gdb/testsuite/
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 incremental_inputs_(NULL),
412 record_output_section_data_from_script_(false),
413 script_output_section_data_list_(),
414 segment_states_(NULL),
415 relaxation_debug_check_(NULL),
416 section_order_map_(),
417 input_section_position_(),
418 input_section_glob_(),
419 incremental_base_(NULL),
420 free_list_()
421 {
422 // Make space for more than enough segments for a typical file.
423 // This is just for efficiency--it's OK if we wind up needing more.
424 this->segment_list_.reserve(12);
425
426 // We expect two unattached Output_data objects: the file header and
427 // the segment headers.
428 this->special_output_list_.reserve(2);
429
430 // Initialize structure needed for an incremental build.
431 if (parameters->incremental())
432 this->incremental_inputs_ = new Incremental_inputs;
433
434 // The section name pool is worth optimizing in all cases, because
435 // it is small, but there are often overlaps due to .rel sections.
436 this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444 this->incremental_base_ = base;
445 this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453 return k.first + k.second.first + k.second.second;
454 }
455
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460
461 static const char* gdb_sections[] =
462 {
463 "abbrev",
464 "addr", // Fission extension
465 // "aranges", // not used by gdb as of 7.4
466 "frame",
467 "info",
468 "types",
469 "line",
470 "loc",
471 "macinfo",
472 "macro",
473 // "pubnames", // not used by gdb as of 7.4
474 // "pubtypes", // not used by gdb as of 7.4
475 "ranges",
476 "str",
477 };
478
479 // This is the minimum set of sections needed for line numbers.
480
481 static const char* lines_only_debug_sections[] =
482 {
483 "abbrev",
484 // "addr", // Fission extension
485 // "aranges", // not used by gdb as of 7.4
486 // "frame",
487 "info",
488 // "types",
489 "line",
490 // "loc",
491 // "macinfo",
492 // "macro",
493 // "pubnames", // not used by gdb as of 7.4
494 // "pubtypes", // not used by gdb as of 7.4
495 // "ranges",
496 "str",
497 };
498
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501
502 static const char* gdb_fast_lookup_sections[] =
503 {
504 "aranges",
505 "pubnames",
506 "pubtypes",
507 };
508
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516 // We can do this faster: binary search or a hashtable. But why bother?
517 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518 if (strcmp(suffix, gdb_sections[i]) == 0)
519 return true;
520 return false;
521 }
522
523 // Returns whether the given section is needed for lines-only debugging.
524
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528 // We can do this faster: binary search or a hashtable. But why bother?
529 for (size_t i = 0;
530 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531 ++i)
532 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533 return true;
534 return false;
535 }
536
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543 // We can do this faster: binary search or a hashtable. But why bother?
544 for (size_t i = 0;
545 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546 ++i)
547 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548 return true;
549 return false;
550 }
551
552 // Sometimes we compress sections. This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections. This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564 return (is_prefix_of(".debug", secname));
565 }
566
567 // We may see compressed debug sections in input files. Return TRUE
568 // if this is the name of a compressed debug section.
569
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573 return (is_prefix_of(".zdebug", secname));
574 }
575
576 // Whether to include this section in the link.
577
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581 const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584 return false;
585
586 switch (shdr.get_sh_type())
587 {
588 case elfcpp::SHT_NULL:
589 case elfcpp::SHT_SYMTAB:
590 case elfcpp::SHT_DYNSYM:
591 case elfcpp::SHT_HASH:
592 case elfcpp::SHT_DYNAMIC:
593 case elfcpp::SHT_SYMTAB_SHNDX:
594 return false;
595
596 case elfcpp::SHT_STRTAB:
597 // Discard the sections which have special meanings in the ELF
598 // ABI. Keep others (e.g., .stabstr). We could also do this by
599 // checking the sh_link fields of the appropriate sections.
600 return (strcmp(name, ".dynstr") != 0
601 && strcmp(name, ".strtab") != 0
602 && strcmp(name, ".shstrtab") != 0);
603
604 case elfcpp::SHT_RELA:
605 case elfcpp::SHT_REL:
606 case elfcpp::SHT_GROUP:
607 // If we are emitting relocations these should be handled
608 // elsewhere.
609 gold_assert(!parameters->options().relocatable()
610 && !parameters->options().emit_relocs());
611 return false;
612
613 case elfcpp::SHT_PROGBITS:
614 if (parameters->options().strip_debug()
615 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
616 {
617 if (is_debug_info_section(name))
618 return false;
619 }
620 if (parameters->options().strip_debug_non_line()
621 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622 {
623 // Debugging sections can only be recognized by name.
624 if (is_prefix_of(".debug_", name)
625 && !is_lines_only_debug_section(name + 7))
626 return false;
627 if (is_prefix_of(".zdebug_", name)
628 && !is_lines_only_debug_section(name + 8))
629 return false;
630 }
631 if (parameters->options().strip_debug_gdb()
632 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
633 {
634 // Debugging sections can only be recognized by name.
635 if (is_prefix_of(".debug_", name)
636 && !is_gdb_debug_section(name + 7))
637 return false;
638 if (is_prefix_of(".zdebug_", name)
639 && !is_gdb_debug_section(name + 8))
640 return false;
641 }
642 if (parameters->options().gdb_index()
643 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
644 {
645 // When building .gdb_index, we can strip .debug_pubnames,
646 // .debug_pubtypes, and .debug_aranges sections.
647 if (is_prefix_of(".debug_", name)
648 && is_gdb_fast_lookup_section(name + 7))
649 return false;
650 if (is_prefix_of(".zdebug_", name)
651 && is_gdb_fast_lookup_section(name + 8))
652 return false;
653 }
654 if (parameters->options().strip_lto_sections()
655 && !parameters->options().relocatable()
656 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
657 {
658 // Ignore LTO sections containing intermediate code.
659 if (is_prefix_of(".gnu.lto_", name))
660 return false;
661 }
662 // The GNU linker strips .gnu_debuglink sections, so we do too.
663 // This is a feature used to keep debugging information in
664 // separate files.
665 if (strcmp(name, ".gnu_debuglink") == 0)
666 return false;
667 return true;
668
669 default:
670 return true;
671 }
672 }
673
674 // Return an output section named NAME, or NULL if there is none.
675
676 Output_section*
677 Layout::find_output_section(const char* name) const
678 {
679 for (Section_list::const_iterator p = this->section_list_.begin();
680 p != this->section_list_.end();
681 ++p)
682 if (strcmp((*p)->name(), name) == 0)
683 return *p;
684 return NULL;
685 }
686
687 // Return an output segment of type TYPE, with segment flags SET set
688 // and segment flags CLEAR clear. Return NULL if there is none.
689
690 Output_segment*
691 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
692 elfcpp::Elf_Word clear) const
693 {
694 for (Segment_list::const_iterator p = this->segment_list_.begin();
695 p != this->segment_list_.end();
696 ++p)
697 if (static_cast<elfcpp::PT>((*p)->type()) == type
698 && ((*p)->flags() & set) == set
699 && ((*p)->flags() & clear) == 0)
700 return *p;
701 return NULL;
702 }
703
704 // When we put a .ctors or .dtors section with more than one word into
705 // a .init_array or .fini_array section, we need to reverse the words
706 // in the .ctors/.dtors section. This is because .init_array executes
707 // constructors front to back, where .ctors executes them back to
708 // front, and vice-versa for .fini_array/.dtors. Although we do want
709 // to remap .ctors/.dtors into .init_array/.fini_array because it can
710 // be more efficient, we don't want to change the order in which
711 // constructors/destructors are run. This set just keeps track of
712 // these sections which need to be reversed. It is only changed by
713 // Layout::layout. It should be a private member of Layout, but that
714 // would require layout.h to #include object.h to get the definition
715 // of Section_id.
716 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
717
718 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
719 // .init_array/.fini_array section.
720
721 bool
722 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
723 {
724 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
725 != ctors_sections_in_init_array.end());
726 }
727
728 // Return the output section to use for section NAME with type TYPE
729 // and section flags FLAGS. NAME must be canonicalized in the string
730 // pool, and NAME_KEY is the key. ORDER is where this should appear
731 // in the output sections. IS_RELRO is true for a relro section.
732
733 Output_section*
734 Layout::get_output_section(const char* name, Stringpool::Key name_key,
735 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736 Output_section_order order, bool is_relro)
737 {
738 elfcpp::Elf_Word lookup_type = type;
739
740 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
741 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
742 // .init_array, .fini_array, and .preinit_array sections by name
743 // whatever their type in the input file. We do this because the
744 // types are not always right in the input files.
745 if (lookup_type == elfcpp::SHT_INIT_ARRAY
746 || lookup_type == elfcpp::SHT_FINI_ARRAY
747 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
748 lookup_type = elfcpp::SHT_PROGBITS;
749
750 elfcpp::Elf_Xword lookup_flags = flags;
751
752 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
753 // read-write with read-only sections. Some other ELF linkers do
754 // not do this. FIXME: Perhaps there should be an option
755 // controlling this.
756 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
757
758 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
759 const std::pair<Key, Output_section*> v(key, NULL);
760 std::pair<Section_name_map::iterator, bool> ins(
761 this->section_name_map_.insert(v));
762
763 if (!ins.second)
764 return ins.first->second;
765 else
766 {
767 // This is the first time we've seen this name/type/flags
768 // combination. For compatibility with the GNU linker, we
769 // combine sections with contents and zero flags with sections
770 // with non-zero flags. This is a workaround for cases where
771 // assembler code forgets to set section flags. FIXME: Perhaps
772 // there should be an option to control this.
773 Output_section* os = NULL;
774
775 if (lookup_type == elfcpp::SHT_PROGBITS)
776 {
777 if (flags == 0)
778 {
779 Output_section* same_name = this->find_output_section(name);
780 if (same_name != NULL
781 && (same_name->type() == elfcpp::SHT_PROGBITS
782 || same_name->type() == elfcpp::SHT_INIT_ARRAY
783 || same_name->type() == elfcpp::SHT_FINI_ARRAY
784 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
785 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
786 os = same_name;
787 }
788 else if ((flags & elfcpp::SHF_TLS) == 0)
789 {
790 elfcpp::Elf_Xword zero_flags = 0;
791 const Key zero_key(name_key, std::make_pair(lookup_type,
792 zero_flags));
793 Section_name_map::iterator p =
794 this->section_name_map_.find(zero_key);
795 if (p != this->section_name_map_.end())
796 os = p->second;
797 }
798 }
799
800 if (os == NULL)
801 os = this->make_output_section(name, type, flags, order, is_relro);
802
803 ins.first->second = os;
804 return os;
805 }
806 }
807
808 // Pick the output section to use for section NAME, in input file
809 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
810 // linker created section. IS_INPUT_SECTION is true if we are
811 // choosing an output section for an input section found in a input
812 // file. ORDER is where this section should appear in the output
813 // sections. IS_RELRO is true for a relro section. This will return
814 // NULL if the input section should be discarded.
815
816 Output_section*
817 Layout::choose_output_section(const Relobj* relobj, const char* name,
818 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819 bool is_input_section, Output_section_order order,
820 bool is_relro)
821 {
822 // We should not see any input sections after we have attached
823 // sections to segments.
824 gold_assert(!is_input_section || !this->sections_are_attached_);
825
826 // Some flags in the input section should not be automatically
827 // copied to the output section.
828 flags &= ~ (elfcpp::SHF_INFO_LINK
829 | elfcpp::SHF_GROUP
830 | elfcpp::SHF_MERGE
831 | elfcpp::SHF_STRINGS);
832
833 // We only clear the SHF_LINK_ORDER flag in for
834 // a non-relocatable link.
835 if (!parameters->options().relocatable())
836 flags &= ~elfcpp::SHF_LINK_ORDER;
837
838 if (this->script_options_->saw_sections_clause())
839 {
840 // We are using a SECTIONS clause, so the output section is
841 // chosen based only on the name.
842
843 Script_sections* ss = this->script_options_->script_sections();
844 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
845 Output_section** output_section_slot;
846 Script_sections::Section_type script_section_type;
847 const char* orig_name = name;
848 name = ss->output_section_name(file_name, name, &output_section_slot,
849 &script_section_type);
850 if (name == NULL)
851 {
852 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
853 "because it is not allowed by the "
854 "SECTIONS clause of the linker script"),
855 orig_name);
856 // The SECTIONS clause says to discard this input section.
857 return NULL;
858 }
859
860 // We can only handle script section types ST_NONE and ST_NOLOAD.
861 switch (script_section_type)
862 {
863 case Script_sections::ST_NONE:
864 break;
865 case Script_sections::ST_NOLOAD:
866 flags &= elfcpp::SHF_ALLOC;
867 break;
868 default:
869 gold_unreachable();
870 }
871
872 // If this is an orphan section--one not mentioned in the linker
873 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
874 // default processing below.
875
876 if (output_section_slot != NULL)
877 {
878 if (*output_section_slot != NULL)
879 {
880 (*output_section_slot)->update_flags_for_input_section(flags);
881 return *output_section_slot;
882 }
883
884 // We don't put sections found in the linker script into
885 // SECTION_NAME_MAP_. That keeps us from getting confused
886 // if an orphan section is mapped to a section with the same
887 // name as one in the linker script.
888
889 name = this->namepool_.add(name, false, NULL);
890
891 Output_section* os = this->make_output_section(name, type, flags,
892 order, is_relro);
893
894 os->set_found_in_sections_clause();
895
896 // Special handling for NOLOAD sections.
897 if (script_section_type == Script_sections::ST_NOLOAD)
898 {
899 os->set_is_noload();
900
901 // The constructor of Output_section sets addresses of non-ALLOC
902 // sections to 0 by default. We don't want that for NOLOAD
903 // sections even if they have no SHF_ALLOC flag.
904 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
905 && os->is_address_valid())
906 {
907 gold_assert(os->address() == 0
908 && !os->is_offset_valid()
909 && !os->is_data_size_valid());
910 os->reset_address_and_file_offset();
911 }
912 }
913
914 *output_section_slot = os;
915 return os;
916 }
917 }
918
919 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
920
921 size_t len = strlen(name);
922 char* uncompressed_name = NULL;
923
924 // Compressed debug sections should be mapped to the corresponding
925 // uncompressed section.
926 if (is_compressed_debug_section(name))
927 {
928 uncompressed_name = new char[len];
929 uncompressed_name[0] = '.';
930 gold_assert(name[0] == '.' && name[1] == 'z');
931 strncpy(&uncompressed_name[1], &name[2], len - 2);
932 uncompressed_name[len - 1] = '\0';
933 len -= 1;
934 name = uncompressed_name;
935 }
936
937 // Turn NAME from the name of the input section into the name of the
938 // output section.
939 if (is_input_section
940 && !this->script_options_->saw_sections_clause()
941 && !parameters->options().relocatable())
942 name = Layout::output_section_name(relobj, name, &len);
943
944 Stringpool::Key name_key;
945 name = this->namepool_.add_with_length(name, len, true, &name_key);
946
947 if (uncompressed_name != NULL)
948 delete[] uncompressed_name;
949
950 // Find or make the output section. The output section is selected
951 // based on the section name, type, and flags.
952 return this->get_output_section(name, name_key, type, flags, order, is_relro);
953 }
954
955 // For incremental links, record the initial fixed layout of a section
956 // from the base file, and return a pointer to the Output_section.
957
958 template<int size, bool big_endian>
959 Output_section*
960 Layout::init_fixed_output_section(const char* name,
961 elfcpp::Shdr<size, big_endian>& shdr)
962 {
963 unsigned int sh_type = shdr.get_sh_type();
964
965 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
966 // PRE_INIT_ARRAY, and NOTE sections.
967 // All others will be created from scratch and reallocated.
968 if (!can_incremental_update(sh_type))
969 return NULL;
970
971 // If we're generating a .gdb_index section, we need to regenerate
972 // it from scratch.
973 if (parameters->options().gdb_index()
974 && sh_type == elfcpp::SHT_PROGBITS
975 && strcmp(name, ".gdb_index") == 0)
976 return NULL;
977
978 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
979 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
980 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
981 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
982 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
983 shdr.get_sh_addralign();
984
985 // Make the output section.
986 Stringpool::Key name_key;
987 name = this->namepool_.add(name, true, &name_key);
988 Output_section* os = this->get_output_section(name, name_key, sh_type,
989 sh_flags, ORDER_INVALID, false);
990 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
991 if (sh_type != elfcpp::SHT_NOBITS)
992 this->free_list_.remove(sh_offset, sh_offset + sh_size);
993 return os;
994 }
995
996 // Return the output section to use for input section SHNDX, with name
997 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
998 // index of a relocation section which applies to this section, or 0
999 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1000 // relocation section if there is one. Set *OFF to the offset of this
1001 // input section without the output section. Return NULL if the
1002 // section should be discarded. Set *OFF to -1 if the section
1003 // contents should not be written directly to the output file, but
1004 // will instead receive special handling.
1005
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1009 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1010 unsigned int reloc_shndx, unsigned int, off_t* off)
1011 {
1012 *off = 0;
1013
1014 if (!this->include_section(object, name, shdr))
1015 return NULL;
1016
1017 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1018
1019 // In a relocatable link a grouped section must not be combined with
1020 // any other sections.
1021 Output_section* os;
1022 if (parameters->options().relocatable()
1023 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1024 {
1025 name = this->namepool_.add(name, true, NULL);
1026 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1027 ORDER_INVALID, false);
1028 }
1029 else
1030 {
1031 os = this->choose_output_section(object, name, sh_type,
1032 shdr.get_sh_flags(), true,
1033 ORDER_INVALID, false);
1034 if (os == NULL)
1035 return NULL;
1036 }
1037
1038 // By default the GNU linker sorts input sections whose names match
1039 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1040 // sections are sorted by name. This is used to implement
1041 // constructor priority ordering. We are compatible. When we put
1042 // .ctor sections in .init_array and .dtor sections in .fini_array,
1043 // we must also sort plain .ctor and .dtor sections.
1044 if (!this->script_options_->saw_sections_clause()
1045 && !parameters->options().relocatable()
1046 && (is_prefix_of(".ctors.", name)
1047 || is_prefix_of(".dtors.", name)
1048 || is_prefix_of(".init_array.", name)
1049 || is_prefix_of(".fini_array.", name)
1050 || (parameters->options().ctors_in_init_array()
1051 && (strcmp(name, ".ctors") == 0
1052 || strcmp(name, ".dtors") == 0))))
1053 os->set_must_sort_attached_input_sections();
1054
1055 // If this is a .ctors or .ctors.* section being mapped to a
1056 // .init_array section, or a .dtors or .dtors.* section being mapped
1057 // to a .fini_array section, we will need to reverse the words if
1058 // there is more than one. Record this section for later. See
1059 // ctors_sections_in_init_array above.
1060 if (!this->script_options_->saw_sections_clause()
1061 && !parameters->options().relocatable()
1062 && shdr.get_sh_size() > size / 8
1063 && (((strcmp(name, ".ctors") == 0
1064 || is_prefix_of(".ctors.", name))
1065 && strcmp(os->name(), ".init_array") == 0)
1066 || ((strcmp(name, ".dtors") == 0
1067 || is_prefix_of(".dtors.", name))
1068 && strcmp(os->name(), ".fini_array") == 0)))
1069 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1070
1071 // FIXME: Handle SHF_LINK_ORDER somewhere.
1072
1073 elfcpp::Elf_Xword orig_flags = os->flags();
1074
1075 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1076 this->script_options_->saw_sections_clause());
1077
1078 // If the flags changed, we may have to change the order.
1079 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1080 {
1081 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1082 elfcpp::Elf_Xword new_flags =
1083 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1084 if (orig_flags != new_flags)
1085 os->set_order(this->default_section_order(os, false));
1086 }
1087
1088 this->have_added_input_section_ = true;
1089
1090 return os;
1091 }
1092
1093 // Handle a relocation section when doing a relocatable link.
1094
1095 template<int size, bool big_endian>
1096 Output_section*
1097 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1098 unsigned int,
1099 const elfcpp::Shdr<size, big_endian>& shdr,
1100 Output_section* data_section,
1101 Relocatable_relocs* rr)
1102 {
1103 gold_assert(parameters->options().relocatable()
1104 || parameters->options().emit_relocs());
1105
1106 int sh_type = shdr.get_sh_type();
1107
1108 std::string name;
1109 if (sh_type == elfcpp::SHT_REL)
1110 name = ".rel";
1111 else if (sh_type == elfcpp::SHT_RELA)
1112 name = ".rela";
1113 else
1114 gold_unreachable();
1115 name += data_section->name();
1116
1117 // In a relocatable link relocs for a grouped section must not be
1118 // combined with other reloc sections.
1119 Output_section* os;
1120 if (!parameters->options().relocatable()
1121 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1122 os = this->choose_output_section(object, name.c_str(), sh_type,
1123 shdr.get_sh_flags(), false,
1124 ORDER_INVALID, false);
1125 else
1126 {
1127 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1128 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1129 ORDER_INVALID, false);
1130 }
1131
1132 os->set_should_link_to_symtab();
1133 os->set_info_section(data_section);
1134
1135 Output_section_data* posd;
1136 if (sh_type == elfcpp::SHT_REL)
1137 {
1138 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1139 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1140 size,
1141 big_endian>(rr);
1142 }
1143 else if (sh_type == elfcpp::SHT_RELA)
1144 {
1145 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1146 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1147 size,
1148 big_endian>(rr);
1149 }
1150 else
1151 gold_unreachable();
1152
1153 os->add_output_section_data(posd);
1154 rr->set_output_data(posd);
1155
1156 return os;
1157 }
1158
1159 // Handle a group section when doing a relocatable link.
1160
1161 template<int size, bool big_endian>
1162 void
1163 Layout::layout_group(Symbol_table* symtab,
1164 Sized_relobj_file<size, big_endian>* object,
1165 unsigned int,
1166 const char* group_section_name,
1167 const char* signature,
1168 const elfcpp::Shdr<size, big_endian>& shdr,
1169 elfcpp::Elf_Word flags,
1170 std::vector<unsigned int>* shndxes)
1171 {
1172 gold_assert(parameters->options().relocatable());
1173 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1174 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1175 Output_section* os = this->make_output_section(group_section_name,
1176 elfcpp::SHT_GROUP,
1177 shdr.get_sh_flags(),
1178 ORDER_INVALID, false);
1179
1180 // We need to find a symbol with the signature in the symbol table.
1181 // If we don't find one now, we need to look again later.
1182 Symbol* sym = symtab->lookup(signature, NULL);
1183 if (sym != NULL)
1184 os->set_info_symndx(sym);
1185 else
1186 {
1187 // Reserve some space to minimize reallocations.
1188 if (this->group_signatures_.empty())
1189 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1190
1191 // We will wind up using a symbol whose name is the signature.
1192 // So just put the signature in the symbol name pool to save it.
1193 signature = symtab->canonicalize_name(signature);
1194 this->group_signatures_.push_back(Group_signature(os, signature));
1195 }
1196
1197 os->set_should_link_to_symtab();
1198 os->set_entsize(4);
1199
1200 section_size_type entry_count =
1201 convert_to_section_size_type(shdr.get_sh_size() / 4);
1202 Output_section_data* posd =
1203 new Output_data_group<size, big_endian>(object, entry_count, flags,
1204 shndxes);
1205 os->add_output_section_data(posd);
1206 }
1207
1208 // Special GNU handling of sections name .eh_frame. They will
1209 // normally hold exception frame data as defined by the C++ ABI
1210 // (http://codesourcery.com/cxx-abi/).
1211
1212 template<int size, bool big_endian>
1213 Output_section*
1214 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1215 const unsigned char* symbols,
1216 off_t symbols_size,
1217 const unsigned char* symbol_names,
1218 off_t symbol_names_size,
1219 unsigned int shndx,
1220 const elfcpp::Shdr<size, big_endian>& shdr,
1221 unsigned int reloc_shndx, unsigned int reloc_type,
1222 off_t* off)
1223 {
1224 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1225 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1226 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1227
1228 Output_section* os = this->make_eh_frame_section(object);
1229 if (os == NULL)
1230 return NULL;
1231
1232 gold_assert(this->eh_frame_section_ == os);
1233
1234 elfcpp::Elf_Xword orig_flags = os->flags();
1235
1236 if (!parameters->incremental()
1237 && this->eh_frame_data_->add_ehframe_input_section(object,
1238 symbols,
1239 symbols_size,
1240 symbol_names,
1241 symbol_names_size,
1242 shndx,
1243 reloc_shndx,
1244 reloc_type))
1245 {
1246 os->update_flags_for_input_section(shdr.get_sh_flags());
1247
1248 // A writable .eh_frame section is a RELRO section.
1249 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1250 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1251 {
1252 os->set_is_relro();
1253 os->set_order(ORDER_RELRO);
1254 }
1255
1256 // We found a .eh_frame section we are going to optimize, so now
1257 // we can add the set of optimized sections to the output
1258 // section. We need to postpone adding this until we've found a
1259 // section we can optimize so that the .eh_frame section in
1260 // crtbegin.o winds up at the start of the output section.
1261 if (!this->added_eh_frame_data_)
1262 {
1263 os->add_output_section_data(this->eh_frame_data_);
1264 this->added_eh_frame_data_ = true;
1265 }
1266 *off = -1;
1267 }
1268 else
1269 {
1270 // We couldn't handle this .eh_frame section for some reason.
1271 // Add it as a normal section.
1272 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1273 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1274 reloc_shndx, saw_sections_clause);
1275 this->have_added_input_section_ = true;
1276
1277 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1278 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1279 os->set_order(this->default_section_order(os, false));
1280 }
1281
1282 return os;
1283 }
1284
1285 // Create and return the magic .eh_frame section. Create
1286 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1287 // input .eh_frame section; it may be NULL.
1288
1289 Output_section*
1290 Layout::make_eh_frame_section(const Relobj* object)
1291 {
1292 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1293 // SHT_PROGBITS.
1294 Output_section* os = this->choose_output_section(object, ".eh_frame",
1295 elfcpp::SHT_PROGBITS,
1296 elfcpp::SHF_ALLOC, false,
1297 ORDER_EHFRAME, false);
1298 if (os == NULL)
1299 return NULL;
1300
1301 if (this->eh_frame_section_ == NULL)
1302 {
1303 this->eh_frame_section_ = os;
1304 this->eh_frame_data_ = new Eh_frame();
1305
1306 // For incremental linking, we do not optimize .eh_frame sections
1307 // or create a .eh_frame_hdr section.
1308 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1309 {
1310 Output_section* hdr_os =
1311 this->choose_output_section(NULL, ".eh_frame_hdr",
1312 elfcpp::SHT_PROGBITS,
1313 elfcpp::SHF_ALLOC, false,
1314 ORDER_EHFRAME, false);
1315
1316 if (hdr_os != NULL)
1317 {
1318 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1319 this->eh_frame_data_);
1320 hdr_os->add_output_section_data(hdr_posd);
1321
1322 hdr_os->set_after_input_sections();
1323
1324 if (!this->script_options_->saw_phdrs_clause())
1325 {
1326 Output_segment* hdr_oseg;
1327 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1328 elfcpp::PF_R);
1329 hdr_oseg->add_output_section_to_nonload(hdr_os,
1330 elfcpp::PF_R);
1331 }
1332
1333 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1334 }
1335 }
1336 }
1337
1338 return os;
1339 }
1340
1341 // Add an exception frame for a PLT. This is called from target code.
1342
1343 void
1344 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1345 size_t cie_length, const unsigned char* fde_data,
1346 size_t fde_length)
1347 {
1348 if (parameters->incremental())
1349 {
1350 // FIXME: Maybe this could work some day....
1351 return;
1352 }
1353 Output_section* os = this->make_eh_frame_section(NULL);
1354 if (os == NULL)
1355 return;
1356 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1357 fde_data, fde_length);
1358 if (!this->added_eh_frame_data_)
1359 {
1360 os->add_output_section_data(this->eh_frame_data_);
1361 this->added_eh_frame_data_ = true;
1362 }
1363 }
1364
1365 // Scan a .debug_info or .debug_types section, and add summary
1366 // information to the .gdb_index section.
1367
1368 template<int size, bool big_endian>
1369 void
1370 Layout::add_to_gdb_index(bool is_type_unit,
1371 Sized_relobj<size, big_endian>* object,
1372 const unsigned char* symbols,
1373 off_t symbols_size,
1374 unsigned int shndx,
1375 unsigned int reloc_shndx,
1376 unsigned int reloc_type)
1377 {
1378 if (this->gdb_index_data_ == NULL)
1379 {
1380 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1381 elfcpp::SHT_PROGBITS, 0,
1382 false, ORDER_INVALID,
1383 false);
1384 if (os == NULL)
1385 return;
1386
1387 this->gdb_index_data_ = new Gdb_index(os);
1388 os->add_output_section_data(this->gdb_index_data_);
1389 os->set_after_input_sections();
1390 }
1391
1392 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1393 symbols_size, shndx, reloc_shndx,
1394 reloc_type);
1395 }
1396
1397 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1398 // the output section.
1399
1400 Output_section*
1401 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1402 elfcpp::Elf_Xword flags,
1403 Output_section_data* posd,
1404 Output_section_order order, bool is_relro)
1405 {
1406 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1407 false, order, is_relro);
1408 if (os != NULL)
1409 os->add_output_section_data(posd);
1410 return os;
1411 }
1412
1413 // Map section flags to segment flags.
1414
1415 elfcpp::Elf_Word
1416 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1417 {
1418 elfcpp::Elf_Word ret = elfcpp::PF_R;
1419 if ((flags & elfcpp::SHF_WRITE) != 0)
1420 ret |= elfcpp::PF_W;
1421 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1422 ret |= elfcpp::PF_X;
1423 return ret;
1424 }
1425
1426 // Make a new Output_section, and attach it to segments as
1427 // appropriate. ORDER is the order in which this section should
1428 // appear in the output segment. IS_RELRO is true if this is a relro
1429 // (read-only after relocations) section.
1430
1431 Output_section*
1432 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1433 elfcpp::Elf_Xword flags,
1434 Output_section_order order, bool is_relro)
1435 {
1436 Output_section* os;
1437 if ((flags & elfcpp::SHF_ALLOC) == 0
1438 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1439 && is_compressible_debug_section(name))
1440 os = new Output_compressed_section(&parameters->options(), name, type,
1441 flags);
1442 else if ((flags & elfcpp::SHF_ALLOC) == 0
1443 && parameters->options().strip_debug_non_line()
1444 && strcmp(".debug_abbrev", name) == 0)
1445 {
1446 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1447 name, type, flags);
1448 if (this->debug_info_)
1449 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1450 }
1451 else if ((flags & elfcpp::SHF_ALLOC) == 0
1452 && parameters->options().strip_debug_non_line()
1453 && strcmp(".debug_info", name) == 0)
1454 {
1455 os = this->debug_info_ = new Output_reduced_debug_info_section(
1456 name, type, flags);
1457 if (this->debug_abbrev_)
1458 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1459 }
1460 else
1461 {
1462 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1463 // not have correct section types. Force them here.
1464 if (type == elfcpp::SHT_PROGBITS)
1465 {
1466 if (is_prefix_of(".init_array", name))
1467 type = elfcpp::SHT_INIT_ARRAY;
1468 else if (is_prefix_of(".preinit_array", name))
1469 type = elfcpp::SHT_PREINIT_ARRAY;
1470 else if (is_prefix_of(".fini_array", name))
1471 type = elfcpp::SHT_FINI_ARRAY;
1472 }
1473
1474 // FIXME: const_cast is ugly.
1475 Target* target = const_cast<Target*>(&parameters->target());
1476 os = target->make_output_section(name, type, flags);
1477 }
1478
1479 // With -z relro, we have to recognize the special sections by name.
1480 // There is no other way.
1481 bool is_relro_local = false;
1482 if (!this->script_options_->saw_sections_clause()
1483 && parameters->options().relro()
1484 && (flags & elfcpp::SHF_ALLOC) != 0
1485 && (flags & elfcpp::SHF_WRITE) != 0)
1486 {
1487 if (type == elfcpp::SHT_PROGBITS)
1488 {
1489 if ((flags & elfcpp::SHF_TLS) != 0)
1490 is_relro = true;
1491 else if (strcmp(name, ".data.rel.ro") == 0)
1492 is_relro = true;
1493 else if (strcmp(name, ".data.rel.ro.local") == 0)
1494 {
1495 is_relro = true;
1496 is_relro_local = true;
1497 }
1498 else if (strcmp(name, ".ctors") == 0
1499 || strcmp(name, ".dtors") == 0
1500 || strcmp(name, ".jcr") == 0)
1501 is_relro = true;
1502 }
1503 else if (type == elfcpp::SHT_INIT_ARRAY
1504 || type == elfcpp::SHT_FINI_ARRAY
1505 || type == elfcpp::SHT_PREINIT_ARRAY)
1506 is_relro = true;
1507 }
1508
1509 if (is_relro)
1510 os->set_is_relro();
1511
1512 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1513 order = this->default_section_order(os, is_relro_local);
1514
1515 os->set_order(order);
1516
1517 parameters->target().new_output_section(os);
1518
1519 this->section_list_.push_back(os);
1520
1521 // The GNU linker by default sorts some sections by priority, so we
1522 // do the same. We need to know that this might happen before we
1523 // attach any input sections.
1524 if (!this->script_options_->saw_sections_clause()
1525 && !parameters->options().relocatable()
1526 && (strcmp(name, ".init_array") == 0
1527 || strcmp(name, ".fini_array") == 0
1528 || (!parameters->options().ctors_in_init_array()
1529 && (strcmp(name, ".ctors") == 0
1530 || strcmp(name, ".dtors") == 0))))
1531 os->set_may_sort_attached_input_sections();
1532
1533 // Check for .stab*str sections, as .stab* sections need to link to
1534 // them.
1535 if (type == elfcpp::SHT_STRTAB
1536 && !this->have_stabstr_section_
1537 && strncmp(name, ".stab", 5) == 0
1538 && strcmp(name + strlen(name) - 3, "str") == 0)
1539 this->have_stabstr_section_ = true;
1540
1541 // During a full incremental link, we add patch space to most
1542 // PROGBITS and NOBITS sections. Flag those that may be
1543 // arbitrarily padded.
1544 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1545 && order != ORDER_INTERP
1546 && order != ORDER_INIT
1547 && order != ORDER_PLT
1548 && order != ORDER_FINI
1549 && order != ORDER_RELRO_LAST
1550 && order != ORDER_NON_RELRO_FIRST
1551 && strcmp(name, ".eh_frame") != 0
1552 && strcmp(name, ".ctors") != 0
1553 && strcmp(name, ".dtors") != 0
1554 && strcmp(name, ".jcr") != 0)
1555 {
1556 os->set_is_patch_space_allowed();
1557
1558 // Certain sections require "holes" to be filled with
1559 // specific fill patterns. These fill patterns may have
1560 // a minimum size, so we must prevent allocations from the
1561 // free list that leave a hole smaller than the minimum.
1562 if (strcmp(name, ".debug_info") == 0)
1563 os->set_free_space_fill(new Output_fill_debug_info(false));
1564 else if (strcmp(name, ".debug_types") == 0)
1565 os->set_free_space_fill(new Output_fill_debug_info(true));
1566 else if (strcmp(name, ".debug_line") == 0)
1567 os->set_free_space_fill(new Output_fill_debug_line());
1568 }
1569
1570 // If we have already attached the sections to segments, then we
1571 // need to attach this one now. This happens for sections created
1572 // directly by the linker.
1573 if (this->sections_are_attached_)
1574 this->attach_section_to_segment(&parameters->target(), os);
1575
1576 return os;
1577 }
1578
1579 // Return the default order in which a section should be placed in an
1580 // output segment. This function captures a lot of the ideas in
1581 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1582 // linker created section is normally set when the section is created;
1583 // this function is used for input sections.
1584
1585 Output_section_order
1586 Layout::default_section_order(Output_section* os, bool is_relro_local)
1587 {
1588 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1589 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1590 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1591 bool is_bss = false;
1592
1593 switch (os->type())
1594 {
1595 default:
1596 case elfcpp::SHT_PROGBITS:
1597 break;
1598 case elfcpp::SHT_NOBITS:
1599 is_bss = true;
1600 break;
1601 case elfcpp::SHT_RELA:
1602 case elfcpp::SHT_REL:
1603 if (!is_write)
1604 return ORDER_DYNAMIC_RELOCS;
1605 break;
1606 case elfcpp::SHT_HASH:
1607 case elfcpp::SHT_DYNAMIC:
1608 case elfcpp::SHT_SHLIB:
1609 case elfcpp::SHT_DYNSYM:
1610 case elfcpp::SHT_GNU_HASH:
1611 case elfcpp::SHT_GNU_verdef:
1612 case elfcpp::SHT_GNU_verneed:
1613 case elfcpp::SHT_GNU_versym:
1614 if (!is_write)
1615 return ORDER_DYNAMIC_LINKER;
1616 break;
1617 case elfcpp::SHT_NOTE:
1618 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1619 }
1620
1621 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1622 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1623
1624 if (!is_bss && !is_write)
1625 {
1626 if (is_execinstr)
1627 {
1628 if (strcmp(os->name(), ".init") == 0)
1629 return ORDER_INIT;
1630 else if (strcmp(os->name(), ".fini") == 0)
1631 return ORDER_FINI;
1632 }
1633 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1634 }
1635
1636 if (os->is_relro())
1637 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1638
1639 if (os->is_small_section())
1640 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1641 if (os->is_large_section())
1642 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1643
1644 return is_bss ? ORDER_BSS : ORDER_DATA;
1645 }
1646
1647 // Attach output sections to segments. This is called after we have
1648 // seen all the input sections.
1649
1650 void
1651 Layout::attach_sections_to_segments(const Target* target)
1652 {
1653 for (Section_list::iterator p = this->section_list_.begin();
1654 p != this->section_list_.end();
1655 ++p)
1656 this->attach_section_to_segment(target, *p);
1657
1658 this->sections_are_attached_ = true;
1659 }
1660
1661 // Attach an output section to a segment.
1662
1663 void
1664 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1665 {
1666 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1667 this->unattached_section_list_.push_back(os);
1668 else
1669 this->attach_allocated_section_to_segment(target, os);
1670 }
1671
1672 // Attach an allocated output section to a segment.
1673
1674 void
1675 Layout::attach_allocated_section_to_segment(const Target* target,
1676 Output_section* os)
1677 {
1678 elfcpp::Elf_Xword flags = os->flags();
1679 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1680
1681 if (parameters->options().relocatable())
1682 return;
1683
1684 // If we have a SECTIONS clause, we can't handle the attachment to
1685 // segments until after we've seen all the sections.
1686 if (this->script_options_->saw_sections_clause())
1687 return;
1688
1689 gold_assert(!this->script_options_->saw_phdrs_clause());
1690
1691 // This output section goes into a PT_LOAD segment.
1692
1693 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1694
1695 // Check for --section-start.
1696 uint64_t addr;
1697 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1698
1699 // In general the only thing we really care about for PT_LOAD
1700 // segments is whether or not they are writable or executable,
1701 // so that is how we search for them.
1702 // Large data sections also go into their own PT_LOAD segment.
1703 // People who need segments sorted on some other basis will
1704 // have to use a linker script.
1705
1706 Segment_list::const_iterator p;
1707 for (p = this->segment_list_.begin();
1708 p != this->segment_list_.end();
1709 ++p)
1710 {
1711 if ((*p)->type() != elfcpp::PT_LOAD)
1712 continue;
1713 if (!parameters->options().omagic()
1714 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1715 continue;
1716 if ((target->isolate_execinstr() || parameters->options().rosegment())
1717 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1718 continue;
1719 // If -Tbss was specified, we need to separate the data and BSS
1720 // segments.
1721 if (parameters->options().user_set_Tbss())
1722 {
1723 if ((os->type() == elfcpp::SHT_NOBITS)
1724 == (*p)->has_any_data_sections())
1725 continue;
1726 }
1727 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1728 continue;
1729
1730 if (is_address_set)
1731 {
1732 if ((*p)->are_addresses_set())
1733 continue;
1734
1735 (*p)->add_initial_output_data(os);
1736 (*p)->update_flags_for_output_section(seg_flags);
1737 (*p)->set_addresses(addr, addr);
1738 break;
1739 }
1740
1741 (*p)->add_output_section_to_load(this, os, seg_flags);
1742 break;
1743 }
1744
1745 if (p == this->segment_list_.end())
1746 {
1747 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1748 seg_flags);
1749 if (os->is_large_data_section())
1750 oseg->set_is_large_data_segment();
1751 oseg->add_output_section_to_load(this, os, seg_flags);
1752 if (is_address_set)
1753 oseg->set_addresses(addr, addr);
1754 }
1755
1756 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1757 // segment.
1758 if (os->type() == elfcpp::SHT_NOTE)
1759 {
1760 // See if we already have an equivalent PT_NOTE segment.
1761 for (p = this->segment_list_.begin();
1762 p != segment_list_.end();
1763 ++p)
1764 {
1765 if ((*p)->type() == elfcpp::PT_NOTE
1766 && (((*p)->flags() & elfcpp::PF_W)
1767 == (seg_flags & elfcpp::PF_W)))
1768 {
1769 (*p)->add_output_section_to_nonload(os, seg_flags);
1770 break;
1771 }
1772 }
1773
1774 if (p == this->segment_list_.end())
1775 {
1776 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1777 seg_flags);
1778 oseg->add_output_section_to_nonload(os, seg_flags);
1779 }
1780 }
1781
1782 // If we see a loadable SHF_TLS section, we create a PT_TLS
1783 // segment. There can only be one such segment.
1784 if ((flags & elfcpp::SHF_TLS) != 0)
1785 {
1786 if (this->tls_segment_ == NULL)
1787 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1788 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1789 }
1790
1791 // If -z relro is in effect, and we see a relro section, we create a
1792 // PT_GNU_RELRO segment. There can only be one such segment.
1793 if (os->is_relro() && parameters->options().relro())
1794 {
1795 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1796 if (this->relro_segment_ == NULL)
1797 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1798 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1799 }
1800
1801 // If we see a section named .interp, put it into a PT_INTERP
1802 // segment. This seems broken to me, but this is what GNU ld does,
1803 // and glibc expects it.
1804 if (strcmp(os->name(), ".interp") == 0
1805 && !this->script_options_->saw_phdrs_clause())
1806 {
1807 if (this->interp_segment_ == NULL)
1808 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1809 else
1810 gold_warning(_("multiple '.interp' sections in input files "
1811 "may cause confusing PT_INTERP segment"));
1812 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1813 }
1814 }
1815
1816 // Make an output section for a script.
1817
1818 Output_section*
1819 Layout::make_output_section_for_script(
1820 const char* name,
1821 Script_sections::Section_type section_type)
1822 {
1823 name = this->namepool_.add(name, false, NULL);
1824 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1825 if (section_type == Script_sections::ST_NOLOAD)
1826 sh_flags = 0;
1827 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1828 sh_flags, ORDER_INVALID,
1829 false);
1830 os->set_found_in_sections_clause();
1831 if (section_type == Script_sections::ST_NOLOAD)
1832 os->set_is_noload();
1833 return os;
1834 }
1835
1836 // Return the number of segments we expect to see.
1837
1838 size_t
1839 Layout::expected_segment_count() const
1840 {
1841 size_t ret = this->segment_list_.size();
1842
1843 // If we didn't see a SECTIONS clause in a linker script, we should
1844 // already have the complete list of segments. Otherwise we ask the
1845 // SECTIONS clause how many segments it expects, and add in the ones
1846 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1847
1848 if (!this->script_options_->saw_sections_clause())
1849 return ret;
1850 else
1851 {
1852 const Script_sections* ss = this->script_options_->script_sections();
1853 return ret + ss->expected_segment_count(this);
1854 }
1855 }
1856
1857 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1858 // is whether we saw a .note.GNU-stack section in the object file.
1859 // GNU_STACK_FLAGS is the section flags. The flags give the
1860 // protection required for stack memory. We record this in an
1861 // executable as a PT_GNU_STACK segment. If an object file does not
1862 // have a .note.GNU-stack segment, we must assume that it is an old
1863 // object. On some targets that will force an executable stack.
1864
1865 void
1866 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1867 const Object* obj)
1868 {
1869 if (!seen_gnu_stack)
1870 {
1871 this->input_without_gnu_stack_note_ = true;
1872 if (parameters->options().warn_execstack()
1873 && parameters->target().is_default_stack_executable())
1874 gold_warning(_("%s: missing .note.GNU-stack section"
1875 " implies executable stack"),
1876 obj->name().c_str());
1877 }
1878 else
1879 {
1880 this->input_with_gnu_stack_note_ = true;
1881 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1882 {
1883 this->input_requires_executable_stack_ = true;
1884 if (parameters->options().warn_execstack()
1885 || parameters->options().is_stack_executable())
1886 gold_warning(_("%s: requires executable stack"),
1887 obj->name().c_str());
1888 }
1889 }
1890 }
1891
1892 // Create automatic note sections.
1893
1894 void
1895 Layout::create_notes()
1896 {
1897 this->create_gold_note();
1898 this->create_executable_stack_info();
1899 this->create_build_id();
1900 }
1901
1902 // Create the dynamic sections which are needed before we read the
1903 // relocs.
1904
1905 void
1906 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1907 {
1908 if (parameters->doing_static_link())
1909 return;
1910
1911 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1912 elfcpp::SHT_DYNAMIC,
1913 (elfcpp::SHF_ALLOC
1914 | elfcpp::SHF_WRITE),
1915 false, ORDER_RELRO,
1916 true);
1917
1918 // A linker script may discard .dynamic, so check for NULL.
1919 if (this->dynamic_section_ != NULL)
1920 {
1921 this->dynamic_symbol_ =
1922 symtab->define_in_output_data("_DYNAMIC", NULL,
1923 Symbol_table::PREDEFINED,
1924 this->dynamic_section_, 0, 0,
1925 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1926 elfcpp::STV_HIDDEN, 0, false, false);
1927
1928 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1929
1930 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1931 }
1932 }
1933
1934 // For each output section whose name can be represented as C symbol,
1935 // define __start and __stop symbols for the section. This is a GNU
1936 // extension.
1937
1938 void
1939 Layout::define_section_symbols(Symbol_table* symtab)
1940 {
1941 for (Section_list::const_iterator p = this->section_list_.begin();
1942 p != this->section_list_.end();
1943 ++p)
1944 {
1945 const char* const name = (*p)->name();
1946 if (is_cident(name))
1947 {
1948 const std::string name_string(name);
1949 const std::string start_name(cident_section_start_prefix
1950 + name_string);
1951 const std::string stop_name(cident_section_stop_prefix
1952 + name_string);
1953
1954 symtab->define_in_output_data(start_name.c_str(),
1955 NULL, // version
1956 Symbol_table::PREDEFINED,
1957 *p,
1958 0, // value
1959 0, // symsize
1960 elfcpp::STT_NOTYPE,
1961 elfcpp::STB_GLOBAL,
1962 elfcpp::STV_DEFAULT,
1963 0, // nonvis
1964 false, // offset_is_from_end
1965 true); // only_if_ref
1966
1967 symtab->define_in_output_data(stop_name.c_str(),
1968 NULL, // version
1969 Symbol_table::PREDEFINED,
1970 *p,
1971 0, // value
1972 0, // symsize
1973 elfcpp::STT_NOTYPE,
1974 elfcpp::STB_GLOBAL,
1975 elfcpp::STV_DEFAULT,
1976 0, // nonvis
1977 true, // offset_is_from_end
1978 true); // only_if_ref
1979 }
1980 }
1981 }
1982
1983 // Define symbols for group signatures.
1984
1985 void
1986 Layout::define_group_signatures(Symbol_table* symtab)
1987 {
1988 for (Group_signatures::iterator p = this->group_signatures_.begin();
1989 p != this->group_signatures_.end();
1990 ++p)
1991 {
1992 Symbol* sym = symtab->lookup(p->signature, NULL);
1993 if (sym != NULL)
1994 p->section->set_info_symndx(sym);
1995 else
1996 {
1997 // Force the name of the group section to the group
1998 // signature, and use the group's section symbol as the
1999 // signature symbol.
2000 if (strcmp(p->section->name(), p->signature) != 0)
2001 {
2002 const char* name = this->namepool_.add(p->signature,
2003 true, NULL);
2004 p->section->set_name(name);
2005 }
2006 p->section->set_needs_symtab_index();
2007 p->section->set_info_section_symndx(p->section);
2008 }
2009 }
2010
2011 this->group_signatures_.clear();
2012 }
2013
2014 // Find the first read-only PT_LOAD segment, creating one if
2015 // necessary.
2016
2017 Output_segment*
2018 Layout::find_first_load_seg(const Target* target)
2019 {
2020 Output_segment* best = NULL;
2021 for (Segment_list::const_iterator p = this->segment_list_.begin();
2022 p != this->segment_list_.end();
2023 ++p)
2024 {
2025 if ((*p)->type() == elfcpp::PT_LOAD
2026 && ((*p)->flags() & elfcpp::PF_R) != 0
2027 && (parameters->options().omagic()
2028 || ((*p)->flags() & elfcpp::PF_W) == 0)
2029 && (!target->isolate_execinstr()
2030 || ((*p)->flags() & elfcpp::PF_X) == 0))
2031 {
2032 if (best == NULL || this->segment_precedes(*p, best))
2033 best = *p;
2034 }
2035 }
2036 if (best != NULL)
2037 return best;
2038
2039 gold_assert(!this->script_options_->saw_phdrs_clause());
2040
2041 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2042 elfcpp::PF_R);
2043 return load_seg;
2044 }
2045
2046 // Save states of all current output segments. Store saved states
2047 // in SEGMENT_STATES.
2048
2049 void
2050 Layout::save_segments(Segment_states* segment_states)
2051 {
2052 for (Segment_list::const_iterator p = this->segment_list_.begin();
2053 p != this->segment_list_.end();
2054 ++p)
2055 {
2056 Output_segment* segment = *p;
2057 // Shallow copy.
2058 Output_segment* copy = new Output_segment(*segment);
2059 (*segment_states)[segment] = copy;
2060 }
2061 }
2062
2063 // Restore states of output segments and delete any segment not found in
2064 // SEGMENT_STATES.
2065
2066 void
2067 Layout::restore_segments(const Segment_states* segment_states)
2068 {
2069 // Go through the segment list and remove any segment added in the
2070 // relaxation loop.
2071 this->tls_segment_ = NULL;
2072 this->relro_segment_ = NULL;
2073 Segment_list::iterator list_iter = this->segment_list_.begin();
2074 while (list_iter != this->segment_list_.end())
2075 {
2076 Output_segment* segment = *list_iter;
2077 Segment_states::const_iterator states_iter =
2078 segment_states->find(segment);
2079 if (states_iter != segment_states->end())
2080 {
2081 const Output_segment* copy = states_iter->second;
2082 // Shallow copy to restore states.
2083 *segment = *copy;
2084
2085 // Also fix up TLS and RELRO segment pointers as appropriate.
2086 if (segment->type() == elfcpp::PT_TLS)
2087 this->tls_segment_ = segment;
2088 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2089 this->relro_segment_ = segment;
2090
2091 ++list_iter;
2092 }
2093 else
2094 {
2095 list_iter = this->segment_list_.erase(list_iter);
2096 // This is a segment created during section layout. It should be
2097 // safe to remove it since we should have removed all pointers to it.
2098 delete segment;
2099 }
2100 }
2101 }
2102
2103 // Clean up after relaxation so that sections can be laid out again.
2104
2105 void
2106 Layout::clean_up_after_relaxation()
2107 {
2108 // Restore the segments to point state just prior to the relaxation loop.
2109 Script_sections* script_section = this->script_options_->script_sections();
2110 script_section->release_segments();
2111 this->restore_segments(this->segment_states_);
2112
2113 // Reset section addresses and file offsets
2114 for (Section_list::iterator p = this->section_list_.begin();
2115 p != this->section_list_.end();
2116 ++p)
2117 {
2118 (*p)->restore_states();
2119
2120 // If an input section changes size because of relaxation,
2121 // we need to adjust the section offsets of all input sections.
2122 // after such a section.
2123 if ((*p)->section_offsets_need_adjustment())
2124 (*p)->adjust_section_offsets();
2125
2126 (*p)->reset_address_and_file_offset();
2127 }
2128
2129 // Reset special output object address and file offsets.
2130 for (Data_list::iterator p = this->special_output_list_.begin();
2131 p != this->special_output_list_.end();
2132 ++p)
2133 (*p)->reset_address_and_file_offset();
2134
2135 // A linker script may have created some output section data objects.
2136 // They are useless now.
2137 for (Output_section_data_list::const_iterator p =
2138 this->script_output_section_data_list_.begin();
2139 p != this->script_output_section_data_list_.end();
2140 ++p)
2141 delete *p;
2142 this->script_output_section_data_list_.clear();
2143 }
2144
2145 // Prepare for relaxation.
2146
2147 void
2148 Layout::prepare_for_relaxation()
2149 {
2150 // Create an relaxation debug check if in debugging mode.
2151 if (is_debugging_enabled(DEBUG_RELAXATION))
2152 this->relaxation_debug_check_ = new Relaxation_debug_check();
2153
2154 // Save segment states.
2155 this->segment_states_ = new Segment_states();
2156 this->save_segments(this->segment_states_);
2157
2158 for(Section_list::const_iterator p = this->section_list_.begin();
2159 p != this->section_list_.end();
2160 ++p)
2161 (*p)->save_states();
2162
2163 if (is_debugging_enabled(DEBUG_RELAXATION))
2164 this->relaxation_debug_check_->check_output_data_for_reset_values(
2165 this->section_list_, this->special_output_list_);
2166
2167 // Also enable recording of output section data from scripts.
2168 this->record_output_section_data_from_script_ = true;
2169 }
2170
2171 // Relaxation loop body: If target has no relaxation, this runs only once
2172 // Otherwise, the target relaxation hook is called at the end of
2173 // each iteration. If the hook returns true, it means re-layout of
2174 // section is required.
2175 //
2176 // The number of segments created by a linking script without a PHDRS
2177 // clause may be affected by section sizes and alignments. There is
2178 // a remote chance that relaxation causes different number of PT_LOAD
2179 // segments are created and sections are attached to different segments.
2180 // Therefore, we always throw away all segments created during section
2181 // layout. In order to be able to restart the section layout, we keep
2182 // a copy of the segment list right before the relaxation loop and use
2183 // that to restore the segments.
2184 //
2185 // PASS is the current relaxation pass number.
2186 // SYMTAB is a symbol table.
2187 // PLOAD_SEG is the address of a pointer for the load segment.
2188 // PHDR_SEG is a pointer to the PHDR segment.
2189 // SEGMENT_HEADERS points to the output segment header.
2190 // FILE_HEADER points to the output file header.
2191 // PSHNDX is the address to store the output section index.
2192
2193 off_t inline
2194 Layout::relaxation_loop_body(
2195 int pass,
2196 Target* target,
2197 Symbol_table* symtab,
2198 Output_segment** pload_seg,
2199 Output_segment* phdr_seg,
2200 Output_segment_headers* segment_headers,
2201 Output_file_header* file_header,
2202 unsigned int* pshndx)
2203 {
2204 // If this is not the first iteration, we need to clean up after
2205 // relaxation so that we can lay out the sections again.
2206 if (pass != 0)
2207 this->clean_up_after_relaxation();
2208
2209 // If there is a SECTIONS clause, put all the input sections into
2210 // the required order.
2211 Output_segment* load_seg;
2212 if (this->script_options_->saw_sections_clause())
2213 load_seg = this->set_section_addresses_from_script(symtab);
2214 else if (parameters->options().relocatable())
2215 load_seg = NULL;
2216 else
2217 load_seg = this->find_first_load_seg(target);
2218
2219 if (parameters->options().oformat_enum()
2220 != General_options::OBJECT_FORMAT_ELF)
2221 load_seg = NULL;
2222
2223 // If the user set the address of the text segment, that may not be
2224 // compatible with putting the segment headers and file headers into
2225 // that segment.
2226 if (parameters->options().user_set_Ttext()
2227 && parameters->options().Ttext() % target->common_pagesize() != 0)
2228 {
2229 load_seg = NULL;
2230 phdr_seg = NULL;
2231 }
2232
2233 gold_assert(phdr_seg == NULL
2234 || load_seg != NULL
2235 || this->script_options_->saw_sections_clause());
2236
2237 // If the address of the load segment we found has been set by
2238 // --section-start rather than by a script, then adjust the VMA and
2239 // LMA downward if possible to include the file and section headers.
2240 uint64_t header_gap = 0;
2241 if (load_seg != NULL
2242 && load_seg->are_addresses_set()
2243 && !this->script_options_->saw_sections_clause()
2244 && !parameters->options().relocatable())
2245 {
2246 file_header->finalize_data_size();
2247 segment_headers->finalize_data_size();
2248 size_t sizeof_headers = (file_header->data_size()
2249 + segment_headers->data_size());
2250 const uint64_t abi_pagesize = target->abi_pagesize();
2251 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2252 hdr_paddr &= ~(abi_pagesize - 1);
2253 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2254 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2255 load_seg = NULL;
2256 else
2257 {
2258 load_seg->set_addresses(load_seg->vaddr() - subtract,
2259 load_seg->paddr() - subtract);
2260 header_gap = subtract - sizeof_headers;
2261 }
2262 }
2263
2264 // Lay out the segment headers.
2265 if (!parameters->options().relocatable())
2266 {
2267 gold_assert(segment_headers != NULL);
2268 if (header_gap != 0 && load_seg != NULL)
2269 {
2270 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2271 load_seg->add_initial_output_data(z);
2272 }
2273 if (load_seg != NULL)
2274 load_seg->add_initial_output_data(segment_headers);
2275 if (phdr_seg != NULL)
2276 phdr_seg->add_initial_output_data(segment_headers);
2277 }
2278
2279 // Lay out the file header.
2280 if (load_seg != NULL)
2281 load_seg->add_initial_output_data(file_header);
2282
2283 if (this->script_options_->saw_phdrs_clause()
2284 && !parameters->options().relocatable())
2285 {
2286 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2287 // clause in a linker script.
2288 Script_sections* ss = this->script_options_->script_sections();
2289 ss->put_headers_in_phdrs(file_header, segment_headers);
2290 }
2291
2292 // We set the output section indexes in set_segment_offsets and
2293 // set_section_indexes.
2294 *pshndx = 1;
2295
2296 // Set the file offsets of all the segments, and all the sections
2297 // they contain.
2298 off_t off;
2299 if (!parameters->options().relocatable())
2300 off = this->set_segment_offsets(target, load_seg, pshndx);
2301 else
2302 off = this->set_relocatable_section_offsets(file_header, pshndx);
2303
2304 // Verify that the dummy relaxation does not change anything.
2305 if (is_debugging_enabled(DEBUG_RELAXATION))
2306 {
2307 if (pass == 0)
2308 this->relaxation_debug_check_->read_sections(this->section_list_);
2309 else
2310 this->relaxation_debug_check_->verify_sections(this->section_list_);
2311 }
2312
2313 *pload_seg = load_seg;
2314 return off;
2315 }
2316
2317 // Search the list of patterns and find the postion of the given section
2318 // name in the output section. If the section name matches a glob
2319 // pattern and a non-glob name, then the non-glob position takes
2320 // precedence. Return 0 if no match is found.
2321
2322 unsigned int
2323 Layout::find_section_order_index(const std::string& section_name)
2324 {
2325 Unordered_map<std::string, unsigned int>::iterator map_it;
2326 map_it = this->input_section_position_.find(section_name);
2327 if (map_it != this->input_section_position_.end())
2328 return map_it->second;
2329
2330 // Absolute match failed. Linear search the glob patterns.
2331 std::vector<std::string>::iterator it;
2332 for (it = this->input_section_glob_.begin();
2333 it != this->input_section_glob_.end();
2334 ++it)
2335 {
2336 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2337 {
2338 map_it = this->input_section_position_.find(*it);
2339 gold_assert(map_it != this->input_section_position_.end());
2340 return map_it->second;
2341 }
2342 }
2343 return 0;
2344 }
2345
2346 // Read the sequence of input sections from the file specified with
2347 // option --section-ordering-file.
2348
2349 void
2350 Layout::read_layout_from_file()
2351 {
2352 const char* filename = parameters->options().section_ordering_file();
2353 std::ifstream in;
2354 std::string line;
2355
2356 in.open(filename);
2357 if (!in)
2358 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2359 filename, strerror(errno));
2360
2361 std::getline(in, line); // this chops off the trailing \n, if any
2362 unsigned int position = 1;
2363 this->set_section_ordering_specified();
2364
2365 while (in)
2366 {
2367 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2368 line.resize(line.length() - 1);
2369 // Ignore comments, beginning with '#'
2370 if (line[0] == '#')
2371 {
2372 std::getline(in, line);
2373 continue;
2374 }
2375 this->input_section_position_[line] = position;
2376 // Store all glob patterns in a vector.
2377 if (is_wildcard_string(line.c_str()))
2378 this->input_section_glob_.push_back(line);
2379 position++;
2380 std::getline(in, line);
2381 }
2382 }
2383
2384 // Finalize the layout. When this is called, we have created all the
2385 // output sections and all the output segments which are based on
2386 // input sections. We have several things to do, and we have to do
2387 // them in the right order, so that we get the right results correctly
2388 // and efficiently.
2389
2390 // 1) Finalize the list of output segments and create the segment
2391 // table header.
2392
2393 // 2) Finalize the dynamic symbol table and associated sections.
2394
2395 // 3) Determine the final file offset of all the output segments.
2396
2397 // 4) Determine the final file offset of all the SHF_ALLOC output
2398 // sections.
2399
2400 // 5) Create the symbol table sections and the section name table
2401 // section.
2402
2403 // 6) Finalize the symbol table: set symbol values to their final
2404 // value and make a final determination of which symbols are going
2405 // into the output symbol table.
2406
2407 // 7) Create the section table header.
2408
2409 // 8) Determine the final file offset of all the output sections which
2410 // are not SHF_ALLOC, including the section table header.
2411
2412 // 9) Finalize the ELF file header.
2413
2414 // This function returns the size of the output file.
2415
2416 off_t
2417 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2418 Target* target, const Task* task)
2419 {
2420 target->finalize_sections(this, input_objects, symtab);
2421
2422 this->count_local_symbols(task, input_objects);
2423
2424 this->link_stabs_sections();
2425
2426 Output_segment* phdr_seg = NULL;
2427 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2428 {
2429 // There was a dynamic object in the link. We need to create
2430 // some information for the dynamic linker.
2431
2432 // Create the PT_PHDR segment which will hold the program
2433 // headers.
2434 if (!this->script_options_->saw_phdrs_clause())
2435 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2436
2437 // Create the dynamic symbol table, including the hash table.
2438 Output_section* dynstr;
2439 std::vector<Symbol*> dynamic_symbols;
2440 unsigned int local_dynamic_count;
2441 Versions versions(*this->script_options()->version_script_info(),
2442 &this->dynpool_);
2443 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2444 &local_dynamic_count, &dynamic_symbols,
2445 &versions);
2446
2447 // Create the .interp section to hold the name of the
2448 // interpreter, and put it in a PT_INTERP segment. Don't do it
2449 // if we saw a .interp section in an input file.
2450 if ((!parameters->options().shared()
2451 || parameters->options().dynamic_linker() != NULL)
2452 && this->interp_segment_ == NULL)
2453 this->create_interp(target);
2454
2455 // Finish the .dynamic section to hold the dynamic data, and put
2456 // it in a PT_DYNAMIC segment.
2457 this->finish_dynamic_section(input_objects, symtab);
2458
2459 // We should have added everything we need to the dynamic string
2460 // table.
2461 this->dynpool_.set_string_offsets();
2462
2463 // Create the version sections. We can't do this until the
2464 // dynamic string table is complete.
2465 this->create_version_sections(&versions, symtab, local_dynamic_count,
2466 dynamic_symbols, dynstr);
2467
2468 // Set the size of the _DYNAMIC symbol. We can't do this until
2469 // after we call create_version_sections.
2470 this->set_dynamic_symbol_size(symtab);
2471 }
2472
2473 // Create segment headers.
2474 Output_segment_headers* segment_headers =
2475 (parameters->options().relocatable()
2476 ? NULL
2477 : new Output_segment_headers(this->segment_list_));
2478
2479 // Lay out the file header.
2480 Output_file_header* file_header = new Output_file_header(target, symtab,
2481 segment_headers);
2482
2483 this->special_output_list_.push_back(file_header);
2484 if (segment_headers != NULL)
2485 this->special_output_list_.push_back(segment_headers);
2486
2487 // Find approriate places for orphan output sections if we are using
2488 // a linker script.
2489 if (this->script_options_->saw_sections_clause())
2490 this->place_orphan_sections_in_script();
2491
2492 Output_segment* load_seg;
2493 off_t off;
2494 unsigned int shndx;
2495 int pass = 0;
2496
2497 // Take a snapshot of the section layout as needed.
2498 if (target->may_relax())
2499 this->prepare_for_relaxation();
2500
2501 // Run the relaxation loop to lay out sections.
2502 do
2503 {
2504 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2505 phdr_seg, segment_headers, file_header,
2506 &shndx);
2507 pass++;
2508 }
2509 while (target->may_relax()
2510 && target->relax(pass, input_objects, symtab, this, task));
2511
2512 // Set the file offsets of all the non-data sections we've seen so
2513 // far which don't have to wait for the input sections. We need
2514 // this in order to finalize local symbols in non-allocated
2515 // sections.
2516 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2517
2518 // Set the section indexes of all unallocated sections seen so far,
2519 // in case any of them are somehow referenced by a symbol.
2520 shndx = this->set_section_indexes(shndx);
2521
2522 // Create the symbol table sections.
2523 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2524 if (!parameters->doing_static_link())
2525 this->assign_local_dynsym_offsets(input_objects);
2526
2527 // Process any symbol assignments from a linker script. This must
2528 // be called after the symbol table has been finalized.
2529 this->script_options_->finalize_symbols(symtab, this);
2530
2531 // Create the incremental inputs sections.
2532 if (this->incremental_inputs_)
2533 {
2534 this->incremental_inputs_->finalize();
2535 this->create_incremental_info_sections(symtab);
2536 }
2537
2538 // Create the .shstrtab section.
2539 Output_section* shstrtab_section = this->create_shstrtab();
2540
2541 // Set the file offsets of the rest of the non-data sections which
2542 // don't have to wait for the input sections.
2543 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2544
2545 // Now that all sections have been created, set the section indexes
2546 // for any sections which haven't been done yet.
2547 shndx = this->set_section_indexes(shndx);
2548
2549 // Create the section table header.
2550 this->create_shdrs(shstrtab_section, &off);
2551
2552 // If there are no sections which require postprocessing, we can
2553 // handle the section names now, and avoid a resize later.
2554 if (!this->any_postprocessing_sections_)
2555 {
2556 off = this->set_section_offsets(off,
2557 POSTPROCESSING_SECTIONS_PASS);
2558 off =
2559 this->set_section_offsets(off,
2560 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2561 }
2562
2563 file_header->set_section_info(this->section_headers_, shstrtab_section);
2564
2565 // Now we know exactly where everything goes in the output file
2566 // (except for non-allocated sections which require postprocessing).
2567 Output_data::layout_complete();
2568
2569 this->output_file_size_ = off;
2570
2571 return off;
2572 }
2573
2574 // Create a note header following the format defined in the ELF ABI.
2575 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2576 // of the section to create, DESCSZ is the size of the descriptor.
2577 // ALLOCATE is true if the section should be allocated in memory.
2578 // This returns the new note section. It sets *TRAILING_PADDING to
2579 // the number of trailing zero bytes required.
2580
2581 Output_section*
2582 Layout::create_note(const char* name, int note_type,
2583 const char* section_name, size_t descsz,
2584 bool allocate, size_t* trailing_padding)
2585 {
2586 // Authorities all agree that the values in a .note field should
2587 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2588 // they differ on what the alignment is for 64-bit binaries.
2589 // The GABI says unambiguously they take 8-byte alignment:
2590 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2591 // Other documentation says alignment should always be 4 bytes:
2592 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2593 // GNU ld and GNU readelf both support the latter (at least as of
2594 // version 2.16.91), and glibc always generates the latter for
2595 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2596 // here.
2597 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2598 const int size = parameters->target().get_size();
2599 #else
2600 const int size = 32;
2601 #endif
2602
2603 // The contents of the .note section.
2604 size_t namesz = strlen(name) + 1;
2605 size_t aligned_namesz = align_address(namesz, size / 8);
2606 size_t aligned_descsz = align_address(descsz, size / 8);
2607
2608 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2609
2610 unsigned char* buffer = new unsigned char[notehdrsz];
2611 memset(buffer, 0, notehdrsz);
2612
2613 bool is_big_endian = parameters->target().is_big_endian();
2614
2615 if (size == 32)
2616 {
2617 if (!is_big_endian)
2618 {
2619 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2620 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2621 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2622 }
2623 else
2624 {
2625 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2626 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2627 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2628 }
2629 }
2630 else if (size == 64)
2631 {
2632 if (!is_big_endian)
2633 {
2634 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2635 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2636 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2637 }
2638 else
2639 {
2640 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2641 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2642 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2643 }
2644 }
2645 else
2646 gold_unreachable();
2647
2648 memcpy(buffer + 3 * (size / 8), name, namesz);
2649
2650 elfcpp::Elf_Xword flags = 0;
2651 Output_section_order order = ORDER_INVALID;
2652 if (allocate)
2653 {
2654 flags = elfcpp::SHF_ALLOC;
2655 order = ORDER_RO_NOTE;
2656 }
2657 Output_section* os = this->choose_output_section(NULL, section_name,
2658 elfcpp::SHT_NOTE,
2659 flags, false, order, false);
2660 if (os == NULL)
2661 return NULL;
2662
2663 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2664 size / 8,
2665 "** note header");
2666 os->add_output_section_data(posd);
2667
2668 *trailing_padding = aligned_descsz - descsz;
2669
2670 return os;
2671 }
2672
2673 // For an executable or shared library, create a note to record the
2674 // version of gold used to create the binary.
2675
2676 void
2677 Layout::create_gold_note()
2678 {
2679 if (parameters->options().relocatable()
2680 || parameters->incremental_update())
2681 return;
2682
2683 std::string desc = std::string("gold ") + gold::get_version_string();
2684
2685 size_t trailing_padding;
2686 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2687 ".note.gnu.gold-version", desc.size(),
2688 false, &trailing_padding);
2689 if (os == NULL)
2690 return;
2691
2692 Output_section_data* posd = new Output_data_const(desc, 4);
2693 os->add_output_section_data(posd);
2694
2695 if (trailing_padding > 0)
2696 {
2697 posd = new Output_data_zero_fill(trailing_padding, 0);
2698 os->add_output_section_data(posd);
2699 }
2700 }
2701
2702 // Record whether the stack should be executable. This can be set
2703 // from the command line using the -z execstack or -z noexecstack
2704 // options. Otherwise, if any input file has a .note.GNU-stack
2705 // section with the SHF_EXECINSTR flag set, the stack should be
2706 // executable. Otherwise, if at least one input file a
2707 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2708 // section, we use the target default for whether the stack should be
2709 // executable. Otherwise, we don't generate a stack note. When
2710 // generating a object file, we create a .note.GNU-stack section with
2711 // the appropriate marking. When generating an executable or shared
2712 // library, we create a PT_GNU_STACK segment.
2713
2714 void
2715 Layout::create_executable_stack_info()
2716 {
2717 bool is_stack_executable;
2718 if (parameters->options().is_execstack_set())
2719 is_stack_executable = parameters->options().is_stack_executable();
2720 else if (!this->input_with_gnu_stack_note_)
2721 return;
2722 else
2723 {
2724 if (this->input_requires_executable_stack_)
2725 is_stack_executable = true;
2726 else if (this->input_without_gnu_stack_note_)
2727 is_stack_executable =
2728 parameters->target().is_default_stack_executable();
2729 else
2730 is_stack_executable = false;
2731 }
2732
2733 if (parameters->options().relocatable())
2734 {
2735 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2736 elfcpp::Elf_Xword flags = 0;
2737 if (is_stack_executable)
2738 flags |= elfcpp::SHF_EXECINSTR;
2739 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2740 ORDER_INVALID, false);
2741 }
2742 else
2743 {
2744 if (this->script_options_->saw_phdrs_clause())
2745 return;
2746 int flags = elfcpp::PF_R | elfcpp::PF_W;
2747 if (is_stack_executable)
2748 flags |= elfcpp::PF_X;
2749 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2750 }
2751 }
2752
2753 // If --build-id was used, set up the build ID note.
2754
2755 void
2756 Layout::create_build_id()
2757 {
2758 if (!parameters->options().user_set_build_id())
2759 return;
2760
2761 const char* style = parameters->options().build_id();
2762 if (strcmp(style, "none") == 0)
2763 return;
2764
2765 // Set DESCSZ to the size of the note descriptor. When possible,
2766 // set DESC to the note descriptor contents.
2767 size_t descsz;
2768 std::string desc;
2769 if (strcmp(style, "md5") == 0)
2770 descsz = 128 / 8;
2771 else if (strcmp(style, "sha1") == 0)
2772 descsz = 160 / 8;
2773 else if (strcmp(style, "uuid") == 0)
2774 {
2775 const size_t uuidsz = 128 / 8;
2776
2777 char buffer[uuidsz];
2778 memset(buffer, 0, uuidsz);
2779
2780 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2781 if (descriptor < 0)
2782 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2783 strerror(errno));
2784 else
2785 {
2786 ssize_t got = ::read(descriptor, buffer, uuidsz);
2787 release_descriptor(descriptor, true);
2788 if (got < 0)
2789 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2790 else if (static_cast<size_t>(got) != uuidsz)
2791 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2792 uuidsz, got);
2793 }
2794
2795 desc.assign(buffer, uuidsz);
2796 descsz = uuidsz;
2797 }
2798 else if (strncmp(style, "0x", 2) == 0)
2799 {
2800 hex_init();
2801 const char* p = style + 2;
2802 while (*p != '\0')
2803 {
2804 if (hex_p(p[0]) && hex_p(p[1]))
2805 {
2806 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2807 desc += c;
2808 p += 2;
2809 }
2810 else if (*p == '-' || *p == ':')
2811 ++p;
2812 else
2813 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2814 style);
2815 }
2816 descsz = desc.size();
2817 }
2818 else
2819 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2820
2821 // Create the note.
2822 size_t trailing_padding;
2823 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2824 ".note.gnu.build-id", descsz, true,
2825 &trailing_padding);
2826 if (os == NULL)
2827 return;
2828
2829 if (!desc.empty())
2830 {
2831 // We know the value already, so we fill it in now.
2832 gold_assert(desc.size() == descsz);
2833
2834 Output_section_data* posd = new Output_data_const(desc, 4);
2835 os->add_output_section_data(posd);
2836
2837 if (trailing_padding != 0)
2838 {
2839 posd = new Output_data_zero_fill(trailing_padding, 0);
2840 os->add_output_section_data(posd);
2841 }
2842 }
2843 else
2844 {
2845 // We need to compute a checksum after we have completed the
2846 // link.
2847 gold_assert(trailing_padding == 0);
2848 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2849 os->add_output_section_data(this->build_id_note_);
2850 }
2851 }
2852
2853 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2854 // field of the former should point to the latter. I'm not sure who
2855 // started this, but the GNU linker does it, and some tools depend
2856 // upon it.
2857
2858 void
2859 Layout::link_stabs_sections()
2860 {
2861 if (!this->have_stabstr_section_)
2862 return;
2863
2864 for (Section_list::iterator p = this->section_list_.begin();
2865 p != this->section_list_.end();
2866 ++p)
2867 {
2868 if ((*p)->type() != elfcpp::SHT_STRTAB)
2869 continue;
2870
2871 const char* name = (*p)->name();
2872 if (strncmp(name, ".stab", 5) != 0)
2873 continue;
2874
2875 size_t len = strlen(name);
2876 if (strcmp(name + len - 3, "str") != 0)
2877 continue;
2878
2879 std::string stab_name(name, len - 3);
2880 Output_section* stab_sec;
2881 stab_sec = this->find_output_section(stab_name.c_str());
2882 if (stab_sec != NULL)
2883 stab_sec->set_link_section(*p);
2884 }
2885 }
2886
2887 // Create .gnu_incremental_inputs and related sections needed
2888 // for the next run of incremental linking to check what has changed.
2889
2890 void
2891 Layout::create_incremental_info_sections(Symbol_table* symtab)
2892 {
2893 Incremental_inputs* incr = this->incremental_inputs_;
2894
2895 gold_assert(incr != NULL);
2896
2897 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2898 incr->create_data_sections(symtab);
2899
2900 // Add the .gnu_incremental_inputs section.
2901 const char* incremental_inputs_name =
2902 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2903 Output_section* incremental_inputs_os =
2904 this->make_output_section(incremental_inputs_name,
2905 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2906 ORDER_INVALID, false);
2907 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2908
2909 // Add the .gnu_incremental_symtab section.
2910 const char* incremental_symtab_name =
2911 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2912 Output_section* incremental_symtab_os =
2913 this->make_output_section(incremental_symtab_name,
2914 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2915 ORDER_INVALID, false);
2916 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2917 incremental_symtab_os->set_entsize(4);
2918
2919 // Add the .gnu_incremental_relocs section.
2920 const char* incremental_relocs_name =
2921 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2922 Output_section* incremental_relocs_os =
2923 this->make_output_section(incremental_relocs_name,
2924 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2925 ORDER_INVALID, false);
2926 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2927 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2928
2929 // Add the .gnu_incremental_got_plt section.
2930 const char* incremental_got_plt_name =
2931 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2932 Output_section* incremental_got_plt_os =
2933 this->make_output_section(incremental_got_plt_name,
2934 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2935 ORDER_INVALID, false);
2936 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2937
2938 // Add the .gnu_incremental_strtab section.
2939 const char* incremental_strtab_name =
2940 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2941 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2942 elfcpp::SHT_STRTAB, 0,
2943 ORDER_INVALID, false);
2944 Output_data_strtab* strtab_data =
2945 new Output_data_strtab(incr->get_stringpool());
2946 incremental_strtab_os->add_output_section_data(strtab_data);
2947
2948 incremental_inputs_os->set_after_input_sections();
2949 incremental_symtab_os->set_after_input_sections();
2950 incremental_relocs_os->set_after_input_sections();
2951 incremental_got_plt_os->set_after_input_sections();
2952
2953 incremental_inputs_os->set_link_section(incremental_strtab_os);
2954 incremental_symtab_os->set_link_section(incremental_inputs_os);
2955 incremental_relocs_os->set_link_section(incremental_inputs_os);
2956 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2957 }
2958
2959 // Return whether SEG1 should be before SEG2 in the output file. This
2960 // is based entirely on the segment type and flags. When this is
2961 // called the segment addresses have normally not yet been set.
2962
2963 bool
2964 Layout::segment_precedes(const Output_segment* seg1,
2965 const Output_segment* seg2)
2966 {
2967 elfcpp::Elf_Word type1 = seg1->type();
2968 elfcpp::Elf_Word type2 = seg2->type();
2969
2970 // The single PT_PHDR segment is required to precede any loadable
2971 // segment. We simply make it always first.
2972 if (type1 == elfcpp::PT_PHDR)
2973 {
2974 gold_assert(type2 != elfcpp::PT_PHDR);
2975 return true;
2976 }
2977 if (type2 == elfcpp::PT_PHDR)
2978 return false;
2979
2980 // The single PT_INTERP segment is required to precede any loadable
2981 // segment. We simply make it always second.
2982 if (type1 == elfcpp::PT_INTERP)
2983 {
2984 gold_assert(type2 != elfcpp::PT_INTERP);
2985 return true;
2986 }
2987 if (type2 == elfcpp::PT_INTERP)
2988 return false;
2989
2990 // We then put PT_LOAD segments before any other segments.
2991 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2992 return true;
2993 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2994 return false;
2995
2996 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2997 // segment, because that is where the dynamic linker expects to find
2998 // it (this is just for efficiency; other positions would also work
2999 // correctly).
3000 if (type1 == elfcpp::PT_TLS
3001 && type2 != elfcpp::PT_TLS
3002 && type2 != elfcpp::PT_GNU_RELRO)
3003 return false;
3004 if (type2 == elfcpp::PT_TLS
3005 && type1 != elfcpp::PT_TLS
3006 && type1 != elfcpp::PT_GNU_RELRO)
3007 return true;
3008
3009 // We put the PT_GNU_RELRO segment last, because that is where the
3010 // dynamic linker expects to find it (as with PT_TLS, this is just
3011 // for efficiency).
3012 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3013 return false;
3014 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3015 return true;
3016
3017 const elfcpp::Elf_Word flags1 = seg1->flags();
3018 const elfcpp::Elf_Word flags2 = seg2->flags();
3019
3020 // The order of non-PT_LOAD segments is unimportant. We simply sort
3021 // by the numeric segment type and flags values. There should not
3022 // be more than one segment with the same type and flags.
3023 if (type1 != elfcpp::PT_LOAD)
3024 {
3025 if (type1 != type2)
3026 return type1 < type2;
3027 gold_assert(flags1 != flags2);
3028 return flags1 < flags2;
3029 }
3030
3031 // If the addresses are set already, sort by load address.
3032 if (seg1->are_addresses_set())
3033 {
3034 if (!seg2->are_addresses_set())
3035 return true;
3036
3037 unsigned int section_count1 = seg1->output_section_count();
3038 unsigned int section_count2 = seg2->output_section_count();
3039 if (section_count1 == 0 && section_count2 > 0)
3040 return true;
3041 if (section_count1 > 0 && section_count2 == 0)
3042 return false;
3043
3044 uint64_t paddr1 = (seg1->are_addresses_set()
3045 ? seg1->paddr()
3046 : seg1->first_section_load_address());
3047 uint64_t paddr2 = (seg2->are_addresses_set()
3048 ? seg2->paddr()
3049 : seg2->first_section_load_address());
3050
3051 if (paddr1 != paddr2)
3052 return paddr1 < paddr2;
3053 }
3054 else if (seg2->are_addresses_set())
3055 return false;
3056
3057 // A segment which holds large data comes after a segment which does
3058 // not hold large data.
3059 if (seg1->is_large_data_segment())
3060 {
3061 if (!seg2->is_large_data_segment())
3062 return false;
3063 }
3064 else if (seg2->is_large_data_segment())
3065 return true;
3066
3067 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3068 // segments come before writable segments. Then writable segments
3069 // with data come before writable segments without data. Then
3070 // executable segments come before non-executable segments. Then
3071 // the unlikely case of a non-readable segment comes before the
3072 // normal case of a readable segment. If there are multiple
3073 // segments with the same type and flags, we require that the
3074 // address be set, and we sort by virtual address and then physical
3075 // address.
3076 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3077 return (flags1 & elfcpp::PF_W) == 0;
3078 if ((flags1 & elfcpp::PF_W) != 0
3079 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3080 return seg1->has_any_data_sections();
3081 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3082 return (flags1 & elfcpp::PF_X) != 0;
3083 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3084 return (flags1 & elfcpp::PF_R) == 0;
3085
3086 // We shouldn't get here--we shouldn't create segments which we
3087 // can't distinguish. Unless of course we are using a weird linker
3088 // script or overlapping --section-start options.
3089 gold_assert(this->script_options_->saw_phdrs_clause()
3090 || parameters->options().any_section_start());
3091 return false;
3092 }
3093
3094 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3095
3096 static off_t
3097 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3098 {
3099 uint64_t unsigned_off = off;
3100 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3101 | (addr & (abi_pagesize - 1)));
3102 if (aligned_off < unsigned_off)
3103 aligned_off += abi_pagesize;
3104 return aligned_off;
3105 }
3106
3107 // Set the file offsets of all the segments, and all the sections they
3108 // contain. They have all been created. LOAD_SEG must be be laid out
3109 // first. Return the offset of the data to follow.
3110
3111 off_t
3112 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3113 unsigned int* pshndx)
3114 {
3115 // Sort them into the final order. We use a stable sort so that we
3116 // don't randomize the order of indistinguishable segments created
3117 // by linker scripts.
3118 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3119 Layout::Compare_segments(this));
3120
3121 // Find the PT_LOAD segments, and set their addresses and offsets
3122 // and their section's addresses and offsets.
3123 uint64_t start_addr;
3124 if (parameters->options().user_set_Ttext())
3125 start_addr = parameters->options().Ttext();
3126 else if (parameters->options().output_is_position_independent())
3127 start_addr = 0;
3128 else
3129 start_addr = target->default_text_segment_address();
3130
3131 uint64_t addr = start_addr;
3132 off_t off = 0;
3133
3134 // If LOAD_SEG is NULL, then the file header and segment headers
3135 // will not be loadable. But they still need to be at offset 0 in
3136 // the file. Set their offsets now.
3137 if (load_seg == NULL)
3138 {
3139 for (Data_list::iterator p = this->special_output_list_.begin();
3140 p != this->special_output_list_.end();
3141 ++p)
3142 {
3143 off = align_address(off, (*p)->addralign());
3144 (*p)->set_address_and_file_offset(0, off);
3145 off += (*p)->data_size();
3146 }
3147 }
3148
3149 unsigned int increase_relro = this->increase_relro_;
3150 if (this->script_options_->saw_sections_clause())
3151 increase_relro = 0;
3152
3153 const bool check_sections = parameters->options().check_sections();
3154 Output_segment* last_load_segment = NULL;
3155
3156 unsigned int shndx_begin = *pshndx;
3157 unsigned int shndx_load_seg = *pshndx;
3158
3159 for (Segment_list::iterator p = this->segment_list_.begin();
3160 p != this->segment_list_.end();
3161 ++p)
3162 {
3163 if ((*p)->type() == elfcpp::PT_LOAD)
3164 {
3165 if (target->isolate_execinstr())
3166 {
3167 // When we hit the segment that should contain the
3168 // file headers, reset the file offset so we place
3169 // it and subsequent segments appropriately.
3170 // We'll fix up the preceding segments below.
3171 if (load_seg == *p)
3172 {
3173 if (off == 0)
3174 load_seg = NULL;
3175 else
3176 {
3177 off = 0;
3178 shndx_load_seg = *pshndx;
3179 }
3180 }
3181 }
3182 else
3183 {
3184 // Verify that the file headers fall into the first segment.
3185 if (load_seg != NULL && load_seg != *p)
3186 gold_unreachable();
3187 load_seg = NULL;
3188 }
3189
3190 bool are_addresses_set = (*p)->are_addresses_set();
3191 if (are_addresses_set)
3192 {
3193 // When it comes to setting file offsets, we care about
3194 // the physical address.
3195 addr = (*p)->paddr();
3196 }
3197 else if (parameters->options().user_set_Ttext()
3198 && ((*p)->flags() & elfcpp::PF_W) == 0)
3199 {
3200 are_addresses_set = true;
3201 }
3202 else if (parameters->options().user_set_Tdata()
3203 && ((*p)->flags() & elfcpp::PF_W) != 0
3204 && (!parameters->options().user_set_Tbss()
3205 || (*p)->has_any_data_sections()))
3206 {
3207 addr = parameters->options().Tdata();
3208 are_addresses_set = true;
3209 }
3210 else if (parameters->options().user_set_Tbss()
3211 && ((*p)->flags() & elfcpp::PF_W) != 0
3212 && !(*p)->has_any_data_sections())
3213 {
3214 addr = parameters->options().Tbss();
3215 are_addresses_set = true;
3216 }
3217
3218 uint64_t orig_addr = addr;
3219 uint64_t orig_off = off;
3220
3221 uint64_t aligned_addr = 0;
3222 uint64_t abi_pagesize = target->abi_pagesize();
3223 uint64_t common_pagesize = target->common_pagesize();
3224
3225 if (!parameters->options().nmagic()
3226 && !parameters->options().omagic())
3227 (*p)->set_minimum_p_align(common_pagesize);
3228
3229 if (!are_addresses_set)
3230 {
3231 // Skip the address forward one page, maintaining the same
3232 // position within the page. This lets us store both segments
3233 // overlapping on a single page in the file, but the loader will
3234 // put them on different pages in memory. We will revisit this
3235 // decision once we know the size of the segment.
3236
3237 addr = align_address(addr, (*p)->maximum_alignment());
3238 aligned_addr = addr;
3239
3240 if (load_seg == *p)
3241 {
3242 // This is the segment that will contain the file
3243 // headers, so its offset will have to be exactly zero.
3244 gold_assert(orig_off == 0);
3245
3246 // If the target wants a fixed minimum distance from the
3247 // text segment to the read-only segment, move up now.
3248 uint64_t min_addr = start_addr + target->rosegment_gap();
3249 if (addr < min_addr)
3250 addr = min_addr;
3251
3252 // But this is not the first segment! To make its
3253 // address congruent with its offset, that address better
3254 // be aligned to the ABI-mandated page size.
3255 addr = align_address(addr, abi_pagesize);
3256 aligned_addr = addr;
3257 }
3258 else
3259 {
3260 if ((addr & (abi_pagesize - 1)) != 0)
3261 addr = addr + abi_pagesize;
3262
3263 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3264 }
3265 }
3266
3267 if (!parameters->options().nmagic()
3268 && !parameters->options().omagic())
3269 off = align_file_offset(off, addr, abi_pagesize);
3270 else
3271 {
3272 // This is -N or -n with a section script which prevents
3273 // us from using a load segment. We need to ensure that
3274 // the file offset is aligned to the alignment of the
3275 // segment. This is because the linker script
3276 // implicitly assumed a zero offset. If we don't align
3277 // here, then the alignment of the sections in the
3278 // linker script may not match the alignment of the
3279 // sections in the set_section_addresses call below,
3280 // causing an error about dot moving backward.
3281 off = align_address(off, (*p)->maximum_alignment());
3282 }
3283
3284 unsigned int shndx_hold = *pshndx;
3285 bool has_relro = false;
3286 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3287 &increase_relro,
3288 &has_relro,
3289 &off, pshndx);
3290
3291 // Now that we know the size of this segment, we may be able
3292 // to save a page in memory, at the cost of wasting some
3293 // file space, by instead aligning to the start of a new
3294 // page. Here we use the real machine page size rather than
3295 // the ABI mandated page size. If the segment has been
3296 // aligned so that the relro data ends at a page boundary,
3297 // we do not try to realign it.
3298
3299 if (!are_addresses_set
3300 && !has_relro
3301 && aligned_addr != addr
3302 && !parameters->incremental())
3303 {
3304 uint64_t first_off = (common_pagesize
3305 - (aligned_addr
3306 & (common_pagesize - 1)));
3307 uint64_t last_off = new_addr & (common_pagesize - 1);
3308 if (first_off > 0
3309 && last_off > 0
3310 && ((aligned_addr & ~ (common_pagesize - 1))
3311 != (new_addr & ~ (common_pagesize - 1)))
3312 && first_off + last_off <= common_pagesize)
3313 {
3314 *pshndx = shndx_hold;
3315 addr = align_address(aligned_addr, common_pagesize);
3316 addr = align_address(addr, (*p)->maximum_alignment());
3317 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3318 off = align_file_offset(off, addr, abi_pagesize);
3319
3320 increase_relro = this->increase_relro_;
3321 if (this->script_options_->saw_sections_clause())
3322 increase_relro = 0;
3323 has_relro = false;
3324
3325 new_addr = (*p)->set_section_addresses(this, true, addr,
3326 &increase_relro,
3327 &has_relro,
3328 &off, pshndx);
3329 }
3330 }
3331
3332 addr = new_addr;
3333
3334 // Implement --check-sections. We know that the segments
3335 // are sorted by LMA.
3336 if (check_sections && last_load_segment != NULL)
3337 {
3338 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3339 if (last_load_segment->paddr() + last_load_segment->memsz()
3340 > (*p)->paddr())
3341 {
3342 unsigned long long lb1 = last_load_segment->paddr();
3343 unsigned long long le1 = lb1 + last_load_segment->memsz();
3344 unsigned long long lb2 = (*p)->paddr();
3345 unsigned long long le2 = lb2 + (*p)->memsz();
3346 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3347 "[0x%llx -> 0x%llx]"),
3348 lb1, le1, lb2, le2);
3349 }
3350 }
3351 last_load_segment = *p;
3352 }
3353 }
3354
3355 if (load_seg != NULL && target->isolate_execinstr())
3356 {
3357 // Process the early segments again, setting their file offsets
3358 // so they land after the segments starting at LOAD_SEG.
3359 off = align_file_offset(off, 0, target->abi_pagesize());
3360
3361 for (Segment_list::iterator p = this->segment_list_.begin();
3362 *p != load_seg;
3363 ++p)
3364 {
3365 if ((*p)->type() == elfcpp::PT_LOAD)
3366 {
3367 // We repeat the whole job of assigning addresses and
3368 // offsets, but we really only want to change the offsets and
3369 // must ensure that the addresses all come out the same as
3370 // they did the first time through.
3371 bool has_relro = false;
3372 const uint64_t old_addr = (*p)->vaddr();
3373 const uint64_t old_end = old_addr + (*p)->memsz();
3374 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3375 old_addr,
3376 &increase_relro,
3377 &has_relro,
3378 &off,
3379 &shndx_begin);
3380 gold_assert(new_addr == old_end);
3381 }
3382 }
3383
3384 gold_assert(shndx_begin == shndx_load_seg);
3385 }
3386
3387 // Handle the non-PT_LOAD segments, setting their offsets from their
3388 // section's offsets.
3389 for (Segment_list::iterator p = this->segment_list_.begin();
3390 p != this->segment_list_.end();
3391 ++p)
3392 {
3393 if ((*p)->type() != elfcpp::PT_LOAD)
3394 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3395 ? increase_relro
3396 : 0);
3397 }
3398
3399 // Set the TLS offsets for each section in the PT_TLS segment.
3400 if (this->tls_segment_ != NULL)
3401 this->tls_segment_->set_tls_offsets();
3402
3403 return off;
3404 }
3405
3406 // Set the offsets of all the allocated sections when doing a
3407 // relocatable link. This does the same jobs as set_segment_offsets,
3408 // only for a relocatable link.
3409
3410 off_t
3411 Layout::set_relocatable_section_offsets(Output_data* file_header,
3412 unsigned int* pshndx)
3413 {
3414 off_t off = 0;
3415
3416 file_header->set_address_and_file_offset(0, 0);
3417 off += file_header->data_size();
3418
3419 for (Section_list::iterator p = this->section_list_.begin();
3420 p != this->section_list_.end();
3421 ++p)
3422 {
3423 // We skip unallocated sections here, except that group sections
3424 // have to come first.
3425 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3426 && (*p)->type() != elfcpp::SHT_GROUP)
3427 continue;
3428
3429 off = align_address(off, (*p)->addralign());
3430
3431 // The linker script might have set the address.
3432 if (!(*p)->is_address_valid())
3433 (*p)->set_address(0);
3434 (*p)->set_file_offset(off);
3435 (*p)->finalize_data_size();
3436 off += (*p)->data_size();
3437
3438 (*p)->set_out_shndx(*pshndx);
3439 ++*pshndx;
3440 }
3441
3442 return off;
3443 }
3444
3445 // Set the file offset of all the sections not associated with a
3446 // segment.
3447
3448 off_t
3449 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3450 {
3451 off_t startoff = off;
3452 off_t maxoff = off;
3453
3454 for (Section_list::iterator p = this->unattached_section_list_.begin();
3455 p != this->unattached_section_list_.end();
3456 ++p)
3457 {
3458 // The symtab section is handled in create_symtab_sections.
3459 if (*p == this->symtab_section_)
3460 continue;
3461
3462 // If we've already set the data size, don't set it again.
3463 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3464 continue;
3465
3466 if (pass == BEFORE_INPUT_SECTIONS_PASS
3467 && (*p)->requires_postprocessing())
3468 {
3469 (*p)->create_postprocessing_buffer();
3470 this->any_postprocessing_sections_ = true;
3471 }
3472
3473 if (pass == BEFORE_INPUT_SECTIONS_PASS
3474 && (*p)->after_input_sections())
3475 continue;
3476 else if (pass == POSTPROCESSING_SECTIONS_PASS
3477 && (!(*p)->after_input_sections()
3478 || (*p)->type() == elfcpp::SHT_STRTAB))
3479 continue;
3480 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3481 && (!(*p)->after_input_sections()
3482 || (*p)->type() != elfcpp::SHT_STRTAB))
3483 continue;
3484
3485 if (!parameters->incremental_update())
3486 {
3487 off = align_address(off, (*p)->addralign());
3488 (*p)->set_file_offset(off);
3489 (*p)->finalize_data_size();
3490 }
3491 else
3492 {
3493 // Incremental update: allocate file space from free list.
3494 (*p)->pre_finalize_data_size();
3495 off_t current_size = (*p)->current_data_size();
3496 off = this->allocate(current_size, (*p)->addralign(), startoff);
3497 if (off == -1)
3498 {
3499 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3500 this->free_list_.dump();
3501 gold_assert((*p)->output_section() != NULL);
3502 gold_fallback(_("out of patch space for section %s; "
3503 "relink with --incremental-full"),
3504 (*p)->output_section()->name());
3505 }
3506 (*p)->set_file_offset(off);
3507 (*p)->finalize_data_size();
3508 if ((*p)->data_size() > current_size)
3509 {
3510 gold_assert((*p)->output_section() != NULL);
3511 gold_fallback(_("%s: section changed size; "
3512 "relink with --incremental-full"),
3513 (*p)->output_section()->name());
3514 }
3515 gold_debug(DEBUG_INCREMENTAL,
3516 "set_section_offsets: %08lx %08lx %s",
3517 static_cast<long>(off),
3518 static_cast<long>((*p)->data_size()),
3519 ((*p)->output_section() != NULL
3520 ? (*p)->output_section()->name() : "(special)"));
3521 }
3522
3523 off += (*p)->data_size();
3524 if (off > maxoff)
3525 maxoff = off;
3526
3527 // At this point the name must be set.
3528 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3529 this->namepool_.add((*p)->name(), false, NULL);
3530 }
3531 return maxoff;
3532 }
3533
3534 // Set the section indexes of all the sections not associated with a
3535 // segment.
3536
3537 unsigned int
3538 Layout::set_section_indexes(unsigned int shndx)
3539 {
3540 for (Section_list::iterator p = this->unattached_section_list_.begin();
3541 p != this->unattached_section_list_.end();
3542 ++p)
3543 {
3544 if (!(*p)->has_out_shndx())
3545 {
3546 (*p)->set_out_shndx(shndx);
3547 ++shndx;
3548 }
3549 }
3550 return shndx;
3551 }
3552
3553 // Set the section addresses according to the linker script. This is
3554 // only called when we see a SECTIONS clause. This returns the
3555 // program segment which should hold the file header and segment
3556 // headers, if any. It will return NULL if they should not be in a
3557 // segment.
3558
3559 Output_segment*
3560 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3561 {
3562 Script_sections* ss = this->script_options_->script_sections();
3563 gold_assert(ss->saw_sections_clause());
3564 return this->script_options_->set_section_addresses(symtab, this);
3565 }
3566
3567 // Place the orphan sections in the linker script.
3568
3569 void
3570 Layout::place_orphan_sections_in_script()
3571 {
3572 Script_sections* ss = this->script_options_->script_sections();
3573 gold_assert(ss->saw_sections_clause());
3574
3575 // Place each orphaned output section in the script.
3576 for (Section_list::iterator p = this->section_list_.begin();
3577 p != this->section_list_.end();
3578 ++p)
3579 {
3580 if (!(*p)->found_in_sections_clause())
3581 ss->place_orphan(*p);
3582 }
3583 }
3584
3585 // Count the local symbols in the regular symbol table and the dynamic
3586 // symbol table, and build the respective string pools.
3587
3588 void
3589 Layout::count_local_symbols(const Task* task,
3590 const Input_objects* input_objects)
3591 {
3592 // First, figure out an upper bound on the number of symbols we'll
3593 // be inserting into each pool. This helps us create the pools with
3594 // the right size, to avoid unnecessary hashtable resizing.
3595 unsigned int symbol_count = 0;
3596 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3597 p != input_objects->relobj_end();
3598 ++p)
3599 symbol_count += (*p)->local_symbol_count();
3600
3601 // Go from "upper bound" to "estimate." We overcount for two
3602 // reasons: we double-count symbols that occur in more than one
3603 // object file, and we count symbols that are dropped from the
3604 // output. Add it all together and assume we overcount by 100%.
3605 symbol_count /= 2;
3606
3607 // We assume all symbols will go into both the sympool and dynpool.
3608 this->sympool_.reserve(symbol_count);
3609 this->dynpool_.reserve(symbol_count);
3610
3611 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3612 p != input_objects->relobj_end();
3613 ++p)
3614 {
3615 Task_lock_obj<Object> tlo(task, *p);
3616 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3617 }
3618 }
3619
3620 // Create the symbol table sections. Here we also set the final
3621 // values of the symbols. At this point all the loadable sections are
3622 // fully laid out. SHNUM is the number of sections so far.
3623
3624 void
3625 Layout::create_symtab_sections(const Input_objects* input_objects,
3626 Symbol_table* symtab,
3627 unsigned int shnum,
3628 off_t* poff)
3629 {
3630 int symsize;
3631 unsigned int align;
3632 if (parameters->target().get_size() == 32)
3633 {
3634 symsize = elfcpp::Elf_sizes<32>::sym_size;
3635 align = 4;
3636 }
3637 else if (parameters->target().get_size() == 64)
3638 {
3639 symsize = elfcpp::Elf_sizes<64>::sym_size;
3640 align = 8;
3641 }
3642 else
3643 gold_unreachable();
3644
3645 // Compute file offsets relative to the start of the symtab section.
3646 off_t off = 0;
3647
3648 // Save space for the dummy symbol at the start of the section. We
3649 // never bother to write this out--it will just be left as zero.
3650 off += symsize;
3651 unsigned int local_symbol_index = 1;
3652
3653 // Add STT_SECTION symbols for each Output section which needs one.
3654 for (Section_list::iterator p = this->section_list_.begin();
3655 p != this->section_list_.end();
3656 ++p)
3657 {
3658 if (!(*p)->needs_symtab_index())
3659 (*p)->set_symtab_index(-1U);
3660 else
3661 {
3662 (*p)->set_symtab_index(local_symbol_index);
3663 ++local_symbol_index;
3664 off += symsize;
3665 }
3666 }
3667
3668 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3669 p != input_objects->relobj_end();
3670 ++p)
3671 {
3672 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3673 off, symtab);
3674 off += (index - local_symbol_index) * symsize;
3675 local_symbol_index = index;
3676 }
3677
3678 unsigned int local_symcount = local_symbol_index;
3679 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3680
3681 off_t dynoff;
3682 size_t dyn_global_index;
3683 size_t dyncount;
3684 if (this->dynsym_section_ == NULL)
3685 {
3686 dynoff = 0;
3687 dyn_global_index = 0;
3688 dyncount = 0;
3689 }
3690 else
3691 {
3692 dyn_global_index = this->dynsym_section_->info();
3693 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3694 dynoff = this->dynsym_section_->offset() + locsize;
3695 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3696 gold_assert(static_cast<off_t>(dyncount * symsize)
3697 == this->dynsym_section_->data_size() - locsize);
3698 }
3699
3700 off_t global_off = off;
3701 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3702 &this->sympool_, &local_symcount);
3703
3704 if (!parameters->options().strip_all())
3705 {
3706 this->sympool_.set_string_offsets();
3707
3708 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3709 Output_section* osymtab = this->make_output_section(symtab_name,
3710 elfcpp::SHT_SYMTAB,
3711 0, ORDER_INVALID,
3712 false);
3713 this->symtab_section_ = osymtab;
3714
3715 Output_section_data* pos = new Output_data_fixed_space(off, align,
3716 "** symtab");
3717 osymtab->add_output_section_data(pos);
3718
3719 // We generate a .symtab_shndx section if we have more than
3720 // SHN_LORESERVE sections. Technically it is possible that we
3721 // don't need one, because it is possible that there are no
3722 // symbols in any of sections with indexes larger than
3723 // SHN_LORESERVE. That is probably unusual, though, and it is
3724 // easier to always create one than to compute section indexes
3725 // twice (once here, once when writing out the symbols).
3726 if (shnum >= elfcpp::SHN_LORESERVE)
3727 {
3728 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3729 false, NULL);
3730 Output_section* osymtab_xindex =
3731 this->make_output_section(symtab_xindex_name,
3732 elfcpp::SHT_SYMTAB_SHNDX, 0,
3733 ORDER_INVALID, false);
3734
3735 size_t symcount = off / symsize;
3736 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3737
3738 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3739
3740 osymtab_xindex->set_link_section(osymtab);
3741 osymtab_xindex->set_addralign(4);
3742 osymtab_xindex->set_entsize(4);
3743
3744 osymtab_xindex->set_after_input_sections();
3745
3746 // This tells the driver code to wait until the symbol table
3747 // has written out before writing out the postprocessing
3748 // sections, including the .symtab_shndx section.
3749 this->any_postprocessing_sections_ = true;
3750 }
3751
3752 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3753 Output_section* ostrtab = this->make_output_section(strtab_name,
3754 elfcpp::SHT_STRTAB,
3755 0, ORDER_INVALID,
3756 false);
3757
3758 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3759 ostrtab->add_output_section_data(pstr);
3760
3761 off_t symtab_off;
3762 if (!parameters->incremental_update())
3763 symtab_off = align_address(*poff, align);
3764 else
3765 {
3766 symtab_off = this->allocate(off, align, *poff);
3767 if (off == -1)
3768 gold_fallback(_("out of patch space for symbol table; "
3769 "relink with --incremental-full"));
3770 gold_debug(DEBUG_INCREMENTAL,
3771 "create_symtab_sections: %08lx %08lx .symtab",
3772 static_cast<long>(symtab_off),
3773 static_cast<long>(off));
3774 }
3775
3776 symtab->set_file_offset(symtab_off + global_off);
3777 osymtab->set_file_offset(symtab_off);
3778 osymtab->finalize_data_size();
3779 osymtab->set_link_section(ostrtab);
3780 osymtab->set_info(local_symcount);
3781 osymtab->set_entsize(symsize);
3782
3783 if (symtab_off + off > *poff)
3784 *poff = symtab_off + off;
3785 }
3786 }
3787
3788 // Create the .shstrtab section, which holds the names of the
3789 // sections. At the time this is called, we have created all the
3790 // output sections except .shstrtab itself.
3791
3792 Output_section*
3793 Layout::create_shstrtab()
3794 {
3795 // FIXME: We don't need to create a .shstrtab section if we are
3796 // stripping everything.
3797
3798 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3799
3800 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3801 ORDER_INVALID, false);
3802
3803 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3804 {
3805 // We can't write out this section until we've set all the
3806 // section names, and we don't set the names of compressed
3807 // output sections until relocations are complete. FIXME: With
3808 // the current names we use, this is unnecessary.
3809 os->set_after_input_sections();
3810 }
3811
3812 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3813 os->add_output_section_data(posd);
3814
3815 return os;
3816 }
3817
3818 // Create the section headers. SIZE is 32 or 64. OFF is the file
3819 // offset.
3820
3821 void
3822 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3823 {
3824 Output_section_headers* oshdrs;
3825 oshdrs = new Output_section_headers(this,
3826 &this->segment_list_,
3827 &this->section_list_,
3828 &this->unattached_section_list_,
3829 &this->namepool_,
3830 shstrtab_section);
3831 off_t off;
3832 if (!parameters->incremental_update())
3833 off = align_address(*poff, oshdrs->addralign());
3834 else
3835 {
3836 oshdrs->pre_finalize_data_size();
3837 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3838 if (off == -1)
3839 gold_fallback(_("out of patch space for section header table; "
3840 "relink with --incremental-full"));
3841 gold_debug(DEBUG_INCREMENTAL,
3842 "create_shdrs: %08lx %08lx (section header table)",
3843 static_cast<long>(off),
3844 static_cast<long>(off + oshdrs->data_size()));
3845 }
3846 oshdrs->set_address_and_file_offset(0, off);
3847 off += oshdrs->data_size();
3848 if (off > *poff)
3849 *poff = off;
3850 this->section_headers_ = oshdrs;
3851 }
3852
3853 // Count the allocated sections.
3854
3855 size_t
3856 Layout::allocated_output_section_count() const
3857 {
3858 size_t section_count = 0;
3859 for (Segment_list::const_iterator p = this->segment_list_.begin();
3860 p != this->segment_list_.end();
3861 ++p)
3862 section_count += (*p)->output_section_count();
3863 return section_count;
3864 }
3865
3866 // Create the dynamic symbol table.
3867
3868 void
3869 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3870 Symbol_table* symtab,
3871 Output_section** pdynstr,
3872 unsigned int* plocal_dynamic_count,
3873 std::vector<Symbol*>* pdynamic_symbols,
3874 Versions* pversions)
3875 {
3876 // Count all the symbols in the dynamic symbol table, and set the
3877 // dynamic symbol indexes.
3878
3879 // Skip symbol 0, which is always all zeroes.
3880 unsigned int index = 1;
3881
3882 // Add STT_SECTION symbols for each Output section which needs one.
3883 for (Section_list::iterator p = this->section_list_.begin();
3884 p != this->section_list_.end();
3885 ++p)
3886 {
3887 if (!(*p)->needs_dynsym_index())
3888 (*p)->set_dynsym_index(-1U);
3889 else
3890 {
3891 (*p)->set_dynsym_index(index);
3892 ++index;
3893 }
3894 }
3895
3896 // Count the local symbols that need to go in the dynamic symbol table,
3897 // and set the dynamic symbol indexes.
3898 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3899 p != input_objects->relobj_end();
3900 ++p)
3901 {
3902 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3903 index = new_index;
3904 }
3905
3906 unsigned int local_symcount = index;
3907 *plocal_dynamic_count = local_symcount;
3908
3909 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3910 &this->dynpool_, pversions);
3911
3912 int symsize;
3913 unsigned int align;
3914 const int size = parameters->target().get_size();
3915 if (size == 32)
3916 {
3917 symsize = elfcpp::Elf_sizes<32>::sym_size;
3918 align = 4;
3919 }
3920 else if (size == 64)
3921 {
3922 symsize = elfcpp::Elf_sizes<64>::sym_size;
3923 align = 8;
3924 }
3925 else
3926 gold_unreachable();
3927
3928 // Create the dynamic symbol table section.
3929
3930 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3931 elfcpp::SHT_DYNSYM,
3932 elfcpp::SHF_ALLOC,
3933 false,
3934 ORDER_DYNAMIC_LINKER,
3935 false);
3936
3937 // Check for NULL as a linker script may discard .dynsym.
3938 if (dynsym != NULL)
3939 {
3940 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3941 align,
3942 "** dynsym");
3943 dynsym->add_output_section_data(odata);
3944
3945 dynsym->set_info(local_symcount);
3946 dynsym->set_entsize(symsize);
3947 dynsym->set_addralign(align);
3948
3949 this->dynsym_section_ = dynsym;
3950 }
3951
3952 Output_data_dynamic* const odyn = this->dynamic_data_;
3953 if (odyn != NULL)
3954 {
3955 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3956 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3957 }
3958
3959 // If there are more than SHN_LORESERVE allocated sections, we
3960 // create a .dynsym_shndx section. It is possible that we don't
3961 // need one, because it is possible that there are no dynamic
3962 // symbols in any of the sections with indexes larger than
3963 // SHN_LORESERVE. This is probably unusual, though, and at this
3964 // time we don't know the actual section indexes so it is
3965 // inconvenient to check.
3966 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3967 {
3968 Output_section* dynsym_xindex =
3969 this->choose_output_section(NULL, ".dynsym_shndx",
3970 elfcpp::SHT_SYMTAB_SHNDX,
3971 elfcpp::SHF_ALLOC,
3972 false, ORDER_DYNAMIC_LINKER, false);
3973
3974 if (dynsym_xindex != NULL)
3975 {
3976 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3977
3978 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3979
3980 dynsym_xindex->set_link_section(dynsym);
3981 dynsym_xindex->set_addralign(4);
3982 dynsym_xindex->set_entsize(4);
3983
3984 dynsym_xindex->set_after_input_sections();
3985
3986 // This tells the driver code to wait until the symbol table
3987 // has written out before writing out the postprocessing
3988 // sections, including the .dynsym_shndx section.
3989 this->any_postprocessing_sections_ = true;
3990 }
3991 }
3992
3993 // Create the dynamic string table section.
3994
3995 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3996 elfcpp::SHT_STRTAB,
3997 elfcpp::SHF_ALLOC,
3998 false,
3999 ORDER_DYNAMIC_LINKER,
4000 false);
4001
4002 if (dynstr != NULL)
4003 {
4004 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4005 dynstr->add_output_section_data(strdata);
4006
4007 if (dynsym != NULL)
4008 dynsym->set_link_section(dynstr);
4009 if (this->dynamic_section_ != NULL)
4010 this->dynamic_section_->set_link_section(dynstr);
4011
4012 if (odyn != NULL)
4013 {
4014 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4015 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4016 }
4017
4018 *pdynstr = dynstr;
4019 }
4020
4021 // Create the hash tables.
4022
4023 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4024 || strcmp(parameters->options().hash_style(), "both") == 0)
4025 {
4026 unsigned char* phash;
4027 unsigned int hashlen;
4028 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4029 &phash, &hashlen);
4030
4031 Output_section* hashsec =
4032 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4033 elfcpp::SHF_ALLOC, false,
4034 ORDER_DYNAMIC_LINKER, false);
4035
4036 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4037 hashlen,
4038 align,
4039 "** hash");
4040 if (hashsec != NULL && hashdata != NULL)
4041 hashsec->add_output_section_data(hashdata);
4042
4043 if (hashsec != NULL)
4044 {
4045 if (dynsym != NULL)
4046 hashsec->set_link_section(dynsym);
4047 hashsec->set_entsize(4);
4048 }
4049
4050 if (odyn != NULL)
4051 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4052 }
4053
4054 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4055 || strcmp(parameters->options().hash_style(), "both") == 0)
4056 {
4057 unsigned char* phash;
4058 unsigned int hashlen;
4059 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4060 &phash, &hashlen);
4061
4062 Output_section* hashsec =
4063 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4064 elfcpp::SHF_ALLOC, false,
4065 ORDER_DYNAMIC_LINKER, false);
4066
4067 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4068 hashlen,
4069 align,
4070 "** hash");
4071 if (hashsec != NULL && hashdata != NULL)
4072 hashsec->add_output_section_data(hashdata);
4073
4074 if (hashsec != NULL)
4075 {
4076 if (dynsym != NULL)
4077 hashsec->set_link_section(dynsym);
4078
4079 // For a 64-bit target, the entries in .gnu.hash do not have
4080 // a uniform size, so we only set the entry size for a
4081 // 32-bit target.
4082 if (parameters->target().get_size() == 32)
4083 hashsec->set_entsize(4);
4084
4085 if (odyn != NULL)
4086 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4087 }
4088 }
4089 }
4090
4091 // Assign offsets to each local portion of the dynamic symbol table.
4092
4093 void
4094 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4095 {
4096 Output_section* dynsym = this->dynsym_section_;
4097 if (dynsym == NULL)
4098 return;
4099
4100 off_t off = dynsym->offset();
4101
4102 // Skip the dummy symbol at the start of the section.
4103 off += dynsym->entsize();
4104
4105 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4106 p != input_objects->relobj_end();
4107 ++p)
4108 {
4109 unsigned int count = (*p)->set_local_dynsym_offset(off);
4110 off += count * dynsym->entsize();
4111 }
4112 }
4113
4114 // Create the version sections.
4115
4116 void
4117 Layout::create_version_sections(const Versions* versions,
4118 const Symbol_table* symtab,
4119 unsigned int local_symcount,
4120 const std::vector<Symbol*>& dynamic_symbols,
4121 const Output_section* dynstr)
4122 {
4123 if (!versions->any_defs() && !versions->any_needs())
4124 return;
4125
4126 switch (parameters->size_and_endianness())
4127 {
4128 #ifdef HAVE_TARGET_32_LITTLE
4129 case Parameters::TARGET_32_LITTLE:
4130 this->sized_create_version_sections<32, false>(versions, symtab,
4131 local_symcount,
4132 dynamic_symbols, dynstr);
4133 break;
4134 #endif
4135 #ifdef HAVE_TARGET_32_BIG
4136 case Parameters::TARGET_32_BIG:
4137 this->sized_create_version_sections<32, true>(versions, symtab,
4138 local_symcount,
4139 dynamic_symbols, dynstr);
4140 break;
4141 #endif
4142 #ifdef HAVE_TARGET_64_LITTLE
4143 case Parameters::TARGET_64_LITTLE:
4144 this->sized_create_version_sections<64, false>(versions, symtab,
4145 local_symcount,
4146 dynamic_symbols, dynstr);
4147 break;
4148 #endif
4149 #ifdef HAVE_TARGET_64_BIG
4150 case Parameters::TARGET_64_BIG:
4151 this->sized_create_version_sections<64, true>(versions, symtab,
4152 local_symcount,
4153 dynamic_symbols, dynstr);
4154 break;
4155 #endif
4156 default:
4157 gold_unreachable();
4158 }
4159 }
4160
4161 // Create the version sections, sized version.
4162
4163 template<int size, bool big_endian>
4164 void
4165 Layout::sized_create_version_sections(
4166 const Versions* versions,
4167 const Symbol_table* symtab,
4168 unsigned int local_symcount,
4169 const std::vector<Symbol*>& dynamic_symbols,
4170 const Output_section* dynstr)
4171 {
4172 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4173 elfcpp::SHT_GNU_versym,
4174 elfcpp::SHF_ALLOC,
4175 false,
4176 ORDER_DYNAMIC_LINKER,
4177 false);
4178
4179 // Check for NULL since a linker script may discard this section.
4180 if (vsec != NULL)
4181 {
4182 unsigned char* vbuf;
4183 unsigned int vsize;
4184 versions->symbol_section_contents<size, big_endian>(symtab,
4185 &this->dynpool_,
4186 local_symcount,
4187 dynamic_symbols,
4188 &vbuf, &vsize);
4189
4190 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4191 "** versions");
4192
4193 vsec->add_output_section_data(vdata);
4194 vsec->set_entsize(2);
4195 vsec->set_link_section(this->dynsym_section_);
4196 }
4197
4198 Output_data_dynamic* const odyn = this->dynamic_data_;
4199 if (odyn != NULL && vsec != NULL)
4200 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4201
4202 if (versions->any_defs())
4203 {
4204 Output_section* vdsec;
4205 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4206 elfcpp::SHT_GNU_verdef,
4207 elfcpp::SHF_ALLOC,
4208 false, ORDER_DYNAMIC_LINKER, false);
4209
4210 if (vdsec != NULL)
4211 {
4212 unsigned char* vdbuf;
4213 unsigned int vdsize;
4214 unsigned int vdentries;
4215 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4216 &vdbuf, &vdsize,
4217 &vdentries);
4218
4219 Output_section_data* vddata =
4220 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4221
4222 vdsec->add_output_section_data(vddata);
4223 vdsec->set_link_section(dynstr);
4224 vdsec->set_info(vdentries);
4225
4226 if (odyn != NULL)
4227 {
4228 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4229 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4230 }
4231 }
4232 }
4233
4234 if (versions->any_needs())
4235 {
4236 Output_section* vnsec;
4237 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4238 elfcpp::SHT_GNU_verneed,
4239 elfcpp::SHF_ALLOC,
4240 false, ORDER_DYNAMIC_LINKER, false);
4241
4242 if (vnsec != NULL)
4243 {
4244 unsigned char* vnbuf;
4245 unsigned int vnsize;
4246 unsigned int vnentries;
4247 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4248 &vnbuf, &vnsize,
4249 &vnentries);
4250
4251 Output_section_data* vndata =
4252 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4253
4254 vnsec->add_output_section_data(vndata);
4255 vnsec->set_link_section(dynstr);
4256 vnsec->set_info(vnentries);
4257
4258 if (odyn != NULL)
4259 {
4260 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4261 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4262 }
4263 }
4264 }
4265 }
4266
4267 // Create the .interp section and PT_INTERP segment.
4268
4269 void
4270 Layout::create_interp(const Target* target)
4271 {
4272 gold_assert(this->interp_segment_ == NULL);
4273
4274 const char* interp = parameters->options().dynamic_linker();
4275 if (interp == NULL)
4276 {
4277 interp = target->dynamic_linker();
4278 gold_assert(interp != NULL);
4279 }
4280
4281 size_t len = strlen(interp) + 1;
4282
4283 Output_section_data* odata = new Output_data_const(interp, len, 1);
4284
4285 Output_section* osec = this->choose_output_section(NULL, ".interp",
4286 elfcpp::SHT_PROGBITS,
4287 elfcpp::SHF_ALLOC,
4288 false, ORDER_INTERP,
4289 false);
4290 if (osec != NULL)
4291 osec->add_output_section_data(odata);
4292 }
4293
4294 // Add dynamic tags for the PLT and the dynamic relocs. This is
4295 // called by the target-specific code. This does nothing if not doing
4296 // a dynamic link.
4297
4298 // USE_REL is true for REL relocs rather than RELA relocs.
4299
4300 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4301
4302 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4303 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4304 // some targets have multiple reloc sections in PLT_REL.
4305
4306 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4307 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4308 // section.
4309
4310 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4311 // executable.
4312
4313 void
4314 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4315 const Output_data* plt_rel,
4316 const Output_data_reloc_generic* dyn_rel,
4317 bool add_debug, bool dynrel_includes_plt)
4318 {
4319 Output_data_dynamic* odyn = this->dynamic_data_;
4320 if (odyn == NULL)
4321 return;
4322
4323 if (plt_got != NULL && plt_got->output_section() != NULL)
4324 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4325
4326 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4327 {
4328 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4329 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4330 odyn->add_constant(elfcpp::DT_PLTREL,
4331 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4332 }
4333
4334 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4335 {
4336 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4337 dyn_rel->output_section());
4338 if (plt_rel != NULL
4339 && plt_rel->output_section() != NULL
4340 && dynrel_includes_plt)
4341 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4342 dyn_rel->output_section(),
4343 plt_rel->output_section());
4344 else
4345 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4346 dyn_rel->output_section());
4347 const int size = parameters->target().get_size();
4348 elfcpp::DT rel_tag;
4349 int rel_size;
4350 if (use_rel)
4351 {
4352 rel_tag = elfcpp::DT_RELENT;
4353 if (size == 32)
4354 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4355 else if (size == 64)
4356 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4357 else
4358 gold_unreachable();
4359 }
4360 else
4361 {
4362 rel_tag = elfcpp::DT_RELAENT;
4363 if (size == 32)
4364 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4365 else if (size == 64)
4366 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4367 else
4368 gold_unreachable();
4369 }
4370 odyn->add_constant(rel_tag, rel_size);
4371
4372 if (parameters->options().combreloc())
4373 {
4374 size_t c = dyn_rel->relative_reloc_count();
4375 if (c > 0)
4376 odyn->add_constant((use_rel
4377 ? elfcpp::DT_RELCOUNT
4378 : elfcpp::DT_RELACOUNT),
4379 c);
4380 }
4381 }
4382
4383 if (add_debug && !parameters->options().shared())
4384 {
4385 // The value of the DT_DEBUG tag is filled in by the dynamic
4386 // linker at run time, and used by the debugger.
4387 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4388 }
4389 }
4390
4391 // Finish the .dynamic section and PT_DYNAMIC segment.
4392
4393 void
4394 Layout::finish_dynamic_section(const Input_objects* input_objects,
4395 const Symbol_table* symtab)
4396 {
4397 if (!this->script_options_->saw_phdrs_clause()
4398 && this->dynamic_section_ != NULL)
4399 {
4400 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4401 (elfcpp::PF_R
4402 | elfcpp::PF_W));
4403 oseg->add_output_section_to_nonload(this->dynamic_section_,
4404 elfcpp::PF_R | elfcpp::PF_W);
4405 }
4406
4407 Output_data_dynamic* const odyn = this->dynamic_data_;
4408 if (odyn == NULL)
4409 return;
4410
4411 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4412 p != input_objects->dynobj_end();
4413 ++p)
4414 {
4415 if (!(*p)->is_needed() && (*p)->as_needed())
4416 {
4417 // This dynamic object was linked with --as-needed, but it
4418 // is not needed.
4419 continue;
4420 }
4421
4422 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4423 }
4424
4425 if (parameters->options().shared())
4426 {
4427 const char* soname = parameters->options().soname();
4428 if (soname != NULL)
4429 odyn->add_string(elfcpp::DT_SONAME, soname);
4430 }
4431
4432 Symbol* sym = symtab->lookup(parameters->options().init());
4433 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4434 odyn->add_symbol(elfcpp::DT_INIT, sym);
4435
4436 sym = symtab->lookup(parameters->options().fini());
4437 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4438 odyn->add_symbol(elfcpp::DT_FINI, sym);
4439
4440 // Look for .init_array, .preinit_array and .fini_array by checking
4441 // section types.
4442 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4443 p != this->section_list_.end();
4444 ++p)
4445 switch((*p)->type())
4446 {
4447 case elfcpp::SHT_FINI_ARRAY:
4448 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4449 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4450 break;
4451 case elfcpp::SHT_INIT_ARRAY:
4452 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4453 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4454 break;
4455 case elfcpp::SHT_PREINIT_ARRAY:
4456 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4457 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4458 break;
4459 default:
4460 break;
4461 }
4462
4463 // Add a DT_RPATH entry if needed.
4464 const General_options::Dir_list& rpath(parameters->options().rpath());
4465 if (!rpath.empty())
4466 {
4467 std::string rpath_val;
4468 for (General_options::Dir_list::const_iterator p = rpath.begin();
4469 p != rpath.end();
4470 ++p)
4471 {
4472 if (rpath_val.empty())
4473 rpath_val = p->name();
4474 else
4475 {
4476 // Eliminate duplicates.
4477 General_options::Dir_list::const_iterator q;
4478 for (q = rpath.begin(); q != p; ++q)
4479 if (q->name() == p->name())
4480 break;
4481 if (q == p)
4482 {
4483 rpath_val += ':';
4484 rpath_val += p->name();
4485 }
4486 }
4487 }
4488
4489 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4490 if (parameters->options().enable_new_dtags())
4491 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4492 }
4493
4494 // Look for text segments that have dynamic relocations.
4495 bool have_textrel = false;
4496 if (!this->script_options_->saw_sections_clause())
4497 {
4498 for (Segment_list::const_iterator p = this->segment_list_.begin();
4499 p != this->segment_list_.end();
4500 ++p)
4501 {
4502 if ((*p)->type() == elfcpp::PT_LOAD
4503 && ((*p)->flags() & elfcpp::PF_W) == 0
4504 && (*p)->has_dynamic_reloc())
4505 {
4506 have_textrel = true;
4507 break;
4508 }
4509 }
4510 }
4511 else
4512 {
4513 // We don't know the section -> segment mapping, so we are
4514 // conservative and just look for readonly sections with
4515 // relocations. If those sections wind up in writable segments,
4516 // then we have created an unnecessary DT_TEXTREL entry.
4517 for (Section_list::const_iterator p = this->section_list_.begin();
4518 p != this->section_list_.end();
4519 ++p)
4520 {
4521 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4522 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4523 && (*p)->has_dynamic_reloc())
4524 {
4525 have_textrel = true;
4526 break;
4527 }
4528 }
4529 }
4530
4531 if (parameters->options().filter() != NULL)
4532 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4533 if (parameters->options().any_auxiliary())
4534 {
4535 for (options::String_set::const_iterator p =
4536 parameters->options().auxiliary_begin();
4537 p != parameters->options().auxiliary_end();
4538 ++p)
4539 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4540 }
4541
4542 // Add a DT_FLAGS entry if necessary.
4543 unsigned int flags = 0;
4544 if (have_textrel)
4545 {
4546 // Add a DT_TEXTREL for compatibility with older loaders.
4547 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4548 flags |= elfcpp::DF_TEXTREL;
4549
4550 if (parameters->options().text())
4551 gold_error(_("read-only segment has dynamic relocations"));
4552 else if (parameters->options().warn_shared_textrel()
4553 && parameters->options().shared())
4554 gold_warning(_("shared library text segment is not shareable"));
4555 }
4556 if (parameters->options().shared() && this->has_static_tls())
4557 flags |= elfcpp::DF_STATIC_TLS;
4558 if (parameters->options().origin())
4559 flags |= elfcpp::DF_ORIGIN;
4560 if (parameters->options().Bsymbolic())
4561 {
4562 flags |= elfcpp::DF_SYMBOLIC;
4563 // Add DT_SYMBOLIC for compatibility with older loaders.
4564 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4565 }
4566 if (parameters->options().now())
4567 flags |= elfcpp::DF_BIND_NOW;
4568 if (flags != 0)
4569 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4570
4571 flags = 0;
4572 if (parameters->options().initfirst())
4573 flags |= elfcpp::DF_1_INITFIRST;
4574 if (parameters->options().interpose())
4575 flags |= elfcpp::DF_1_INTERPOSE;
4576 if (parameters->options().loadfltr())
4577 flags |= elfcpp::DF_1_LOADFLTR;
4578 if (parameters->options().nodefaultlib())
4579 flags |= elfcpp::DF_1_NODEFLIB;
4580 if (parameters->options().nodelete())
4581 flags |= elfcpp::DF_1_NODELETE;
4582 if (parameters->options().nodlopen())
4583 flags |= elfcpp::DF_1_NOOPEN;
4584 if (parameters->options().nodump())
4585 flags |= elfcpp::DF_1_NODUMP;
4586 if (!parameters->options().shared())
4587 flags &= ~(elfcpp::DF_1_INITFIRST
4588 | elfcpp::DF_1_NODELETE
4589 | elfcpp::DF_1_NOOPEN);
4590 if (parameters->options().origin())
4591 flags |= elfcpp::DF_1_ORIGIN;
4592 if (parameters->options().now())
4593 flags |= elfcpp::DF_1_NOW;
4594 if (parameters->options().Bgroup())
4595 flags |= elfcpp::DF_1_GROUP;
4596 if (flags != 0)
4597 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4598 }
4599
4600 // Set the size of the _DYNAMIC symbol table to be the size of the
4601 // dynamic data.
4602
4603 void
4604 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4605 {
4606 Output_data_dynamic* const odyn = this->dynamic_data_;
4607 if (odyn == NULL)
4608 return;
4609 odyn->finalize_data_size();
4610 if (this->dynamic_symbol_ == NULL)
4611 return;
4612 off_t data_size = odyn->data_size();
4613 const int size = parameters->target().get_size();
4614 if (size == 32)
4615 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4616 else if (size == 64)
4617 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4618 else
4619 gold_unreachable();
4620 }
4621
4622 // The mapping of input section name prefixes to output section names.
4623 // In some cases one prefix is itself a prefix of another prefix; in
4624 // such a case the longer prefix must come first. These prefixes are
4625 // based on the GNU linker default ELF linker script.
4626
4627 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4628 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4629 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4630 {
4631 MAPPING_INIT(".text.", ".text"),
4632 MAPPING_INIT(".rodata.", ".rodata"),
4633 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4634 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4635 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4636 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4637 MAPPING_INIT(".data.", ".data"),
4638 MAPPING_INIT(".bss.", ".bss"),
4639 MAPPING_INIT(".tdata.", ".tdata"),
4640 MAPPING_INIT(".tbss.", ".tbss"),
4641 MAPPING_INIT(".init_array.", ".init_array"),
4642 MAPPING_INIT(".fini_array.", ".fini_array"),
4643 MAPPING_INIT(".sdata.", ".sdata"),
4644 MAPPING_INIT(".sbss.", ".sbss"),
4645 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4646 // differently depending on whether it is creating a shared library.
4647 MAPPING_INIT(".sdata2.", ".sdata"),
4648 MAPPING_INIT(".sbss2.", ".sbss"),
4649 MAPPING_INIT(".lrodata.", ".lrodata"),
4650 MAPPING_INIT(".ldata.", ".ldata"),
4651 MAPPING_INIT(".lbss.", ".lbss"),
4652 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4653 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4654 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4655 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4656 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4657 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4658 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4659 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4660 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4661 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4662 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4663 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4664 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4665 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4666 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4667 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4668 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4669 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4670 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4671 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4672 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4673 };
4674 #undef MAPPING_INIT
4675 #undef MAPPING_INIT_EXACT
4676
4677 const int Layout::section_name_mapping_count =
4678 (sizeof(Layout::section_name_mapping)
4679 / sizeof(Layout::section_name_mapping[0]));
4680
4681 // Choose the output section name to use given an input section name.
4682 // Set *PLEN to the length of the name. *PLEN is initialized to the
4683 // length of NAME.
4684
4685 const char*
4686 Layout::output_section_name(const Relobj* relobj, const char* name,
4687 size_t* plen)
4688 {
4689 // gcc 4.3 generates the following sorts of section names when it
4690 // needs a section name specific to a function:
4691 // .text.FN
4692 // .rodata.FN
4693 // .sdata2.FN
4694 // .data.FN
4695 // .data.rel.FN
4696 // .data.rel.local.FN
4697 // .data.rel.ro.FN
4698 // .data.rel.ro.local.FN
4699 // .sdata.FN
4700 // .bss.FN
4701 // .sbss.FN
4702 // .tdata.FN
4703 // .tbss.FN
4704
4705 // The GNU linker maps all of those to the part before the .FN,
4706 // except that .data.rel.local.FN is mapped to .data, and
4707 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4708 // beginning with .data.rel.ro.local are grouped together.
4709
4710 // For an anonymous namespace, the string FN can contain a '.'.
4711
4712 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4713 // GNU linker maps to .rodata.
4714
4715 // The .data.rel.ro sections are used with -z relro. The sections
4716 // are recognized by name. We use the same names that the GNU
4717 // linker does for these sections.
4718
4719 // It is hard to handle this in a principled way, so we don't even
4720 // try. We use a table of mappings. If the input section name is
4721 // not found in the table, we simply use it as the output section
4722 // name.
4723
4724 const Section_name_mapping* psnm = section_name_mapping;
4725 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4726 {
4727 if (psnm->fromlen > 0)
4728 {
4729 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4730 {
4731 *plen = psnm->tolen;
4732 return psnm->to;
4733 }
4734 }
4735 else
4736 {
4737 if (strcmp(name, psnm->from) == 0)
4738 {
4739 *plen = psnm->tolen;
4740 return psnm->to;
4741 }
4742 }
4743 }
4744
4745 // As an additional complication, .ctors sections are output in
4746 // either .ctors or .init_array sections, and .dtors sections are
4747 // output in either .dtors or .fini_array sections.
4748 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4749 {
4750 if (parameters->options().ctors_in_init_array())
4751 {
4752 *plen = 11;
4753 return name[1] == 'c' ? ".init_array" : ".fini_array";
4754 }
4755 else
4756 {
4757 *plen = 6;
4758 return name[1] == 'c' ? ".ctors" : ".dtors";
4759 }
4760 }
4761 if (parameters->options().ctors_in_init_array()
4762 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4763 {
4764 // To make .init_array/.fini_array work with gcc we must exclude
4765 // .ctors and .dtors sections from the crtbegin and crtend
4766 // files.
4767 if (relobj == NULL
4768 || (!Layout::match_file_name(relobj, "crtbegin")
4769 && !Layout::match_file_name(relobj, "crtend")))
4770 {
4771 *plen = 11;
4772 return name[1] == 'c' ? ".init_array" : ".fini_array";
4773 }
4774 }
4775
4776 return name;
4777 }
4778
4779 // Return true if RELOBJ is an input file whose base name matches
4780 // FILE_NAME. The base name must have an extension of ".o", and must
4781 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4782 // to match crtbegin.o as well as crtbeginS.o without getting confused
4783 // by other possibilities. Overall matching the file name this way is
4784 // a dreadful hack, but the GNU linker does it in order to better
4785 // support gcc, and we need to be compatible.
4786
4787 bool
4788 Layout::match_file_name(const Relobj* relobj, const char* match)
4789 {
4790 const std::string& file_name(relobj->name());
4791 const char* base_name = lbasename(file_name.c_str());
4792 size_t match_len = strlen(match);
4793 if (strncmp(base_name, match, match_len) != 0)
4794 return false;
4795 size_t base_len = strlen(base_name);
4796 if (base_len != match_len + 2 && base_len != match_len + 3)
4797 return false;
4798 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4799 }
4800
4801 // Check if a comdat group or .gnu.linkonce section with the given
4802 // NAME is selected for the link. If there is already a section,
4803 // *KEPT_SECTION is set to point to the existing section and the
4804 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4805 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4806 // *KEPT_SECTION is set to the internal copy and the function returns
4807 // true.
4808
4809 bool
4810 Layout::find_or_add_kept_section(const std::string& name,
4811 Relobj* object,
4812 unsigned int shndx,
4813 bool is_comdat,
4814 bool is_group_name,
4815 Kept_section** kept_section)
4816 {
4817 // It's normal to see a couple of entries here, for the x86 thunk
4818 // sections. If we see more than a few, we're linking a C++
4819 // program, and we resize to get more space to minimize rehashing.
4820 if (this->signatures_.size() > 4
4821 && !this->resized_signatures_)
4822 {
4823 reserve_unordered_map(&this->signatures_,
4824 this->number_of_input_files_ * 64);
4825 this->resized_signatures_ = true;
4826 }
4827
4828 Kept_section candidate;
4829 std::pair<Signatures::iterator, bool> ins =
4830 this->signatures_.insert(std::make_pair(name, candidate));
4831
4832 if (kept_section != NULL)
4833 *kept_section = &ins.first->second;
4834 if (ins.second)
4835 {
4836 // This is the first time we've seen this signature.
4837 ins.first->second.set_object(object);
4838 ins.first->second.set_shndx(shndx);
4839 if (is_comdat)
4840 ins.first->second.set_is_comdat();
4841 if (is_group_name)
4842 ins.first->second.set_is_group_name();
4843 return true;
4844 }
4845
4846 // We have already seen this signature.
4847
4848 if (ins.first->second.is_group_name())
4849 {
4850 // We've already seen a real section group with this signature.
4851 // If the kept group is from a plugin object, and we're in the
4852 // replacement phase, accept the new one as a replacement.
4853 if (ins.first->second.object() == NULL
4854 && parameters->options().plugins()->in_replacement_phase())
4855 {
4856 ins.first->second.set_object(object);
4857 ins.first->second.set_shndx(shndx);
4858 return true;
4859 }
4860 return false;
4861 }
4862 else if (is_group_name)
4863 {
4864 // This is a real section group, and we've already seen a
4865 // linkonce section with this signature. Record that we've seen
4866 // a section group, and don't include this section group.
4867 ins.first->second.set_is_group_name();
4868 return false;
4869 }
4870 else
4871 {
4872 // We've already seen a linkonce section and this is a linkonce
4873 // section. These don't block each other--this may be the same
4874 // symbol name with different section types.
4875 return true;
4876 }
4877 }
4878
4879 // Store the allocated sections into the section list.
4880
4881 void
4882 Layout::get_allocated_sections(Section_list* section_list) const
4883 {
4884 for (Section_list::const_iterator p = this->section_list_.begin();
4885 p != this->section_list_.end();
4886 ++p)
4887 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4888 section_list->push_back(*p);
4889 }
4890
4891 // Create an output segment.
4892
4893 Output_segment*
4894 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4895 {
4896 gold_assert(!parameters->options().relocatable());
4897 Output_segment* oseg = new Output_segment(type, flags);
4898 this->segment_list_.push_back(oseg);
4899
4900 if (type == elfcpp::PT_TLS)
4901 this->tls_segment_ = oseg;
4902 else if (type == elfcpp::PT_GNU_RELRO)
4903 this->relro_segment_ = oseg;
4904 else if (type == elfcpp::PT_INTERP)
4905 this->interp_segment_ = oseg;
4906
4907 return oseg;
4908 }
4909
4910 // Return the file offset of the normal symbol table.
4911
4912 off_t
4913 Layout::symtab_section_offset() const
4914 {
4915 if (this->symtab_section_ != NULL)
4916 return this->symtab_section_->offset();
4917 return 0;
4918 }
4919
4920 // Return the section index of the normal symbol table. It may have
4921 // been stripped by the -s/--strip-all option.
4922
4923 unsigned int
4924 Layout::symtab_section_shndx() const
4925 {
4926 if (this->symtab_section_ != NULL)
4927 return this->symtab_section_->out_shndx();
4928 return 0;
4929 }
4930
4931 // Write out the Output_sections. Most won't have anything to write,
4932 // since most of the data will come from input sections which are
4933 // handled elsewhere. But some Output_sections do have Output_data.
4934
4935 void
4936 Layout::write_output_sections(Output_file* of) const
4937 {
4938 for (Section_list::const_iterator p = this->section_list_.begin();
4939 p != this->section_list_.end();
4940 ++p)
4941 {
4942 if (!(*p)->after_input_sections())
4943 (*p)->write(of);
4944 }
4945 }
4946
4947 // Write out data not associated with a section or the symbol table.
4948
4949 void
4950 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4951 {
4952 if (!parameters->options().strip_all())
4953 {
4954 const Output_section* symtab_section = this->symtab_section_;
4955 for (Section_list::const_iterator p = this->section_list_.begin();
4956 p != this->section_list_.end();
4957 ++p)
4958 {
4959 if ((*p)->needs_symtab_index())
4960 {
4961 gold_assert(symtab_section != NULL);
4962 unsigned int index = (*p)->symtab_index();
4963 gold_assert(index > 0 && index != -1U);
4964 off_t off = (symtab_section->offset()
4965 + index * symtab_section->entsize());
4966 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4967 }
4968 }
4969 }
4970
4971 const Output_section* dynsym_section = this->dynsym_section_;
4972 for (Section_list::const_iterator p = this->section_list_.begin();
4973 p != this->section_list_.end();
4974 ++p)
4975 {
4976 if ((*p)->needs_dynsym_index())
4977 {
4978 gold_assert(dynsym_section != NULL);
4979 unsigned int index = (*p)->dynsym_index();
4980 gold_assert(index > 0 && index != -1U);
4981 off_t off = (dynsym_section->offset()
4982 + index * dynsym_section->entsize());
4983 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4984 }
4985 }
4986
4987 // Write out the Output_data which are not in an Output_section.
4988 for (Data_list::const_iterator p = this->special_output_list_.begin();
4989 p != this->special_output_list_.end();
4990 ++p)
4991 (*p)->write(of);
4992 }
4993
4994 // Write out the Output_sections which can only be written after the
4995 // input sections are complete.
4996
4997 void
4998 Layout::write_sections_after_input_sections(Output_file* of)
4999 {
5000 // Determine the final section offsets, and thus the final output
5001 // file size. Note we finalize the .shstrab last, to allow the
5002 // after_input_section sections to modify their section-names before
5003 // writing.
5004 if (this->any_postprocessing_sections_)
5005 {
5006 off_t off = this->output_file_size_;
5007 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5008
5009 // Now that we've finalized the names, we can finalize the shstrab.
5010 off =
5011 this->set_section_offsets(off,
5012 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5013
5014 if (off > this->output_file_size_)
5015 {
5016 of->resize(off);
5017 this->output_file_size_ = off;
5018 }
5019 }
5020
5021 for (Section_list::const_iterator p = this->section_list_.begin();
5022 p != this->section_list_.end();
5023 ++p)
5024 {
5025 if ((*p)->after_input_sections())
5026 (*p)->write(of);
5027 }
5028
5029 this->section_headers_->write(of);
5030 }
5031
5032 // If the build ID requires computing a checksum, do so here, and
5033 // write it out. We compute a checksum over the entire file because
5034 // that is simplest.
5035
5036 void
5037 Layout::write_build_id(Output_file* of) const
5038 {
5039 if (this->build_id_note_ == NULL)
5040 return;
5041
5042 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5043
5044 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5045 this->build_id_note_->data_size());
5046
5047 const char* style = parameters->options().build_id();
5048 if (strcmp(style, "sha1") == 0)
5049 {
5050 sha1_ctx ctx;
5051 sha1_init_ctx(&ctx);
5052 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5053 sha1_finish_ctx(&ctx, ov);
5054 }
5055 else if (strcmp(style, "md5") == 0)
5056 {
5057 md5_ctx ctx;
5058 md5_init_ctx(&ctx);
5059 md5_process_bytes(iv, this->output_file_size_, &ctx);
5060 md5_finish_ctx(&ctx, ov);
5061 }
5062 else
5063 gold_unreachable();
5064
5065 of->write_output_view(this->build_id_note_->offset(),
5066 this->build_id_note_->data_size(),
5067 ov);
5068
5069 of->free_input_view(0, this->output_file_size_, iv);
5070 }
5071
5072 // Write out a binary file. This is called after the link is
5073 // complete. IN is the temporary output file we used to generate the
5074 // ELF code. We simply walk through the segments, read them from
5075 // their file offset in IN, and write them to their load address in
5076 // the output file. FIXME: with a bit more work, we could support
5077 // S-records and/or Intel hex format here.
5078
5079 void
5080 Layout::write_binary(Output_file* in) const
5081 {
5082 gold_assert(parameters->options().oformat_enum()
5083 == General_options::OBJECT_FORMAT_BINARY);
5084
5085 // Get the size of the binary file.
5086 uint64_t max_load_address = 0;
5087 for (Segment_list::const_iterator p = this->segment_list_.begin();
5088 p != this->segment_list_.end();
5089 ++p)
5090 {
5091 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5092 {
5093 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5094 if (max_paddr > max_load_address)
5095 max_load_address = max_paddr;
5096 }
5097 }
5098
5099 Output_file out(parameters->options().output_file_name());
5100 out.open(max_load_address);
5101
5102 for (Segment_list::const_iterator p = this->segment_list_.begin();
5103 p != this->segment_list_.end();
5104 ++p)
5105 {
5106 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5107 {
5108 const unsigned char* vin = in->get_input_view((*p)->offset(),
5109 (*p)->filesz());
5110 unsigned char* vout = out.get_output_view((*p)->paddr(),
5111 (*p)->filesz());
5112 memcpy(vout, vin, (*p)->filesz());
5113 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5114 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5115 }
5116 }
5117
5118 out.close();
5119 }
5120
5121 // Print the output sections to the map file.
5122
5123 void
5124 Layout::print_to_mapfile(Mapfile* mapfile) const
5125 {
5126 for (Segment_list::const_iterator p = this->segment_list_.begin();
5127 p != this->segment_list_.end();
5128 ++p)
5129 (*p)->print_sections_to_mapfile(mapfile);
5130 }
5131
5132 // Print statistical information to stderr. This is used for --stats.
5133
5134 void
5135 Layout::print_stats() const
5136 {
5137 this->namepool_.print_stats("section name pool");
5138 this->sympool_.print_stats("output symbol name pool");
5139 this->dynpool_.print_stats("dynamic name pool");
5140
5141 for (Section_list::const_iterator p = this->section_list_.begin();
5142 p != this->section_list_.end();
5143 ++p)
5144 (*p)->print_merge_stats();
5145 }
5146
5147 // Write_sections_task methods.
5148
5149 // We can always run this task.
5150
5151 Task_token*
5152 Write_sections_task::is_runnable()
5153 {
5154 return NULL;
5155 }
5156
5157 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5158 // when finished.
5159
5160 void
5161 Write_sections_task::locks(Task_locker* tl)
5162 {
5163 tl->add(this, this->output_sections_blocker_);
5164 tl->add(this, this->final_blocker_);
5165 }
5166
5167 // Run the task--write out the data.
5168
5169 void
5170 Write_sections_task::run(Workqueue*)
5171 {
5172 this->layout_->write_output_sections(this->of_);
5173 }
5174
5175 // Write_data_task methods.
5176
5177 // We can always run this task.
5178
5179 Task_token*
5180 Write_data_task::is_runnable()
5181 {
5182 return NULL;
5183 }
5184
5185 // We need to unlock FINAL_BLOCKER when finished.
5186
5187 void
5188 Write_data_task::locks(Task_locker* tl)
5189 {
5190 tl->add(this, this->final_blocker_);
5191 }
5192
5193 // Run the task--write out the data.
5194
5195 void
5196 Write_data_task::run(Workqueue*)
5197 {
5198 this->layout_->write_data(this->symtab_, this->of_);
5199 }
5200
5201 // Write_symbols_task methods.
5202
5203 // We can always run this task.
5204
5205 Task_token*
5206 Write_symbols_task::is_runnable()
5207 {
5208 return NULL;
5209 }
5210
5211 // We need to unlock FINAL_BLOCKER when finished.
5212
5213 void
5214 Write_symbols_task::locks(Task_locker* tl)
5215 {
5216 tl->add(this, this->final_blocker_);
5217 }
5218
5219 // Run the task--write out the symbols.
5220
5221 void
5222 Write_symbols_task::run(Workqueue*)
5223 {
5224 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5225 this->layout_->symtab_xindex(),
5226 this->layout_->dynsym_xindex(), this->of_);
5227 }
5228
5229 // Write_after_input_sections_task methods.
5230
5231 // We can only run this task after the input sections have completed.
5232
5233 Task_token*
5234 Write_after_input_sections_task::is_runnable()
5235 {
5236 if (this->input_sections_blocker_->is_blocked())
5237 return this->input_sections_blocker_;
5238 return NULL;
5239 }
5240
5241 // We need to unlock FINAL_BLOCKER when finished.
5242
5243 void
5244 Write_after_input_sections_task::locks(Task_locker* tl)
5245 {
5246 tl->add(this, this->final_blocker_);
5247 }
5248
5249 // Run the task.
5250
5251 void
5252 Write_after_input_sections_task::run(Workqueue*)
5253 {
5254 this->layout_->write_sections_after_input_sections(this->of_);
5255 }
5256
5257 // Close_task_runner methods.
5258
5259 // Run the task--close the file.
5260
5261 void
5262 Close_task_runner::run(Workqueue*, const Task*)
5263 {
5264 // If we need to compute a checksum for the BUILD if, we do so here.
5265 this->layout_->write_build_id(this->of_);
5266
5267 // If we've been asked to create a binary file, we do so here.
5268 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5269 this->layout_->write_binary(this->of_);
5270
5271 this->of_->close();
5272 }
5273
5274 // Instantiate the templates we need. We could use the configure
5275 // script to restrict this to only the ones for implemented targets.
5276
5277 #ifdef HAVE_TARGET_32_LITTLE
5278 template
5279 Output_section*
5280 Layout::init_fixed_output_section<32, false>(
5281 const char* name,
5282 elfcpp::Shdr<32, false>& shdr);
5283 #endif
5284
5285 #ifdef HAVE_TARGET_32_BIG
5286 template
5287 Output_section*
5288 Layout::init_fixed_output_section<32, true>(
5289 const char* name,
5290 elfcpp::Shdr<32, true>& shdr);
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_LITTLE
5294 template
5295 Output_section*
5296 Layout::init_fixed_output_section<64, false>(
5297 const char* name,
5298 elfcpp::Shdr<64, false>& shdr);
5299 #endif
5300
5301 #ifdef HAVE_TARGET_64_BIG
5302 template
5303 Output_section*
5304 Layout::init_fixed_output_section<64, true>(
5305 const char* name,
5306 elfcpp::Shdr<64, true>& shdr);
5307 #endif
5308
5309 #ifdef HAVE_TARGET_32_LITTLE
5310 template
5311 Output_section*
5312 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5313 unsigned int shndx,
5314 const char* name,
5315 const elfcpp::Shdr<32, false>& shdr,
5316 unsigned int, unsigned int, off_t*);
5317 #endif
5318
5319 #ifdef HAVE_TARGET_32_BIG
5320 template
5321 Output_section*
5322 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5323 unsigned int shndx,
5324 const char* name,
5325 const elfcpp::Shdr<32, true>& shdr,
5326 unsigned int, unsigned int, off_t*);
5327 #endif
5328
5329 #ifdef HAVE_TARGET_64_LITTLE
5330 template
5331 Output_section*
5332 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5333 unsigned int shndx,
5334 const char* name,
5335 const elfcpp::Shdr<64, false>& shdr,
5336 unsigned int, unsigned int, off_t*);
5337 #endif
5338
5339 #ifdef HAVE_TARGET_64_BIG
5340 template
5341 Output_section*
5342 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5343 unsigned int shndx,
5344 const char* name,
5345 const elfcpp::Shdr<64, true>& shdr,
5346 unsigned int, unsigned int, off_t*);
5347 #endif
5348
5349 #ifdef HAVE_TARGET_32_LITTLE
5350 template
5351 Output_section*
5352 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5353 unsigned int reloc_shndx,
5354 const elfcpp::Shdr<32, false>& shdr,
5355 Output_section* data_section,
5356 Relocatable_relocs* rr);
5357 #endif
5358
5359 #ifdef HAVE_TARGET_32_BIG
5360 template
5361 Output_section*
5362 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5363 unsigned int reloc_shndx,
5364 const elfcpp::Shdr<32, true>& shdr,
5365 Output_section* data_section,
5366 Relocatable_relocs* rr);
5367 #endif
5368
5369 #ifdef HAVE_TARGET_64_LITTLE
5370 template
5371 Output_section*
5372 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5373 unsigned int reloc_shndx,
5374 const elfcpp::Shdr<64, false>& shdr,
5375 Output_section* data_section,
5376 Relocatable_relocs* rr);
5377 #endif
5378
5379 #ifdef HAVE_TARGET_64_BIG
5380 template
5381 Output_section*
5382 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5383 unsigned int reloc_shndx,
5384 const elfcpp::Shdr<64, true>& shdr,
5385 Output_section* data_section,
5386 Relocatable_relocs* rr);
5387 #endif
5388
5389 #ifdef HAVE_TARGET_32_LITTLE
5390 template
5391 void
5392 Layout::layout_group<32, false>(Symbol_table* symtab,
5393 Sized_relobj_file<32, false>* object,
5394 unsigned int,
5395 const char* group_section_name,
5396 const char* signature,
5397 const elfcpp::Shdr<32, false>& shdr,
5398 elfcpp::Elf_Word flags,
5399 std::vector<unsigned int>* shndxes);
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_BIG
5403 template
5404 void
5405 Layout::layout_group<32, true>(Symbol_table* symtab,
5406 Sized_relobj_file<32, true>* object,
5407 unsigned int,
5408 const char* group_section_name,
5409 const char* signature,
5410 const elfcpp::Shdr<32, true>& shdr,
5411 elfcpp::Elf_Word flags,
5412 std::vector<unsigned int>* shndxes);
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 void
5418 Layout::layout_group<64, false>(Symbol_table* symtab,
5419 Sized_relobj_file<64, false>* object,
5420 unsigned int,
5421 const char* group_section_name,
5422 const char* signature,
5423 const elfcpp::Shdr<64, false>& shdr,
5424 elfcpp::Elf_Word flags,
5425 std::vector<unsigned int>* shndxes);
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_BIG
5429 template
5430 void
5431 Layout::layout_group<64, true>(Symbol_table* symtab,
5432 Sized_relobj_file<64, true>* object,
5433 unsigned int,
5434 const char* group_section_name,
5435 const char* signature,
5436 const elfcpp::Shdr<64, true>& shdr,
5437 elfcpp::Elf_Word flags,
5438 std::vector<unsigned int>* shndxes);
5439 #endif
5440
5441 #ifdef HAVE_TARGET_32_LITTLE
5442 template
5443 Output_section*
5444 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5445 const unsigned char* symbols,
5446 off_t symbols_size,
5447 const unsigned char* symbol_names,
5448 off_t symbol_names_size,
5449 unsigned int shndx,
5450 const elfcpp::Shdr<32, false>& shdr,
5451 unsigned int reloc_shndx,
5452 unsigned int reloc_type,
5453 off_t* off);
5454 #endif
5455
5456 #ifdef HAVE_TARGET_32_BIG
5457 template
5458 Output_section*
5459 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5460 const unsigned char* symbols,
5461 off_t symbols_size,
5462 const unsigned char* symbol_names,
5463 off_t symbol_names_size,
5464 unsigned int shndx,
5465 const elfcpp::Shdr<32, true>& shdr,
5466 unsigned int reloc_shndx,
5467 unsigned int reloc_type,
5468 off_t* off);
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_LITTLE
5472 template
5473 Output_section*
5474 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5475 const unsigned char* symbols,
5476 off_t symbols_size,
5477 const unsigned char* symbol_names,
5478 off_t symbol_names_size,
5479 unsigned int shndx,
5480 const elfcpp::Shdr<64, false>& shdr,
5481 unsigned int reloc_shndx,
5482 unsigned int reloc_type,
5483 off_t* off);
5484 #endif
5485
5486 #ifdef HAVE_TARGET_64_BIG
5487 template
5488 Output_section*
5489 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5490 const unsigned char* symbols,
5491 off_t symbols_size,
5492 const unsigned char* symbol_names,
5493 off_t symbol_names_size,
5494 unsigned int shndx,
5495 const elfcpp::Shdr<64, true>& shdr,
5496 unsigned int reloc_shndx,
5497 unsigned int reloc_type,
5498 off_t* off);
5499 #endif
5500
5501 #ifdef HAVE_TARGET_32_LITTLE
5502 template
5503 void
5504 Layout::add_to_gdb_index(bool is_type_unit,
5505 Sized_relobj<32, false>* object,
5506 const unsigned char* symbols,
5507 off_t symbols_size,
5508 unsigned int shndx,
5509 unsigned int reloc_shndx,
5510 unsigned int reloc_type);
5511 #endif
5512
5513 #ifdef HAVE_TARGET_32_BIG
5514 template
5515 void
5516 Layout::add_to_gdb_index(bool is_type_unit,
5517 Sized_relobj<32, true>* object,
5518 const unsigned char* symbols,
5519 off_t symbols_size,
5520 unsigned int shndx,
5521 unsigned int reloc_shndx,
5522 unsigned int reloc_type);
5523 #endif
5524
5525 #ifdef HAVE_TARGET_64_LITTLE
5526 template
5527 void
5528 Layout::add_to_gdb_index(bool is_type_unit,
5529 Sized_relobj<64, false>* object,
5530 const unsigned char* symbols,
5531 off_t symbols_size,
5532 unsigned int shndx,
5533 unsigned int reloc_shndx,
5534 unsigned int reloc_type);
5535 #endif
5536
5537 #ifdef HAVE_TARGET_64_BIG
5538 template
5539 void
5540 Layout::add_to_gdb_index(bool is_type_unit,
5541 Sized_relobj<64, true>* object,
5542 const unsigned char* symbols,
5543 off_t symbols_size,
5544 unsigned int shndx,
5545 unsigned int reloc_shndx,
5546 unsigned int reloc_type);
5547 #endif
5548
5549 } // End namespace gold.
This page took 0.152198 seconds and 4 git commands to generate.