2011-09-29 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 // We usually want to drop free chunks smaller than 4 bytes.
166 // If we need to guarantee a minimum hole size, though, we need
167 // to keep track of all free chunks.
168 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
170 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171 {
172 ++Free_list::num_allocate_visits;
173 off_t start = p->start_ > minoff ? p->start_ : minoff;
174 start = align_address(start, align);
175 off_t end = start + len;
176 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177 {
178 this->length_ = end;
179 p->end_ = end;
180 }
181 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182 {
183 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184 this->list_.erase(p);
185 else if (p->start_ + fuzz >= start)
186 p->start_ = end;
187 else if (p->end_ <= end + fuzz)
188 p->end_ = start;
189 else
190 {
191 Free_list_node newnode(p->start_, start);
192 p->start_ = end;
193 this->list_.insert(p, newnode);
194 ++Free_list::num_nodes;
195 }
196 return start;
197 }
198 }
199 if (this->extend_)
200 {
201 off_t start = align_address(this->length_, align);
202 this->length_ = start + len;
203 return start;
204 }
205 return -1;
206 }
207
208 // Dump the free list (for debugging).
209 void
210 Free_list::dump()
211 {
212 gold_info("Free list:\n start end length\n");
213 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
215 static_cast<long>(p->end_),
216 static_cast<long>(p->end_ - p->start_));
217 }
218
219 // Print the statistics for the free lists.
220 void
221 Free_list::print_stats()
222 {
223 fprintf(stderr, _("%s: total free lists: %u\n"),
224 program_name, Free_list::num_lists);
225 fprintf(stderr, _("%s: total free list nodes: %u\n"),
226 program_name, Free_list::num_nodes);
227 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228 program_name, Free_list::num_removes);
229 fprintf(stderr, _("%s: nodes visited: %u\n"),
230 program_name, Free_list::num_remove_visits);
231 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232 program_name, Free_list::num_allocates);
233 fprintf(stderr, _("%s: nodes visited: %u\n"),
234 program_name, Free_list::num_allocate_visits);
235 }
236
237 // Layout::Relaxation_debug_check methods.
238
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
243 void
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245 const Layout::Section_list& sections,
246 const Layout::Data_list& special_outputs)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 gold_assert((*p)->address_and_file_offset_have_reset_values());
252
253 for(Layout::Data_list::const_iterator p = special_outputs.begin();
254 p != special_outputs.end();
255 ++p)
256 gold_assert((*p)->address_and_file_offset_have_reset_values());
257 }
258
259 // Save information of SECTIONS for checking later.
260
261 void
262 Layout::Relaxation_debug_check::read_sections(
263 const Layout::Section_list& sections)
264 {
265 for(Layout::Section_list::const_iterator p = sections.begin();
266 p != sections.end();
267 ++p)
268 {
269 Output_section* os = *p;
270 Section_info info;
271 info.output_section = os;
272 info.address = os->is_address_valid() ? os->address() : 0;
273 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274 info.offset = os->is_offset_valid()? os->offset() : -1 ;
275 this->section_infos_.push_back(info);
276 }
277 }
278
279 // Verify SECTIONS using previously recorded information.
280
281 void
282 Layout::Relaxation_debug_check::verify_sections(
283 const Layout::Section_list& sections)
284 {
285 size_t i = 0;
286 for(Layout::Section_list::const_iterator p = sections.begin();
287 p != sections.end();
288 ++p, ++i)
289 {
290 Output_section* os = *p;
291 uint64_t address = os->is_address_valid() ? os->address() : 0;
292 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
295 if (i >= this->section_infos_.size())
296 {
297 gold_fatal("Section_info of %s missing.\n", os->name());
298 }
299 const Section_info& info = this->section_infos_[i];
300 if (os != info.output_section)
301 gold_fatal("Section order changed. Expecting %s but see %s\n",
302 info.output_section->name(), os->name());
303 if (address != info.address
304 || data_size != info.data_size
305 || offset != info.offset)
306 gold_fatal("Section %s changed.\n", os->name());
307 }
308 }
309
310 // Layout_task_runner methods.
311
312 // Lay out the sections. This is called after all the input objects
313 // have been read.
314
315 void
316 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317 {
318 Layout* layout = this->layout_;
319 off_t file_size = layout->finalize(this->input_objects_,
320 this->symtab_,
321 this->target_,
322 task);
323
324 // Now we know the final size of the output file and we know where
325 // each piece of information goes.
326
327 if (this->mapfile_ != NULL)
328 {
329 this->mapfile_->print_discarded_sections(this->input_objects_);
330 layout->print_to_mapfile(this->mapfile_);
331 }
332
333 Output_file* of;
334 if (layout->incremental_base() == NULL)
335 {
336 of = new Output_file(parameters->options().output_file_name());
337 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338 of->set_is_temporary();
339 of->open(file_size);
340 }
341 else
342 {
343 of = layout->incremental_base()->output_file();
344
345 // Apply the incremental relocations for symbols whose values
346 // have changed. We do this before we resize the file and start
347 // writing anything else to it, so that we can read the old
348 // incremental information from the file before (possibly)
349 // overwriting it.
350 if (parameters->incremental_update())
351 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352 this->layout_,
353 of);
354
355 of->resize(file_size);
356 }
357
358 // Queue up the final set of tasks.
359 gold::queue_final_tasks(this->options_, this->input_objects_,
360 this->symtab_, layout, workqueue, of);
361 }
362
363 // Layout methods.
364
365 Layout::Layout(int number_of_input_files, Script_options* script_options)
366 : number_of_input_files_(number_of_input_files),
367 script_options_(script_options),
368 namepool_(),
369 sympool_(),
370 dynpool_(),
371 signatures_(),
372 section_name_map_(),
373 segment_list_(),
374 section_list_(),
375 unattached_section_list_(),
376 special_output_list_(),
377 section_headers_(NULL),
378 tls_segment_(NULL),
379 relro_segment_(NULL),
380 interp_segment_(NULL),
381 increase_relro_(0),
382 symtab_section_(NULL),
383 symtab_xindex_(NULL),
384 dynsym_section_(NULL),
385 dynsym_xindex_(NULL),
386 dynamic_section_(NULL),
387 dynamic_symbol_(NULL),
388 dynamic_data_(NULL),
389 eh_frame_section_(NULL),
390 eh_frame_data_(NULL),
391 added_eh_frame_data_(false),
392 eh_frame_hdr_section_(NULL),
393 build_id_note_(NULL),
394 debug_abbrev_(NULL),
395 debug_info_(NULL),
396 group_signatures_(),
397 output_file_size_(-1),
398 have_added_input_section_(false),
399 sections_are_attached_(false),
400 input_requires_executable_stack_(false),
401 input_with_gnu_stack_note_(false),
402 input_without_gnu_stack_note_(false),
403 has_static_tls_(false),
404 any_postprocessing_sections_(false),
405 resized_signatures_(false),
406 have_stabstr_section_(false),
407 section_ordering_specified_(false),
408 incremental_inputs_(NULL),
409 record_output_section_data_from_script_(false),
410 script_output_section_data_list_(),
411 segment_states_(NULL),
412 relaxation_debug_check_(NULL),
413 section_order_map_(),
414 input_section_position_(),
415 input_section_glob_(),
416 incremental_base_(NULL),
417 free_list_()
418 {
419 // Make space for more than enough segments for a typical file.
420 // This is just for efficiency--it's OK if we wind up needing more.
421 this->segment_list_.reserve(12);
422
423 // We expect two unattached Output_data objects: the file header and
424 // the segment headers.
425 this->special_output_list_.reserve(2);
426
427 // Initialize structure needed for an incremental build.
428 if (parameters->incremental())
429 this->incremental_inputs_ = new Incremental_inputs;
430
431 // The section name pool is worth optimizing in all cases, because
432 // it is small, but there are often overlaps due to .rel sections.
433 this->namepool_.set_optimize();
434 }
435
436 // For incremental links, record the base file to be modified.
437
438 void
439 Layout::set_incremental_base(Incremental_binary* base)
440 {
441 this->incremental_base_ = base;
442 this->free_list_.init(base->output_file()->filesize(), true);
443 }
444
445 // Hash a key we use to look up an output section mapping.
446
447 size_t
448 Layout::Hash_key::operator()(const Layout::Key& k) const
449 {
450 return k.first + k.second.first + k.second.second;
451 }
452
453 // Returns whether the given section is in the list of
454 // debug-sections-used-by-some-version-of-gdb. Currently,
455 // we've checked versions of gdb up to and including 6.7.1.
456
457 static const char* gdb_sections[] =
458 { ".debug_abbrev",
459 // ".debug_aranges", // not used by gdb as of 6.7.1
460 ".debug_frame",
461 ".debug_info",
462 ".debug_types",
463 ".debug_line",
464 ".debug_loc",
465 ".debug_macinfo",
466 // ".debug_pubnames", // not used by gdb as of 6.7.1
467 ".debug_ranges",
468 ".debug_str",
469 };
470
471 static const char* lines_only_debug_sections[] =
472 { ".debug_abbrev",
473 // ".debug_aranges", // not used by gdb as of 6.7.1
474 // ".debug_frame",
475 ".debug_info",
476 // ".debug_types",
477 ".debug_line",
478 // ".debug_loc",
479 // ".debug_macinfo",
480 // ".debug_pubnames", // not used by gdb as of 6.7.1
481 // ".debug_ranges",
482 ".debug_str",
483 };
484
485 static inline bool
486 is_gdb_debug_section(const char* str)
487 {
488 // We can do this faster: binary search or a hashtable. But why bother?
489 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
490 if (strcmp(str, gdb_sections[i]) == 0)
491 return true;
492 return false;
493 }
494
495 static inline bool
496 is_lines_only_debug_section(const char* str)
497 {
498 // We can do this faster: binary search or a hashtable. But why bother?
499 for (size_t i = 0;
500 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
501 ++i)
502 if (strcmp(str, lines_only_debug_sections[i]) == 0)
503 return true;
504 return false;
505 }
506
507 // Sometimes we compress sections. This is typically done for
508 // sections that are not part of normal program execution (such as
509 // .debug_* sections), and where the readers of these sections know
510 // how to deal with compressed sections. This routine doesn't say for
511 // certain whether we'll compress -- it depends on commandline options
512 // as well -- just whether this section is a candidate for compression.
513 // (The Output_compressed_section class decides whether to compress
514 // a given section, and picks the name of the compressed section.)
515
516 static bool
517 is_compressible_debug_section(const char* secname)
518 {
519 return (is_prefix_of(".debug", secname));
520 }
521
522 // We may see compressed debug sections in input files. Return TRUE
523 // if this is the name of a compressed debug section.
524
525 bool
526 is_compressed_debug_section(const char* secname)
527 {
528 return (is_prefix_of(".zdebug", secname));
529 }
530
531 // Whether to include this section in the link.
532
533 template<int size, bool big_endian>
534 bool
535 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
536 const elfcpp::Shdr<size, big_endian>& shdr)
537 {
538 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
539 return false;
540
541 switch (shdr.get_sh_type())
542 {
543 case elfcpp::SHT_NULL:
544 case elfcpp::SHT_SYMTAB:
545 case elfcpp::SHT_DYNSYM:
546 case elfcpp::SHT_HASH:
547 case elfcpp::SHT_DYNAMIC:
548 case elfcpp::SHT_SYMTAB_SHNDX:
549 return false;
550
551 case elfcpp::SHT_STRTAB:
552 // Discard the sections which have special meanings in the ELF
553 // ABI. Keep others (e.g., .stabstr). We could also do this by
554 // checking the sh_link fields of the appropriate sections.
555 return (strcmp(name, ".dynstr") != 0
556 && strcmp(name, ".strtab") != 0
557 && strcmp(name, ".shstrtab") != 0);
558
559 case elfcpp::SHT_RELA:
560 case elfcpp::SHT_REL:
561 case elfcpp::SHT_GROUP:
562 // If we are emitting relocations these should be handled
563 // elsewhere.
564 gold_assert(!parameters->options().relocatable()
565 && !parameters->options().emit_relocs());
566 return false;
567
568 case elfcpp::SHT_PROGBITS:
569 if (parameters->options().strip_debug()
570 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571 {
572 if (is_debug_info_section(name))
573 return false;
574 }
575 if (parameters->options().strip_debug_non_line()
576 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
577 {
578 // Debugging sections can only be recognized by name.
579 if (is_prefix_of(".debug", name)
580 && !is_lines_only_debug_section(name))
581 return false;
582 }
583 if (parameters->options().strip_debug_gdb()
584 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585 {
586 // Debugging sections can only be recognized by name.
587 if (is_prefix_of(".debug", name)
588 && !is_gdb_debug_section(name))
589 return false;
590 }
591 if (parameters->options().strip_lto_sections()
592 && !parameters->options().relocatable()
593 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
594 {
595 // Ignore LTO sections containing intermediate code.
596 if (is_prefix_of(".gnu.lto_", name))
597 return false;
598 }
599 // The GNU linker strips .gnu_debuglink sections, so we do too.
600 // This is a feature used to keep debugging information in
601 // separate files.
602 if (strcmp(name, ".gnu_debuglink") == 0)
603 return false;
604 return true;
605
606 default:
607 return true;
608 }
609 }
610
611 // Return an output section named NAME, or NULL if there is none.
612
613 Output_section*
614 Layout::find_output_section(const char* name) const
615 {
616 for (Section_list::const_iterator p = this->section_list_.begin();
617 p != this->section_list_.end();
618 ++p)
619 if (strcmp((*p)->name(), name) == 0)
620 return *p;
621 return NULL;
622 }
623
624 // Return an output segment of type TYPE, with segment flags SET set
625 // and segment flags CLEAR clear. Return NULL if there is none.
626
627 Output_segment*
628 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
629 elfcpp::Elf_Word clear) const
630 {
631 for (Segment_list::const_iterator p = this->segment_list_.begin();
632 p != this->segment_list_.end();
633 ++p)
634 if (static_cast<elfcpp::PT>((*p)->type()) == type
635 && ((*p)->flags() & set) == set
636 && ((*p)->flags() & clear) == 0)
637 return *p;
638 return NULL;
639 }
640
641 // When we put a .ctors or .dtors section with more than one word into
642 // a .init_array or .fini_array section, we need to reverse the words
643 // in the .ctors/.dtors section. This is because .init_array executes
644 // constructors front to back, where .ctors executes them back to
645 // front, and vice-versa for .fini_array/.dtors. Although we do want
646 // to remap .ctors/.dtors into .init_array/.fini_array because it can
647 // be more efficient, we don't want to change the order in which
648 // constructors/destructors are run. This set just keeps track of
649 // these sections which need to be reversed. It is only changed by
650 // Layout::layout. It should be a private member of Layout, but that
651 // would require layout.h to #include object.h to get the definition
652 // of Section_id.
653 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
654
655 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
656 // .init_array/.fini_array section.
657
658 bool
659 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
660 {
661 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
662 != ctors_sections_in_init_array.end());
663 }
664
665 // Return the output section to use for section NAME with type TYPE
666 // and section flags FLAGS. NAME must be canonicalized in the string
667 // pool, and NAME_KEY is the key. ORDER is where this should appear
668 // in the output sections. IS_RELRO is true for a relro section.
669
670 Output_section*
671 Layout::get_output_section(const char* name, Stringpool::Key name_key,
672 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
673 Output_section_order order, bool is_relro)
674 {
675 elfcpp::Elf_Word lookup_type = type;
676
677 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
678 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
679 // .init_array, .fini_array, and .preinit_array sections by name
680 // whatever their type in the input file. We do this because the
681 // types are not always right in the input files.
682 if (lookup_type == elfcpp::SHT_INIT_ARRAY
683 || lookup_type == elfcpp::SHT_FINI_ARRAY
684 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
685 lookup_type = elfcpp::SHT_PROGBITS;
686
687 elfcpp::Elf_Xword lookup_flags = flags;
688
689 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
690 // read-write with read-only sections. Some other ELF linkers do
691 // not do this. FIXME: Perhaps there should be an option
692 // controlling this.
693 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
694
695 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
696 const std::pair<Key, Output_section*> v(key, NULL);
697 std::pair<Section_name_map::iterator, bool> ins(
698 this->section_name_map_.insert(v));
699
700 if (!ins.second)
701 return ins.first->second;
702 else
703 {
704 // This is the first time we've seen this name/type/flags
705 // combination. For compatibility with the GNU linker, we
706 // combine sections with contents and zero flags with sections
707 // with non-zero flags. This is a workaround for cases where
708 // assembler code forgets to set section flags. FIXME: Perhaps
709 // there should be an option to control this.
710 Output_section* os = NULL;
711
712 if (lookup_type == elfcpp::SHT_PROGBITS)
713 {
714 if (flags == 0)
715 {
716 Output_section* same_name = this->find_output_section(name);
717 if (same_name != NULL
718 && (same_name->type() == elfcpp::SHT_PROGBITS
719 || same_name->type() == elfcpp::SHT_INIT_ARRAY
720 || same_name->type() == elfcpp::SHT_FINI_ARRAY
721 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
722 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
723 os = same_name;
724 }
725 else if ((flags & elfcpp::SHF_TLS) == 0)
726 {
727 elfcpp::Elf_Xword zero_flags = 0;
728 const Key zero_key(name_key, std::make_pair(lookup_type,
729 zero_flags));
730 Section_name_map::iterator p =
731 this->section_name_map_.find(zero_key);
732 if (p != this->section_name_map_.end())
733 os = p->second;
734 }
735 }
736
737 if (os == NULL)
738 os = this->make_output_section(name, type, flags, order, is_relro);
739
740 ins.first->second = os;
741 return os;
742 }
743 }
744
745 // Pick the output section to use for section NAME, in input file
746 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
747 // linker created section. IS_INPUT_SECTION is true if we are
748 // choosing an output section for an input section found in a input
749 // file. ORDER is where this section should appear in the output
750 // sections. IS_RELRO is true for a relro section. This will return
751 // NULL if the input section should be discarded.
752
753 Output_section*
754 Layout::choose_output_section(const Relobj* relobj, const char* name,
755 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
756 bool is_input_section, Output_section_order order,
757 bool is_relro)
758 {
759 // We should not see any input sections after we have attached
760 // sections to segments.
761 gold_assert(!is_input_section || !this->sections_are_attached_);
762
763 // Some flags in the input section should not be automatically
764 // copied to the output section.
765 flags &= ~ (elfcpp::SHF_INFO_LINK
766 | elfcpp::SHF_GROUP
767 | elfcpp::SHF_MERGE
768 | elfcpp::SHF_STRINGS);
769
770 // We only clear the SHF_LINK_ORDER flag in for
771 // a non-relocatable link.
772 if (!parameters->options().relocatable())
773 flags &= ~elfcpp::SHF_LINK_ORDER;
774
775 if (this->script_options_->saw_sections_clause())
776 {
777 // We are using a SECTIONS clause, so the output section is
778 // chosen based only on the name.
779
780 Script_sections* ss = this->script_options_->script_sections();
781 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
782 Output_section** output_section_slot;
783 Script_sections::Section_type script_section_type;
784 const char* orig_name = name;
785 name = ss->output_section_name(file_name, name, &output_section_slot,
786 &script_section_type);
787 if (name == NULL)
788 {
789 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
790 "because it is not allowed by the "
791 "SECTIONS clause of the linker script"),
792 orig_name);
793 // The SECTIONS clause says to discard this input section.
794 return NULL;
795 }
796
797 // We can only handle script section types ST_NONE and ST_NOLOAD.
798 switch (script_section_type)
799 {
800 case Script_sections::ST_NONE:
801 break;
802 case Script_sections::ST_NOLOAD:
803 flags &= elfcpp::SHF_ALLOC;
804 break;
805 default:
806 gold_unreachable();
807 }
808
809 // If this is an orphan section--one not mentioned in the linker
810 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
811 // default processing below.
812
813 if (output_section_slot != NULL)
814 {
815 if (*output_section_slot != NULL)
816 {
817 (*output_section_slot)->update_flags_for_input_section(flags);
818 return *output_section_slot;
819 }
820
821 // We don't put sections found in the linker script into
822 // SECTION_NAME_MAP_. That keeps us from getting confused
823 // if an orphan section is mapped to a section with the same
824 // name as one in the linker script.
825
826 name = this->namepool_.add(name, false, NULL);
827
828 Output_section* os = this->make_output_section(name, type, flags,
829 order, is_relro);
830
831 os->set_found_in_sections_clause();
832
833 // Special handling for NOLOAD sections.
834 if (script_section_type == Script_sections::ST_NOLOAD)
835 {
836 os->set_is_noload();
837
838 // The constructor of Output_section sets addresses of non-ALLOC
839 // sections to 0 by default. We don't want that for NOLOAD
840 // sections even if they have no SHF_ALLOC flag.
841 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
842 && os->is_address_valid())
843 {
844 gold_assert(os->address() == 0
845 && !os->is_offset_valid()
846 && !os->is_data_size_valid());
847 os->reset_address_and_file_offset();
848 }
849 }
850
851 *output_section_slot = os;
852 return os;
853 }
854 }
855
856 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
857
858 size_t len = strlen(name);
859 char* uncompressed_name = NULL;
860
861 // Compressed debug sections should be mapped to the corresponding
862 // uncompressed section.
863 if (is_compressed_debug_section(name))
864 {
865 uncompressed_name = new char[len];
866 uncompressed_name[0] = '.';
867 gold_assert(name[0] == '.' && name[1] == 'z');
868 strncpy(&uncompressed_name[1], &name[2], len - 2);
869 uncompressed_name[len - 1] = '\0';
870 len -= 1;
871 name = uncompressed_name;
872 }
873
874 // Turn NAME from the name of the input section into the name of the
875 // output section.
876 if (is_input_section
877 && !this->script_options_->saw_sections_clause()
878 && !parameters->options().relocatable())
879 name = Layout::output_section_name(relobj, name, &len);
880
881 Stringpool::Key name_key;
882 name = this->namepool_.add_with_length(name, len, true, &name_key);
883
884 if (uncompressed_name != NULL)
885 delete[] uncompressed_name;
886
887 // Find or make the output section. The output section is selected
888 // based on the section name, type, and flags.
889 return this->get_output_section(name, name_key, type, flags, order, is_relro);
890 }
891
892 // For incremental links, record the initial fixed layout of a section
893 // from the base file, and return a pointer to the Output_section.
894
895 template<int size, bool big_endian>
896 Output_section*
897 Layout::init_fixed_output_section(const char* name,
898 elfcpp::Shdr<size, big_endian>& shdr)
899 {
900 unsigned int sh_type = shdr.get_sh_type();
901
902 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
903 // PRE_INIT_ARRAY, and NOTE sections.
904 // All others will be created from scratch and reallocated.
905 if (!can_incremental_update(sh_type))
906 return NULL;
907
908 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
909 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
910 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
911 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
912 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
913 shdr.get_sh_addralign();
914
915 // Make the output section.
916 Stringpool::Key name_key;
917 name = this->namepool_.add(name, true, &name_key);
918 Output_section* os = this->get_output_section(name, name_key, sh_type,
919 sh_flags, ORDER_INVALID, false);
920 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
921 if (sh_type != elfcpp::SHT_NOBITS)
922 this->free_list_.remove(sh_offset, sh_offset + sh_size);
923 return os;
924 }
925
926 // Return the output section to use for input section SHNDX, with name
927 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
928 // index of a relocation section which applies to this section, or 0
929 // if none, or -1U if more than one. RELOC_TYPE is the type of the
930 // relocation section if there is one. Set *OFF to the offset of this
931 // input section without the output section. Return NULL if the
932 // section should be discarded. Set *OFF to -1 if the section
933 // contents should not be written directly to the output file, but
934 // will instead receive special handling.
935
936 template<int size, bool big_endian>
937 Output_section*
938 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
939 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
940 unsigned int reloc_shndx, unsigned int, off_t* off)
941 {
942 *off = 0;
943
944 if (!this->include_section(object, name, shdr))
945 return NULL;
946
947 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
948
949 // In a relocatable link a grouped section must not be combined with
950 // any other sections.
951 Output_section* os;
952 if (parameters->options().relocatable()
953 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
954 {
955 name = this->namepool_.add(name, true, NULL);
956 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
957 ORDER_INVALID, false);
958 }
959 else
960 {
961 os = this->choose_output_section(object, name, sh_type,
962 shdr.get_sh_flags(), true,
963 ORDER_INVALID, false);
964 if (os == NULL)
965 return NULL;
966 }
967
968 // By default the GNU linker sorts input sections whose names match
969 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
970 // sections are sorted by name. This is used to implement
971 // constructor priority ordering. We are compatible. When we put
972 // .ctor sections in .init_array and .dtor sections in .fini_array,
973 // we must also sort plain .ctor and .dtor sections.
974 if (!this->script_options_->saw_sections_clause()
975 && !parameters->options().relocatable()
976 && (is_prefix_of(".ctors.", name)
977 || is_prefix_of(".dtors.", name)
978 || is_prefix_of(".init_array.", name)
979 || is_prefix_of(".fini_array.", name)
980 || (parameters->options().ctors_in_init_array()
981 && (strcmp(name, ".ctors") == 0
982 || strcmp(name, ".dtors") == 0))))
983 os->set_must_sort_attached_input_sections();
984
985 // If this is a .ctors or .ctors.* section being mapped to a
986 // .init_array section, or a .dtors or .dtors.* section being mapped
987 // to a .fini_array section, we will need to reverse the words if
988 // there is more than one. Record this section for later. See
989 // ctors_sections_in_init_array above.
990 if (!this->script_options_->saw_sections_clause()
991 && !parameters->options().relocatable()
992 && shdr.get_sh_size() > size / 8
993 && (((strcmp(name, ".ctors") == 0
994 || is_prefix_of(".ctors.", name))
995 && strcmp(os->name(), ".init_array") == 0)
996 || ((strcmp(name, ".dtors") == 0
997 || is_prefix_of(".dtors.", name))
998 && strcmp(os->name(), ".fini_array") == 0)))
999 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1000
1001 // FIXME: Handle SHF_LINK_ORDER somewhere.
1002
1003 elfcpp::Elf_Xword orig_flags = os->flags();
1004
1005 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1006 this->script_options_->saw_sections_clause());
1007
1008 // If the flags changed, we may have to change the order.
1009 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1010 {
1011 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1012 elfcpp::Elf_Xword new_flags =
1013 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1014 if (orig_flags != new_flags)
1015 os->set_order(this->default_section_order(os, false));
1016 }
1017
1018 this->have_added_input_section_ = true;
1019
1020 return os;
1021 }
1022
1023 // Handle a relocation section when doing a relocatable link.
1024
1025 template<int size, bool big_endian>
1026 Output_section*
1027 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1028 unsigned int,
1029 const elfcpp::Shdr<size, big_endian>& shdr,
1030 Output_section* data_section,
1031 Relocatable_relocs* rr)
1032 {
1033 gold_assert(parameters->options().relocatable()
1034 || parameters->options().emit_relocs());
1035
1036 int sh_type = shdr.get_sh_type();
1037
1038 std::string name;
1039 if (sh_type == elfcpp::SHT_REL)
1040 name = ".rel";
1041 else if (sh_type == elfcpp::SHT_RELA)
1042 name = ".rela";
1043 else
1044 gold_unreachable();
1045 name += data_section->name();
1046
1047 // In a relocatable link relocs for a grouped section must not be
1048 // combined with other reloc sections.
1049 Output_section* os;
1050 if (!parameters->options().relocatable()
1051 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1052 os = this->choose_output_section(object, name.c_str(), sh_type,
1053 shdr.get_sh_flags(), false,
1054 ORDER_INVALID, false);
1055 else
1056 {
1057 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1058 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1059 ORDER_INVALID, false);
1060 }
1061
1062 os->set_should_link_to_symtab();
1063 os->set_info_section(data_section);
1064
1065 Output_section_data* posd;
1066 if (sh_type == elfcpp::SHT_REL)
1067 {
1068 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1069 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1070 size,
1071 big_endian>(rr);
1072 }
1073 else if (sh_type == elfcpp::SHT_RELA)
1074 {
1075 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1076 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1077 size,
1078 big_endian>(rr);
1079 }
1080 else
1081 gold_unreachable();
1082
1083 os->add_output_section_data(posd);
1084 rr->set_output_data(posd);
1085
1086 return os;
1087 }
1088
1089 // Handle a group section when doing a relocatable link.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Layout::layout_group(Symbol_table* symtab,
1094 Sized_relobj_file<size, big_endian>* object,
1095 unsigned int,
1096 const char* group_section_name,
1097 const char* signature,
1098 const elfcpp::Shdr<size, big_endian>& shdr,
1099 elfcpp::Elf_Word flags,
1100 std::vector<unsigned int>* shndxes)
1101 {
1102 gold_assert(parameters->options().relocatable());
1103 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1104 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1105 Output_section* os = this->make_output_section(group_section_name,
1106 elfcpp::SHT_GROUP,
1107 shdr.get_sh_flags(),
1108 ORDER_INVALID, false);
1109
1110 // We need to find a symbol with the signature in the symbol table.
1111 // If we don't find one now, we need to look again later.
1112 Symbol* sym = symtab->lookup(signature, NULL);
1113 if (sym != NULL)
1114 os->set_info_symndx(sym);
1115 else
1116 {
1117 // Reserve some space to minimize reallocations.
1118 if (this->group_signatures_.empty())
1119 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1120
1121 // We will wind up using a symbol whose name is the signature.
1122 // So just put the signature in the symbol name pool to save it.
1123 signature = symtab->canonicalize_name(signature);
1124 this->group_signatures_.push_back(Group_signature(os, signature));
1125 }
1126
1127 os->set_should_link_to_symtab();
1128 os->set_entsize(4);
1129
1130 section_size_type entry_count =
1131 convert_to_section_size_type(shdr.get_sh_size() / 4);
1132 Output_section_data* posd =
1133 new Output_data_group<size, big_endian>(object, entry_count, flags,
1134 shndxes);
1135 os->add_output_section_data(posd);
1136 }
1137
1138 // Special GNU handling of sections name .eh_frame. They will
1139 // normally hold exception frame data as defined by the C++ ABI
1140 // (http://codesourcery.com/cxx-abi/).
1141
1142 template<int size, bool big_endian>
1143 Output_section*
1144 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1145 const unsigned char* symbols,
1146 off_t symbols_size,
1147 const unsigned char* symbol_names,
1148 off_t symbol_names_size,
1149 unsigned int shndx,
1150 const elfcpp::Shdr<size, big_endian>& shdr,
1151 unsigned int reloc_shndx, unsigned int reloc_type,
1152 off_t* off)
1153 {
1154 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1155 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1156 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1157
1158 Output_section* os = this->make_eh_frame_section(object);
1159 if (os == NULL)
1160 return NULL;
1161
1162 gold_assert(this->eh_frame_section_ == os);
1163
1164 elfcpp::Elf_Xword orig_flags = os->flags();
1165
1166 if (!parameters->incremental()
1167 && this->eh_frame_data_->add_ehframe_input_section(object,
1168 symbols,
1169 symbols_size,
1170 symbol_names,
1171 symbol_names_size,
1172 shndx,
1173 reloc_shndx,
1174 reloc_type))
1175 {
1176 os->update_flags_for_input_section(shdr.get_sh_flags());
1177
1178 // A writable .eh_frame section is a RELRO section.
1179 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1180 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1181 {
1182 os->set_is_relro();
1183 os->set_order(ORDER_RELRO);
1184 }
1185
1186 // We found a .eh_frame section we are going to optimize, so now
1187 // we can add the set of optimized sections to the output
1188 // section. We need to postpone adding this until we've found a
1189 // section we can optimize so that the .eh_frame section in
1190 // crtbegin.o winds up at the start of the output section.
1191 if (!this->added_eh_frame_data_)
1192 {
1193 os->add_output_section_data(this->eh_frame_data_);
1194 this->added_eh_frame_data_ = true;
1195 }
1196 *off = -1;
1197 }
1198 else
1199 {
1200 // We couldn't handle this .eh_frame section for some reason.
1201 // Add it as a normal section.
1202 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1203 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1204 reloc_shndx, saw_sections_clause);
1205 this->have_added_input_section_ = true;
1206
1207 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1208 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1209 os->set_order(this->default_section_order(os, false));
1210 }
1211
1212 return os;
1213 }
1214
1215 // Create and return the magic .eh_frame section. Create
1216 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1217 // input .eh_frame section; it may be NULL.
1218
1219 Output_section*
1220 Layout::make_eh_frame_section(const Relobj* object)
1221 {
1222 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1223 // SHT_PROGBITS.
1224 Output_section* os = this->choose_output_section(object, ".eh_frame",
1225 elfcpp::SHT_PROGBITS,
1226 elfcpp::SHF_ALLOC, false,
1227 ORDER_EHFRAME, false);
1228 if (os == NULL)
1229 return NULL;
1230
1231 if (this->eh_frame_section_ == NULL)
1232 {
1233 this->eh_frame_section_ = os;
1234 this->eh_frame_data_ = new Eh_frame();
1235
1236 // For incremental linking, we do not optimize .eh_frame sections
1237 // or create a .eh_frame_hdr section.
1238 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1239 {
1240 Output_section* hdr_os =
1241 this->choose_output_section(NULL, ".eh_frame_hdr",
1242 elfcpp::SHT_PROGBITS,
1243 elfcpp::SHF_ALLOC, false,
1244 ORDER_EHFRAME, false);
1245
1246 if (hdr_os != NULL)
1247 {
1248 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1249 this->eh_frame_data_);
1250 hdr_os->add_output_section_data(hdr_posd);
1251
1252 hdr_os->set_after_input_sections();
1253
1254 if (!this->script_options_->saw_phdrs_clause())
1255 {
1256 Output_segment* hdr_oseg;
1257 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1258 elfcpp::PF_R);
1259 hdr_oseg->add_output_section_to_nonload(hdr_os,
1260 elfcpp::PF_R);
1261 }
1262
1263 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1264 }
1265 }
1266 }
1267
1268 return os;
1269 }
1270
1271 // Add an exception frame for a PLT. This is called from target code.
1272
1273 void
1274 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1275 size_t cie_length, const unsigned char* fde_data,
1276 size_t fde_length)
1277 {
1278 if (parameters->incremental())
1279 {
1280 // FIXME: Maybe this could work some day....
1281 return;
1282 }
1283 Output_section* os = this->make_eh_frame_section(NULL);
1284 if (os == NULL)
1285 return;
1286 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1287 fde_data, fde_length);
1288 if (!this->added_eh_frame_data_)
1289 {
1290 os->add_output_section_data(this->eh_frame_data_);
1291 this->added_eh_frame_data_ = true;
1292 }
1293 }
1294
1295 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1296 // the output section.
1297
1298 Output_section*
1299 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1300 elfcpp::Elf_Xword flags,
1301 Output_section_data* posd,
1302 Output_section_order order, bool is_relro)
1303 {
1304 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1305 false, order, is_relro);
1306 if (os != NULL)
1307 os->add_output_section_data(posd);
1308 return os;
1309 }
1310
1311 // Map section flags to segment flags.
1312
1313 elfcpp::Elf_Word
1314 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1315 {
1316 elfcpp::Elf_Word ret = elfcpp::PF_R;
1317 if ((flags & elfcpp::SHF_WRITE) != 0)
1318 ret |= elfcpp::PF_W;
1319 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1320 ret |= elfcpp::PF_X;
1321 return ret;
1322 }
1323
1324 // Make a new Output_section, and attach it to segments as
1325 // appropriate. ORDER is the order in which this section should
1326 // appear in the output segment. IS_RELRO is true if this is a relro
1327 // (read-only after relocations) section.
1328
1329 Output_section*
1330 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1331 elfcpp::Elf_Xword flags,
1332 Output_section_order order, bool is_relro)
1333 {
1334 Output_section* os;
1335 if ((flags & elfcpp::SHF_ALLOC) == 0
1336 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1337 && is_compressible_debug_section(name))
1338 os = new Output_compressed_section(&parameters->options(), name, type,
1339 flags);
1340 else if ((flags & elfcpp::SHF_ALLOC) == 0
1341 && parameters->options().strip_debug_non_line()
1342 && strcmp(".debug_abbrev", name) == 0)
1343 {
1344 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1345 name, type, flags);
1346 if (this->debug_info_)
1347 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1348 }
1349 else if ((flags & elfcpp::SHF_ALLOC) == 0
1350 && parameters->options().strip_debug_non_line()
1351 && strcmp(".debug_info", name) == 0)
1352 {
1353 os = this->debug_info_ = new Output_reduced_debug_info_section(
1354 name, type, flags);
1355 if (this->debug_abbrev_)
1356 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1357 }
1358 else
1359 {
1360 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361 // not have correct section types. Force them here.
1362 if (type == elfcpp::SHT_PROGBITS)
1363 {
1364 if (is_prefix_of(".init_array", name))
1365 type = elfcpp::SHT_INIT_ARRAY;
1366 else if (is_prefix_of(".preinit_array", name))
1367 type = elfcpp::SHT_PREINIT_ARRAY;
1368 else if (is_prefix_of(".fini_array", name))
1369 type = elfcpp::SHT_FINI_ARRAY;
1370 }
1371
1372 // FIXME: const_cast is ugly.
1373 Target* target = const_cast<Target*>(&parameters->target());
1374 os = target->make_output_section(name, type, flags);
1375 }
1376
1377 // With -z relro, we have to recognize the special sections by name.
1378 // There is no other way.
1379 bool is_relro_local = false;
1380 if (!this->script_options_->saw_sections_clause()
1381 && parameters->options().relro()
1382 && type == elfcpp::SHT_PROGBITS
1383 && (flags & elfcpp::SHF_ALLOC) != 0
1384 && (flags & elfcpp::SHF_WRITE) != 0)
1385 {
1386 if (strcmp(name, ".data.rel.ro") == 0)
1387 is_relro = true;
1388 else if (strcmp(name, ".data.rel.ro.local") == 0)
1389 {
1390 is_relro = true;
1391 is_relro_local = true;
1392 }
1393 else if (type == elfcpp::SHT_INIT_ARRAY
1394 || type == elfcpp::SHT_FINI_ARRAY
1395 || type == elfcpp::SHT_PREINIT_ARRAY)
1396 is_relro = true;
1397 else if (strcmp(name, ".ctors") == 0
1398 || strcmp(name, ".dtors") == 0
1399 || strcmp(name, ".jcr") == 0)
1400 is_relro = true;
1401 }
1402
1403 if (is_relro)
1404 os->set_is_relro();
1405
1406 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1407 order = this->default_section_order(os, is_relro_local);
1408
1409 os->set_order(order);
1410
1411 parameters->target().new_output_section(os);
1412
1413 this->section_list_.push_back(os);
1414
1415 // The GNU linker by default sorts some sections by priority, so we
1416 // do the same. We need to know that this might happen before we
1417 // attach any input sections.
1418 if (!this->script_options_->saw_sections_clause()
1419 && !parameters->options().relocatable()
1420 && (strcmp(name, ".init_array") == 0
1421 || strcmp(name, ".fini_array") == 0
1422 || (!parameters->options().ctors_in_init_array()
1423 && (strcmp(name, ".ctors") == 0
1424 || strcmp(name, ".dtors") == 0))))
1425 os->set_may_sort_attached_input_sections();
1426
1427 // Check for .stab*str sections, as .stab* sections need to link to
1428 // them.
1429 if (type == elfcpp::SHT_STRTAB
1430 && !this->have_stabstr_section_
1431 && strncmp(name, ".stab", 5) == 0
1432 && strcmp(name + strlen(name) - 3, "str") == 0)
1433 this->have_stabstr_section_ = true;
1434
1435 // During a full incremental link, we add patch space to most
1436 // PROGBITS and NOBITS sections. Flag those that may be
1437 // arbitrarily padded.
1438 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1439 && order != ORDER_INTERP
1440 && order != ORDER_INIT
1441 && order != ORDER_PLT
1442 && order != ORDER_FINI
1443 && order != ORDER_RELRO_LAST
1444 && order != ORDER_NON_RELRO_FIRST
1445 && strcmp(name, ".eh_frame") != 0
1446 && strcmp(name, ".ctors") != 0
1447 && strcmp(name, ".dtors") != 0
1448 && strcmp(name, ".jcr") != 0)
1449 {
1450 os->set_is_patch_space_allowed();
1451
1452 // Certain sections require "holes" to be filled with
1453 // specific fill patterns. These fill patterns may have
1454 // a minimum size, so we must prevent allocations from the
1455 // free list that leave a hole smaller than the minimum.
1456 if (strcmp(name, ".debug_info") == 0)
1457 os->set_free_space_fill(new Output_fill_debug_info(false));
1458 else if (strcmp(name, ".debug_types") == 0)
1459 os->set_free_space_fill(new Output_fill_debug_info(true));
1460 else if (strcmp(name, ".debug_line") == 0)
1461 os->set_free_space_fill(new Output_fill_debug_line());
1462 }
1463
1464 // If we have already attached the sections to segments, then we
1465 // need to attach this one now. This happens for sections created
1466 // directly by the linker.
1467 if (this->sections_are_attached_)
1468 this->attach_section_to_segment(os);
1469
1470 return os;
1471 }
1472
1473 // Return the default order in which a section should be placed in an
1474 // output segment. This function captures a lot of the ideas in
1475 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1476 // linker created section is normally set when the section is created;
1477 // this function is used for input sections.
1478
1479 Output_section_order
1480 Layout::default_section_order(Output_section* os, bool is_relro_local)
1481 {
1482 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1483 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1484 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1485 bool is_bss = false;
1486
1487 switch (os->type())
1488 {
1489 default:
1490 case elfcpp::SHT_PROGBITS:
1491 break;
1492 case elfcpp::SHT_NOBITS:
1493 is_bss = true;
1494 break;
1495 case elfcpp::SHT_RELA:
1496 case elfcpp::SHT_REL:
1497 if (!is_write)
1498 return ORDER_DYNAMIC_RELOCS;
1499 break;
1500 case elfcpp::SHT_HASH:
1501 case elfcpp::SHT_DYNAMIC:
1502 case elfcpp::SHT_SHLIB:
1503 case elfcpp::SHT_DYNSYM:
1504 case elfcpp::SHT_GNU_HASH:
1505 case elfcpp::SHT_GNU_verdef:
1506 case elfcpp::SHT_GNU_verneed:
1507 case elfcpp::SHT_GNU_versym:
1508 if (!is_write)
1509 return ORDER_DYNAMIC_LINKER;
1510 break;
1511 case elfcpp::SHT_NOTE:
1512 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1513 }
1514
1515 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1516 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1517
1518 if (!is_bss && !is_write)
1519 {
1520 if (is_execinstr)
1521 {
1522 if (strcmp(os->name(), ".init") == 0)
1523 return ORDER_INIT;
1524 else if (strcmp(os->name(), ".fini") == 0)
1525 return ORDER_FINI;
1526 }
1527 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1528 }
1529
1530 if (os->is_relro())
1531 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1532
1533 if (os->is_small_section())
1534 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1535 if (os->is_large_section())
1536 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1537
1538 return is_bss ? ORDER_BSS : ORDER_DATA;
1539 }
1540
1541 // Attach output sections to segments. This is called after we have
1542 // seen all the input sections.
1543
1544 void
1545 Layout::attach_sections_to_segments()
1546 {
1547 for (Section_list::iterator p = this->section_list_.begin();
1548 p != this->section_list_.end();
1549 ++p)
1550 this->attach_section_to_segment(*p);
1551
1552 this->sections_are_attached_ = true;
1553 }
1554
1555 // Attach an output section to a segment.
1556
1557 void
1558 Layout::attach_section_to_segment(Output_section* os)
1559 {
1560 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1561 this->unattached_section_list_.push_back(os);
1562 else
1563 this->attach_allocated_section_to_segment(os);
1564 }
1565
1566 // Attach an allocated output section to a segment.
1567
1568 void
1569 Layout::attach_allocated_section_to_segment(Output_section* os)
1570 {
1571 elfcpp::Elf_Xword flags = os->flags();
1572 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1573
1574 if (parameters->options().relocatable())
1575 return;
1576
1577 // If we have a SECTIONS clause, we can't handle the attachment to
1578 // segments until after we've seen all the sections.
1579 if (this->script_options_->saw_sections_clause())
1580 return;
1581
1582 gold_assert(!this->script_options_->saw_phdrs_clause());
1583
1584 // This output section goes into a PT_LOAD segment.
1585
1586 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1587
1588 // Check for --section-start.
1589 uint64_t addr;
1590 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1591
1592 // In general the only thing we really care about for PT_LOAD
1593 // segments is whether or not they are writable or executable,
1594 // so that is how we search for them.
1595 // Large data sections also go into their own PT_LOAD segment.
1596 // People who need segments sorted on some other basis will
1597 // have to use a linker script.
1598
1599 Segment_list::const_iterator p;
1600 for (p = this->segment_list_.begin();
1601 p != this->segment_list_.end();
1602 ++p)
1603 {
1604 if ((*p)->type() != elfcpp::PT_LOAD)
1605 continue;
1606 if (!parameters->options().omagic()
1607 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1608 continue;
1609 if (parameters->options().rosegment()
1610 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1611 continue;
1612 // If -Tbss was specified, we need to separate the data and BSS
1613 // segments.
1614 if (parameters->options().user_set_Tbss())
1615 {
1616 if ((os->type() == elfcpp::SHT_NOBITS)
1617 == (*p)->has_any_data_sections())
1618 continue;
1619 }
1620 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1621 continue;
1622
1623 if (is_address_set)
1624 {
1625 if ((*p)->are_addresses_set())
1626 continue;
1627
1628 (*p)->add_initial_output_data(os);
1629 (*p)->update_flags_for_output_section(seg_flags);
1630 (*p)->set_addresses(addr, addr);
1631 break;
1632 }
1633
1634 (*p)->add_output_section_to_load(this, os, seg_flags);
1635 break;
1636 }
1637
1638 if (p == this->segment_list_.end())
1639 {
1640 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1641 seg_flags);
1642 if (os->is_large_data_section())
1643 oseg->set_is_large_data_segment();
1644 oseg->add_output_section_to_load(this, os, seg_flags);
1645 if (is_address_set)
1646 oseg->set_addresses(addr, addr);
1647 }
1648
1649 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1650 // segment.
1651 if (os->type() == elfcpp::SHT_NOTE)
1652 {
1653 // See if we already have an equivalent PT_NOTE segment.
1654 for (p = this->segment_list_.begin();
1655 p != segment_list_.end();
1656 ++p)
1657 {
1658 if ((*p)->type() == elfcpp::PT_NOTE
1659 && (((*p)->flags() & elfcpp::PF_W)
1660 == (seg_flags & elfcpp::PF_W)))
1661 {
1662 (*p)->add_output_section_to_nonload(os, seg_flags);
1663 break;
1664 }
1665 }
1666
1667 if (p == this->segment_list_.end())
1668 {
1669 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1670 seg_flags);
1671 oseg->add_output_section_to_nonload(os, seg_flags);
1672 }
1673 }
1674
1675 // If we see a loadable SHF_TLS section, we create a PT_TLS
1676 // segment. There can only be one such segment.
1677 if ((flags & elfcpp::SHF_TLS) != 0)
1678 {
1679 if (this->tls_segment_ == NULL)
1680 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1681 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1682 }
1683
1684 // If -z relro is in effect, and we see a relro section, we create a
1685 // PT_GNU_RELRO segment. There can only be one such segment.
1686 if (os->is_relro() && parameters->options().relro())
1687 {
1688 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1689 if (this->relro_segment_ == NULL)
1690 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1691 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1692 }
1693
1694 // If we see a section named .interp, put it into a PT_INTERP
1695 // segment. This seems broken to me, but this is what GNU ld does,
1696 // and glibc expects it.
1697 if (strcmp(os->name(), ".interp") == 0
1698 && !this->script_options_->saw_phdrs_clause())
1699 {
1700 if (this->interp_segment_ == NULL)
1701 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1702 else
1703 gold_warning(_("multiple '.interp' sections in input files "
1704 "may cause confusing PT_INTERP segment"));
1705 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1706 }
1707 }
1708
1709 // Make an output section for a script.
1710
1711 Output_section*
1712 Layout::make_output_section_for_script(
1713 const char* name,
1714 Script_sections::Section_type section_type)
1715 {
1716 name = this->namepool_.add(name, false, NULL);
1717 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1718 if (section_type == Script_sections::ST_NOLOAD)
1719 sh_flags = 0;
1720 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1721 sh_flags, ORDER_INVALID,
1722 false);
1723 os->set_found_in_sections_clause();
1724 if (section_type == Script_sections::ST_NOLOAD)
1725 os->set_is_noload();
1726 return os;
1727 }
1728
1729 // Return the number of segments we expect to see.
1730
1731 size_t
1732 Layout::expected_segment_count() const
1733 {
1734 size_t ret = this->segment_list_.size();
1735
1736 // If we didn't see a SECTIONS clause in a linker script, we should
1737 // already have the complete list of segments. Otherwise we ask the
1738 // SECTIONS clause how many segments it expects, and add in the ones
1739 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1740
1741 if (!this->script_options_->saw_sections_clause())
1742 return ret;
1743 else
1744 {
1745 const Script_sections* ss = this->script_options_->script_sections();
1746 return ret + ss->expected_segment_count(this);
1747 }
1748 }
1749
1750 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1751 // is whether we saw a .note.GNU-stack section in the object file.
1752 // GNU_STACK_FLAGS is the section flags. The flags give the
1753 // protection required for stack memory. We record this in an
1754 // executable as a PT_GNU_STACK segment. If an object file does not
1755 // have a .note.GNU-stack segment, we must assume that it is an old
1756 // object. On some targets that will force an executable stack.
1757
1758 void
1759 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1760 const Object* obj)
1761 {
1762 if (!seen_gnu_stack)
1763 {
1764 this->input_without_gnu_stack_note_ = true;
1765 if (parameters->options().warn_execstack()
1766 && parameters->target().is_default_stack_executable())
1767 gold_warning(_("%s: missing .note.GNU-stack section"
1768 " implies executable stack"),
1769 obj->name().c_str());
1770 }
1771 else
1772 {
1773 this->input_with_gnu_stack_note_ = true;
1774 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1775 {
1776 this->input_requires_executable_stack_ = true;
1777 if (parameters->options().warn_execstack()
1778 || parameters->options().is_stack_executable())
1779 gold_warning(_("%s: requires executable stack"),
1780 obj->name().c_str());
1781 }
1782 }
1783 }
1784
1785 // Create automatic note sections.
1786
1787 void
1788 Layout::create_notes()
1789 {
1790 this->create_gold_note();
1791 this->create_executable_stack_info();
1792 this->create_build_id();
1793 }
1794
1795 // Create the dynamic sections which are needed before we read the
1796 // relocs.
1797
1798 void
1799 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1800 {
1801 if (parameters->doing_static_link())
1802 return;
1803
1804 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1805 elfcpp::SHT_DYNAMIC,
1806 (elfcpp::SHF_ALLOC
1807 | elfcpp::SHF_WRITE),
1808 false, ORDER_RELRO,
1809 true);
1810
1811 // A linker script may discard .dynamic, so check for NULL.
1812 if (this->dynamic_section_ != NULL)
1813 {
1814 this->dynamic_symbol_ =
1815 symtab->define_in_output_data("_DYNAMIC", NULL,
1816 Symbol_table::PREDEFINED,
1817 this->dynamic_section_, 0, 0,
1818 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1819 elfcpp::STV_HIDDEN, 0, false, false);
1820
1821 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1822
1823 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1824 }
1825 }
1826
1827 // For each output section whose name can be represented as C symbol,
1828 // define __start and __stop symbols for the section. This is a GNU
1829 // extension.
1830
1831 void
1832 Layout::define_section_symbols(Symbol_table* symtab)
1833 {
1834 for (Section_list::const_iterator p = this->section_list_.begin();
1835 p != this->section_list_.end();
1836 ++p)
1837 {
1838 const char* const name = (*p)->name();
1839 if (is_cident(name))
1840 {
1841 const std::string name_string(name);
1842 const std::string start_name(cident_section_start_prefix
1843 + name_string);
1844 const std::string stop_name(cident_section_stop_prefix
1845 + name_string);
1846
1847 symtab->define_in_output_data(start_name.c_str(),
1848 NULL, // version
1849 Symbol_table::PREDEFINED,
1850 *p,
1851 0, // value
1852 0, // symsize
1853 elfcpp::STT_NOTYPE,
1854 elfcpp::STB_GLOBAL,
1855 elfcpp::STV_DEFAULT,
1856 0, // nonvis
1857 false, // offset_is_from_end
1858 true); // only_if_ref
1859
1860 symtab->define_in_output_data(stop_name.c_str(),
1861 NULL, // version
1862 Symbol_table::PREDEFINED,
1863 *p,
1864 0, // value
1865 0, // symsize
1866 elfcpp::STT_NOTYPE,
1867 elfcpp::STB_GLOBAL,
1868 elfcpp::STV_DEFAULT,
1869 0, // nonvis
1870 true, // offset_is_from_end
1871 true); // only_if_ref
1872 }
1873 }
1874 }
1875
1876 // Define symbols for group signatures.
1877
1878 void
1879 Layout::define_group_signatures(Symbol_table* symtab)
1880 {
1881 for (Group_signatures::iterator p = this->group_signatures_.begin();
1882 p != this->group_signatures_.end();
1883 ++p)
1884 {
1885 Symbol* sym = symtab->lookup(p->signature, NULL);
1886 if (sym != NULL)
1887 p->section->set_info_symndx(sym);
1888 else
1889 {
1890 // Force the name of the group section to the group
1891 // signature, and use the group's section symbol as the
1892 // signature symbol.
1893 if (strcmp(p->section->name(), p->signature) != 0)
1894 {
1895 const char* name = this->namepool_.add(p->signature,
1896 true, NULL);
1897 p->section->set_name(name);
1898 }
1899 p->section->set_needs_symtab_index();
1900 p->section->set_info_section_symndx(p->section);
1901 }
1902 }
1903
1904 this->group_signatures_.clear();
1905 }
1906
1907 // Find the first read-only PT_LOAD segment, creating one if
1908 // necessary.
1909
1910 Output_segment*
1911 Layout::find_first_load_seg()
1912 {
1913 Output_segment* best = NULL;
1914 for (Segment_list::const_iterator p = this->segment_list_.begin();
1915 p != this->segment_list_.end();
1916 ++p)
1917 {
1918 if ((*p)->type() == elfcpp::PT_LOAD
1919 && ((*p)->flags() & elfcpp::PF_R) != 0
1920 && (parameters->options().omagic()
1921 || ((*p)->flags() & elfcpp::PF_W) == 0))
1922 {
1923 if (best == NULL || this->segment_precedes(*p, best))
1924 best = *p;
1925 }
1926 }
1927 if (best != NULL)
1928 return best;
1929
1930 gold_assert(!this->script_options_->saw_phdrs_clause());
1931
1932 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1933 elfcpp::PF_R);
1934 return load_seg;
1935 }
1936
1937 // Save states of all current output segments. Store saved states
1938 // in SEGMENT_STATES.
1939
1940 void
1941 Layout::save_segments(Segment_states* segment_states)
1942 {
1943 for (Segment_list::const_iterator p = this->segment_list_.begin();
1944 p != this->segment_list_.end();
1945 ++p)
1946 {
1947 Output_segment* segment = *p;
1948 // Shallow copy.
1949 Output_segment* copy = new Output_segment(*segment);
1950 (*segment_states)[segment] = copy;
1951 }
1952 }
1953
1954 // Restore states of output segments and delete any segment not found in
1955 // SEGMENT_STATES.
1956
1957 void
1958 Layout::restore_segments(const Segment_states* segment_states)
1959 {
1960 // Go through the segment list and remove any segment added in the
1961 // relaxation loop.
1962 this->tls_segment_ = NULL;
1963 this->relro_segment_ = NULL;
1964 Segment_list::iterator list_iter = this->segment_list_.begin();
1965 while (list_iter != this->segment_list_.end())
1966 {
1967 Output_segment* segment = *list_iter;
1968 Segment_states::const_iterator states_iter =
1969 segment_states->find(segment);
1970 if (states_iter != segment_states->end())
1971 {
1972 const Output_segment* copy = states_iter->second;
1973 // Shallow copy to restore states.
1974 *segment = *copy;
1975
1976 // Also fix up TLS and RELRO segment pointers as appropriate.
1977 if (segment->type() == elfcpp::PT_TLS)
1978 this->tls_segment_ = segment;
1979 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1980 this->relro_segment_ = segment;
1981
1982 ++list_iter;
1983 }
1984 else
1985 {
1986 list_iter = this->segment_list_.erase(list_iter);
1987 // This is a segment created during section layout. It should be
1988 // safe to remove it since we should have removed all pointers to it.
1989 delete segment;
1990 }
1991 }
1992 }
1993
1994 // Clean up after relaxation so that sections can be laid out again.
1995
1996 void
1997 Layout::clean_up_after_relaxation()
1998 {
1999 // Restore the segments to point state just prior to the relaxation loop.
2000 Script_sections* script_section = this->script_options_->script_sections();
2001 script_section->release_segments();
2002 this->restore_segments(this->segment_states_);
2003
2004 // Reset section addresses and file offsets
2005 for (Section_list::iterator p = this->section_list_.begin();
2006 p != this->section_list_.end();
2007 ++p)
2008 {
2009 (*p)->restore_states();
2010
2011 // If an input section changes size because of relaxation,
2012 // we need to adjust the section offsets of all input sections.
2013 // after such a section.
2014 if ((*p)->section_offsets_need_adjustment())
2015 (*p)->adjust_section_offsets();
2016
2017 (*p)->reset_address_and_file_offset();
2018 }
2019
2020 // Reset special output object address and file offsets.
2021 for (Data_list::iterator p = this->special_output_list_.begin();
2022 p != this->special_output_list_.end();
2023 ++p)
2024 (*p)->reset_address_and_file_offset();
2025
2026 // A linker script may have created some output section data objects.
2027 // They are useless now.
2028 for (Output_section_data_list::const_iterator p =
2029 this->script_output_section_data_list_.begin();
2030 p != this->script_output_section_data_list_.end();
2031 ++p)
2032 delete *p;
2033 this->script_output_section_data_list_.clear();
2034 }
2035
2036 // Prepare for relaxation.
2037
2038 void
2039 Layout::prepare_for_relaxation()
2040 {
2041 // Create an relaxation debug check if in debugging mode.
2042 if (is_debugging_enabled(DEBUG_RELAXATION))
2043 this->relaxation_debug_check_ = new Relaxation_debug_check();
2044
2045 // Save segment states.
2046 this->segment_states_ = new Segment_states();
2047 this->save_segments(this->segment_states_);
2048
2049 for(Section_list::const_iterator p = this->section_list_.begin();
2050 p != this->section_list_.end();
2051 ++p)
2052 (*p)->save_states();
2053
2054 if (is_debugging_enabled(DEBUG_RELAXATION))
2055 this->relaxation_debug_check_->check_output_data_for_reset_values(
2056 this->section_list_, this->special_output_list_);
2057
2058 // Also enable recording of output section data from scripts.
2059 this->record_output_section_data_from_script_ = true;
2060 }
2061
2062 // Relaxation loop body: If target has no relaxation, this runs only once
2063 // Otherwise, the target relaxation hook is called at the end of
2064 // each iteration. If the hook returns true, it means re-layout of
2065 // section is required.
2066 //
2067 // The number of segments created by a linking script without a PHDRS
2068 // clause may be affected by section sizes and alignments. There is
2069 // a remote chance that relaxation causes different number of PT_LOAD
2070 // segments are created and sections are attached to different segments.
2071 // Therefore, we always throw away all segments created during section
2072 // layout. In order to be able to restart the section layout, we keep
2073 // a copy of the segment list right before the relaxation loop and use
2074 // that to restore the segments.
2075 //
2076 // PASS is the current relaxation pass number.
2077 // SYMTAB is a symbol table.
2078 // PLOAD_SEG is the address of a pointer for the load segment.
2079 // PHDR_SEG is a pointer to the PHDR segment.
2080 // SEGMENT_HEADERS points to the output segment header.
2081 // FILE_HEADER points to the output file header.
2082 // PSHNDX is the address to store the output section index.
2083
2084 off_t inline
2085 Layout::relaxation_loop_body(
2086 int pass,
2087 Target* target,
2088 Symbol_table* symtab,
2089 Output_segment** pload_seg,
2090 Output_segment* phdr_seg,
2091 Output_segment_headers* segment_headers,
2092 Output_file_header* file_header,
2093 unsigned int* pshndx)
2094 {
2095 // If this is not the first iteration, we need to clean up after
2096 // relaxation so that we can lay out the sections again.
2097 if (pass != 0)
2098 this->clean_up_after_relaxation();
2099
2100 // If there is a SECTIONS clause, put all the input sections into
2101 // the required order.
2102 Output_segment* load_seg;
2103 if (this->script_options_->saw_sections_clause())
2104 load_seg = this->set_section_addresses_from_script(symtab);
2105 else if (parameters->options().relocatable())
2106 load_seg = NULL;
2107 else
2108 load_seg = this->find_first_load_seg();
2109
2110 if (parameters->options().oformat_enum()
2111 != General_options::OBJECT_FORMAT_ELF)
2112 load_seg = NULL;
2113
2114 // If the user set the address of the text segment, that may not be
2115 // compatible with putting the segment headers and file headers into
2116 // that segment.
2117 if (parameters->options().user_set_Ttext()
2118 && parameters->options().Ttext() % target->common_pagesize() != 0)
2119 {
2120 load_seg = NULL;
2121 phdr_seg = NULL;
2122 }
2123
2124 gold_assert(phdr_seg == NULL
2125 || load_seg != NULL
2126 || this->script_options_->saw_sections_clause());
2127
2128 // If the address of the load segment we found has been set by
2129 // --section-start rather than by a script, then adjust the VMA and
2130 // LMA downward if possible to include the file and section headers.
2131 uint64_t header_gap = 0;
2132 if (load_seg != NULL
2133 && load_seg->are_addresses_set()
2134 && !this->script_options_->saw_sections_clause()
2135 && !parameters->options().relocatable())
2136 {
2137 file_header->finalize_data_size();
2138 segment_headers->finalize_data_size();
2139 size_t sizeof_headers = (file_header->data_size()
2140 + segment_headers->data_size());
2141 const uint64_t abi_pagesize = target->abi_pagesize();
2142 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2143 hdr_paddr &= ~(abi_pagesize - 1);
2144 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2145 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2146 load_seg = NULL;
2147 else
2148 {
2149 load_seg->set_addresses(load_seg->vaddr() - subtract,
2150 load_seg->paddr() - subtract);
2151 header_gap = subtract - sizeof_headers;
2152 }
2153 }
2154
2155 // Lay out the segment headers.
2156 if (!parameters->options().relocatable())
2157 {
2158 gold_assert(segment_headers != NULL);
2159 if (header_gap != 0 && load_seg != NULL)
2160 {
2161 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2162 load_seg->add_initial_output_data(z);
2163 }
2164 if (load_seg != NULL)
2165 load_seg->add_initial_output_data(segment_headers);
2166 if (phdr_seg != NULL)
2167 phdr_seg->add_initial_output_data(segment_headers);
2168 }
2169
2170 // Lay out the file header.
2171 if (load_seg != NULL)
2172 load_seg->add_initial_output_data(file_header);
2173
2174 if (this->script_options_->saw_phdrs_clause()
2175 && !parameters->options().relocatable())
2176 {
2177 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2178 // clause in a linker script.
2179 Script_sections* ss = this->script_options_->script_sections();
2180 ss->put_headers_in_phdrs(file_header, segment_headers);
2181 }
2182
2183 // We set the output section indexes in set_segment_offsets and
2184 // set_section_indexes.
2185 *pshndx = 1;
2186
2187 // Set the file offsets of all the segments, and all the sections
2188 // they contain.
2189 off_t off;
2190 if (!parameters->options().relocatable())
2191 off = this->set_segment_offsets(target, load_seg, pshndx);
2192 else
2193 off = this->set_relocatable_section_offsets(file_header, pshndx);
2194
2195 // Verify that the dummy relaxation does not change anything.
2196 if (is_debugging_enabled(DEBUG_RELAXATION))
2197 {
2198 if (pass == 0)
2199 this->relaxation_debug_check_->read_sections(this->section_list_);
2200 else
2201 this->relaxation_debug_check_->verify_sections(this->section_list_);
2202 }
2203
2204 *pload_seg = load_seg;
2205 return off;
2206 }
2207
2208 // Search the list of patterns and find the postion of the given section
2209 // name in the output section. If the section name matches a glob
2210 // pattern and a non-glob name, then the non-glob position takes
2211 // precedence. Return 0 if no match is found.
2212
2213 unsigned int
2214 Layout::find_section_order_index(const std::string& section_name)
2215 {
2216 Unordered_map<std::string, unsigned int>::iterator map_it;
2217 map_it = this->input_section_position_.find(section_name);
2218 if (map_it != this->input_section_position_.end())
2219 return map_it->second;
2220
2221 // Absolute match failed. Linear search the glob patterns.
2222 std::vector<std::string>::iterator it;
2223 for (it = this->input_section_glob_.begin();
2224 it != this->input_section_glob_.end();
2225 ++it)
2226 {
2227 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2228 {
2229 map_it = this->input_section_position_.find(*it);
2230 gold_assert(map_it != this->input_section_position_.end());
2231 return map_it->second;
2232 }
2233 }
2234 return 0;
2235 }
2236
2237 // Read the sequence of input sections from the file specified with
2238 // option --section-ordering-file.
2239
2240 void
2241 Layout::read_layout_from_file()
2242 {
2243 const char* filename = parameters->options().section_ordering_file();
2244 std::ifstream in;
2245 std::string line;
2246
2247 in.open(filename);
2248 if (!in)
2249 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2250 filename, strerror(errno));
2251
2252 std::getline(in, line); // this chops off the trailing \n, if any
2253 unsigned int position = 1;
2254 this->set_section_ordering_specified();
2255
2256 while (in)
2257 {
2258 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2259 line.resize(line.length() - 1);
2260 // Ignore comments, beginning with '#'
2261 if (line[0] == '#')
2262 {
2263 std::getline(in, line);
2264 continue;
2265 }
2266 this->input_section_position_[line] = position;
2267 // Store all glob patterns in a vector.
2268 if (is_wildcard_string(line.c_str()))
2269 this->input_section_glob_.push_back(line);
2270 position++;
2271 std::getline(in, line);
2272 }
2273 }
2274
2275 // Finalize the layout. When this is called, we have created all the
2276 // output sections and all the output segments which are based on
2277 // input sections. We have several things to do, and we have to do
2278 // them in the right order, so that we get the right results correctly
2279 // and efficiently.
2280
2281 // 1) Finalize the list of output segments and create the segment
2282 // table header.
2283
2284 // 2) Finalize the dynamic symbol table and associated sections.
2285
2286 // 3) Determine the final file offset of all the output segments.
2287
2288 // 4) Determine the final file offset of all the SHF_ALLOC output
2289 // sections.
2290
2291 // 5) Create the symbol table sections and the section name table
2292 // section.
2293
2294 // 6) Finalize the symbol table: set symbol values to their final
2295 // value and make a final determination of which symbols are going
2296 // into the output symbol table.
2297
2298 // 7) Create the section table header.
2299
2300 // 8) Determine the final file offset of all the output sections which
2301 // are not SHF_ALLOC, including the section table header.
2302
2303 // 9) Finalize the ELF file header.
2304
2305 // This function returns the size of the output file.
2306
2307 off_t
2308 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2309 Target* target, const Task* task)
2310 {
2311 target->finalize_sections(this, input_objects, symtab);
2312
2313 this->count_local_symbols(task, input_objects);
2314
2315 this->link_stabs_sections();
2316
2317 Output_segment* phdr_seg = NULL;
2318 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2319 {
2320 // There was a dynamic object in the link. We need to create
2321 // some information for the dynamic linker.
2322
2323 // Create the PT_PHDR segment which will hold the program
2324 // headers.
2325 if (!this->script_options_->saw_phdrs_clause())
2326 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2327
2328 // Create the dynamic symbol table, including the hash table.
2329 Output_section* dynstr;
2330 std::vector<Symbol*> dynamic_symbols;
2331 unsigned int local_dynamic_count;
2332 Versions versions(*this->script_options()->version_script_info(),
2333 &this->dynpool_);
2334 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2335 &local_dynamic_count, &dynamic_symbols,
2336 &versions);
2337
2338 // Create the .interp section to hold the name of the
2339 // interpreter, and put it in a PT_INTERP segment. Don't do it
2340 // if we saw a .interp section in an input file.
2341 if ((!parameters->options().shared()
2342 || parameters->options().dynamic_linker() != NULL)
2343 && this->interp_segment_ == NULL)
2344 this->create_interp(target);
2345
2346 // Finish the .dynamic section to hold the dynamic data, and put
2347 // it in a PT_DYNAMIC segment.
2348 this->finish_dynamic_section(input_objects, symtab);
2349
2350 // We should have added everything we need to the dynamic string
2351 // table.
2352 this->dynpool_.set_string_offsets();
2353
2354 // Create the version sections. We can't do this until the
2355 // dynamic string table is complete.
2356 this->create_version_sections(&versions, symtab, local_dynamic_count,
2357 dynamic_symbols, dynstr);
2358
2359 // Set the size of the _DYNAMIC symbol. We can't do this until
2360 // after we call create_version_sections.
2361 this->set_dynamic_symbol_size(symtab);
2362 }
2363
2364 // Create segment headers.
2365 Output_segment_headers* segment_headers =
2366 (parameters->options().relocatable()
2367 ? NULL
2368 : new Output_segment_headers(this->segment_list_));
2369
2370 // Lay out the file header.
2371 Output_file_header* file_header = new Output_file_header(target, symtab,
2372 segment_headers);
2373
2374 this->special_output_list_.push_back(file_header);
2375 if (segment_headers != NULL)
2376 this->special_output_list_.push_back(segment_headers);
2377
2378 // Find approriate places for orphan output sections if we are using
2379 // a linker script.
2380 if (this->script_options_->saw_sections_clause())
2381 this->place_orphan_sections_in_script();
2382
2383 Output_segment* load_seg;
2384 off_t off;
2385 unsigned int shndx;
2386 int pass = 0;
2387
2388 // Take a snapshot of the section layout as needed.
2389 if (target->may_relax())
2390 this->prepare_for_relaxation();
2391
2392 // Run the relaxation loop to lay out sections.
2393 do
2394 {
2395 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2396 phdr_seg, segment_headers, file_header,
2397 &shndx);
2398 pass++;
2399 }
2400 while (target->may_relax()
2401 && target->relax(pass, input_objects, symtab, this, task));
2402
2403 // Set the file offsets of all the non-data sections we've seen so
2404 // far which don't have to wait for the input sections. We need
2405 // this in order to finalize local symbols in non-allocated
2406 // sections.
2407 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2408
2409 // Set the section indexes of all unallocated sections seen so far,
2410 // in case any of them are somehow referenced by a symbol.
2411 shndx = this->set_section_indexes(shndx);
2412
2413 // Create the symbol table sections.
2414 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2415 if (!parameters->doing_static_link())
2416 this->assign_local_dynsym_offsets(input_objects);
2417
2418 // Process any symbol assignments from a linker script. This must
2419 // be called after the symbol table has been finalized.
2420 this->script_options_->finalize_symbols(symtab, this);
2421
2422 // Create the incremental inputs sections.
2423 if (this->incremental_inputs_)
2424 {
2425 this->incremental_inputs_->finalize();
2426 this->create_incremental_info_sections(symtab);
2427 }
2428
2429 // Create the .shstrtab section.
2430 Output_section* shstrtab_section = this->create_shstrtab();
2431
2432 // Set the file offsets of the rest of the non-data sections which
2433 // don't have to wait for the input sections.
2434 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2435
2436 // Now that all sections have been created, set the section indexes
2437 // for any sections which haven't been done yet.
2438 shndx = this->set_section_indexes(shndx);
2439
2440 // Create the section table header.
2441 this->create_shdrs(shstrtab_section, &off);
2442
2443 // If there are no sections which require postprocessing, we can
2444 // handle the section names now, and avoid a resize later.
2445 if (!this->any_postprocessing_sections_)
2446 {
2447 off = this->set_section_offsets(off,
2448 POSTPROCESSING_SECTIONS_PASS);
2449 off =
2450 this->set_section_offsets(off,
2451 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2452 }
2453
2454 file_header->set_section_info(this->section_headers_, shstrtab_section);
2455
2456 // Now we know exactly where everything goes in the output file
2457 // (except for non-allocated sections which require postprocessing).
2458 Output_data::layout_complete();
2459
2460 this->output_file_size_ = off;
2461
2462 return off;
2463 }
2464
2465 // Create a note header following the format defined in the ELF ABI.
2466 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2467 // of the section to create, DESCSZ is the size of the descriptor.
2468 // ALLOCATE is true if the section should be allocated in memory.
2469 // This returns the new note section. It sets *TRAILING_PADDING to
2470 // the number of trailing zero bytes required.
2471
2472 Output_section*
2473 Layout::create_note(const char* name, int note_type,
2474 const char* section_name, size_t descsz,
2475 bool allocate, size_t* trailing_padding)
2476 {
2477 // Authorities all agree that the values in a .note field should
2478 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2479 // they differ on what the alignment is for 64-bit binaries.
2480 // The GABI says unambiguously they take 8-byte alignment:
2481 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2482 // Other documentation says alignment should always be 4 bytes:
2483 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2484 // GNU ld and GNU readelf both support the latter (at least as of
2485 // version 2.16.91), and glibc always generates the latter for
2486 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2487 // here.
2488 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2489 const int size = parameters->target().get_size();
2490 #else
2491 const int size = 32;
2492 #endif
2493
2494 // The contents of the .note section.
2495 size_t namesz = strlen(name) + 1;
2496 size_t aligned_namesz = align_address(namesz, size / 8);
2497 size_t aligned_descsz = align_address(descsz, size / 8);
2498
2499 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2500
2501 unsigned char* buffer = new unsigned char[notehdrsz];
2502 memset(buffer, 0, notehdrsz);
2503
2504 bool is_big_endian = parameters->target().is_big_endian();
2505
2506 if (size == 32)
2507 {
2508 if (!is_big_endian)
2509 {
2510 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2511 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2512 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2513 }
2514 else
2515 {
2516 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2517 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2518 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2519 }
2520 }
2521 else if (size == 64)
2522 {
2523 if (!is_big_endian)
2524 {
2525 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2526 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2527 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2528 }
2529 else
2530 {
2531 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2532 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2533 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2534 }
2535 }
2536 else
2537 gold_unreachable();
2538
2539 memcpy(buffer + 3 * (size / 8), name, namesz);
2540
2541 elfcpp::Elf_Xword flags = 0;
2542 Output_section_order order = ORDER_INVALID;
2543 if (allocate)
2544 {
2545 flags = elfcpp::SHF_ALLOC;
2546 order = ORDER_RO_NOTE;
2547 }
2548 Output_section* os = this->choose_output_section(NULL, section_name,
2549 elfcpp::SHT_NOTE,
2550 flags, false, order, false);
2551 if (os == NULL)
2552 return NULL;
2553
2554 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2555 size / 8,
2556 "** note header");
2557 os->add_output_section_data(posd);
2558
2559 *trailing_padding = aligned_descsz - descsz;
2560
2561 return os;
2562 }
2563
2564 // For an executable or shared library, create a note to record the
2565 // version of gold used to create the binary.
2566
2567 void
2568 Layout::create_gold_note()
2569 {
2570 if (parameters->options().relocatable()
2571 || parameters->incremental_update())
2572 return;
2573
2574 std::string desc = std::string("gold ") + gold::get_version_string();
2575
2576 size_t trailing_padding;
2577 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2578 ".note.gnu.gold-version", desc.size(),
2579 false, &trailing_padding);
2580 if (os == NULL)
2581 return;
2582
2583 Output_section_data* posd = new Output_data_const(desc, 4);
2584 os->add_output_section_data(posd);
2585
2586 if (trailing_padding > 0)
2587 {
2588 posd = new Output_data_zero_fill(trailing_padding, 0);
2589 os->add_output_section_data(posd);
2590 }
2591 }
2592
2593 // Record whether the stack should be executable. This can be set
2594 // from the command line using the -z execstack or -z noexecstack
2595 // options. Otherwise, if any input file has a .note.GNU-stack
2596 // section with the SHF_EXECINSTR flag set, the stack should be
2597 // executable. Otherwise, if at least one input file a
2598 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2599 // section, we use the target default for whether the stack should be
2600 // executable. Otherwise, we don't generate a stack note. When
2601 // generating a object file, we create a .note.GNU-stack section with
2602 // the appropriate marking. When generating an executable or shared
2603 // library, we create a PT_GNU_STACK segment.
2604
2605 void
2606 Layout::create_executable_stack_info()
2607 {
2608 bool is_stack_executable;
2609 if (parameters->options().is_execstack_set())
2610 is_stack_executable = parameters->options().is_stack_executable();
2611 else if (!this->input_with_gnu_stack_note_)
2612 return;
2613 else
2614 {
2615 if (this->input_requires_executable_stack_)
2616 is_stack_executable = true;
2617 else if (this->input_without_gnu_stack_note_)
2618 is_stack_executable =
2619 parameters->target().is_default_stack_executable();
2620 else
2621 is_stack_executable = false;
2622 }
2623
2624 if (parameters->options().relocatable())
2625 {
2626 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2627 elfcpp::Elf_Xword flags = 0;
2628 if (is_stack_executable)
2629 flags |= elfcpp::SHF_EXECINSTR;
2630 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2631 ORDER_INVALID, false);
2632 }
2633 else
2634 {
2635 if (this->script_options_->saw_phdrs_clause())
2636 return;
2637 int flags = elfcpp::PF_R | elfcpp::PF_W;
2638 if (is_stack_executable)
2639 flags |= elfcpp::PF_X;
2640 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2641 }
2642 }
2643
2644 // If --build-id was used, set up the build ID note.
2645
2646 void
2647 Layout::create_build_id()
2648 {
2649 if (!parameters->options().user_set_build_id())
2650 return;
2651
2652 const char* style = parameters->options().build_id();
2653 if (strcmp(style, "none") == 0)
2654 return;
2655
2656 // Set DESCSZ to the size of the note descriptor. When possible,
2657 // set DESC to the note descriptor contents.
2658 size_t descsz;
2659 std::string desc;
2660 if (strcmp(style, "md5") == 0)
2661 descsz = 128 / 8;
2662 else if (strcmp(style, "sha1") == 0)
2663 descsz = 160 / 8;
2664 else if (strcmp(style, "uuid") == 0)
2665 {
2666 const size_t uuidsz = 128 / 8;
2667
2668 char buffer[uuidsz];
2669 memset(buffer, 0, uuidsz);
2670
2671 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2672 if (descriptor < 0)
2673 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2674 strerror(errno));
2675 else
2676 {
2677 ssize_t got = ::read(descriptor, buffer, uuidsz);
2678 release_descriptor(descriptor, true);
2679 if (got < 0)
2680 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2681 else if (static_cast<size_t>(got) != uuidsz)
2682 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2683 uuidsz, got);
2684 }
2685
2686 desc.assign(buffer, uuidsz);
2687 descsz = uuidsz;
2688 }
2689 else if (strncmp(style, "0x", 2) == 0)
2690 {
2691 hex_init();
2692 const char* p = style + 2;
2693 while (*p != '\0')
2694 {
2695 if (hex_p(p[0]) && hex_p(p[1]))
2696 {
2697 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2698 desc += c;
2699 p += 2;
2700 }
2701 else if (*p == '-' || *p == ':')
2702 ++p;
2703 else
2704 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2705 style);
2706 }
2707 descsz = desc.size();
2708 }
2709 else
2710 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2711
2712 // Create the note.
2713 size_t trailing_padding;
2714 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2715 ".note.gnu.build-id", descsz, true,
2716 &trailing_padding);
2717 if (os == NULL)
2718 return;
2719
2720 if (!desc.empty())
2721 {
2722 // We know the value already, so we fill it in now.
2723 gold_assert(desc.size() == descsz);
2724
2725 Output_section_data* posd = new Output_data_const(desc, 4);
2726 os->add_output_section_data(posd);
2727
2728 if (trailing_padding != 0)
2729 {
2730 posd = new Output_data_zero_fill(trailing_padding, 0);
2731 os->add_output_section_data(posd);
2732 }
2733 }
2734 else
2735 {
2736 // We need to compute a checksum after we have completed the
2737 // link.
2738 gold_assert(trailing_padding == 0);
2739 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2740 os->add_output_section_data(this->build_id_note_);
2741 }
2742 }
2743
2744 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2745 // field of the former should point to the latter. I'm not sure who
2746 // started this, but the GNU linker does it, and some tools depend
2747 // upon it.
2748
2749 void
2750 Layout::link_stabs_sections()
2751 {
2752 if (!this->have_stabstr_section_)
2753 return;
2754
2755 for (Section_list::iterator p = this->section_list_.begin();
2756 p != this->section_list_.end();
2757 ++p)
2758 {
2759 if ((*p)->type() != elfcpp::SHT_STRTAB)
2760 continue;
2761
2762 const char* name = (*p)->name();
2763 if (strncmp(name, ".stab", 5) != 0)
2764 continue;
2765
2766 size_t len = strlen(name);
2767 if (strcmp(name + len - 3, "str") != 0)
2768 continue;
2769
2770 std::string stab_name(name, len - 3);
2771 Output_section* stab_sec;
2772 stab_sec = this->find_output_section(stab_name.c_str());
2773 if (stab_sec != NULL)
2774 stab_sec->set_link_section(*p);
2775 }
2776 }
2777
2778 // Create .gnu_incremental_inputs and related sections needed
2779 // for the next run of incremental linking to check what has changed.
2780
2781 void
2782 Layout::create_incremental_info_sections(Symbol_table* symtab)
2783 {
2784 Incremental_inputs* incr = this->incremental_inputs_;
2785
2786 gold_assert(incr != NULL);
2787
2788 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2789 incr->create_data_sections(symtab);
2790
2791 // Add the .gnu_incremental_inputs section.
2792 const char* incremental_inputs_name =
2793 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2794 Output_section* incremental_inputs_os =
2795 this->make_output_section(incremental_inputs_name,
2796 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2797 ORDER_INVALID, false);
2798 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2799
2800 // Add the .gnu_incremental_symtab section.
2801 const char* incremental_symtab_name =
2802 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2803 Output_section* incremental_symtab_os =
2804 this->make_output_section(incremental_symtab_name,
2805 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2806 ORDER_INVALID, false);
2807 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2808 incremental_symtab_os->set_entsize(4);
2809
2810 // Add the .gnu_incremental_relocs section.
2811 const char* incremental_relocs_name =
2812 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2813 Output_section* incremental_relocs_os =
2814 this->make_output_section(incremental_relocs_name,
2815 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2816 ORDER_INVALID, false);
2817 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2818 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2819
2820 // Add the .gnu_incremental_got_plt section.
2821 const char* incremental_got_plt_name =
2822 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2823 Output_section* incremental_got_plt_os =
2824 this->make_output_section(incremental_got_plt_name,
2825 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2826 ORDER_INVALID, false);
2827 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2828
2829 // Add the .gnu_incremental_strtab section.
2830 const char* incremental_strtab_name =
2831 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2832 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2833 elfcpp::SHT_STRTAB, 0,
2834 ORDER_INVALID, false);
2835 Output_data_strtab* strtab_data =
2836 new Output_data_strtab(incr->get_stringpool());
2837 incremental_strtab_os->add_output_section_data(strtab_data);
2838
2839 incremental_inputs_os->set_after_input_sections();
2840 incremental_symtab_os->set_after_input_sections();
2841 incremental_relocs_os->set_after_input_sections();
2842 incremental_got_plt_os->set_after_input_sections();
2843
2844 incremental_inputs_os->set_link_section(incremental_strtab_os);
2845 incremental_symtab_os->set_link_section(incremental_inputs_os);
2846 incremental_relocs_os->set_link_section(incremental_inputs_os);
2847 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2848 }
2849
2850 // Return whether SEG1 should be before SEG2 in the output file. This
2851 // is based entirely on the segment type and flags. When this is
2852 // called the segment addresses have normally not yet been set.
2853
2854 bool
2855 Layout::segment_precedes(const Output_segment* seg1,
2856 const Output_segment* seg2)
2857 {
2858 elfcpp::Elf_Word type1 = seg1->type();
2859 elfcpp::Elf_Word type2 = seg2->type();
2860
2861 // The single PT_PHDR segment is required to precede any loadable
2862 // segment. We simply make it always first.
2863 if (type1 == elfcpp::PT_PHDR)
2864 {
2865 gold_assert(type2 != elfcpp::PT_PHDR);
2866 return true;
2867 }
2868 if (type2 == elfcpp::PT_PHDR)
2869 return false;
2870
2871 // The single PT_INTERP segment is required to precede any loadable
2872 // segment. We simply make it always second.
2873 if (type1 == elfcpp::PT_INTERP)
2874 {
2875 gold_assert(type2 != elfcpp::PT_INTERP);
2876 return true;
2877 }
2878 if (type2 == elfcpp::PT_INTERP)
2879 return false;
2880
2881 // We then put PT_LOAD segments before any other segments.
2882 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2883 return true;
2884 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2885 return false;
2886
2887 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2888 // segment, because that is where the dynamic linker expects to find
2889 // it (this is just for efficiency; other positions would also work
2890 // correctly).
2891 if (type1 == elfcpp::PT_TLS
2892 && type2 != elfcpp::PT_TLS
2893 && type2 != elfcpp::PT_GNU_RELRO)
2894 return false;
2895 if (type2 == elfcpp::PT_TLS
2896 && type1 != elfcpp::PT_TLS
2897 && type1 != elfcpp::PT_GNU_RELRO)
2898 return true;
2899
2900 // We put the PT_GNU_RELRO segment last, because that is where the
2901 // dynamic linker expects to find it (as with PT_TLS, this is just
2902 // for efficiency).
2903 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2904 return false;
2905 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2906 return true;
2907
2908 const elfcpp::Elf_Word flags1 = seg1->flags();
2909 const elfcpp::Elf_Word flags2 = seg2->flags();
2910
2911 // The order of non-PT_LOAD segments is unimportant. We simply sort
2912 // by the numeric segment type and flags values. There should not
2913 // be more than one segment with the same type and flags.
2914 if (type1 != elfcpp::PT_LOAD)
2915 {
2916 if (type1 != type2)
2917 return type1 < type2;
2918 gold_assert(flags1 != flags2);
2919 return flags1 < flags2;
2920 }
2921
2922 // If the addresses are set already, sort by load address.
2923 if (seg1->are_addresses_set())
2924 {
2925 if (!seg2->are_addresses_set())
2926 return true;
2927
2928 unsigned int section_count1 = seg1->output_section_count();
2929 unsigned int section_count2 = seg2->output_section_count();
2930 if (section_count1 == 0 && section_count2 > 0)
2931 return true;
2932 if (section_count1 > 0 && section_count2 == 0)
2933 return false;
2934
2935 uint64_t paddr1 = (seg1->are_addresses_set()
2936 ? seg1->paddr()
2937 : seg1->first_section_load_address());
2938 uint64_t paddr2 = (seg2->are_addresses_set()
2939 ? seg2->paddr()
2940 : seg2->first_section_load_address());
2941
2942 if (paddr1 != paddr2)
2943 return paddr1 < paddr2;
2944 }
2945 else if (seg2->are_addresses_set())
2946 return false;
2947
2948 // A segment which holds large data comes after a segment which does
2949 // not hold large data.
2950 if (seg1->is_large_data_segment())
2951 {
2952 if (!seg2->is_large_data_segment())
2953 return false;
2954 }
2955 else if (seg2->is_large_data_segment())
2956 return true;
2957
2958 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2959 // segments come before writable segments. Then writable segments
2960 // with data come before writable segments without data. Then
2961 // executable segments come before non-executable segments. Then
2962 // the unlikely case of a non-readable segment comes before the
2963 // normal case of a readable segment. If there are multiple
2964 // segments with the same type and flags, we require that the
2965 // address be set, and we sort by virtual address and then physical
2966 // address.
2967 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2968 return (flags1 & elfcpp::PF_W) == 0;
2969 if ((flags1 & elfcpp::PF_W) != 0
2970 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2971 return seg1->has_any_data_sections();
2972 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2973 return (flags1 & elfcpp::PF_X) != 0;
2974 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2975 return (flags1 & elfcpp::PF_R) == 0;
2976
2977 // We shouldn't get here--we shouldn't create segments which we
2978 // can't distinguish. Unless of course we are using a weird linker
2979 // script.
2980 gold_assert(this->script_options_->saw_phdrs_clause());
2981 return false;
2982 }
2983
2984 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2985
2986 static off_t
2987 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2988 {
2989 uint64_t unsigned_off = off;
2990 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2991 | (addr & (abi_pagesize - 1)));
2992 if (aligned_off < unsigned_off)
2993 aligned_off += abi_pagesize;
2994 return aligned_off;
2995 }
2996
2997 // Set the file offsets of all the segments, and all the sections they
2998 // contain. They have all been created. LOAD_SEG must be be laid out
2999 // first. Return the offset of the data to follow.
3000
3001 off_t
3002 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3003 unsigned int* pshndx)
3004 {
3005 // Sort them into the final order. We use a stable sort so that we
3006 // don't randomize the order of indistinguishable segments created
3007 // by linker scripts.
3008 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3009 Layout::Compare_segments(this));
3010
3011 // Find the PT_LOAD segments, and set their addresses and offsets
3012 // and their section's addresses and offsets.
3013 uint64_t addr;
3014 if (parameters->options().user_set_Ttext())
3015 addr = parameters->options().Ttext();
3016 else if (parameters->options().output_is_position_independent())
3017 addr = 0;
3018 else
3019 addr = target->default_text_segment_address();
3020 off_t off = 0;
3021
3022 // If LOAD_SEG is NULL, then the file header and segment headers
3023 // will not be loadable. But they still need to be at offset 0 in
3024 // the file. Set their offsets now.
3025 if (load_seg == NULL)
3026 {
3027 for (Data_list::iterator p = this->special_output_list_.begin();
3028 p != this->special_output_list_.end();
3029 ++p)
3030 {
3031 off = align_address(off, (*p)->addralign());
3032 (*p)->set_address_and_file_offset(0, off);
3033 off += (*p)->data_size();
3034 }
3035 }
3036
3037 unsigned int increase_relro = this->increase_relro_;
3038 if (this->script_options_->saw_sections_clause())
3039 increase_relro = 0;
3040
3041 const bool check_sections = parameters->options().check_sections();
3042 Output_segment* last_load_segment = NULL;
3043
3044 for (Segment_list::iterator p = this->segment_list_.begin();
3045 p != this->segment_list_.end();
3046 ++p)
3047 {
3048 if ((*p)->type() == elfcpp::PT_LOAD)
3049 {
3050 if (load_seg != NULL && load_seg != *p)
3051 gold_unreachable();
3052 load_seg = NULL;
3053
3054 bool are_addresses_set = (*p)->are_addresses_set();
3055 if (are_addresses_set)
3056 {
3057 // When it comes to setting file offsets, we care about
3058 // the physical address.
3059 addr = (*p)->paddr();
3060 }
3061 else if (parameters->options().user_set_Ttext()
3062 && ((*p)->flags() & elfcpp::PF_W) == 0)
3063 {
3064 are_addresses_set = true;
3065 }
3066 else if (parameters->options().user_set_Tdata()
3067 && ((*p)->flags() & elfcpp::PF_W) != 0
3068 && (!parameters->options().user_set_Tbss()
3069 || (*p)->has_any_data_sections()))
3070 {
3071 addr = parameters->options().Tdata();
3072 are_addresses_set = true;
3073 }
3074 else if (parameters->options().user_set_Tbss()
3075 && ((*p)->flags() & elfcpp::PF_W) != 0
3076 && !(*p)->has_any_data_sections())
3077 {
3078 addr = parameters->options().Tbss();
3079 are_addresses_set = true;
3080 }
3081
3082 uint64_t orig_addr = addr;
3083 uint64_t orig_off = off;
3084
3085 uint64_t aligned_addr = 0;
3086 uint64_t abi_pagesize = target->abi_pagesize();
3087 uint64_t common_pagesize = target->common_pagesize();
3088
3089 if (!parameters->options().nmagic()
3090 && !parameters->options().omagic())
3091 (*p)->set_minimum_p_align(common_pagesize);
3092
3093 if (!are_addresses_set)
3094 {
3095 // Skip the address forward one page, maintaining the same
3096 // position within the page. This lets us store both segments
3097 // overlapping on a single page in the file, but the loader will
3098 // put them on different pages in memory. We will revisit this
3099 // decision once we know the size of the segment.
3100
3101 addr = align_address(addr, (*p)->maximum_alignment());
3102 aligned_addr = addr;
3103
3104 if ((addr & (abi_pagesize - 1)) != 0)
3105 addr = addr + abi_pagesize;
3106
3107 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3108 }
3109
3110 if (!parameters->options().nmagic()
3111 && !parameters->options().omagic())
3112 off = align_file_offset(off, addr, abi_pagesize);
3113 else if (load_seg == NULL)
3114 {
3115 // This is -N or -n with a section script which prevents
3116 // us from using a load segment. We need to ensure that
3117 // the file offset is aligned to the alignment of the
3118 // segment. This is because the linker script
3119 // implicitly assumed a zero offset. If we don't align
3120 // here, then the alignment of the sections in the
3121 // linker script may not match the alignment of the
3122 // sections in the set_section_addresses call below,
3123 // causing an error about dot moving backward.
3124 off = align_address(off, (*p)->maximum_alignment());
3125 }
3126
3127 unsigned int shndx_hold = *pshndx;
3128 bool has_relro = false;
3129 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3130 &increase_relro,
3131 &has_relro,
3132 &off, pshndx);
3133
3134 // Now that we know the size of this segment, we may be able
3135 // to save a page in memory, at the cost of wasting some
3136 // file space, by instead aligning to the start of a new
3137 // page. Here we use the real machine page size rather than
3138 // the ABI mandated page size. If the segment has been
3139 // aligned so that the relro data ends at a page boundary,
3140 // we do not try to realign it.
3141
3142 if (!are_addresses_set
3143 && !has_relro
3144 && aligned_addr != addr
3145 && !parameters->incremental())
3146 {
3147 uint64_t first_off = (common_pagesize
3148 - (aligned_addr
3149 & (common_pagesize - 1)));
3150 uint64_t last_off = new_addr & (common_pagesize - 1);
3151 if (first_off > 0
3152 && last_off > 0
3153 && ((aligned_addr & ~ (common_pagesize - 1))
3154 != (new_addr & ~ (common_pagesize - 1)))
3155 && first_off + last_off <= common_pagesize)
3156 {
3157 *pshndx = shndx_hold;
3158 addr = align_address(aligned_addr, common_pagesize);
3159 addr = align_address(addr, (*p)->maximum_alignment());
3160 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3161 off = align_file_offset(off, addr, abi_pagesize);
3162
3163 increase_relro = this->increase_relro_;
3164 if (this->script_options_->saw_sections_clause())
3165 increase_relro = 0;
3166 has_relro = false;
3167
3168 new_addr = (*p)->set_section_addresses(this, true, addr,
3169 &increase_relro,
3170 &has_relro,
3171 &off, pshndx);
3172 }
3173 }
3174
3175 addr = new_addr;
3176
3177 // Implement --check-sections. We know that the segments
3178 // are sorted by LMA.
3179 if (check_sections && last_load_segment != NULL)
3180 {
3181 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3182 if (last_load_segment->paddr() + last_load_segment->memsz()
3183 > (*p)->paddr())
3184 {
3185 unsigned long long lb1 = last_load_segment->paddr();
3186 unsigned long long le1 = lb1 + last_load_segment->memsz();
3187 unsigned long long lb2 = (*p)->paddr();
3188 unsigned long long le2 = lb2 + (*p)->memsz();
3189 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3190 "[0x%llx -> 0x%llx]"),
3191 lb1, le1, lb2, le2);
3192 }
3193 }
3194 last_load_segment = *p;
3195 }
3196 }
3197
3198 // Handle the non-PT_LOAD segments, setting their offsets from their
3199 // section's offsets.
3200 for (Segment_list::iterator p = this->segment_list_.begin();
3201 p != this->segment_list_.end();
3202 ++p)
3203 {
3204 if ((*p)->type() != elfcpp::PT_LOAD)
3205 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3206 ? increase_relro
3207 : 0);
3208 }
3209
3210 // Set the TLS offsets for each section in the PT_TLS segment.
3211 if (this->tls_segment_ != NULL)
3212 this->tls_segment_->set_tls_offsets();
3213
3214 return off;
3215 }
3216
3217 // Set the offsets of all the allocated sections when doing a
3218 // relocatable link. This does the same jobs as set_segment_offsets,
3219 // only for a relocatable link.
3220
3221 off_t
3222 Layout::set_relocatable_section_offsets(Output_data* file_header,
3223 unsigned int* pshndx)
3224 {
3225 off_t off = 0;
3226
3227 file_header->set_address_and_file_offset(0, 0);
3228 off += file_header->data_size();
3229
3230 for (Section_list::iterator p = this->section_list_.begin();
3231 p != this->section_list_.end();
3232 ++p)
3233 {
3234 // We skip unallocated sections here, except that group sections
3235 // have to come first.
3236 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3237 && (*p)->type() != elfcpp::SHT_GROUP)
3238 continue;
3239
3240 off = align_address(off, (*p)->addralign());
3241
3242 // The linker script might have set the address.
3243 if (!(*p)->is_address_valid())
3244 (*p)->set_address(0);
3245 (*p)->set_file_offset(off);
3246 (*p)->finalize_data_size();
3247 off += (*p)->data_size();
3248
3249 (*p)->set_out_shndx(*pshndx);
3250 ++*pshndx;
3251 }
3252
3253 return off;
3254 }
3255
3256 // Set the file offset of all the sections not associated with a
3257 // segment.
3258
3259 off_t
3260 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3261 {
3262 off_t startoff = off;
3263 off_t maxoff = off;
3264
3265 for (Section_list::iterator p = this->unattached_section_list_.begin();
3266 p != this->unattached_section_list_.end();
3267 ++p)
3268 {
3269 // The symtab section is handled in create_symtab_sections.
3270 if (*p == this->symtab_section_)
3271 continue;
3272
3273 // If we've already set the data size, don't set it again.
3274 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3275 continue;
3276
3277 if (pass == BEFORE_INPUT_SECTIONS_PASS
3278 && (*p)->requires_postprocessing())
3279 {
3280 (*p)->create_postprocessing_buffer();
3281 this->any_postprocessing_sections_ = true;
3282 }
3283
3284 if (pass == BEFORE_INPUT_SECTIONS_PASS
3285 && (*p)->after_input_sections())
3286 continue;
3287 else if (pass == POSTPROCESSING_SECTIONS_PASS
3288 && (!(*p)->after_input_sections()
3289 || (*p)->type() == elfcpp::SHT_STRTAB))
3290 continue;
3291 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3292 && (!(*p)->after_input_sections()
3293 || (*p)->type() != elfcpp::SHT_STRTAB))
3294 continue;
3295
3296 if (!parameters->incremental_update())
3297 {
3298 off = align_address(off, (*p)->addralign());
3299 (*p)->set_file_offset(off);
3300 (*p)->finalize_data_size();
3301 }
3302 else
3303 {
3304 // Incremental update: allocate file space from free list.
3305 (*p)->pre_finalize_data_size();
3306 off_t current_size = (*p)->current_data_size();
3307 off = this->allocate(current_size, (*p)->addralign(), startoff);
3308 if (off == -1)
3309 {
3310 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3311 this->free_list_.dump();
3312 gold_assert((*p)->output_section() != NULL);
3313 gold_fallback(_("out of patch space for section %s; "
3314 "relink with --incremental-full"),
3315 (*p)->output_section()->name());
3316 }
3317 (*p)->set_file_offset(off);
3318 (*p)->finalize_data_size();
3319 if ((*p)->data_size() > current_size)
3320 {
3321 gold_assert((*p)->output_section() != NULL);
3322 gold_fallback(_("%s: section changed size; "
3323 "relink with --incremental-full"),
3324 (*p)->output_section()->name());
3325 }
3326 gold_debug(DEBUG_INCREMENTAL,
3327 "set_section_offsets: %08lx %08lx %s",
3328 static_cast<long>(off),
3329 static_cast<long>((*p)->data_size()),
3330 ((*p)->output_section() != NULL
3331 ? (*p)->output_section()->name() : "(special)"));
3332 }
3333
3334 off += (*p)->data_size();
3335 if (off > maxoff)
3336 maxoff = off;
3337
3338 // At this point the name must be set.
3339 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3340 this->namepool_.add((*p)->name(), false, NULL);
3341 }
3342 return maxoff;
3343 }
3344
3345 // Set the section indexes of all the sections not associated with a
3346 // segment.
3347
3348 unsigned int
3349 Layout::set_section_indexes(unsigned int shndx)
3350 {
3351 for (Section_list::iterator p = this->unattached_section_list_.begin();
3352 p != this->unattached_section_list_.end();
3353 ++p)
3354 {
3355 if (!(*p)->has_out_shndx())
3356 {
3357 (*p)->set_out_shndx(shndx);
3358 ++shndx;
3359 }
3360 }
3361 return shndx;
3362 }
3363
3364 // Set the section addresses according to the linker script. This is
3365 // only called when we see a SECTIONS clause. This returns the
3366 // program segment which should hold the file header and segment
3367 // headers, if any. It will return NULL if they should not be in a
3368 // segment.
3369
3370 Output_segment*
3371 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3372 {
3373 Script_sections* ss = this->script_options_->script_sections();
3374 gold_assert(ss->saw_sections_clause());
3375 return this->script_options_->set_section_addresses(symtab, this);
3376 }
3377
3378 // Place the orphan sections in the linker script.
3379
3380 void
3381 Layout::place_orphan_sections_in_script()
3382 {
3383 Script_sections* ss = this->script_options_->script_sections();
3384 gold_assert(ss->saw_sections_clause());
3385
3386 // Place each orphaned output section in the script.
3387 for (Section_list::iterator p = this->section_list_.begin();
3388 p != this->section_list_.end();
3389 ++p)
3390 {
3391 if (!(*p)->found_in_sections_clause())
3392 ss->place_orphan(*p);
3393 }
3394 }
3395
3396 // Count the local symbols in the regular symbol table and the dynamic
3397 // symbol table, and build the respective string pools.
3398
3399 void
3400 Layout::count_local_symbols(const Task* task,
3401 const Input_objects* input_objects)
3402 {
3403 // First, figure out an upper bound on the number of symbols we'll
3404 // be inserting into each pool. This helps us create the pools with
3405 // the right size, to avoid unnecessary hashtable resizing.
3406 unsigned int symbol_count = 0;
3407 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3408 p != input_objects->relobj_end();
3409 ++p)
3410 symbol_count += (*p)->local_symbol_count();
3411
3412 // Go from "upper bound" to "estimate." We overcount for two
3413 // reasons: we double-count symbols that occur in more than one
3414 // object file, and we count symbols that are dropped from the
3415 // output. Add it all together and assume we overcount by 100%.
3416 symbol_count /= 2;
3417
3418 // We assume all symbols will go into both the sympool and dynpool.
3419 this->sympool_.reserve(symbol_count);
3420 this->dynpool_.reserve(symbol_count);
3421
3422 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3423 p != input_objects->relobj_end();
3424 ++p)
3425 {
3426 Task_lock_obj<Object> tlo(task, *p);
3427 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3428 }
3429 }
3430
3431 // Create the symbol table sections. Here we also set the final
3432 // values of the symbols. At this point all the loadable sections are
3433 // fully laid out. SHNUM is the number of sections so far.
3434
3435 void
3436 Layout::create_symtab_sections(const Input_objects* input_objects,
3437 Symbol_table* symtab,
3438 unsigned int shnum,
3439 off_t* poff)
3440 {
3441 int symsize;
3442 unsigned int align;
3443 if (parameters->target().get_size() == 32)
3444 {
3445 symsize = elfcpp::Elf_sizes<32>::sym_size;
3446 align = 4;
3447 }
3448 else if (parameters->target().get_size() == 64)
3449 {
3450 symsize = elfcpp::Elf_sizes<64>::sym_size;
3451 align = 8;
3452 }
3453 else
3454 gold_unreachable();
3455
3456 // Compute file offsets relative to the start of the symtab section.
3457 off_t off = 0;
3458
3459 // Save space for the dummy symbol at the start of the section. We
3460 // never bother to write this out--it will just be left as zero.
3461 off += symsize;
3462 unsigned int local_symbol_index = 1;
3463
3464 // Add STT_SECTION symbols for each Output section which needs one.
3465 for (Section_list::iterator p = this->section_list_.begin();
3466 p != this->section_list_.end();
3467 ++p)
3468 {
3469 if (!(*p)->needs_symtab_index())
3470 (*p)->set_symtab_index(-1U);
3471 else
3472 {
3473 (*p)->set_symtab_index(local_symbol_index);
3474 ++local_symbol_index;
3475 off += symsize;
3476 }
3477 }
3478
3479 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3480 p != input_objects->relobj_end();
3481 ++p)
3482 {
3483 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3484 off, symtab);
3485 off += (index - local_symbol_index) * symsize;
3486 local_symbol_index = index;
3487 }
3488
3489 unsigned int local_symcount = local_symbol_index;
3490 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3491
3492 off_t dynoff;
3493 size_t dyn_global_index;
3494 size_t dyncount;
3495 if (this->dynsym_section_ == NULL)
3496 {
3497 dynoff = 0;
3498 dyn_global_index = 0;
3499 dyncount = 0;
3500 }
3501 else
3502 {
3503 dyn_global_index = this->dynsym_section_->info();
3504 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3505 dynoff = this->dynsym_section_->offset() + locsize;
3506 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3507 gold_assert(static_cast<off_t>(dyncount * symsize)
3508 == this->dynsym_section_->data_size() - locsize);
3509 }
3510
3511 off_t global_off = off;
3512 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3513 &this->sympool_, &local_symcount);
3514
3515 if (!parameters->options().strip_all())
3516 {
3517 this->sympool_.set_string_offsets();
3518
3519 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3520 Output_section* osymtab = this->make_output_section(symtab_name,
3521 elfcpp::SHT_SYMTAB,
3522 0, ORDER_INVALID,
3523 false);
3524 this->symtab_section_ = osymtab;
3525
3526 Output_section_data* pos = new Output_data_fixed_space(off, align,
3527 "** symtab");
3528 osymtab->add_output_section_data(pos);
3529
3530 // We generate a .symtab_shndx section if we have more than
3531 // SHN_LORESERVE sections. Technically it is possible that we
3532 // don't need one, because it is possible that there are no
3533 // symbols in any of sections with indexes larger than
3534 // SHN_LORESERVE. That is probably unusual, though, and it is
3535 // easier to always create one than to compute section indexes
3536 // twice (once here, once when writing out the symbols).
3537 if (shnum >= elfcpp::SHN_LORESERVE)
3538 {
3539 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3540 false, NULL);
3541 Output_section* osymtab_xindex =
3542 this->make_output_section(symtab_xindex_name,
3543 elfcpp::SHT_SYMTAB_SHNDX, 0,
3544 ORDER_INVALID, false);
3545
3546 size_t symcount = off / symsize;
3547 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3548
3549 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3550
3551 osymtab_xindex->set_link_section(osymtab);
3552 osymtab_xindex->set_addralign(4);
3553 osymtab_xindex->set_entsize(4);
3554
3555 osymtab_xindex->set_after_input_sections();
3556
3557 // This tells the driver code to wait until the symbol table
3558 // has written out before writing out the postprocessing
3559 // sections, including the .symtab_shndx section.
3560 this->any_postprocessing_sections_ = true;
3561 }
3562
3563 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3564 Output_section* ostrtab = this->make_output_section(strtab_name,
3565 elfcpp::SHT_STRTAB,
3566 0, ORDER_INVALID,
3567 false);
3568
3569 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3570 ostrtab->add_output_section_data(pstr);
3571
3572 off_t symtab_off;
3573 if (!parameters->incremental_update())
3574 symtab_off = align_address(*poff, align);
3575 else
3576 {
3577 symtab_off = this->allocate(off, align, *poff);
3578 if (off == -1)
3579 gold_fallback(_("out of patch space for symbol table; "
3580 "relink with --incremental-full"));
3581 gold_debug(DEBUG_INCREMENTAL,
3582 "create_symtab_sections: %08lx %08lx .symtab",
3583 static_cast<long>(symtab_off),
3584 static_cast<long>(off));
3585 }
3586
3587 symtab->set_file_offset(symtab_off + global_off);
3588 osymtab->set_file_offset(symtab_off);
3589 osymtab->finalize_data_size();
3590 osymtab->set_link_section(ostrtab);
3591 osymtab->set_info(local_symcount);
3592 osymtab->set_entsize(symsize);
3593
3594 if (symtab_off + off > *poff)
3595 *poff = symtab_off + off;
3596 }
3597 }
3598
3599 // Create the .shstrtab section, which holds the names of the
3600 // sections. At the time this is called, we have created all the
3601 // output sections except .shstrtab itself.
3602
3603 Output_section*
3604 Layout::create_shstrtab()
3605 {
3606 // FIXME: We don't need to create a .shstrtab section if we are
3607 // stripping everything.
3608
3609 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3610
3611 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3612 ORDER_INVALID, false);
3613
3614 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3615 {
3616 // We can't write out this section until we've set all the
3617 // section names, and we don't set the names of compressed
3618 // output sections until relocations are complete. FIXME: With
3619 // the current names we use, this is unnecessary.
3620 os->set_after_input_sections();
3621 }
3622
3623 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3624 os->add_output_section_data(posd);
3625
3626 return os;
3627 }
3628
3629 // Create the section headers. SIZE is 32 or 64. OFF is the file
3630 // offset.
3631
3632 void
3633 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3634 {
3635 Output_section_headers* oshdrs;
3636 oshdrs = new Output_section_headers(this,
3637 &this->segment_list_,
3638 &this->section_list_,
3639 &this->unattached_section_list_,
3640 &this->namepool_,
3641 shstrtab_section);
3642 off_t off;
3643 if (!parameters->incremental_update())
3644 off = align_address(*poff, oshdrs->addralign());
3645 else
3646 {
3647 oshdrs->pre_finalize_data_size();
3648 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3649 if (off == -1)
3650 gold_fallback(_("out of patch space for section header table; "
3651 "relink with --incremental-full"));
3652 gold_debug(DEBUG_INCREMENTAL,
3653 "create_shdrs: %08lx %08lx (section header table)",
3654 static_cast<long>(off),
3655 static_cast<long>(off + oshdrs->data_size()));
3656 }
3657 oshdrs->set_address_and_file_offset(0, off);
3658 off += oshdrs->data_size();
3659 if (off > *poff)
3660 *poff = off;
3661 this->section_headers_ = oshdrs;
3662 }
3663
3664 // Count the allocated sections.
3665
3666 size_t
3667 Layout::allocated_output_section_count() const
3668 {
3669 size_t section_count = 0;
3670 for (Segment_list::const_iterator p = this->segment_list_.begin();
3671 p != this->segment_list_.end();
3672 ++p)
3673 section_count += (*p)->output_section_count();
3674 return section_count;
3675 }
3676
3677 // Create the dynamic symbol table.
3678
3679 void
3680 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3681 Symbol_table* symtab,
3682 Output_section** pdynstr,
3683 unsigned int* plocal_dynamic_count,
3684 std::vector<Symbol*>* pdynamic_symbols,
3685 Versions* pversions)
3686 {
3687 // Count all the symbols in the dynamic symbol table, and set the
3688 // dynamic symbol indexes.
3689
3690 // Skip symbol 0, which is always all zeroes.
3691 unsigned int index = 1;
3692
3693 // Add STT_SECTION symbols for each Output section which needs one.
3694 for (Section_list::iterator p = this->section_list_.begin();
3695 p != this->section_list_.end();
3696 ++p)
3697 {
3698 if (!(*p)->needs_dynsym_index())
3699 (*p)->set_dynsym_index(-1U);
3700 else
3701 {
3702 (*p)->set_dynsym_index(index);
3703 ++index;
3704 }
3705 }
3706
3707 // Count the local symbols that need to go in the dynamic symbol table,
3708 // and set the dynamic symbol indexes.
3709 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3710 p != input_objects->relobj_end();
3711 ++p)
3712 {
3713 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3714 index = new_index;
3715 }
3716
3717 unsigned int local_symcount = index;
3718 *plocal_dynamic_count = local_symcount;
3719
3720 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3721 &this->dynpool_, pversions);
3722
3723 int symsize;
3724 unsigned int align;
3725 const int size = parameters->target().get_size();
3726 if (size == 32)
3727 {
3728 symsize = elfcpp::Elf_sizes<32>::sym_size;
3729 align = 4;
3730 }
3731 else if (size == 64)
3732 {
3733 symsize = elfcpp::Elf_sizes<64>::sym_size;
3734 align = 8;
3735 }
3736 else
3737 gold_unreachable();
3738
3739 // Create the dynamic symbol table section.
3740
3741 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3742 elfcpp::SHT_DYNSYM,
3743 elfcpp::SHF_ALLOC,
3744 false,
3745 ORDER_DYNAMIC_LINKER,
3746 false);
3747
3748 // Check for NULL as a linker script may discard .dynsym.
3749 if (dynsym != NULL)
3750 {
3751 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3752 align,
3753 "** dynsym");
3754 dynsym->add_output_section_data(odata);
3755
3756 dynsym->set_info(local_symcount);
3757 dynsym->set_entsize(symsize);
3758 dynsym->set_addralign(align);
3759
3760 this->dynsym_section_ = dynsym;
3761 }
3762
3763 Output_data_dynamic* const odyn = this->dynamic_data_;
3764 if (odyn != NULL)
3765 {
3766 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3767 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3768 }
3769
3770 // If there are more than SHN_LORESERVE allocated sections, we
3771 // create a .dynsym_shndx section. It is possible that we don't
3772 // need one, because it is possible that there are no dynamic
3773 // symbols in any of the sections with indexes larger than
3774 // SHN_LORESERVE. This is probably unusual, though, and at this
3775 // time we don't know the actual section indexes so it is
3776 // inconvenient to check.
3777 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3778 {
3779 Output_section* dynsym_xindex =
3780 this->choose_output_section(NULL, ".dynsym_shndx",
3781 elfcpp::SHT_SYMTAB_SHNDX,
3782 elfcpp::SHF_ALLOC,
3783 false, ORDER_DYNAMIC_LINKER, false);
3784
3785 if (dynsym_xindex != NULL)
3786 {
3787 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3788
3789 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3790
3791 dynsym_xindex->set_link_section(dynsym);
3792 dynsym_xindex->set_addralign(4);
3793 dynsym_xindex->set_entsize(4);
3794
3795 dynsym_xindex->set_after_input_sections();
3796
3797 // This tells the driver code to wait until the symbol table
3798 // has written out before writing out the postprocessing
3799 // sections, including the .dynsym_shndx section.
3800 this->any_postprocessing_sections_ = true;
3801 }
3802 }
3803
3804 // Create the dynamic string table section.
3805
3806 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3807 elfcpp::SHT_STRTAB,
3808 elfcpp::SHF_ALLOC,
3809 false,
3810 ORDER_DYNAMIC_LINKER,
3811 false);
3812
3813 if (dynstr != NULL)
3814 {
3815 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3816 dynstr->add_output_section_data(strdata);
3817
3818 if (dynsym != NULL)
3819 dynsym->set_link_section(dynstr);
3820 if (this->dynamic_section_ != NULL)
3821 this->dynamic_section_->set_link_section(dynstr);
3822
3823 if (odyn != NULL)
3824 {
3825 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3826 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3827 }
3828
3829 *pdynstr = dynstr;
3830 }
3831
3832 // Create the hash tables.
3833
3834 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3835 || strcmp(parameters->options().hash_style(), "both") == 0)
3836 {
3837 unsigned char* phash;
3838 unsigned int hashlen;
3839 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3840 &phash, &hashlen);
3841
3842 Output_section* hashsec =
3843 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3844 elfcpp::SHF_ALLOC, false,
3845 ORDER_DYNAMIC_LINKER, false);
3846
3847 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3848 hashlen,
3849 align,
3850 "** hash");
3851 if (hashsec != NULL && hashdata != NULL)
3852 hashsec->add_output_section_data(hashdata);
3853
3854 if (hashsec != NULL)
3855 {
3856 if (dynsym != NULL)
3857 hashsec->set_link_section(dynsym);
3858 hashsec->set_entsize(4);
3859 }
3860
3861 if (odyn != NULL)
3862 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3863 }
3864
3865 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3866 || strcmp(parameters->options().hash_style(), "both") == 0)
3867 {
3868 unsigned char* phash;
3869 unsigned int hashlen;
3870 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3871 &phash, &hashlen);
3872
3873 Output_section* hashsec =
3874 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3875 elfcpp::SHF_ALLOC, false,
3876 ORDER_DYNAMIC_LINKER, false);
3877
3878 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3879 hashlen,
3880 align,
3881 "** hash");
3882 if (hashsec != NULL && hashdata != NULL)
3883 hashsec->add_output_section_data(hashdata);
3884
3885 if (hashsec != NULL)
3886 {
3887 if (dynsym != NULL)
3888 hashsec->set_link_section(dynsym);
3889
3890 // For a 64-bit target, the entries in .gnu.hash do not have
3891 // a uniform size, so we only set the entry size for a
3892 // 32-bit target.
3893 if (parameters->target().get_size() == 32)
3894 hashsec->set_entsize(4);
3895
3896 if (odyn != NULL)
3897 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3898 }
3899 }
3900 }
3901
3902 // Assign offsets to each local portion of the dynamic symbol table.
3903
3904 void
3905 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3906 {
3907 Output_section* dynsym = this->dynsym_section_;
3908 if (dynsym == NULL)
3909 return;
3910
3911 off_t off = dynsym->offset();
3912
3913 // Skip the dummy symbol at the start of the section.
3914 off += dynsym->entsize();
3915
3916 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3917 p != input_objects->relobj_end();
3918 ++p)
3919 {
3920 unsigned int count = (*p)->set_local_dynsym_offset(off);
3921 off += count * dynsym->entsize();
3922 }
3923 }
3924
3925 // Create the version sections.
3926
3927 void
3928 Layout::create_version_sections(const Versions* versions,
3929 const Symbol_table* symtab,
3930 unsigned int local_symcount,
3931 const std::vector<Symbol*>& dynamic_symbols,
3932 const Output_section* dynstr)
3933 {
3934 if (!versions->any_defs() && !versions->any_needs())
3935 return;
3936
3937 switch (parameters->size_and_endianness())
3938 {
3939 #ifdef HAVE_TARGET_32_LITTLE
3940 case Parameters::TARGET_32_LITTLE:
3941 this->sized_create_version_sections<32, false>(versions, symtab,
3942 local_symcount,
3943 dynamic_symbols, dynstr);
3944 break;
3945 #endif
3946 #ifdef HAVE_TARGET_32_BIG
3947 case Parameters::TARGET_32_BIG:
3948 this->sized_create_version_sections<32, true>(versions, symtab,
3949 local_symcount,
3950 dynamic_symbols, dynstr);
3951 break;
3952 #endif
3953 #ifdef HAVE_TARGET_64_LITTLE
3954 case Parameters::TARGET_64_LITTLE:
3955 this->sized_create_version_sections<64, false>(versions, symtab,
3956 local_symcount,
3957 dynamic_symbols, dynstr);
3958 break;
3959 #endif
3960 #ifdef HAVE_TARGET_64_BIG
3961 case Parameters::TARGET_64_BIG:
3962 this->sized_create_version_sections<64, true>(versions, symtab,
3963 local_symcount,
3964 dynamic_symbols, dynstr);
3965 break;
3966 #endif
3967 default:
3968 gold_unreachable();
3969 }
3970 }
3971
3972 // Create the version sections, sized version.
3973
3974 template<int size, bool big_endian>
3975 void
3976 Layout::sized_create_version_sections(
3977 const Versions* versions,
3978 const Symbol_table* symtab,
3979 unsigned int local_symcount,
3980 const std::vector<Symbol*>& dynamic_symbols,
3981 const Output_section* dynstr)
3982 {
3983 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3984 elfcpp::SHT_GNU_versym,
3985 elfcpp::SHF_ALLOC,
3986 false,
3987 ORDER_DYNAMIC_LINKER,
3988 false);
3989
3990 // Check for NULL since a linker script may discard this section.
3991 if (vsec != NULL)
3992 {
3993 unsigned char* vbuf;
3994 unsigned int vsize;
3995 versions->symbol_section_contents<size, big_endian>(symtab,
3996 &this->dynpool_,
3997 local_symcount,
3998 dynamic_symbols,
3999 &vbuf, &vsize);
4000
4001 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4002 "** versions");
4003
4004 vsec->add_output_section_data(vdata);
4005 vsec->set_entsize(2);
4006 vsec->set_link_section(this->dynsym_section_);
4007 }
4008
4009 Output_data_dynamic* const odyn = this->dynamic_data_;
4010 if (odyn != NULL && vsec != NULL)
4011 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4012
4013 if (versions->any_defs())
4014 {
4015 Output_section* vdsec;
4016 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4017 elfcpp::SHT_GNU_verdef,
4018 elfcpp::SHF_ALLOC,
4019 false, ORDER_DYNAMIC_LINKER, false);
4020
4021 if (vdsec != NULL)
4022 {
4023 unsigned char* vdbuf;
4024 unsigned int vdsize;
4025 unsigned int vdentries;
4026 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4027 &vdbuf, &vdsize,
4028 &vdentries);
4029
4030 Output_section_data* vddata =
4031 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4032
4033 vdsec->add_output_section_data(vddata);
4034 vdsec->set_link_section(dynstr);
4035 vdsec->set_info(vdentries);
4036
4037 if (odyn != NULL)
4038 {
4039 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4040 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4041 }
4042 }
4043 }
4044
4045 if (versions->any_needs())
4046 {
4047 Output_section* vnsec;
4048 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4049 elfcpp::SHT_GNU_verneed,
4050 elfcpp::SHF_ALLOC,
4051 false, ORDER_DYNAMIC_LINKER, false);
4052
4053 if (vnsec != NULL)
4054 {
4055 unsigned char* vnbuf;
4056 unsigned int vnsize;
4057 unsigned int vnentries;
4058 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4059 &vnbuf, &vnsize,
4060 &vnentries);
4061
4062 Output_section_data* vndata =
4063 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4064
4065 vnsec->add_output_section_data(vndata);
4066 vnsec->set_link_section(dynstr);
4067 vnsec->set_info(vnentries);
4068
4069 if (odyn != NULL)
4070 {
4071 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4072 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4073 }
4074 }
4075 }
4076 }
4077
4078 // Create the .interp section and PT_INTERP segment.
4079
4080 void
4081 Layout::create_interp(const Target* target)
4082 {
4083 gold_assert(this->interp_segment_ == NULL);
4084
4085 const char* interp = parameters->options().dynamic_linker();
4086 if (interp == NULL)
4087 {
4088 interp = target->dynamic_linker();
4089 gold_assert(interp != NULL);
4090 }
4091
4092 size_t len = strlen(interp) + 1;
4093
4094 Output_section_data* odata = new Output_data_const(interp, len, 1);
4095
4096 Output_section* osec = this->choose_output_section(NULL, ".interp",
4097 elfcpp::SHT_PROGBITS,
4098 elfcpp::SHF_ALLOC,
4099 false, ORDER_INTERP,
4100 false);
4101 if (osec != NULL)
4102 osec->add_output_section_data(odata);
4103 }
4104
4105 // Add dynamic tags for the PLT and the dynamic relocs. This is
4106 // called by the target-specific code. This does nothing if not doing
4107 // a dynamic link.
4108
4109 // USE_REL is true for REL relocs rather than RELA relocs.
4110
4111 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4112
4113 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4114 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4115 // some targets have multiple reloc sections in PLT_REL.
4116
4117 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4118 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4119 // section.
4120
4121 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4122 // executable.
4123
4124 void
4125 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4126 const Output_data* plt_rel,
4127 const Output_data_reloc_generic* dyn_rel,
4128 bool add_debug, bool dynrel_includes_plt)
4129 {
4130 Output_data_dynamic* odyn = this->dynamic_data_;
4131 if (odyn == NULL)
4132 return;
4133
4134 if (plt_got != NULL && plt_got->output_section() != NULL)
4135 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4136
4137 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4138 {
4139 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4140 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4141 odyn->add_constant(elfcpp::DT_PLTREL,
4142 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4143 }
4144
4145 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4146 {
4147 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4148 dyn_rel->output_section());
4149 if (plt_rel != NULL
4150 && plt_rel->output_section() != NULL
4151 && dynrel_includes_plt)
4152 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4153 dyn_rel->output_section(),
4154 plt_rel->output_section());
4155 else
4156 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4157 dyn_rel->output_section());
4158 const int size = parameters->target().get_size();
4159 elfcpp::DT rel_tag;
4160 int rel_size;
4161 if (use_rel)
4162 {
4163 rel_tag = elfcpp::DT_RELENT;
4164 if (size == 32)
4165 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4166 else if (size == 64)
4167 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4168 else
4169 gold_unreachable();
4170 }
4171 else
4172 {
4173 rel_tag = elfcpp::DT_RELAENT;
4174 if (size == 32)
4175 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4176 else if (size == 64)
4177 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4178 else
4179 gold_unreachable();
4180 }
4181 odyn->add_constant(rel_tag, rel_size);
4182
4183 if (parameters->options().combreloc())
4184 {
4185 size_t c = dyn_rel->relative_reloc_count();
4186 if (c > 0)
4187 odyn->add_constant((use_rel
4188 ? elfcpp::DT_RELCOUNT
4189 : elfcpp::DT_RELACOUNT),
4190 c);
4191 }
4192 }
4193
4194 if (add_debug && !parameters->options().shared())
4195 {
4196 // The value of the DT_DEBUG tag is filled in by the dynamic
4197 // linker at run time, and used by the debugger.
4198 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4199 }
4200 }
4201
4202 // Finish the .dynamic section and PT_DYNAMIC segment.
4203
4204 void
4205 Layout::finish_dynamic_section(const Input_objects* input_objects,
4206 const Symbol_table* symtab)
4207 {
4208 if (!this->script_options_->saw_phdrs_clause()
4209 && this->dynamic_section_ != NULL)
4210 {
4211 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4212 (elfcpp::PF_R
4213 | elfcpp::PF_W));
4214 oseg->add_output_section_to_nonload(this->dynamic_section_,
4215 elfcpp::PF_R | elfcpp::PF_W);
4216 }
4217
4218 Output_data_dynamic* const odyn = this->dynamic_data_;
4219 if (odyn == NULL)
4220 return;
4221
4222 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4223 p != input_objects->dynobj_end();
4224 ++p)
4225 {
4226 if (!(*p)->is_needed() && (*p)->as_needed())
4227 {
4228 // This dynamic object was linked with --as-needed, but it
4229 // is not needed.
4230 continue;
4231 }
4232
4233 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4234 }
4235
4236 if (parameters->options().shared())
4237 {
4238 const char* soname = parameters->options().soname();
4239 if (soname != NULL)
4240 odyn->add_string(elfcpp::DT_SONAME, soname);
4241 }
4242
4243 Symbol* sym = symtab->lookup(parameters->options().init());
4244 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4245 odyn->add_symbol(elfcpp::DT_INIT, sym);
4246
4247 sym = symtab->lookup(parameters->options().fini());
4248 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4249 odyn->add_symbol(elfcpp::DT_FINI, sym);
4250
4251 // Look for .init_array, .preinit_array and .fini_array by checking
4252 // section types.
4253 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4254 p != this->section_list_.end();
4255 ++p)
4256 switch((*p)->type())
4257 {
4258 case elfcpp::SHT_FINI_ARRAY:
4259 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4260 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4261 break;
4262 case elfcpp::SHT_INIT_ARRAY:
4263 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4264 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4265 break;
4266 case elfcpp::SHT_PREINIT_ARRAY:
4267 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4268 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4269 break;
4270 default:
4271 break;
4272 }
4273
4274 // Add a DT_RPATH entry if needed.
4275 const General_options::Dir_list& rpath(parameters->options().rpath());
4276 if (!rpath.empty())
4277 {
4278 std::string rpath_val;
4279 for (General_options::Dir_list::const_iterator p = rpath.begin();
4280 p != rpath.end();
4281 ++p)
4282 {
4283 if (rpath_val.empty())
4284 rpath_val = p->name();
4285 else
4286 {
4287 // Eliminate duplicates.
4288 General_options::Dir_list::const_iterator q;
4289 for (q = rpath.begin(); q != p; ++q)
4290 if (q->name() == p->name())
4291 break;
4292 if (q == p)
4293 {
4294 rpath_val += ':';
4295 rpath_val += p->name();
4296 }
4297 }
4298 }
4299
4300 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4301 if (parameters->options().enable_new_dtags())
4302 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4303 }
4304
4305 // Look for text segments that have dynamic relocations.
4306 bool have_textrel = false;
4307 if (!this->script_options_->saw_sections_clause())
4308 {
4309 for (Segment_list::const_iterator p = this->segment_list_.begin();
4310 p != this->segment_list_.end();
4311 ++p)
4312 {
4313 if ((*p)->type() == elfcpp::PT_LOAD
4314 && ((*p)->flags() & elfcpp::PF_W) == 0
4315 && (*p)->has_dynamic_reloc())
4316 {
4317 have_textrel = true;
4318 break;
4319 }
4320 }
4321 }
4322 else
4323 {
4324 // We don't know the section -> segment mapping, so we are
4325 // conservative and just look for readonly sections with
4326 // relocations. If those sections wind up in writable segments,
4327 // then we have created an unnecessary DT_TEXTREL entry.
4328 for (Section_list::const_iterator p = this->section_list_.begin();
4329 p != this->section_list_.end();
4330 ++p)
4331 {
4332 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4333 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4334 && (*p)->has_dynamic_reloc())
4335 {
4336 have_textrel = true;
4337 break;
4338 }
4339 }
4340 }
4341
4342 if (parameters->options().filter() != NULL)
4343 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4344 if (parameters->options().any_auxiliary())
4345 {
4346 for (options::String_set::const_iterator p =
4347 parameters->options().auxiliary_begin();
4348 p != parameters->options().auxiliary_end();
4349 ++p)
4350 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4351 }
4352
4353 // Add a DT_FLAGS entry if necessary.
4354 unsigned int flags = 0;
4355 if (have_textrel)
4356 {
4357 // Add a DT_TEXTREL for compatibility with older loaders.
4358 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4359 flags |= elfcpp::DF_TEXTREL;
4360
4361 if (parameters->options().text())
4362 gold_error(_("read-only segment has dynamic relocations"));
4363 else if (parameters->options().warn_shared_textrel()
4364 && parameters->options().shared())
4365 gold_warning(_("shared library text segment is not shareable"));
4366 }
4367 if (parameters->options().shared() && this->has_static_tls())
4368 flags |= elfcpp::DF_STATIC_TLS;
4369 if (parameters->options().origin())
4370 flags |= elfcpp::DF_ORIGIN;
4371 if (parameters->options().Bsymbolic())
4372 {
4373 flags |= elfcpp::DF_SYMBOLIC;
4374 // Add DT_SYMBOLIC for compatibility with older loaders.
4375 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4376 }
4377 if (parameters->options().now())
4378 flags |= elfcpp::DF_BIND_NOW;
4379 if (flags != 0)
4380 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4381
4382 flags = 0;
4383 if (parameters->options().initfirst())
4384 flags |= elfcpp::DF_1_INITFIRST;
4385 if (parameters->options().interpose())
4386 flags |= elfcpp::DF_1_INTERPOSE;
4387 if (parameters->options().loadfltr())
4388 flags |= elfcpp::DF_1_LOADFLTR;
4389 if (parameters->options().nodefaultlib())
4390 flags |= elfcpp::DF_1_NODEFLIB;
4391 if (parameters->options().nodelete())
4392 flags |= elfcpp::DF_1_NODELETE;
4393 if (parameters->options().nodlopen())
4394 flags |= elfcpp::DF_1_NOOPEN;
4395 if (parameters->options().nodump())
4396 flags |= elfcpp::DF_1_NODUMP;
4397 if (!parameters->options().shared())
4398 flags &= ~(elfcpp::DF_1_INITFIRST
4399 | elfcpp::DF_1_NODELETE
4400 | elfcpp::DF_1_NOOPEN);
4401 if (parameters->options().origin())
4402 flags |= elfcpp::DF_1_ORIGIN;
4403 if (parameters->options().now())
4404 flags |= elfcpp::DF_1_NOW;
4405 if (parameters->options().Bgroup())
4406 flags |= elfcpp::DF_1_GROUP;
4407 if (flags != 0)
4408 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4409 }
4410
4411 // Set the size of the _DYNAMIC symbol table to be the size of the
4412 // dynamic data.
4413
4414 void
4415 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4416 {
4417 Output_data_dynamic* const odyn = this->dynamic_data_;
4418 if (odyn == NULL)
4419 return;
4420 odyn->finalize_data_size();
4421 if (this->dynamic_symbol_ == NULL)
4422 return;
4423 off_t data_size = odyn->data_size();
4424 const int size = parameters->target().get_size();
4425 if (size == 32)
4426 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4427 else if (size == 64)
4428 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4429 else
4430 gold_unreachable();
4431 }
4432
4433 // The mapping of input section name prefixes to output section names.
4434 // In some cases one prefix is itself a prefix of another prefix; in
4435 // such a case the longer prefix must come first. These prefixes are
4436 // based on the GNU linker default ELF linker script.
4437
4438 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4439 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4440 {
4441 MAPPING_INIT(".text.", ".text"),
4442 MAPPING_INIT(".rodata.", ".rodata"),
4443 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4444 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4445 MAPPING_INIT(".data.", ".data"),
4446 MAPPING_INIT(".bss.", ".bss"),
4447 MAPPING_INIT(".tdata.", ".tdata"),
4448 MAPPING_INIT(".tbss.", ".tbss"),
4449 MAPPING_INIT(".init_array.", ".init_array"),
4450 MAPPING_INIT(".fini_array.", ".fini_array"),
4451 MAPPING_INIT(".sdata.", ".sdata"),
4452 MAPPING_INIT(".sbss.", ".sbss"),
4453 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4454 // differently depending on whether it is creating a shared library.
4455 MAPPING_INIT(".sdata2.", ".sdata"),
4456 MAPPING_INIT(".sbss2.", ".sbss"),
4457 MAPPING_INIT(".lrodata.", ".lrodata"),
4458 MAPPING_INIT(".ldata.", ".ldata"),
4459 MAPPING_INIT(".lbss.", ".lbss"),
4460 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4461 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4462 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4463 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4464 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4465 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4466 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4467 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4468 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4469 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4470 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4471 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4472 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4473 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4474 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4475 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4476 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4477 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4478 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4479 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4480 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4481 };
4482 #undef MAPPING_INIT
4483
4484 const int Layout::section_name_mapping_count =
4485 (sizeof(Layout::section_name_mapping)
4486 / sizeof(Layout::section_name_mapping[0]));
4487
4488 // Choose the output section name to use given an input section name.
4489 // Set *PLEN to the length of the name. *PLEN is initialized to the
4490 // length of NAME.
4491
4492 const char*
4493 Layout::output_section_name(const Relobj* relobj, const char* name,
4494 size_t* plen)
4495 {
4496 // gcc 4.3 generates the following sorts of section names when it
4497 // needs a section name specific to a function:
4498 // .text.FN
4499 // .rodata.FN
4500 // .sdata2.FN
4501 // .data.FN
4502 // .data.rel.FN
4503 // .data.rel.local.FN
4504 // .data.rel.ro.FN
4505 // .data.rel.ro.local.FN
4506 // .sdata.FN
4507 // .bss.FN
4508 // .sbss.FN
4509 // .tdata.FN
4510 // .tbss.FN
4511
4512 // The GNU linker maps all of those to the part before the .FN,
4513 // except that .data.rel.local.FN is mapped to .data, and
4514 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4515 // beginning with .data.rel.ro.local are grouped together.
4516
4517 // For an anonymous namespace, the string FN can contain a '.'.
4518
4519 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4520 // GNU linker maps to .rodata.
4521
4522 // The .data.rel.ro sections are used with -z relro. The sections
4523 // are recognized by name. We use the same names that the GNU
4524 // linker does for these sections.
4525
4526 // It is hard to handle this in a principled way, so we don't even
4527 // try. We use a table of mappings. If the input section name is
4528 // not found in the table, we simply use it as the output section
4529 // name.
4530
4531 const Section_name_mapping* psnm = section_name_mapping;
4532 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4533 {
4534 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4535 {
4536 *plen = psnm->tolen;
4537 return psnm->to;
4538 }
4539 }
4540
4541 // As an additional complication, .ctors sections are output in
4542 // either .ctors or .init_array sections, and .dtors sections are
4543 // output in either .dtors or .fini_array sections.
4544 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4545 {
4546 if (parameters->options().ctors_in_init_array())
4547 {
4548 *plen = 11;
4549 return name[1] == 'c' ? ".init_array" : ".fini_array";
4550 }
4551 else
4552 {
4553 *plen = 6;
4554 return name[1] == 'c' ? ".ctors" : ".dtors";
4555 }
4556 }
4557 if (parameters->options().ctors_in_init_array()
4558 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4559 {
4560 // To make .init_array/.fini_array work with gcc we must exclude
4561 // .ctors and .dtors sections from the crtbegin and crtend
4562 // files.
4563 if (relobj == NULL
4564 || (!Layout::match_file_name(relobj, "crtbegin")
4565 && !Layout::match_file_name(relobj, "crtend")))
4566 {
4567 *plen = 11;
4568 return name[1] == 'c' ? ".init_array" : ".fini_array";
4569 }
4570 }
4571
4572 return name;
4573 }
4574
4575 // Return true if RELOBJ is an input file whose base name matches
4576 // FILE_NAME. The base name must have an extension of ".o", and must
4577 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4578 // to match crtbegin.o as well as crtbeginS.o without getting confused
4579 // by other possibilities. Overall matching the file name this way is
4580 // a dreadful hack, but the GNU linker does it in order to better
4581 // support gcc, and we need to be compatible.
4582
4583 bool
4584 Layout::match_file_name(const Relobj* relobj, const char* match)
4585 {
4586 const std::string& file_name(relobj->name());
4587 const char* base_name = lbasename(file_name.c_str());
4588 size_t match_len = strlen(match);
4589 if (strncmp(base_name, match, match_len) != 0)
4590 return false;
4591 size_t base_len = strlen(base_name);
4592 if (base_len != match_len + 2 && base_len != match_len + 3)
4593 return false;
4594 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4595 }
4596
4597 // Check if a comdat group or .gnu.linkonce section with the given
4598 // NAME is selected for the link. If there is already a section,
4599 // *KEPT_SECTION is set to point to the existing section and the
4600 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4601 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4602 // *KEPT_SECTION is set to the internal copy and the function returns
4603 // true.
4604
4605 bool
4606 Layout::find_or_add_kept_section(const std::string& name,
4607 Relobj* object,
4608 unsigned int shndx,
4609 bool is_comdat,
4610 bool is_group_name,
4611 Kept_section** kept_section)
4612 {
4613 // It's normal to see a couple of entries here, for the x86 thunk
4614 // sections. If we see more than a few, we're linking a C++
4615 // program, and we resize to get more space to minimize rehashing.
4616 if (this->signatures_.size() > 4
4617 && !this->resized_signatures_)
4618 {
4619 reserve_unordered_map(&this->signatures_,
4620 this->number_of_input_files_ * 64);
4621 this->resized_signatures_ = true;
4622 }
4623
4624 Kept_section candidate;
4625 std::pair<Signatures::iterator, bool> ins =
4626 this->signatures_.insert(std::make_pair(name, candidate));
4627
4628 if (kept_section != NULL)
4629 *kept_section = &ins.first->second;
4630 if (ins.second)
4631 {
4632 // This is the first time we've seen this signature.
4633 ins.first->second.set_object(object);
4634 ins.first->second.set_shndx(shndx);
4635 if (is_comdat)
4636 ins.first->second.set_is_comdat();
4637 if (is_group_name)
4638 ins.first->second.set_is_group_name();
4639 return true;
4640 }
4641
4642 // We have already seen this signature.
4643
4644 if (ins.first->second.is_group_name())
4645 {
4646 // We've already seen a real section group with this signature.
4647 // If the kept group is from a plugin object, and we're in the
4648 // replacement phase, accept the new one as a replacement.
4649 if (ins.first->second.object() == NULL
4650 && parameters->options().plugins()->in_replacement_phase())
4651 {
4652 ins.first->second.set_object(object);
4653 ins.first->second.set_shndx(shndx);
4654 return true;
4655 }
4656 return false;
4657 }
4658 else if (is_group_name)
4659 {
4660 // This is a real section group, and we've already seen a
4661 // linkonce section with this signature. Record that we've seen
4662 // a section group, and don't include this section group.
4663 ins.first->second.set_is_group_name();
4664 return false;
4665 }
4666 else
4667 {
4668 // We've already seen a linkonce section and this is a linkonce
4669 // section. These don't block each other--this may be the same
4670 // symbol name with different section types.
4671 return true;
4672 }
4673 }
4674
4675 // Store the allocated sections into the section list.
4676
4677 void
4678 Layout::get_allocated_sections(Section_list* section_list) const
4679 {
4680 for (Section_list::const_iterator p = this->section_list_.begin();
4681 p != this->section_list_.end();
4682 ++p)
4683 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4684 section_list->push_back(*p);
4685 }
4686
4687 // Create an output segment.
4688
4689 Output_segment*
4690 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4691 {
4692 gold_assert(!parameters->options().relocatable());
4693 Output_segment* oseg = new Output_segment(type, flags);
4694 this->segment_list_.push_back(oseg);
4695
4696 if (type == elfcpp::PT_TLS)
4697 this->tls_segment_ = oseg;
4698 else if (type == elfcpp::PT_GNU_RELRO)
4699 this->relro_segment_ = oseg;
4700 else if (type == elfcpp::PT_INTERP)
4701 this->interp_segment_ = oseg;
4702
4703 return oseg;
4704 }
4705
4706 // Return the file offset of the normal symbol table.
4707
4708 off_t
4709 Layout::symtab_section_offset() const
4710 {
4711 if (this->symtab_section_ != NULL)
4712 return this->symtab_section_->offset();
4713 return 0;
4714 }
4715
4716 // Return the section index of the normal symbol table. It may have
4717 // been stripped by the -s/--strip-all option.
4718
4719 unsigned int
4720 Layout::symtab_section_shndx() const
4721 {
4722 if (this->symtab_section_ != NULL)
4723 return this->symtab_section_->out_shndx();
4724 return 0;
4725 }
4726
4727 // Write out the Output_sections. Most won't have anything to write,
4728 // since most of the data will come from input sections which are
4729 // handled elsewhere. But some Output_sections do have Output_data.
4730
4731 void
4732 Layout::write_output_sections(Output_file* of) const
4733 {
4734 for (Section_list::const_iterator p = this->section_list_.begin();
4735 p != this->section_list_.end();
4736 ++p)
4737 {
4738 if (!(*p)->after_input_sections())
4739 (*p)->write(of);
4740 }
4741 }
4742
4743 // Write out data not associated with a section or the symbol table.
4744
4745 void
4746 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4747 {
4748 if (!parameters->options().strip_all())
4749 {
4750 const Output_section* symtab_section = this->symtab_section_;
4751 for (Section_list::const_iterator p = this->section_list_.begin();
4752 p != this->section_list_.end();
4753 ++p)
4754 {
4755 if ((*p)->needs_symtab_index())
4756 {
4757 gold_assert(symtab_section != NULL);
4758 unsigned int index = (*p)->symtab_index();
4759 gold_assert(index > 0 && index != -1U);
4760 off_t off = (symtab_section->offset()
4761 + index * symtab_section->entsize());
4762 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4763 }
4764 }
4765 }
4766
4767 const Output_section* dynsym_section = this->dynsym_section_;
4768 for (Section_list::const_iterator p = this->section_list_.begin();
4769 p != this->section_list_.end();
4770 ++p)
4771 {
4772 if ((*p)->needs_dynsym_index())
4773 {
4774 gold_assert(dynsym_section != NULL);
4775 unsigned int index = (*p)->dynsym_index();
4776 gold_assert(index > 0 && index != -1U);
4777 off_t off = (dynsym_section->offset()
4778 + index * dynsym_section->entsize());
4779 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4780 }
4781 }
4782
4783 // Write out the Output_data which are not in an Output_section.
4784 for (Data_list::const_iterator p = this->special_output_list_.begin();
4785 p != this->special_output_list_.end();
4786 ++p)
4787 (*p)->write(of);
4788 }
4789
4790 // Write out the Output_sections which can only be written after the
4791 // input sections are complete.
4792
4793 void
4794 Layout::write_sections_after_input_sections(Output_file* of)
4795 {
4796 // Determine the final section offsets, and thus the final output
4797 // file size. Note we finalize the .shstrab last, to allow the
4798 // after_input_section sections to modify their section-names before
4799 // writing.
4800 if (this->any_postprocessing_sections_)
4801 {
4802 off_t off = this->output_file_size_;
4803 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4804
4805 // Now that we've finalized the names, we can finalize the shstrab.
4806 off =
4807 this->set_section_offsets(off,
4808 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4809
4810 if (off > this->output_file_size_)
4811 {
4812 of->resize(off);
4813 this->output_file_size_ = off;
4814 }
4815 }
4816
4817 for (Section_list::const_iterator p = this->section_list_.begin();
4818 p != this->section_list_.end();
4819 ++p)
4820 {
4821 if ((*p)->after_input_sections())
4822 (*p)->write(of);
4823 }
4824
4825 this->section_headers_->write(of);
4826 }
4827
4828 // If the build ID requires computing a checksum, do so here, and
4829 // write it out. We compute a checksum over the entire file because
4830 // that is simplest.
4831
4832 void
4833 Layout::write_build_id(Output_file* of) const
4834 {
4835 if (this->build_id_note_ == NULL)
4836 return;
4837
4838 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4839
4840 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4841 this->build_id_note_->data_size());
4842
4843 const char* style = parameters->options().build_id();
4844 if (strcmp(style, "sha1") == 0)
4845 {
4846 sha1_ctx ctx;
4847 sha1_init_ctx(&ctx);
4848 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4849 sha1_finish_ctx(&ctx, ov);
4850 }
4851 else if (strcmp(style, "md5") == 0)
4852 {
4853 md5_ctx ctx;
4854 md5_init_ctx(&ctx);
4855 md5_process_bytes(iv, this->output_file_size_, &ctx);
4856 md5_finish_ctx(&ctx, ov);
4857 }
4858 else
4859 gold_unreachable();
4860
4861 of->write_output_view(this->build_id_note_->offset(),
4862 this->build_id_note_->data_size(),
4863 ov);
4864
4865 of->free_input_view(0, this->output_file_size_, iv);
4866 }
4867
4868 // Write out a binary file. This is called after the link is
4869 // complete. IN is the temporary output file we used to generate the
4870 // ELF code. We simply walk through the segments, read them from
4871 // their file offset in IN, and write them to their load address in
4872 // the output file. FIXME: with a bit more work, we could support
4873 // S-records and/or Intel hex format here.
4874
4875 void
4876 Layout::write_binary(Output_file* in) const
4877 {
4878 gold_assert(parameters->options().oformat_enum()
4879 == General_options::OBJECT_FORMAT_BINARY);
4880
4881 // Get the size of the binary file.
4882 uint64_t max_load_address = 0;
4883 for (Segment_list::const_iterator p = this->segment_list_.begin();
4884 p != this->segment_list_.end();
4885 ++p)
4886 {
4887 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4888 {
4889 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4890 if (max_paddr > max_load_address)
4891 max_load_address = max_paddr;
4892 }
4893 }
4894
4895 Output_file out(parameters->options().output_file_name());
4896 out.open(max_load_address);
4897
4898 for (Segment_list::const_iterator p = this->segment_list_.begin();
4899 p != this->segment_list_.end();
4900 ++p)
4901 {
4902 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4903 {
4904 const unsigned char* vin = in->get_input_view((*p)->offset(),
4905 (*p)->filesz());
4906 unsigned char* vout = out.get_output_view((*p)->paddr(),
4907 (*p)->filesz());
4908 memcpy(vout, vin, (*p)->filesz());
4909 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4910 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4911 }
4912 }
4913
4914 out.close();
4915 }
4916
4917 // Print the output sections to the map file.
4918
4919 void
4920 Layout::print_to_mapfile(Mapfile* mapfile) const
4921 {
4922 for (Segment_list::const_iterator p = this->segment_list_.begin();
4923 p != this->segment_list_.end();
4924 ++p)
4925 (*p)->print_sections_to_mapfile(mapfile);
4926 }
4927
4928 // Print statistical information to stderr. This is used for --stats.
4929
4930 void
4931 Layout::print_stats() const
4932 {
4933 this->namepool_.print_stats("section name pool");
4934 this->sympool_.print_stats("output symbol name pool");
4935 this->dynpool_.print_stats("dynamic name pool");
4936
4937 for (Section_list::const_iterator p = this->section_list_.begin();
4938 p != this->section_list_.end();
4939 ++p)
4940 (*p)->print_merge_stats();
4941 }
4942
4943 // Write_sections_task methods.
4944
4945 // We can always run this task.
4946
4947 Task_token*
4948 Write_sections_task::is_runnable()
4949 {
4950 return NULL;
4951 }
4952
4953 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4954 // when finished.
4955
4956 void
4957 Write_sections_task::locks(Task_locker* tl)
4958 {
4959 tl->add(this, this->output_sections_blocker_);
4960 tl->add(this, this->final_blocker_);
4961 }
4962
4963 // Run the task--write out the data.
4964
4965 void
4966 Write_sections_task::run(Workqueue*)
4967 {
4968 this->layout_->write_output_sections(this->of_);
4969 }
4970
4971 // Write_data_task methods.
4972
4973 // We can always run this task.
4974
4975 Task_token*
4976 Write_data_task::is_runnable()
4977 {
4978 return NULL;
4979 }
4980
4981 // We need to unlock FINAL_BLOCKER when finished.
4982
4983 void
4984 Write_data_task::locks(Task_locker* tl)
4985 {
4986 tl->add(this, this->final_blocker_);
4987 }
4988
4989 // Run the task--write out the data.
4990
4991 void
4992 Write_data_task::run(Workqueue*)
4993 {
4994 this->layout_->write_data(this->symtab_, this->of_);
4995 }
4996
4997 // Write_symbols_task methods.
4998
4999 // We can always run this task.
5000
5001 Task_token*
5002 Write_symbols_task::is_runnable()
5003 {
5004 return NULL;
5005 }
5006
5007 // We need to unlock FINAL_BLOCKER when finished.
5008
5009 void
5010 Write_symbols_task::locks(Task_locker* tl)
5011 {
5012 tl->add(this, this->final_blocker_);
5013 }
5014
5015 // Run the task--write out the symbols.
5016
5017 void
5018 Write_symbols_task::run(Workqueue*)
5019 {
5020 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5021 this->layout_->symtab_xindex(),
5022 this->layout_->dynsym_xindex(), this->of_);
5023 }
5024
5025 // Write_after_input_sections_task methods.
5026
5027 // We can only run this task after the input sections have completed.
5028
5029 Task_token*
5030 Write_after_input_sections_task::is_runnable()
5031 {
5032 if (this->input_sections_blocker_->is_blocked())
5033 return this->input_sections_blocker_;
5034 return NULL;
5035 }
5036
5037 // We need to unlock FINAL_BLOCKER when finished.
5038
5039 void
5040 Write_after_input_sections_task::locks(Task_locker* tl)
5041 {
5042 tl->add(this, this->final_blocker_);
5043 }
5044
5045 // Run the task.
5046
5047 void
5048 Write_after_input_sections_task::run(Workqueue*)
5049 {
5050 this->layout_->write_sections_after_input_sections(this->of_);
5051 }
5052
5053 // Close_task_runner methods.
5054
5055 // Run the task--close the file.
5056
5057 void
5058 Close_task_runner::run(Workqueue*, const Task*)
5059 {
5060 // If we need to compute a checksum for the BUILD if, we do so here.
5061 this->layout_->write_build_id(this->of_);
5062
5063 // If we've been asked to create a binary file, we do so here.
5064 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5065 this->layout_->write_binary(this->of_);
5066
5067 this->of_->close();
5068 }
5069
5070 // Instantiate the templates we need. We could use the configure
5071 // script to restrict this to only the ones for implemented targets.
5072
5073 #ifdef HAVE_TARGET_32_LITTLE
5074 template
5075 Output_section*
5076 Layout::init_fixed_output_section<32, false>(
5077 const char* name,
5078 elfcpp::Shdr<32, false>& shdr);
5079 #endif
5080
5081 #ifdef HAVE_TARGET_32_BIG
5082 template
5083 Output_section*
5084 Layout::init_fixed_output_section<32, true>(
5085 const char* name,
5086 elfcpp::Shdr<32, true>& shdr);
5087 #endif
5088
5089 #ifdef HAVE_TARGET_64_LITTLE
5090 template
5091 Output_section*
5092 Layout::init_fixed_output_section<64, false>(
5093 const char* name,
5094 elfcpp::Shdr<64, false>& shdr);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_64_BIG
5098 template
5099 Output_section*
5100 Layout::init_fixed_output_section<64, true>(
5101 const char* name,
5102 elfcpp::Shdr<64, true>& shdr);
5103 #endif
5104
5105 #ifdef HAVE_TARGET_32_LITTLE
5106 template
5107 Output_section*
5108 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5109 unsigned int shndx,
5110 const char* name,
5111 const elfcpp::Shdr<32, false>& shdr,
5112 unsigned int, unsigned int, off_t*);
5113 #endif
5114
5115 #ifdef HAVE_TARGET_32_BIG
5116 template
5117 Output_section*
5118 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5119 unsigned int shndx,
5120 const char* name,
5121 const elfcpp::Shdr<32, true>& shdr,
5122 unsigned int, unsigned int, off_t*);
5123 #endif
5124
5125 #ifdef HAVE_TARGET_64_LITTLE
5126 template
5127 Output_section*
5128 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5129 unsigned int shndx,
5130 const char* name,
5131 const elfcpp::Shdr<64, false>& shdr,
5132 unsigned int, unsigned int, off_t*);
5133 #endif
5134
5135 #ifdef HAVE_TARGET_64_BIG
5136 template
5137 Output_section*
5138 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5139 unsigned int shndx,
5140 const char* name,
5141 const elfcpp::Shdr<64, true>& shdr,
5142 unsigned int, unsigned int, off_t*);
5143 #endif
5144
5145 #ifdef HAVE_TARGET_32_LITTLE
5146 template
5147 Output_section*
5148 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5149 unsigned int reloc_shndx,
5150 const elfcpp::Shdr<32, false>& shdr,
5151 Output_section* data_section,
5152 Relocatable_relocs* rr);
5153 #endif
5154
5155 #ifdef HAVE_TARGET_32_BIG
5156 template
5157 Output_section*
5158 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5159 unsigned int reloc_shndx,
5160 const elfcpp::Shdr<32, true>& shdr,
5161 Output_section* data_section,
5162 Relocatable_relocs* rr);
5163 #endif
5164
5165 #ifdef HAVE_TARGET_64_LITTLE
5166 template
5167 Output_section*
5168 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5169 unsigned int reloc_shndx,
5170 const elfcpp::Shdr<64, false>& shdr,
5171 Output_section* data_section,
5172 Relocatable_relocs* rr);
5173 #endif
5174
5175 #ifdef HAVE_TARGET_64_BIG
5176 template
5177 Output_section*
5178 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5179 unsigned int reloc_shndx,
5180 const elfcpp::Shdr<64, true>& shdr,
5181 Output_section* data_section,
5182 Relocatable_relocs* rr);
5183 #endif
5184
5185 #ifdef HAVE_TARGET_32_LITTLE
5186 template
5187 void
5188 Layout::layout_group<32, false>(Symbol_table* symtab,
5189 Sized_relobj_file<32, false>* object,
5190 unsigned int,
5191 const char* group_section_name,
5192 const char* signature,
5193 const elfcpp::Shdr<32, false>& shdr,
5194 elfcpp::Elf_Word flags,
5195 std::vector<unsigned int>* shndxes);
5196 #endif
5197
5198 #ifdef HAVE_TARGET_32_BIG
5199 template
5200 void
5201 Layout::layout_group<32, true>(Symbol_table* symtab,
5202 Sized_relobj_file<32, true>* object,
5203 unsigned int,
5204 const char* group_section_name,
5205 const char* signature,
5206 const elfcpp::Shdr<32, true>& shdr,
5207 elfcpp::Elf_Word flags,
5208 std::vector<unsigned int>* shndxes);
5209 #endif
5210
5211 #ifdef HAVE_TARGET_64_LITTLE
5212 template
5213 void
5214 Layout::layout_group<64, false>(Symbol_table* symtab,
5215 Sized_relobj_file<64, false>* object,
5216 unsigned int,
5217 const char* group_section_name,
5218 const char* signature,
5219 const elfcpp::Shdr<64, false>& shdr,
5220 elfcpp::Elf_Word flags,
5221 std::vector<unsigned int>* shndxes);
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 void
5227 Layout::layout_group<64, true>(Symbol_table* symtab,
5228 Sized_relobj_file<64, true>* object,
5229 unsigned int,
5230 const char* group_section_name,
5231 const char* signature,
5232 const elfcpp::Shdr<64, true>& shdr,
5233 elfcpp::Elf_Word flags,
5234 std::vector<unsigned int>* shndxes);
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_LITTLE
5238 template
5239 Output_section*
5240 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5241 const unsigned char* symbols,
5242 off_t symbols_size,
5243 const unsigned char* symbol_names,
5244 off_t symbol_names_size,
5245 unsigned int shndx,
5246 const elfcpp::Shdr<32, false>& shdr,
5247 unsigned int reloc_shndx,
5248 unsigned int reloc_type,
5249 off_t* off);
5250 #endif
5251
5252 #ifdef HAVE_TARGET_32_BIG
5253 template
5254 Output_section*
5255 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5256 const unsigned char* symbols,
5257 off_t symbols_size,
5258 const unsigned char* symbol_names,
5259 off_t symbol_names_size,
5260 unsigned int shndx,
5261 const elfcpp::Shdr<32, true>& shdr,
5262 unsigned int reloc_shndx,
5263 unsigned int reloc_type,
5264 off_t* off);
5265 #endif
5266
5267 #ifdef HAVE_TARGET_64_LITTLE
5268 template
5269 Output_section*
5270 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5271 const unsigned char* symbols,
5272 off_t symbols_size,
5273 const unsigned char* symbol_names,
5274 off_t symbol_names_size,
5275 unsigned int shndx,
5276 const elfcpp::Shdr<64, false>& shdr,
5277 unsigned int reloc_shndx,
5278 unsigned int reloc_type,
5279 off_t* off);
5280 #endif
5281
5282 #ifdef HAVE_TARGET_64_BIG
5283 template
5284 Output_section*
5285 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5286 const unsigned char* symbols,
5287 off_t symbols_size,
5288 const unsigned char* symbol_names,
5289 off_t symbol_names_size,
5290 unsigned int shndx,
5291 const elfcpp::Shdr<64, true>& shdr,
5292 unsigned int reloc_shndx,
5293 unsigned int reloc_type,
5294 off_t* off);
5295 #endif
5296
5297 } // End namespace gold.
This page took 0.141845 seconds and 4 git commands to generate.