name, false, NULL);
2034 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2035 if (section_type == Script_sections::ST_NOLOAD)
2036 sh_flags = 0;
2037 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2038 sh_flags, ORDER_INVALID,
2039 false);
2040 os->set_found_in_sections_clause();
2041 if (section_type == Script_sections::ST_NOLOAD)
2042 os->set_is_noload();
2043 return os;
2044 }
2045
2046 // Return the number of segments we expect to see.
2047
2048 size_t
2049 Layout::expected_segment_count() const
2050 {
2051 size_t ret = this->segment_list_.size();
2052
2053 // If we didn't see a SECTIONS clause in a linker script, we should
2054 // already have the complete list of segments. Otherwise we ask the
2055 // SECTIONS clause how many segments it expects, and add in the ones
2056 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2057
2058 if (!this->script_options_->saw_sections_clause())
2059 return ret;
2060 else
2061 {
2062 const Script_sections* ss = this->script_options_->script_sections();
2063 return ret + ss->expected_segment_count(this);
2064 }
2065 }
2066
2067 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2068 // is whether we saw a .note.GNU-stack section in the object file.
2069 // GNU_STACK_FLAGS is the section flags. The flags give the
2070 // protection required for stack memory. We record this in an
2071 // executable as a PT_GNU_STACK segment. If an object file does not
2072 // have a .note.GNU-stack segment, we must assume that it is an old
2073 // object. On some targets that will force an executable stack.
2074
2075 void
2076 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2077 const Object* obj)
2078 {
2079 if (!seen_gnu_stack)
2080 {
2081 this->input_without_gnu_stack_note_ = true;
2082 if (parameters->options().warn_execstack()
2083 && parameters->target().is_default_stack_executable())
2084 gold_warning(_("%s: missing .note.GNU-stack section"
2085 " implies executable stack"),
2086 obj->name().c_str());
2087 }
2088 else
2089 {
2090 this->input_with_gnu_stack_note_ = true;
2091 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2092 {
2093 this->input_requires_executable_stack_ = true;
2094 if (parameters->options().warn_execstack()
2095 || parameters->options().is_stack_executable())
2096 gold_warning(_("%s: requires executable stack"),
2097 obj->name().c_str());
2098 }
2099 }
2100 }
2101
2102 // Create automatic note sections.
2103
2104 void
2105 Layout::create_notes()
2106 {
2107 this->create_gold_note();
2108 this->create_executable_stack_info();
2109 this->create_build_id();
2110 }
2111
2112 // Create the dynamic sections which are needed before we read the
2113 // relocs.
2114
2115 void
2116 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2117 {
2118 if (parameters->doing_static_link())
2119 return;
2120
2121 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2122 elfcpp::SHT_DYNAMIC,
2123 (elfcpp::SHF_ALLOC
2124 | elfcpp::SHF_WRITE),
2125 false, ORDER_RELRO,
2126 true);
2127
2128 // A linker script may discard .dynamic, so check for NULL.
2129 if (this->dynamic_section_ != NULL)
2130 {
2131 this->dynamic_symbol_ =
2132 symtab->define_in_output_data("_DYNAMIC", NULL,
2133 Symbol_table::PREDEFINED,
2134 this->dynamic_section_, 0, 0,
2135 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2136 elfcpp::STV_HIDDEN, 0, false, false);
2137
2138 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2139
2140 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2141 }
2142 }
2143
2144 // For each output section whose name can be represented as C symbol,
2145 // define __start and __stop symbols for the section. This is a GNU
2146 // extension.
2147
2148 void
2149 Layout::define_section_symbols(Symbol_table* symtab)
2150 {
2151 for (Section_list::const_iterator p = this->section_list_.begin();
2152 p != this->section_list_.end();
2153 ++p)
2154 {
2155 const char* const name = (*p)->name();
2156 if (is_cident(name))
2157 {
2158 const std::string name_string(name);
2159 const std::string start_name(cident_section_start_prefix
2160 + name_string);
2161 const std::string stop_name(cident_section_stop_prefix
2162 + name_string);
2163
2164 symtab->define_in_output_data(start_name.c_str(),
2165 NULL, // version
2166 Symbol_table::PREDEFINED,
2167 *p,
2168 0, // value
2169 0, // symsize
2170 elfcpp::STT_NOTYPE,
2171 elfcpp::STB_GLOBAL,
2172 elfcpp::STV_DEFAULT,
2173 0, // nonvis
2174 false, // offset_is_from_end
2175 true); // only_if_ref
2176
2177 symtab->define_in_output_data(stop_name.c_str(),
2178 NULL, // version
2179 Symbol_table::PREDEFINED,
2180 *p,
2181 0, // value
2182 0, // symsize
2183 elfcpp::STT_NOTYPE,
2184 elfcpp::STB_GLOBAL,
2185 elfcpp::STV_DEFAULT,
2186 0, // nonvis
2187 true, // offset_is_from_end
2188 true); // only_if_ref
2189 }
2190 }
2191 }
2192
2193 // Define symbols for group signatures.
2194
2195 void
2196 Layout::define_group_signatures(Symbol_table* symtab)
2197 {
2198 for (Group_signatures::iterator p = this->group_signatures_.begin();
2199 p != this->group_signatures_.end();
2200 ++p)
2201 {
2202 Symbol* sym = symtab->lookup(p->signature, NULL);
2203 if (sym != NULL)
2204 p->section->set_info_symndx(sym);
2205 else
2206 {
2207 // Force the name of the group section to the group
2208 // signature, and use the group's section symbol as the
2209 // signature symbol.
2210 if (strcmp(p->section->name(), p->signature) != 0)
2211 {
2212 const char* name = this->namepool_.add(p->signature,
2213 true, NULL);
2214 p->section->set_name(name);
2215 }
2216 p->section->set_needs_symtab_index();
2217 p->section->set_info_section_symndx(p->section);
2218 }
2219 }
2220
2221 this->group_signatures_.clear();
2222 }
2223
2224 // Find the first read-only PT_LOAD segment, creating one if
2225 // necessary.
2226
2227 Output_segment*
2228 Layout::find_first_load_seg(const Target* target)
2229 {
2230 Output_segment* best = NULL;
2231 for (Segment_list::const_iterator p = this->segment_list_.begin();
2232 p != this->segment_list_.end();
2233 ++p)
2234 {
2235 if ((*p)->type() == elfcpp::PT_LOAD
2236 && ((*p)->flags() & elfcpp::PF_R) != 0
2237 && (parameters->options().omagic()
2238 || ((*p)->flags() & elfcpp::PF_W) == 0)
2239 && (!target->isolate_execinstr()
2240 || ((*p)->flags() & elfcpp::PF_X) == 0))
2241 {
2242 if (best == NULL || this->segment_precedes(*p, best))
2243 best = *p;
2244 }
2245 }
2246 if (best != NULL)
2247 return best;
2248
2249 gold_assert(!this->script_options_->saw_phdrs_clause());
2250
2251 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2252 elfcpp::PF_R);
2253 return load_seg;
2254 }
2255
2256 // Save states of all current output segments. Store saved states
2257 // in SEGMENT_STATES.
2258
2259 void
2260 Layout::save_segments(Segment_states* segment_states)
2261 {
2262 for (Segment_list::const_iterator p = this->segment_list_.begin();
2263 p != this->segment_list_.end();
2264 ++p)
2265 {
2266 Output_segment* segment = *p;
2267 // Shallow copy.
2268 Output_segment* copy = new Output_segment(*segment);
2269 (*segment_states)[segment] = copy;
2270 }
2271 }
2272
2273 // Restore states of output segments and delete any segment not found in
2274 // SEGMENT_STATES.
2275
2276 void
2277 Layout::restore_segments(const Segment_states* segment_states)
2278 {
2279 // Go through the segment list and remove any segment added in the
2280 // relaxation loop.
2281 this->tls_segment_ = NULL;
2282 this->relro_segment_ = NULL;
2283 Segment_list::iterator list_iter = this->segment_list_.begin();
2284 while (list_iter != this->segment_list_.end())
2285 {
2286 Output_segment* segment = *list_iter;
2287 Segment_states::const_iterator states_iter =
2288 segment_states->find(segment);
2289 if (states_iter != segment_states->end())
2290 {
2291 const Output_segment* copy = states_iter->second;
2292 // Shallow copy to restore states.
2293 *segment = *copy;
2294
2295 // Also fix up TLS and RELRO segment pointers as appropriate.
2296 if (segment->type() == elfcpp::PT_TLS)
2297 this->tls_segment_ = segment;
2298 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2299 this->relro_segment_ = segment;
2300
2301 ++list_iter;
2302 }
2303 else
2304 {
2305 list_iter = this->segment_list_.erase(list_iter);
2306 // This is a segment created during section layout. It should be
2307 // safe to remove it since we should have removed all pointers to it.
2308 delete segment;
2309 }
2310 }
2311 }
2312
2313 // Clean up after relaxation so that sections can be laid out again.
2314
2315 void
2316 Layout::clean_up_after_relaxation()
2317 {
2318 // Restore the segments to point state just prior to the relaxation loop.
2319 Script_sections* script_section = this->script_options_->script_sections();
2320 script_section->release_segments();
2321 this->restore_segments(this->segment_states_);
2322
2323 // Reset section addresses and file offsets
2324 for (Section_list::iterator p = this->section_list_.begin();
2325 p != this->section_list_.end();
2326 ++p)
2327 {
2328 (*p)->restore_states();
2329
2330 // If an input section changes size because of relaxation,
2331 // we need to adjust the section offsets of all input sections.
2332 // after such a section.
2333 if ((*p)->section_offsets_need_adjustment())
2334 (*p)->adjust_section_offsets();
2335
2336 (*p)->reset_address_and_file_offset();
2337 }
2338
2339 // Reset special output object address and file offsets.
2340 for (Data_list::iterator p = this->special_output_list_.begin();
2341 p != this->special_output_list_.end();
2342 ++p)
2343 (*p)->reset_address_and_file_offset();
2344
2345 // A linker script may have created some output section data objects.
2346 // They are useless now.
2347 for (Output_section_data_list::const_iterator p =
2348 this->script_output_section_data_list_.begin();
2349 p != this->script_output_section_data_list_.end();
2350 ++p)
2351 delete *p;
2352 this->script_output_section_data_list_.clear();
2353
2354 // Special-case fill output objects are recreated each time through
2355 // the relaxation loop.
2356 this->reset_relax_output();
2357 }
2358
2359 void
2360 Layout::reset_relax_output()
2361 {
2362 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2363 p != this->relax_output_list_.end();
2364 ++p)
2365 delete *p;
2366 this->relax_output_list_.clear();
2367 }
2368
2369 // Prepare for relaxation.
2370
2371 void
2372 Layout::prepare_for_relaxation()
2373 {
2374 // Create an relaxation debug check if in debugging mode.
2375 if (is_debugging_enabled(DEBUG_RELAXATION))
2376 this->relaxation_debug_check_ = new Relaxation_debug_check();
2377
2378 // Save segment states.
2379 this->segment_states_ = new Segment_states();
2380 this->save_segments(this->segment_states_);
2381
2382 for(Section_list::const_iterator p = this->section_list_.begin();
2383 p != this->section_list_.end();
2384 ++p)
2385 (*p)->save_states();
2386
2387 if (is_debugging_enabled(DEBUG_RELAXATION))
2388 this->relaxation_debug_check_->check_output_data_for_reset_values(
2389 this->section_list_, this->special_output_list_,
2390 this->relax_output_list_);
2391
2392 // Also enable recording of output section data from scripts.
2393 this->record_output_section_data_from_script_ = true;
2394 }
2395
2396 // If the user set the address of the text segment, that may not be
2397 // compatible with putting the segment headers and file headers into
2398 // that segment. For isolate_execinstr() targets, it's the rodata
2399 // segment rather than text where we might put the headers.
2400 static inline bool
2401 load_seg_unusable_for_headers(const Target* target)
2402 {
2403 const General_options& options = parameters->options();
2404 if (target->isolate_execinstr())
2405 return (options.user_set_Trodata_segment()
2406 && options.Trodata_segment() % target->abi_pagesize() != 0);
2407 else
2408 return (options.user_set_Ttext()
2409 && options.Ttext() % target->abi_pagesize() != 0);
2410 }
2411
2412 // Relaxation loop body: If target has no relaxation, this runs only once
2413 // Otherwise, the target relaxation hook is called at the end of
2414 // each iteration. If the hook returns true, it means re-layout of
2415 // section is required.
2416 //
2417 // The number of segments created by a linking script without a PHDRS
2418 // clause may be affected by section sizes and alignments. There is
2419 // a remote chance that relaxation causes different number of PT_LOAD
2420 // segments are created and sections are attached to different segments.
2421 // Therefore, we always throw away all segments created during section
2422 // layout. In order to be able to restart the section layout, we keep
2423 // a copy of the segment list right before the relaxation loop and use
2424 // that to restore the segments.
2425 //
2426 // PASS is the current relaxation pass number.
2427 // SYMTAB is a symbol table.
2428 // PLOAD_SEG is the address of a pointer for the load segment.
2429 // PHDR_SEG is a pointer to the PHDR segment.
2430 // SEGMENT_HEADERS points to the output segment header.
2431 // FILE_HEADER points to the output file header.
2432 // PSHNDX is the address to store the output section index.
2433
2434 off_t inline
2435 Layout::relaxation_loop_body(
2436 int pass,
2437 Target* target,
2438 Symbol_table* symtab,
2439 Output_segment** pload_seg,
2440 Output_segment* phdr_seg,
2441 Output_segment_headers* segment_headers,
2442 Output_file_header* file_header,
2443 unsigned int* pshndx)
2444 {
2445 // If this is not the first iteration, we need to clean up after
2446 // relaxation so that we can lay out the sections again.
2447 if (pass != 0)
2448 this->clean_up_after_relaxation();
2449
2450 // If there is a SECTIONS clause, put all the input sections into
2451 // the required order.
2452 Output_segment* load_seg;
2453 if (this->script_options_->saw_sections_clause())
2454 load_seg = this->set_section_addresses_from_script(symtab);
2455 else if (parameters->options().relocatable())
2456 load_seg = NULL;
2457 else
2458 load_seg = this->find_first_load_seg(target);
2459
2460 if (parameters->options().oformat_enum()
2461 != General_options::OBJECT_FORMAT_ELF)
2462 load_seg = NULL;
2463
2464 if (load_seg_unusable_for_headers(target))
2465 {
2466 load_seg = NULL;
2467 phdr_seg = NULL;
2468 }
2469
2470 gold_assert(phdr_seg == NULL
2471 || load_seg != NULL
2472 || this->script_options_->saw_sections_clause());
2473
2474 // If the address of the load segment we found has been set by
2475 // --section-start rather than by a script, then adjust the VMA and
2476 // LMA downward if possible to include the file and section headers.
2477 uint64_t header_gap = 0;
2478 if (load_seg != NULL
2479 && load_seg->are_addresses_set()
2480 && !this->script_options_->saw_sections_clause()
2481 && !parameters->options().relocatable())
2482 {
2483 file_header->finalize_data_size();
2484 segment_headers->finalize_data_size();
2485 size_t sizeof_headers = (file_header->data_size()
2486 + segment_headers->data_size());
2487 const uint64_t abi_pagesize = target->abi_pagesize();
2488 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2489 hdr_paddr &= ~(abi_pagesize - 1);
2490 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2491 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2492 load_seg = NULL;
2493 else
2494 {
2495 load_seg->set_addresses(load_seg->vaddr() - subtract,
2496 load_seg->paddr() - subtract);
2497 header_gap = subtract - sizeof_headers;
2498 }
2499 }
2500
2501 // Lay out the segment headers.
2502 if (!parameters->options().relocatable())
2503 {
2504 gold_assert(segment_headers != NULL);
2505 if (header_gap != 0 && load_seg != NULL)
2506 {
2507 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2508 load_seg->add_initial_output_data(z);
2509 }
2510 if (load_seg != NULL)
2511 load_seg->add_initial_output_data(segment_headers);
2512 if (phdr_seg != NULL)
2513 phdr_seg->add_initial_output_data(segment_headers);
2514 }
2515
2516 // Lay out the file header.
2517 if (load_seg != NULL)
2518 load_seg->add_initial_output_data(file_header);
2519
2520 if (this->script_options_->saw_phdrs_clause()
2521 && !parameters->options().relocatable())
2522 {
2523 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2524 // clause in a linker script.
2525 Script_sections* ss = this->script_options_->script_sections();
2526 ss->put_headers_in_phdrs(file_header, segment_headers);
2527 }
2528
2529 // We set the output section indexes in set_segment_offsets and
2530 // set_section_indexes.
2531 *pshndx = 1;
2532
2533 // Set the file offsets of all the segments, and all the sections
2534 // they contain.
2535 off_t off;
2536 if (!parameters->options().relocatable())
2537 off = this->set_segment_offsets(target, load_seg, pshndx);
2538 else
2539 off = this->set_relocatable_section_offsets(file_header, pshndx);
2540
2541 // Verify that the dummy relaxation does not change anything.
2542 if (is_debugging_enabled(DEBUG_RELAXATION))
2543 {
2544 if (pass == 0)
2545 this->relaxation_debug_check_->read_sections(this->section_list_);
2546 else
2547 this->relaxation_debug_check_->verify_sections(this->section_list_);
2548 }
2549
2550 *pload_seg = load_seg;
2551 return off;
2552 }
2553
2554 // Search the list of patterns and find the postion of the given section
2555 // name in the output section. If the section name matches a glob
2556 // pattern and a non-glob name, then the non-glob position takes
2557 // precedence. Return 0 if no match is found.
2558
2559 unsigned int
2560 Layout::find_section_order_index(const std::string& section_name)
2561 {
2562 Unordered_map<std::string, unsigned int>::iterator map_it;
2563 map_it = this->input_section_position_.find(section_name);
2564 if (map_it != this->input_section_position_.end())
2565 return map_it->second;
2566
2567 // Absolute match failed. Linear search the glob patterns.
2568 std::vector<std::string>::iterator it;
2569 for (it = this->input_section_glob_.begin();
2570 it != this->input_section_glob_.end();
2571 ++it)
2572 {
2573 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2574 {
2575 map_it = this->input_section_position_.find(*it);
2576 gold_assert(map_it != this->input_section_position_.end());
2577 return map_it->second;
2578 }
2579 }
2580 return 0;
2581 }
2582
2583 // Read the sequence of input sections from the file specified with
2584 // option --section-ordering-file.
2585
2586 void
2587 Layout::read_layout_from_file()
2588 {
2589 const char* filename = parameters->options().section_ordering_file();
2590 std::ifstream in;
2591 std::string line;
2592
2593 in.open(filename);
2594 if (!in)
2595 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2596 filename, strerror(errno));
2597
2598 std::getline(in, line); // this chops off the trailing \n, if any
2599 unsigned int position = 1;
2600 this->set_section_ordering_specified();
2601
2602 while (in)
2603 {
2604 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2605 line.resize(line.length() - 1);
2606 // Ignore comments, beginning with '#'
2607 if (line[0] == '#')
2608 {
2609 std::getline(in, line);
2610 continue;
2611 }
2612 this->input_section_position_[line] = position;
2613 // Store all glob patterns in a vector.
2614 if (is_wildcard_string(line.c_str()))
2615 this->input_section_glob_.push_back(line);
2616 position++;
2617 std::getline(in, line);
2618 }
2619 }
2620
2621 // Finalize the layout. When this is called, we have created all the
2622 // output sections and all the output segments which are based on
2623 // input sections. We have several things to do, and we have to do
2624 // them in the right order, so that we get the right results correctly
2625 // and efficiently.
2626
2627 // 1) Finalize the list of output segments and create the segment
2628 // table header.
2629
2630 // 2) Finalize the dynamic symbol table and associated sections.
2631
2632 // 3) Determine the final file offset of all the output segments.
2633
2634 // 4) Determine the final file offset of all the SHF_ALLOC output
2635 // sections.
2636
2637 // 5) Create the symbol table sections and the section name table
2638 // section.
2639
2640 // 6) Finalize the symbol table: set symbol values to their final
2641 // value and make a final determination of which symbols are going
2642 // into the output symbol table.
2643
2644 // 7) Create the section table header.
2645
2646 // 8) Determine the final file offset of all the output sections which
2647 // are not SHF_ALLOC, including the section table header.
2648
2649 // 9) Finalize the ELF file header.
2650
2651 // This function returns the size of the output file.
2652
2653 off_t
2654 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2655 Target* target, const Task* task)
2656 {
2657 target->finalize_sections(this, input_objects, symtab);
2658
2659 this->count_local_symbols(task, input_objects);
2660
2661 this->link_stabs_sections();
2662
2663 Output_segment* phdr_seg = NULL;
2664 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2665 {
2666 // There was a dynamic object in the link. We need to create
2667 // some information for the dynamic linker.
2668
2669 // Create the PT_PHDR segment which will hold the program
2670 // headers.
2671 if (!this->script_options_->saw_phdrs_clause())
2672 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2673
2674 // Create the dynamic symbol table, including the hash table.
2675 Output_section* dynstr;
2676 std::vector<Symbol*> dynamic_symbols;
2677 unsigned int local_dynamic_count;
2678 Versions versions(*this->script_options()->version_script_info(),
2679 &this->dynpool_);
2680 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2681 &local_dynamic_count, &dynamic_symbols,
2682 &versions);
2683
2684 // Create the .interp section to hold the name of the
2685 // interpreter, and put it in a PT_INTERP segment. Don't do it
2686 // if we saw a .interp section in an input file.
2687 if ((!parameters->options().shared()
2688 || parameters->options().dynamic_linker() != NULL)
2689 && this->interp_segment_ == NULL)
2690 this->create_interp(target);
2691
2692 // Finish the .dynamic section to hold the dynamic data, and put
2693 // it in a PT_DYNAMIC segment.
2694 this->finish_dynamic_section(input_objects, symtab);
2695
2696 // We should have added everything we need to the dynamic string
2697 // table.
2698 this->dynpool_.set_string_offsets();
2699
2700 // Create the version sections. We can't do this until the
2701 // dynamic string table is complete.
2702 this->create_version_sections(&versions, symtab, local_dynamic_count,
2703 dynamic_symbols, dynstr);
2704
2705 // Set the size of the _DYNAMIC symbol. We can't do this until
2706 // after we call create_version_sections.
2707 this->set_dynamic_symbol_size(symtab);
2708 }
2709
2710 // Create segment headers.
2711 Output_segment_headers* segment_headers =
2712 (parameters->options().relocatable()
2713 ? NULL
2714 : new Output_segment_headers(this->segment_list_));
2715
2716 // Lay out the file header.
2717 Output_file_header* file_header = new Output_file_header(target, symtab,
2718 segment_headers);
2719
2720 this->special_output_list_.push_back(file_header);
2721 if (segment_headers != NULL)
2722 this->special_output_list_.push_back(segment_headers);
2723
2724 // Find approriate places for orphan output sections if we are using
2725 // a linker script.
2726 if (this->script_options_->saw_sections_clause())
2727 this->place_orphan_sections_in_script();
2728
2729 Output_segment* load_seg;
2730 off_t off;
2731 unsigned int shndx;
2732 int pass = 0;
2733
2734 // Take a snapshot of the section layout as needed.
2735 if (target->may_relax())
2736 this->prepare_for_relaxation();
2737
2738 // Run the relaxation loop to lay out sections.
2739 do
2740 {
2741 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2742 phdr_seg, segment_headers, file_header,
2743 &shndx);
2744 pass++;
2745 }
2746 while (target->may_relax()
2747 && target->relax(pass, input_objects, symtab, this, task));
2748
2749 // If there is a load segment that contains the file and program headers,
2750 // provide a symbol __ehdr_start pointing there.
2751 // A program can use this to examine itself robustly.
2752 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2753 if (ehdr_start != NULL && ehdr_start->is_predefined())
2754 {
2755 if (load_seg != NULL)
2756 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2757 else
2758 ehdr_start->set_undefined();
2759 }
2760
2761 // Set the file offsets of all the non-data sections we've seen so
2762 // far which don't have to wait for the input sections. We need
2763 // this in order to finalize local symbols in non-allocated
2764 // sections.
2765 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2766
2767 // Set the section indexes of all unallocated sections seen so far,
2768 // in case any of them are somehow referenced by a symbol.
2769 shndx = this->set_section_indexes(shndx);
2770
2771 // Create the symbol table sections.
2772 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2773 if (!parameters->doing_static_link())
2774 this->assign_local_dynsym_offsets(input_objects);
2775
2776 // Process any symbol assignments from a linker script. This must
2777 // be called after the symbol table has been finalized.
2778 this->script_options_->finalize_symbols(symtab, this);
2779
2780 // Create the incremental inputs sections.
2781 if (this->incremental_inputs_)
2782 {
2783 this->incremental_inputs_->finalize();
2784 this->create_incremental_info_sections(symtab);
2785 }
2786
2787 // Create the .shstrtab section.
2788 Output_section* shstrtab_section = this->create_shstrtab();
2789
2790 // Set the file offsets of the rest of the non-data sections which
2791 // don't have to wait for the input sections.
2792 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2793
2794 // Now that all sections have been created, set the section indexes
2795 // for any sections which haven't been done yet.
2796 shndx = this->set_section_indexes(shndx);
2797
2798 // Create the section table header.
2799 this->create_shdrs(shstrtab_section, &off);
2800
2801 // If there are no sections which require postprocessing, we can
2802 // handle the section names now, and avoid a resize later.
2803 if (!this->any_postprocessing_sections_)
2804 {
2805 off = this->set_section_offsets(off,
2806 POSTPROCESSING_SECTIONS_PASS);
2807 off =
2808 this->set_section_offsets(off,
2809 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2810 }
2811
2812 file_header->set_section_info(this->section_headers_, shstrtab_section);
2813
2814 // Now we know exactly where everything goes in the output file
2815 // (except for non-allocated sections which require postprocessing).
2816 Output_data::layout_complete();
2817
2818 this->output_file_size_ = off;
2819
2820 return off;
2821 }
2822
2823 // Create a note header following the format defined in the ELF ABI.
2824 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2825 // of the section to create, DESCSZ is the size of the descriptor.
2826 // ALLOCATE is true if the section should be allocated in memory.
2827 // This returns the new note section. It sets *TRAILING_PADDING to
2828 // the number of trailing zero bytes required.
2829
2830 Output_section*
2831 Layout::create_note(const char* name, int note_type,
2832 const char* section_name, size_t descsz,
2833 bool allocate, size_t* trailing_padding)
2834 {
2835 // Authorities all agree that the values in a .note field should
2836 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2837 // they differ on what the alignment is for 64-bit binaries.
2838 // The GABI says unambiguously they take 8-byte alignment:
2839 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2840 // Other documentation says alignment should always be 4 bytes:
2841 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2842 // GNU ld and GNU readelf both support the latter (at least as of
2843 // version 2.16.91), and glibc always generates the latter for
2844 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2845 // here.
2846 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2847 const int size = parameters->target().get_size();
2848 #else
2849 const int size = 32;
2850 #endif
2851
2852 // The contents of the .note section.
2853 size_t namesz = strlen(name) + 1;
2854 size_t aligned_namesz = align_address(namesz, size / 8);
2855 size_t aligned_descsz = align_address(descsz, size / 8);
2856
2857 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2858
2859 unsigned char* buffer = new unsigned char[notehdrsz];
2860 memset(buffer, 0, notehdrsz);
2861
2862 bool is_big_endian = parameters->target().is_big_endian();
2863
2864 if (size == 32)
2865 {
2866 if (!is_big_endian)
2867 {
2868 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2869 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2870 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2871 }
2872 else
2873 {
2874 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2875 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2876 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2877 }
2878 }
2879 else if (size == 64)
2880 {
2881 if (!is_big_endian)
2882 {
2883 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2884 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2885 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2886 }
2887 else
2888 {
2889 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2890 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2891 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2892 }
2893 }
2894 else
2895 gold_unreachable();
2896
2897 memcpy(buffer + 3 * (size / 8), name, namesz);
2898
2899 elfcpp::Elf_Xword flags = 0;
2900 Output_section_order order = ORDER_INVALID;
2901 if (allocate)
2902 {
2903 flags = elfcpp::SHF_ALLOC;
2904 order = ORDER_RO_NOTE;
2905 }
2906 Output_section* os = this->choose_output_section(NULL, section_name,
2907 elfcpp::SHT_NOTE,
2908 flags, false, order, false);
2909 if (os == NULL)
2910 return NULL;
2911
2912 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2913 size / 8,
2914 "** note header");
2915 os->add_output_section_data(posd);
2916
2917 *trailing_padding = aligned_descsz - descsz;
2918
2919 return os;
2920 }
2921
2922 // For an executable or shared library, create a note to record the
2923 // version of gold used to create the binary.
2924
2925 void
2926 Layout::create_gold_note()
2927 {
2928 if (parameters->options().relocatable()
2929 || parameters->incremental_update())
2930 return;
2931
2932 std::string desc = std::string("gold ") + gold::get_version_string();
2933
2934 size_t trailing_padding;
2935 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2936 ".note.gnu.gold-version", desc.size(),
2937 false, &trailing_padding);
2938 if (os == NULL)
2939 return;
2940
2941 Output_section_data* posd = new Output_data_const(desc, 4);
2942 os->add_output_section_data(posd);
2943
2944 if (trailing_padding > 0)
2945 {
2946 posd = new Output_data_zero_fill(trailing_padding, 0);
2947 os->add_output_section_data(posd);
2948 }
2949 }
2950
2951 // Record whether the stack should be executable. This can be set
2952 // from the command line using the -z execstack or -z noexecstack
2953 // options. Otherwise, if any input file has a .note.GNU-stack
2954 // section with the SHF_EXECINSTR flag set, the stack should be
2955 // executable. Otherwise, if at least one input file a
2956 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2957 // section, we use the target default for whether the stack should be
2958 // executable. Otherwise, we don't generate a stack note. When
2959 // generating a object file, we create a .note.GNU-stack section with
2960 // the appropriate marking. When generating an executable or shared
2961 // library, we create a PT_GNU_STACK segment.
2962
2963 void
2964 Layout::create_executable_stack_info()
2965 {
2966 bool is_stack_executable;
2967 if (parameters->options().is_execstack_set())
2968 is_stack_executable = parameters->options().is_stack_executable();
2969 else if (!this->input_with_gnu_stack_note_)
2970 return;
2971 else
2972 {
2973 if (this->input_requires_executable_stack_)
2974 is_stack_executable = true;
2975 else if (this->input_without_gnu_stack_note_)
2976 is_stack_executable =
2977 parameters->target().is_default_stack_executable();
2978 else
2979 is_stack_executable = false;
2980 }
2981
2982 if (parameters->options().relocatable())
2983 {
2984 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2985 elfcpp::Elf_Xword flags = 0;
2986 if (is_stack_executable)
2987 flags |= elfcpp::SHF_EXECINSTR;
2988 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2989 ORDER_INVALID, false);
2990 }
2991 else
2992 {
2993 if (this->script_options_->saw_phdrs_clause())
2994 return;
2995 int flags = elfcpp::PF_R | elfcpp::PF_W;
2996 if (is_stack_executable)
2997 flags |= elfcpp::PF_X;
2998 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2999 }
3000 }
3001
3002 // If --build-id was used, set up the build ID note.
3003
3004 void
3005 Layout::create_build_id()
3006 {
3007 if (!parameters->options().user_set_build_id())
3008 return;
3009
3010 const char* style = parameters->options().build_id();
3011 if (strcmp(style, "none") == 0)
3012 return;
3013
3014 // Set DESCSZ to the size of the note descriptor. When possible,
3015 // set DESC to the note descriptor contents.
3016 size_t descsz;
3017 std::string desc;
3018 if (strcmp(style, "md5") == 0)
3019 descsz = 128 / 8;
3020 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3021 descsz = 160 / 8;
3022 else if (strcmp(style, "uuid") == 0)
3023 {
3024 const size_t uuidsz = 128 / 8;
3025
3026 char buffer[uuidsz];
3027 memset(buffer, 0, uuidsz);
3028
3029 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3030 if (descriptor < 0)
3031 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3032 strerror(errno));
3033 else
3034 {
3035 ssize_t got = ::read(descriptor, buffer, uuidsz);
3036 release_descriptor(descriptor, true);
3037 if (got < 0)
3038 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3039 else if (static_cast<size_t>(got) != uuidsz)
3040 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3041 uuidsz, got);
3042 }
3043
3044 desc.assign(buffer, uuidsz);
3045 descsz = uuidsz;
3046 }
3047 else if (strncmp(style, "0x", 2) == 0)
3048 {
3049 hex_init();
3050 const char* p = style + 2;
3051 while (*p != '\0')
3052 {
3053 if (hex_p(p[0]) && hex_p(p[1]))
3054 {
3055 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3056 desc += c;
3057 p += 2;
3058 }
3059 else if (*p == '-' || *p == ':')
3060 ++p;
3061 else
3062 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3063 style);
3064 }
3065 descsz = desc.size();
3066 }
3067 else
3068 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3069
3070 // Create the note.
3071 size_t trailing_padding;
3072 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3073 ".note.gnu.build-id", descsz, true,
3074 &trailing_padding);
3075 if (os == NULL)
3076 return;
3077
3078 if (!desc.empty())
3079 {
3080 // We know the value already, so we fill it in now.
3081 gold_assert(desc.size() == descsz);
3082
3083 Output_section_data* posd = new Output_data_const(desc, 4);
3084 os->add_output_section_data(posd);
3085
3086 if (trailing_padding != 0)
3087 {
3088 posd = new Output_data_zero_fill(trailing_padding, 0);
3089 os->add_output_section_data(posd);
3090 }
3091 }
3092 else
3093 {
3094 // We need to compute a checksum after we have completed the
3095 // link.
3096 gold_assert(trailing_padding == 0);
3097 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3098 os->add_output_section_data(this->build_id_note_);
3099 }
3100 }
3101
3102 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3103 // field of the former should point to the latter. I'm not sure who
3104 // started this, but the GNU linker does it, and some tools depend
3105 // upon it.
3106
3107 void
3108 Layout::link_stabs_sections()
3109 {
3110 if (!this->have_stabstr_section_)
3111 return;
3112
3113 for (Section_list::iterator p = this->section_list_.begin();
3114 p != this->section_list_.end();
3115 ++p)
3116 {
3117 if ((*p)->type() != elfcpp::SHT_STRTAB)
3118 continue;
3119
3120 const char* name = (*p)->name();
3121 if (strncmp(name, ".stab", 5) != 0)
3122 continue;
3123
3124 size_t len = strlen(name);
3125 if (strcmp(name + len - 3, "str") != 0)
3126 continue;
3127
3128 std::string stab_name(name, len - 3);
3129 Output_section* stab_sec;
3130 stab_sec = this->find_output_section(stab_name.c_str());
3131 if (stab_sec != NULL)
3132 stab_sec->set_link_section(*p);
3133 }
3134 }
3135
3136 // Create .gnu_incremental_inputs and related sections needed
3137 // for the next run of incremental linking to check what has changed.
3138
3139 void
3140 Layout::create_incremental_info_sections(Symbol_table* symtab)
3141 {
3142 Incremental_inputs* incr = this->incremental_inputs_;
3143
3144 gold_assert(incr != NULL);
3145
3146 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3147 incr->create_data_sections(symtab);
3148
3149 // Add the .gnu_incremental_inputs section.
3150 const char* incremental_inputs_name =
3151 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3152 Output_section* incremental_inputs_os =
3153 this->make_output_section(incremental_inputs_name,
3154 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3155 ORDER_INVALID, false);
3156 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3157
3158 // Add the .gnu_incremental_symtab section.
3159 const char* incremental_symtab_name =
3160 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3161 Output_section* incremental_symtab_os =
3162 this->make_output_section(incremental_symtab_name,
3163 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3164 ORDER_INVALID, false);
3165 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3166 incremental_symtab_os->set_entsize(4);
3167
3168 // Add the .gnu_incremental_relocs section.
3169 const char* incremental_relocs_name =
3170 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3171 Output_section* incremental_relocs_os =
3172 this->make_output_section(incremental_relocs_name,
3173 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3174 ORDER_INVALID, false);
3175 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3176 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3177
3178 // Add the .gnu_incremental_got_plt section.
3179 const char* incremental_got_plt_name =
3180 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3181 Output_section* incremental_got_plt_os =
3182 this->make_output_section(incremental_got_plt_name,
3183 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3184 ORDER_INVALID, false);
3185 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3186
3187 // Add the .gnu_incremental_strtab section.
3188 const char* incremental_strtab_name =
3189 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3190 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3191 elfcpp::SHT_STRTAB, 0,
3192 ORDER_INVALID, false);
3193 Output_data_strtab* strtab_data =
3194 new Output_data_strtab(incr->get_stringpool());
3195 incremental_strtab_os->add_output_section_data(strtab_data);
3196
3197 incremental_inputs_os->set_after_input_sections();
3198 incremental_symtab_os->set_after_input_sections();
3199 incremental_relocs_os->set_after_input_sections();
3200 incremental_got_plt_os->set_after_input_sections();
3201
3202 incremental_inputs_os->set_link_section(incremental_strtab_os);
3203 incremental_symtab_os->set_link_section(incremental_inputs_os);
3204 incremental_relocs_os->set_link_section(incremental_inputs_os);
3205 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3206 }
3207
3208 // Return whether SEG1 should be before SEG2 in the output file. This
3209 // is based entirely on the segment type and flags. When this is
3210 // called the segment addresses have normally not yet been set.
3211
3212 bool
3213 Layout::segment_precedes(const Output_segment* seg1,
3214 const Output_segment* seg2)
3215 {
3216 elfcpp::Elf_Word type1 = seg1->type();
3217 elfcpp::Elf_Word type2 = seg2->type();
3218
3219 // The single PT_PHDR segment is required to precede any loadable
3220 // segment. We simply make it always first.
3221 if (type1 == elfcpp::PT_PHDR)
3222 {
3223 gold_assert(type2 != elfcpp::PT_PHDR);
3224 return true;
3225 }
3226 if (type2 == elfcpp::PT_PHDR)
3227 return false;
3228
3229 // The single PT_INTERP segment is required to precede any loadable
3230 // segment. We simply make it always second.
3231 if (type1 == elfcpp::PT_INTERP)
3232 {
3233 gold_assert(type2 != elfcpp::PT_INTERP);
3234 return true;
3235 }
3236 if (type2 == elfcpp::PT_INTERP)
3237 return false;
3238
3239 // We then put PT_LOAD segments before any other segments.
3240 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3241 return true;
3242 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3243 return false;
3244
3245 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3246 // segment, because that is where the dynamic linker expects to find
3247 // it (this is just for efficiency; other positions would also work
3248 // correctly).
3249 if (type1 == elfcpp::PT_TLS
3250 && type2 != elfcpp::PT_TLS
3251 && type2 != elfcpp::PT_GNU_RELRO)
3252 return false;
3253 if (type2 == elfcpp::PT_TLS
3254 && type1 != elfcpp::PT_TLS
3255 && type1 != elfcpp::PT_GNU_RELRO)
3256 return true;
3257
3258 // We put the PT_GNU_RELRO segment last, because that is where the
3259 // dynamic linker expects to find it (as with PT_TLS, this is just
3260 // for efficiency).
3261 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3262 return false;
3263 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3264 return true;
3265
3266 const elfcpp::Elf_Word flags1 = seg1->flags();
3267 const elfcpp::Elf_Word flags2 = seg2->flags();
3268
3269 // The order of non-PT_LOAD segments is unimportant. We simply sort
3270 // by the numeric segment type and flags values. There should not
3271 // be more than one segment with the same type and flags, except
3272 // when a linker script specifies such.
3273 if (type1 != elfcpp::PT_LOAD)
3274 {
3275 if (type1 != type2)
3276 return type1 < type2;
3277 gold_assert(flags1 != flags2
3278 || this->script_options_->saw_phdrs_clause());
3279 return flags1 < flags2;
3280 }
3281
3282 // If the addresses are set already, sort by load address.
3283 if (seg1->are_addresses_set())
3284 {
3285 if (!seg2->are_addresses_set())
3286 return true;
3287
3288 unsigned int section_count1 = seg1->output_section_count();
3289 unsigned int section_count2 = seg2->output_section_count();
3290 if (section_count1 == 0 && section_count2 > 0)
3291 return true;
3292 if (section_count1 > 0 && section_count2 == 0)
3293 return false;
3294
3295 uint64_t paddr1 = (seg1->are_addresses_set()
3296 ? seg1->paddr()
3297 : seg1->first_section_load_address());
3298 uint64_t paddr2 = (seg2->are_addresses_set()
3299 ? seg2->paddr()
3300 : seg2->first_section_load_address());
3301
3302 if (paddr1 != paddr2)
3303 return paddr1 < paddr2;
3304 }
3305 else if (seg2->are_addresses_set())
3306 return false;
3307
3308 // A segment which holds large data comes after a segment which does
3309 // not hold large data.
3310 if (seg1->is_large_data_segment())
3311 {
3312 if (!seg2->is_large_data_segment())
3313 return false;
3314 }
3315 else if (seg2->is_large_data_segment())
3316 return true;
3317
3318 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3319 // segments come before writable segments. Then writable segments
3320 // with data come before writable segments without data. Then
3321 // executable segments come before non-executable segments. Then
3322 // the unlikely case of a non-readable segment comes before the
3323 // normal case of a readable segment. If there are multiple
3324 // segments with the same type and flags, we require that the
3325 // address be set, and we sort by virtual address and then physical
3326 // address.
3327 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3328 return (flags1 & elfcpp::PF_W) == 0;
3329 if ((flags1 & elfcpp::PF_W) != 0
3330 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3331 return seg1->has_any_data_sections();
3332 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3333 return (flags1 & elfcpp::PF_X) != 0;
3334 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3335 return (flags1 & elfcpp::PF_R) == 0;
3336
3337 // We shouldn't get here--we shouldn't create segments which we
3338 // can't distinguish. Unless of course we are using a weird linker
3339 // script or overlapping --section-start options. We could also get
3340 // here if plugins want unique segments for subsets of sections.
3341 gold_assert(this->script_options_->saw_phdrs_clause()
3342 || parameters->options().any_section_start()
3343 || this->is_unique_segment_for_sections_specified());
3344 return false;
3345 }
3346
3347 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3348
3349 static off_t
3350 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3351 {
3352 uint64_t unsigned_off = off;
3353 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3354 | (addr & (abi_pagesize - 1)));
3355 if (aligned_off < unsigned_off)
3356 aligned_off += abi_pagesize;
3357 return aligned_off;
3358 }
3359
3360 // On targets where the text segment contains only executable code,
3361 // a non-executable segment is never the text segment.
3362
3363 static inline bool
3364 is_text_segment(const Target* target, const Output_segment* seg)
3365 {
3366 elfcpp::Elf_Xword flags = seg->flags();
3367 if ((flags & elfcpp::PF_W) != 0)
3368 return false;
3369 if ((flags & elfcpp::PF_X) == 0)
3370 return !target->isolate_execinstr();
3371 return true;
3372 }
3373
3374 // Set the file offsets of all the segments, and all the sections they
3375 // contain. They have all been created. LOAD_SEG must be be laid out
3376 // first. Return the offset of the data to follow.
3377
3378 off_t
3379 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3380 unsigned int* pshndx)
3381 {
3382 // Sort them into the final order. We use a stable sort so that we
3383 // don't randomize the order of indistinguishable segments created
3384 // by linker scripts.
3385 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3386 Layout::Compare_segments(this));
3387
3388 // Find the PT_LOAD segments, and set their addresses and offsets
3389 // and their section's addresses and offsets.
3390 uint64_t start_addr;
3391 if (parameters->options().user_set_Ttext())
3392 start_addr = parameters->options().Ttext();
3393 else if (parameters->options().output_is_position_independent())
3394 start_addr = 0;
3395 else
3396 start_addr = target->default_text_segment_address();
3397
3398 uint64_t addr = start_addr;
3399 off_t off = 0;
3400
3401 // If LOAD_SEG is NULL, then the file header and segment headers
3402 // will not be loadable. But they still need to be at offset 0 in
3403 // the file. Set their offsets now.
3404 if (load_seg == NULL)
3405 {
3406 for (Data_list::iterator p = this->special_output_list_.begin();
3407 p != this->special_output_list_.end();
3408 ++p)
3409 {
3410 off = align_address(off, (*p)->addralign());
3411 (*p)->set_address_and_file_offset(0, off);
3412 off += (*p)->data_size();
3413 }
3414 }
3415
3416 unsigned int increase_relro = this->increase_relro_;
3417 if (this->script_options_->saw_sections_clause())
3418 increase_relro = 0;
3419
3420 const bool check_sections = parameters->options().check_sections();
3421 Output_segment* last_load_segment = NULL;
3422
3423 unsigned int shndx_begin = *pshndx;
3424 unsigned int shndx_load_seg = *pshndx;
3425
3426 for (Segment_list::iterator p = this->segment_list_.begin();
3427 p != this->segment_list_.end();
3428 ++p)
3429 {
3430 if ((*p)->type() == elfcpp::PT_LOAD)
3431 {
3432 if (target->isolate_execinstr())
3433 {
3434 // When we hit the segment that should contain the
3435 // file headers, reset the file offset so we place
3436 // it and subsequent segments appropriately.
3437 // We'll fix up the preceding segments below.
3438 if (load_seg == *p)
3439 {
3440 if (off == 0)
3441 load_seg = NULL;
3442 else
3443 {
3444 off = 0;
3445 shndx_load_seg = *pshndx;
3446 }
3447 }
3448 }
3449 else
3450 {
3451 // Verify that the file headers fall into the first segment.
3452 if (load_seg != NULL && load_seg != *p)
3453 gold_unreachable();
3454 load_seg = NULL;
3455 }
3456
3457 bool are_addresses_set = (*p)->are_addresses_set();
3458 if (are_addresses_set)
3459 {
3460 // When it comes to setting file offsets, we care about
3461 // the physical address.
3462 addr = (*p)->paddr();
3463 }
3464 else if (parameters->options().user_set_Ttext()
3465 && (parameters->options().omagic()
3466 || is_text_segment(target, *p)))
3467 {
3468 are_addresses_set = true;
3469 }
3470 else if (parameters->options().user_set_Trodata_segment()
3471 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3472 {
3473 addr = parameters->options().Trodata_segment();
3474 are_addresses_set = true;
3475 }
3476 else if (parameters->options().user_set_Tdata()
3477 && ((*p)->flags() & elfcpp::PF_W) != 0
3478 && (!parameters->options().user_set_Tbss()
3479 || (*p)->has_any_data_sections()))
3480 {
3481 addr = parameters->options().Tdata();
3482 are_addresses_set = true;
3483 }
3484 else if (parameters->options().user_set_Tbss()
3485 && ((*p)->flags() & elfcpp::PF_W) != 0
3486 && !(*p)->has_any_data_sections())
3487 {
3488 addr = parameters->options().Tbss();
3489 are_addresses_set = true;
3490 }
3491
3492 uint64_t orig_addr = addr;
3493 uint64_t orig_off = off;
3494
3495 uint64_t aligned_addr = 0;
3496 uint64_t abi_pagesize = target->abi_pagesize();
3497 uint64_t common_pagesize = target->common_pagesize();
3498
3499 if (!parameters->options().nmagic()
3500 && !parameters->options().omagic())
3501 (*p)->set_minimum_p_align(abi_pagesize);
3502
3503 if (!are_addresses_set)
3504 {
3505 // Skip the address forward one page, maintaining the same
3506 // position within the page. This lets us store both segments
3507 // overlapping on a single page in the file, but the loader will
3508 // put them on different pages in memory. We will revisit this
3509 // decision once we know the size of the segment.
3510
3511 addr = align_address(addr, (*p)->maximum_alignment());
3512 aligned_addr = addr;
3513
3514 if (load_seg == *p)
3515 {
3516 // This is the segment that will contain the file
3517 // headers, so its offset will have to be exactly zero.
3518 gold_assert(orig_off == 0);
3519
3520 // If the target wants a fixed minimum distance from the
3521 // text segment to the read-only segment, move up now.
3522 uint64_t min_addr =
3523 start_addr + (parameters->options().user_set_rosegment_gap()
3524 ? parameters->options().rosegment_gap()
3525 : target->rosegment_gap());
3526 if (addr < min_addr)
3527 addr = min_addr;
3528
3529 // But this is not the first segment! To make its
3530 // address congruent with its offset, that address better
3531 // be aligned to the ABI-mandated page size.
3532 addr = align_address(addr, abi_pagesize);
3533 aligned_addr = addr;
3534 }
3535 else
3536 {
3537 if ((addr & (abi_pagesize - 1)) != 0)
3538 addr = addr + abi_pagesize;
3539
3540 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3541 }
3542 }
3543
3544 if (!parameters->options().nmagic()
3545 && !parameters->options().omagic())
3546 {
3547 // Here we are also taking care of the case when
3548 // the maximum segment alignment is larger than the page size.
3549 off = align_file_offset(off, addr,
3550 std::max(abi_pagesize,
3551 (*p)->maximum_alignment()));
3552 }
3553 else
3554 {
3555 // This is -N or -n with a section script which prevents
3556 // us from using a load segment. We need to ensure that
3557 // the file offset is aligned to the alignment of the
3558 // segment. This is because the linker script
3559 // implicitly assumed a zero offset. If we don't align
3560 // here, then the alignment of the sections in the
3561 // linker script may not match the alignment of the
3562 // sections in the set_section_addresses call below,
3563 // causing an error about dot moving backward.
3564 off = align_address(off, (*p)->maximum_alignment());
3565 }
3566
3567 unsigned int shndx_hold = *pshndx;
3568 bool has_relro = false;
3569 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3570 false, addr,
3571 &increase_relro,
3572 &has_relro,
3573 &off, pshndx);
3574
3575 // Now that we know the size of this segment, we may be able
3576 // to save a page in memory, at the cost of wasting some
3577 // file space, by instead aligning to the start of a new
3578 // page. Here we use the real machine page size rather than
3579 // the ABI mandated page size. If the segment has been
3580 // aligned so that the relro data ends at a page boundary,
3581 // we do not try to realign it.
3582
3583 if (!are_addresses_set
3584 && !has_relro
3585 && aligned_addr != addr
3586 && !parameters->incremental())
3587 {
3588 uint64_t first_off = (common_pagesize
3589 - (aligned_addr
3590 & (common_pagesize - 1)));
3591 uint64_t last_off = new_addr & (common_pagesize - 1);
3592 if (first_off > 0
3593 && last_off > 0
3594 && ((aligned_addr & ~ (common_pagesize - 1))
3595 != (new_addr & ~ (common_pagesize - 1)))
3596 && first_off + last_off <= common_pagesize)
3597 {
3598 *pshndx = shndx_hold;
3599 addr = align_address(aligned_addr, common_pagesize);
3600 addr = align_address(addr, (*p)->maximum_alignment());
3601 if ((addr & (abi_pagesize - 1)) != 0)
3602 addr = addr + abi_pagesize;
3603 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3604 off = align_file_offset(off, addr, abi_pagesize);
3605
3606 increase_relro = this->increase_relro_;
3607 if (this->script_options_->saw_sections_clause())
3608 increase_relro = 0;
3609 has_relro = false;
3610
3611 new_addr = (*p)->set_section_addresses(target, this,
3612 true, addr,
3613 &increase_relro,
3614 &has_relro,
3615 &off, pshndx);
3616 }
3617 }
3618
3619 addr = new_addr;
3620
3621 // Implement --check-sections. We know that the segments
3622 // are sorted by LMA.
3623 if (check_sections && last_load_segment != NULL)
3624 {
3625 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3626 if (last_load_segment->paddr() + last_load_segment->memsz()
3627 > (*p)->paddr())
3628 {
3629 unsigned long long lb1 = last_load_segment->paddr();
3630 unsigned long long le1 = lb1 + last_load_segment->memsz();
3631 unsigned long long lb2 = (*p)->paddr();
3632 unsigned long long le2 = lb2 + (*p)->memsz();
3633 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3634 "[0x%llx -> 0x%llx]"),
3635 lb1, le1, lb2, le2);
3636 }
3637 }
3638 last_load_segment = *p;
3639 }
3640 }
3641
3642 if (load_seg != NULL && target->isolate_execinstr())
3643 {
3644 // Process the early segments again, setting their file offsets
3645 // so they land after the segments starting at LOAD_SEG.
3646 off = align_file_offset(off, 0, target->abi_pagesize());
3647
3648 this->reset_relax_output();
3649
3650 for (Segment_list::iterator p = this->segment_list_.begin();
3651 *p != load_seg;
3652 ++p)
3653 {
3654 if ((*p)->type() == elfcpp::PT_LOAD)
3655 {
3656 // We repeat the whole job of assigning addresses and
3657 // offsets, but we really only want to change the offsets and
3658 // must ensure that the addresses all come out the same as
3659 // they did the first time through.
3660 bool has_relro = false;
3661 const uint64_t old_addr = (*p)->vaddr();
3662 const uint64_t old_end = old_addr + (*p)->memsz();
3663 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3664 true, old_addr,
3665 &increase_relro,
3666 &has_relro,
3667 &off,
3668 &shndx_begin);
3669 gold_assert(new_addr == old_end);
3670 }
3671 }
3672
3673 gold_assert(shndx_begin == shndx_load_seg);
3674 }
3675
3676 // Handle the non-PT_LOAD segments, setting their offsets from their
3677 // section's offsets.
3678 for (Segment_list::iterator p = this->segment_list_.begin();
3679 p != this->segment_list_.end();
3680 ++p)
3681 {
3682 if ((*p)->type() != elfcpp::PT_LOAD)
3683 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3684 ? increase_relro
3685 : 0);
3686 }
3687
3688 // Set the TLS offsets for each section in the PT_TLS segment.
3689 if (this->tls_segment_ != NULL)
3690 this->tls_segment_->set_tls_offsets();
3691
3692 return off;
3693 }
3694
3695 // Set the offsets of all the allocated sections when doing a
3696 // relocatable link. This does the same jobs as set_segment_offsets,
3697 // only for a relocatable link.
3698
3699 off_t
3700 Layout::set_relocatable_section_offsets(Output_data* file_header,
3701 unsigned int* pshndx)
3702 {
3703 off_t off = 0;
3704
3705 file_header->set_address_and_file_offset(0, 0);
3706 off += file_header->data_size();
3707
3708 for (Section_list::iterator p = this->section_list_.begin();
3709 p != this->section_list_.end();
3710 ++p)
3711 {
3712 // We skip unallocated sections here, except that group sections
3713 // have to come first.
3714 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3715 && (*p)->type() != elfcpp::SHT_GROUP)
3716 continue;
3717
3718 off = align_address(off, (*p)->addralign());
3719
3720 // The linker script might have set the address.
3721 if (!(*p)->is_address_valid())
3722 (*p)->set_address(0);
3723 (*p)->set_file_offset(off);
3724 (*p)->finalize_data_size();
3725 if ((*p)->type() != elfcpp::SHT_NOBITS)
3726 off += (*p)->data_size();
3727
3728 (*p)->set_out_shndx(*pshndx);
3729 ++*pshndx;
3730 }
3731
3732 return off;
3733 }
3734
3735 // Set the file offset of all the sections not associated with a
3736 // segment.
3737
3738 off_t
3739 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3740 {
3741 off_t startoff = off;
3742 off_t maxoff = off;
3743
3744 for (Section_list::iterator p = this->unattached_section_list_.begin();
3745 p != this->unattached_section_list_.end();
3746 ++p)
3747 {
3748 // The symtab section is handled in create_symtab_sections.
3749 if (*p == this->symtab_section_)
3750 continue;
3751
3752 // If we've already set the data size, don't set it again.
3753 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3754 continue;
3755
3756 if (pass == BEFORE_INPUT_SECTIONS_PASS
3757 && (*p)->requires_postprocessing())
3758 {
3759 (*p)->create_postprocessing_buffer();
3760 this->any_postprocessing_sections_ = true;
3761 }
3762
3763 if (pass == BEFORE_INPUT_SECTIONS_PASS
3764 && (*p)->after_input_sections())
3765 continue;
3766 else if (pass == POSTPROCESSING_SECTIONS_PASS
3767 && (!(*p)->after_input_sections()
3768 || (*p)->type() == elfcpp::SHT_STRTAB))
3769 continue;
3770 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3771 && (!(*p)->after_input_sections()
3772 || (*p)->type() != elfcpp::SHT_STRTAB))
3773 continue;
3774
3775 if (!parameters->incremental_update())
3776 {
3777 off = align_address(off, (*p)->addralign());
3778 (*p)->set_file_offset(off);
3779 (*p)->finalize_data_size();
3780 }
3781 else
3782 {
3783 // Incremental update: allocate file space from free list.
3784 (*p)->pre_finalize_data_size();
3785 off_t current_size = (*p)->current_data_size();
3786 off = this->allocate(current_size, (*p)->addralign(), startoff);
3787 if (off == -1)
3788 {
3789 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3790 this->free_list_.dump();
3791 gold_assert((*p)->output_section() != NULL);
3792 gold_fallback(_("out of patch space for section %s; "
3793 "relink with --incremental-full"),
3794 (*p)->output_section()->name());
3795 }
3796 (*p)->set_file_offset(off);
3797 (*p)->finalize_data_size();
3798 if ((*p)->data_size() > current_size)
3799 {
3800 gold_assert((*p)->output_section() != NULL);
3801 gold_fallback(_("%s: section changed size; "
3802 "relink with --incremental-full"),
3803 (*p)->output_section()->name());
3804 }
3805 gold_debug(DEBUG_INCREMENTAL,
3806 "set_section_offsets: %08lx %08lx %s",
3807 static_cast<long>(off),
3808 static_cast<long>((*p)->data_size()),
3809 ((*p)->output_section() != NULL
3810 ? (*p)->output_section()->name() : "(special)"));
3811 }
3812
3813 off += (*p)->data_size();
3814 if (off > maxoff)
3815 maxoff = off;
3816
3817 // At this point the name must be set.
3818 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3819 this->namepool_.add((*p)->name(), false, NULL);
3820 }
3821 return maxoff;
3822 }
3823
3824 // Set the section indexes of all the sections not associated with a
3825 // segment.
3826
3827 unsigned int
3828 Layout::set_section_indexes(unsigned int shndx)
3829 {
3830 for (Section_list::iterator p = this->unattached_section_list_.begin();
3831 p != this->unattached_section_list_.end();
3832 ++p)
3833 {
3834 if (!(*p)->has_out_shndx())
3835 {
3836 (*p)->set_out_shndx(shndx);
3837 ++shndx;
3838 }
3839 }
3840 return shndx;
3841 }
3842
3843 // Set the section addresses according to the linker script. This is
3844 // only called when we see a SECTIONS clause. This returns the
3845 // program segment which should hold the file header and segment
3846 // headers, if any. It will return NULL if they should not be in a
3847 // segment.
3848
3849 Output_segment*
3850 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3851 {
3852 Script_sections* ss = this->script_options_->script_sections();
3853 gold_assert(ss->saw_sections_clause());
3854 return this->script_options_->set_section_addresses(symtab, this);
3855 }
3856
3857 // Place the orphan sections in the linker script.
3858
3859 void
3860 Layout::place_orphan_sections_in_script()
3861 {
3862 Script_sections* ss = this->script_options_->script_sections();
3863 gold_assert(ss->saw_sections_clause());
3864
3865 // Place each orphaned output section in the script.
3866 for (Section_list::iterator p = this->section_list_.begin();
3867 p != this->section_list_.end();
3868 ++p)
3869 {
3870 if (!(*p)->found_in_sections_clause())
3871 ss->place_orphan(*p);
3872 }
3873 }
3874
3875 // Count the local symbols in the regular symbol table and the dynamic
3876 // symbol table, and build the respective string pools.
3877
3878 void
3879 Layout::count_local_symbols(const Task* task,
3880 const Input_objects* input_objects)
3881 {
3882 // First, figure out an upper bound on the number of symbols we'll
3883 // be inserting into each pool. This helps us create the pools with
3884 // the right size, to avoid unnecessary hashtable resizing.
3885 unsigned int symbol_count = 0;
3886 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3887 p != input_objects->relobj_end();
3888 ++p)
3889 symbol_count += (*p)->local_symbol_count();
3890
3891 // Go from "upper bound" to "estimate." We overcount for two
3892 // reasons: we double-count symbols that occur in more than one
3893 // object file, and we count symbols that are dropped from the
3894 // output. Add it all together and assume we overcount by 100%.
3895 symbol_count /= 2;
3896
3897 // We assume all symbols will go into both the sympool and dynpool.
3898 this->sympool_.reserve(symbol_count);
3899 this->dynpool_.reserve(symbol_count);
3900
3901 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3902 p != input_objects->relobj_end();
3903 ++p)
3904 {
3905 Task_lock_obj<Object> tlo(task, *p);
3906 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3907 }
3908 }
3909
3910 // Create the symbol table sections. Here we also set the final
3911 // values of the symbols. At this point all the loadable sections are
3912 // fully laid out. SHNUM is the number of sections so far.
3913
3914 void
3915 Layout::create_symtab_sections(const Input_objects* input_objects,
3916 Symbol_table* symtab,
3917 unsigned int shnum,
3918 off_t* poff)
3919 {
3920 int symsize;
3921 unsigned int align;
3922 if (parameters->target().get_size() == 32)
3923 {
3924 symsize = elfcpp::Elf_sizes<32>::sym_size;
3925 align = 4;
3926 }
3927 else if (parameters->target().get_size() == 64)
3928 {
3929 symsize = elfcpp::Elf_sizes<64>::sym_size;
3930 align = 8;
3931 }
3932 else
3933 gold_unreachable();
3934
3935 // Compute file offsets relative to the start of the symtab section.
3936 off_t off = 0;
3937
3938 // Save space for the dummy symbol at the start of the section. We
3939 // never bother to write this out--it will just be left as zero.
3940 off += symsize;
3941 unsigned int local_symbol_index = 1;
3942
3943 // Add STT_SECTION symbols for each Output section which needs one.
3944 for (Section_list::iterator p = this->section_list_.begin();
3945 p != this->section_list_.end();
3946 ++p)
3947 {
3948 if (!(*p)->needs_symtab_index())
3949 (*p)->set_symtab_index(-1U);
3950 else
3951 {
3952 (*p)->set_symtab_index(local_symbol_index);
3953 ++local_symbol_index;
3954 off += symsize;
3955 }
3956 }
3957
3958 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3959 p != input_objects->relobj_end();
3960 ++p)
3961 {
3962 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3963 off, symtab);
3964 off += (index - local_symbol_index) * symsize;
3965 local_symbol_index = index;
3966 }
3967
3968 unsigned int local_symcount = local_symbol_index;
3969 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3970
3971 off_t dynoff;
3972 size_t dyn_global_index;
3973 size_t dyncount;
3974 if (this->dynsym_section_ == NULL)
3975 {
3976 dynoff = 0;
3977 dyn_global_index = 0;
3978 dyncount = 0;
3979 }
3980 else
3981 {
3982 dyn_global_index = this->dynsym_section_->info();
3983 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3984 dynoff = this->dynsym_section_->offset() + locsize;
3985 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3986 gold_assert(static_cast<off_t>(dyncount * symsize)
3987 == this->dynsym_section_->data_size() - locsize);
3988 }
3989
3990 off_t global_off = off;
3991 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3992 &this->sympool_, &local_symcount);
3993
3994 if (!parameters->options().strip_all())
3995 {
3996 this->sympool_.set_string_offsets();
3997
3998 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3999 Output_section* osymtab = this->make_output_section(symtab_name,
4000 elfcpp::SHT_SYMTAB,
4001 0, ORDER_INVALID,
4002 false);
4003 this->symtab_section_ = osymtab;
4004
4005 Output_section_data* pos = new Output_data_fixed_space(off, align,
4006 "** symtab");
4007 osymtab->add_output_section_data(pos);
4008
4009 // We generate a .symtab_shndx section if we have more than
4010 // SHN_LORESERVE sections. Technically it is possible that we
4011 // don't need one, because it is possible that there are no
4012 // symbols in any of sections with indexes larger than
4013 // SHN_LORESERVE. That is probably unusual, though, and it is
4014 // easier to always create one than to compute section indexes
4015 // twice (once here, once when writing out the symbols).
4016 if (shnum >= elfcpp::SHN_LORESERVE)
4017 {
4018 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4019 false, NULL);
4020 Output_section* osymtab_xindex =
4021 this->make_output_section(symtab_xindex_name,
4022 elfcpp::SHT_SYMTAB_SHNDX, 0,
4023 ORDER_INVALID, false);
4024
4025 size_t symcount = off / symsize;
4026 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4027
4028 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4029
4030 osymtab_xindex->set_link_section(osymtab);
4031 osymtab_xindex->set_addralign(4);
4032 osymtab_xindex->set_entsize(4);
4033
4034 osymtab_xindex->set_after_input_sections();
4035
4036 // This tells the driver code to wait until the symbol table
4037 // has written out before writing out the postprocessing
4038 // sections, including the .symtab_shndx section.
4039 this->any_postprocessing_sections_ = true;
4040 }
4041
4042 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4043 Output_section* ostrtab = this->make_output_section(strtab_name,
4044 elfcpp::SHT_STRTAB,
4045 0, ORDER_INVALID,
4046 false);
4047
4048 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4049 ostrtab->add_output_section_data(pstr);
4050
4051 off_t symtab_off;
4052 if (!parameters->incremental_update())
4053 symtab_off = align_address(*poff, align);
4054 else
4055 {
4056 symtab_off = this->allocate(off, align, *poff);
4057 if (off == -1)
4058 gold_fallback(_("out of patch space for symbol table; "
4059 "relink with --incremental-full"));
4060 gold_debug(DEBUG_INCREMENTAL,
4061 "create_symtab_sections: %08lx %08lx .symtab",
4062 static_cast<long>(symtab_off),
4063 static_cast<long>(off));
4064 }
4065
4066 symtab->set_file_offset(symtab_off + global_off);
4067 osymtab->set_file_offset(symtab_off);
4068 osymtab->finalize_data_size();
4069 osymtab->set_link_section(ostrtab);
4070 osymtab->set_info(local_symcount);
4071 osymtab->set_entsize(symsize);
4072
4073 if (symtab_off + off > *poff)
4074 *poff = symtab_off + off;
4075 }
4076 }
4077
4078 // Create the .shstrtab section, which holds the names of the
4079 // sections. At the time this is called, we have created all the
4080 // output sections except .shstrtab itself.
4081
4082 Output_section*
4083 Layout::create_shstrtab()
4084 {
4085 // FIXME: We don't need to create a .shstrtab section if we are
4086 // stripping everything.
4087
4088 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4089
4090 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4091 ORDER_INVALID, false);
4092
4093 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4094 {
4095 // We can't write out this section until we've set all the
4096 // section names, and we don't set the names of compressed
4097 // output sections until relocations are complete. FIXME: With
4098 // the current names we use, this is unnecessary.
4099 os->set_after_input_sections();
4100 }
4101
4102 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4103 os->add_output_section_data(posd);
4104
4105 return os;
4106 }
4107
4108 // Create the section headers. SIZE is 32 or 64. OFF is the file
4109 // offset.
4110
4111 void
4112 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4113 {
4114 Output_section_headers* oshdrs;
4115 oshdrs = new Output_section_headers(this,
4116 &this->segment_list_,
4117 &this->section_list_,
4118 &this->unattached_section_list_,
4119 &this->namepool_,
4120 shstrtab_section);
4121 off_t off;
4122 if (!parameters->incremental_update())
4123 off = align_address(*poff, oshdrs->addralign());
4124 else
4125 {
4126 oshdrs->pre_finalize_data_size();
4127 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4128 if (off == -1)
4129 gold_fallback(_("out of patch space for section header table; "
4130 "relink with --incremental-full"));
4131 gold_debug(DEBUG_INCREMENTAL,
4132 "create_shdrs: %08lx %08lx (section header table)",
4133 static_cast<long>(off),
4134 static_cast<long>(off + oshdrs->data_size()));
4135 }
4136 oshdrs->set_address_and_file_offset(0, off);
4137 off += oshdrs->data_size();
4138 if (off > *poff)
4139 *poff = off;
4140 this->section_headers_ = oshdrs;
4141 }
4142
4143 // Count the allocated sections.
4144
4145 size_t
4146 Layout::allocated_output_section_count() const
4147 {
4148 size_t section_count = 0;
4149 for (Segment_list::const_iterator p = this->segment_list_.begin();
4150 p != this->segment_list_.end();
4151 ++p)
4152 section_count += (*p)->output_section_count();
4153 return section_count;
4154 }
4155
4156 // Create the dynamic symbol table.
4157
4158 void
4159 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4160 Symbol_table* symtab,
4161 Output_section** pdynstr,
4162 unsigned int* plocal_dynamic_count,
4163 std::vector<Symbol*>* pdynamic_symbols,
4164 Versions* pversions)
4165 {
4166 // Count all the symbols in the dynamic symbol table, and set the
4167 // dynamic symbol indexes.
4168
4169 // Skip symbol 0, which is always all zeroes.
4170 unsigned int index = 1;
4171
4172 // Add STT_SECTION symbols for each Output section which needs one.
4173 for (Section_list::iterator p = this->section_list_.begin();
4174 p != this->section_list_.end();
4175 ++p)
4176 {
4177 if (!(*p)->needs_dynsym_index())
4178 (*p)->set_dynsym_index(-1U);
4179 else
4180 {
4181 (*p)->set_dynsym_index(index);
4182 ++index;
4183 }
4184 }
4185
4186 // Count the local symbols that need to go in the dynamic symbol table,
4187 // and set the dynamic symbol indexes.
4188 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4189 p != input_objects->relobj_end();
4190 ++p)
4191 {
4192 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4193 index = new_index;
4194 }
4195
4196 unsigned int local_symcount = index;
4197 *plocal_dynamic_count = local_symcount;
4198
4199 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4200 &this->dynpool_, pversions);
4201
4202 int symsize;
4203 unsigned int align;
4204 const int size = parameters->target().get_size();
4205 if (size == 32)
4206 {
4207 symsize = elfcpp::Elf_sizes<32>::sym_size;
4208 align = 4;
4209 }
4210 else if (size == 64)
4211 {
4212 symsize = elfcpp::Elf_sizes<64>::sym_size;
4213 align = 8;
4214 }
4215 else
4216 gold_unreachable();
4217
4218 // Create the dynamic symbol table section.
4219
4220 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4221 elfcpp::SHT_DYNSYM,
4222 elfcpp::SHF_ALLOC,
4223 false,
4224 ORDER_DYNAMIC_LINKER,
4225 false);
4226
4227 // Check for NULL as a linker script may discard .dynsym.
4228 if (dynsym != NULL)
4229 {
4230 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4231 align,
4232 "** dynsym");
4233 dynsym->add_output_section_data(odata);
4234
4235 dynsym->set_info(local_symcount);
4236 dynsym->set_entsize(symsize);
4237 dynsym->set_addralign(align);
4238
4239 this->dynsym_section_ = dynsym;
4240 }
4241
4242 Output_data_dynamic* const odyn = this->dynamic_data_;
4243 if (odyn != NULL)
4244 {
4245 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4246 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4247 }
4248
4249 // If there are more than SHN_LORESERVE allocated sections, we
4250 // create a .dynsym_shndx section. It is possible that we don't
4251 // need one, because it is possible that there are no dynamic
4252 // symbols in any of the sections with indexes larger than
4253 // SHN_LORESERVE. This is probably unusual, though, and at this
4254 // time we don't know the actual section indexes so it is
4255 // inconvenient to check.
4256 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4257 {
4258 Output_section* dynsym_xindex =
4259 this->choose_output_section(NULL, ".dynsym_shndx",
4260 elfcpp::SHT_SYMTAB_SHNDX,
4261 elfcpp::SHF_ALLOC,
4262 false, ORDER_DYNAMIC_LINKER, false);
4263
4264 if (dynsym_xindex != NULL)
4265 {
4266 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4267
4268 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4269
4270 dynsym_xindex->set_link_section(dynsym);
4271 dynsym_xindex->set_addralign(4);
4272 dynsym_xindex->set_entsize(4);
4273
4274 dynsym_xindex->set_after_input_sections();
4275
4276 // This tells the driver code to wait until the symbol table
4277 // has written out before writing out the postprocessing
4278 // sections, including the .dynsym_shndx section.
4279 this->any_postprocessing_sections_ = true;
4280 }
4281 }
4282
4283 // Create the dynamic string table section.
4284
4285 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4286 elfcpp::SHT_STRTAB,
4287 elfcpp::SHF_ALLOC,
4288 false,
4289 ORDER_DYNAMIC_LINKER,
4290 false);
4291 *pdynstr = dynstr;
4292 if (dynstr != NULL)
4293 {
4294 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4295 dynstr->add_output_section_data(strdata);
4296
4297 if (dynsym != NULL)
4298 dynsym->set_link_section(dynstr);
4299 if (this->dynamic_section_ != NULL)
4300 this->dynamic_section_->set_link_section(dynstr);
4301
4302 if (odyn != NULL)
4303 {
4304 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4305 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4306 }
4307 }
4308
4309 // Create the hash tables.
4310
4311 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4312 || strcmp(parameters->options().hash_style(), "both") == 0)
4313 {
4314 unsigned char* phash;
4315 unsigned int hashlen;
4316 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4317 &phash, &hashlen);
4318
4319 Output_section* hashsec =
4320 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4321 elfcpp::SHF_ALLOC, false,
4322 ORDER_DYNAMIC_LINKER, false);
4323
4324 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4325 hashlen,
4326 align,
4327 "** hash");
4328 if (hashsec != NULL && hashdata != NULL)
4329 hashsec->add_output_section_data(hashdata);
4330
4331 if (hashsec != NULL)
4332 {
4333 if (dynsym != NULL)
4334 hashsec->set_link_section(dynsym);
4335 hashsec->set_entsize(4);
4336 }
4337
4338 if (odyn != NULL)
4339 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4340 }
4341
4342 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4343 || strcmp(parameters->options().hash_style(), "both") == 0)
4344 {
4345 unsigned char* phash;
4346 unsigned int hashlen;
4347 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4348 &phash, &hashlen);
4349
4350 Output_section* hashsec =
4351 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4352 elfcpp::SHF_ALLOC, false,
4353 ORDER_DYNAMIC_LINKER, false);
4354
4355 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4356 hashlen,
4357 align,
4358 "** hash");
4359 if (hashsec != NULL && hashdata != NULL)
4360 hashsec->add_output_section_data(hashdata);
4361
4362 if (hashsec != NULL)
4363 {
4364 if (dynsym != NULL)
4365 hashsec->set_link_section(dynsym);
4366
4367 // For a 64-bit target, the entries in .gnu.hash do not have
4368 // a uniform size, so we only set the entry size for a
4369 // 32-bit target.
4370 if (parameters->target().get_size() == 32)
4371 hashsec->set_entsize(4);
4372
4373 if (odyn != NULL)
4374 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4375 }
4376 }
4377 }
4378
4379 // Assign offsets to each local portion of the dynamic symbol table.
4380
4381 void
4382 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4383 {
4384 Output_section* dynsym = this->dynsym_section_;
4385 if (dynsym == NULL)
4386 return;
4387
4388 off_t off = dynsym->offset();
4389
4390 // Skip the dummy symbol at the start of the section.
4391 off += dynsym->entsize();
4392
4393 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4394 p != input_objects->relobj_end();
4395 ++p)
4396 {
4397 unsigned int count = (*p)->set_local_dynsym_offset(off);
4398 off += count * dynsym->entsize();
4399 }
4400 }
4401
4402 // Create the version sections.
4403
4404 void
4405 Layout::create_version_sections(const Versions* versions,
4406 const Symbol_table* symtab,
4407 unsigned int local_symcount,
4408 const std::vector<Symbol*>& dynamic_symbols,
4409 const Output_section* dynstr)
4410 {
4411 if (!versions->any_defs() && !versions->any_needs())
4412 return;
4413
4414 switch (parameters->size_and_endianness())
4415 {
4416 #ifdef HAVE_TARGET_32_LITTLE
4417 case Parameters::TARGET_32_LITTLE:
4418 this->sized_create_version_sections<32, false>(versions, symtab,
4419 local_symcount,
4420 dynamic_symbols, dynstr);
4421 break;
4422 #endif
4423 #ifdef HAVE_TARGET_32_BIG
4424 case Parameters::TARGET_32_BIG:
4425 this->sized_create_version_sections<32, true>(versions, symtab,
4426 local_symcount,
4427 dynamic_symbols, dynstr);
4428 break;
4429 #endif
4430 #ifdef HAVE_TARGET_64_LITTLE
4431 case Parameters::TARGET_64_LITTLE:
4432 this->sized_create_version_sections<64, false>(versions, symtab,
4433 local_symcount,
4434 dynamic_symbols, dynstr);
4435 break;
4436 #endif
4437 #ifdef HAVE_TARGET_64_BIG
4438 case Parameters::TARGET_64_BIG:
4439 this->sized_create_version_sections<64, true>(versions, symtab,
4440 local_symcount,
4441 dynamic_symbols, dynstr);
4442 break;
4443 #endif
4444 default:
4445 gold_unreachable();
4446 }
4447 }
4448
4449 // Create the version sections, sized version.
4450
4451 template<int size, bool big_endian>
4452 void
4453 Layout::sized_create_version_sections(
4454 const Versions* versions,
4455 const Symbol_table* symtab,
4456 unsigned int local_symcount,
4457 const std::vector<Symbol*>& dynamic_symbols,
4458 const Output_section* dynstr)
4459 {
4460 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4461 elfcpp::SHT_GNU_versym,
4462 elfcpp::SHF_ALLOC,
4463 false,
4464 ORDER_DYNAMIC_LINKER,
4465 false);
4466
4467 // Check for NULL since a linker script may discard this section.
4468 if (vsec != NULL)
4469 {
4470 unsigned char* vbuf;
4471 unsigned int vsize;
4472 versions->symbol_section_contents<size, big_endian>(symtab,
4473 &this->dynpool_,
4474 local_symcount,
4475 dynamic_symbols,
4476 &vbuf, &vsize);
4477
4478 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4479 "** versions");
4480
4481 vsec->add_output_section_data(vdata);
4482 vsec->set_entsize(2);
4483 vsec->set_link_section(this->dynsym_section_);
4484 }
4485
4486 Output_data_dynamic* const odyn = this->dynamic_data_;
4487 if (odyn != NULL && vsec != NULL)
4488 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4489
4490 if (versions->any_defs())
4491 {
4492 Output_section* vdsec;
4493 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4494 elfcpp::SHT_GNU_verdef,
4495 elfcpp::SHF_ALLOC,
4496 false, ORDER_DYNAMIC_LINKER, false);
4497
4498 if (vdsec != NULL)
4499 {
4500 unsigned char* vdbuf;
4501 unsigned int vdsize;
4502 unsigned int vdentries;
4503 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4504 &vdbuf, &vdsize,
4505 &vdentries);
4506
4507 Output_section_data* vddata =
4508 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4509
4510 vdsec->add_output_section_data(vddata);
4511 vdsec->set_link_section(dynstr);
4512 vdsec->set_info(vdentries);
4513
4514 if (odyn != NULL)
4515 {
4516 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4517 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4518 }
4519 }
4520 }
4521
4522 if (versions->any_needs())
4523 {
4524 Output_section* vnsec;
4525 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4526 elfcpp::SHT_GNU_verneed,
4527 elfcpp::SHF_ALLOC,
4528 false, ORDER_DYNAMIC_LINKER, false);
4529
4530 if (vnsec != NULL)
4531 {
4532 unsigned char* vnbuf;
4533 unsigned int vnsize;
4534 unsigned int vnentries;
4535 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4536 &vnbuf, &vnsize,
4537 &vnentries);
4538
4539 Output_section_data* vndata =
4540 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4541
4542 vnsec->add_output_section_data(vndata);
4543 vnsec->set_link_section(dynstr);
4544 vnsec->set_info(vnentries);
4545
4546 if (odyn != NULL)
4547 {
4548 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4549 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4550 }
4551 }
4552 }
4553 }
4554
4555 // Create the .interp section and PT_INTERP segment.
4556
4557 void
4558 Layout::create_interp(const Target* target)
4559 {
4560 gold_assert(this->interp_segment_ == NULL);
4561
4562 const char* interp = parameters->options().dynamic_linker();
4563 if (interp == NULL)
4564 {
4565 interp = target->dynamic_linker();
4566 gold_assert(interp != NULL);
4567 }
4568
4569 size_t len = strlen(interp) + 1;
4570
4571 Output_section_data* odata = new Output_data_const(interp, len, 1);
4572
4573 Output_section* osec = this->choose_output_section(NULL, ".interp",
4574 elfcpp::SHT_PROGBITS,
4575 elfcpp::SHF_ALLOC,
4576 false, ORDER_INTERP,
4577 false);
4578 if (osec != NULL)
4579 osec->add_output_section_data(odata);
4580 }
4581
4582 // Add dynamic tags for the PLT and the dynamic relocs. This is
4583 // called by the target-specific code. This does nothing if not doing
4584 // a dynamic link.
4585
4586 // USE_REL is true for REL relocs rather than RELA relocs.
4587
4588 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4589
4590 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4591 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4592 // some targets have multiple reloc sections in PLT_REL.
4593
4594 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4595 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4596 // section.
4597
4598 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4599 // executable.
4600
4601 void
4602 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4603 const Output_data* plt_rel,
4604 const Output_data_reloc_generic* dyn_rel,
4605 bool add_debug, bool dynrel_includes_plt)
4606 {
4607 Output_data_dynamic* odyn = this->dynamic_data_;
4608 if (odyn == NULL)
4609 return;
4610
4611 if (plt_got != NULL && plt_got->output_section() != NULL)
4612 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4613
4614 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4615 {
4616 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4617 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4618 odyn->add_constant(elfcpp::DT_PLTREL,
4619 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4620 }
4621
4622 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4623 || (dynrel_includes_plt
4624 && plt_rel != NULL
4625 && plt_rel->output_section() != NULL))
4626 {
4627 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4628 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4629 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4630 (have_dyn_rel
4631 ? dyn_rel->output_section()
4632 : plt_rel->output_section()));
4633 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4634 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4635 odyn->add_section_size(size_tag,
4636 dyn_rel->output_section(),
4637 plt_rel->output_section());
4638 else if (have_dyn_rel)
4639 odyn->add_section_size(size_tag, dyn_rel->output_section());
4640 else
4641 odyn->add_section_size(size_tag, plt_rel->output_section());
4642 const int size = parameters->target().get_size();
4643 elfcpp::DT rel_tag;
4644 int rel_size;
4645 if (use_rel)
4646 {
4647 rel_tag = elfcpp::DT_RELENT;
4648 if (size == 32)
4649 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4650 else if (size == 64)
4651 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4652 else
4653 gold_unreachable();
4654 }
4655 else
4656 {
4657 rel_tag = elfcpp::DT_RELAENT;
4658 if (size == 32)
4659 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4660 else if (size == 64)
4661 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4662 else
4663 gold_unreachable();
4664 }
4665 odyn->add_constant(rel_tag, rel_size);
4666
4667 if (parameters->options().combreloc() && have_dyn_rel)
4668 {
4669 size_t c = dyn_rel->relative_reloc_count();
4670 if (c > 0)
4671 odyn->add_constant((use_rel
4672 ? elfcpp::DT_RELCOUNT
4673 : elfcpp::DT_RELACOUNT),
4674 c);
4675 }
4676 }
4677
4678 if (add_debug && !parameters->options().shared())
4679 {
4680 // The value of the DT_DEBUG tag is filled in by the dynamic
4681 // linker at run time, and used by the debugger.
4682 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4683 }
4684 }
4685
4686 // Finish the .dynamic section and PT_DYNAMIC segment.
4687
4688 void
4689 Layout::finish_dynamic_section(const Input_objects* input_objects,
4690 const Symbol_table* symtab)
4691 {
4692 if (!this->script_options_->saw_phdrs_clause()
4693 && this->dynamic_section_ != NULL)
4694 {
4695 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4696 (elfcpp::PF_R
4697 | elfcpp::PF_W));
4698 oseg->add_output_section_to_nonload(this->dynamic_section_,
4699 elfcpp::PF_R | elfcpp::PF_W);
4700 }
4701
4702 Output_data_dynamic* const odyn = this->dynamic_data_;
4703 if (odyn == NULL)
4704 return;
4705
4706 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4707 p != input_objects->dynobj_end();
4708 ++p)
4709 {
4710 if (!(*p)->is_needed() && (*p)->as_needed())
4711 {
4712 // This dynamic object was linked with --as-needed, but it
4713 // is not needed.
4714 continue;
4715 }
4716
4717 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4718 }
4719
4720 if (parameters->options().shared())
4721 {
4722 const char* soname = parameters->options().soname();
4723 if (soname != NULL)
4724 odyn->add_string(elfcpp::DT_SONAME, soname);
4725 }
4726
4727 Symbol* sym = symtab->lookup(parameters->options().init());
4728 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4729 odyn->add_symbol(elfcpp::DT_INIT, sym);
4730
4731 sym = symtab->lookup(parameters->options().fini());
4732 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4733 odyn->add_symbol(elfcpp::DT_FINI, sym);
4734
4735 // Look for .init_array, .preinit_array and .fini_array by checking
4736 // section types.
4737 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4738 p != this->section_list_.end();
4739 ++p)
4740 switch((*p)->type())
4741 {
4742 case elfcpp::SHT_FINI_ARRAY:
4743 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4744 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4745 break;
4746 case elfcpp::SHT_INIT_ARRAY:
4747 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4748 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4749 break;
4750 case elfcpp::SHT_PREINIT_ARRAY:
4751 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4752 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4753 break;
4754 default:
4755 break;
4756 }
4757
4758 // Add a DT_RPATH entry if needed.
4759 const General_options::Dir_list& rpath(parameters->options().rpath());
4760 if (!rpath.empty())
4761 {
4762 std::string rpath_val;
4763 for (General_options::Dir_list::const_iterator p = rpath.begin();
4764 p != rpath.end();
4765 ++p)
4766 {
4767 if (rpath_val.empty())
4768 rpath_val = p->name();
4769 else
4770 {
4771 // Eliminate duplicates.
4772 General_options::Dir_list::const_iterator q;
4773 for (q = rpath.begin(); q != p; ++q)
4774 if (q->name() == p->name())
4775 break;
4776 if (q == p)
4777 {
4778 rpath_val += ':';
4779 rpath_val += p->name();
4780 }
4781 }
4782 }
4783
4784 if (!parameters->options().enable_new_dtags())
4785 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4786 else
4787 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4788 }
4789
4790 // Look for text segments that have dynamic relocations.
4791 bool have_textrel = false;
4792 if (!this->script_options_->saw_sections_clause())
4793 {
4794 for (Segment_list::const_iterator p = this->segment_list_.begin();
4795 p != this->segment_list_.end();
4796 ++p)
4797 {
4798 if ((*p)->type() == elfcpp::PT_LOAD
4799 && ((*p)->flags() & elfcpp::PF_W) == 0
4800 && (*p)->has_dynamic_reloc())
4801 {
4802 have_textrel = true;
4803 break;
4804 }
4805 }
4806 }
4807 else
4808 {
4809 // We don't know the section -> segment mapping, so we are
4810 // conservative and just look for readonly sections with
4811 // relocations. If those sections wind up in writable segments,
4812 // then we have created an unnecessary DT_TEXTREL entry.
4813 for (Section_list::const_iterator p = this->section_list_.begin();
4814 p != this->section_list_.end();
4815 ++p)
4816 {
4817 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4818 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4819 && (*p)->has_dynamic_reloc())
4820 {
4821 have_textrel = true;
4822 break;
4823 }
4824 }
4825 }
4826
4827 if (parameters->options().filter() != NULL)
4828 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4829 if (parameters->options().any_auxiliary())
4830 {
4831 for (options::String_set::const_iterator p =
4832 parameters->options().auxiliary_begin();
4833 p != parameters->options().auxiliary_end();
4834 ++p)
4835 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4836 }
4837
4838 // Add a DT_FLAGS entry if necessary.
4839 unsigned int flags = 0;
4840 if (have_textrel)
4841 {
4842 // Add a DT_TEXTREL for compatibility with older loaders.
4843 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4844 flags |= elfcpp::DF_TEXTREL;
4845
4846 if (parameters->options().text())
4847 gold_error(_("read-only segment has dynamic relocations"));
4848 else if (parameters->options().warn_shared_textrel()
4849 && parameters->options().shared())
4850 gold_warning(_("shared library text segment is not shareable"));
4851 }
4852 if (parameters->options().shared() && this->has_static_tls())
4853 flags |= elfcpp::DF_STATIC_TLS;
4854 if (parameters->options().origin())
4855 flags |= elfcpp::DF_ORIGIN;
4856 if (parameters->options().Bsymbolic())
4857 {
4858 flags |= elfcpp::DF_SYMBOLIC;
4859 // Add DT_SYMBOLIC for compatibility with older loaders.
4860 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4861 }
4862 if (parameters->options().now())
4863 flags |= elfcpp::DF_BIND_NOW;
4864 if (flags != 0)
4865 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4866
4867 flags = 0;
4868 if (parameters->options().initfirst())
4869 flags |= elfcpp::DF_1_INITFIRST;
4870 if (parameters->options().interpose())
4871 flags |= elfcpp::DF_1_INTERPOSE;
4872 if (parameters->options().loadfltr())
4873 flags |= elfcpp::DF_1_LOADFLTR;
4874 if (parameters->options().nodefaultlib())
4875 flags |= elfcpp::DF_1_NODEFLIB;
4876 if (parameters->options().nodelete())
4877 flags |= elfcpp::DF_1_NODELETE;
4878 if (parameters->options().nodlopen())
4879 flags |= elfcpp::DF_1_NOOPEN;
4880 if (parameters->options().nodump())
4881 flags |= elfcpp::DF_1_NODUMP;
4882 if (!parameters->options().shared())
4883 flags &= ~(elfcpp::DF_1_INITFIRST
4884 | elfcpp::DF_1_NODELETE
4885 | elfcpp::DF_1_NOOPEN);
4886 if (parameters->options().origin())
4887 flags |= elfcpp::DF_1_ORIGIN;
4888 if (parameters->options().now())
4889 flags |= elfcpp::DF_1_NOW;
4890 if (parameters->options().Bgroup())
4891 flags |= elfcpp::DF_1_GROUP;
4892 if (flags != 0)
4893 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4894 }
4895
4896 // Set the size of the _DYNAMIC symbol table to be the size of the
4897 // dynamic data.
4898
4899 void
4900 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4901 {
4902 Output_data_dynamic* const odyn = this->dynamic_data_;
4903 if (odyn == NULL)
4904 return;
4905 odyn->finalize_data_size();
4906 if (this->dynamic_symbol_ == NULL)
4907 return;
4908 off_t data_size = odyn->data_size();
4909 const int size = parameters->target().get_size();
4910 if (size == 32)
4911 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4912 else if (size == 64)
4913 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4914 else
4915 gold_unreachable();
4916 }
4917
4918 // The mapping of input section name prefixes to output section names.
4919 // In some cases one prefix is itself a prefix of another prefix; in
4920 // such a case the longer prefix must come first. These prefixes are
4921 // based on the GNU linker default ELF linker script.
4922
4923 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4924 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4925 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4926 {
4927 MAPPING_INIT(".text.", ".text"),
4928 MAPPING_INIT(".rodata.", ".rodata"),
4929 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4930 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4931 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4932 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4933 MAPPING_INIT(".data.", ".data"),
4934 MAPPING_INIT(".bss.", ".bss"),
4935 MAPPING_INIT(".tdata.", ".tdata"),
4936 MAPPING_INIT(".tbss.", ".tbss"),
4937 MAPPING_INIT(".init_array.", ".init_array"),
4938 MAPPING_INIT(".fini_array.", ".fini_array"),
4939 MAPPING_INIT(".sdata.", ".sdata"),
4940 MAPPING_INIT(".sbss.", ".sbss"),
4941 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4942 // differently depending on whether it is creating a shared library.
4943 MAPPING_INIT(".sdata2.", ".sdata"),
4944 MAPPING_INIT(".sbss2.", ".sbss"),
4945 MAPPING_INIT(".lrodata.", ".lrodata"),
4946 MAPPING_INIT(".ldata.", ".ldata"),
4947 MAPPING_INIT(".lbss.", ".lbss"),
4948 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4949 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4950 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4951 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4952 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4953 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4954 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4955 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4956 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4957 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4958 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4959 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4960 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4961 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4962 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4963 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4964 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4965 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4966 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4967 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4968 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4969 };
4970 #undef MAPPING_INIT
4971 #undef MAPPING_INIT_EXACT
4972
4973 const int Layout::section_name_mapping_count =
4974 (sizeof(Layout::section_name_mapping)
4975 / sizeof(Layout::section_name_mapping[0]));
4976
4977 // Choose the output section name to use given an input section name.
4978 // Set *PLEN to the length of the name. *PLEN is initialized to the
4979 // length of NAME.
4980
4981 const char*
4982 Layout::output_section_name(const Relobj* relobj, const char* name,
4983 size_t* plen)
4984 {
4985 // gcc 4.3 generates the following sorts of section names when it
4986 // needs a section name specific to a function:
4987 // .text.FN
4988 // .rodata.FN
4989 // .sdata2.FN
4990 // .data.FN
4991 // .data.rel.FN
4992 // .data.rel.local.FN
4993 // .data.rel.ro.FN
4994 // .data.rel.ro.local.FN
4995 // .sdata.FN
4996 // .bss.FN
4997 // .sbss.FN
4998 // .tdata.FN
4999 // .tbss.FN
5000
5001 // The GNU linker maps all of those to the part before the .FN,
5002 // except that .data.rel.local.FN is mapped to .data, and
5003 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5004 // beginning with .data.rel.ro.local are grouped together.
5005
5006 // For an anonymous namespace, the string FN can contain a '.'.
5007
5008 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5009 // GNU linker maps to .rodata.
5010
5011 // The .data.rel.ro sections are used with -z relro. The sections
5012 // are recognized by name. We use the same names that the GNU
5013 // linker does for these sections.
5014
5015 // It is hard to handle this in a principled way, so we don't even
5016 // try. We use a table of mappings. If the input section name is
5017 // not found in the table, we simply use it as the output section
5018 // name.
5019
5020 const Section_name_mapping* psnm = section_name_mapping;
5021 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5022 {
5023 if (psnm->fromlen > 0)
5024 {
5025 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5026 {
5027 *plen = psnm->tolen;
5028 return psnm->to;
5029 }
5030 }
5031 else
5032 {
5033 if (strcmp(name, psnm->from) == 0)
5034 {
5035 *plen = psnm->tolen;
5036 return psnm->to;
5037 }
5038 }
5039 }
5040
5041 // As an additional complication, .ctors sections are output in
5042 // either .ctors or .init_array sections, and .dtors sections are
5043 // output in either .dtors or .fini_array sections.
5044 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5045 {
5046 if (parameters->options().ctors_in_init_array())
5047 {
5048 *plen = 11;
5049 return name[1] == 'c' ? ".init_array" : ".fini_array";
5050 }
5051 else
5052 {
5053 *plen = 6;
5054 return name[1] == 'c' ? ".ctors" : ".dtors";
5055 }
5056 }
5057 if (parameters->options().ctors_in_init_array()
5058 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5059 {
5060 // To make .init_array/.fini_array work with gcc we must exclude
5061 // .ctors and .dtors sections from the crtbegin and crtend
5062 // files.
5063 if (relobj == NULL
5064 || (!Layout::match_file_name(relobj, "crtbegin")
5065 && !Layout::match_file_name(relobj, "crtend")))
5066 {
5067 *plen = 11;
5068 return name[1] == 'c' ? ".init_array" : ".fini_array";
5069 }
5070 }
5071
5072 return name;
5073 }
5074
5075 // Return true if RELOBJ is an input file whose base name matches
5076 // FILE_NAME. The base name must have an extension of ".o", and must
5077 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5078 // to match crtbegin.o as well as crtbeginS.o without getting confused
5079 // by other possibilities. Overall matching the file name this way is
5080 // a dreadful hack, but the GNU linker does it in order to better
5081 // support gcc, and we need to be compatible.
5082
5083 bool
5084 Layout::match_file_name(const Relobj* relobj, const char* match)
5085 {
5086 const std::string& file_name(relobj->name());
5087 const char* base_name = lbasename(file_name.c_str());
5088 size_t match_len = strlen(match);
5089 if (strncmp(base_name, match, match_len) != 0)
5090 return false;
5091 size_t base_len = strlen(base_name);
5092 if (base_len != match_len + 2 && base_len != match_len + 3)
5093 return false;
5094 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5095 }
5096
5097 // Check if a comdat group or .gnu.linkonce section with the given
5098 // NAME is selected for the link. If there is already a section,
5099 // *KEPT_SECTION is set to point to the existing section and the
5100 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5101 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5102 // *KEPT_SECTION is set to the internal copy and the function returns
5103 // true.
5104
5105 bool
5106 Layout::find_or_add_kept_section(const std::string& name,
5107 Relobj* object,
5108 unsigned int shndx,
5109 bool is_comdat,
5110 bool is_group_name,
5111 Kept_section** kept_section)
5112 {
5113 // It's normal to see a couple of entries here, for the x86 thunk
5114 // sections. If we see more than a few, we're linking a C++
5115 // program, and we resize to get more space to minimize rehashing.
5116 if (this->signatures_.size() > 4
5117 && !this->resized_signatures_)
5118 {
5119 reserve_unordered_map(&this->signatures_,
5120 this->number_of_input_files_ * 64);
5121 this->resized_signatures_ = true;
5122 }
5123
5124 Kept_section candidate;
5125 std::pair<Signatures::iterator, bool> ins =
5126 this->signatures_.insert(std::make_pair(name, candidate));
5127
5128 if (kept_section != NULL)
5129 *kept_section = &ins.first->second;
5130 if (ins.second)
5131 {
5132 // This is the first time we've seen this signature.
5133 ins.first->second.set_object(object);
5134 ins.first->second.set_shndx(shndx);
5135 if (is_comdat)
5136 ins.first->second.set_is_comdat();
5137 if (is_group_name)
5138 ins.first->second.set_is_group_name();
5139 return true;
5140 }
5141
5142 // We have already seen this signature.
5143
5144 if (ins.first->second.is_group_name())
5145 {
5146 // We've already seen a real section group with this signature.
5147 // If the kept group is from a plugin object, and we're in the
5148 // replacement phase, accept the new one as a replacement.
5149 if (ins.first->second.object() == NULL
5150 && parameters->options().plugins()->in_replacement_phase())
5151 {
5152 ins.first->second.set_object(object);
5153 ins.first->second.set_shndx(shndx);
5154 return true;
5155 }
5156 return false;
5157 }
5158 else if (is_group_name)
5159 {
5160 // This is a real section group, and we've already seen a
5161 // linkonce section with this signature. Record that we've seen
5162 // a section group, and don't include this section group.
5163 ins.first->second.set_is_group_name();
5164 return false;
5165 }
5166 else
5167 {
5168 // We've already seen a linkonce section and this is a linkonce
5169 // section. These don't block each other--this may be the same
5170 // symbol name with different section types.
5171 return true;
5172 }
5173 }
5174
5175 // Store the allocated sections into the section list.
5176
5177 void
5178 Layout::get_allocated_sections(Section_list* section_list) const
5179 {
5180 for (Section_list::const_iterator p = this->section_list_.begin();
5181 p != this->section_list_.end();
5182 ++p)
5183 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5184 section_list->push_back(*p);
5185 }
5186
5187 // Store the executable sections into the section list.
5188
5189 void
5190 Layout::get_executable_sections(Section_list* section_list) const
5191 {
5192 for (Section_list::const_iterator p = this->section_list_.begin();
5193 p != this->section_list_.end();
5194 ++p)
5195 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5196 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5197 section_list->push_back(*p);
5198 }
5199
5200 // Create an output segment.
5201
5202 Output_segment*
5203 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5204 {
5205 gold_assert(!parameters->options().relocatable());
5206 Output_segment* oseg = new Output_segment(type, flags);
5207 this->segment_list_.push_back(oseg);
5208
5209 if (type == elfcpp::PT_TLS)
5210 this->tls_segment_ = oseg;
5211 else if (type == elfcpp::PT_GNU_RELRO)
5212 this->relro_segment_ = oseg;
5213 else if (type == elfcpp::PT_INTERP)
5214 this->interp_segment_ = oseg;
5215
5216 return oseg;
5217 }
5218
5219 // Return the file offset of the normal symbol table.
5220
5221 off_t
5222 Layout::symtab_section_offset() const
5223 {
5224 if (this->symtab_section_ != NULL)
5225 return this->symtab_section_->offset();
5226 return 0;
5227 }
5228
5229 // Return the section index of the normal symbol table. It may have
5230 // been stripped by the -s/--strip-all option.
5231
5232 unsigned int
5233 Layout::symtab_section_shndx() const
5234 {
5235 if (this->symtab_section_ != NULL)
5236 return this->symtab_section_->out_shndx();
5237 return 0;
5238 }
5239
5240 // Write out the Output_sections. Most won't have anything to write,
5241 // since most of the data will come from input sections which are
5242 // handled elsewhere. But some Output_sections do have Output_data.
5243
5244 void
5245 Layout::write_output_sections(Output_file* of) const
5246 {
5247 for (Section_list::const_iterator p = this->section_list_.begin();
5248 p != this->section_list_.end();
5249 ++p)
5250 {
5251 if (!(*p)->after_input_sections())
5252 (*p)->write(of);
5253 }
5254 }
5255
5256 // Write out data not associated with a section or the symbol table.
5257
5258 void
5259 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5260 {
5261 if (!parameters->options().strip_all())
5262 {
5263 const Output_section* symtab_section = this->symtab_section_;
5264 for (Section_list::const_iterator p = this->section_list_.begin();
5265 p != this->section_list_.end();
5266 ++p)
5267 {
5268 if ((*p)->needs_symtab_index())
5269 {
5270 gold_assert(symtab_section != NULL);
5271 unsigned int index = (*p)->symtab_index();
5272 gold_assert(index > 0 && index != -1U);
5273 off_t off = (symtab_section->offset()
5274 + index * symtab_section->entsize());
5275 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5276 }
5277 }
5278 }
5279
5280 const Output_section* dynsym_section = this->dynsym_section_;
5281 for (Section_list::const_iterator p = this->section_list_.begin();
5282 p != this->section_list_.end();
5283 ++p)
5284 {
5285 if ((*p)->needs_dynsym_index())
5286 {
5287 gold_assert(dynsym_section != NULL);
5288 unsigned int index = (*p)->dynsym_index();
5289 gold_assert(index > 0 && index != -1U);
5290 off_t off = (dynsym_section->offset()
5291 + index * dynsym_section->entsize());
5292 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5293 }
5294 }
5295
5296 // Write out the Output_data which are not in an Output_section.
5297 for (Data_list::const_iterator p = this->special_output_list_.begin();
5298 p != this->special_output_list_.end();
5299 ++p)
5300 (*p)->write(of);
5301
5302 // Write out the Output_data which are not in an Output_section
5303 // and are regenerated in each iteration of relaxation.
5304 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5305 p != this->relax_output_list_.end();
5306 ++p)
5307 (*p)->write(of);
5308 }
5309
5310 // Write out the Output_sections which can only be written after the
5311 // input sections are complete.
5312
5313 void
5314 Layout::write_sections_after_input_sections(Output_file* of)
5315 {
5316 // Determine the final section offsets, and thus the final output
5317 // file size. Note we finalize the .shstrab last, to allow the
5318 // after_input_section sections to modify their section-names before
5319 // writing.
5320 if (this->any_postprocessing_sections_)
5321 {
5322 off_t off = this->output_file_size_;
5323 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5324
5325 // Now that we've finalized the names, we can finalize the shstrab.
5326 off =
5327 this->set_section_offsets(off,
5328 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5329
5330 if (off > this->output_file_size_)
5331 {
5332 of->resize(off);
5333 this->output_file_size_ = off;
5334 }
5335 }
5336
5337 for (Section_list::const_iterator p = this->section_list_.begin();
5338 p != this->section_list_.end();
5339 ++p)
5340 {
5341 if ((*p)->after_input_sections())
5342 (*p)->write(of);
5343 }
5344
5345 this->section_headers_->write(of);
5346 }
5347
5348 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5349 // or as a "tree" where each chunk of the string is hashed and then those
5350 // hashes are put into a (much smaller) string which is hashed with sha1.
5351 // We compute a checksum over the entire file because that is simplest.
5352
5353 Task_token*
5354 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5355 Output_file* of)
5356 {
5357 const size_t filesize = (this->output_file_size() <= 0 ? 0
5358 : static_cast<size_t>(this->output_file_size()));
5359 if (this->build_id_note_ != NULL
5360 && strcmp(parameters->options().build_id(), "tree") == 0
5361 && parameters->options().build_id_chunk_size_for_treehash() > 0
5362 && filesize > 0
5363 && (filesize >=
5364 parameters->options().build_id_min_file_size_for_treehash()))
5365 {
5366 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5367 const size_t chunk_size =
5368 parameters->options().build_id_chunk_size_for_treehash();
5369 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5370 Task_token* post_hash_tasks_blocker = new Task_token(true);
5371 post_hash_tasks_blocker->add_blockers(num_hashes);
5372 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5373 const unsigned char* src = of->get_input_view(0, filesize);
5374 this->input_view_ = src;
5375 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5376 this->array_of_hashes_ = dst;
5377 for (size_t i = 0, src_offset = 0; i < num_hashes;
5378 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5379 {
5380 size_t size = std::min(chunk_size, filesize - src_offset);
5381 workqueue->queue(new Hash_task(src + src_offset,
5382 size,
5383 dst,
5384 build_id_blocker,
5385 post_hash_tasks_blocker));
5386 }
5387 return post_hash_tasks_blocker;
5388 }
5389 return build_id_blocker;
5390 }
5391
5392 // If a tree-style build ID was requested, the parallel part of that computation
5393 // is already done, and the final hash-of-hashes is computed here. For other
5394 // types of build IDs, all the work is done here.
5395
5396 void
5397 Layout::write_build_id(Output_file* of) const
5398 {
5399 if (this->build_id_note_ == NULL)
5400 return;
5401
5402 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5403 this->build_id_note_->data_size());
5404
5405 if (this->array_of_hashes_ == NULL)
5406 {
5407 const size_t output_file_size = this->output_file_size();
5408 const unsigned char* iv = of->get_input_view(0, output_file_size);
5409 const char* style = parameters->options().build_id();
5410
5411 // If we get here with style == "tree" then the output must be
5412 // too small for chunking, and we use SHA-1 in that case.
5413 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5414 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5415 else if (strcmp(style, "md5") == 0)
5416 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5417 else
5418 gold_unreachable();
5419
5420 of->free_input_view(0, output_file_size, iv);
5421 }
5422 else
5423 {
5424 // Non-overlapping substrings of the output file have been hashed.
5425 // Compute SHA-1 hash of the hashes.
5426 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5427 this->size_of_array_of_hashes_, ov);
5428 delete[] this->array_of_hashes_;
5429 of->free_input_view(0, this->output_file_size(), this->input_view_);
5430 }
5431
5432 of->write_output_view(this->build_id_note_->offset(),
5433 this->build_id_note_->data_size(),
5434 ov);
5435 }
5436
5437 // Write out a binary file. This is called after the link is
5438 // complete. IN is the temporary output file we used to generate the
5439 // ELF code. We simply walk through the segments, read them from
5440 // their file offset in IN, and write them to their load address in
5441 // the output file. FIXME: with a bit more work, we could support
5442 // S-records and/or Intel hex format here.
5443
5444 void
5445 Layout::write_binary(Output_file* in) const
5446 {
5447 gold_assert(parameters->options().oformat_enum()
5448 == General_options::OBJECT_FORMAT_BINARY);
5449
5450 // Get the size of the binary file.
5451 uint64_t max_load_address = 0;
5452 for (Segment_list::const_iterator p = this->segment_list_.begin();
5453 p != this->segment_list_.end();
5454 ++p)
5455 {
5456 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5457 {
5458 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5459 if (max_paddr > max_load_address)
5460 max_load_address = max_paddr;
5461 }
5462 }
5463
5464 Output_file out(parameters->options().output_file_name());
5465 out.open(max_load_address);
5466
5467 for (Segment_list::const_iterator p = this->segment_list_.begin();
5468 p != this->segment_list_.end();
5469 ++p)
5470 {
5471 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5472 {
5473 const unsigned char* vin = in->get_input_view((*p)->offset(),
5474 (*p)->filesz());
5475 unsigned char* vout = out.get_output_view((*p)->paddr(),
5476 (*p)->filesz());
5477 memcpy(vout, vin, (*p)->filesz());
5478 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5479 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5480 }
5481 }
5482
5483 out.close();
5484 }
5485
5486 // Print the output sections to the map file.
5487
5488 void
5489 Layout::print_to_mapfile(Mapfile* mapfile) const
5490 {
5491 for (Segment_list::const_iterator p = this->segment_list_.begin();
5492 p != this->segment_list_.end();
5493 ++p)
5494 (*p)->print_sections_to_mapfile(mapfile);
5495 }
5496
5497 // Print statistical information to stderr. This is used for --stats.
5498
5499 void
5500 Layout::print_stats() const
5501 {
5502 this->namepool_.print_stats("section name pool");
5503 this->sympool_.print_stats("output symbol name pool");
5504 this->dynpool_.print_stats("dynamic name pool");
5505
5506 for (Section_list::const_iterator p = this->section_list_.begin();
5507 p != this->section_list_.end();
5508 ++p)
5509 (*p)->print_merge_stats();
5510 }
5511
5512 // Write_sections_task methods.
5513
5514 // We can always run this task.
5515
5516 Task_token*
5517 Write_sections_task::is_runnable()
5518 {
5519 return NULL;
5520 }
5521
5522 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5523 // when finished.
5524
5525 void
5526 Write_sections_task::locks(Task_locker* tl)
5527 {
5528 tl->add(this, this->output_sections_blocker_);
5529 tl->add(this, this->final_blocker_);
5530 }
5531
5532 // Run the task--write out the data.
5533
5534 void
5535 Write_sections_task::run(Workqueue*)
5536 {
5537 this->layout_->write_output_sections(this->of_);
5538 }
5539
5540 // Write_data_task methods.
5541
5542 // We can always run this task.
5543
5544 Task_token*
5545 Write_data_task::is_runnable()
5546 {
5547 return NULL;
5548 }
5549
5550 // We need to unlock FINAL_BLOCKER when finished.
5551
5552 void
5553 Write_data_task::locks(Task_locker* tl)
5554 {
5555 tl->add(this, this->final_blocker_);
5556 }
5557
5558 // Run the task--write out the data.
5559
5560 void
5561 Write_data_task::run(Workqueue*)
5562 {
5563 this->layout_->write_data(this->symtab_, this->of_);
5564 }
5565
5566 // Write_symbols_task methods.
5567
5568 // We can always run this task.
5569
5570 Task_token*
5571 Write_symbols_task::is_runnable()
5572 {
5573 return NULL;
5574 }
5575
5576 // We need to unlock FINAL_BLOCKER when finished.
5577
5578 void
5579 Write_symbols_task::locks(Task_locker* tl)
5580 {
5581 tl->add(this, this->final_blocker_);
5582 }
5583
5584 // Run the task--write out the symbols.
5585
5586 void
5587 Write_symbols_task::run(Workqueue*)
5588 {
5589 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5590 this->layout_->symtab_xindex(),
5591 this->layout_->dynsym_xindex(), this->of_);
5592 }
5593
5594 // Write_after_input_sections_task methods.
5595
5596 // We can only run this task after the input sections have completed.
5597
5598 Task_token*
5599 Write_after_input_sections_task::is_runnable()
5600 {
5601 if (this->input_sections_blocker_->is_blocked())
5602 return this->input_sections_blocker_;
5603 return NULL;
5604 }
5605
5606 // We need to unlock FINAL_BLOCKER when finished.
5607
5608 void
5609 Write_after_input_sections_task::locks(Task_locker* tl)
5610 {
5611 tl->add(this, this->final_blocker_);
5612 }
5613
5614 // Run the task.
5615
5616 void
5617 Write_after_input_sections_task::run(Workqueue*)
5618 {
5619 this->layout_->write_sections_after_input_sections(this->of_);
5620 }
5621
5622 // Close_task_runner methods.
5623
5624 // Finish up the build ID computation, if necessary, and write a binary file,
5625 // if necessary. Then close the output file.
5626
5627 void
5628 Close_task_runner::run(Workqueue*, const Task*)
5629 {
5630 // At this point the multi-threaded part of the build ID computation,
5631 // if any, is done. See queue_build_id_tasks().
5632 this->layout_->write_build_id(this->of_);
5633
5634 // If we've been asked to create a binary file, we do so here.
5635 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5636 this->layout_->write_binary(this->of_);
5637
5638 this->of_->close();
5639 }
5640
5641 // Instantiate the templates we need. We could use the configure
5642 // script to restrict this to only the ones for implemented targets.
5643
5644 #ifdef HAVE_TARGET_32_LITTLE
5645 template
5646 Output_section*
5647 Layout::init_fixed_output_section<32, false>(
5648 const char* name,
5649 elfcpp::Shdr<32, false>& shdr);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_32_BIG
5653 template
5654 Output_section*
5655 Layout::init_fixed_output_section<32, true>(
5656 const char* name,
5657 elfcpp::Shdr<32, true>& shdr);
5658 #endif
5659
5660 #ifdef HAVE_TARGET_64_LITTLE
5661 template
5662 Output_section*
5663 Layout::init_fixed_output_section<64, false>(
5664 const char* name,
5665 elfcpp::Shdr<64, false>& shdr);
5666 #endif
5667
5668 #ifdef HAVE_TARGET_64_BIG
5669 template
5670 Output_section*
5671 Layout::init_fixed_output_section<64, true>(
5672 const char* name,
5673 elfcpp::Shdr<64, true>& shdr);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_LITTLE
5677 template
5678 Output_section*
5679 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5680 unsigned int shndx,
5681 const char* name,
5682 const elfcpp::Shdr<32, false>& shdr,
5683 unsigned int, unsigned int, off_t*);
5684 #endif
5685
5686 #ifdef HAVE_TARGET_32_BIG
5687 template
5688 Output_section*
5689 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5690 unsigned int shndx,
5691 const char* name,
5692 const elfcpp::Shdr<32, true>& shdr,
5693 unsigned int, unsigned int, off_t*);
5694 #endif
5695
5696 #ifdef HAVE_TARGET_64_LITTLE
5697 template
5698 Output_section*
5699 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5700 unsigned int shndx,
5701 const char* name,
5702 const elfcpp::Shdr<64, false>& shdr,
5703 unsigned int, unsigned int, off_t*);
5704 #endif
5705
5706 #ifdef HAVE_TARGET_64_BIG
5707 template
5708 Output_section*
5709 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5710 unsigned int shndx,
5711 const char* name,
5712 const elfcpp::Shdr<64, true>& shdr,
5713 unsigned int, unsigned int, off_t*);
5714 #endif
5715
5716 #ifdef HAVE_TARGET_32_LITTLE
5717 template
5718 Output_section*
5719 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5720 unsigned int reloc_shndx,
5721 const elfcpp::Shdr<32, false>& shdr,
5722 Output_section* data_section,
5723 Relocatable_relocs* rr);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_32_BIG
5727 template
5728 Output_section*
5729 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5730 unsigned int reloc_shndx,
5731 const elfcpp::Shdr<32, true>& shdr,
5732 Output_section* data_section,
5733 Relocatable_relocs* rr);
5734 #endif
5735
5736 #ifdef HAVE_TARGET_64_LITTLE
5737 template
5738 Output_section*
5739 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5740 unsigned int reloc_shndx,
5741 const elfcpp::Shdr<64, false>& shdr,
5742 Output_section* data_section,
5743 Relocatable_relocs* rr);
5744 #endif
5745
5746 #ifdef HAVE_TARGET_64_BIG
5747 template
5748 Output_section*
5749 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5750 unsigned int reloc_shndx,
5751 const elfcpp::Shdr<64, true>& shdr,
5752 Output_section* data_section,
5753 Relocatable_relocs* rr);
5754 #endif
5755
5756 #ifdef HAVE_TARGET_32_LITTLE
5757 template
5758 void
5759 Layout::layout_group<32, false>(Symbol_table* symtab,
5760 Sized_relobj_file<32, false>* object,
5761 unsigned int,
5762 const char* group_section_name,
5763 const char* signature,
5764 const elfcpp::Shdr<32, false>& shdr,
5765 elfcpp::Elf_Word flags,
5766 std::vector<unsigned int>* shndxes);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_32_BIG
5770 template
5771 void
5772 Layout::layout_group<32, true>(Symbol_table* symtab,
5773 Sized_relobj_file<32, true>* object,
5774 unsigned int,
5775 const char* group_section_name,
5776 const char* signature,
5777 const elfcpp::Shdr<32, true>& shdr,
5778 elfcpp::Elf_Word flags,
5779 std::vector<unsigned int>* shndxes);
5780 #endif
5781
5782 #ifdef HAVE_TARGET_64_LITTLE
5783 template
5784 void
5785 Layout::layout_group<64, false>(Symbol_table* symtab,
5786 Sized_relobj_file<64, false>* object,
5787 unsigned int,
5788 const char* group_section_name,
5789 const char* signature,
5790 const elfcpp::Shdr<64, false>& shdr,
5791 elfcpp::Elf_Word flags,
5792 std::vector<unsigned int>* shndxes);
5793 #endif
5794
5795 #ifdef HAVE_TARGET_64_BIG
5796 template
5797 void
5798 Layout::layout_group<64, true>(Symbol_table* symtab,
5799 Sized_relobj_file<64, true>* object,
5800 unsigned int,
5801 const char* group_section_name,
5802 const char* signature,
5803 const elfcpp::Shdr<64, true>& shdr,
5804 elfcpp::Elf_Word flags,
5805 std::vector<unsigned int>* shndxes);
5806 #endif
5807
5808 #ifdef HAVE_TARGET_32_LITTLE
5809 template
5810 Output_section*
5811 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5812 const unsigned char* symbols,
5813 off_t symbols_size,
5814 const unsigned char* symbol_names,
5815 off_t symbol_names_size,
5816 unsigned int shndx,
5817 const elfcpp::Shdr<32, false>& shdr,
5818 unsigned int reloc_shndx,
5819 unsigned int reloc_type,
5820 off_t* off);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_32_BIG
5824 template
5825 Output_section*
5826 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5827 const unsigned char* symbols,
5828 off_t symbols_size,
5829 const unsigned char* symbol_names,
5830 off_t symbol_names_size,
5831 unsigned int shndx,
5832 const elfcpp::Shdr<32, true>& shdr,
5833 unsigned int reloc_shndx,
5834 unsigned int reloc_type,
5835 off_t* off);
5836 #endif
5837
5838 #ifdef HAVE_TARGET_64_LITTLE
5839 template
5840 Output_section*
5841 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5842 const unsigned char* symbols,
5843 off_t symbols_size,
5844 const unsigned char* symbol_names,
5845 off_t symbol_names_size,
5846 unsigned int shndx,
5847 const elfcpp::Shdr<64, false>& shdr,
5848 unsigned int reloc_shndx,
5849 unsigned int reloc_type,
5850 off_t* off);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_BIG
5854 template
5855 Output_section*
5856 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5857 const unsigned char* symbols,
5858 off_t symbols_size,
5859 const unsigned char* symbol_names,
5860 off_t symbol_names_size,
5861 unsigned int shndx,
5862 const elfcpp::Shdr<64, true>& shdr,
5863 unsigned int reloc_shndx,
5864 unsigned int reloc_type,
5865 off_t* off);
5866 #endif
5867
5868 #ifdef HAVE_TARGET_32_LITTLE
5869 template
5870 void
5871 Layout::add_to_gdb_index(bool is_type_unit,
5872 Sized_relobj<32, false>* object,
5873 const unsigned char* symbols,
5874 off_t symbols_size,
5875 unsigned int shndx,
5876 unsigned int reloc_shndx,
5877 unsigned int reloc_type);
5878 #endif
5879
5880 #ifdef HAVE_TARGET_32_BIG
5881 template
5882 void
5883 Layout::add_to_gdb_index(bool is_type_unit,
5884 Sized_relobj<32, true>* object,
5885 const unsigned char* symbols,
5886 off_t symbols_size,
5887 unsigned int shndx,
5888 unsigned int reloc_shndx,
5889 unsigned int reloc_type);
5890 #endif
5891
5892 #ifdef HAVE_TARGET_64_LITTLE
5893 template
5894 void
5895 Layout::add_to_gdb_index(bool is_type_unit,
5896 Sized_relobj<64, false>* object,
5897 const unsigned char* symbols,
5898 off_t symbols_size,
5899 unsigned int shndx,
5900 unsigned int reloc_shndx,
5901 unsigned int reloc_type);
5902 #endif
5903
5904 #ifdef HAVE_TARGET_64_BIG
5905 template
5906 void
5907 Layout::add_to_gdb_index(bool is_type_unit,
5908 Sized_relobj<64, true>* object,
5909 const unsigned char* symbols,
5910 off_t symbols_size,
5911 unsigned int shndx,
5912 unsigned int reloc_shndx,
5913 unsigned int reloc_type);
5914 #endif
5915
5916 } // End namespace gold.
This page took 0.184862 seconds and 4 git commands to generate.