x86: introduce operand type "instance"
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 lto_slim_object_(false),
470 script_output_section_data_list_(),
471 segment_states_(NULL),
472 relaxation_debug_check_(NULL),
473 section_order_map_(),
474 section_segment_map_(),
475 input_section_position_(),
476 input_section_glob_(),
477 incremental_base_(NULL),
478 free_list_(),
479 gnu_properties_()
480 {
481 // Make space for more than enough segments for a typical file.
482 // This is just for efficiency--it's OK if we wind up needing more.
483 this->segment_list_.reserve(12);
484
485 // We expect two unattached Output_data objects: the file header and
486 // the segment headers.
487 this->special_output_list_.reserve(2);
488
489 // Initialize structure needed for an incremental build.
490 if (parameters->incremental())
491 this->incremental_inputs_ = new Incremental_inputs;
492
493 // The section name pool is worth optimizing in all cases, because
494 // it is small, but there are often overlaps due to .rel sections.
495 this->namepool_.set_optimize();
496 }
497
498 // For incremental links, record the base file to be modified.
499
500 void
501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503 this->incremental_base_ = base;
504 this->free_list_.init(base->output_file()->filesize(), true);
505 }
506
507 // Hash a key we use to look up an output section mapping.
508
509 size_t
510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512 return k.first + k.second.first + k.second.second;
513 }
514
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519
520 static const char* gdb_sections[] =
521 {
522 "abbrev",
523 "addr", // Fission extension
524 // "aranges", // not used by gdb as of 7.4
525 "frame",
526 "gdb_scripts",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 // "gnu_pubnames", // Fission extension
536 // "gnu_pubtypes", // Fission extension
537 "ranges",
538 "str",
539 "str_offsets",
540 };
541
542 // This is the minimum set of sections needed for line numbers.
543
544 static const char* lines_only_debug_sections[] =
545 {
546 "abbrev",
547 // "addr", // Fission extension
548 // "aranges", // not used by gdb as of 7.4
549 // "frame",
550 // "gdb_scripts",
551 "info",
552 // "types",
553 "line",
554 // "loc",
555 // "macinfo",
556 // "macro",
557 // "pubnames", // not used by gdb as of 7.4
558 // "pubtypes", // not used by gdb as of 7.4
559 // "gnu_pubnames", // Fission extension
560 // "gnu_pubtypes", // Fission extension
561 // "ranges",
562 "str",
563 "str_offsets", // Fission extension
564 };
565
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568
569 static const char* gdb_fast_lookup_sections[] =
570 {
571 "aranges",
572 "pubnames",
573 "gnu_pubnames",
574 "pubtypes",
575 "gnu_pubtypes",
576 };
577
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581
582 static inline bool
583 is_gdb_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587 if (strcmp(suffix, gdb_sections[i]) == 0)
588 return true;
589 return false;
590 }
591
592 // Returns whether the given section is needed for lines-only debugging.
593
594 static inline bool
595 is_lines_only_debug_section(const char* suffix)
596 {
597 // We can do this faster: binary search or a hashtable. But why bother?
598 for (size_t i = 0;
599 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600 ++i)
601 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602 return true;
603 return false;
604 }
605
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608
609 static inline bool
610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612 // We can do this faster: binary search or a hashtable. But why bother?
613 for (size_t i = 0;
614 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615 ++i)
616 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617 return true;
618 return false;
619 }
620
621 // Sometimes we compress sections. This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections. This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629
630 static bool
631 is_compressible_debug_section(const char* secname)
632 {
633 return (is_prefix_of(".debug", secname));
634 }
635
636 // We may see compressed debug sections in input files. Return TRUE
637 // if this is the name of a compressed debug section.
638
639 bool
640 is_compressed_debug_section(const char* secname)
641 {
642 return (is_prefix_of(".zdebug", secname));
643 }
644
645 std::string
646 corresponding_uncompressed_section_name(std::string secname)
647 {
648 gold_assert(secname[0] == '.' && secname[1] == 'z');
649 std::string ret(".");
650 ret.append(secname, 2, std::string::npos);
651 return ret;
652 }
653
654 // Whether to include this section in the link.
655
656 template<int size, bool big_endian>
657 bool
658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659 const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661 if (!parameters->options().relocatable()
662 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663 return false;
664
665 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666
667 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669 return parameters->target().should_include_section(sh_type);
670
671 switch (sh_type)
672 {
673 case elfcpp::SHT_NULL:
674 case elfcpp::SHT_SYMTAB:
675 case elfcpp::SHT_DYNSYM:
676 case elfcpp::SHT_HASH:
677 case elfcpp::SHT_DYNAMIC:
678 case elfcpp::SHT_SYMTAB_SHNDX:
679 return false;
680
681 case elfcpp::SHT_STRTAB:
682 // Discard the sections which have special meanings in the ELF
683 // ABI. Keep others (e.g., .stabstr). We could also do this by
684 // checking the sh_link fields of the appropriate sections.
685 return (strcmp(name, ".dynstr") != 0
686 && strcmp(name, ".strtab") != 0
687 && strcmp(name, ".shstrtab") != 0);
688
689 case elfcpp::SHT_RELA:
690 case elfcpp::SHT_REL:
691 case elfcpp::SHT_GROUP:
692 // If we are emitting relocations these should be handled
693 // elsewhere.
694 gold_assert(!parameters->options().relocatable());
695 return false;
696
697 case elfcpp::SHT_PROGBITS:
698 if (parameters->options().strip_debug()
699 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 {
701 if (is_debug_info_section(name))
702 return false;
703 }
704 if (parameters->options().strip_debug_non_line()
705 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 {
707 // Debugging sections can only be recognized by name.
708 if (is_prefix_of(".debug_", name)
709 && !is_lines_only_debug_section(name + 7))
710 return false;
711 if (is_prefix_of(".zdebug_", name)
712 && !is_lines_only_debug_section(name + 8))
713 return false;
714 }
715 if (parameters->options().strip_debug_gdb()
716 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 {
718 // Debugging sections can only be recognized by name.
719 if (is_prefix_of(".debug_", name)
720 && !is_gdb_debug_section(name + 7))
721 return false;
722 if (is_prefix_of(".zdebug_", name)
723 && !is_gdb_debug_section(name + 8))
724 return false;
725 }
726 if (parameters->options().gdb_index()
727 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 {
729 // When building .gdb_index, we can strip .debug_pubnames,
730 // .debug_pubtypes, and .debug_aranges sections.
731 if (is_prefix_of(".debug_", name)
732 && is_gdb_fast_lookup_section(name + 7))
733 return false;
734 if (is_prefix_of(".zdebug_", name)
735 && is_gdb_fast_lookup_section(name + 8))
736 return false;
737 }
738 if (parameters->options().strip_lto_sections()
739 && !parameters->options().relocatable()
740 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 {
742 // Ignore LTO sections containing intermediate code.
743 if (is_prefix_of(".gnu.lto_", name))
744 return false;
745 }
746 // The GNU linker strips .gnu_debuglink sections, so we do too.
747 // This is a feature used to keep debugging information in
748 // separate files.
749 if (strcmp(name, ".gnu_debuglink") == 0)
750 return false;
751 return true;
752
753 default:
754 return true;
755 }
756 }
757
758 // Return an output section named NAME, or NULL if there is none.
759
760 Output_section*
761 Layout::find_output_section(const char* name) const
762 {
763 for (Section_list::const_iterator p = this->section_list_.begin();
764 p != this->section_list_.end();
765 ++p)
766 if (strcmp((*p)->name(), name) == 0)
767 return *p;
768 return NULL;
769 }
770
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear. Return NULL if there is none.
773
774 Output_segment*
775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776 elfcpp::Elf_Word clear) const
777 {
778 for (Segment_list::const_iterator p = this->segment_list_.begin();
779 p != this->segment_list_.end();
780 ++p)
781 if (static_cast<elfcpp::PT>((*p)->type()) == type
782 && ((*p)->flags() & set) == set
783 && ((*p)->flags() & clear) == 0)
784 return *p;
785 return NULL;
786 }
787
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section. This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors. Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run. This set just keeps track of
796 // these sections which need to be reversed. It is only changed by
797 // Layout::layout. It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804
805 bool
806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809 != ctors_sections_in_init_array.end());
810 }
811
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS. NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key. ORDER is where this should appear
815 // in the output sections. IS_RELRO is true for a relro section.
816
817 Output_section*
818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820 Output_section_order order, bool is_relro)
821 {
822 elfcpp::Elf_Word lookup_type = type;
823
824 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
826 // .init_array, .fini_array, and .preinit_array sections by name
827 // whatever their type in the input file. We do this because the
828 // types are not always right in the input files.
829 if (lookup_type == elfcpp::SHT_INIT_ARRAY
830 || lookup_type == elfcpp::SHT_FINI_ARRAY
831 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832 lookup_type = elfcpp::SHT_PROGBITS;
833
834 elfcpp::Elf_Xword lookup_flags = flags;
835
836 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837 // read-write with read-only sections. Some other ELF linkers do
838 // not do this. FIXME: Perhaps there should be an option
839 // controlling this.
840 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841
842 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843 const std::pair<Key, Output_section*> v(key, NULL);
844 std::pair<Section_name_map::iterator, bool> ins(
845 this->section_name_map_.insert(v));
846
847 if (!ins.second)
848 return ins.first->second;
849 else
850 {
851 // This is the first time we've seen this name/type/flags
852 // combination. For compatibility with the GNU linker, we
853 // combine sections with contents and zero flags with sections
854 // with non-zero flags. This is a workaround for cases where
855 // assembler code forgets to set section flags. FIXME: Perhaps
856 // there should be an option to control this.
857 Output_section* os = NULL;
858
859 if (lookup_type == elfcpp::SHT_PROGBITS)
860 {
861 if (flags == 0)
862 {
863 Output_section* same_name = this->find_output_section(name);
864 if (same_name != NULL
865 && (same_name->type() == elfcpp::SHT_PROGBITS
866 || same_name->type() == elfcpp::SHT_INIT_ARRAY
867 || same_name->type() == elfcpp::SHT_FINI_ARRAY
868 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870 os = same_name;
871 }
872 else if ((flags & elfcpp::SHF_TLS) == 0)
873 {
874 elfcpp::Elf_Xword zero_flags = 0;
875 const Key zero_key(name_key, std::make_pair(lookup_type,
876 zero_flags));
877 Section_name_map::iterator p =
878 this->section_name_map_.find(zero_key);
879 if (p != this->section_name_map_.end())
880 os = p->second;
881 }
882 }
883
884 if (os == NULL)
885 os = this->make_output_section(name, type, flags, order, is_relro);
886
887 ins.first->second = os;
888 return os;
889 }
890 }
891
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894
895 bool
896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898 if (! this->script_options_->saw_sections_clause())
899 return false;
900
901 Script_sections* ss = this->script_options_->script_sections();
902 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903 Output_section** output_section_slot;
904 Script_sections::Section_type script_section_type;
905 bool keep;
906
907 name = ss->output_section_name(file_name, name, &output_section_slot,
908 &script_section_type, &keep, true);
909 return name != NULL && keep;
910 }
911
912 // Clear the input section flags that should not be copied to the
913 // output section.
914
915 elfcpp::Elf_Xword
916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918 // Some flags in the input section should not be automatically
919 // copied to the output section.
920 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921 | elfcpp::SHF_GROUP
922 | elfcpp::SHF_COMPRESSED
923 | elfcpp::SHF_MERGE
924 | elfcpp::SHF_STRINGS);
925
926 // We only clear the SHF_LINK_ORDER flag in for
927 // a non-relocatable link.
928 if (!parameters->options().relocatable())
929 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930
931 return input_section_flags;
932 }
933
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
936 // linker created section. IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file. ORDER is where this section should appear in the output
939 // sections. IS_RELRO is true for a relro section. This will return
940 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943
944 Output_section*
945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947 bool is_input_section, Output_section_order order,
948 bool is_relro, bool is_reloc,
949 bool match_input_spec)
950 {
951 // We should not see any input sections after we have attached
952 // sections to segments.
953 gold_assert(!is_input_section || !this->sections_are_attached_);
954
955 flags = this->get_output_section_flags(flags);
956
957 if (this->script_options_->saw_sections_clause() && !is_reloc)
958 {
959 // We are using a SECTIONS clause, so the output section is
960 // chosen based only on the name.
961
962 Script_sections* ss = this->script_options_->script_sections();
963 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964 Output_section** output_section_slot;
965 Script_sections::Section_type script_section_type;
966 const char* orig_name = name;
967 bool keep;
968 name = ss->output_section_name(file_name, name, &output_section_slot,
969 &script_section_type, &keep,
970 match_input_spec);
971
972 if (name == NULL)
973 {
974 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975 "because it is not allowed by the "
976 "SECTIONS clause of the linker script"),
977 orig_name);
978 // The SECTIONS clause says to discard this input section.
979 return NULL;
980 }
981
982 // We can only handle script section types ST_NONE and ST_NOLOAD.
983 switch (script_section_type)
984 {
985 case Script_sections::ST_NONE:
986 break;
987 case Script_sections::ST_NOLOAD:
988 flags &= elfcpp::SHF_ALLOC;
989 break;
990 default:
991 gold_unreachable();
992 }
993
994 // If this is an orphan section--one not mentioned in the linker
995 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996 // default processing below.
997
998 if (output_section_slot != NULL)
999 {
1000 if (*output_section_slot != NULL)
1001 {
1002 (*output_section_slot)->update_flags_for_input_section(flags);
1003 return *output_section_slot;
1004 }
1005
1006 // We don't put sections found in the linker script into
1007 // SECTION_NAME_MAP_. That keeps us from getting confused
1008 // if an orphan section is mapped to a section with the same
1009 // name as one in the linker script.
1010
1011 name = this->namepool_.add(name, false, NULL);
1012
1013 Output_section* os = this->make_output_section(name, type, flags,
1014 order, is_relro);
1015
1016 os->set_found_in_sections_clause();
1017
1018 // Special handling for NOLOAD sections.
1019 if (script_section_type == Script_sections::ST_NOLOAD)
1020 {
1021 os->set_is_noload();
1022
1023 // The constructor of Output_section sets addresses of non-ALLOC
1024 // sections to 0 by default. We don't want that for NOLOAD
1025 // sections even if they have no SHF_ALLOC flag.
1026 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027 && os->is_address_valid())
1028 {
1029 gold_assert(os->address() == 0
1030 && !os->is_offset_valid()
1031 && !os->is_data_size_valid());
1032 os->reset_address_and_file_offset();
1033 }
1034 }
1035
1036 *output_section_slot = os;
1037 return os;
1038 }
1039 }
1040
1041 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042
1043 size_t len = strlen(name);
1044 std::string uncompressed_name;
1045
1046 // Compressed debug sections should be mapped to the corresponding
1047 // uncompressed section.
1048 if (is_compressed_debug_section(name))
1049 {
1050 uncompressed_name =
1051 corresponding_uncompressed_section_name(std::string(name, len));
1052 name = uncompressed_name.c_str();
1053 len = uncompressed_name.length();
1054 }
1055
1056 // Turn NAME from the name of the input section into the name of the
1057 // output section.
1058 if (is_input_section
1059 && !this->script_options_->saw_sections_clause()
1060 && !parameters->options().relocatable())
1061 {
1062 const char *orig_name = name;
1063 name = parameters->target().output_section_name(relobj, name, &len);
1064 if (name == NULL)
1065 name = Layout::output_section_name(relobj, orig_name, &len);
1066 }
1067
1068 Stringpool::Key name_key;
1069 name = this->namepool_.add_with_length(name, len, true, &name_key);
1070
1071 // Find or make the output section. The output section is selected
1072 // based on the section name, type, and flags.
1073 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078
1079 template<int size, bool big_endian>
1080 Output_section*
1081 Layout::init_fixed_output_section(const char* name,
1082 elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084 unsigned int sh_type = shdr.get_sh_type();
1085
1086 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087 // PRE_INIT_ARRAY, and NOTE sections.
1088 // All others will be created from scratch and reallocated.
1089 if (!can_incremental_update(sh_type))
1090 return NULL;
1091
1092 // If we're generating a .gdb_index section, we need to regenerate
1093 // it from scratch.
1094 if (parameters->options().gdb_index()
1095 && sh_type == elfcpp::SHT_PROGBITS
1096 && strcmp(name, ".gdb_index") == 0)
1097 return NULL;
1098
1099 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1103 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1104 shdr.get_sh_addralign();
1105
1106 // Make the output section.
1107 Stringpool::Key name_key;
1108 name = this->namepool_.add(name, true, &name_key);
1109 Output_section* os = this->get_output_section(name, name_key, sh_type,
1110 sh_flags, ORDER_INVALID, false);
1111 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1112 if (sh_type != elfcpp::SHT_NOBITS)
1113 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1114 return os;
1115 }
1116
1117 // Return the index by which an input section should be ordered. This
1118 // is used to sort some .text sections, for compatibility with GNU ld.
1119
1120 int
1121 Layout::special_ordering_of_input_section(const char* name)
1122 {
1123 // The GNU linker has some special handling for some sections that
1124 // wind up in the .text section. Sections that start with these
1125 // prefixes must appear first, and must appear in the order listed
1126 // here.
1127 static const char* const text_section_sort[] =
1128 {
1129 ".text.unlikely",
1130 ".text.exit",
1131 ".text.startup",
1132 ".text.hot"
1133 };
1134
1135 for (size_t i = 0;
1136 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1137 i++)
1138 if (is_prefix_of(text_section_sort[i], name))
1139 return i;
1140
1141 return -1;
1142 }
1143
1144 // Return the output section to use for input section SHNDX, with name
1145 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1146 // index of a relocation section which applies to this section, or 0
1147 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1148 // relocation section if there is one. Set *OFF to the offset of this
1149 // input section without the output section. Return NULL if the
1150 // section should be discarded. Set *OFF to -1 if the section
1151 // contents should not be written directly to the output file, but
1152 // will instead receive special handling.
1153
1154 template<int size, bool big_endian>
1155 Output_section*
1156 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1157 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1158 unsigned int sh_type, unsigned int reloc_shndx,
1159 unsigned int, off_t* off)
1160 {
1161 *off = 0;
1162
1163 if (!this->include_section(object, name, shdr))
1164 return NULL;
1165
1166 // In a relocatable link a grouped section must not be combined with
1167 // any other sections.
1168 Output_section* os;
1169 if (parameters->options().relocatable()
1170 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1171 {
1172 // Some flags in the input section should not be automatically
1173 // copied to the output section.
1174 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1175 & ~ elfcpp::SHF_COMPRESSED);
1176 name = this->namepool_.add(name, true, NULL);
1177 os = this->make_output_section(name, sh_type, flags,
1178 ORDER_INVALID, false);
1179 }
1180 else
1181 {
1182 // All ".text.unlikely.*" sections can be moved to a unique
1183 // segment with --text-unlikely-segment option.
1184 bool text_unlikely_segment
1185 = (parameters->options().text_unlikely_segment()
1186 && is_prefix_of(".text.unlikely",
1187 object->section_name(shndx).c_str()));
1188 if (text_unlikely_segment)
1189 {
1190 elfcpp::Elf_Xword flags
1191 = this->get_output_section_flags(shdr.get_sh_flags());
1192
1193 Stringpool::Key name_key;
1194 const char* os_name = this->namepool_.add(".text.unlikely", true,
1195 &name_key);
1196 os = this->get_output_section(os_name, name_key, sh_type, flags,
1197 ORDER_INVALID, false);
1198 // Map this output section to a unique segment. This is done to
1199 // separate "text" that is not likely to be executed from "text"
1200 // that is likely executed.
1201 os->set_is_unique_segment();
1202 }
1203 else
1204 {
1205 // Plugins can choose to place one or more subsets of sections in
1206 // unique segments and this is done by mapping these section subsets
1207 // to unique output sections. Check if this section needs to be
1208 // remapped to a unique output section.
1209 Section_segment_map::iterator it
1210 = this->section_segment_map_.find(Const_section_id(object, shndx));
1211 if (it == this->section_segment_map_.end())
1212 {
1213 os = this->choose_output_section(object, name, sh_type,
1214 shdr.get_sh_flags(), true,
1215 ORDER_INVALID, false, false,
1216 true);
1217 }
1218 else
1219 {
1220 // We know the name of the output section, directly call
1221 // get_output_section here by-passing choose_output_section.
1222 elfcpp::Elf_Xword flags
1223 = this->get_output_section_flags(shdr.get_sh_flags());
1224
1225 const char* os_name = it->second->name;
1226 Stringpool::Key name_key;
1227 os_name = this->namepool_.add(os_name, true, &name_key);
1228 os = this->get_output_section(os_name, name_key, sh_type, flags,
1229 ORDER_INVALID, false);
1230 if (!os->is_unique_segment())
1231 {
1232 os->set_is_unique_segment();
1233 os->set_extra_segment_flags(it->second->flags);
1234 os->set_segment_alignment(it->second->align);
1235 }
1236 }
1237 }
1238 if (os == NULL)
1239 return NULL;
1240 }
1241
1242 // By default the GNU linker sorts input sections whose names match
1243 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1244 // sections are sorted by name. This is used to implement
1245 // constructor priority ordering. We are compatible. When we put
1246 // .ctor sections in .init_array and .dtor sections in .fini_array,
1247 // we must also sort plain .ctor and .dtor sections.
1248 if (!this->script_options_->saw_sections_clause()
1249 && !parameters->options().relocatable()
1250 && (is_prefix_of(".ctors.", name)
1251 || is_prefix_of(".dtors.", name)
1252 || is_prefix_of(".init_array.", name)
1253 || is_prefix_of(".fini_array.", name)
1254 || (parameters->options().ctors_in_init_array()
1255 && (strcmp(name, ".ctors") == 0
1256 || strcmp(name, ".dtors") == 0))))
1257 os->set_must_sort_attached_input_sections();
1258
1259 // By default the GNU linker sorts some special text sections ahead
1260 // of others. We are compatible.
1261 if (parameters->options().text_reorder()
1262 && !this->script_options_->saw_sections_clause()
1263 && !this->is_section_ordering_specified()
1264 && !parameters->options().relocatable()
1265 && Layout::special_ordering_of_input_section(name) >= 0)
1266 os->set_must_sort_attached_input_sections();
1267
1268 // If this is a .ctors or .ctors.* section being mapped to a
1269 // .init_array section, or a .dtors or .dtors.* section being mapped
1270 // to a .fini_array section, we will need to reverse the words if
1271 // there is more than one. Record this section for later. See
1272 // ctors_sections_in_init_array above.
1273 if (!this->script_options_->saw_sections_clause()
1274 && !parameters->options().relocatable()
1275 && shdr.get_sh_size() > size / 8
1276 && (((strcmp(name, ".ctors") == 0
1277 || is_prefix_of(".ctors.", name))
1278 && strcmp(os->name(), ".init_array") == 0)
1279 || ((strcmp(name, ".dtors") == 0
1280 || is_prefix_of(".dtors.", name))
1281 && strcmp(os->name(), ".fini_array") == 0)))
1282 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1283
1284 // FIXME: Handle SHF_LINK_ORDER somewhere.
1285
1286 elfcpp::Elf_Xword orig_flags = os->flags();
1287
1288 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1289 this->script_options_->saw_sections_clause());
1290
1291 // If the flags changed, we may have to change the order.
1292 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1293 {
1294 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1295 elfcpp::Elf_Xword new_flags =
1296 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1297 if (orig_flags != new_flags)
1298 os->set_order(this->default_section_order(os, false));
1299 }
1300
1301 this->have_added_input_section_ = true;
1302
1303 return os;
1304 }
1305
1306 // Maps section SECN to SEGMENT s.
1307 void
1308 Layout::insert_section_segment_map(Const_section_id secn,
1309 Unique_segment_info *s)
1310 {
1311 gold_assert(this->unique_segment_for_sections_specified_);
1312 this->section_segment_map_[secn] = s;
1313 }
1314
1315 // Handle a relocation section when doing a relocatable link.
1316
1317 template<int size, bool big_endian>
1318 Output_section*
1319 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1320 unsigned int,
1321 const elfcpp::Shdr<size, big_endian>& shdr,
1322 Output_section* data_section,
1323 Relocatable_relocs* rr)
1324 {
1325 gold_assert(parameters->options().relocatable()
1326 || parameters->options().emit_relocs());
1327
1328 int sh_type = shdr.get_sh_type();
1329
1330 std::string name;
1331 if (sh_type == elfcpp::SHT_REL)
1332 name = ".rel";
1333 else if (sh_type == elfcpp::SHT_RELA)
1334 name = ".rela";
1335 else
1336 gold_unreachable();
1337 name += data_section->name();
1338
1339 // If the output data section already has a reloc section, use that;
1340 // otherwise, make a new one.
1341 Output_section* os = data_section->reloc_section();
1342 if (os == NULL)
1343 {
1344 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1345 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1346 ORDER_INVALID, false);
1347 os->set_should_link_to_symtab();
1348 os->set_info_section(data_section);
1349 data_section->set_reloc_section(os);
1350 }
1351
1352 Output_section_data* posd;
1353 if (sh_type == elfcpp::SHT_REL)
1354 {
1355 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1356 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1357 size,
1358 big_endian>(rr);
1359 }
1360 else if (sh_type == elfcpp::SHT_RELA)
1361 {
1362 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1363 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1364 size,
1365 big_endian>(rr);
1366 }
1367 else
1368 gold_unreachable();
1369
1370 os->add_output_section_data(posd);
1371 rr->set_output_data(posd);
1372
1373 return os;
1374 }
1375
1376 // Handle a group section when doing a relocatable link.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Layout::layout_group(Symbol_table* symtab,
1381 Sized_relobj_file<size, big_endian>* object,
1382 unsigned int,
1383 const char* group_section_name,
1384 const char* signature,
1385 const elfcpp::Shdr<size, big_endian>& shdr,
1386 elfcpp::Elf_Word flags,
1387 std::vector<unsigned int>* shndxes)
1388 {
1389 gold_assert(parameters->options().relocatable());
1390 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1391 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1392 Output_section* os = this->make_output_section(group_section_name,
1393 elfcpp::SHT_GROUP,
1394 shdr.get_sh_flags(),
1395 ORDER_INVALID, false);
1396
1397 // We need to find a symbol with the signature in the symbol table.
1398 // If we don't find one now, we need to look again later.
1399 Symbol* sym = symtab->lookup(signature, NULL);
1400 if (sym != NULL)
1401 os->set_info_symndx(sym);
1402 else
1403 {
1404 // Reserve some space to minimize reallocations.
1405 if (this->group_signatures_.empty())
1406 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1407
1408 // We will wind up using a symbol whose name is the signature.
1409 // So just put the signature in the symbol name pool to save it.
1410 signature = symtab->canonicalize_name(signature);
1411 this->group_signatures_.push_back(Group_signature(os, signature));
1412 }
1413
1414 os->set_should_link_to_symtab();
1415 os->set_entsize(4);
1416
1417 section_size_type entry_count =
1418 convert_to_section_size_type(shdr.get_sh_size() / 4);
1419 Output_section_data* posd =
1420 new Output_data_group<size, big_endian>(object, entry_count, flags,
1421 shndxes);
1422 os->add_output_section_data(posd);
1423 }
1424
1425 // Special GNU handling of sections name .eh_frame. They will
1426 // normally hold exception frame data as defined by the C++ ABI
1427 // (http://codesourcery.com/cxx-abi/).
1428
1429 template<int size, bool big_endian>
1430 Output_section*
1431 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1432 const unsigned char* symbols,
1433 off_t symbols_size,
1434 const unsigned char* symbol_names,
1435 off_t symbol_names_size,
1436 unsigned int shndx,
1437 const elfcpp::Shdr<size, big_endian>& shdr,
1438 unsigned int reloc_shndx, unsigned int reloc_type,
1439 off_t* off)
1440 {
1441 const unsigned int unwind_section_type =
1442 parameters->target().unwind_section_type();
1443
1444 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1445 || shdr.get_sh_type() == unwind_section_type);
1446 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1447
1448 Output_section* os = this->make_eh_frame_section(object);
1449 if (os == NULL)
1450 return NULL;
1451
1452 gold_assert(this->eh_frame_section_ == os);
1453
1454 elfcpp::Elf_Xword orig_flags = os->flags();
1455
1456 Eh_frame::Eh_frame_section_disposition disp =
1457 Eh_frame::EH_UNRECOGNIZED_SECTION;
1458 if (!parameters->incremental())
1459 {
1460 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1461 symbols,
1462 symbols_size,
1463 symbol_names,
1464 symbol_names_size,
1465 shndx,
1466 reloc_shndx,
1467 reloc_type);
1468 }
1469
1470 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1471 {
1472 os->update_flags_for_input_section(shdr.get_sh_flags());
1473
1474 // A writable .eh_frame section is a RELRO section.
1475 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1476 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1477 {
1478 os->set_is_relro();
1479 os->set_order(ORDER_RELRO);
1480 }
1481
1482 *off = -1;
1483 return os;
1484 }
1485
1486 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1487 {
1488 // We found the end marker section, so now we can add the set of
1489 // optimized sections to the output section. We need to postpone
1490 // adding this until we've found a section we can optimize so that
1491 // the .eh_frame section in crtbeginT.o winds up at the start of
1492 // the output section.
1493 os->add_output_section_data(this->eh_frame_data_);
1494 this->added_eh_frame_data_ = true;
1495 }
1496
1497 // We couldn't handle this .eh_frame section for some reason.
1498 // Add it as a normal section.
1499 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1500 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1501 reloc_shndx, saw_sections_clause);
1502 this->have_added_input_section_ = true;
1503
1504 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1505 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1506 os->set_order(this->default_section_order(os, false));
1507
1508 return os;
1509 }
1510
1511 void
1512 Layout::finalize_eh_frame_section()
1513 {
1514 // If we never found an end marker section, we need to add the
1515 // optimized eh sections to the output section now.
1516 if (!parameters->incremental()
1517 && this->eh_frame_section_ != NULL
1518 && !this->added_eh_frame_data_)
1519 {
1520 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1521 this->added_eh_frame_data_ = true;
1522 }
1523 }
1524
1525 // Create and return the magic .eh_frame section. Create
1526 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1527 // input .eh_frame section; it may be NULL.
1528
1529 Output_section*
1530 Layout::make_eh_frame_section(const Relobj* object)
1531 {
1532 const unsigned int unwind_section_type =
1533 parameters->target().unwind_section_type();
1534
1535 Output_section* os = this->choose_output_section(object, ".eh_frame",
1536 unwind_section_type,
1537 elfcpp::SHF_ALLOC, false,
1538 ORDER_EHFRAME, false, false,
1539 false);
1540 if (os == NULL)
1541 return NULL;
1542
1543 if (this->eh_frame_section_ == NULL)
1544 {
1545 this->eh_frame_section_ = os;
1546 this->eh_frame_data_ = new Eh_frame();
1547
1548 // For incremental linking, we do not optimize .eh_frame sections
1549 // or create a .eh_frame_hdr section.
1550 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551 {
1552 Output_section* hdr_os =
1553 this->choose_output_section(NULL, ".eh_frame_hdr",
1554 unwind_section_type,
1555 elfcpp::SHF_ALLOC, false,
1556 ORDER_EHFRAME, false, false,
1557 false);
1558
1559 if (hdr_os != NULL)
1560 {
1561 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562 this->eh_frame_data_);
1563 hdr_os->add_output_section_data(hdr_posd);
1564
1565 hdr_os->set_after_input_sections();
1566
1567 if (!this->script_options_->saw_phdrs_clause())
1568 {
1569 Output_segment* hdr_oseg;
1570 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571 elfcpp::PF_R);
1572 hdr_oseg->add_output_section_to_nonload(hdr_os,
1573 elfcpp::PF_R);
1574 }
1575
1576 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577 }
1578 }
1579 }
1580
1581 return os;
1582 }
1583
1584 // Add an exception frame for a PLT. This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588 size_t cie_length, const unsigned char* fde_data,
1589 size_t fde_length)
1590 {
1591 if (parameters->incremental())
1592 {
1593 // FIXME: Maybe this could work some day....
1594 return;
1595 }
1596 Output_section* os = this->make_eh_frame_section(NULL);
1597 if (os == NULL)
1598 return;
1599 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600 fde_data, fde_length);
1601 if (!this->added_eh_frame_data_)
1602 {
1603 os->add_output_section_data(this->eh_frame_data_);
1604 this->added_eh_frame_data_ = true;
1605 }
1606 }
1607
1608 // Remove all post-map .eh_frame information for a PLT.
1609
1610 void
1611 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1612 size_t cie_length)
1613 {
1614 if (parameters->incremental())
1615 {
1616 // FIXME: Maybe this could work some day....
1617 return;
1618 }
1619 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1620 }
1621
1622 // Scan a .debug_info or .debug_types section, and add summary
1623 // information to the .gdb_index section.
1624
1625 template<int size, bool big_endian>
1626 void
1627 Layout::add_to_gdb_index(bool is_type_unit,
1628 Sized_relobj<size, big_endian>* object,
1629 const unsigned char* symbols,
1630 off_t symbols_size,
1631 unsigned int shndx,
1632 unsigned int reloc_shndx,
1633 unsigned int reloc_type)
1634 {
1635 if (this->gdb_index_data_ == NULL)
1636 {
1637 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1638 elfcpp::SHT_PROGBITS, 0,
1639 false, ORDER_INVALID,
1640 false, false, false);
1641 if (os == NULL)
1642 return;
1643
1644 this->gdb_index_data_ = new Gdb_index(os);
1645 os->add_output_section_data(this->gdb_index_data_);
1646 os->set_after_input_sections();
1647 }
1648
1649 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1650 symbols_size, shndx, reloc_shndx,
1651 reloc_type);
1652 }
1653
1654 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1655 // the output section.
1656
1657 Output_section*
1658 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1659 elfcpp::Elf_Xword flags,
1660 Output_section_data* posd,
1661 Output_section_order order, bool is_relro)
1662 {
1663 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1664 false, order, is_relro,
1665 false, false);
1666 if (os != NULL)
1667 os->add_output_section_data(posd);
1668 return os;
1669 }
1670
1671 // Map section flags to segment flags.
1672
1673 elfcpp::Elf_Word
1674 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1675 {
1676 elfcpp::Elf_Word ret = elfcpp::PF_R;
1677 if ((flags & elfcpp::SHF_WRITE) != 0)
1678 ret |= elfcpp::PF_W;
1679 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1680 ret |= elfcpp::PF_X;
1681 return ret;
1682 }
1683
1684 // Make a new Output_section, and attach it to segments as
1685 // appropriate. ORDER is the order in which this section should
1686 // appear in the output segment. IS_RELRO is true if this is a relro
1687 // (read-only after relocations) section.
1688
1689 Output_section*
1690 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1691 elfcpp::Elf_Xword flags,
1692 Output_section_order order, bool is_relro)
1693 {
1694 Output_section* os;
1695 if ((flags & elfcpp::SHF_ALLOC) == 0
1696 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1697 && is_compressible_debug_section(name))
1698 os = new Output_compressed_section(&parameters->options(), name, type,
1699 flags);
1700 else if ((flags & elfcpp::SHF_ALLOC) == 0
1701 && parameters->options().strip_debug_non_line()
1702 && strcmp(".debug_abbrev", name) == 0)
1703 {
1704 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1705 name, type, flags);
1706 if (this->debug_info_)
1707 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1708 }
1709 else if ((flags & elfcpp::SHF_ALLOC) == 0
1710 && parameters->options().strip_debug_non_line()
1711 && strcmp(".debug_info", name) == 0)
1712 {
1713 os = this->debug_info_ = new Output_reduced_debug_info_section(
1714 name, type, flags);
1715 if (this->debug_abbrev_)
1716 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1717 }
1718 else
1719 {
1720 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1721 // not have correct section types. Force them here.
1722 if (type == elfcpp::SHT_PROGBITS)
1723 {
1724 if (is_prefix_of(".init_array", name))
1725 type = elfcpp::SHT_INIT_ARRAY;
1726 else if (is_prefix_of(".preinit_array", name))
1727 type = elfcpp::SHT_PREINIT_ARRAY;
1728 else if (is_prefix_of(".fini_array", name))
1729 type = elfcpp::SHT_FINI_ARRAY;
1730 }
1731
1732 // FIXME: const_cast is ugly.
1733 Target* target = const_cast<Target*>(&parameters->target());
1734 os = target->make_output_section(name, type, flags);
1735 }
1736
1737 // With -z relro, we have to recognize the special sections by name.
1738 // There is no other way.
1739 bool is_relro_local = false;
1740 if (!this->script_options_->saw_sections_clause()
1741 && parameters->options().relro()
1742 && (flags & elfcpp::SHF_ALLOC) != 0
1743 && (flags & elfcpp::SHF_WRITE) != 0)
1744 {
1745 if (type == elfcpp::SHT_PROGBITS)
1746 {
1747 if ((flags & elfcpp::SHF_TLS) != 0)
1748 is_relro = true;
1749 else if (strcmp(name, ".data.rel.ro") == 0)
1750 is_relro = true;
1751 else if (strcmp(name, ".data.rel.ro.local") == 0)
1752 {
1753 is_relro = true;
1754 is_relro_local = true;
1755 }
1756 else if (strcmp(name, ".ctors") == 0
1757 || strcmp(name, ".dtors") == 0
1758 || strcmp(name, ".jcr") == 0)
1759 is_relro = true;
1760 }
1761 else if (type == elfcpp::SHT_INIT_ARRAY
1762 || type == elfcpp::SHT_FINI_ARRAY
1763 || type == elfcpp::SHT_PREINIT_ARRAY)
1764 is_relro = true;
1765 }
1766
1767 if (is_relro)
1768 os->set_is_relro();
1769
1770 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1771 order = this->default_section_order(os, is_relro_local);
1772
1773 os->set_order(order);
1774
1775 parameters->target().new_output_section(os);
1776
1777 this->section_list_.push_back(os);
1778
1779 // The GNU linker by default sorts some sections by priority, so we
1780 // do the same. We need to know that this might happen before we
1781 // attach any input sections.
1782 if (!this->script_options_->saw_sections_clause()
1783 && !parameters->options().relocatable()
1784 && (strcmp(name, ".init_array") == 0
1785 || strcmp(name, ".fini_array") == 0
1786 || (!parameters->options().ctors_in_init_array()
1787 && (strcmp(name, ".ctors") == 0
1788 || strcmp(name, ".dtors") == 0))))
1789 os->set_may_sort_attached_input_sections();
1790
1791 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1792 // sections before other .text sections. We are compatible. We
1793 // need to know that this might happen before we attach any input
1794 // sections.
1795 if (parameters->options().text_reorder()
1796 && !this->script_options_->saw_sections_clause()
1797 && !this->is_section_ordering_specified()
1798 && !parameters->options().relocatable()
1799 && strcmp(name, ".text") == 0)
1800 os->set_may_sort_attached_input_sections();
1801
1802 // GNU linker sorts section by name with --sort-section=name.
1803 if (strcmp(parameters->options().sort_section(), "name") == 0)
1804 os->set_must_sort_attached_input_sections();
1805
1806 // Check for .stab*str sections, as .stab* sections need to link to
1807 // them.
1808 if (type == elfcpp::SHT_STRTAB
1809 && !this->have_stabstr_section_
1810 && strncmp(name, ".stab", 5) == 0
1811 && strcmp(name + strlen(name) - 3, "str") == 0)
1812 this->have_stabstr_section_ = true;
1813
1814 // During a full incremental link, we add patch space to most
1815 // PROGBITS and NOBITS sections. Flag those that may be
1816 // arbitrarily padded.
1817 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1818 && order != ORDER_INTERP
1819 && order != ORDER_INIT
1820 && order != ORDER_PLT
1821 && order != ORDER_FINI
1822 && order != ORDER_RELRO_LAST
1823 && order != ORDER_NON_RELRO_FIRST
1824 && strcmp(name, ".eh_frame") != 0
1825 && strcmp(name, ".ctors") != 0
1826 && strcmp(name, ".dtors") != 0
1827 && strcmp(name, ".jcr") != 0)
1828 {
1829 os->set_is_patch_space_allowed();
1830
1831 // Certain sections require "holes" to be filled with
1832 // specific fill patterns. These fill patterns may have
1833 // a minimum size, so we must prevent allocations from the
1834 // free list that leave a hole smaller than the minimum.
1835 if (strcmp(name, ".debug_info") == 0)
1836 os->set_free_space_fill(new Output_fill_debug_info(false));
1837 else if (strcmp(name, ".debug_types") == 0)
1838 os->set_free_space_fill(new Output_fill_debug_info(true));
1839 else if (strcmp(name, ".debug_line") == 0)
1840 os->set_free_space_fill(new Output_fill_debug_line());
1841 }
1842
1843 // If we have already attached the sections to segments, then we
1844 // need to attach this one now. This happens for sections created
1845 // directly by the linker.
1846 if (this->sections_are_attached_)
1847 this->attach_section_to_segment(&parameters->target(), os);
1848
1849 return os;
1850 }
1851
1852 // Return the default order in which a section should be placed in an
1853 // output segment. This function captures a lot of the ideas in
1854 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1855 // linker created section is normally set when the section is created;
1856 // this function is used for input sections.
1857
1858 Output_section_order
1859 Layout::default_section_order(Output_section* os, bool is_relro_local)
1860 {
1861 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1862 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1863 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1864 bool is_bss = false;
1865
1866 switch (os->type())
1867 {
1868 default:
1869 case elfcpp::SHT_PROGBITS:
1870 break;
1871 case elfcpp::SHT_NOBITS:
1872 is_bss = true;
1873 break;
1874 case elfcpp::SHT_RELA:
1875 case elfcpp::SHT_REL:
1876 if (!is_write)
1877 return ORDER_DYNAMIC_RELOCS;
1878 break;
1879 case elfcpp::SHT_HASH:
1880 case elfcpp::SHT_DYNAMIC:
1881 case elfcpp::SHT_SHLIB:
1882 case elfcpp::SHT_DYNSYM:
1883 case elfcpp::SHT_GNU_HASH:
1884 case elfcpp::SHT_GNU_verdef:
1885 case elfcpp::SHT_GNU_verneed:
1886 case elfcpp::SHT_GNU_versym:
1887 if (!is_write)
1888 return ORDER_DYNAMIC_LINKER;
1889 break;
1890 case elfcpp::SHT_NOTE:
1891 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1892 }
1893
1894 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1895 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1896
1897 if (!is_bss && !is_write)
1898 {
1899 if (is_execinstr)
1900 {
1901 if (strcmp(os->name(), ".init") == 0)
1902 return ORDER_INIT;
1903 else if (strcmp(os->name(), ".fini") == 0)
1904 return ORDER_FINI;
1905 else if (parameters->options().keep_text_section_prefix())
1906 {
1907 // -z,keep-text-section-prefix introduces additional
1908 // output sections.
1909 if (strcmp(os->name(), ".text.hot") == 0)
1910 return ORDER_TEXT_HOT;
1911 else if (strcmp(os->name(), ".text.startup") == 0)
1912 return ORDER_TEXT_STARTUP;
1913 else if (strcmp(os->name(), ".text.exit") == 0)
1914 return ORDER_TEXT_EXIT;
1915 else if (strcmp(os->name(), ".text.unlikely") == 0)
1916 return ORDER_TEXT_UNLIKELY;
1917 }
1918 }
1919 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1920 }
1921
1922 if (os->is_relro())
1923 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1924
1925 if (os->is_small_section())
1926 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1927 if (os->is_large_section())
1928 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1929
1930 return is_bss ? ORDER_BSS : ORDER_DATA;
1931 }
1932
1933 // Attach output sections to segments. This is called after we have
1934 // seen all the input sections.
1935
1936 void
1937 Layout::attach_sections_to_segments(const Target* target)
1938 {
1939 for (Section_list::iterator p = this->section_list_.begin();
1940 p != this->section_list_.end();
1941 ++p)
1942 this->attach_section_to_segment(target, *p);
1943
1944 this->sections_are_attached_ = true;
1945 }
1946
1947 // Attach an output section to a segment.
1948
1949 void
1950 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1951 {
1952 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1953 this->unattached_section_list_.push_back(os);
1954 else
1955 this->attach_allocated_section_to_segment(target, os);
1956 }
1957
1958 // Attach an allocated output section to a segment.
1959
1960 void
1961 Layout::attach_allocated_section_to_segment(const Target* target,
1962 Output_section* os)
1963 {
1964 elfcpp::Elf_Xword flags = os->flags();
1965 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1966
1967 if (parameters->options().relocatable())
1968 return;
1969
1970 // If we have a SECTIONS clause, we can't handle the attachment to
1971 // segments until after we've seen all the sections.
1972 if (this->script_options_->saw_sections_clause())
1973 return;
1974
1975 gold_assert(!this->script_options_->saw_phdrs_clause());
1976
1977 // This output section goes into a PT_LOAD segment.
1978
1979 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1980
1981 // If this output section's segment has extra flags that need to be set,
1982 // coming from a linker plugin, do that.
1983 seg_flags |= os->extra_segment_flags();
1984
1985 // Check for --section-start.
1986 uint64_t addr;
1987 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1988
1989 // In general the only thing we really care about for PT_LOAD
1990 // segments is whether or not they are writable or executable,
1991 // so that is how we search for them.
1992 // Large data sections also go into their own PT_LOAD segment.
1993 // People who need segments sorted on some other basis will
1994 // have to use a linker script.
1995
1996 Segment_list::const_iterator p;
1997 if (!os->is_unique_segment())
1998 {
1999 for (p = this->segment_list_.begin();
2000 p != this->segment_list_.end();
2001 ++p)
2002 {
2003 if ((*p)->type() != elfcpp::PT_LOAD)
2004 continue;
2005 if ((*p)->is_unique_segment())
2006 continue;
2007 if (!parameters->options().omagic()
2008 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2009 continue;
2010 if ((target->isolate_execinstr() || parameters->options().rosegment())
2011 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2012 continue;
2013 // If -Tbss was specified, we need to separate the data and BSS
2014 // segments.
2015 if (parameters->options().user_set_Tbss())
2016 {
2017 if ((os->type() == elfcpp::SHT_NOBITS)
2018 == (*p)->has_any_data_sections())
2019 continue;
2020 }
2021 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2022 continue;
2023
2024 if (is_address_set)
2025 {
2026 if ((*p)->are_addresses_set())
2027 continue;
2028
2029 (*p)->add_initial_output_data(os);
2030 (*p)->update_flags_for_output_section(seg_flags);
2031 (*p)->set_addresses(addr, addr);
2032 break;
2033 }
2034
2035 (*p)->add_output_section_to_load(this, os, seg_flags);
2036 break;
2037 }
2038 }
2039
2040 if (p == this->segment_list_.end()
2041 || os->is_unique_segment())
2042 {
2043 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2044 seg_flags);
2045 if (os->is_large_data_section())
2046 oseg->set_is_large_data_segment();
2047 oseg->add_output_section_to_load(this, os, seg_flags);
2048 if (is_address_set)
2049 oseg->set_addresses(addr, addr);
2050 // Check if segment should be marked unique. For segments marked
2051 // unique by linker plugins, set the new alignment if specified.
2052 if (os->is_unique_segment())
2053 {
2054 oseg->set_is_unique_segment();
2055 if (os->segment_alignment() != 0)
2056 oseg->set_minimum_p_align(os->segment_alignment());
2057 }
2058 }
2059
2060 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2061 // segment.
2062 if (os->type() == elfcpp::SHT_NOTE)
2063 {
2064 // See if we already have an equivalent PT_NOTE segment.
2065 for (p = this->segment_list_.begin();
2066 p != segment_list_.end();
2067 ++p)
2068 {
2069 if ((*p)->type() == elfcpp::PT_NOTE
2070 && (((*p)->flags() & elfcpp::PF_W)
2071 == (seg_flags & elfcpp::PF_W)))
2072 {
2073 (*p)->add_output_section_to_nonload(os, seg_flags);
2074 break;
2075 }
2076 }
2077
2078 if (p == this->segment_list_.end())
2079 {
2080 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2081 seg_flags);
2082 oseg->add_output_section_to_nonload(os, seg_flags);
2083 }
2084 }
2085
2086 // If we see a loadable SHF_TLS section, we create a PT_TLS
2087 // segment. There can only be one such segment.
2088 if ((flags & elfcpp::SHF_TLS) != 0)
2089 {
2090 if (this->tls_segment_ == NULL)
2091 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2092 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2093 }
2094
2095 // If -z relro is in effect, and we see a relro section, we create a
2096 // PT_GNU_RELRO segment. There can only be one such segment.
2097 if (os->is_relro() && parameters->options().relro())
2098 {
2099 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2100 if (this->relro_segment_ == NULL)
2101 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2102 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2103 }
2104
2105 // If we see a section named .interp, put it into a PT_INTERP
2106 // segment. This seems broken to me, but this is what GNU ld does,
2107 // and glibc expects it.
2108 if (strcmp(os->name(), ".interp") == 0
2109 && !this->script_options_->saw_phdrs_clause())
2110 {
2111 if (this->interp_segment_ == NULL)
2112 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2113 else
2114 gold_warning(_("multiple '.interp' sections in input files "
2115 "may cause confusing PT_INTERP segment"));
2116 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2117 }
2118 }
2119
2120 // Make an output section for a script.
2121
2122 Output_section*
2123 Layout::make_output_section_for_script(
2124 const char* name,
2125 Script_sections::Section_type section_type)
2126 {
2127 name = this->namepool_.add(name, false, NULL);
2128 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2129 if (section_type == Script_sections::ST_NOLOAD)
2130 sh_flags = 0;
2131 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2132 sh_flags, ORDER_INVALID,
2133 false);
2134 os->set_found_in_sections_clause();
2135 if (section_type == Script_sections::ST_NOLOAD)
2136 os->set_is_noload();
2137 return os;
2138 }
2139
2140 // Return the number of segments we expect to see.
2141
2142 size_t
2143 Layout::expected_segment_count() const
2144 {
2145 size_t ret = this->segment_list_.size();
2146
2147 // If we didn't see a SECTIONS clause in a linker script, we should
2148 // already have the complete list of segments. Otherwise we ask the
2149 // SECTIONS clause how many segments it expects, and add in the ones
2150 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2151
2152 if (!this->script_options_->saw_sections_clause())
2153 return ret;
2154 else
2155 {
2156 const Script_sections* ss = this->script_options_->script_sections();
2157 return ret + ss->expected_segment_count(this);
2158 }
2159 }
2160
2161 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2162 // is whether we saw a .note.GNU-stack section in the object file.
2163 // GNU_STACK_FLAGS is the section flags. The flags give the
2164 // protection required for stack memory. We record this in an
2165 // executable as a PT_GNU_STACK segment. If an object file does not
2166 // have a .note.GNU-stack segment, we must assume that it is an old
2167 // object. On some targets that will force an executable stack.
2168
2169 void
2170 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2171 const Object* obj)
2172 {
2173 if (!seen_gnu_stack)
2174 {
2175 this->input_without_gnu_stack_note_ = true;
2176 if (parameters->options().warn_execstack()
2177 && parameters->target().is_default_stack_executable())
2178 gold_warning(_("%s: missing .note.GNU-stack section"
2179 " implies executable stack"),
2180 obj->name().c_str());
2181 }
2182 else
2183 {
2184 this->input_with_gnu_stack_note_ = true;
2185 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2186 {
2187 this->input_requires_executable_stack_ = true;
2188 if (parameters->options().warn_execstack())
2189 gold_warning(_("%s: requires executable stack"),
2190 obj->name().c_str());
2191 }
2192 }
2193 }
2194
2195 // Read a value with given size and endianness.
2196
2197 static inline uint64_t
2198 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2199 const Object* object)
2200 {
2201 uint64_t val = 0;
2202 if (size == 4)
2203 {
2204 if (is_big_endian)
2205 val = elfcpp::Swap<32, true>::readval(buf);
2206 else
2207 val = elfcpp::Swap<32, false>::readval(buf);
2208 }
2209 else if (size == 8)
2210 {
2211 if (is_big_endian)
2212 val = elfcpp::Swap<64, true>::readval(buf);
2213 else
2214 val = elfcpp::Swap<64, false>::readval(buf);
2215 }
2216 else
2217 {
2218 gold_warning(_("%s: in .note.gnu.property section, "
2219 "pr_datasz must be 4 or 8"),
2220 object->name().c_str());
2221 }
2222 return val;
2223 }
2224
2225 // Write a value with given size and endianness.
2226
2227 static inline void
2228 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2229 bool is_big_endian)
2230 {
2231 if (size == 4)
2232 {
2233 if (is_big_endian)
2234 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2235 else
2236 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2237 }
2238 else if (size == 8)
2239 {
2240 if (is_big_endian)
2241 elfcpp::Swap<64, true>::writeval(buf, value);
2242 else
2243 elfcpp::Swap<64, false>::writeval(buf, value);
2244 }
2245 else
2246 {
2247 // We will have already complained about this.
2248 }
2249 }
2250
2251 // Handle the .note.gnu.property section at layout time.
2252
2253 void
2254 Layout::layout_gnu_property(unsigned int note_type,
2255 unsigned int pr_type,
2256 size_t pr_datasz,
2257 const unsigned char* pr_data,
2258 const Object* object)
2259 {
2260 // We currently support only the one note type.
2261 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2262
2263 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2264 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2265 {
2266 // Target-dependent property value; call the target to record.
2267 const int size = parameters->target().get_size();
2268 const bool is_big_endian = parameters->target().is_big_endian();
2269 if (size == 32)
2270 {
2271 if (is_big_endian)
2272 {
2273 #ifdef HAVE_TARGET_32_BIG
2274 parameters->sized_target<32, true>()->
2275 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2276 object);
2277 #else
2278 gold_unreachable();
2279 #endif
2280 }
2281 else
2282 {
2283 #ifdef HAVE_TARGET_32_LITTLE
2284 parameters->sized_target<32, false>()->
2285 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2286 object);
2287 #else
2288 gold_unreachable();
2289 #endif
2290 }
2291 }
2292 else if (size == 64)
2293 {
2294 if (is_big_endian)
2295 {
2296 #ifdef HAVE_TARGET_64_BIG
2297 parameters->sized_target<64, true>()->
2298 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2299 object);
2300 #else
2301 gold_unreachable();
2302 #endif
2303 }
2304 else
2305 {
2306 #ifdef HAVE_TARGET_64_LITTLE
2307 parameters->sized_target<64, false>()->
2308 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2309 object);
2310 #else
2311 gold_unreachable();
2312 #endif
2313 }
2314 }
2315 else
2316 gold_unreachable();
2317 return;
2318 }
2319
2320 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2321 if (pprop == this->gnu_properties_.end())
2322 {
2323 Gnu_property prop;
2324 prop.pr_datasz = pr_datasz;
2325 prop.pr_data = new unsigned char[pr_datasz];
2326 memcpy(prop.pr_data, pr_data, pr_datasz);
2327 this->gnu_properties_[pr_type] = prop;
2328 }
2329 else
2330 {
2331 const bool is_big_endian = parameters->target().is_big_endian();
2332 switch (pr_type)
2333 {
2334 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2335 // Record the maximum value seen.
2336 {
2337 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2338 pprop->second.pr_data,
2339 is_big_endian, object);
2340 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2341 is_big_endian, object);
2342 if (val2 > val1)
2343 write_sized_value(val2, pprop->second.pr_datasz,
2344 pprop->second.pr_data, is_big_endian);
2345 }
2346 break;
2347 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2348 // No data to merge.
2349 break;
2350 default:
2351 gold_warning(_("%s: unknown program property type %d "
2352 "in .note.gnu.property section"),
2353 object->name().c_str(), pr_type);
2354 }
2355 }
2356 }
2357
2358 // Merge per-object properties with program properties.
2359 // This lets the target identify objects that are missing certain
2360 // properties, in cases where properties must be ANDed together.
2361
2362 void
2363 Layout::merge_gnu_properties(const Object* object)
2364 {
2365 const int size = parameters->target().get_size();
2366 const bool is_big_endian = parameters->target().is_big_endian();
2367 if (size == 32)
2368 {
2369 if (is_big_endian)
2370 {
2371 #ifdef HAVE_TARGET_32_BIG
2372 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2373 #else
2374 gold_unreachable();
2375 #endif
2376 }
2377 else
2378 {
2379 #ifdef HAVE_TARGET_32_LITTLE
2380 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2381 #else
2382 gold_unreachable();
2383 #endif
2384 }
2385 }
2386 else if (size == 64)
2387 {
2388 if (is_big_endian)
2389 {
2390 #ifdef HAVE_TARGET_64_BIG
2391 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2392 #else
2393 gold_unreachable();
2394 #endif
2395 }
2396 else
2397 {
2398 #ifdef HAVE_TARGET_64_LITTLE
2399 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2400 #else
2401 gold_unreachable();
2402 #endif
2403 }
2404 }
2405 else
2406 gold_unreachable();
2407 }
2408
2409 // Add a target-specific property for the output .note.gnu.property section.
2410
2411 void
2412 Layout::add_gnu_property(unsigned int note_type,
2413 unsigned int pr_type,
2414 size_t pr_datasz,
2415 const unsigned char* pr_data)
2416 {
2417 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2418
2419 Gnu_property prop;
2420 prop.pr_datasz = pr_datasz;
2421 prop.pr_data = new unsigned char[pr_datasz];
2422 memcpy(prop.pr_data, pr_data, pr_datasz);
2423 this->gnu_properties_[pr_type] = prop;
2424 }
2425
2426 // Create automatic note sections.
2427
2428 void
2429 Layout::create_notes()
2430 {
2431 this->create_gnu_properties_note();
2432 this->create_gold_note();
2433 this->create_stack_segment();
2434 this->create_build_id();
2435 }
2436
2437 // Create the dynamic sections which are needed before we read the
2438 // relocs.
2439
2440 void
2441 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2442 {
2443 if (parameters->doing_static_link())
2444 return;
2445
2446 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2447 elfcpp::SHT_DYNAMIC,
2448 (elfcpp::SHF_ALLOC
2449 | elfcpp::SHF_WRITE),
2450 false, ORDER_RELRO,
2451 true, false, false);
2452
2453 // A linker script may discard .dynamic, so check for NULL.
2454 if (this->dynamic_section_ != NULL)
2455 {
2456 this->dynamic_symbol_ =
2457 symtab->define_in_output_data("_DYNAMIC", NULL,
2458 Symbol_table::PREDEFINED,
2459 this->dynamic_section_, 0, 0,
2460 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2461 elfcpp::STV_HIDDEN, 0, false, false);
2462
2463 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2464
2465 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2466 }
2467 }
2468
2469 // For each output section whose name can be represented as C symbol,
2470 // define __start and __stop symbols for the section. This is a GNU
2471 // extension.
2472
2473 void
2474 Layout::define_section_symbols(Symbol_table* symtab)
2475 {
2476 for (Section_list::const_iterator p = this->section_list_.begin();
2477 p != this->section_list_.end();
2478 ++p)
2479 {
2480 const char* const name = (*p)->name();
2481 if (is_cident(name))
2482 {
2483 const std::string name_string(name);
2484 const std::string start_name(cident_section_start_prefix
2485 + name_string);
2486 const std::string stop_name(cident_section_stop_prefix
2487 + name_string);
2488
2489 symtab->define_in_output_data(start_name.c_str(),
2490 NULL, // version
2491 Symbol_table::PREDEFINED,
2492 *p,
2493 0, // value
2494 0, // symsize
2495 elfcpp::STT_NOTYPE,
2496 elfcpp::STB_GLOBAL,
2497 elfcpp::STV_PROTECTED,
2498 0, // nonvis
2499 false, // offset_is_from_end
2500 true); // only_if_ref
2501
2502 symtab->define_in_output_data(stop_name.c_str(),
2503 NULL, // version
2504 Symbol_table::PREDEFINED,
2505 *p,
2506 0, // value
2507 0, // symsize
2508 elfcpp::STT_NOTYPE,
2509 elfcpp::STB_GLOBAL,
2510 elfcpp::STV_PROTECTED,
2511 0, // nonvis
2512 true, // offset_is_from_end
2513 true); // only_if_ref
2514 }
2515 }
2516 }
2517
2518 // Define symbols for group signatures.
2519
2520 void
2521 Layout::define_group_signatures(Symbol_table* symtab)
2522 {
2523 for (Group_signatures::iterator p = this->group_signatures_.begin();
2524 p != this->group_signatures_.end();
2525 ++p)
2526 {
2527 Symbol* sym = symtab->lookup(p->signature, NULL);
2528 if (sym != NULL)
2529 p->section->set_info_symndx(sym);
2530 else
2531 {
2532 // Force the name of the group section to the group
2533 // signature, and use the group's section symbol as the
2534 // signature symbol.
2535 if (strcmp(p->section->name(), p->signature) != 0)
2536 {
2537 const char* name = this->namepool_.add(p->signature,
2538 true, NULL);
2539 p->section->set_name(name);
2540 }
2541 p->section->set_needs_symtab_index();
2542 p->section->set_info_section_symndx(p->section);
2543 }
2544 }
2545
2546 this->group_signatures_.clear();
2547 }
2548
2549 // Find the first read-only PT_LOAD segment, creating one if
2550 // necessary.
2551
2552 Output_segment*
2553 Layout::find_first_load_seg(const Target* target)
2554 {
2555 Output_segment* best = NULL;
2556 for (Segment_list::const_iterator p = this->segment_list_.begin();
2557 p != this->segment_list_.end();
2558 ++p)
2559 {
2560 if ((*p)->type() == elfcpp::PT_LOAD
2561 && ((*p)->flags() & elfcpp::PF_R) != 0
2562 && (parameters->options().omagic()
2563 || ((*p)->flags() & elfcpp::PF_W) == 0)
2564 && (!target->isolate_execinstr()
2565 || ((*p)->flags() & elfcpp::PF_X) == 0))
2566 {
2567 if (best == NULL || this->segment_precedes(*p, best))
2568 best = *p;
2569 }
2570 }
2571 if (best != NULL)
2572 return best;
2573
2574 gold_assert(!this->script_options_->saw_phdrs_clause());
2575
2576 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2577 elfcpp::PF_R);
2578 return load_seg;
2579 }
2580
2581 // Save states of all current output segments. Store saved states
2582 // in SEGMENT_STATES.
2583
2584 void
2585 Layout::save_segments(Segment_states* segment_states)
2586 {
2587 for (Segment_list::const_iterator p = this->segment_list_.begin();
2588 p != this->segment_list_.end();
2589 ++p)
2590 {
2591 Output_segment* segment = *p;
2592 // Shallow copy.
2593 Output_segment* copy = new Output_segment(*segment);
2594 (*segment_states)[segment] = copy;
2595 }
2596 }
2597
2598 // Restore states of output segments and delete any segment not found in
2599 // SEGMENT_STATES.
2600
2601 void
2602 Layout::restore_segments(const Segment_states* segment_states)
2603 {
2604 // Go through the segment list and remove any segment added in the
2605 // relaxation loop.
2606 this->tls_segment_ = NULL;
2607 this->relro_segment_ = NULL;
2608 Segment_list::iterator list_iter = this->segment_list_.begin();
2609 while (list_iter != this->segment_list_.end())
2610 {
2611 Output_segment* segment = *list_iter;
2612 Segment_states::const_iterator states_iter =
2613 segment_states->find(segment);
2614 if (states_iter != segment_states->end())
2615 {
2616 const Output_segment* copy = states_iter->second;
2617 // Shallow copy to restore states.
2618 *segment = *copy;
2619
2620 // Also fix up TLS and RELRO segment pointers as appropriate.
2621 if (segment->type() == elfcpp::PT_TLS)
2622 this->tls_segment_ = segment;
2623 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2624 this->relro_segment_ = segment;
2625
2626 ++list_iter;
2627 }
2628 else
2629 {
2630 list_iter = this->segment_list_.erase(list_iter);
2631 // This is a segment created during section layout. It should be
2632 // safe to remove it since we should have removed all pointers to it.
2633 delete segment;
2634 }
2635 }
2636 }
2637
2638 // Clean up after relaxation so that sections can be laid out again.
2639
2640 void
2641 Layout::clean_up_after_relaxation()
2642 {
2643 // Restore the segments to point state just prior to the relaxation loop.
2644 Script_sections* script_section = this->script_options_->script_sections();
2645 script_section->release_segments();
2646 this->restore_segments(this->segment_states_);
2647
2648 // Reset section addresses and file offsets
2649 for (Section_list::iterator p = this->section_list_.begin();
2650 p != this->section_list_.end();
2651 ++p)
2652 {
2653 (*p)->restore_states();
2654
2655 // If an input section changes size because of relaxation,
2656 // we need to adjust the section offsets of all input sections.
2657 // after such a section.
2658 if ((*p)->section_offsets_need_adjustment())
2659 (*p)->adjust_section_offsets();
2660
2661 (*p)->reset_address_and_file_offset();
2662 }
2663
2664 // Reset special output object address and file offsets.
2665 for (Data_list::iterator p = this->special_output_list_.begin();
2666 p != this->special_output_list_.end();
2667 ++p)
2668 (*p)->reset_address_and_file_offset();
2669
2670 // A linker script may have created some output section data objects.
2671 // They are useless now.
2672 for (Output_section_data_list::const_iterator p =
2673 this->script_output_section_data_list_.begin();
2674 p != this->script_output_section_data_list_.end();
2675 ++p)
2676 delete *p;
2677 this->script_output_section_data_list_.clear();
2678
2679 // Special-case fill output objects are recreated each time through
2680 // the relaxation loop.
2681 this->reset_relax_output();
2682 }
2683
2684 void
2685 Layout::reset_relax_output()
2686 {
2687 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2688 p != this->relax_output_list_.end();
2689 ++p)
2690 delete *p;
2691 this->relax_output_list_.clear();
2692 }
2693
2694 // Prepare for relaxation.
2695
2696 void
2697 Layout::prepare_for_relaxation()
2698 {
2699 // Create an relaxation debug check if in debugging mode.
2700 if (is_debugging_enabled(DEBUG_RELAXATION))
2701 this->relaxation_debug_check_ = new Relaxation_debug_check();
2702
2703 // Save segment states.
2704 this->segment_states_ = new Segment_states();
2705 this->save_segments(this->segment_states_);
2706
2707 for(Section_list::const_iterator p = this->section_list_.begin();
2708 p != this->section_list_.end();
2709 ++p)
2710 (*p)->save_states();
2711
2712 if (is_debugging_enabled(DEBUG_RELAXATION))
2713 this->relaxation_debug_check_->check_output_data_for_reset_values(
2714 this->section_list_, this->special_output_list_,
2715 this->relax_output_list_);
2716
2717 // Also enable recording of output section data from scripts.
2718 this->record_output_section_data_from_script_ = true;
2719 }
2720
2721 // If the user set the address of the text segment, that may not be
2722 // compatible with putting the segment headers and file headers into
2723 // that segment. For isolate_execinstr() targets, it's the rodata
2724 // segment rather than text where we might put the headers.
2725 static inline bool
2726 load_seg_unusable_for_headers(const Target* target)
2727 {
2728 const General_options& options = parameters->options();
2729 if (target->isolate_execinstr())
2730 return (options.user_set_Trodata_segment()
2731 && options.Trodata_segment() % target->abi_pagesize() != 0);
2732 else
2733 return (options.user_set_Ttext()
2734 && options.Ttext() % target->abi_pagesize() != 0);
2735 }
2736
2737 // Relaxation loop body: If target has no relaxation, this runs only once
2738 // Otherwise, the target relaxation hook is called at the end of
2739 // each iteration. If the hook returns true, it means re-layout of
2740 // section is required.
2741 //
2742 // The number of segments created by a linking script without a PHDRS
2743 // clause may be affected by section sizes and alignments. There is
2744 // a remote chance that relaxation causes different number of PT_LOAD
2745 // segments are created and sections are attached to different segments.
2746 // Therefore, we always throw away all segments created during section
2747 // layout. In order to be able to restart the section layout, we keep
2748 // a copy of the segment list right before the relaxation loop and use
2749 // that to restore the segments.
2750 //
2751 // PASS is the current relaxation pass number.
2752 // SYMTAB is a symbol table.
2753 // PLOAD_SEG is the address of a pointer for the load segment.
2754 // PHDR_SEG is a pointer to the PHDR segment.
2755 // SEGMENT_HEADERS points to the output segment header.
2756 // FILE_HEADER points to the output file header.
2757 // PSHNDX is the address to store the output section index.
2758
2759 off_t inline
2760 Layout::relaxation_loop_body(
2761 int pass,
2762 Target* target,
2763 Symbol_table* symtab,
2764 Output_segment** pload_seg,
2765 Output_segment* phdr_seg,
2766 Output_segment_headers* segment_headers,
2767 Output_file_header* file_header,
2768 unsigned int* pshndx)
2769 {
2770 // If this is not the first iteration, we need to clean up after
2771 // relaxation so that we can lay out the sections again.
2772 if (pass != 0)
2773 this->clean_up_after_relaxation();
2774
2775 // If there is a SECTIONS clause, put all the input sections into
2776 // the required order.
2777 Output_segment* load_seg;
2778 if (this->script_options_->saw_sections_clause())
2779 load_seg = this->set_section_addresses_from_script(symtab);
2780 else if (parameters->options().relocatable())
2781 load_seg = NULL;
2782 else
2783 load_seg = this->find_first_load_seg(target);
2784
2785 if (parameters->options().oformat_enum()
2786 != General_options::OBJECT_FORMAT_ELF)
2787 load_seg = NULL;
2788
2789 if (load_seg_unusable_for_headers(target))
2790 {
2791 load_seg = NULL;
2792 phdr_seg = NULL;
2793 }
2794
2795 gold_assert(phdr_seg == NULL
2796 || load_seg != NULL
2797 || this->script_options_->saw_sections_clause());
2798
2799 // If the address of the load segment we found has been set by
2800 // --section-start rather than by a script, then adjust the VMA and
2801 // LMA downward if possible to include the file and section headers.
2802 uint64_t header_gap = 0;
2803 if (load_seg != NULL
2804 && load_seg->are_addresses_set()
2805 && !this->script_options_->saw_sections_clause()
2806 && !parameters->options().relocatable())
2807 {
2808 file_header->finalize_data_size();
2809 segment_headers->finalize_data_size();
2810 size_t sizeof_headers = (file_header->data_size()
2811 + segment_headers->data_size());
2812 const uint64_t abi_pagesize = target->abi_pagesize();
2813 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2814 hdr_paddr &= ~(abi_pagesize - 1);
2815 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2816 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2817 load_seg = NULL;
2818 else
2819 {
2820 load_seg->set_addresses(load_seg->vaddr() - subtract,
2821 load_seg->paddr() - subtract);
2822 header_gap = subtract - sizeof_headers;
2823 }
2824 }
2825
2826 // Lay out the segment headers.
2827 if (!parameters->options().relocatable())
2828 {
2829 gold_assert(segment_headers != NULL);
2830 if (header_gap != 0 && load_seg != NULL)
2831 {
2832 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2833 load_seg->add_initial_output_data(z);
2834 }
2835 if (load_seg != NULL)
2836 load_seg->add_initial_output_data(segment_headers);
2837 if (phdr_seg != NULL)
2838 phdr_seg->add_initial_output_data(segment_headers);
2839 }
2840
2841 // Lay out the file header.
2842 if (load_seg != NULL)
2843 load_seg->add_initial_output_data(file_header);
2844
2845 if (this->script_options_->saw_phdrs_clause()
2846 && !parameters->options().relocatable())
2847 {
2848 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2849 // clause in a linker script.
2850 Script_sections* ss = this->script_options_->script_sections();
2851 ss->put_headers_in_phdrs(file_header, segment_headers);
2852 }
2853
2854 // We set the output section indexes in set_segment_offsets and
2855 // set_section_indexes.
2856 *pshndx = 1;
2857
2858 // Set the file offsets of all the segments, and all the sections
2859 // they contain.
2860 off_t off;
2861 if (!parameters->options().relocatable())
2862 off = this->set_segment_offsets(target, load_seg, pshndx);
2863 else
2864 off = this->set_relocatable_section_offsets(file_header, pshndx);
2865
2866 // Verify that the dummy relaxation does not change anything.
2867 if (is_debugging_enabled(DEBUG_RELAXATION))
2868 {
2869 if (pass == 0)
2870 this->relaxation_debug_check_->read_sections(this->section_list_);
2871 else
2872 this->relaxation_debug_check_->verify_sections(this->section_list_);
2873 }
2874
2875 *pload_seg = load_seg;
2876 return off;
2877 }
2878
2879 // Search the list of patterns and find the position of the given section
2880 // name in the output section. If the section name matches a glob
2881 // pattern and a non-glob name, then the non-glob position takes
2882 // precedence. Return 0 if no match is found.
2883
2884 unsigned int
2885 Layout::find_section_order_index(const std::string& section_name)
2886 {
2887 Unordered_map<std::string, unsigned int>::iterator map_it;
2888 map_it = this->input_section_position_.find(section_name);
2889 if (map_it != this->input_section_position_.end())
2890 return map_it->second;
2891
2892 // Absolute match failed. Linear search the glob patterns.
2893 std::vector<std::string>::iterator it;
2894 for (it = this->input_section_glob_.begin();
2895 it != this->input_section_glob_.end();
2896 ++it)
2897 {
2898 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2899 {
2900 map_it = this->input_section_position_.find(*it);
2901 gold_assert(map_it != this->input_section_position_.end());
2902 return map_it->second;
2903 }
2904 }
2905 return 0;
2906 }
2907
2908 // Read the sequence of input sections from the file specified with
2909 // option --section-ordering-file.
2910
2911 void
2912 Layout::read_layout_from_file()
2913 {
2914 const char* filename = parameters->options().section_ordering_file();
2915 std::ifstream in;
2916 std::string line;
2917
2918 in.open(filename);
2919 if (!in)
2920 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2921 filename, strerror(errno));
2922
2923 std::getline(in, line); // this chops off the trailing \n, if any
2924 unsigned int position = 1;
2925 this->set_section_ordering_specified();
2926
2927 while (in)
2928 {
2929 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2930 line.resize(line.length() - 1);
2931 // Ignore comments, beginning with '#'
2932 if (line[0] == '#')
2933 {
2934 std::getline(in, line);
2935 continue;
2936 }
2937 this->input_section_position_[line] = position;
2938 // Store all glob patterns in a vector.
2939 if (is_wildcard_string(line.c_str()))
2940 this->input_section_glob_.push_back(line);
2941 position++;
2942 std::getline(in, line);
2943 }
2944 }
2945
2946 // Finalize the layout. When this is called, we have created all the
2947 // output sections and all the output segments which are based on
2948 // input sections. We have several things to do, and we have to do
2949 // them in the right order, so that we get the right results correctly
2950 // and efficiently.
2951
2952 // 1) Finalize the list of output segments and create the segment
2953 // table header.
2954
2955 // 2) Finalize the dynamic symbol table and associated sections.
2956
2957 // 3) Determine the final file offset of all the output segments.
2958
2959 // 4) Determine the final file offset of all the SHF_ALLOC output
2960 // sections.
2961
2962 // 5) Create the symbol table sections and the section name table
2963 // section.
2964
2965 // 6) Finalize the symbol table: set symbol values to their final
2966 // value and make a final determination of which symbols are going
2967 // into the output symbol table.
2968
2969 // 7) Create the section table header.
2970
2971 // 8) Determine the final file offset of all the output sections which
2972 // are not SHF_ALLOC, including the section table header.
2973
2974 // 9) Finalize the ELF file header.
2975
2976 // This function returns the size of the output file.
2977
2978 off_t
2979 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2980 Target* target, const Task* task)
2981 {
2982 unsigned int local_dynamic_count = 0;
2983 unsigned int forced_local_dynamic_count = 0;
2984
2985 target->finalize_sections(this, input_objects, symtab);
2986
2987 this->count_local_symbols(task, input_objects);
2988
2989 this->link_stabs_sections();
2990
2991 Output_segment* phdr_seg = NULL;
2992 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2993 {
2994 // There was a dynamic object in the link. We need to create
2995 // some information for the dynamic linker.
2996
2997 // Create the PT_PHDR segment which will hold the program
2998 // headers.
2999 if (!this->script_options_->saw_phdrs_clause())
3000 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3001
3002 // Create the dynamic symbol table, including the hash table.
3003 Output_section* dynstr;
3004 std::vector<Symbol*> dynamic_symbols;
3005 Versions versions(*this->script_options()->version_script_info(),
3006 &this->dynpool_);
3007 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3008 &local_dynamic_count,
3009 &forced_local_dynamic_count,
3010 &dynamic_symbols,
3011 &versions);
3012
3013 // Create the .interp section to hold the name of the
3014 // interpreter, and put it in a PT_INTERP segment. Don't do it
3015 // if we saw a .interp section in an input file.
3016 if ((!parameters->options().shared()
3017 || parameters->options().dynamic_linker() != NULL)
3018 && this->interp_segment_ == NULL)
3019 this->create_interp(target);
3020
3021 // Finish the .dynamic section to hold the dynamic data, and put
3022 // it in a PT_DYNAMIC segment.
3023 this->finish_dynamic_section(input_objects, symtab);
3024
3025 // We should have added everything we need to the dynamic string
3026 // table.
3027 this->dynpool_.set_string_offsets();
3028
3029 // Create the version sections. We can't do this until the
3030 // dynamic string table is complete.
3031 this->create_version_sections(&versions, symtab,
3032 (local_dynamic_count
3033 + forced_local_dynamic_count),
3034 dynamic_symbols, dynstr);
3035
3036 // Set the size of the _DYNAMIC symbol. We can't do this until
3037 // after we call create_version_sections.
3038 this->set_dynamic_symbol_size(symtab);
3039 }
3040
3041 // Create segment headers.
3042 Output_segment_headers* segment_headers =
3043 (parameters->options().relocatable()
3044 ? NULL
3045 : new Output_segment_headers(this->segment_list_));
3046
3047 // Lay out the file header.
3048 Output_file_header* file_header = new Output_file_header(target, symtab,
3049 segment_headers);
3050
3051 this->special_output_list_.push_back(file_header);
3052 if (segment_headers != NULL)
3053 this->special_output_list_.push_back(segment_headers);
3054
3055 // Find approriate places for orphan output sections if we are using
3056 // a linker script.
3057 if (this->script_options_->saw_sections_clause())
3058 this->place_orphan_sections_in_script();
3059
3060 Output_segment* load_seg;
3061 off_t off;
3062 unsigned int shndx;
3063 int pass = 0;
3064
3065 // Take a snapshot of the section layout as needed.
3066 if (target->may_relax())
3067 this->prepare_for_relaxation();
3068
3069 // Run the relaxation loop to lay out sections.
3070 do
3071 {
3072 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3073 phdr_seg, segment_headers, file_header,
3074 &shndx);
3075 pass++;
3076 }
3077 while (target->may_relax()
3078 && target->relax(pass, input_objects, symtab, this, task));
3079
3080 // If there is a load segment that contains the file and program headers,
3081 // provide a symbol __ehdr_start pointing there.
3082 // A program can use this to examine itself robustly.
3083 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3084 if (ehdr_start != NULL && ehdr_start->is_predefined())
3085 {
3086 if (load_seg != NULL)
3087 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3088 else
3089 ehdr_start->set_undefined();
3090 }
3091
3092 // Set the file offsets of all the non-data sections we've seen so
3093 // far which don't have to wait for the input sections. We need
3094 // this in order to finalize local symbols in non-allocated
3095 // sections.
3096 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3097
3098 // Set the section indexes of all unallocated sections seen so far,
3099 // in case any of them are somehow referenced by a symbol.
3100 shndx = this->set_section_indexes(shndx);
3101
3102 // Create the symbol table sections.
3103 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3104 local_dynamic_count);
3105 if (!parameters->doing_static_link())
3106 this->assign_local_dynsym_offsets(input_objects);
3107
3108 // Process any symbol assignments from a linker script. This must
3109 // be called after the symbol table has been finalized.
3110 this->script_options_->finalize_symbols(symtab, this);
3111
3112 // Create the incremental inputs sections.
3113 if (this->incremental_inputs_)
3114 {
3115 this->incremental_inputs_->finalize();
3116 this->create_incremental_info_sections(symtab);
3117 }
3118
3119 // Create the .shstrtab section.
3120 Output_section* shstrtab_section = this->create_shstrtab();
3121
3122 // Set the file offsets of the rest of the non-data sections which
3123 // don't have to wait for the input sections.
3124 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3125
3126 // Now that all sections have been created, set the section indexes
3127 // for any sections which haven't been done yet.
3128 shndx = this->set_section_indexes(shndx);
3129
3130 // Create the section table header.
3131 this->create_shdrs(shstrtab_section, &off);
3132
3133 // If there are no sections which require postprocessing, we can
3134 // handle the section names now, and avoid a resize later.
3135 if (!this->any_postprocessing_sections_)
3136 {
3137 off = this->set_section_offsets(off,
3138 POSTPROCESSING_SECTIONS_PASS);
3139 off =
3140 this->set_section_offsets(off,
3141 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3142 }
3143
3144 file_header->set_section_info(this->section_headers_, shstrtab_section);
3145
3146 // Now we know exactly where everything goes in the output file
3147 // (except for non-allocated sections which require postprocessing).
3148 Output_data::layout_complete();
3149
3150 this->output_file_size_ = off;
3151
3152 return off;
3153 }
3154
3155 // Create a note header following the format defined in the ELF ABI.
3156 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3157 // of the section to create, DESCSZ is the size of the descriptor.
3158 // ALLOCATE is true if the section should be allocated in memory.
3159 // This returns the new note section. It sets *TRAILING_PADDING to
3160 // the number of trailing zero bytes required.
3161
3162 Output_section*
3163 Layout::create_note(const char* name, int note_type,
3164 const char* section_name, size_t descsz,
3165 bool allocate, size_t* trailing_padding)
3166 {
3167 // Authorities all agree that the values in a .note field should
3168 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3169 // they differ on what the alignment is for 64-bit binaries.
3170 // The GABI says unambiguously they take 8-byte alignment:
3171 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3172 // Other documentation says alignment should always be 4 bytes:
3173 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3174 // GNU ld and GNU readelf both support the latter (at least as of
3175 // version 2.16.91), and glibc always generates the latter for
3176 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3177 // here.
3178 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3179 const int size = parameters->target().get_size();
3180 #else
3181 const int size = 32;
3182 #endif
3183
3184 // The contents of the .note section.
3185 size_t namesz = strlen(name) + 1;
3186 size_t aligned_namesz = align_address(namesz, size / 8);
3187 size_t aligned_descsz = align_address(descsz, size / 8);
3188
3189 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3190
3191 unsigned char* buffer = new unsigned char[notehdrsz];
3192 memset(buffer, 0, notehdrsz);
3193
3194 bool is_big_endian = parameters->target().is_big_endian();
3195
3196 if (size == 32)
3197 {
3198 if (!is_big_endian)
3199 {
3200 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3201 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3202 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3203 }
3204 else
3205 {
3206 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3207 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3208 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3209 }
3210 }
3211 else if (size == 64)
3212 {
3213 if (!is_big_endian)
3214 {
3215 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3216 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3217 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3218 }
3219 else
3220 {
3221 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3222 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3223 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3224 }
3225 }
3226 else
3227 gold_unreachable();
3228
3229 memcpy(buffer + 3 * (size / 8), name, namesz);
3230
3231 elfcpp::Elf_Xword flags = 0;
3232 Output_section_order order = ORDER_INVALID;
3233 if (allocate)
3234 {
3235 flags = elfcpp::SHF_ALLOC;
3236 order = ORDER_RO_NOTE;
3237 }
3238 Output_section* os = this->choose_output_section(NULL, section_name,
3239 elfcpp::SHT_NOTE,
3240 flags, false, order, false,
3241 false, true);
3242 if (os == NULL)
3243 return NULL;
3244
3245 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3246 size / 8,
3247 "** note header");
3248 os->add_output_section_data(posd);
3249
3250 *trailing_padding = aligned_descsz - descsz;
3251
3252 return os;
3253 }
3254
3255 // Create a .note.gnu.property section to record program properties
3256 // accumulated from the input files.
3257
3258 void
3259 Layout::create_gnu_properties_note()
3260 {
3261 parameters->target().finalize_gnu_properties(this);
3262
3263 if (this->gnu_properties_.empty())
3264 return;
3265
3266 const unsigned int size = parameters->target().get_size();
3267 const bool is_big_endian = parameters->target().is_big_endian();
3268
3269 // Compute the total size of the properties array.
3270 size_t descsz = 0;
3271 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3272 prop != this->gnu_properties_.end();
3273 ++prop)
3274 {
3275 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3276 }
3277
3278 // Create the note section.
3279 size_t trailing_padding;
3280 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3281 ".note.gnu.property", descsz,
3282 true, &trailing_padding);
3283 if (os == NULL)
3284 return;
3285 gold_assert(trailing_padding == 0);
3286
3287 // Allocate and fill the properties array.
3288 unsigned char* desc = new unsigned char[descsz];
3289 unsigned char* p = desc;
3290 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3291 prop != this->gnu_properties_.end();
3292 ++prop)
3293 {
3294 size_t datasz = prop->second.pr_datasz;
3295 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3296 write_sized_value(prop->first, 4, p, is_big_endian);
3297 write_sized_value(datasz, 4, p + 4, is_big_endian);
3298 memcpy(p + 8, prop->second.pr_data, datasz);
3299 if (aligned_datasz > datasz)
3300 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3301 p += 8 + aligned_datasz;
3302 }
3303 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3304 os->add_output_section_data(posd);
3305 }
3306
3307 // For an executable or shared library, create a note to record the
3308 // version of gold used to create the binary.
3309
3310 void
3311 Layout::create_gold_note()
3312 {
3313 if (parameters->options().relocatable()
3314 || parameters->incremental_update())
3315 return;
3316
3317 std::string desc = std::string("gold ") + gold::get_version_string();
3318
3319 size_t trailing_padding;
3320 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3321 ".note.gnu.gold-version", desc.size(),
3322 false, &trailing_padding);
3323 if (os == NULL)
3324 return;
3325
3326 Output_section_data* posd = new Output_data_const(desc, 4);
3327 os->add_output_section_data(posd);
3328
3329 if (trailing_padding > 0)
3330 {
3331 posd = new Output_data_zero_fill(trailing_padding, 0);
3332 os->add_output_section_data(posd);
3333 }
3334 }
3335
3336 // Record whether the stack should be executable. This can be set
3337 // from the command line using the -z execstack or -z noexecstack
3338 // options. Otherwise, if any input file has a .note.GNU-stack
3339 // section with the SHF_EXECINSTR flag set, the stack should be
3340 // executable. Otherwise, if at least one input file a
3341 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3342 // section, we use the target default for whether the stack should be
3343 // executable. If -z stack-size was used to set a p_memsz value for
3344 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3345 // don't generate a stack note. When generating a object file, we
3346 // create a .note.GNU-stack section with the appropriate marking.
3347 // When generating an executable or shared library, we create a
3348 // PT_GNU_STACK segment.
3349
3350 void
3351 Layout::create_stack_segment()
3352 {
3353 bool is_stack_executable;
3354 if (parameters->options().is_execstack_set())
3355 {
3356 is_stack_executable = parameters->options().is_stack_executable();
3357 if (!is_stack_executable
3358 && this->input_requires_executable_stack_
3359 && parameters->options().warn_execstack())
3360 gold_warning(_("one or more inputs require executable stack, "
3361 "but -z noexecstack was given"));
3362 }
3363 else if (!this->input_with_gnu_stack_note_
3364 && (!parameters->options().user_set_stack_size()
3365 || parameters->options().relocatable()))
3366 return;
3367 else
3368 {
3369 if (this->input_requires_executable_stack_)
3370 is_stack_executable = true;
3371 else if (this->input_without_gnu_stack_note_)
3372 is_stack_executable =
3373 parameters->target().is_default_stack_executable();
3374 else
3375 is_stack_executable = false;
3376 }
3377
3378 if (parameters->options().relocatable())
3379 {
3380 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3381 elfcpp::Elf_Xword flags = 0;
3382 if (is_stack_executable)
3383 flags |= elfcpp::SHF_EXECINSTR;
3384 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3385 ORDER_INVALID, false);
3386 }
3387 else
3388 {
3389 if (this->script_options_->saw_phdrs_clause())
3390 return;
3391 int flags = elfcpp::PF_R | elfcpp::PF_W;
3392 if (is_stack_executable)
3393 flags |= elfcpp::PF_X;
3394 Output_segment* seg =
3395 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3396 seg->set_size(parameters->options().stack_size());
3397 // BFD lets targets override this default alignment, but the only
3398 // targets that do so are ones that Gold does not support so far.
3399 seg->set_minimum_p_align(16);
3400 }
3401 }
3402
3403 // If --build-id was used, set up the build ID note.
3404
3405 void
3406 Layout::create_build_id()
3407 {
3408 if (!parameters->options().user_set_build_id())
3409 return;
3410
3411 const char* style = parameters->options().build_id();
3412 if (strcmp(style, "none") == 0)
3413 return;
3414
3415 // Set DESCSZ to the size of the note descriptor. When possible,
3416 // set DESC to the note descriptor contents.
3417 size_t descsz;
3418 std::string desc;
3419 if (strcmp(style, "md5") == 0)
3420 descsz = 128 / 8;
3421 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3422 descsz = 160 / 8;
3423 else if (strcmp(style, "uuid") == 0)
3424 {
3425 #ifndef __MINGW32__
3426 const size_t uuidsz = 128 / 8;
3427
3428 char buffer[uuidsz];
3429 memset(buffer, 0, uuidsz);
3430
3431 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3432 if (descriptor < 0)
3433 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3434 strerror(errno));
3435 else
3436 {
3437 ssize_t got = ::read(descriptor, buffer, uuidsz);
3438 release_descriptor(descriptor, true);
3439 if (got < 0)
3440 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3441 else if (static_cast<size_t>(got) != uuidsz)
3442 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3443 uuidsz, got);
3444 }
3445
3446 desc.assign(buffer, uuidsz);
3447 descsz = uuidsz;
3448 #else // __MINGW32__
3449 UUID uuid;
3450 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3451
3452 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3453 if (!rpc_library)
3454 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3455 else
3456 {
3457 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3458 GetProcAddress(rpc_library, "UuidCreate"));
3459 if (!uuid_create)
3460 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3461 else if (uuid_create(&uuid) != RPC_S_OK)
3462 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3463 FreeLibrary(rpc_library);
3464 }
3465 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3466 descsz = sizeof(UUID);
3467 #endif // __MINGW32__
3468 }
3469 else if (strncmp(style, "0x", 2) == 0)
3470 {
3471 hex_init();
3472 const char* p = style + 2;
3473 while (*p != '\0')
3474 {
3475 if (hex_p(p[0]) && hex_p(p[1]))
3476 {
3477 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3478 desc += c;
3479 p += 2;
3480 }
3481 else if (*p == '-' || *p == ':')
3482 ++p;
3483 else
3484 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3485 style);
3486 }
3487 descsz = desc.size();
3488 }
3489 else
3490 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3491
3492 // Create the note.
3493 size_t trailing_padding;
3494 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3495 ".note.gnu.build-id", descsz, true,
3496 &trailing_padding);
3497 if (os == NULL)
3498 return;
3499
3500 if (!desc.empty())
3501 {
3502 // We know the value already, so we fill it in now.
3503 gold_assert(desc.size() == descsz);
3504
3505 Output_section_data* posd = new Output_data_const(desc, 4);
3506 os->add_output_section_data(posd);
3507
3508 if (trailing_padding != 0)
3509 {
3510 posd = new Output_data_zero_fill(trailing_padding, 0);
3511 os->add_output_section_data(posd);
3512 }
3513 }
3514 else
3515 {
3516 // We need to compute a checksum after we have completed the
3517 // link.
3518 gold_assert(trailing_padding == 0);
3519 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3520 os->add_output_section_data(this->build_id_note_);
3521 }
3522 }
3523
3524 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3525 // field of the former should point to the latter. I'm not sure who
3526 // started this, but the GNU linker does it, and some tools depend
3527 // upon it.
3528
3529 void
3530 Layout::link_stabs_sections()
3531 {
3532 if (!this->have_stabstr_section_)
3533 return;
3534
3535 for (Section_list::iterator p = this->section_list_.begin();
3536 p != this->section_list_.end();
3537 ++p)
3538 {
3539 if ((*p)->type() != elfcpp::SHT_STRTAB)
3540 continue;
3541
3542 const char* name = (*p)->name();
3543 if (strncmp(name, ".stab", 5) != 0)
3544 continue;
3545
3546 size_t len = strlen(name);
3547 if (strcmp(name + len - 3, "str") != 0)
3548 continue;
3549
3550 std::string stab_name(name, len - 3);
3551 Output_section* stab_sec;
3552 stab_sec = this->find_output_section(stab_name.c_str());
3553 if (stab_sec != NULL)
3554 stab_sec->set_link_section(*p);
3555 }
3556 }
3557
3558 // Create .gnu_incremental_inputs and related sections needed
3559 // for the next run of incremental linking to check what has changed.
3560
3561 void
3562 Layout::create_incremental_info_sections(Symbol_table* symtab)
3563 {
3564 Incremental_inputs* incr = this->incremental_inputs_;
3565
3566 gold_assert(incr != NULL);
3567
3568 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3569 incr->create_data_sections(symtab);
3570
3571 // Add the .gnu_incremental_inputs section.
3572 const char* incremental_inputs_name =
3573 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3574 Output_section* incremental_inputs_os =
3575 this->make_output_section(incremental_inputs_name,
3576 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3577 ORDER_INVALID, false);
3578 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3579
3580 // Add the .gnu_incremental_symtab section.
3581 const char* incremental_symtab_name =
3582 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3583 Output_section* incremental_symtab_os =
3584 this->make_output_section(incremental_symtab_name,
3585 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3586 ORDER_INVALID, false);
3587 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3588 incremental_symtab_os->set_entsize(4);
3589
3590 // Add the .gnu_incremental_relocs section.
3591 const char* incremental_relocs_name =
3592 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3593 Output_section* incremental_relocs_os =
3594 this->make_output_section(incremental_relocs_name,
3595 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3596 ORDER_INVALID, false);
3597 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3598 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3599
3600 // Add the .gnu_incremental_got_plt section.
3601 const char* incremental_got_plt_name =
3602 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3603 Output_section* incremental_got_plt_os =
3604 this->make_output_section(incremental_got_plt_name,
3605 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3606 ORDER_INVALID, false);
3607 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3608
3609 // Add the .gnu_incremental_strtab section.
3610 const char* incremental_strtab_name =
3611 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3612 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3613 elfcpp::SHT_STRTAB, 0,
3614 ORDER_INVALID, false);
3615 Output_data_strtab* strtab_data =
3616 new Output_data_strtab(incr->get_stringpool());
3617 incremental_strtab_os->add_output_section_data(strtab_data);
3618
3619 incremental_inputs_os->set_after_input_sections();
3620 incremental_symtab_os->set_after_input_sections();
3621 incremental_relocs_os->set_after_input_sections();
3622 incremental_got_plt_os->set_after_input_sections();
3623
3624 incremental_inputs_os->set_link_section(incremental_strtab_os);
3625 incremental_symtab_os->set_link_section(incremental_inputs_os);
3626 incremental_relocs_os->set_link_section(incremental_inputs_os);
3627 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3628 }
3629
3630 // Return whether SEG1 should be before SEG2 in the output file. This
3631 // is based entirely on the segment type and flags. When this is
3632 // called the segment addresses have normally not yet been set.
3633
3634 bool
3635 Layout::segment_precedes(const Output_segment* seg1,
3636 const Output_segment* seg2)
3637 {
3638 // In order to produce a stable ordering if we're called with the same pointer
3639 // return false.
3640 if (seg1 == seg2)
3641 return false;
3642
3643 elfcpp::Elf_Word type1 = seg1->type();
3644 elfcpp::Elf_Word type2 = seg2->type();
3645
3646 // The single PT_PHDR segment is required to precede any loadable
3647 // segment. We simply make it always first.
3648 if (type1 == elfcpp::PT_PHDR)
3649 {
3650 gold_assert(type2 != elfcpp::PT_PHDR);
3651 return true;
3652 }
3653 if (type2 == elfcpp::PT_PHDR)
3654 return false;
3655
3656 // The single PT_INTERP segment is required to precede any loadable
3657 // segment. We simply make it always second.
3658 if (type1 == elfcpp::PT_INTERP)
3659 {
3660 gold_assert(type2 != elfcpp::PT_INTERP);
3661 return true;
3662 }
3663 if (type2 == elfcpp::PT_INTERP)
3664 return false;
3665
3666 // We then put PT_LOAD segments before any other segments.
3667 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3668 return true;
3669 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3670 return false;
3671
3672 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3673 // segment, because that is where the dynamic linker expects to find
3674 // it (this is just for efficiency; other positions would also work
3675 // correctly).
3676 if (type1 == elfcpp::PT_TLS
3677 && type2 != elfcpp::PT_TLS
3678 && type2 != elfcpp::PT_GNU_RELRO)
3679 return false;
3680 if (type2 == elfcpp::PT_TLS
3681 && type1 != elfcpp::PT_TLS
3682 && type1 != elfcpp::PT_GNU_RELRO)
3683 return true;
3684
3685 // We put the PT_GNU_RELRO segment last, because that is where the
3686 // dynamic linker expects to find it (as with PT_TLS, this is just
3687 // for efficiency).
3688 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3689 return false;
3690 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3691 return true;
3692
3693 const elfcpp::Elf_Word flags1 = seg1->flags();
3694 const elfcpp::Elf_Word flags2 = seg2->flags();
3695
3696 // The order of non-PT_LOAD segments is unimportant. We simply sort
3697 // by the numeric segment type and flags values. There should not
3698 // be more than one segment with the same type and flags, except
3699 // when a linker script specifies such.
3700 if (type1 != elfcpp::PT_LOAD)
3701 {
3702 if (type1 != type2)
3703 return type1 < type2;
3704 gold_assert(flags1 != flags2
3705 || this->script_options_->saw_phdrs_clause());
3706 return flags1 < flags2;
3707 }
3708
3709 // If the addresses are set already, sort by load address.
3710 if (seg1->are_addresses_set())
3711 {
3712 if (!seg2->are_addresses_set())
3713 return true;
3714
3715 unsigned int section_count1 = seg1->output_section_count();
3716 unsigned int section_count2 = seg2->output_section_count();
3717 if (section_count1 == 0 && section_count2 > 0)
3718 return true;
3719 if (section_count1 > 0 && section_count2 == 0)
3720 return false;
3721
3722 uint64_t paddr1 = (seg1->are_addresses_set()
3723 ? seg1->paddr()
3724 : seg1->first_section_load_address());
3725 uint64_t paddr2 = (seg2->are_addresses_set()
3726 ? seg2->paddr()
3727 : seg2->first_section_load_address());
3728
3729 if (paddr1 != paddr2)
3730 return paddr1 < paddr2;
3731 }
3732 else if (seg2->are_addresses_set())
3733 return false;
3734
3735 // A segment which holds large data comes after a segment which does
3736 // not hold large data.
3737 if (seg1->is_large_data_segment())
3738 {
3739 if (!seg2->is_large_data_segment())
3740 return false;
3741 }
3742 else if (seg2->is_large_data_segment())
3743 return true;
3744
3745 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3746 // segments come before writable segments. Then writable segments
3747 // with data come before writable segments without data. Then
3748 // executable segments come before non-executable segments. Then
3749 // the unlikely case of a non-readable segment comes before the
3750 // normal case of a readable segment. If there are multiple
3751 // segments with the same type and flags, we require that the
3752 // address be set, and we sort by virtual address and then physical
3753 // address.
3754 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3755 return (flags1 & elfcpp::PF_W) == 0;
3756 if ((flags1 & elfcpp::PF_W) != 0
3757 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3758 return seg1->has_any_data_sections();
3759 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3760 return (flags1 & elfcpp::PF_X) != 0;
3761 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3762 return (flags1 & elfcpp::PF_R) == 0;
3763
3764 // We shouldn't get here--we shouldn't create segments which we
3765 // can't distinguish. Unless of course we are using a weird linker
3766 // script or overlapping --section-start options. We could also get
3767 // here if plugins want unique segments for subsets of sections.
3768 gold_assert(this->script_options_->saw_phdrs_clause()
3769 || parameters->options().any_section_start()
3770 || this->is_unique_segment_for_sections_specified()
3771 || parameters->options().text_unlikely_segment());
3772 return false;
3773 }
3774
3775 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3776
3777 static off_t
3778 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3779 {
3780 uint64_t unsigned_off = off;
3781 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3782 | (addr & (abi_pagesize - 1)));
3783 if (aligned_off < unsigned_off)
3784 aligned_off += abi_pagesize;
3785 return aligned_off;
3786 }
3787
3788 // On targets where the text segment contains only executable code,
3789 // a non-executable segment is never the text segment.
3790
3791 static inline bool
3792 is_text_segment(const Target* target, const Output_segment* seg)
3793 {
3794 elfcpp::Elf_Xword flags = seg->flags();
3795 if ((flags & elfcpp::PF_W) != 0)
3796 return false;
3797 if ((flags & elfcpp::PF_X) == 0)
3798 return !target->isolate_execinstr();
3799 return true;
3800 }
3801
3802 // Set the file offsets of all the segments, and all the sections they
3803 // contain. They have all been created. LOAD_SEG must be laid out
3804 // first. Return the offset of the data to follow.
3805
3806 off_t
3807 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3808 unsigned int* pshndx)
3809 {
3810 // Sort them into the final order. We use a stable sort so that we
3811 // don't randomize the order of indistinguishable segments created
3812 // by linker scripts.
3813 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3814 Layout::Compare_segments(this));
3815
3816 // Find the PT_LOAD segments, and set their addresses and offsets
3817 // and their section's addresses and offsets.
3818 uint64_t start_addr;
3819 if (parameters->options().user_set_Ttext())
3820 start_addr = parameters->options().Ttext();
3821 else if (parameters->options().output_is_position_independent())
3822 start_addr = 0;
3823 else
3824 start_addr = target->default_text_segment_address();
3825
3826 uint64_t addr = start_addr;
3827 off_t off = 0;
3828
3829 // If LOAD_SEG is NULL, then the file header and segment headers
3830 // will not be loadable. But they still need to be at offset 0 in
3831 // the file. Set their offsets now.
3832 if (load_seg == NULL)
3833 {
3834 for (Data_list::iterator p = this->special_output_list_.begin();
3835 p != this->special_output_list_.end();
3836 ++p)
3837 {
3838 off = align_address(off, (*p)->addralign());
3839 (*p)->set_address_and_file_offset(0, off);
3840 off += (*p)->data_size();
3841 }
3842 }
3843
3844 unsigned int increase_relro = this->increase_relro_;
3845 if (this->script_options_->saw_sections_clause())
3846 increase_relro = 0;
3847
3848 const bool check_sections = parameters->options().check_sections();
3849 Output_segment* last_load_segment = NULL;
3850
3851 unsigned int shndx_begin = *pshndx;
3852 unsigned int shndx_load_seg = *pshndx;
3853
3854 for (Segment_list::iterator p = this->segment_list_.begin();
3855 p != this->segment_list_.end();
3856 ++p)
3857 {
3858 if ((*p)->type() == elfcpp::PT_LOAD)
3859 {
3860 if (target->isolate_execinstr())
3861 {
3862 // When we hit the segment that should contain the
3863 // file headers, reset the file offset so we place
3864 // it and subsequent segments appropriately.
3865 // We'll fix up the preceding segments below.
3866 if (load_seg == *p)
3867 {
3868 if (off == 0)
3869 load_seg = NULL;
3870 else
3871 {
3872 off = 0;
3873 shndx_load_seg = *pshndx;
3874 }
3875 }
3876 }
3877 else
3878 {
3879 // Verify that the file headers fall into the first segment.
3880 if (load_seg != NULL && load_seg != *p)
3881 gold_unreachable();
3882 load_seg = NULL;
3883 }
3884
3885 bool are_addresses_set = (*p)->are_addresses_set();
3886 if (are_addresses_set)
3887 {
3888 // When it comes to setting file offsets, we care about
3889 // the physical address.
3890 addr = (*p)->paddr();
3891 }
3892 else if (parameters->options().user_set_Ttext()
3893 && (parameters->options().omagic()
3894 || is_text_segment(target, *p)))
3895 {
3896 are_addresses_set = true;
3897 }
3898 else if (parameters->options().user_set_Trodata_segment()
3899 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3900 {
3901 addr = parameters->options().Trodata_segment();
3902 are_addresses_set = true;
3903 }
3904 else if (parameters->options().user_set_Tdata()
3905 && ((*p)->flags() & elfcpp::PF_W) != 0
3906 && (!parameters->options().user_set_Tbss()
3907 || (*p)->has_any_data_sections()))
3908 {
3909 addr = parameters->options().Tdata();
3910 are_addresses_set = true;
3911 }
3912 else if (parameters->options().user_set_Tbss()
3913 && ((*p)->flags() & elfcpp::PF_W) != 0
3914 && !(*p)->has_any_data_sections())
3915 {
3916 addr = parameters->options().Tbss();
3917 are_addresses_set = true;
3918 }
3919
3920 uint64_t orig_addr = addr;
3921 uint64_t orig_off = off;
3922
3923 uint64_t aligned_addr = 0;
3924 uint64_t abi_pagesize = target->abi_pagesize();
3925 uint64_t common_pagesize = target->common_pagesize();
3926
3927 if (!parameters->options().nmagic()
3928 && !parameters->options().omagic())
3929 (*p)->set_minimum_p_align(abi_pagesize);
3930
3931 if (!are_addresses_set)
3932 {
3933 // Skip the address forward one page, maintaining the same
3934 // position within the page. This lets us store both segments
3935 // overlapping on a single page in the file, but the loader will
3936 // put them on different pages in memory. We will revisit this
3937 // decision once we know the size of the segment.
3938
3939 uint64_t max_align = (*p)->maximum_alignment();
3940 if (max_align > abi_pagesize)
3941 addr = align_address(addr, max_align);
3942 aligned_addr = addr;
3943
3944 if (load_seg == *p)
3945 {
3946 // This is the segment that will contain the file
3947 // headers, so its offset will have to be exactly zero.
3948 gold_assert(orig_off == 0);
3949
3950 // If the target wants a fixed minimum distance from the
3951 // text segment to the read-only segment, move up now.
3952 uint64_t min_addr =
3953 start_addr + (parameters->options().user_set_rosegment_gap()
3954 ? parameters->options().rosegment_gap()
3955 : target->rosegment_gap());
3956 if (addr < min_addr)
3957 addr = min_addr;
3958
3959 // But this is not the first segment! To make its
3960 // address congruent with its offset, that address better
3961 // be aligned to the ABI-mandated page size.
3962 addr = align_address(addr, abi_pagesize);
3963 aligned_addr = addr;
3964 }
3965 else
3966 {
3967 if ((addr & (abi_pagesize - 1)) != 0)
3968 addr = addr + abi_pagesize;
3969
3970 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3971 }
3972 }
3973
3974 if (!parameters->options().nmagic()
3975 && !parameters->options().omagic())
3976 {
3977 // Here we are also taking care of the case when
3978 // the maximum segment alignment is larger than the page size.
3979 off = align_file_offset(off, addr,
3980 std::max(abi_pagesize,
3981 (*p)->maximum_alignment()));
3982 }
3983 else
3984 {
3985 // This is -N or -n with a section script which prevents
3986 // us from using a load segment. We need to ensure that
3987 // the file offset is aligned to the alignment of the
3988 // segment. This is because the linker script
3989 // implicitly assumed a zero offset. If we don't align
3990 // here, then the alignment of the sections in the
3991 // linker script may not match the alignment of the
3992 // sections in the set_section_addresses call below,
3993 // causing an error about dot moving backward.
3994 off = align_address(off, (*p)->maximum_alignment());
3995 }
3996
3997 unsigned int shndx_hold = *pshndx;
3998 bool has_relro = false;
3999 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4000 false, addr,
4001 &increase_relro,
4002 &has_relro,
4003 &off, pshndx);
4004
4005 // Now that we know the size of this segment, we may be able
4006 // to save a page in memory, at the cost of wasting some
4007 // file space, by instead aligning to the start of a new
4008 // page. Here we use the real machine page size rather than
4009 // the ABI mandated page size. If the segment has been
4010 // aligned so that the relro data ends at a page boundary,
4011 // we do not try to realign it.
4012
4013 if (!are_addresses_set
4014 && !has_relro
4015 && aligned_addr != addr
4016 && !parameters->incremental())
4017 {
4018 uint64_t first_off = (common_pagesize
4019 - (aligned_addr
4020 & (common_pagesize - 1)));
4021 uint64_t last_off = new_addr & (common_pagesize - 1);
4022 if (first_off > 0
4023 && last_off > 0
4024 && ((aligned_addr & ~ (common_pagesize - 1))
4025 != (new_addr & ~ (common_pagesize - 1)))
4026 && first_off + last_off <= common_pagesize)
4027 {
4028 *pshndx = shndx_hold;
4029 addr = align_address(aligned_addr, common_pagesize);
4030 addr = align_address(addr, (*p)->maximum_alignment());
4031 if ((addr & (abi_pagesize - 1)) != 0)
4032 addr = addr + abi_pagesize;
4033 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4034 off = align_file_offset(off, addr, abi_pagesize);
4035
4036 increase_relro = this->increase_relro_;
4037 if (this->script_options_->saw_sections_clause())
4038 increase_relro = 0;
4039 has_relro = false;
4040
4041 new_addr = (*p)->set_section_addresses(target, this,
4042 true, addr,
4043 &increase_relro,
4044 &has_relro,
4045 &off, pshndx);
4046 }
4047 }
4048
4049 addr = new_addr;
4050
4051 // Implement --check-sections. We know that the segments
4052 // are sorted by LMA.
4053 if (check_sections && last_load_segment != NULL)
4054 {
4055 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4056 if (last_load_segment->paddr() + last_load_segment->memsz()
4057 > (*p)->paddr())
4058 {
4059 unsigned long long lb1 = last_load_segment->paddr();
4060 unsigned long long le1 = lb1 + last_load_segment->memsz();
4061 unsigned long long lb2 = (*p)->paddr();
4062 unsigned long long le2 = lb2 + (*p)->memsz();
4063 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4064 "[0x%llx -> 0x%llx]"),
4065 lb1, le1, lb2, le2);
4066 }
4067 }
4068 last_load_segment = *p;
4069 }
4070 }
4071
4072 if (load_seg != NULL && target->isolate_execinstr())
4073 {
4074 // Process the early segments again, setting their file offsets
4075 // so they land after the segments starting at LOAD_SEG.
4076 off = align_file_offset(off, 0, target->abi_pagesize());
4077
4078 this->reset_relax_output();
4079
4080 for (Segment_list::iterator p = this->segment_list_.begin();
4081 *p != load_seg;
4082 ++p)
4083 {
4084 if ((*p)->type() == elfcpp::PT_LOAD)
4085 {
4086 // We repeat the whole job of assigning addresses and
4087 // offsets, but we really only want to change the offsets and
4088 // must ensure that the addresses all come out the same as
4089 // they did the first time through.
4090 bool has_relro = false;
4091 const uint64_t old_addr = (*p)->vaddr();
4092 const uint64_t old_end = old_addr + (*p)->memsz();
4093 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4094 true, old_addr,
4095 &increase_relro,
4096 &has_relro,
4097 &off,
4098 &shndx_begin);
4099 gold_assert(new_addr == old_end);
4100 }
4101 }
4102
4103 gold_assert(shndx_begin == shndx_load_seg);
4104 }
4105
4106 // Handle the non-PT_LOAD segments, setting their offsets from their
4107 // section's offsets.
4108 for (Segment_list::iterator p = this->segment_list_.begin();
4109 p != this->segment_list_.end();
4110 ++p)
4111 {
4112 // PT_GNU_STACK was set up correctly when it was created.
4113 if ((*p)->type() != elfcpp::PT_LOAD
4114 && (*p)->type() != elfcpp::PT_GNU_STACK)
4115 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4116 ? increase_relro
4117 : 0);
4118 }
4119
4120 // Set the TLS offsets for each section in the PT_TLS segment.
4121 if (this->tls_segment_ != NULL)
4122 this->tls_segment_->set_tls_offsets();
4123
4124 return off;
4125 }
4126
4127 // Set the offsets of all the allocated sections when doing a
4128 // relocatable link. This does the same jobs as set_segment_offsets,
4129 // only for a relocatable link.
4130
4131 off_t
4132 Layout::set_relocatable_section_offsets(Output_data* file_header,
4133 unsigned int* pshndx)
4134 {
4135 off_t off = 0;
4136
4137 file_header->set_address_and_file_offset(0, 0);
4138 off += file_header->data_size();
4139
4140 for (Section_list::iterator p = this->section_list_.begin();
4141 p != this->section_list_.end();
4142 ++p)
4143 {
4144 // We skip unallocated sections here, except that group sections
4145 // have to come first.
4146 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4147 && (*p)->type() != elfcpp::SHT_GROUP)
4148 continue;
4149
4150 off = align_address(off, (*p)->addralign());
4151
4152 // The linker script might have set the address.
4153 if (!(*p)->is_address_valid())
4154 (*p)->set_address(0);
4155 (*p)->set_file_offset(off);
4156 (*p)->finalize_data_size();
4157 if ((*p)->type() != elfcpp::SHT_NOBITS)
4158 off += (*p)->data_size();
4159
4160 (*p)->set_out_shndx(*pshndx);
4161 ++*pshndx;
4162 }
4163
4164 return off;
4165 }
4166
4167 // Set the file offset of all the sections not associated with a
4168 // segment.
4169
4170 off_t
4171 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4172 {
4173 off_t startoff = off;
4174 off_t maxoff = off;
4175
4176 for (Section_list::iterator p = this->unattached_section_list_.begin();
4177 p != this->unattached_section_list_.end();
4178 ++p)
4179 {
4180 // The symtab section is handled in create_symtab_sections.
4181 if (*p == this->symtab_section_)
4182 continue;
4183
4184 // If we've already set the data size, don't set it again.
4185 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4186 continue;
4187
4188 if (pass == BEFORE_INPUT_SECTIONS_PASS
4189 && (*p)->requires_postprocessing())
4190 {
4191 (*p)->create_postprocessing_buffer();
4192 this->any_postprocessing_sections_ = true;
4193 }
4194
4195 if (pass == BEFORE_INPUT_SECTIONS_PASS
4196 && (*p)->after_input_sections())
4197 continue;
4198 else if (pass == POSTPROCESSING_SECTIONS_PASS
4199 && (!(*p)->after_input_sections()
4200 || (*p)->type() == elfcpp::SHT_STRTAB))
4201 continue;
4202 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4203 && (!(*p)->after_input_sections()
4204 || (*p)->type() != elfcpp::SHT_STRTAB))
4205 continue;
4206
4207 if (!parameters->incremental_update())
4208 {
4209 off = align_address(off, (*p)->addralign());
4210 (*p)->set_file_offset(off);
4211 (*p)->finalize_data_size();
4212 }
4213 else
4214 {
4215 // Incremental update: allocate file space from free list.
4216 (*p)->pre_finalize_data_size();
4217 off_t current_size = (*p)->current_data_size();
4218 off = this->allocate(current_size, (*p)->addralign(), startoff);
4219 if (off == -1)
4220 {
4221 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4222 this->free_list_.dump();
4223 gold_assert((*p)->output_section() != NULL);
4224 gold_fallback(_("out of patch space for section %s; "
4225 "relink with --incremental-full"),
4226 (*p)->output_section()->name());
4227 }
4228 (*p)->set_file_offset(off);
4229 (*p)->finalize_data_size();
4230 if ((*p)->data_size() > current_size)
4231 {
4232 gold_assert((*p)->output_section() != NULL);
4233 gold_fallback(_("%s: section changed size; "
4234 "relink with --incremental-full"),
4235 (*p)->output_section()->name());
4236 }
4237 gold_debug(DEBUG_INCREMENTAL,
4238 "set_section_offsets: %08lx %08lx %s",
4239 static_cast<long>(off),
4240 static_cast<long>((*p)->data_size()),
4241 ((*p)->output_section() != NULL
4242 ? (*p)->output_section()->name() : "(special)"));
4243 }
4244
4245 off += (*p)->data_size();
4246 if (off > maxoff)
4247 maxoff = off;
4248
4249 // At this point the name must be set.
4250 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4251 this->namepool_.add((*p)->name(), false, NULL);
4252 }
4253 return maxoff;
4254 }
4255
4256 // Set the section indexes of all the sections not associated with a
4257 // segment.
4258
4259 unsigned int
4260 Layout::set_section_indexes(unsigned int shndx)
4261 {
4262 for (Section_list::iterator p = this->unattached_section_list_.begin();
4263 p != this->unattached_section_list_.end();
4264 ++p)
4265 {
4266 if (!(*p)->has_out_shndx())
4267 {
4268 (*p)->set_out_shndx(shndx);
4269 ++shndx;
4270 }
4271 }
4272 return shndx;
4273 }
4274
4275 // Set the section addresses according to the linker script. This is
4276 // only called when we see a SECTIONS clause. This returns the
4277 // program segment which should hold the file header and segment
4278 // headers, if any. It will return NULL if they should not be in a
4279 // segment.
4280
4281 Output_segment*
4282 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4283 {
4284 Script_sections* ss = this->script_options_->script_sections();
4285 gold_assert(ss->saw_sections_clause());
4286 return this->script_options_->set_section_addresses(symtab, this);
4287 }
4288
4289 // Place the orphan sections in the linker script.
4290
4291 void
4292 Layout::place_orphan_sections_in_script()
4293 {
4294 Script_sections* ss = this->script_options_->script_sections();
4295 gold_assert(ss->saw_sections_clause());
4296
4297 // Place each orphaned output section in the script.
4298 for (Section_list::iterator p = this->section_list_.begin();
4299 p != this->section_list_.end();
4300 ++p)
4301 {
4302 if (!(*p)->found_in_sections_clause())
4303 ss->place_orphan(*p);
4304 }
4305 }
4306
4307 // Count the local symbols in the regular symbol table and the dynamic
4308 // symbol table, and build the respective string pools.
4309
4310 void
4311 Layout::count_local_symbols(const Task* task,
4312 const Input_objects* input_objects)
4313 {
4314 // First, figure out an upper bound on the number of symbols we'll
4315 // be inserting into each pool. This helps us create the pools with
4316 // the right size, to avoid unnecessary hashtable resizing.
4317 unsigned int symbol_count = 0;
4318 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4319 p != input_objects->relobj_end();
4320 ++p)
4321 symbol_count += (*p)->local_symbol_count();
4322
4323 // Go from "upper bound" to "estimate." We overcount for two
4324 // reasons: we double-count symbols that occur in more than one
4325 // object file, and we count symbols that are dropped from the
4326 // output. Add it all together and assume we overcount by 100%.
4327 symbol_count /= 2;
4328
4329 // We assume all symbols will go into both the sympool and dynpool.
4330 this->sympool_.reserve(symbol_count);
4331 this->dynpool_.reserve(symbol_count);
4332
4333 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4334 p != input_objects->relobj_end();
4335 ++p)
4336 {
4337 Task_lock_obj<Object> tlo(task, *p);
4338 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4339 }
4340 }
4341
4342 // Create the symbol table sections. Here we also set the final
4343 // values of the symbols. At this point all the loadable sections are
4344 // fully laid out. SHNUM is the number of sections so far.
4345
4346 void
4347 Layout::create_symtab_sections(const Input_objects* input_objects,
4348 Symbol_table* symtab,
4349 unsigned int shnum,
4350 off_t* poff,
4351 unsigned int local_dynamic_count)
4352 {
4353 int symsize;
4354 unsigned int align;
4355 if (parameters->target().get_size() == 32)
4356 {
4357 symsize = elfcpp::Elf_sizes<32>::sym_size;
4358 align = 4;
4359 }
4360 else if (parameters->target().get_size() == 64)
4361 {
4362 symsize = elfcpp::Elf_sizes<64>::sym_size;
4363 align = 8;
4364 }
4365 else
4366 gold_unreachable();
4367
4368 // Compute file offsets relative to the start of the symtab section.
4369 off_t off = 0;
4370
4371 // Save space for the dummy symbol at the start of the section. We
4372 // never bother to write this out--it will just be left as zero.
4373 off += symsize;
4374 unsigned int local_symbol_index = 1;
4375
4376 // Add STT_SECTION symbols for each Output section which needs one.
4377 for (Section_list::iterator p = this->section_list_.begin();
4378 p != this->section_list_.end();
4379 ++p)
4380 {
4381 if (!(*p)->needs_symtab_index())
4382 (*p)->set_symtab_index(-1U);
4383 else
4384 {
4385 (*p)->set_symtab_index(local_symbol_index);
4386 ++local_symbol_index;
4387 off += symsize;
4388 }
4389 }
4390
4391 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4392 p != input_objects->relobj_end();
4393 ++p)
4394 {
4395 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4396 off, symtab);
4397 off += (index - local_symbol_index) * symsize;
4398 local_symbol_index = index;
4399 }
4400
4401 unsigned int local_symcount = local_symbol_index;
4402 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4403
4404 off_t dynoff;
4405 size_t dyncount;
4406 if (this->dynsym_section_ == NULL)
4407 {
4408 dynoff = 0;
4409 dyncount = 0;
4410 }
4411 else
4412 {
4413 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4414 dynoff = this->dynsym_section_->offset() + locsize;
4415 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4416 gold_assert(static_cast<off_t>(dyncount * symsize)
4417 == this->dynsym_section_->data_size() - locsize);
4418 }
4419
4420 off_t global_off = off;
4421 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4422 &this->sympool_, &local_symcount);
4423
4424 if (!parameters->options().strip_all())
4425 {
4426 this->sympool_.set_string_offsets();
4427
4428 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4429 Output_section* osymtab = this->make_output_section(symtab_name,
4430 elfcpp::SHT_SYMTAB,
4431 0, ORDER_INVALID,
4432 false);
4433 this->symtab_section_ = osymtab;
4434
4435 Output_section_data* pos = new Output_data_fixed_space(off, align,
4436 "** symtab");
4437 osymtab->add_output_section_data(pos);
4438
4439 // We generate a .symtab_shndx section if we have more than
4440 // SHN_LORESERVE sections. Technically it is possible that we
4441 // don't need one, because it is possible that there are no
4442 // symbols in any of sections with indexes larger than
4443 // SHN_LORESERVE. That is probably unusual, though, and it is
4444 // easier to always create one than to compute section indexes
4445 // twice (once here, once when writing out the symbols).
4446 if (shnum >= elfcpp::SHN_LORESERVE)
4447 {
4448 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4449 false, NULL);
4450 Output_section* osymtab_xindex =
4451 this->make_output_section(symtab_xindex_name,
4452 elfcpp::SHT_SYMTAB_SHNDX, 0,
4453 ORDER_INVALID, false);
4454
4455 size_t symcount = off / symsize;
4456 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4457
4458 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4459
4460 osymtab_xindex->set_link_section(osymtab);
4461 osymtab_xindex->set_addralign(4);
4462 osymtab_xindex->set_entsize(4);
4463
4464 osymtab_xindex->set_after_input_sections();
4465
4466 // This tells the driver code to wait until the symbol table
4467 // has written out before writing out the postprocessing
4468 // sections, including the .symtab_shndx section.
4469 this->any_postprocessing_sections_ = true;
4470 }
4471
4472 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4473 Output_section* ostrtab = this->make_output_section(strtab_name,
4474 elfcpp::SHT_STRTAB,
4475 0, ORDER_INVALID,
4476 false);
4477
4478 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4479 ostrtab->add_output_section_data(pstr);
4480
4481 off_t symtab_off;
4482 if (!parameters->incremental_update())
4483 symtab_off = align_address(*poff, align);
4484 else
4485 {
4486 symtab_off = this->allocate(off, align, *poff);
4487 if (off == -1)
4488 gold_fallback(_("out of patch space for symbol table; "
4489 "relink with --incremental-full"));
4490 gold_debug(DEBUG_INCREMENTAL,
4491 "create_symtab_sections: %08lx %08lx .symtab",
4492 static_cast<long>(symtab_off),
4493 static_cast<long>(off));
4494 }
4495
4496 symtab->set_file_offset(symtab_off + global_off);
4497 osymtab->set_file_offset(symtab_off);
4498 osymtab->finalize_data_size();
4499 osymtab->set_link_section(ostrtab);
4500 osymtab->set_info(local_symcount);
4501 osymtab->set_entsize(symsize);
4502
4503 if (symtab_off + off > *poff)
4504 *poff = symtab_off + off;
4505 }
4506 }
4507
4508 // Create the .shstrtab section, which holds the names of the
4509 // sections. At the time this is called, we have created all the
4510 // output sections except .shstrtab itself.
4511
4512 Output_section*
4513 Layout::create_shstrtab()
4514 {
4515 // FIXME: We don't need to create a .shstrtab section if we are
4516 // stripping everything.
4517
4518 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4519
4520 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4521 ORDER_INVALID, false);
4522
4523 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4524 {
4525 // We can't write out this section until we've set all the
4526 // section names, and we don't set the names of compressed
4527 // output sections until relocations are complete. FIXME: With
4528 // the current names we use, this is unnecessary.
4529 os->set_after_input_sections();
4530 }
4531
4532 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4533 os->add_output_section_data(posd);
4534
4535 return os;
4536 }
4537
4538 // Create the section headers. SIZE is 32 or 64. OFF is the file
4539 // offset.
4540
4541 void
4542 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4543 {
4544 Output_section_headers* oshdrs;
4545 oshdrs = new Output_section_headers(this,
4546 &this->segment_list_,
4547 &this->section_list_,
4548 &this->unattached_section_list_,
4549 &this->namepool_,
4550 shstrtab_section);
4551 off_t off;
4552 if (!parameters->incremental_update())
4553 off = align_address(*poff, oshdrs->addralign());
4554 else
4555 {
4556 oshdrs->pre_finalize_data_size();
4557 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4558 if (off == -1)
4559 gold_fallback(_("out of patch space for section header table; "
4560 "relink with --incremental-full"));
4561 gold_debug(DEBUG_INCREMENTAL,
4562 "create_shdrs: %08lx %08lx (section header table)",
4563 static_cast<long>(off),
4564 static_cast<long>(off + oshdrs->data_size()));
4565 }
4566 oshdrs->set_address_and_file_offset(0, off);
4567 off += oshdrs->data_size();
4568 if (off > *poff)
4569 *poff = off;
4570 this->section_headers_ = oshdrs;
4571 }
4572
4573 // Count the allocated sections.
4574
4575 size_t
4576 Layout::allocated_output_section_count() const
4577 {
4578 size_t section_count = 0;
4579 for (Segment_list::const_iterator p = this->segment_list_.begin();
4580 p != this->segment_list_.end();
4581 ++p)
4582 section_count += (*p)->output_section_count();
4583 return section_count;
4584 }
4585
4586 // Create the dynamic symbol table.
4587 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4588 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4589 // to the number of global symbols that have been forced local.
4590 // We need to remember the former because the forced-local symbols are
4591 // written along with the global symbols in Symtab::write_globals().
4592
4593 void
4594 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4595 Symbol_table* symtab,
4596 Output_section** pdynstr,
4597 unsigned int* plocal_dynamic_count,
4598 unsigned int* pforced_local_dynamic_count,
4599 std::vector<Symbol*>* pdynamic_symbols,
4600 Versions* pversions)
4601 {
4602 // Count all the symbols in the dynamic symbol table, and set the
4603 // dynamic symbol indexes.
4604
4605 // Skip symbol 0, which is always all zeroes.
4606 unsigned int index = 1;
4607
4608 // Add STT_SECTION symbols for each Output section which needs one.
4609 for (Section_list::iterator p = this->section_list_.begin();
4610 p != this->section_list_.end();
4611 ++p)
4612 {
4613 if (!(*p)->needs_dynsym_index())
4614 (*p)->set_dynsym_index(-1U);
4615 else
4616 {
4617 (*p)->set_dynsym_index(index);
4618 ++index;
4619 }
4620 }
4621
4622 // Count the local symbols that need to go in the dynamic symbol table,
4623 // and set the dynamic symbol indexes.
4624 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4625 p != input_objects->relobj_end();
4626 ++p)
4627 {
4628 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4629 index = new_index;
4630 }
4631
4632 unsigned int local_symcount = index;
4633 unsigned int forced_local_count = 0;
4634
4635 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4636 pdynamic_symbols, &this->dynpool_,
4637 pversions);
4638
4639 *plocal_dynamic_count = local_symcount;
4640 *pforced_local_dynamic_count = forced_local_count;
4641
4642 int symsize;
4643 unsigned int align;
4644 const int size = parameters->target().get_size();
4645 if (size == 32)
4646 {
4647 symsize = elfcpp::Elf_sizes<32>::sym_size;
4648 align = 4;
4649 }
4650 else if (size == 64)
4651 {
4652 symsize = elfcpp::Elf_sizes<64>::sym_size;
4653 align = 8;
4654 }
4655 else
4656 gold_unreachable();
4657
4658 // Create the dynamic symbol table section.
4659
4660 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4661 elfcpp::SHT_DYNSYM,
4662 elfcpp::SHF_ALLOC,
4663 false,
4664 ORDER_DYNAMIC_LINKER,
4665 false, false, false);
4666
4667 // Check for NULL as a linker script may discard .dynsym.
4668 if (dynsym != NULL)
4669 {
4670 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4671 align,
4672 "** dynsym");
4673 dynsym->add_output_section_data(odata);
4674
4675 dynsym->set_info(local_symcount + forced_local_count);
4676 dynsym->set_entsize(symsize);
4677 dynsym->set_addralign(align);
4678
4679 this->dynsym_section_ = dynsym;
4680 }
4681
4682 Output_data_dynamic* const odyn = this->dynamic_data_;
4683 if (odyn != NULL)
4684 {
4685 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4686 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4687 }
4688
4689 // If there are more than SHN_LORESERVE allocated sections, we
4690 // create a .dynsym_shndx section. It is possible that we don't
4691 // need one, because it is possible that there are no dynamic
4692 // symbols in any of the sections with indexes larger than
4693 // SHN_LORESERVE. This is probably unusual, though, and at this
4694 // time we don't know the actual section indexes so it is
4695 // inconvenient to check.
4696 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4697 {
4698 Output_section* dynsym_xindex =
4699 this->choose_output_section(NULL, ".dynsym_shndx",
4700 elfcpp::SHT_SYMTAB_SHNDX,
4701 elfcpp::SHF_ALLOC,
4702 false, ORDER_DYNAMIC_LINKER, false, false,
4703 false);
4704
4705 if (dynsym_xindex != NULL)
4706 {
4707 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4708
4709 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4710
4711 dynsym_xindex->set_link_section(dynsym);
4712 dynsym_xindex->set_addralign(4);
4713 dynsym_xindex->set_entsize(4);
4714
4715 dynsym_xindex->set_after_input_sections();
4716
4717 // This tells the driver code to wait until the symbol table
4718 // has written out before writing out the postprocessing
4719 // sections, including the .dynsym_shndx section.
4720 this->any_postprocessing_sections_ = true;
4721 }
4722 }
4723
4724 // Create the dynamic string table section.
4725
4726 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4727 elfcpp::SHT_STRTAB,
4728 elfcpp::SHF_ALLOC,
4729 false,
4730 ORDER_DYNAMIC_LINKER,
4731 false, false, false);
4732 *pdynstr = dynstr;
4733 if (dynstr != NULL)
4734 {
4735 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4736 dynstr->add_output_section_data(strdata);
4737
4738 if (dynsym != NULL)
4739 dynsym->set_link_section(dynstr);
4740 if (this->dynamic_section_ != NULL)
4741 this->dynamic_section_->set_link_section(dynstr);
4742
4743 if (odyn != NULL)
4744 {
4745 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4746 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4747 }
4748 }
4749
4750 // Create the hash tables. The Gnu-style hash table must be
4751 // built first, because it changes the order of the symbols
4752 // in the dynamic symbol table.
4753
4754 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4755 || strcmp(parameters->options().hash_style(), "both") == 0)
4756 {
4757 unsigned char* phash;
4758 unsigned int hashlen;
4759 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4760 local_symcount + forced_local_count,
4761 &phash, &hashlen);
4762
4763 Output_section* hashsec =
4764 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4765 elfcpp::SHF_ALLOC, false,
4766 ORDER_DYNAMIC_LINKER, false, false,
4767 false);
4768
4769 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4770 hashlen,
4771 align,
4772 "** hash");
4773 if (hashsec != NULL && hashdata != NULL)
4774 hashsec->add_output_section_data(hashdata);
4775
4776 if (hashsec != NULL)
4777 {
4778 if (dynsym != NULL)
4779 hashsec->set_link_section(dynsym);
4780
4781 // For a 64-bit target, the entries in .gnu.hash do not have
4782 // a uniform size, so we only set the entry size for a
4783 // 32-bit target.
4784 if (parameters->target().get_size() == 32)
4785 hashsec->set_entsize(4);
4786
4787 if (odyn != NULL)
4788 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4789 }
4790 }
4791
4792 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4793 || strcmp(parameters->options().hash_style(), "both") == 0)
4794 {
4795 unsigned char* phash;
4796 unsigned int hashlen;
4797 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4798 local_symcount + forced_local_count,
4799 &phash, &hashlen);
4800
4801 Output_section* hashsec =
4802 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4803 elfcpp::SHF_ALLOC, false,
4804 ORDER_DYNAMIC_LINKER, false, false,
4805 false);
4806
4807 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4808 hashlen,
4809 align,
4810 "** hash");
4811 if (hashsec != NULL && hashdata != NULL)
4812 hashsec->add_output_section_data(hashdata);
4813
4814 if (hashsec != NULL)
4815 {
4816 if (dynsym != NULL)
4817 hashsec->set_link_section(dynsym);
4818 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4819 }
4820
4821 if (odyn != NULL)
4822 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4823 }
4824 }
4825
4826 // Assign offsets to each local portion of the dynamic symbol table.
4827
4828 void
4829 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4830 {
4831 Output_section* dynsym = this->dynsym_section_;
4832 if (dynsym == NULL)
4833 return;
4834
4835 off_t off = dynsym->offset();
4836
4837 // Skip the dummy symbol at the start of the section.
4838 off += dynsym->entsize();
4839
4840 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4841 p != input_objects->relobj_end();
4842 ++p)
4843 {
4844 unsigned int count = (*p)->set_local_dynsym_offset(off);
4845 off += count * dynsym->entsize();
4846 }
4847 }
4848
4849 // Create the version sections.
4850
4851 void
4852 Layout::create_version_sections(const Versions* versions,
4853 const Symbol_table* symtab,
4854 unsigned int local_symcount,
4855 const std::vector<Symbol*>& dynamic_symbols,
4856 const Output_section* dynstr)
4857 {
4858 if (!versions->any_defs() && !versions->any_needs())
4859 return;
4860
4861 switch (parameters->size_and_endianness())
4862 {
4863 #ifdef HAVE_TARGET_32_LITTLE
4864 case Parameters::TARGET_32_LITTLE:
4865 this->sized_create_version_sections<32, false>(versions, symtab,
4866 local_symcount,
4867 dynamic_symbols, dynstr);
4868 break;
4869 #endif
4870 #ifdef HAVE_TARGET_32_BIG
4871 case Parameters::TARGET_32_BIG:
4872 this->sized_create_version_sections<32, true>(versions, symtab,
4873 local_symcount,
4874 dynamic_symbols, dynstr);
4875 break;
4876 #endif
4877 #ifdef HAVE_TARGET_64_LITTLE
4878 case Parameters::TARGET_64_LITTLE:
4879 this->sized_create_version_sections<64, false>(versions, symtab,
4880 local_symcount,
4881 dynamic_symbols, dynstr);
4882 break;
4883 #endif
4884 #ifdef HAVE_TARGET_64_BIG
4885 case Parameters::TARGET_64_BIG:
4886 this->sized_create_version_sections<64, true>(versions, symtab,
4887 local_symcount,
4888 dynamic_symbols, dynstr);
4889 break;
4890 #endif
4891 default:
4892 gold_unreachable();
4893 }
4894 }
4895
4896 // Create the version sections, sized version.
4897
4898 template<int size, bool big_endian>
4899 void
4900 Layout::sized_create_version_sections(
4901 const Versions* versions,
4902 const Symbol_table* symtab,
4903 unsigned int local_symcount,
4904 const std::vector<Symbol*>& dynamic_symbols,
4905 const Output_section* dynstr)
4906 {
4907 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4908 elfcpp::SHT_GNU_versym,
4909 elfcpp::SHF_ALLOC,
4910 false,
4911 ORDER_DYNAMIC_LINKER,
4912 false, false, false);
4913
4914 // Check for NULL since a linker script may discard this section.
4915 if (vsec != NULL)
4916 {
4917 unsigned char* vbuf;
4918 unsigned int vsize;
4919 versions->symbol_section_contents<size, big_endian>(symtab,
4920 &this->dynpool_,
4921 local_symcount,
4922 dynamic_symbols,
4923 &vbuf, &vsize);
4924
4925 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4926 "** versions");
4927
4928 vsec->add_output_section_data(vdata);
4929 vsec->set_entsize(2);
4930 vsec->set_link_section(this->dynsym_section_);
4931 }
4932
4933 Output_data_dynamic* const odyn = this->dynamic_data_;
4934 if (odyn != NULL && vsec != NULL)
4935 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4936
4937 if (versions->any_defs())
4938 {
4939 Output_section* vdsec;
4940 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4941 elfcpp::SHT_GNU_verdef,
4942 elfcpp::SHF_ALLOC,
4943 false, ORDER_DYNAMIC_LINKER, false,
4944 false, false);
4945
4946 if (vdsec != NULL)
4947 {
4948 unsigned char* vdbuf;
4949 unsigned int vdsize;
4950 unsigned int vdentries;
4951 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4952 &vdbuf, &vdsize,
4953 &vdentries);
4954
4955 Output_section_data* vddata =
4956 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4957
4958 vdsec->add_output_section_data(vddata);
4959 vdsec->set_link_section(dynstr);
4960 vdsec->set_info(vdentries);
4961
4962 if (odyn != NULL)
4963 {
4964 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4965 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4966 }
4967 }
4968 }
4969
4970 if (versions->any_needs())
4971 {
4972 Output_section* vnsec;
4973 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4974 elfcpp::SHT_GNU_verneed,
4975 elfcpp::SHF_ALLOC,
4976 false, ORDER_DYNAMIC_LINKER, false,
4977 false, false);
4978
4979 if (vnsec != NULL)
4980 {
4981 unsigned char* vnbuf;
4982 unsigned int vnsize;
4983 unsigned int vnentries;
4984 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4985 &vnbuf, &vnsize,
4986 &vnentries);
4987
4988 Output_section_data* vndata =
4989 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4990
4991 vnsec->add_output_section_data(vndata);
4992 vnsec->set_link_section(dynstr);
4993 vnsec->set_info(vnentries);
4994
4995 if (odyn != NULL)
4996 {
4997 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4998 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4999 }
5000 }
5001 }
5002 }
5003
5004 // Create the .interp section and PT_INTERP segment.
5005
5006 void
5007 Layout::create_interp(const Target* target)
5008 {
5009 gold_assert(this->interp_segment_ == NULL);
5010
5011 const char* interp = parameters->options().dynamic_linker();
5012 if (interp == NULL)
5013 {
5014 interp = target->dynamic_linker();
5015 gold_assert(interp != NULL);
5016 }
5017
5018 size_t len = strlen(interp) + 1;
5019
5020 Output_section_data* odata = new Output_data_const(interp, len, 1);
5021
5022 Output_section* osec = this->choose_output_section(NULL, ".interp",
5023 elfcpp::SHT_PROGBITS,
5024 elfcpp::SHF_ALLOC,
5025 false, ORDER_INTERP,
5026 false, false, false);
5027 if (osec != NULL)
5028 osec->add_output_section_data(odata);
5029 }
5030
5031 // Add dynamic tags for the PLT and the dynamic relocs. This is
5032 // called by the target-specific code. This does nothing if not doing
5033 // a dynamic link.
5034
5035 // USE_REL is true for REL relocs rather than RELA relocs.
5036
5037 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5038
5039 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5040 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5041 // some targets have multiple reloc sections in PLT_REL.
5042
5043 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5044 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5045 // section.
5046
5047 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5048 // executable.
5049
5050 void
5051 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5052 const Output_data* plt_rel,
5053 const Output_data_reloc_generic* dyn_rel,
5054 bool add_debug, bool dynrel_includes_plt)
5055 {
5056 Output_data_dynamic* odyn = this->dynamic_data_;
5057 if (odyn == NULL)
5058 return;
5059
5060 if (plt_got != NULL && plt_got->output_section() != NULL)
5061 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5062
5063 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5064 {
5065 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5066 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5067 odyn->add_constant(elfcpp::DT_PLTREL,
5068 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5069 }
5070
5071 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5072 || (dynrel_includes_plt
5073 && plt_rel != NULL
5074 && plt_rel->output_section() != NULL))
5075 {
5076 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5077 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5078 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5079 (have_dyn_rel
5080 ? dyn_rel->output_section()
5081 : plt_rel->output_section()));
5082 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5083 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5084 odyn->add_section_size(size_tag,
5085 dyn_rel->output_section(),
5086 plt_rel->output_section());
5087 else if (have_dyn_rel)
5088 odyn->add_section_size(size_tag, dyn_rel->output_section());
5089 else
5090 odyn->add_section_size(size_tag, plt_rel->output_section());
5091 const int size = parameters->target().get_size();
5092 elfcpp::DT rel_tag;
5093 int rel_size;
5094 if (use_rel)
5095 {
5096 rel_tag = elfcpp::DT_RELENT;
5097 if (size == 32)
5098 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5099 else if (size == 64)
5100 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5101 else
5102 gold_unreachable();
5103 }
5104 else
5105 {
5106 rel_tag = elfcpp::DT_RELAENT;
5107 if (size == 32)
5108 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5109 else if (size == 64)
5110 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5111 else
5112 gold_unreachable();
5113 }
5114 odyn->add_constant(rel_tag, rel_size);
5115
5116 if (parameters->options().combreloc() && have_dyn_rel)
5117 {
5118 size_t c = dyn_rel->relative_reloc_count();
5119 if (c > 0)
5120 odyn->add_constant((use_rel
5121 ? elfcpp::DT_RELCOUNT
5122 : elfcpp::DT_RELACOUNT),
5123 c);
5124 }
5125 }
5126
5127 if (add_debug && !parameters->options().shared())
5128 {
5129 // The value of the DT_DEBUG tag is filled in by the dynamic
5130 // linker at run time, and used by the debugger.
5131 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5132 }
5133 }
5134
5135 void
5136 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5137 {
5138 Output_data_dynamic* odyn = this->dynamic_data_;
5139 if (odyn == NULL)
5140 return;
5141 odyn->add_constant(tag, val);
5142 }
5143
5144 // Finish the .dynamic section and PT_DYNAMIC segment.
5145
5146 void
5147 Layout::finish_dynamic_section(const Input_objects* input_objects,
5148 const Symbol_table* symtab)
5149 {
5150 if (!this->script_options_->saw_phdrs_clause()
5151 && this->dynamic_section_ != NULL)
5152 {
5153 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5154 (elfcpp::PF_R
5155 | elfcpp::PF_W));
5156 oseg->add_output_section_to_nonload(this->dynamic_section_,
5157 elfcpp::PF_R | elfcpp::PF_W);
5158 }
5159
5160 Output_data_dynamic* const odyn = this->dynamic_data_;
5161 if (odyn == NULL)
5162 return;
5163
5164 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5165 p != input_objects->dynobj_end();
5166 ++p)
5167 {
5168 if (!(*p)->is_needed() && (*p)->as_needed())
5169 {
5170 // This dynamic object was linked with --as-needed, but it
5171 // is not needed.
5172 continue;
5173 }
5174
5175 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5176 }
5177
5178 if (parameters->options().shared())
5179 {
5180 const char* soname = parameters->options().soname();
5181 if (soname != NULL)
5182 odyn->add_string(elfcpp::DT_SONAME, soname);
5183 }
5184
5185 Symbol* sym = symtab->lookup(parameters->options().init());
5186 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5187 odyn->add_symbol(elfcpp::DT_INIT, sym);
5188
5189 sym = symtab->lookup(parameters->options().fini());
5190 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5191 odyn->add_symbol(elfcpp::DT_FINI, sym);
5192
5193 // Look for .init_array, .preinit_array and .fini_array by checking
5194 // section types.
5195 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5196 p != this->section_list_.end();
5197 ++p)
5198 switch((*p)->type())
5199 {
5200 case elfcpp::SHT_FINI_ARRAY:
5201 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5202 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5203 break;
5204 case elfcpp::SHT_INIT_ARRAY:
5205 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5206 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5207 break;
5208 case elfcpp::SHT_PREINIT_ARRAY:
5209 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5210 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5211 break;
5212 default:
5213 break;
5214 }
5215
5216 // Add a DT_RPATH entry if needed.
5217 const General_options::Dir_list& rpath(parameters->options().rpath());
5218 if (!rpath.empty())
5219 {
5220 std::string rpath_val;
5221 for (General_options::Dir_list::const_iterator p = rpath.begin();
5222 p != rpath.end();
5223 ++p)
5224 {
5225 if (rpath_val.empty())
5226 rpath_val = p->name();
5227 else
5228 {
5229 // Eliminate duplicates.
5230 General_options::Dir_list::const_iterator q;
5231 for (q = rpath.begin(); q != p; ++q)
5232 if (q->name() == p->name())
5233 break;
5234 if (q == p)
5235 {
5236 rpath_val += ':';
5237 rpath_val += p->name();
5238 }
5239 }
5240 }
5241
5242 if (!parameters->options().enable_new_dtags())
5243 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5244 else
5245 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5246 }
5247
5248 // Look for text segments that have dynamic relocations.
5249 bool have_textrel = false;
5250 if (!this->script_options_->saw_sections_clause())
5251 {
5252 for (Segment_list::const_iterator p = this->segment_list_.begin();
5253 p != this->segment_list_.end();
5254 ++p)
5255 {
5256 if ((*p)->type() == elfcpp::PT_LOAD
5257 && ((*p)->flags() & elfcpp::PF_W) == 0
5258 && (*p)->has_dynamic_reloc())
5259 {
5260 have_textrel = true;
5261 break;
5262 }
5263 }
5264 }
5265 else
5266 {
5267 // We don't know the section -> segment mapping, so we are
5268 // conservative and just look for readonly sections with
5269 // relocations. If those sections wind up in writable segments,
5270 // then we have created an unnecessary DT_TEXTREL entry.
5271 for (Section_list::const_iterator p = this->section_list_.begin();
5272 p != this->section_list_.end();
5273 ++p)
5274 {
5275 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5276 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5277 && (*p)->has_dynamic_reloc())
5278 {
5279 have_textrel = true;
5280 break;
5281 }
5282 }
5283 }
5284
5285 if (parameters->options().filter() != NULL)
5286 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5287 if (parameters->options().any_auxiliary())
5288 {
5289 for (options::String_set::const_iterator p =
5290 parameters->options().auxiliary_begin();
5291 p != parameters->options().auxiliary_end();
5292 ++p)
5293 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5294 }
5295
5296 // Add a DT_FLAGS entry if necessary.
5297 unsigned int flags = 0;
5298 if (have_textrel)
5299 {
5300 // Add a DT_TEXTREL for compatibility with older loaders.
5301 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5302 flags |= elfcpp::DF_TEXTREL;
5303
5304 if (parameters->options().text())
5305 gold_error(_("read-only segment has dynamic relocations"));
5306 else if (parameters->options().warn_shared_textrel()
5307 && parameters->options().shared())
5308 gold_warning(_("shared library text segment is not shareable"));
5309 }
5310 if (parameters->options().shared() && this->has_static_tls())
5311 flags |= elfcpp::DF_STATIC_TLS;
5312 if (parameters->options().origin())
5313 flags |= elfcpp::DF_ORIGIN;
5314 if (parameters->options().Bsymbolic()
5315 && !parameters->options().have_dynamic_list())
5316 {
5317 flags |= elfcpp::DF_SYMBOLIC;
5318 // Add DT_SYMBOLIC for compatibility with older loaders.
5319 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5320 }
5321 if (parameters->options().now())
5322 flags |= elfcpp::DF_BIND_NOW;
5323 if (flags != 0)
5324 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5325
5326 flags = 0;
5327 if (parameters->options().global())
5328 flags |= elfcpp::DF_1_GLOBAL;
5329 if (parameters->options().initfirst())
5330 flags |= elfcpp::DF_1_INITFIRST;
5331 if (parameters->options().interpose())
5332 flags |= elfcpp::DF_1_INTERPOSE;
5333 if (parameters->options().loadfltr())
5334 flags |= elfcpp::DF_1_LOADFLTR;
5335 if (parameters->options().nodefaultlib())
5336 flags |= elfcpp::DF_1_NODEFLIB;
5337 if (parameters->options().nodelete())
5338 flags |= elfcpp::DF_1_NODELETE;
5339 if (parameters->options().nodlopen())
5340 flags |= elfcpp::DF_1_NOOPEN;
5341 if (parameters->options().nodump())
5342 flags |= elfcpp::DF_1_NODUMP;
5343 if (!parameters->options().shared())
5344 flags &= ~(elfcpp::DF_1_INITFIRST
5345 | elfcpp::DF_1_NODELETE
5346 | elfcpp::DF_1_NOOPEN);
5347 if (parameters->options().origin())
5348 flags |= elfcpp::DF_1_ORIGIN;
5349 if (parameters->options().now())
5350 flags |= elfcpp::DF_1_NOW;
5351 if (parameters->options().Bgroup())
5352 flags |= elfcpp::DF_1_GROUP;
5353 if (flags != 0)
5354 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5355 }
5356
5357 // Set the size of the _DYNAMIC symbol table to be the size of the
5358 // dynamic data.
5359
5360 void
5361 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5362 {
5363 Output_data_dynamic* const odyn = this->dynamic_data_;
5364 if (odyn == NULL)
5365 return;
5366 odyn->finalize_data_size();
5367 if (this->dynamic_symbol_ == NULL)
5368 return;
5369 off_t data_size = odyn->data_size();
5370 const int size = parameters->target().get_size();
5371 if (size == 32)
5372 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5373 else if (size == 64)
5374 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5375 else
5376 gold_unreachable();
5377 }
5378
5379 // The mapping of input section name prefixes to output section names.
5380 // In some cases one prefix is itself a prefix of another prefix; in
5381 // such a case the longer prefix must come first. These prefixes are
5382 // based on the GNU linker default ELF linker script.
5383
5384 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5385 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5386 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5387 {
5388 MAPPING_INIT(".text.", ".text"),
5389 MAPPING_INIT(".rodata.", ".rodata"),
5390 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5391 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5392 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5393 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5394 MAPPING_INIT(".data.", ".data"),
5395 MAPPING_INIT(".bss.", ".bss"),
5396 MAPPING_INIT(".tdata.", ".tdata"),
5397 MAPPING_INIT(".tbss.", ".tbss"),
5398 MAPPING_INIT(".init_array.", ".init_array"),
5399 MAPPING_INIT(".fini_array.", ".fini_array"),
5400 MAPPING_INIT(".sdata.", ".sdata"),
5401 MAPPING_INIT(".sbss.", ".sbss"),
5402 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5403 // differently depending on whether it is creating a shared library.
5404 MAPPING_INIT(".sdata2.", ".sdata"),
5405 MAPPING_INIT(".sbss2.", ".sbss"),
5406 MAPPING_INIT(".lrodata.", ".lrodata"),
5407 MAPPING_INIT(".ldata.", ".ldata"),
5408 MAPPING_INIT(".lbss.", ".lbss"),
5409 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5410 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5411 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5412 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5413 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5414 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5415 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5416 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5417 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5418 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5419 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5420 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5421 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5422 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5423 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5424 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5425 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5426 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5427 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5428 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5429 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5430 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5431 };
5432
5433 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5434 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5435 {
5436 MAPPING_INIT(".text.hot.", ".text.hot"),
5437 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5438 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5439 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5440 MAPPING_INIT(".text.startup.", ".text.startup"),
5441 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5442 MAPPING_INIT(".text.exit.", ".text.exit"),
5443 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5444 MAPPING_INIT(".text.", ".text"),
5445 };
5446 #undef MAPPING_INIT
5447 #undef MAPPING_INIT_EXACT
5448
5449 const int Layout::section_name_mapping_count =
5450 (sizeof(Layout::section_name_mapping)
5451 / sizeof(Layout::section_name_mapping[0]));
5452
5453 const int Layout::text_section_name_mapping_count =
5454 (sizeof(Layout::text_section_name_mapping)
5455 / sizeof(Layout::text_section_name_mapping[0]));
5456
5457 // Find section name NAME in PSNM and return the mapped name if found
5458 // with the length set in PLEN.
5459 const char *
5460 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5461 const int count,
5462 const char* name, size_t* plen)
5463 {
5464 for (int i = 0; i < count; ++i, ++psnm)
5465 {
5466 if (psnm->fromlen > 0)
5467 {
5468 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5469 {
5470 *plen = psnm->tolen;
5471 return psnm->to;
5472 }
5473 }
5474 else
5475 {
5476 if (strcmp(name, psnm->from) == 0)
5477 {
5478 *plen = psnm->tolen;
5479 return psnm->to;
5480 }
5481 }
5482 }
5483 return NULL;
5484 }
5485
5486 // Choose the output section name to use given an input section name.
5487 // Set *PLEN to the length of the name. *PLEN is initialized to the
5488 // length of NAME.
5489
5490 const char*
5491 Layout::output_section_name(const Relobj* relobj, const char* name,
5492 size_t* plen)
5493 {
5494 // gcc 4.3 generates the following sorts of section names when it
5495 // needs a section name specific to a function:
5496 // .text.FN
5497 // .rodata.FN
5498 // .sdata2.FN
5499 // .data.FN
5500 // .data.rel.FN
5501 // .data.rel.local.FN
5502 // .data.rel.ro.FN
5503 // .data.rel.ro.local.FN
5504 // .sdata.FN
5505 // .bss.FN
5506 // .sbss.FN
5507 // .tdata.FN
5508 // .tbss.FN
5509
5510 // The GNU linker maps all of those to the part before the .FN,
5511 // except that .data.rel.local.FN is mapped to .data, and
5512 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5513 // beginning with .data.rel.ro.local are grouped together.
5514
5515 // For an anonymous namespace, the string FN can contain a '.'.
5516
5517 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5518 // GNU linker maps to .rodata.
5519
5520 // The .data.rel.ro sections are used with -z relro. The sections
5521 // are recognized by name. We use the same names that the GNU
5522 // linker does for these sections.
5523
5524 // It is hard to handle this in a principled way, so we don't even
5525 // try. We use a table of mappings. If the input section name is
5526 // not found in the table, we simply use it as the output section
5527 // name.
5528
5529 if (parameters->options().keep_text_section_prefix()
5530 && is_prefix_of(".text", name))
5531 {
5532 const char* match = match_section_name(text_section_name_mapping,
5533 text_section_name_mapping_count,
5534 name, plen);
5535 if (match != NULL)
5536 return match;
5537 }
5538
5539 const char* match = match_section_name(section_name_mapping,
5540 section_name_mapping_count, name, plen);
5541 if (match != NULL)
5542 return match;
5543
5544 // As an additional complication, .ctors sections are output in
5545 // either .ctors or .init_array sections, and .dtors sections are
5546 // output in either .dtors or .fini_array sections.
5547 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5548 {
5549 if (parameters->options().ctors_in_init_array())
5550 {
5551 *plen = 11;
5552 return name[1] == 'c' ? ".init_array" : ".fini_array";
5553 }
5554 else
5555 {
5556 *plen = 6;
5557 return name[1] == 'c' ? ".ctors" : ".dtors";
5558 }
5559 }
5560 if (parameters->options().ctors_in_init_array()
5561 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5562 {
5563 // To make .init_array/.fini_array work with gcc we must exclude
5564 // .ctors and .dtors sections from the crtbegin and crtend
5565 // files.
5566 if (relobj == NULL
5567 || (!Layout::match_file_name(relobj, "crtbegin")
5568 && !Layout::match_file_name(relobj, "crtend")))
5569 {
5570 *plen = 11;
5571 return name[1] == 'c' ? ".init_array" : ".fini_array";
5572 }
5573 }
5574
5575 return name;
5576 }
5577
5578 // Return true if RELOBJ is an input file whose base name matches
5579 // FILE_NAME. The base name must have an extension of ".o", and must
5580 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5581 // to match crtbegin.o as well as crtbeginS.o without getting confused
5582 // by other possibilities. Overall matching the file name this way is
5583 // a dreadful hack, but the GNU linker does it in order to better
5584 // support gcc, and we need to be compatible.
5585
5586 bool
5587 Layout::match_file_name(const Relobj* relobj, const char* match)
5588 {
5589 const std::string& file_name(relobj->name());
5590 const char* base_name = lbasename(file_name.c_str());
5591 size_t match_len = strlen(match);
5592 if (strncmp(base_name, match, match_len) != 0)
5593 return false;
5594 size_t base_len = strlen(base_name);
5595 if (base_len != match_len + 2 && base_len != match_len + 3)
5596 return false;
5597 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5598 }
5599
5600 // Check if a comdat group or .gnu.linkonce section with the given
5601 // NAME is selected for the link. If there is already a section,
5602 // *KEPT_SECTION is set to point to the existing section and the
5603 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5604 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5605 // *KEPT_SECTION is set to the internal copy and the function returns
5606 // true.
5607
5608 bool
5609 Layout::find_or_add_kept_section(const std::string& name,
5610 Relobj* object,
5611 unsigned int shndx,
5612 bool is_comdat,
5613 bool is_group_name,
5614 Kept_section** kept_section)
5615 {
5616 // It's normal to see a couple of entries here, for the x86 thunk
5617 // sections. If we see more than a few, we're linking a C++
5618 // program, and we resize to get more space to minimize rehashing.
5619 if (this->signatures_.size() > 4
5620 && !this->resized_signatures_)
5621 {
5622 reserve_unordered_map(&this->signatures_,
5623 this->number_of_input_files_ * 64);
5624 this->resized_signatures_ = true;
5625 }
5626
5627 Kept_section candidate;
5628 std::pair<Signatures::iterator, bool> ins =
5629 this->signatures_.insert(std::make_pair(name, candidate));
5630
5631 if (kept_section != NULL)
5632 *kept_section = &ins.first->second;
5633 if (ins.second)
5634 {
5635 // This is the first time we've seen this signature.
5636 ins.first->second.set_object(object);
5637 ins.first->second.set_shndx(shndx);
5638 if (is_comdat)
5639 ins.first->second.set_is_comdat();
5640 if (is_group_name)
5641 ins.first->second.set_is_group_name();
5642 return true;
5643 }
5644
5645 // We have already seen this signature.
5646
5647 if (ins.first->second.is_group_name())
5648 {
5649 // We've already seen a real section group with this signature.
5650 // If the kept group is from a plugin object, and we're in the
5651 // replacement phase, accept the new one as a replacement.
5652 if (ins.first->second.object() == NULL
5653 && parameters->options().plugins()->in_replacement_phase())
5654 {
5655 ins.first->second.set_object(object);
5656 ins.first->second.set_shndx(shndx);
5657 return true;
5658 }
5659 return false;
5660 }
5661 else if (is_group_name)
5662 {
5663 // This is a real section group, and we've already seen a
5664 // linkonce section with this signature. Record that we've seen
5665 // a section group, and don't include this section group.
5666 ins.first->second.set_is_group_name();
5667 return false;
5668 }
5669 else
5670 {
5671 // We've already seen a linkonce section and this is a linkonce
5672 // section. These don't block each other--this may be the same
5673 // symbol name with different section types.
5674 return true;
5675 }
5676 }
5677
5678 // Store the allocated sections into the section list.
5679
5680 void
5681 Layout::get_allocated_sections(Section_list* section_list) const
5682 {
5683 for (Section_list::const_iterator p = this->section_list_.begin();
5684 p != this->section_list_.end();
5685 ++p)
5686 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5687 section_list->push_back(*p);
5688 }
5689
5690 // Store the executable sections into the section list.
5691
5692 void
5693 Layout::get_executable_sections(Section_list* section_list) const
5694 {
5695 for (Section_list::const_iterator p = this->section_list_.begin();
5696 p != this->section_list_.end();
5697 ++p)
5698 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5699 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5700 section_list->push_back(*p);
5701 }
5702
5703 // Create an output segment.
5704
5705 Output_segment*
5706 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5707 {
5708 gold_assert(!parameters->options().relocatable());
5709 Output_segment* oseg = new Output_segment(type, flags);
5710 this->segment_list_.push_back(oseg);
5711
5712 if (type == elfcpp::PT_TLS)
5713 this->tls_segment_ = oseg;
5714 else if (type == elfcpp::PT_GNU_RELRO)
5715 this->relro_segment_ = oseg;
5716 else if (type == elfcpp::PT_INTERP)
5717 this->interp_segment_ = oseg;
5718
5719 return oseg;
5720 }
5721
5722 // Return the file offset of the normal symbol table.
5723
5724 off_t
5725 Layout::symtab_section_offset() const
5726 {
5727 if (this->symtab_section_ != NULL)
5728 return this->symtab_section_->offset();
5729 return 0;
5730 }
5731
5732 // Return the section index of the normal symbol table. It may have
5733 // been stripped by the -s/--strip-all option.
5734
5735 unsigned int
5736 Layout::symtab_section_shndx() const
5737 {
5738 if (this->symtab_section_ != NULL)
5739 return this->symtab_section_->out_shndx();
5740 return 0;
5741 }
5742
5743 // Write out the Output_sections. Most won't have anything to write,
5744 // since most of the data will come from input sections which are
5745 // handled elsewhere. But some Output_sections do have Output_data.
5746
5747 void
5748 Layout::write_output_sections(Output_file* of) const
5749 {
5750 for (Section_list::const_iterator p = this->section_list_.begin();
5751 p != this->section_list_.end();
5752 ++p)
5753 {
5754 if (!(*p)->after_input_sections())
5755 (*p)->write(of);
5756 }
5757 }
5758
5759 // Write out data not associated with a section or the symbol table.
5760
5761 void
5762 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5763 {
5764 if (!parameters->options().strip_all())
5765 {
5766 const Output_section* symtab_section = this->symtab_section_;
5767 for (Section_list::const_iterator p = this->section_list_.begin();
5768 p != this->section_list_.end();
5769 ++p)
5770 {
5771 if ((*p)->needs_symtab_index())
5772 {
5773 gold_assert(symtab_section != NULL);
5774 unsigned int index = (*p)->symtab_index();
5775 gold_assert(index > 0 && index != -1U);
5776 off_t off = (symtab_section->offset()
5777 + index * symtab_section->entsize());
5778 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5779 }
5780 }
5781 }
5782
5783 const Output_section* dynsym_section = this->dynsym_section_;
5784 for (Section_list::const_iterator p = this->section_list_.begin();
5785 p != this->section_list_.end();
5786 ++p)
5787 {
5788 if ((*p)->needs_dynsym_index())
5789 {
5790 gold_assert(dynsym_section != NULL);
5791 unsigned int index = (*p)->dynsym_index();
5792 gold_assert(index > 0 && index != -1U);
5793 off_t off = (dynsym_section->offset()
5794 + index * dynsym_section->entsize());
5795 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5796 }
5797 }
5798
5799 // Write out the Output_data which are not in an Output_section.
5800 for (Data_list::const_iterator p = this->special_output_list_.begin();
5801 p != this->special_output_list_.end();
5802 ++p)
5803 (*p)->write(of);
5804
5805 // Write out the Output_data which are not in an Output_section
5806 // and are regenerated in each iteration of relaxation.
5807 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5808 p != this->relax_output_list_.end();
5809 ++p)
5810 (*p)->write(of);
5811 }
5812
5813 // Write out the Output_sections which can only be written after the
5814 // input sections are complete.
5815
5816 void
5817 Layout::write_sections_after_input_sections(Output_file* of)
5818 {
5819 // Determine the final section offsets, and thus the final output
5820 // file size. Note we finalize the .shstrab last, to allow the
5821 // after_input_section sections to modify their section-names before
5822 // writing.
5823 if (this->any_postprocessing_sections_)
5824 {
5825 off_t off = this->output_file_size_;
5826 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5827
5828 // Now that we've finalized the names, we can finalize the shstrab.
5829 off =
5830 this->set_section_offsets(off,
5831 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5832
5833 if (off > this->output_file_size_)
5834 {
5835 of->resize(off);
5836 this->output_file_size_ = off;
5837 }
5838 }
5839
5840 for (Section_list::const_iterator p = this->section_list_.begin();
5841 p != this->section_list_.end();
5842 ++p)
5843 {
5844 if ((*p)->after_input_sections())
5845 (*p)->write(of);
5846 }
5847
5848 this->section_headers_->write(of);
5849 }
5850
5851 // If a tree-style build ID was requested, the parallel part of that computation
5852 // is already done, and the final hash-of-hashes is computed here. For other
5853 // types of build IDs, all the work is done here.
5854
5855 void
5856 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5857 size_t size_of_hashes) const
5858 {
5859 if (this->build_id_note_ == NULL)
5860 return;
5861
5862 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5863 this->build_id_note_->data_size());
5864
5865 if (array_of_hashes == NULL)
5866 {
5867 const size_t output_file_size = this->output_file_size();
5868 const unsigned char* iv = of->get_input_view(0, output_file_size);
5869 const char* style = parameters->options().build_id();
5870
5871 // If we get here with style == "tree" then the output must be
5872 // too small for chunking, and we use SHA-1 in that case.
5873 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5874 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5875 else if (strcmp(style, "md5") == 0)
5876 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5877 else
5878 gold_unreachable();
5879
5880 of->free_input_view(0, output_file_size, iv);
5881 }
5882 else
5883 {
5884 // Non-overlapping substrings of the output file have been hashed.
5885 // Compute SHA-1 hash of the hashes.
5886 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5887 size_of_hashes, ov);
5888 delete[] array_of_hashes;
5889 }
5890
5891 of->write_output_view(this->build_id_note_->offset(),
5892 this->build_id_note_->data_size(),
5893 ov);
5894 }
5895
5896 // Write out a binary file. This is called after the link is
5897 // complete. IN is the temporary output file we used to generate the
5898 // ELF code. We simply walk through the segments, read them from
5899 // their file offset in IN, and write them to their load address in
5900 // the output file. FIXME: with a bit more work, we could support
5901 // S-records and/or Intel hex format here.
5902
5903 void
5904 Layout::write_binary(Output_file* in) const
5905 {
5906 gold_assert(parameters->options().oformat_enum()
5907 == General_options::OBJECT_FORMAT_BINARY);
5908
5909 // Get the size of the binary file.
5910 uint64_t max_load_address = 0;
5911 for (Segment_list::const_iterator p = this->segment_list_.begin();
5912 p != this->segment_list_.end();
5913 ++p)
5914 {
5915 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5916 {
5917 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5918 if (max_paddr > max_load_address)
5919 max_load_address = max_paddr;
5920 }
5921 }
5922
5923 Output_file out(parameters->options().output_file_name());
5924 out.open(max_load_address);
5925
5926 for (Segment_list::const_iterator p = this->segment_list_.begin();
5927 p != this->segment_list_.end();
5928 ++p)
5929 {
5930 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5931 {
5932 const unsigned char* vin = in->get_input_view((*p)->offset(),
5933 (*p)->filesz());
5934 unsigned char* vout = out.get_output_view((*p)->paddr(),
5935 (*p)->filesz());
5936 memcpy(vout, vin, (*p)->filesz());
5937 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5938 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5939 }
5940 }
5941
5942 out.close();
5943 }
5944
5945 // Print the output sections to the map file.
5946
5947 void
5948 Layout::print_to_mapfile(Mapfile* mapfile) const
5949 {
5950 for (Segment_list::const_iterator p = this->segment_list_.begin();
5951 p != this->segment_list_.end();
5952 ++p)
5953 (*p)->print_sections_to_mapfile(mapfile);
5954 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5955 p != this->unattached_section_list_.end();
5956 ++p)
5957 (*p)->print_to_mapfile(mapfile);
5958 }
5959
5960 // Print statistical information to stderr. This is used for --stats.
5961
5962 void
5963 Layout::print_stats() const
5964 {
5965 this->namepool_.print_stats("section name pool");
5966 this->sympool_.print_stats("output symbol name pool");
5967 this->dynpool_.print_stats("dynamic name pool");
5968
5969 for (Section_list::const_iterator p = this->section_list_.begin();
5970 p != this->section_list_.end();
5971 ++p)
5972 (*p)->print_merge_stats();
5973 }
5974
5975 // Write_sections_task methods.
5976
5977 // We can always run this task.
5978
5979 Task_token*
5980 Write_sections_task::is_runnable()
5981 {
5982 return NULL;
5983 }
5984
5985 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5986 // when finished.
5987
5988 void
5989 Write_sections_task::locks(Task_locker* tl)
5990 {
5991 tl->add(this, this->output_sections_blocker_);
5992 if (this->input_sections_blocker_ != NULL)
5993 tl->add(this, this->input_sections_blocker_);
5994 tl->add(this, this->final_blocker_);
5995 }
5996
5997 // Run the task--write out the data.
5998
5999 void
6000 Write_sections_task::run(Workqueue*)
6001 {
6002 this->layout_->write_output_sections(this->of_);
6003 }
6004
6005 // Write_data_task methods.
6006
6007 // We can always run this task.
6008
6009 Task_token*
6010 Write_data_task::is_runnable()
6011 {
6012 return NULL;
6013 }
6014
6015 // We need to unlock FINAL_BLOCKER when finished.
6016
6017 void
6018 Write_data_task::locks(Task_locker* tl)
6019 {
6020 tl->add(this, this->final_blocker_);
6021 }
6022
6023 // Run the task--write out the data.
6024
6025 void
6026 Write_data_task::run(Workqueue*)
6027 {
6028 this->layout_->write_data(this->symtab_, this->of_);
6029 }
6030
6031 // Write_symbols_task methods.
6032
6033 // We can always run this task.
6034
6035 Task_token*
6036 Write_symbols_task::is_runnable()
6037 {
6038 return NULL;
6039 }
6040
6041 // We need to unlock FINAL_BLOCKER when finished.
6042
6043 void
6044 Write_symbols_task::locks(Task_locker* tl)
6045 {
6046 tl->add(this, this->final_blocker_);
6047 }
6048
6049 // Run the task--write out the symbols.
6050
6051 void
6052 Write_symbols_task::run(Workqueue*)
6053 {
6054 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6055 this->layout_->symtab_xindex(),
6056 this->layout_->dynsym_xindex(), this->of_);
6057 }
6058
6059 // Write_after_input_sections_task methods.
6060
6061 // We can only run this task after the input sections have completed.
6062
6063 Task_token*
6064 Write_after_input_sections_task::is_runnable()
6065 {
6066 if (this->input_sections_blocker_->is_blocked())
6067 return this->input_sections_blocker_;
6068 return NULL;
6069 }
6070
6071 // We need to unlock FINAL_BLOCKER when finished.
6072
6073 void
6074 Write_after_input_sections_task::locks(Task_locker* tl)
6075 {
6076 tl->add(this, this->final_blocker_);
6077 }
6078
6079 // Run the task.
6080
6081 void
6082 Write_after_input_sections_task::run(Workqueue*)
6083 {
6084 this->layout_->write_sections_after_input_sections(this->of_);
6085 }
6086
6087 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6088 // or as a "tree" where each chunk of the string is hashed and then those
6089 // hashes are put into a (much smaller) string which is hashed with sha1.
6090 // We compute a checksum over the entire file because that is simplest.
6091
6092 void
6093 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6094 {
6095 Task_token* post_hash_tasks_blocker = new Task_token(true);
6096 const Layout* layout = this->layout_;
6097 Output_file* of = this->of_;
6098 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6099 : static_cast<size_t>(layout->output_file_size()));
6100 unsigned char* array_of_hashes = NULL;
6101 size_t size_of_hashes = 0;
6102
6103 if (strcmp(this->options_->build_id(), "tree") == 0
6104 && this->options_->build_id_chunk_size_for_treehash() > 0
6105 && filesize > 0
6106 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6107 {
6108 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6109 const size_t chunk_size =
6110 this->options_->build_id_chunk_size_for_treehash();
6111 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6112 post_hash_tasks_blocker->add_blockers(num_hashes);
6113 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6114 array_of_hashes = new unsigned char[size_of_hashes];
6115 unsigned char *dst = array_of_hashes;
6116 for (size_t i = 0, src_offset = 0; i < num_hashes;
6117 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6118 {
6119 size_t size = std::min(chunk_size, filesize - src_offset);
6120 workqueue->queue(new Hash_task(of,
6121 src_offset,
6122 size,
6123 dst,
6124 post_hash_tasks_blocker));
6125 }
6126 }
6127
6128 // Queue the final task to write the build id and close the output file.
6129 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6130 layout,
6131 of,
6132 array_of_hashes,
6133 size_of_hashes),
6134 post_hash_tasks_blocker,
6135 "Task_function Close_task_runner"));
6136 }
6137
6138 // Close_task_runner methods.
6139
6140 // Finish up the build ID computation, if necessary, and write a binary file,
6141 // if necessary. Then close the output file.
6142
6143 void
6144 Close_task_runner::run(Workqueue*, const Task*)
6145 {
6146 // At this point the multi-threaded part of the build ID computation,
6147 // if any, is done. See Build_id_task_runner.
6148 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6149 this->size_of_hashes_);
6150
6151 // If we've been asked to create a binary file, we do so here.
6152 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6153 this->layout_->write_binary(this->of_);
6154
6155 this->of_->close();
6156 }
6157
6158 // Instantiate the templates we need. We could use the configure
6159 // script to restrict this to only the ones for implemented targets.
6160
6161 #ifdef HAVE_TARGET_32_LITTLE
6162 template
6163 Output_section*
6164 Layout::init_fixed_output_section<32, false>(
6165 const char* name,
6166 elfcpp::Shdr<32, false>& shdr);
6167 #endif
6168
6169 #ifdef HAVE_TARGET_32_BIG
6170 template
6171 Output_section*
6172 Layout::init_fixed_output_section<32, true>(
6173 const char* name,
6174 elfcpp::Shdr<32, true>& shdr);
6175 #endif
6176
6177 #ifdef HAVE_TARGET_64_LITTLE
6178 template
6179 Output_section*
6180 Layout::init_fixed_output_section<64, false>(
6181 const char* name,
6182 elfcpp::Shdr<64, false>& shdr);
6183 #endif
6184
6185 #ifdef HAVE_TARGET_64_BIG
6186 template
6187 Output_section*
6188 Layout::init_fixed_output_section<64, true>(
6189 const char* name,
6190 elfcpp::Shdr<64, true>& shdr);
6191 #endif
6192
6193 #ifdef HAVE_TARGET_32_LITTLE
6194 template
6195 Output_section*
6196 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6197 unsigned int shndx,
6198 const char* name,
6199 const elfcpp::Shdr<32, false>& shdr,
6200 unsigned int, unsigned int, unsigned int, off_t*);
6201 #endif
6202
6203 #ifdef HAVE_TARGET_32_BIG
6204 template
6205 Output_section*
6206 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6207 unsigned int shndx,
6208 const char* name,
6209 const elfcpp::Shdr<32, true>& shdr,
6210 unsigned int, unsigned int, unsigned int, off_t*);
6211 #endif
6212
6213 #ifdef HAVE_TARGET_64_LITTLE
6214 template
6215 Output_section*
6216 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6217 unsigned int shndx,
6218 const char* name,
6219 const elfcpp::Shdr<64, false>& shdr,
6220 unsigned int, unsigned int, unsigned int, off_t*);
6221 #endif
6222
6223 #ifdef HAVE_TARGET_64_BIG
6224 template
6225 Output_section*
6226 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6227 unsigned int shndx,
6228 const char* name,
6229 const elfcpp::Shdr<64, true>& shdr,
6230 unsigned int, unsigned int, unsigned int, off_t*);
6231 #endif
6232
6233 #ifdef HAVE_TARGET_32_LITTLE
6234 template
6235 Output_section*
6236 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6237 unsigned int reloc_shndx,
6238 const elfcpp::Shdr<32, false>& shdr,
6239 Output_section* data_section,
6240 Relocatable_relocs* rr);
6241 #endif
6242
6243 #ifdef HAVE_TARGET_32_BIG
6244 template
6245 Output_section*
6246 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6247 unsigned int reloc_shndx,
6248 const elfcpp::Shdr<32, true>& shdr,
6249 Output_section* data_section,
6250 Relocatable_relocs* rr);
6251 #endif
6252
6253 #ifdef HAVE_TARGET_64_LITTLE
6254 template
6255 Output_section*
6256 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6257 unsigned int reloc_shndx,
6258 const elfcpp::Shdr<64, false>& shdr,
6259 Output_section* data_section,
6260 Relocatable_relocs* rr);
6261 #endif
6262
6263 #ifdef HAVE_TARGET_64_BIG
6264 template
6265 Output_section*
6266 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6267 unsigned int reloc_shndx,
6268 const elfcpp::Shdr<64, true>& shdr,
6269 Output_section* data_section,
6270 Relocatable_relocs* rr);
6271 #endif
6272
6273 #ifdef HAVE_TARGET_32_LITTLE
6274 template
6275 void
6276 Layout::layout_group<32, false>(Symbol_table* symtab,
6277 Sized_relobj_file<32, false>* object,
6278 unsigned int,
6279 const char* group_section_name,
6280 const char* signature,
6281 const elfcpp::Shdr<32, false>& shdr,
6282 elfcpp::Elf_Word flags,
6283 std::vector<unsigned int>* shndxes);
6284 #endif
6285
6286 #ifdef HAVE_TARGET_32_BIG
6287 template
6288 void
6289 Layout::layout_group<32, true>(Symbol_table* symtab,
6290 Sized_relobj_file<32, true>* object,
6291 unsigned int,
6292 const char* group_section_name,
6293 const char* signature,
6294 const elfcpp::Shdr<32, true>& shdr,
6295 elfcpp::Elf_Word flags,
6296 std::vector<unsigned int>* shndxes);
6297 #endif
6298
6299 #ifdef HAVE_TARGET_64_LITTLE
6300 template
6301 void
6302 Layout::layout_group<64, false>(Symbol_table* symtab,
6303 Sized_relobj_file<64, false>* object,
6304 unsigned int,
6305 const char* group_section_name,
6306 const char* signature,
6307 const elfcpp::Shdr<64, false>& shdr,
6308 elfcpp::Elf_Word flags,
6309 std::vector<unsigned int>* shndxes);
6310 #endif
6311
6312 #ifdef HAVE_TARGET_64_BIG
6313 template
6314 void
6315 Layout::layout_group<64, true>(Symbol_table* symtab,
6316 Sized_relobj_file<64, true>* object,
6317 unsigned int,
6318 const char* group_section_name,
6319 const char* signature,
6320 const elfcpp::Shdr<64, true>& shdr,
6321 elfcpp::Elf_Word flags,
6322 std::vector<unsigned int>* shndxes);
6323 #endif
6324
6325 #ifdef HAVE_TARGET_32_LITTLE
6326 template
6327 Output_section*
6328 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6329 const unsigned char* symbols,
6330 off_t symbols_size,
6331 const unsigned char* symbol_names,
6332 off_t symbol_names_size,
6333 unsigned int shndx,
6334 const elfcpp::Shdr<32, false>& shdr,
6335 unsigned int reloc_shndx,
6336 unsigned int reloc_type,
6337 off_t* off);
6338 #endif
6339
6340 #ifdef HAVE_TARGET_32_BIG
6341 template
6342 Output_section*
6343 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6344 const unsigned char* symbols,
6345 off_t symbols_size,
6346 const unsigned char* symbol_names,
6347 off_t symbol_names_size,
6348 unsigned int shndx,
6349 const elfcpp::Shdr<32, true>& shdr,
6350 unsigned int reloc_shndx,
6351 unsigned int reloc_type,
6352 off_t* off);
6353 #endif
6354
6355 #ifdef HAVE_TARGET_64_LITTLE
6356 template
6357 Output_section*
6358 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6359 const unsigned char* symbols,
6360 off_t symbols_size,
6361 const unsigned char* symbol_names,
6362 off_t symbol_names_size,
6363 unsigned int shndx,
6364 const elfcpp::Shdr<64, false>& shdr,
6365 unsigned int reloc_shndx,
6366 unsigned int reloc_type,
6367 off_t* off);
6368 #endif
6369
6370 #ifdef HAVE_TARGET_64_BIG
6371 template
6372 Output_section*
6373 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6374 const unsigned char* symbols,
6375 off_t symbols_size,
6376 const unsigned char* symbol_names,
6377 off_t symbol_names_size,
6378 unsigned int shndx,
6379 const elfcpp::Shdr<64, true>& shdr,
6380 unsigned int reloc_shndx,
6381 unsigned int reloc_type,
6382 off_t* off);
6383 #endif
6384
6385 #ifdef HAVE_TARGET_32_LITTLE
6386 template
6387 void
6388 Layout::add_to_gdb_index(bool is_type_unit,
6389 Sized_relobj<32, false>* object,
6390 const unsigned char* symbols,
6391 off_t symbols_size,
6392 unsigned int shndx,
6393 unsigned int reloc_shndx,
6394 unsigned int reloc_type);
6395 #endif
6396
6397 #ifdef HAVE_TARGET_32_BIG
6398 template
6399 void
6400 Layout::add_to_gdb_index(bool is_type_unit,
6401 Sized_relobj<32, true>* object,
6402 const unsigned char* symbols,
6403 off_t symbols_size,
6404 unsigned int shndx,
6405 unsigned int reloc_shndx,
6406 unsigned int reloc_type);
6407 #endif
6408
6409 #ifdef HAVE_TARGET_64_LITTLE
6410 template
6411 void
6412 Layout::add_to_gdb_index(bool is_type_unit,
6413 Sized_relobj<64, false>* object,
6414 const unsigned char* symbols,
6415 off_t symbols_size,
6416 unsigned int shndx,
6417 unsigned int reloc_shndx,
6418 unsigned int reloc_type);
6419 #endif
6420
6421 #ifdef HAVE_TARGET_64_BIG
6422 template
6423 void
6424 Layout::add_to_gdb_index(bool is_type_unit,
6425 Sized_relobj<64, true>* object,
6426 const unsigned char* symbols,
6427 off_t symbols_size,
6428 unsigned int shndx,
6429 unsigned int reloc_shndx,
6430 unsigned int reloc_type);
6431 #endif
6432
6433 } // End namespace gold.
This page took 0.235292 seconds and 4 git commands to generate.