36cfa8bd744063286d5d41fd283ae08de8ed0b30
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64 const Layout::Section_list& sections,
65 const Layout::Data_list& special_outputs)
66 {
67 for(Layout::Section_list::const_iterator p = sections.begin();
68 p != sections.end();
69 ++p)
70 gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72 for(Layout::Data_list::const_iterator p = special_outputs.begin();
73 p != special_outputs.end();
74 ++p)
75 gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82 const Layout::Section_list& sections)
83 {
84 for(Layout::Section_list::const_iterator p = sections.begin();
85 p != sections.end();
86 ++p)
87 {
88 Output_section* os = *p;
89 Section_info info;
90 info.output_section = os;
91 info.address = os->is_address_valid() ? os->address() : 0;
92 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93 info.offset = os->is_offset_valid()? os->offset() : -1 ;
94 this->section_infos_.push_back(info);
95 }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102 const Layout::Section_list& sections)
103 {
104 size_t i = 0;
105 for(Layout::Section_list::const_iterator p = sections.begin();
106 p != sections.end();
107 ++p, ++i)
108 {
109 Output_section* os = *p;
110 uint64_t address = os->is_address_valid() ? os->address() : 0;
111 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114 if (i >= this->section_infos_.size())
115 {
116 gold_fatal("Section_info of %s missing.\n", os->name());
117 }
118 const Section_info& info = this->section_infos_[i];
119 if (os != info.output_section)
120 gold_fatal("Section order changed. Expecting %s but see %s\n",
121 info.output_section->name(), os->name());
122 if (address != info.address
123 || data_size != info.data_size
124 || offset != info.offset)
125 gold_fatal("Section %s changed.\n", os->name());
126 }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections. This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137 off_t file_size = this->layout_->finalize(this->input_objects_,
138 this->symtab_,
139 this->target_,
140 task);
141
142 // Now we know the final size of the output file and we know where
143 // each piece of information goes.
144
145 if (this->mapfile_ != NULL)
146 {
147 this->mapfile_->print_discarded_sections(this->input_objects_);
148 this->layout_->print_to_mapfile(this->mapfile_);
149 }
150
151 Output_file* of = new Output_file(parameters->options().output_file_name());
152 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153 of->set_is_temporary();
154 of->open(file_size);
155
156 // Queue up the final set of tasks.
157 gold::queue_final_tasks(this->options_, this->input_objects_,
158 this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164 : number_of_input_files_(number_of_input_files),
165 script_options_(script_options),
166 namepool_(),
167 sympool_(),
168 dynpool_(),
169 signatures_(),
170 section_name_map_(),
171 segment_list_(),
172 section_list_(),
173 unattached_section_list_(),
174 special_output_list_(),
175 section_headers_(NULL),
176 tls_segment_(NULL),
177 relro_segment_(NULL),
178 increase_relro_(0),
179 symtab_section_(NULL),
180 symtab_xindex_(NULL),
181 dynsym_section_(NULL),
182 dynsym_xindex_(NULL),
183 dynamic_section_(NULL),
184 dynamic_symbol_(NULL),
185 dynamic_data_(NULL),
186 eh_frame_section_(NULL),
187 eh_frame_data_(NULL),
188 added_eh_frame_data_(false),
189 eh_frame_hdr_section_(NULL),
190 build_id_note_(NULL),
191 debug_abbrev_(NULL),
192 debug_info_(NULL),
193 group_signatures_(),
194 output_file_size_(-1),
195 have_added_input_section_(false),
196 sections_are_attached_(false),
197 input_requires_executable_stack_(false),
198 input_with_gnu_stack_note_(false),
199 input_without_gnu_stack_note_(false),
200 has_static_tls_(false),
201 any_postprocessing_sections_(false),
202 resized_signatures_(false),
203 have_stabstr_section_(false),
204 incremental_inputs_(NULL),
205 record_output_section_data_from_script_(false),
206 script_output_section_data_list_(),
207 segment_states_(NULL),
208 relaxation_debug_check_(NULL)
209 {
210 // Make space for more than enough segments for a typical file.
211 // This is just for efficiency--it's OK if we wind up needing more.
212 this->segment_list_.reserve(12);
213
214 // We expect two unattached Output_data objects: the file header and
215 // the segment headers.
216 this->special_output_list_.reserve(2);
217
218 // Initialize structure needed for an incremental build.
219 if (parameters->options().incremental())
220 this->incremental_inputs_ = new Incremental_inputs;
221
222 // The section name pool is worth optimizing in all cases, because
223 // it is small, but there are often overlaps due to .rel sections.
224 this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232 return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb. Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241 // ".debug_aranges", // not used by gdb as of 6.7.1
242 ".debug_frame",
243 ".debug_info",
244 ".debug_line",
245 ".debug_loc",
246 ".debug_macinfo",
247 // ".debug_pubnames", // not used by gdb as of 6.7.1
248 ".debug_ranges",
249 ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254 // ".debug_aranges", // not used by gdb as of 6.7.1
255 // ".debug_frame",
256 ".debug_info",
257 ".debug_line",
258 // ".debug_loc",
259 // ".debug_macinfo",
260 // ".debug_pubnames", // not used by gdb as of 6.7.1
261 // ".debug_ranges",
262 ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268 // We can do this faster: binary search or a hashtable. But why bother?
269 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270 if (strcmp(str, gdb_sections[i]) == 0)
271 return true;
272 return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278 // We can do this faster: binary search or a hashtable. But why bother?
279 for (size_t i = 0;
280 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281 ++i)
282 if (strcmp(str, lines_only_debug_sections[i]) == 0)
283 return true;
284 return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292 const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295 return false;
296
297 switch (shdr.get_sh_type())
298 {
299 case elfcpp::SHT_NULL:
300 case elfcpp::SHT_SYMTAB:
301 case elfcpp::SHT_DYNSYM:
302 case elfcpp::SHT_HASH:
303 case elfcpp::SHT_DYNAMIC:
304 case elfcpp::SHT_SYMTAB_SHNDX:
305 return false;
306
307 case elfcpp::SHT_STRTAB:
308 // Discard the sections which have special meanings in the ELF
309 // ABI. Keep others (e.g., .stabstr). We could also do this by
310 // checking the sh_link fields of the appropriate sections.
311 return (strcmp(name, ".dynstr") != 0
312 && strcmp(name, ".strtab") != 0
313 && strcmp(name, ".shstrtab") != 0);
314
315 case elfcpp::SHT_RELA:
316 case elfcpp::SHT_REL:
317 case elfcpp::SHT_GROUP:
318 // If we are emitting relocations these should be handled
319 // elsewhere.
320 gold_assert(!parameters->options().relocatable()
321 && !parameters->options().emit_relocs());
322 return false;
323
324 case elfcpp::SHT_PROGBITS:
325 if (parameters->options().strip_debug()
326 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327 {
328 if (is_debug_info_section(name))
329 return false;
330 }
331 if (parameters->options().strip_debug_non_line()
332 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333 {
334 // Debugging sections can only be recognized by name.
335 if (is_prefix_of(".debug", name)
336 && !is_lines_only_debug_section(name))
337 return false;
338 }
339 if (parameters->options().strip_debug_gdb()
340 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341 {
342 // Debugging sections can only be recognized by name.
343 if (is_prefix_of(".debug", name)
344 && !is_gdb_debug_section(name))
345 return false;
346 }
347 if (parameters->options().strip_lto_sections()
348 && !parameters->options().relocatable()
349 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350 {
351 // Ignore LTO sections containing intermediate code.
352 if (is_prefix_of(".gnu.lto_", name))
353 return false;
354 }
355 // The GNU linker strips .gnu_debuglink sections, so we do too.
356 // This is a feature used to keep debugging information in
357 // separate files.
358 if (strcmp(name, ".gnu_debuglink") == 0)
359 return false;
360 return true;
361
362 default:
363 return true;
364 }
365 }
366
367 // Return an output section named NAME, or NULL if there is none.
368
369 Output_section*
370 Layout::find_output_section(const char* name) const
371 {
372 for (Section_list::const_iterator p = this->section_list_.begin();
373 p != this->section_list_.end();
374 ++p)
375 if (strcmp((*p)->name(), name) == 0)
376 return *p;
377 return NULL;
378 }
379
380 // Return an output segment of type TYPE, with segment flags SET set
381 // and segment flags CLEAR clear. Return NULL if there is none.
382
383 Output_segment*
384 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
385 elfcpp::Elf_Word clear) const
386 {
387 for (Segment_list::const_iterator p = this->segment_list_.begin();
388 p != this->segment_list_.end();
389 ++p)
390 if (static_cast<elfcpp::PT>((*p)->type()) == type
391 && ((*p)->flags() & set) == set
392 && ((*p)->flags() & clear) == 0)
393 return *p;
394 return NULL;
395 }
396
397 // Return the output section to use for section NAME with type TYPE
398 // and section flags FLAGS. NAME must be canonicalized in the string
399 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
400 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
401 // is used by the dynamic linker. IS_RELRO is true for a relro
402 // section. IS_LAST_RELRO is true for the last relro section.
403 // IS_FIRST_NON_RELRO is true for the first non-relro section.
404
405 Output_section*
406 Layout::get_output_section(const char* name, Stringpool::Key name_key,
407 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
408 bool is_interp, bool is_dynamic_linker_section,
409 bool is_relro, bool is_last_relro,
410 bool is_first_non_relro)
411 {
412 elfcpp::Elf_Xword lookup_flags = flags;
413
414 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
415 // read-write with read-only sections. Some other ELF linkers do
416 // not do this. FIXME: Perhaps there should be an option
417 // controlling this.
418 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
419
420 const Key key(name_key, std::make_pair(type, lookup_flags));
421 const std::pair<Key, Output_section*> v(key, NULL);
422 std::pair<Section_name_map::iterator, bool> ins(
423 this->section_name_map_.insert(v));
424
425 if (!ins.second)
426 return ins.first->second;
427 else
428 {
429 // This is the first time we've seen this name/type/flags
430 // combination. For compatibility with the GNU linker, we
431 // combine sections with contents and zero flags with sections
432 // with non-zero flags. This is a workaround for cases where
433 // assembler code forgets to set section flags. FIXME: Perhaps
434 // there should be an option to control this.
435 Output_section* os = NULL;
436
437 if (type == elfcpp::SHT_PROGBITS)
438 {
439 if (flags == 0)
440 {
441 Output_section* same_name = this->find_output_section(name);
442 if (same_name != NULL
443 && same_name->type() == elfcpp::SHT_PROGBITS
444 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
445 os = same_name;
446 }
447 else if ((flags & elfcpp::SHF_TLS) == 0)
448 {
449 elfcpp::Elf_Xword zero_flags = 0;
450 const Key zero_key(name_key, std::make_pair(type, zero_flags));
451 Section_name_map::iterator p =
452 this->section_name_map_.find(zero_key);
453 if (p != this->section_name_map_.end())
454 os = p->second;
455 }
456 }
457
458 if (os == NULL)
459 os = this->make_output_section(name, type, flags, is_interp,
460 is_dynamic_linker_section, is_relro,
461 is_last_relro, is_first_non_relro);
462 ins.first->second = os;
463 return os;
464 }
465 }
466
467 // Pick the output section to use for section NAME, in input file
468 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
469 // linker created section. IS_INPUT_SECTION is true if we are
470 // choosing an output section for an input section found in a input
471 // file. IS_INTERP is true if this is the .interp section.
472 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
473 // dynamic linker. IS_RELRO is true for a relro section.
474 // IS_LAST_RELRO is true for the last relro section.
475 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
476 // will return NULL if the input section should be discarded.
477
478 Output_section*
479 Layout::choose_output_section(const Relobj* relobj, const char* name,
480 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
481 bool is_input_section, bool is_interp,
482 bool is_dynamic_linker_section, bool is_relro,
483 bool is_last_relro, bool is_first_non_relro)
484 {
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section || !this->sections_are_attached_);
488
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags &= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
493 | elfcpp::SHF_GROUP
494 | elfcpp::SHF_MERGE
495 | elfcpp::SHF_STRINGS);
496
497 if (this->script_options_->saw_sections_clause())
498 {
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
501
502 Script_sections* ss = this->script_options_->script_sections();
503 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504 Output_section** output_section_slot;
505 Script_sections::Section_type script_section_type;
506 name = ss->output_section_name(file_name, name, &output_section_slot,
507 &script_section_type);
508 if (name == NULL)
509 {
510 // The SECTIONS clause says to discard this input section.
511 return NULL;
512 }
513
514 // We can only handle script section types ST_NONE and ST_NOLOAD.
515 switch (script_section_type)
516 {
517 case Script_sections::ST_NONE:
518 break;
519 case Script_sections::ST_NOLOAD:
520 flags &= elfcpp::SHF_ALLOC;
521 break;
522 default:
523 gold_unreachable();
524 }
525
526 // If this is an orphan section--one not mentioned in the linker
527 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528 // default processing below.
529
530 if (output_section_slot != NULL)
531 {
532 if (*output_section_slot != NULL)
533 {
534 (*output_section_slot)->update_flags_for_input_section(flags);
535 return *output_section_slot;
536 }
537
538 // We don't put sections found in the linker script into
539 // SECTION_NAME_MAP_. That keeps us from getting confused
540 // if an orphan section is mapped to a section with the same
541 // name as one in the linker script.
542
543 name = this->namepool_.add(name, false, NULL);
544
545 Output_section* os =
546 this->make_output_section(name, type, flags, is_interp,
547 is_dynamic_linker_section, is_relro,
548 is_last_relro, is_first_non_relro);
549 os->set_found_in_sections_clause();
550
551 // Special handling for NOLOAD sections.
552 if (script_section_type == Script_sections::ST_NOLOAD)
553 {
554 os->set_is_noload();
555
556 // The constructor of Output_section sets addresses of non-ALLOC
557 // sections to 0 by default. We don't want that for NOLOAD
558 // sections even if they have no SHF_ALLOC flag.
559 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
560 && os->is_address_valid())
561 {
562 gold_assert(os->address() == 0
563 && !os->is_offset_valid()
564 && !os->is_data_size_valid());
565 os->reset_address_and_file_offset();
566 }
567 }
568
569 *output_section_slot = os;
570 return os;
571 }
572 }
573
574 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
575
576 // Turn NAME from the name of the input section into the name of the
577 // output section.
578
579 size_t len = strlen(name);
580 if (is_input_section
581 && !this->script_options_->saw_sections_clause()
582 && !parameters->options().relocatable())
583 name = Layout::output_section_name(name, &len);
584
585 Stringpool::Key name_key;
586 name = this->namepool_.add_with_length(name, len, true, &name_key);
587
588 // Find or make the output section. The output section is selected
589 // based on the section name, type, and flags.
590 return this->get_output_section(name, name_key, type, flags, is_interp,
591 is_dynamic_linker_section, is_relro,
592 is_last_relro, is_first_non_relro);
593 }
594
595 // Return the output section to use for input section SHNDX, with name
596 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
597 // index of a relocation section which applies to this section, or 0
598 // if none, or -1U if more than one. RELOC_TYPE is the type of the
599 // relocation section if there is one. Set *OFF to the offset of this
600 // input section without the output section. Return NULL if the
601 // section should be discarded. Set *OFF to -1 if the section
602 // contents should not be written directly to the output file, but
603 // will instead receive special handling.
604
605 template<int size, bool big_endian>
606 Output_section*
607 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
608 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
609 unsigned int reloc_shndx, unsigned int, off_t* off)
610 {
611 *off = 0;
612
613 if (!this->include_section(object, name, shdr))
614 return NULL;
615
616 Output_section* os;
617
618 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
619 // correct section types. Force them here.
620 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
621 if (sh_type == elfcpp::SHT_PROGBITS)
622 {
623 static const char init_array_prefix[] = ".init_array";
624 static const char preinit_array_prefix[] = ".preinit_array";
625 static const char fini_array_prefix[] = ".fini_array";
626 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
627 static size_t preinit_array_prefix_size =
628 sizeof(preinit_array_prefix) - 1;
629 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
630
631 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
632 sh_type = elfcpp::SHT_INIT_ARRAY;
633 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
634 == 0)
635 sh_type = elfcpp::SHT_PREINIT_ARRAY;
636 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
637 sh_type = elfcpp::SHT_FINI_ARRAY;
638 }
639
640 // In a relocatable link a grouped section must not be combined with
641 // any other sections.
642 if (parameters->options().relocatable()
643 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
644 {
645 name = this->namepool_.add(name, true, NULL);
646 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(), false,
647 false, false, false, false);
648 }
649 else
650 {
651 os = this->choose_output_section(object, name, sh_type,
652 shdr.get_sh_flags(), true, false,
653 false, false, false, false);
654 if (os == NULL)
655 return NULL;
656 }
657
658 // By default the GNU linker sorts input sections whose names match
659 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
660 // are sorted by name. This is used to implement constructor
661 // priority ordering. We are compatible.
662 if (!this->script_options_->saw_sections_clause()
663 && (is_prefix_of(".ctors.", name)
664 || is_prefix_of(".dtors.", name)
665 || is_prefix_of(".init_array.", name)
666 || is_prefix_of(".fini_array.", name)))
667 os->set_must_sort_attached_input_sections();
668
669 // FIXME: Handle SHF_LINK_ORDER somewhere.
670
671 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
672 this->script_options_->saw_sections_clause());
673 this->have_added_input_section_ = true;
674
675 return os;
676 }
677
678 // Handle a relocation section when doing a relocatable link.
679
680 template<int size, bool big_endian>
681 Output_section*
682 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
683 unsigned int,
684 const elfcpp::Shdr<size, big_endian>& shdr,
685 Output_section* data_section,
686 Relocatable_relocs* rr)
687 {
688 gold_assert(parameters->options().relocatable()
689 || parameters->options().emit_relocs());
690
691 int sh_type = shdr.get_sh_type();
692
693 std::string name;
694 if (sh_type == elfcpp::SHT_REL)
695 name = ".rel";
696 else if (sh_type == elfcpp::SHT_RELA)
697 name = ".rela";
698 else
699 gold_unreachable();
700 name += data_section->name();
701
702 // In a relocatable link relocs for a grouped section must not be
703 // combined with other reloc sections.
704 Output_section* os;
705 if (!parameters->options().relocatable()
706 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
707 os = this->choose_output_section(object, name.c_str(), sh_type,
708 shdr.get_sh_flags(), false, false,
709 false, false, false, false);
710 else
711 {
712 const char* n = this->namepool_.add(name.c_str(), true, NULL);
713 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
714 false, false, false, false, false);
715 }
716
717 os->set_should_link_to_symtab();
718 os->set_info_section(data_section);
719
720 Output_section_data* posd;
721 if (sh_type == elfcpp::SHT_REL)
722 {
723 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
724 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
725 size,
726 big_endian>(rr);
727 }
728 else if (sh_type == elfcpp::SHT_RELA)
729 {
730 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
731 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
732 size,
733 big_endian>(rr);
734 }
735 else
736 gold_unreachable();
737
738 os->add_output_section_data(posd);
739 rr->set_output_data(posd);
740
741 return os;
742 }
743
744 // Handle a group section when doing a relocatable link.
745
746 template<int size, bool big_endian>
747 void
748 Layout::layout_group(Symbol_table* symtab,
749 Sized_relobj<size, big_endian>* object,
750 unsigned int,
751 const char* group_section_name,
752 const char* signature,
753 const elfcpp::Shdr<size, big_endian>& shdr,
754 elfcpp::Elf_Word flags,
755 std::vector<unsigned int>* shndxes)
756 {
757 gold_assert(parameters->options().relocatable());
758 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
759 group_section_name = this->namepool_.add(group_section_name, true, NULL);
760 Output_section* os = this->make_output_section(group_section_name,
761 elfcpp::SHT_GROUP,
762 shdr.get_sh_flags(),
763 false, false, false,
764 false, false);
765
766 // We need to find a symbol with the signature in the symbol table.
767 // If we don't find one now, we need to look again later.
768 Symbol* sym = symtab->lookup(signature, NULL);
769 if (sym != NULL)
770 os->set_info_symndx(sym);
771 else
772 {
773 // Reserve some space to minimize reallocations.
774 if (this->group_signatures_.empty())
775 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
776
777 // We will wind up using a symbol whose name is the signature.
778 // So just put the signature in the symbol name pool to save it.
779 signature = symtab->canonicalize_name(signature);
780 this->group_signatures_.push_back(Group_signature(os, signature));
781 }
782
783 os->set_should_link_to_symtab();
784 os->set_entsize(4);
785
786 section_size_type entry_count =
787 convert_to_section_size_type(shdr.get_sh_size() / 4);
788 Output_section_data* posd =
789 new Output_data_group<size, big_endian>(object, entry_count, flags,
790 shndxes);
791 os->add_output_section_data(posd);
792 }
793
794 // Special GNU handling of sections name .eh_frame. They will
795 // normally hold exception frame data as defined by the C++ ABI
796 // (http://codesourcery.com/cxx-abi/).
797
798 template<int size, bool big_endian>
799 Output_section*
800 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
801 const unsigned char* symbols,
802 off_t symbols_size,
803 const unsigned char* symbol_names,
804 off_t symbol_names_size,
805 unsigned int shndx,
806 const elfcpp::Shdr<size, big_endian>& shdr,
807 unsigned int reloc_shndx, unsigned int reloc_type,
808 off_t* off)
809 {
810 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
811 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
812
813 const char* const name = ".eh_frame";
814 Output_section* os = this->choose_output_section(object,
815 name,
816 elfcpp::SHT_PROGBITS,
817 elfcpp::SHF_ALLOC,
818 false, false, false,
819 false, false, false);
820 if (os == NULL)
821 return NULL;
822
823 if (this->eh_frame_section_ == NULL)
824 {
825 this->eh_frame_section_ = os;
826 this->eh_frame_data_ = new Eh_frame();
827
828 if (parameters->options().eh_frame_hdr())
829 {
830 Output_section* hdr_os =
831 this->choose_output_section(NULL,
832 ".eh_frame_hdr",
833 elfcpp::SHT_PROGBITS,
834 elfcpp::SHF_ALLOC,
835 false, false, false,
836 false, false, false);
837
838 if (hdr_os != NULL)
839 {
840 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
841 this->eh_frame_data_);
842 hdr_os->add_output_section_data(hdr_posd);
843
844 hdr_os->set_after_input_sections();
845
846 if (!this->script_options_->saw_phdrs_clause())
847 {
848 Output_segment* hdr_oseg;
849 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
850 elfcpp::PF_R);
851 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
852 }
853
854 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
855 }
856 }
857 }
858
859 gold_assert(this->eh_frame_section_ == os);
860
861 if (this->eh_frame_data_->add_ehframe_input_section(object,
862 symbols,
863 symbols_size,
864 symbol_names,
865 symbol_names_size,
866 shndx,
867 reloc_shndx,
868 reloc_type))
869 {
870 os->update_flags_for_input_section(shdr.get_sh_flags());
871
872 // We found a .eh_frame section we are going to optimize, so now
873 // we can add the set of optimized sections to the output
874 // section. We need to postpone adding this until we've found a
875 // section we can optimize so that the .eh_frame section in
876 // crtbegin.o winds up at the start of the output section.
877 if (!this->added_eh_frame_data_)
878 {
879 os->add_output_section_data(this->eh_frame_data_);
880 this->added_eh_frame_data_ = true;
881 }
882 *off = -1;
883 }
884 else
885 {
886 // We couldn't handle this .eh_frame section for some reason.
887 // Add it as a normal section.
888 bool saw_sections_clause = this->script_options_->saw_sections_clause();
889 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
890 saw_sections_clause);
891 this->have_added_input_section_ = true;
892 }
893
894 return os;
895 }
896
897 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
898 // the output section.
899
900 Output_section*
901 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
902 elfcpp::Elf_Xword flags,
903 Output_section_data* posd,
904 bool is_dynamic_linker_section,
905 bool is_relro, bool is_last_relro,
906 bool is_first_non_relro)
907 {
908 Output_section* os = this->choose_output_section(NULL, name, type, flags,
909 false, false,
910 is_dynamic_linker_section,
911 is_relro, is_last_relro,
912 is_first_non_relro);
913 if (os != NULL)
914 os->add_output_section_data(posd);
915 return os;
916 }
917
918 // Map section flags to segment flags.
919
920 elfcpp::Elf_Word
921 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
922 {
923 elfcpp::Elf_Word ret = elfcpp::PF_R;
924 if ((flags & elfcpp::SHF_WRITE) != 0)
925 ret |= elfcpp::PF_W;
926 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
927 ret |= elfcpp::PF_X;
928 return ret;
929 }
930
931 // Sometimes we compress sections. This is typically done for
932 // sections that are not part of normal program execution (such as
933 // .debug_* sections), and where the readers of these sections know
934 // how to deal with compressed sections. This routine doesn't say for
935 // certain whether we'll compress -- it depends on commandline options
936 // as well -- just whether this section is a candidate for compression.
937 // (The Output_compressed_section class decides whether to compress
938 // a given section, and picks the name of the compressed section.)
939
940 static bool
941 is_compressible_debug_section(const char* secname)
942 {
943 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
944 }
945
946 // Make a new Output_section, and attach it to segments as
947 // appropriate. IS_INTERP is true if this is the .interp section.
948 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
949 // dynamic linker. IS_RELRO is true if this is a relro section.
950 // IS_LAST_RELRO is true if this is the last relro section.
951 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
952
953 Output_section*
954 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
955 elfcpp::Elf_Xword flags, bool is_interp,
956 bool is_dynamic_linker_section, bool is_relro,
957 bool is_last_relro, bool is_first_non_relro)
958 {
959 Output_section* os;
960 if ((flags & elfcpp::SHF_ALLOC) == 0
961 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
962 && is_compressible_debug_section(name))
963 os = new Output_compressed_section(&parameters->options(), name, type,
964 flags);
965 else if ((flags & elfcpp::SHF_ALLOC) == 0
966 && parameters->options().strip_debug_non_line()
967 && strcmp(".debug_abbrev", name) == 0)
968 {
969 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
970 name, type, flags);
971 if (this->debug_info_)
972 this->debug_info_->set_abbreviations(this->debug_abbrev_);
973 }
974 else if ((flags & elfcpp::SHF_ALLOC) == 0
975 && parameters->options().strip_debug_non_line()
976 && strcmp(".debug_info", name) == 0)
977 {
978 os = this->debug_info_ = new Output_reduced_debug_info_section(
979 name, type, flags);
980 if (this->debug_abbrev_)
981 this->debug_info_->set_abbreviations(this->debug_abbrev_);
982 }
983 else
984 {
985 // FIXME: const_cast is ugly.
986 Target* target = const_cast<Target*>(&parameters->target());
987 os = target->make_output_section(name, type, flags);
988 }
989
990 if (is_interp)
991 os->set_is_interp();
992 if (is_dynamic_linker_section)
993 os->set_is_dynamic_linker_section();
994 if (is_relro)
995 os->set_is_relro();
996 if (is_last_relro)
997 os->set_is_last_relro();
998 if (is_first_non_relro)
999 os->set_is_first_non_relro();
1000
1001 parameters->target().new_output_section(os);
1002
1003 this->section_list_.push_back(os);
1004
1005 // The GNU linker by default sorts some sections by priority, so we
1006 // do the same. We need to know that this might happen before we
1007 // attach any input sections.
1008 if (!this->script_options_->saw_sections_clause()
1009 && (strcmp(name, ".ctors") == 0
1010 || strcmp(name, ".dtors") == 0
1011 || strcmp(name, ".init_array") == 0
1012 || strcmp(name, ".fini_array") == 0))
1013 os->set_may_sort_attached_input_sections();
1014
1015 // With -z relro, we have to recognize the special sections by name.
1016 // There is no other way.
1017 if (!this->script_options_->saw_sections_clause()
1018 && parameters->options().relro()
1019 && type == elfcpp::SHT_PROGBITS
1020 && (flags & elfcpp::SHF_ALLOC) != 0
1021 && (flags & elfcpp::SHF_WRITE) != 0)
1022 {
1023 if (strcmp(name, ".data.rel.ro") == 0)
1024 os->set_is_relro();
1025 else if (strcmp(name, ".data.rel.ro.local") == 0)
1026 {
1027 os->set_is_relro();
1028 os->set_is_relro_local();
1029 }
1030 }
1031
1032 // Check for .stab*str sections, as .stab* sections need to link to
1033 // them.
1034 if (type == elfcpp::SHT_STRTAB
1035 && !this->have_stabstr_section_
1036 && strncmp(name, ".stab", 5) == 0
1037 && strcmp(name + strlen(name) - 3, "str") == 0)
1038 this->have_stabstr_section_ = true;
1039
1040 // If we have already attached the sections to segments, then we
1041 // need to attach this one now. This happens for sections created
1042 // directly by the linker.
1043 if (this->sections_are_attached_)
1044 this->attach_section_to_segment(os);
1045
1046 return os;
1047 }
1048
1049 // Attach output sections to segments. This is called after we have
1050 // seen all the input sections.
1051
1052 void
1053 Layout::attach_sections_to_segments()
1054 {
1055 for (Section_list::iterator p = this->section_list_.begin();
1056 p != this->section_list_.end();
1057 ++p)
1058 this->attach_section_to_segment(*p);
1059
1060 this->sections_are_attached_ = true;
1061 }
1062
1063 // Attach an output section to a segment.
1064
1065 void
1066 Layout::attach_section_to_segment(Output_section* os)
1067 {
1068 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1069 this->unattached_section_list_.push_back(os);
1070 else
1071 this->attach_allocated_section_to_segment(os);
1072 }
1073
1074 // Attach an allocated output section to a segment.
1075
1076 void
1077 Layout::attach_allocated_section_to_segment(Output_section* os)
1078 {
1079 elfcpp::Elf_Xword flags = os->flags();
1080 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1081
1082 if (parameters->options().relocatable())
1083 return;
1084
1085 // If we have a SECTIONS clause, we can't handle the attachment to
1086 // segments until after we've seen all the sections.
1087 if (this->script_options_->saw_sections_clause())
1088 return;
1089
1090 gold_assert(!this->script_options_->saw_phdrs_clause());
1091
1092 // This output section goes into a PT_LOAD segment.
1093
1094 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1095
1096 // Check for --section-start.
1097 uint64_t addr;
1098 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1099
1100 // In general the only thing we really care about for PT_LOAD
1101 // segments is whether or not they are writable, so that is how we
1102 // search for them. Large data sections also go into their own
1103 // PT_LOAD segment. People who need segments sorted on some other
1104 // basis will have to use a linker script.
1105
1106 Segment_list::const_iterator p;
1107 for (p = this->segment_list_.begin();
1108 p != this->segment_list_.end();
1109 ++p)
1110 {
1111 if ((*p)->type() != elfcpp::PT_LOAD)
1112 continue;
1113 if (!parameters->options().omagic()
1114 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1115 continue;
1116 // If -Tbss was specified, we need to separate the data and BSS
1117 // segments.
1118 if (parameters->options().user_set_Tbss())
1119 {
1120 if ((os->type() == elfcpp::SHT_NOBITS)
1121 == (*p)->has_any_data_sections())
1122 continue;
1123 }
1124 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1125 continue;
1126
1127 if (is_address_set)
1128 {
1129 if ((*p)->are_addresses_set())
1130 continue;
1131
1132 (*p)->add_initial_output_data(os);
1133 (*p)->update_flags_for_output_section(seg_flags);
1134 (*p)->set_addresses(addr, addr);
1135 break;
1136 }
1137
1138 (*p)->add_output_section(os, seg_flags, true);
1139 break;
1140 }
1141
1142 if (p == this->segment_list_.end())
1143 {
1144 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1145 seg_flags);
1146 if (os->is_large_data_section())
1147 oseg->set_is_large_data_segment();
1148 oseg->add_output_section(os, seg_flags, true);
1149 if (is_address_set)
1150 oseg->set_addresses(addr, addr);
1151 }
1152
1153 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1154 // segment.
1155 if (os->type() == elfcpp::SHT_NOTE)
1156 {
1157 // See if we already have an equivalent PT_NOTE segment.
1158 for (p = this->segment_list_.begin();
1159 p != segment_list_.end();
1160 ++p)
1161 {
1162 if ((*p)->type() == elfcpp::PT_NOTE
1163 && (((*p)->flags() & elfcpp::PF_W)
1164 == (seg_flags & elfcpp::PF_W)))
1165 {
1166 (*p)->add_output_section(os, seg_flags, false);
1167 break;
1168 }
1169 }
1170
1171 if (p == this->segment_list_.end())
1172 {
1173 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1174 seg_flags);
1175 oseg->add_output_section(os, seg_flags, false);
1176 }
1177 }
1178
1179 // If we see a loadable SHF_TLS section, we create a PT_TLS
1180 // segment. There can only be one such segment.
1181 if ((flags & elfcpp::SHF_TLS) != 0)
1182 {
1183 if (this->tls_segment_ == NULL)
1184 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1185 this->tls_segment_->add_output_section(os, seg_flags, false);
1186 }
1187
1188 // If -z relro is in effect, and we see a relro section, we create a
1189 // PT_GNU_RELRO segment. There can only be one such segment.
1190 if (os->is_relro() && parameters->options().relro())
1191 {
1192 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1193 if (this->relro_segment_ == NULL)
1194 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1195 this->relro_segment_->add_output_section(os, seg_flags, false);
1196 }
1197 }
1198
1199 // Make an output section for a script.
1200
1201 Output_section*
1202 Layout::make_output_section_for_script(
1203 const char* name,
1204 Script_sections::Section_type section_type)
1205 {
1206 name = this->namepool_.add(name, false, NULL);
1207 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1208 if (section_type == Script_sections::ST_NOLOAD)
1209 sh_flags = 0;
1210 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1211 sh_flags, false,
1212 false, false, false, false);
1213 os->set_found_in_sections_clause();
1214 if (section_type == Script_sections::ST_NOLOAD)
1215 os->set_is_noload();
1216 return os;
1217 }
1218
1219 // Return the number of segments we expect to see.
1220
1221 size_t
1222 Layout::expected_segment_count() const
1223 {
1224 size_t ret = this->segment_list_.size();
1225
1226 // If we didn't see a SECTIONS clause in a linker script, we should
1227 // already have the complete list of segments. Otherwise we ask the
1228 // SECTIONS clause how many segments it expects, and add in the ones
1229 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1230
1231 if (!this->script_options_->saw_sections_clause())
1232 return ret;
1233 else
1234 {
1235 const Script_sections* ss = this->script_options_->script_sections();
1236 return ret + ss->expected_segment_count(this);
1237 }
1238 }
1239
1240 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1241 // is whether we saw a .note.GNU-stack section in the object file.
1242 // GNU_STACK_FLAGS is the section flags. The flags give the
1243 // protection required for stack memory. We record this in an
1244 // executable as a PT_GNU_STACK segment. If an object file does not
1245 // have a .note.GNU-stack segment, we must assume that it is an old
1246 // object. On some targets that will force an executable stack.
1247
1248 void
1249 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1250 {
1251 if (!seen_gnu_stack)
1252 this->input_without_gnu_stack_note_ = true;
1253 else
1254 {
1255 this->input_with_gnu_stack_note_ = true;
1256 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1257 this->input_requires_executable_stack_ = true;
1258 }
1259 }
1260
1261 // Create automatic note sections.
1262
1263 void
1264 Layout::create_notes()
1265 {
1266 this->create_gold_note();
1267 this->create_executable_stack_info();
1268 this->create_build_id();
1269 }
1270
1271 // Create the dynamic sections which are needed before we read the
1272 // relocs.
1273
1274 void
1275 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1276 {
1277 if (parameters->doing_static_link())
1278 return;
1279
1280 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1281 elfcpp::SHT_DYNAMIC,
1282 (elfcpp::SHF_ALLOC
1283 | elfcpp::SHF_WRITE),
1284 false, false, true,
1285 true, false, false);
1286
1287 this->dynamic_symbol_ =
1288 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1289 this->dynamic_section_, 0, 0,
1290 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1291 elfcpp::STV_HIDDEN, 0, false, false);
1292
1293 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1294
1295 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1296 }
1297
1298 // For each output section whose name can be represented as C symbol,
1299 // define __start and __stop symbols for the section. This is a GNU
1300 // extension.
1301
1302 void
1303 Layout::define_section_symbols(Symbol_table* symtab)
1304 {
1305 for (Section_list::const_iterator p = this->section_list_.begin();
1306 p != this->section_list_.end();
1307 ++p)
1308 {
1309 const char* const name = (*p)->name();
1310 if (is_cident(name))
1311 {
1312 const std::string name_string(name);
1313 const std::string start_name(cident_section_start_prefix
1314 + name_string);
1315 const std::string stop_name(cident_section_stop_prefix
1316 + name_string);
1317
1318 symtab->define_in_output_data(start_name.c_str(),
1319 NULL, // version
1320 Symbol_table::PREDEFINED,
1321 *p,
1322 0, // value
1323 0, // symsize
1324 elfcpp::STT_NOTYPE,
1325 elfcpp::STB_GLOBAL,
1326 elfcpp::STV_DEFAULT,
1327 0, // nonvis
1328 false, // offset_is_from_end
1329 true); // only_if_ref
1330
1331 symtab->define_in_output_data(stop_name.c_str(),
1332 NULL, // version
1333 Symbol_table::PREDEFINED,
1334 *p,
1335 0, // value
1336 0, // symsize
1337 elfcpp::STT_NOTYPE,
1338 elfcpp::STB_GLOBAL,
1339 elfcpp::STV_DEFAULT,
1340 0, // nonvis
1341 true, // offset_is_from_end
1342 true); // only_if_ref
1343 }
1344 }
1345 }
1346
1347 // Define symbols for group signatures.
1348
1349 void
1350 Layout::define_group_signatures(Symbol_table* symtab)
1351 {
1352 for (Group_signatures::iterator p = this->group_signatures_.begin();
1353 p != this->group_signatures_.end();
1354 ++p)
1355 {
1356 Symbol* sym = symtab->lookup(p->signature, NULL);
1357 if (sym != NULL)
1358 p->section->set_info_symndx(sym);
1359 else
1360 {
1361 // Force the name of the group section to the group
1362 // signature, and use the group's section symbol as the
1363 // signature symbol.
1364 if (strcmp(p->section->name(), p->signature) != 0)
1365 {
1366 const char* name = this->namepool_.add(p->signature,
1367 true, NULL);
1368 p->section->set_name(name);
1369 }
1370 p->section->set_needs_symtab_index();
1371 p->section->set_info_section_symndx(p->section);
1372 }
1373 }
1374
1375 this->group_signatures_.clear();
1376 }
1377
1378 // Find the first read-only PT_LOAD segment, creating one if
1379 // necessary.
1380
1381 Output_segment*
1382 Layout::find_first_load_seg()
1383 {
1384 for (Segment_list::const_iterator p = this->segment_list_.begin();
1385 p != this->segment_list_.end();
1386 ++p)
1387 {
1388 if ((*p)->type() == elfcpp::PT_LOAD
1389 && ((*p)->flags() & elfcpp::PF_R) != 0
1390 && (parameters->options().omagic()
1391 || ((*p)->flags() & elfcpp::PF_W) == 0))
1392 return *p;
1393 }
1394
1395 gold_assert(!this->script_options_->saw_phdrs_clause());
1396
1397 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1398 elfcpp::PF_R);
1399 return load_seg;
1400 }
1401
1402 // Save states of all current output segments. Store saved states
1403 // in SEGMENT_STATES.
1404
1405 void
1406 Layout::save_segments(Segment_states* segment_states)
1407 {
1408 for (Segment_list::const_iterator p = this->segment_list_.begin();
1409 p != this->segment_list_.end();
1410 ++p)
1411 {
1412 Output_segment* segment = *p;
1413 // Shallow copy.
1414 Output_segment* copy = new Output_segment(*segment);
1415 (*segment_states)[segment] = copy;
1416 }
1417 }
1418
1419 // Restore states of output segments and delete any segment not found in
1420 // SEGMENT_STATES.
1421
1422 void
1423 Layout::restore_segments(const Segment_states* segment_states)
1424 {
1425 // Go through the segment list and remove any segment added in the
1426 // relaxation loop.
1427 this->tls_segment_ = NULL;
1428 this->relro_segment_ = NULL;
1429 Segment_list::iterator list_iter = this->segment_list_.begin();
1430 while (list_iter != this->segment_list_.end())
1431 {
1432 Output_segment* segment = *list_iter;
1433 Segment_states::const_iterator states_iter =
1434 segment_states->find(segment);
1435 if (states_iter != segment_states->end())
1436 {
1437 const Output_segment* copy = states_iter->second;
1438 // Shallow copy to restore states.
1439 *segment = *copy;
1440
1441 // Also fix up TLS and RELRO segment pointers as appropriate.
1442 if (segment->type() == elfcpp::PT_TLS)
1443 this->tls_segment_ = segment;
1444 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1445 this->relro_segment_ = segment;
1446
1447 ++list_iter;
1448 }
1449 else
1450 {
1451 list_iter = this->segment_list_.erase(list_iter);
1452 // This is a segment created during section layout. It should be
1453 // safe to remove it since we should have removed all pointers to it.
1454 delete segment;
1455 }
1456 }
1457 }
1458
1459 // Clean up after relaxation so that sections can be laid out again.
1460
1461 void
1462 Layout::clean_up_after_relaxation()
1463 {
1464 // Restore the segments to point state just prior to the relaxation loop.
1465 Script_sections* script_section = this->script_options_->script_sections();
1466 script_section->release_segments();
1467 this->restore_segments(this->segment_states_);
1468
1469 // Reset section addresses and file offsets
1470 for (Section_list::iterator p = this->section_list_.begin();
1471 p != this->section_list_.end();
1472 ++p)
1473 {
1474 (*p)->restore_states();
1475
1476 // If an input section changes size because of relaxation,
1477 // we need to adjust the section offsets of all input sections.
1478 // after such a section.
1479 if ((*p)->section_offsets_need_adjustment())
1480 (*p)->adjust_section_offsets();
1481
1482 (*p)->reset_address_and_file_offset();
1483 }
1484
1485 // Reset special output object address and file offsets.
1486 for (Data_list::iterator p = this->special_output_list_.begin();
1487 p != this->special_output_list_.end();
1488 ++p)
1489 (*p)->reset_address_and_file_offset();
1490
1491 // A linker script may have created some output section data objects.
1492 // They are useless now.
1493 for (Output_section_data_list::const_iterator p =
1494 this->script_output_section_data_list_.begin();
1495 p != this->script_output_section_data_list_.end();
1496 ++p)
1497 delete *p;
1498 this->script_output_section_data_list_.clear();
1499 }
1500
1501 // Prepare for relaxation.
1502
1503 void
1504 Layout::prepare_for_relaxation()
1505 {
1506 // Create an relaxation debug check if in debugging mode.
1507 if (is_debugging_enabled(DEBUG_RELAXATION))
1508 this->relaxation_debug_check_ = new Relaxation_debug_check();
1509
1510 // Save segment states.
1511 this->segment_states_ = new Segment_states();
1512 this->save_segments(this->segment_states_);
1513
1514 for(Section_list::const_iterator p = this->section_list_.begin();
1515 p != this->section_list_.end();
1516 ++p)
1517 (*p)->save_states();
1518
1519 if (is_debugging_enabled(DEBUG_RELAXATION))
1520 this->relaxation_debug_check_->check_output_data_for_reset_values(
1521 this->section_list_, this->special_output_list_);
1522
1523 // Also enable recording of output section data from scripts.
1524 this->record_output_section_data_from_script_ = true;
1525 }
1526
1527 // Relaxation loop body: If target has no relaxation, this runs only once
1528 // Otherwise, the target relaxation hook is called at the end of
1529 // each iteration. If the hook returns true, it means re-layout of
1530 // section is required.
1531 //
1532 // The number of segments created by a linking script without a PHDRS
1533 // clause may be affected by section sizes and alignments. There is
1534 // a remote chance that relaxation causes different number of PT_LOAD
1535 // segments are created and sections are attached to different segments.
1536 // Therefore, we always throw away all segments created during section
1537 // layout. In order to be able to restart the section layout, we keep
1538 // a copy of the segment list right before the relaxation loop and use
1539 // that to restore the segments.
1540 //
1541 // PASS is the current relaxation pass number.
1542 // SYMTAB is a symbol table.
1543 // PLOAD_SEG is the address of a pointer for the load segment.
1544 // PHDR_SEG is a pointer to the PHDR segment.
1545 // SEGMENT_HEADERS points to the output segment header.
1546 // FILE_HEADER points to the output file header.
1547 // PSHNDX is the address to store the output section index.
1548
1549 off_t inline
1550 Layout::relaxation_loop_body(
1551 int pass,
1552 Target* target,
1553 Symbol_table* symtab,
1554 Output_segment** pload_seg,
1555 Output_segment* phdr_seg,
1556 Output_segment_headers* segment_headers,
1557 Output_file_header* file_header,
1558 unsigned int* pshndx)
1559 {
1560 // If this is not the first iteration, we need to clean up after
1561 // relaxation so that we can lay out the sections again.
1562 if (pass != 0)
1563 this->clean_up_after_relaxation();
1564
1565 // If there is a SECTIONS clause, put all the input sections into
1566 // the required order.
1567 Output_segment* load_seg;
1568 if (this->script_options_->saw_sections_clause())
1569 load_seg = this->set_section_addresses_from_script(symtab);
1570 else if (parameters->options().relocatable())
1571 load_seg = NULL;
1572 else
1573 load_seg = this->find_first_load_seg();
1574
1575 if (parameters->options().oformat_enum()
1576 != General_options::OBJECT_FORMAT_ELF)
1577 load_seg = NULL;
1578
1579 // If the user set the address of the text segment, that may not be
1580 // compatible with putting the segment headers and file headers into
1581 // that segment.
1582 if (parameters->options().user_set_Ttext())
1583 load_seg = NULL;
1584
1585 gold_assert(phdr_seg == NULL
1586 || load_seg != NULL
1587 || this->script_options_->saw_sections_clause());
1588
1589 // If the address of the load segment we found has been set by
1590 // --section-start rather than by a script, then we don't want to
1591 // use it for the file and segment headers.
1592 if (load_seg != NULL
1593 && load_seg->are_addresses_set()
1594 && !this->script_options_->saw_sections_clause())
1595 load_seg = NULL;
1596
1597 // Lay out the segment headers.
1598 if (!parameters->options().relocatable())
1599 {
1600 gold_assert(segment_headers != NULL);
1601 if (load_seg != NULL)
1602 load_seg->add_initial_output_data(segment_headers);
1603 if (phdr_seg != NULL)
1604 phdr_seg->add_initial_output_data(segment_headers);
1605 }
1606
1607 // Lay out the file header.
1608 if (load_seg != NULL)
1609 load_seg->add_initial_output_data(file_header);
1610
1611 if (this->script_options_->saw_phdrs_clause()
1612 && !parameters->options().relocatable())
1613 {
1614 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1615 // clause in a linker script.
1616 Script_sections* ss = this->script_options_->script_sections();
1617 ss->put_headers_in_phdrs(file_header, segment_headers);
1618 }
1619
1620 // We set the output section indexes in set_segment_offsets and
1621 // set_section_indexes.
1622 *pshndx = 1;
1623
1624 // Set the file offsets of all the segments, and all the sections
1625 // they contain.
1626 off_t off;
1627 if (!parameters->options().relocatable())
1628 off = this->set_segment_offsets(target, load_seg, pshndx);
1629 else
1630 off = this->set_relocatable_section_offsets(file_header, pshndx);
1631
1632 // Verify that the dummy relaxation does not change anything.
1633 if (is_debugging_enabled(DEBUG_RELAXATION))
1634 {
1635 if (pass == 0)
1636 this->relaxation_debug_check_->read_sections(this->section_list_);
1637 else
1638 this->relaxation_debug_check_->verify_sections(this->section_list_);
1639 }
1640
1641 *pload_seg = load_seg;
1642 return off;
1643 }
1644
1645 // Finalize the layout. When this is called, we have created all the
1646 // output sections and all the output segments which are based on
1647 // input sections. We have several things to do, and we have to do
1648 // them in the right order, so that we get the right results correctly
1649 // and efficiently.
1650
1651 // 1) Finalize the list of output segments and create the segment
1652 // table header.
1653
1654 // 2) Finalize the dynamic symbol table and associated sections.
1655
1656 // 3) Determine the final file offset of all the output segments.
1657
1658 // 4) Determine the final file offset of all the SHF_ALLOC output
1659 // sections.
1660
1661 // 5) Create the symbol table sections and the section name table
1662 // section.
1663
1664 // 6) Finalize the symbol table: set symbol values to their final
1665 // value and make a final determination of which symbols are going
1666 // into the output symbol table.
1667
1668 // 7) Create the section table header.
1669
1670 // 8) Determine the final file offset of all the output sections which
1671 // are not SHF_ALLOC, including the section table header.
1672
1673 // 9) Finalize the ELF file header.
1674
1675 // This function returns the size of the output file.
1676
1677 off_t
1678 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1679 Target* target, const Task* task)
1680 {
1681 target->finalize_sections(this, input_objects, symtab);
1682
1683 this->count_local_symbols(task, input_objects);
1684
1685 this->link_stabs_sections();
1686
1687 Output_segment* phdr_seg = NULL;
1688 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1689 {
1690 // There was a dynamic object in the link. We need to create
1691 // some information for the dynamic linker.
1692
1693 // Create the PT_PHDR segment which will hold the program
1694 // headers.
1695 if (!this->script_options_->saw_phdrs_clause())
1696 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1697
1698 // Create the dynamic symbol table, including the hash table.
1699 Output_section* dynstr;
1700 std::vector<Symbol*> dynamic_symbols;
1701 unsigned int local_dynamic_count;
1702 Versions versions(*this->script_options()->version_script_info(),
1703 &this->dynpool_);
1704 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1705 &local_dynamic_count, &dynamic_symbols,
1706 &versions);
1707
1708 // Create the .interp section to hold the name of the
1709 // interpreter, and put it in a PT_INTERP segment.
1710 if (!parameters->options().shared())
1711 this->create_interp(target);
1712
1713 // Finish the .dynamic section to hold the dynamic data, and put
1714 // it in a PT_DYNAMIC segment.
1715 this->finish_dynamic_section(input_objects, symtab);
1716
1717 // We should have added everything we need to the dynamic string
1718 // table.
1719 this->dynpool_.set_string_offsets();
1720
1721 // Create the version sections. We can't do this until the
1722 // dynamic string table is complete.
1723 this->create_version_sections(&versions, symtab, local_dynamic_count,
1724 dynamic_symbols, dynstr);
1725
1726 // Set the size of the _DYNAMIC symbol. We can't do this until
1727 // after we call create_version_sections.
1728 this->set_dynamic_symbol_size(symtab);
1729 }
1730
1731 if (this->incremental_inputs_)
1732 {
1733 this->incremental_inputs_->finalize();
1734 this->create_incremental_info_sections();
1735 }
1736
1737 // Create segment headers.
1738 Output_segment_headers* segment_headers =
1739 (parameters->options().relocatable()
1740 ? NULL
1741 : new Output_segment_headers(this->segment_list_));
1742
1743 // Lay out the file header.
1744 Output_file_header* file_header
1745 = new Output_file_header(target, symtab, segment_headers,
1746 parameters->options().entry());
1747
1748 this->special_output_list_.push_back(file_header);
1749 if (segment_headers != NULL)
1750 this->special_output_list_.push_back(segment_headers);
1751
1752 // Find approriate places for orphan output sections if we are using
1753 // a linker script.
1754 if (this->script_options_->saw_sections_clause())
1755 this->place_orphan_sections_in_script();
1756
1757 Output_segment* load_seg;
1758 off_t off;
1759 unsigned int shndx;
1760 int pass = 0;
1761
1762 // Take a snapshot of the section layout as needed.
1763 if (target->may_relax())
1764 this->prepare_for_relaxation();
1765
1766 // Run the relaxation loop to lay out sections.
1767 do
1768 {
1769 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1770 phdr_seg, segment_headers, file_header,
1771 &shndx);
1772 pass++;
1773 }
1774 while (target->may_relax()
1775 && target->relax(pass, input_objects, symtab, this));
1776
1777 // Set the file offsets of all the non-data sections we've seen so
1778 // far which don't have to wait for the input sections. We need
1779 // this in order to finalize local symbols in non-allocated
1780 // sections.
1781 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1782
1783 // Set the section indexes of all unallocated sections seen so far,
1784 // in case any of them are somehow referenced by a symbol.
1785 shndx = this->set_section_indexes(shndx);
1786
1787 // Create the symbol table sections.
1788 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1789 if (!parameters->doing_static_link())
1790 this->assign_local_dynsym_offsets(input_objects);
1791
1792 // Process any symbol assignments from a linker script. This must
1793 // be called after the symbol table has been finalized.
1794 this->script_options_->finalize_symbols(symtab, this);
1795
1796 // Create the .shstrtab section.
1797 Output_section* shstrtab_section = this->create_shstrtab();
1798
1799 // Set the file offsets of the rest of the non-data sections which
1800 // don't have to wait for the input sections.
1801 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1802
1803 // Now that all sections have been created, set the section indexes
1804 // for any sections which haven't been done yet.
1805 shndx = this->set_section_indexes(shndx);
1806
1807 // Create the section table header.
1808 this->create_shdrs(shstrtab_section, &off);
1809
1810 // If there are no sections which require postprocessing, we can
1811 // handle the section names now, and avoid a resize later.
1812 if (!this->any_postprocessing_sections_)
1813 off = this->set_section_offsets(off,
1814 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1815
1816 file_header->set_section_info(this->section_headers_, shstrtab_section);
1817
1818 // Now we know exactly where everything goes in the output file
1819 // (except for non-allocated sections which require postprocessing).
1820 Output_data::layout_complete();
1821
1822 this->output_file_size_ = off;
1823
1824 return off;
1825 }
1826
1827 // Create a note header following the format defined in the ELF ABI.
1828 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1829 // of the section to create, DESCSZ is the size of the descriptor.
1830 // ALLOCATE is true if the section should be allocated in memory.
1831 // This returns the new note section. It sets *TRAILING_PADDING to
1832 // the number of trailing zero bytes required.
1833
1834 Output_section*
1835 Layout::create_note(const char* name, int note_type,
1836 const char* section_name, size_t descsz,
1837 bool allocate, size_t* trailing_padding)
1838 {
1839 // Authorities all agree that the values in a .note field should
1840 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1841 // they differ on what the alignment is for 64-bit binaries.
1842 // The GABI says unambiguously they take 8-byte alignment:
1843 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1844 // Other documentation says alignment should always be 4 bytes:
1845 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1846 // GNU ld and GNU readelf both support the latter (at least as of
1847 // version 2.16.91), and glibc always generates the latter for
1848 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1849 // here.
1850 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1851 const int size = parameters->target().get_size();
1852 #else
1853 const int size = 32;
1854 #endif
1855
1856 // The contents of the .note section.
1857 size_t namesz = strlen(name) + 1;
1858 size_t aligned_namesz = align_address(namesz, size / 8);
1859 size_t aligned_descsz = align_address(descsz, size / 8);
1860
1861 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1862
1863 unsigned char* buffer = new unsigned char[notehdrsz];
1864 memset(buffer, 0, notehdrsz);
1865
1866 bool is_big_endian = parameters->target().is_big_endian();
1867
1868 if (size == 32)
1869 {
1870 if (!is_big_endian)
1871 {
1872 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1873 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1874 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1875 }
1876 else
1877 {
1878 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1879 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1880 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1881 }
1882 }
1883 else if (size == 64)
1884 {
1885 if (!is_big_endian)
1886 {
1887 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1888 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1889 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1890 }
1891 else
1892 {
1893 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1894 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1895 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1896 }
1897 }
1898 else
1899 gold_unreachable();
1900
1901 memcpy(buffer + 3 * (size / 8), name, namesz);
1902
1903 elfcpp::Elf_Xword flags = 0;
1904 if (allocate)
1905 flags = elfcpp::SHF_ALLOC;
1906 Output_section* os = this->choose_output_section(NULL, section_name,
1907 elfcpp::SHT_NOTE,
1908 flags, false, false,
1909 false, false, false, false);
1910 if (os == NULL)
1911 return NULL;
1912
1913 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1914 size / 8,
1915 "** note header");
1916 os->add_output_section_data(posd);
1917
1918 *trailing_padding = aligned_descsz - descsz;
1919
1920 return os;
1921 }
1922
1923 // For an executable or shared library, create a note to record the
1924 // version of gold used to create the binary.
1925
1926 void
1927 Layout::create_gold_note()
1928 {
1929 if (parameters->options().relocatable())
1930 return;
1931
1932 std::string desc = std::string("gold ") + gold::get_version_string();
1933
1934 size_t trailing_padding;
1935 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1936 ".note.gnu.gold-version", desc.size(),
1937 false, &trailing_padding);
1938 if (os == NULL)
1939 return;
1940
1941 Output_section_data* posd = new Output_data_const(desc, 4);
1942 os->add_output_section_data(posd);
1943
1944 if (trailing_padding > 0)
1945 {
1946 posd = new Output_data_zero_fill(trailing_padding, 0);
1947 os->add_output_section_data(posd);
1948 }
1949 }
1950
1951 // Record whether the stack should be executable. This can be set
1952 // from the command line using the -z execstack or -z noexecstack
1953 // options. Otherwise, if any input file has a .note.GNU-stack
1954 // section with the SHF_EXECINSTR flag set, the stack should be
1955 // executable. Otherwise, if at least one input file a
1956 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1957 // section, we use the target default for whether the stack should be
1958 // executable. Otherwise, we don't generate a stack note. When
1959 // generating a object file, we create a .note.GNU-stack section with
1960 // the appropriate marking. When generating an executable or shared
1961 // library, we create a PT_GNU_STACK segment.
1962
1963 void
1964 Layout::create_executable_stack_info()
1965 {
1966 bool is_stack_executable;
1967 if (parameters->options().is_execstack_set())
1968 is_stack_executable = parameters->options().is_stack_executable();
1969 else if (!this->input_with_gnu_stack_note_)
1970 return;
1971 else
1972 {
1973 if (this->input_requires_executable_stack_)
1974 is_stack_executable = true;
1975 else if (this->input_without_gnu_stack_note_)
1976 is_stack_executable =
1977 parameters->target().is_default_stack_executable();
1978 else
1979 is_stack_executable = false;
1980 }
1981
1982 if (parameters->options().relocatable())
1983 {
1984 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1985 elfcpp::Elf_Xword flags = 0;
1986 if (is_stack_executable)
1987 flags |= elfcpp::SHF_EXECINSTR;
1988 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1989 false, false, false, false);
1990 }
1991 else
1992 {
1993 if (this->script_options_->saw_phdrs_clause())
1994 return;
1995 int flags = elfcpp::PF_R | elfcpp::PF_W;
1996 if (is_stack_executable)
1997 flags |= elfcpp::PF_X;
1998 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1999 }
2000 }
2001
2002 // If --build-id was used, set up the build ID note.
2003
2004 void
2005 Layout::create_build_id()
2006 {
2007 if (!parameters->options().user_set_build_id())
2008 return;
2009
2010 const char* style = parameters->options().build_id();
2011 if (strcmp(style, "none") == 0)
2012 return;
2013
2014 // Set DESCSZ to the size of the note descriptor. When possible,
2015 // set DESC to the note descriptor contents.
2016 size_t descsz;
2017 std::string desc;
2018 if (strcmp(style, "md5") == 0)
2019 descsz = 128 / 8;
2020 else if (strcmp(style, "sha1") == 0)
2021 descsz = 160 / 8;
2022 else if (strcmp(style, "uuid") == 0)
2023 {
2024 const size_t uuidsz = 128 / 8;
2025
2026 char buffer[uuidsz];
2027 memset(buffer, 0, uuidsz);
2028
2029 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2030 if (descriptor < 0)
2031 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2032 strerror(errno));
2033 else
2034 {
2035 ssize_t got = ::read(descriptor, buffer, uuidsz);
2036 release_descriptor(descriptor, true);
2037 if (got < 0)
2038 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2039 else if (static_cast<size_t>(got) != uuidsz)
2040 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2041 uuidsz, got);
2042 }
2043
2044 desc.assign(buffer, uuidsz);
2045 descsz = uuidsz;
2046 }
2047 else if (strncmp(style, "0x", 2) == 0)
2048 {
2049 hex_init();
2050 const char* p = style + 2;
2051 while (*p != '\0')
2052 {
2053 if (hex_p(p[0]) && hex_p(p[1]))
2054 {
2055 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2056 desc += c;
2057 p += 2;
2058 }
2059 else if (*p == '-' || *p == ':')
2060 ++p;
2061 else
2062 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2063 style);
2064 }
2065 descsz = desc.size();
2066 }
2067 else
2068 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2069
2070 // Create the note.
2071 size_t trailing_padding;
2072 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2073 ".note.gnu.build-id", descsz, true,
2074 &trailing_padding);
2075 if (os == NULL)
2076 return;
2077
2078 if (!desc.empty())
2079 {
2080 // We know the value already, so we fill it in now.
2081 gold_assert(desc.size() == descsz);
2082
2083 Output_section_data* posd = new Output_data_const(desc, 4);
2084 os->add_output_section_data(posd);
2085
2086 if (trailing_padding != 0)
2087 {
2088 posd = new Output_data_zero_fill(trailing_padding, 0);
2089 os->add_output_section_data(posd);
2090 }
2091 }
2092 else
2093 {
2094 // We need to compute a checksum after we have completed the
2095 // link.
2096 gold_assert(trailing_padding == 0);
2097 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2098 os->add_output_section_data(this->build_id_note_);
2099 }
2100 }
2101
2102 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2103 // field of the former should point to the latter. I'm not sure who
2104 // started this, but the GNU linker does it, and some tools depend
2105 // upon it.
2106
2107 void
2108 Layout::link_stabs_sections()
2109 {
2110 if (!this->have_stabstr_section_)
2111 return;
2112
2113 for (Section_list::iterator p = this->section_list_.begin();
2114 p != this->section_list_.end();
2115 ++p)
2116 {
2117 if ((*p)->type() != elfcpp::SHT_STRTAB)
2118 continue;
2119
2120 const char* name = (*p)->name();
2121 if (strncmp(name, ".stab", 5) != 0)
2122 continue;
2123
2124 size_t len = strlen(name);
2125 if (strcmp(name + len - 3, "str") != 0)
2126 continue;
2127
2128 std::string stab_name(name, len - 3);
2129 Output_section* stab_sec;
2130 stab_sec = this->find_output_section(stab_name.c_str());
2131 if (stab_sec != NULL)
2132 stab_sec->set_link_section(*p);
2133 }
2134 }
2135
2136 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2137 // for the next run of incremental linking to check what has changed.
2138
2139 void
2140 Layout::create_incremental_info_sections()
2141 {
2142 gold_assert(this->incremental_inputs_ != NULL);
2143
2144 // Add the .gnu_incremental_inputs section.
2145 const char *incremental_inputs_name =
2146 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2147 Output_section* inputs_os =
2148 this->make_output_section(incremental_inputs_name,
2149 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2150 false, false, false, false, false);
2151 Output_section_data* posd =
2152 this->incremental_inputs_->create_incremental_inputs_section_data();
2153 inputs_os->add_output_section_data(posd);
2154
2155 // Add the .gnu_incremental_strtab section.
2156 const char *incremental_strtab_name =
2157 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2158 Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2159 elfcpp::SHT_STRTAB,
2160 0, false, false,
2161 false, false, false);
2162 Output_data_strtab* strtab_data =
2163 new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2164 strtab_os->add_output_section_data(strtab_data);
2165
2166 inputs_os->set_link_section(strtab_data);
2167 }
2168
2169 // Return whether SEG1 should be before SEG2 in the output file. This
2170 // is based entirely on the segment type and flags. When this is
2171 // called the segment addresses has normally not yet been set.
2172
2173 bool
2174 Layout::segment_precedes(const Output_segment* seg1,
2175 const Output_segment* seg2)
2176 {
2177 elfcpp::Elf_Word type1 = seg1->type();
2178 elfcpp::Elf_Word type2 = seg2->type();
2179
2180 // The single PT_PHDR segment is required to precede any loadable
2181 // segment. We simply make it always first.
2182 if (type1 == elfcpp::PT_PHDR)
2183 {
2184 gold_assert(type2 != elfcpp::PT_PHDR);
2185 return true;
2186 }
2187 if (type2 == elfcpp::PT_PHDR)
2188 return false;
2189
2190 // The single PT_INTERP segment is required to precede any loadable
2191 // segment. We simply make it always second.
2192 if (type1 == elfcpp::PT_INTERP)
2193 {
2194 gold_assert(type2 != elfcpp::PT_INTERP);
2195 return true;
2196 }
2197 if (type2 == elfcpp::PT_INTERP)
2198 return false;
2199
2200 // We then put PT_LOAD segments before any other segments.
2201 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2202 return true;
2203 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2204 return false;
2205
2206 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2207 // segment, because that is where the dynamic linker expects to find
2208 // it (this is just for efficiency; other positions would also work
2209 // correctly).
2210 if (type1 == elfcpp::PT_TLS
2211 && type2 != elfcpp::PT_TLS
2212 && type2 != elfcpp::PT_GNU_RELRO)
2213 return false;
2214 if (type2 == elfcpp::PT_TLS
2215 && type1 != elfcpp::PT_TLS
2216 && type1 != elfcpp::PT_GNU_RELRO)
2217 return true;
2218
2219 // We put the PT_GNU_RELRO segment last, because that is where the
2220 // dynamic linker expects to find it (as with PT_TLS, this is just
2221 // for efficiency).
2222 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2223 return false;
2224 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2225 return true;
2226
2227 const elfcpp::Elf_Word flags1 = seg1->flags();
2228 const elfcpp::Elf_Word flags2 = seg2->flags();
2229
2230 // The order of non-PT_LOAD segments is unimportant. We simply sort
2231 // by the numeric segment type and flags values. There should not
2232 // be more than one segment with the same type and flags.
2233 if (type1 != elfcpp::PT_LOAD)
2234 {
2235 if (type1 != type2)
2236 return type1 < type2;
2237 gold_assert(flags1 != flags2);
2238 return flags1 < flags2;
2239 }
2240
2241 // If the addresses are set already, sort by load address.
2242 if (seg1->are_addresses_set())
2243 {
2244 if (!seg2->are_addresses_set())
2245 return true;
2246
2247 unsigned int section_count1 = seg1->output_section_count();
2248 unsigned int section_count2 = seg2->output_section_count();
2249 if (section_count1 == 0 && section_count2 > 0)
2250 return true;
2251 if (section_count1 > 0 && section_count2 == 0)
2252 return false;
2253
2254 uint64_t paddr1 = seg1->first_section_load_address();
2255 uint64_t paddr2 = seg2->first_section_load_address();
2256 if (paddr1 != paddr2)
2257 return paddr1 < paddr2;
2258 }
2259 else if (seg2->are_addresses_set())
2260 return false;
2261
2262 // A segment which holds large data comes after a segment which does
2263 // not hold large data.
2264 if (seg1->is_large_data_segment())
2265 {
2266 if (!seg2->is_large_data_segment())
2267 return false;
2268 }
2269 else if (seg2->is_large_data_segment())
2270 return true;
2271
2272 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2273 // segments come before writable segments. Then writable segments
2274 // with data come before writable segments without data. Then
2275 // executable segments come before non-executable segments. Then
2276 // the unlikely case of a non-readable segment comes before the
2277 // normal case of a readable segment. If there are multiple
2278 // segments with the same type and flags, we require that the
2279 // address be set, and we sort by virtual address and then physical
2280 // address.
2281 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2282 return (flags1 & elfcpp::PF_W) == 0;
2283 if ((flags1 & elfcpp::PF_W) != 0
2284 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2285 return seg1->has_any_data_sections();
2286 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2287 return (flags1 & elfcpp::PF_X) != 0;
2288 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2289 return (flags1 & elfcpp::PF_R) == 0;
2290
2291 // We shouldn't get here--we shouldn't create segments which we
2292 // can't distinguish.
2293 gold_unreachable();
2294 }
2295
2296 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2297
2298 static off_t
2299 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2300 {
2301 uint64_t unsigned_off = off;
2302 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2303 | (addr & (abi_pagesize - 1)));
2304 if (aligned_off < unsigned_off)
2305 aligned_off += abi_pagesize;
2306 return aligned_off;
2307 }
2308
2309 // Set the file offsets of all the segments, and all the sections they
2310 // contain. They have all been created. LOAD_SEG must be be laid out
2311 // first. Return the offset of the data to follow.
2312
2313 off_t
2314 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2315 unsigned int *pshndx)
2316 {
2317 // Sort them into the final order.
2318 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2319 Layout::Compare_segments());
2320
2321 // Find the PT_LOAD segments, and set their addresses and offsets
2322 // and their section's addresses and offsets.
2323 uint64_t addr;
2324 if (parameters->options().user_set_Ttext())
2325 addr = parameters->options().Ttext();
2326 else if (parameters->options().output_is_position_independent())
2327 addr = 0;
2328 else
2329 addr = target->default_text_segment_address();
2330 off_t off = 0;
2331
2332 // If LOAD_SEG is NULL, then the file header and segment headers
2333 // will not be loadable. But they still need to be at offset 0 in
2334 // the file. Set their offsets now.
2335 if (load_seg == NULL)
2336 {
2337 for (Data_list::iterator p = this->special_output_list_.begin();
2338 p != this->special_output_list_.end();
2339 ++p)
2340 {
2341 off = align_address(off, (*p)->addralign());
2342 (*p)->set_address_and_file_offset(0, off);
2343 off += (*p)->data_size();
2344 }
2345 }
2346
2347 unsigned int increase_relro = this->increase_relro_;
2348 if (this->script_options_->saw_sections_clause())
2349 increase_relro = 0;
2350
2351 const bool check_sections = parameters->options().check_sections();
2352 Output_segment* last_load_segment = NULL;
2353
2354 bool was_readonly = false;
2355 for (Segment_list::iterator p = this->segment_list_.begin();
2356 p != this->segment_list_.end();
2357 ++p)
2358 {
2359 if ((*p)->type() == elfcpp::PT_LOAD)
2360 {
2361 if (load_seg != NULL && load_seg != *p)
2362 gold_unreachable();
2363 load_seg = NULL;
2364
2365 bool are_addresses_set = (*p)->are_addresses_set();
2366 if (are_addresses_set)
2367 {
2368 // When it comes to setting file offsets, we care about
2369 // the physical address.
2370 addr = (*p)->paddr();
2371 }
2372 else if (parameters->options().user_set_Tdata()
2373 && ((*p)->flags() & elfcpp::PF_W) != 0
2374 && (!parameters->options().user_set_Tbss()
2375 || (*p)->has_any_data_sections()))
2376 {
2377 addr = parameters->options().Tdata();
2378 are_addresses_set = true;
2379 }
2380 else if (parameters->options().user_set_Tbss()
2381 && ((*p)->flags() & elfcpp::PF_W) != 0
2382 && !(*p)->has_any_data_sections())
2383 {
2384 addr = parameters->options().Tbss();
2385 are_addresses_set = true;
2386 }
2387
2388 uint64_t orig_addr = addr;
2389 uint64_t orig_off = off;
2390
2391 uint64_t aligned_addr = 0;
2392 uint64_t abi_pagesize = target->abi_pagesize();
2393 uint64_t common_pagesize = target->common_pagesize();
2394
2395 if (!parameters->options().nmagic()
2396 && !parameters->options().omagic())
2397 (*p)->set_minimum_p_align(common_pagesize);
2398
2399 if (!are_addresses_set)
2400 {
2401 // If the last segment was readonly, and this one is
2402 // not, then skip the address forward one page,
2403 // maintaining the same position within the page. This
2404 // lets us store both segments overlapping on a single
2405 // page in the file, but the loader will put them on
2406 // different pages in memory.
2407
2408 addr = align_address(addr, (*p)->maximum_alignment());
2409 aligned_addr = addr;
2410
2411 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2412 {
2413 if ((addr & (abi_pagesize - 1)) != 0)
2414 addr = addr + abi_pagesize;
2415 }
2416
2417 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2418 }
2419
2420 if (!parameters->options().nmagic()
2421 && !parameters->options().omagic())
2422 off = align_file_offset(off, addr, abi_pagesize);
2423 else if (load_seg == NULL)
2424 {
2425 // This is -N or -n with a section script which prevents
2426 // us from using a load segment. We need to ensure that
2427 // the file offset is aligned to the alignment of the
2428 // segment. This is because the linker script
2429 // implicitly assumed a zero offset. If we don't align
2430 // here, then the alignment of the sections in the
2431 // linker script may not match the alignment of the
2432 // sections in the set_section_addresses call below,
2433 // causing an error about dot moving backward.
2434 off = align_address(off, (*p)->maximum_alignment());
2435 }
2436
2437 unsigned int shndx_hold = *pshndx;
2438 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2439 increase_relro,
2440 &off, pshndx);
2441
2442 // Now that we know the size of this segment, we may be able
2443 // to save a page in memory, at the cost of wasting some
2444 // file space, by instead aligning to the start of a new
2445 // page. Here we use the real machine page size rather than
2446 // the ABI mandated page size.
2447
2448 if (!are_addresses_set && aligned_addr != addr)
2449 {
2450 uint64_t first_off = (common_pagesize
2451 - (aligned_addr
2452 & (common_pagesize - 1)));
2453 uint64_t last_off = new_addr & (common_pagesize - 1);
2454 if (first_off > 0
2455 && last_off > 0
2456 && ((aligned_addr & ~ (common_pagesize - 1))
2457 != (new_addr & ~ (common_pagesize - 1)))
2458 && first_off + last_off <= common_pagesize)
2459 {
2460 *pshndx = shndx_hold;
2461 addr = align_address(aligned_addr, common_pagesize);
2462 addr = align_address(addr, (*p)->maximum_alignment());
2463 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2464 off = align_file_offset(off, addr, abi_pagesize);
2465 new_addr = (*p)->set_section_addresses(this, true, addr,
2466 increase_relro,
2467 &off, pshndx);
2468 }
2469 }
2470
2471 addr = new_addr;
2472
2473 if (((*p)->flags() & elfcpp::PF_W) == 0)
2474 was_readonly = true;
2475
2476 // Implement --check-sections. We know that the segments
2477 // are sorted by LMA.
2478 if (check_sections && last_load_segment != NULL)
2479 {
2480 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2481 if (last_load_segment->paddr() + last_load_segment->memsz()
2482 > (*p)->paddr())
2483 {
2484 unsigned long long lb1 = last_load_segment->paddr();
2485 unsigned long long le1 = lb1 + last_load_segment->memsz();
2486 unsigned long long lb2 = (*p)->paddr();
2487 unsigned long long le2 = lb2 + (*p)->memsz();
2488 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2489 "[0x%llx -> 0x%llx]"),
2490 lb1, le1, lb2, le2);
2491 }
2492 }
2493 last_load_segment = *p;
2494 }
2495 }
2496
2497 // Handle the non-PT_LOAD segments, setting their offsets from their
2498 // section's offsets.
2499 for (Segment_list::iterator p = this->segment_list_.begin();
2500 p != this->segment_list_.end();
2501 ++p)
2502 {
2503 if ((*p)->type() != elfcpp::PT_LOAD)
2504 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2505 ? increase_relro
2506 : 0);
2507 }
2508
2509 // Set the TLS offsets for each section in the PT_TLS segment.
2510 if (this->tls_segment_ != NULL)
2511 this->tls_segment_->set_tls_offsets();
2512
2513 return off;
2514 }
2515
2516 // Set the offsets of all the allocated sections when doing a
2517 // relocatable link. This does the same jobs as set_segment_offsets,
2518 // only for a relocatable link.
2519
2520 off_t
2521 Layout::set_relocatable_section_offsets(Output_data* file_header,
2522 unsigned int *pshndx)
2523 {
2524 off_t off = 0;
2525
2526 file_header->set_address_and_file_offset(0, 0);
2527 off += file_header->data_size();
2528
2529 for (Section_list::iterator p = this->section_list_.begin();
2530 p != this->section_list_.end();
2531 ++p)
2532 {
2533 // We skip unallocated sections here, except that group sections
2534 // have to come first.
2535 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2536 && (*p)->type() != elfcpp::SHT_GROUP)
2537 continue;
2538
2539 off = align_address(off, (*p)->addralign());
2540
2541 // The linker script might have set the address.
2542 if (!(*p)->is_address_valid())
2543 (*p)->set_address(0);
2544 (*p)->set_file_offset(off);
2545 (*p)->finalize_data_size();
2546 off += (*p)->data_size();
2547
2548 (*p)->set_out_shndx(*pshndx);
2549 ++*pshndx;
2550 }
2551
2552 return off;
2553 }
2554
2555 // Set the file offset of all the sections not associated with a
2556 // segment.
2557
2558 off_t
2559 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2560 {
2561 for (Section_list::iterator p = this->unattached_section_list_.begin();
2562 p != this->unattached_section_list_.end();
2563 ++p)
2564 {
2565 // The symtab section is handled in create_symtab_sections.
2566 if (*p == this->symtab_section_)
2567 continue;
2568
2569 // If we've already set the data size, don't set it again.
2570 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2571 continue;
2572
2573 if (pass == BEFORE_INPUT_SECTIONS_PASS
2574 && (*p)->requires_postprocessing())
2575 {
2576 (*p)->create_postprocessing_buffer();
2577 this->any_postprocessing_sections_ = true;
2578 }
2579
2580 if (pass == BEFORE_INPUT_SECTIONS_PASS
2581 && (*p)->after_input_sections())
2582 continue;
2583 else if (pass == POSTPROCESSING_SECTIONS_PASS
2584 && (!(*p)->after_input_sections()
2585 || (*p)->type() == elfcpp::SHT_STRTAB))
2586 continue;
2587 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2588 && (!(*p)->after_input_sections()
2589 || (*p)->type() != elfcpp::SHT_STRTAB))
2590 continue;
2591
2592 off = align_address(off, (*p)->addralign());
2593 (*p)->set_file_offset(off);
2594 (*p)->finalize_data_size();
2595 off += (*p)->data_size();
2596
2597 // At this point the name must be set.
2598 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2599 this->namepool_.add((*p)->name(), false, NULL);
2600 }
2601 return off;
2602 }
2603
2604 // Set the section indexes of all the sections not associated with a
2605 // segment.
2606
2607 unsigned int
2608 Layout::set_section_indexes(unsigned int shndx)
2609 {
2610 for (Section_list::iterator p = this->unattached_section_list_.begin();
2611 p != this->unattached_section_list_.end();
2612 ++p)
2613 {
2614 if (!(*p)->has_out_shndx())
2615 {
2616 (*p)->set_out_shndx(shndx);
2617 ++shndx;
2618 }
2619 }
2620 return shndx;
2621 }
2622
2623 // Set the section addresses according to the linker script. This is
2624 // only called when we see a SECTIONS clause. This returns the
2625 // program segment which should hold the file header and segment
2626 // headers, if any. It will return NULL if they should not be in a
2627 // segment.
2628
2629 Output_segment*
2630 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2631 {
2632 Script_sections* ss = this->script_options_->script_sections();
2633 gold_assert(ss->saw_sections_clause());
2634 return this->script_options_->set_section_addresses(symtab, this);
2635 }
2636
2637 // Place the orphan sections in the linker script.
2638
2639 void
2640 Layout::place_orphan_sections_in_script()
2641 {
2642 Script_sections* ss = this->script_options_->script_sections();
2643 gold_assert(ss->saw_sections_clause());
2644
2645 // Place each orphaned output section in the script.
2646 for (Section_list::iterator p = this->section_list_.begin();
2647 p != this->section_list_.end();
2648 ++p)
2649 {
2650 if (!(*p)->found_in_sections_clause())
2651 ss->place_orphan(*p);
2652 }
2653 }
2654
2655 // Count the local symbols in the regular symbol table and the dynamic
2656 // symbol table, and build the respective string pools.
2657
2658 void
2659 Layout::count_local_symbols(const Task* task,
2660 const Input_objects* input_objects)
2661 {
2662 // First, figure out an upper bound on the number of symbols we'll
2663 // be inserting into each pool. This helps us create the pools with
2664 // the right size, to avoid unnecessary hashtable resizing.
2665 unsigned int symbol_count = 0;
2666 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2667 p != input_objects->relobj_end();
2668 ++p)
2669 symbol_count += (*p)->local_symbol_count();
2670
2671 // Go from "upper bound" to "estimate." We overcount for two
2672 // reasons: we double-count symbols that occur in more than one
2673 // object file, and we count symbols that are dropped from the
2674 // output. Add it all together and assume we overcount by 100%.
2675 symbol_count /= 2;
2676
2677 // We assume all symbols will go into both the sympool and dynpool.
2678 this->sympool_.reserve(symbol_count);
2679 this->dynpool_.reserve(symbol_count);
2680
2681 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2682 p != input_objects->relobj_end();
2683 ++p)
2684 {
2685 Task_lock_obj<Object> tlo(task, *p);
2686 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2687 }
2688 }
2689
2690 // Create the symbol table sections. Here we also set the final
2691 // values of the symbols. At this point all the loadable sections are
2692 // fully laid out. SHNUM is the number of sections so far.
2693
2694 void
2695 Layout::create_symtab_sections(const Input_objects* input_objects,
2696 Symbol_table* symtab,
2697 unsigned int shnum,
2698 off_t* poff)
2699 {
2700 int symsize;
2701 unsigned int align;
2702 if (parameters->target().get_size() == 32)
2703 {
2704 symsize = elfcpp::Elf_sizes<32>::sym_size;
2705 align = 4;
2706 }
2707 else if (parameters->target().get_size() == 64)
2708 {
2709 symsize = elfcpp::Elf_sizes<64>::sym_size;
2710 align = 8;
2711 }
2712 else
2713 gold_unreachable();
2714
2715 off_t off = *poff;
2716 off = align_address(off, align);
2717 off_t startoff = off;
2718
2719 // Save space for the dummy symbol at the start of the section. We
2720 // never bother to write this out--it will just be left as zero.
2721 off += symsize;
2722 unsigned int local_symbol_index = 1;
2723
2724 // Add STT_SECTION symbols for each Output section which needs one.
2725 for (Section_list::iterator p = this->section_list_.begin();
2726 p != this->section_list_.end();
2727 ++p)
2728 {
2729 if (!(*p)->needs_symtab_index())
2730 (*p)->set_symtab_index(-1U);
2731 else
2732 {
2733 (*p)->set_symtab_index(local_symbol_index);
2734 ++local_symbol_index;
2735 off += symsize;
2736 }
2737 }
2738
2739 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2740 p != input_objects->relobj_end();
2741 ++p)
2742 {
2743 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2744 off, symtab);
2745 off += (index - local_symbol_index) * symsize;
2746 local_symbol_index = index;
2747 }
2748
2749 unsigned int local_symcount = local_symbol_index;
2750 gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2751
2752 off_t dynoff;
2753 size_t dyn_global_index;
2754 size_t dyncount;
2755 if (this->dynsym_section_ == NULL)
2756 {
2757 dynoff = 0;
2758 dyn_global_index = 0;
2759 dyncount = 0;
2760 }
2761 else
2762 {
2763 dyn_global_index = this->dynsym_section_->info();
2764 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2765 dynoff = this->dynsym_section_->offset() + locsize;
2766 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2767 gold_assert(static_cast<off_t>(dyncount * symsize)
2768 == this->dynsym_section_->data_size() - locsize);
2769 }
2770
2771 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2772 &this->sympool_, &local_symcount);
2773
2774 if (!parameters->options().strip_all())
2775 {
2776 this->sympool_.set_string_offsets();
2777
2778 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2779 Output_section* osymtab = this->make_output_section(symtab_name,
2780 elfcpp::SHT_SYMTAB,
2781 0, false, false,
2782 false, false, false);
2783 this->symtab_section_ = osymtab;
2784
2785 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2786 align,
2787 "** symtab");
2788 osymtab->add_output_section_data(pos);
2789
2790 // We generate a .symtab_shndx section if we have more than
2791 // SHN_LORESERVE sections. Technically it is possible that we
2792 // don't need one, because it is possible that there are no
2793 // symbols in any of sections with indexes larger than
2794 // SHN_LORESERVE. That is probably unusual, though, and it is
2795 // easier to always create one than to compute section indexes
2796 // twice (once here, once when writing out the symbols).
2797 if (shnum >= elfcpp::SHN_LORESERVE)
2798 {
2799 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2800 false, NULL);
2801 Output_section* osymtab_xindex =
2802 this->make_output_section(symtab_xindex_name,
2803 elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2804 false, false, false, false);
2805
2806 size_t symcount = (off - startoff) / symsize;
2807 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2808
2809 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2810
2811 osymtab_xindex->set_link_section(osymtab);
2812 osymtab_xindex->set_addralign(4);
2813 osymtab_xindex->set_entsize(4);
2814
2815 osymtab_xindex->set_after_input_sections();
2816
2817 // This tells the driver code to wait until the symbol table
2818 // has written out before writing out the postprocessing
2819 // sections, including the .symtab_shndx section.
2820 this->any_postprocessing_sections_ = true;
2821 }
2822
2823 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2824 Output_section* ostrtab = this->make_output_section(strtab_name,
2825 elfcpp::SHT_STRTAB,
2826 0, false, false,
2827 false, false, false);
2828
2829 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2830 ostrtab->add_output_section_data(pstr);
2831
2832 osymtab->set_file_offset(startoff);
2833 osymtab->finalize_data_size();
2834 osymtab->set_link_section(ostrtab);
2835 osymtab->set_info(local_symcount);
2836 osymtab->set_entsize(symsize);
2837
2838 *poff = off;
2839 }
2840 }
2841
2842 // Create the .shstrtab section, which holds the names of the
2843 // sections. At the time this is called, we have created all the
2844 // output sections except .shstrtab itself.
2845
2846 Output_section*
2847 Layout::create_shstrtab()
2848 {
2849 // FIXME: We don't need to create a .shstrtab section if we are
2850 // stripping everything.
2851
2852 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2853
2854 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2855 false, false, false, false,
2856 false);
2857
2858 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2859 {
2860 // We can't write out this section until we've set all the
2861 // section names, and we don't set the names of compressed
2862 // output sections until relocations are complete. FIXME: With
2863 // the current names we use, this is unnecessary.
2864 os->set_after_input_sections();
2865 }
2866
2867 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2868 os->add_output_section_data(posd);
2869
2870 return os;
2871 }
2872
2873 // Create the section headers. SIZE is 32 or 64. OFF is the file
2874 // offset.
2875
2876 void
2877 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2878 {
2879 Output_section_headers* oshdrs;
2880 oshdrs = new Output_section_headers(this,
2881 &this->segment_list_,
2882 &this->section_list_,
2883 &this->unattached_section_list_,
2884 &this->namepool_,
2885 shstrtab_section);
2886 off_t off = align_address(*poff, oshdrs->addralign());
2887 oshdrs->set_address_and_file_offset(0, off);
2888 off += oshdrs->data_size();
2889 *poff = off;
2890 this->section_headers_ = oshdrs;
2891 }
2892
2893 // Count the allocated sections.
2894
2895 size_t
2896 Layout::allocated_output_section_count() const
2897 {
2898 size_t section_count = 0;
2899 for (Segment_list::const_iterator p = this->segment_list_.begin();
2900 p != this->segment_list_.end();
2901 ++p)
2902 section_count += (*p)->output_section_count();
2903 return section_count;
2904 }
2905
2906 // Create the dynamic symbol table.
2907
2908 void
2909 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2910 Symbol_table* symtab,
2911 Output_section **pdynstr,
2912 unsigned int* plocal_dynamic_count,
2913 std::vector<Symbol*>* pdynamic_symbols,
2914 Versions* pversions)
2915 {
2916 // Count all the symbols in the dynamic symbol table, and set the
2917 // dynamic symbol indexes.
2918
2919 // Skip symbol 0, which is always all zeroes.
2920 unsigned int index = 1;
2921
2922 // Add STT_SECTION symbols for each Output section which needs one.
2923 for (Section_list::iterator p = this->section_list_.begin();
2924 p != this->section_list_.end();
2925 ++p)
2926 {
2927 if (!(*p)->needs_dynsym_index())
2928 (*p)->set_dynsym_index(-1U);
2929 else
2930 {
2931 (*p)->set_dynsym_index(index);
2932 ++index;
2933 }
2934 }
2935
2936 // Count the local symbols that need to go in the dynamic symbol table,
2937 // and set the dynamic symbol indexes.
2938 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2939 p != input_objects->relobj_end();
2940 ++p)
2941 {
2942 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2943 index = new_index;
2944 }
2945
2946 unsigned int local_symcount = index;
2947 *plocal_dynamic_count = local_symcount;
2948
2949 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2950 &this->dynpool_, pversions);
2951
2952 int symsize;
2953 unsigned int align;
2954 const int size = parameters->target().get_size();
2955 if (size == 32)
2956 {
2957 symsize = elfcpp::Elf_sizes<32>::sym_size;
2958 align = 4;
2959 }
2960 else if (size == 64)
2961 {
2962 symsize = elfcpp::Elf_sizes<64>::sym_size;
2963 align = 8;
2964 }
2965 else
2966 gold_unreachable();
2967
2968 // Create the dynamic symbol table section.
2969
2970 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2971 elfcpp::SHT_DYNSYM,
2972 elfcpp::SHF_ALLOC,
2973 false, false, true,
2974 false, false, false);
2975
2976 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2977 align,
2978 "** dynsym");
2979 dynsym->add_output_section_data(odata);
2980
2981 dynsym->set_info(local_symcount);
2982 dynsym->set_entsize(symsize);
2983 dynsym->set_addralign(align);
2984
2985 this->dynsym_section_ = dynsym;
2986
2987 Output_data_dynamic* const odyn = this->dynamic_data_;
2988 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2989 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2990
2991 // If there are more than SHN_LORESERVE allocated sections, we
2992 // create a .dynsym_shndx section. It is possible that we don't
2993 // need one, because it is possible that there are no dynamic
2994 // symbols in any of the sections with indexes larger than
2995 // SHN_LORESERVE. This is probably unusual, though, and at this
2996 // time we don't know the actual section indexes so it is
2997 // inconvenient to check.
2998 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2999 {
3000 Output_section* dynsym_xindex =
3001 this->choose_output_section(NULL, ".dynsym_shndx",
3002 elfcpp::SHT_SYMTAB_SHNDX,
3003 elfcpp::SHF_ALLOC,
3004 false, false, true, false, false, false);
3005
3006 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3007
3008 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3009
3010 dynsym_xindex->set_link_section(dynsym);
3011 dynsym_xindex->set_addralign(4);
3012 dynsym_xindex->set_entsize(4);
3013
3014 dynsym_xindex->set_after_input_sections();
3015
3016 // This tells the driver code to wait until the symbol table has
3017 // written out before writing out the postprocessing sections,
3018 // including the .dynsym_shndx section.
3019 this->any_postprocessing_sections_ = true;
3020 }
3021
3022 // Create the dynamic string table section.
3023
3024 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3025 elfcpp::SHT_STRTAB,
3026 elfcpp::SHF_ALLOC,
3027 false, false, true,
3028 false, false, false);
3029
3030 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3031 dynstr->add_output_section_data(strdata);
3032
3033 dynsym->set_link_section(dynstr);
3034 this->dynamic_section_->set_link_section(dynstr);
3035
3036 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3037 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3038
3039 *pdynstr = dynstr;
3040
3041 // Create the hash tables.
3042
3043 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3044 || strcmp(parameters->options().hash_style(), "both") == 0)
3045 {
3046 unsigned char* phash;
3047 unsigned int hashlen;
3048 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3049 &phash, &hashlen);
3050
3051 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
3052 elfcpp::SHT_HASH,
3053 elfcpp::SHF_ALLOC,
3054 false, false, true,
3055 false, false,
3056 false);
3057
3058 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3059 hashlen,
3060 align,
3061 "** hash");
3062 hashsec->add_output_section_data(hashdata);
3063
3064 hashsec->set_link_section(dynsym);
3065 hashsec->set_entsize(4);
3066
3067 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3068 }
3069
3070 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3071 || strcmp(parameters->options().hash_style(), "both") == 0)
3072 {
3073 unsigned char* phash;
3074 unsigned int hashlen;
3075 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3076 &phash, &hashlen);
3077
3078 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
3079 elfcpp::SHT_GNU_HASH,
3080 elfcpp::SHF_ALLOC,
3081 false, false, true,
3082 false, false,
3083 false);
3084
3085 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3086 hashlen,
3087 align,
3088 "** hash");
3089 hashsec->add_output_section_data(hashdata);
3090
3091 hashsec->set_link_section(dynsym);
3092
3093 // For a 64-bit target, the entries in .gnu.hash do not have a
3094 // uniform size, so we only set the entry size for a 32-bit
3095 // target.
3096 if (parameters->target().get_size() == 32)
3097 hashsec->set_entsize(4);
3098
3099 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3100 }
3101 }
3102
3103 // Assign offsets to each local portion of the dynamic symbol table.
3104
3105 void
3106 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3107 {
3108 Output_section* dynsym = this->dynsym_section_;
3109 gold_assert(dynsym != NULL);
3110
3111 off_t off = dynsym->offset();
3112
3113 // Skip the dummy symbol at the start of the section.
3114 off += dynsym->entsize();
3115
3116 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3117 p != input_objects->relobj_end();
3118 ++p)
3119 {
3120 unsigned int count = (*p)->set_local_dynsym_offset(off);
3121 off += count * dynsym->entsize();
3122 }
3123 }
3124
3125 // Create the version sections.
3126
3127 void
3128 Layout::create_version_sections(const Versions* versions,
3129 const Symbol_table* symtab,
3130 unsigned int local_symcount,
3131 const std::vector<Symbol*>& dynamic_symbols,
3132 const Output_section* dynstr)
3133 {
3134 if (!versions->any_defs() && !versions->any_needs())
3135 return;
3136
3137 switch (parameters->size_and_endianness())
3138 {
3139 #ifdef HAVE_TARGET_32_LITTLE
3140 case Parameters::TARGET_32_LITTLE:
3141 this->sized_create_version_sections<32, false>(versions, symtab,
3142 local_symcount,
3143 dynamic_symbols, dynstr);
3144 break;
3145 #endif
3146 #ifdef HAVE_TARGET_32_BIG
3147 case Parameters::TARGET_32_BIG:
3148 this->sized_create_version_sections<32, true>(versions, symtab,
3149 local_symcount,
3150 dynamic_symbols, dynstr);
3151 break;
3152 #endif
3153 #ifdef HAVE_TARGET_64_LITTLE
3154 case Parameters::TARGET_64_LITTLE:
3155 this->sized_create_version_sections<64, false>(versions, symtab,
3156 local_symcount,
3157 dynamic_symbols, dynstr);
3158 break;
3159 #endif
3160 #ifdef HAVE_TARGET_64_BIG
3161 case Parameters::TARGET_64_BIG:
3162 this->sized_create_version_sections<64, true>(versions, symtab,
3163 local_symcount,
3164 dynamic_symbols, dynstr);
3165 break;
3166 #endif
3167 default:
3168 gold_unreachable();
3169 }
3170 }
3171
3172 // Create the version sections, sized version.
3173
3174 template<int size, bool big_endian>
3175 void
3176 Layout::sized_create_version_sections(
3177 const Versions* versions,
3178 const Symbol_table* symtab,
3179 unsigned int local_symcount,
3180 const std::vector<Symbol*>& dynamic_symbols,
3181 const Output_section* dynstr)
3182 {
3183 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3184 elfcpp::SHT_GNU_versym,
3185 elfcpp::SHF_ALLOC,
3186 false, false, true,
3187 false, false, false);
3188
3189 unsigned char* vbuf;
3190 unsigned int vsize;
3191 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3192 local_symcount,
3193 dynamic_symbols,
3194 &vbuf, &vsize);
3195
3196 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3197 "** versions");
3198
3199 vsec->add_output_section_data(vdata);
3200 vsec->set_entsize(2);
3201 vsec->set_link_section(this->dynsym_section_);
3202
3203 Output_data_dynamic* const odyn = this->dynamic_data_;
3204 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3205
3206 if (versions->any_defs())
3207 {
3208 Output_section* vdsec;
3209 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3210 elfcpp::SHT_GNU_verdef,
3211 elfcpp::SHF_ALLOC,
3212 false, false, true, false, false,
3213 false);
3214
3215 unsigned char* vdbuf;
3216 unsigned int vdsize;
3217 unsigned int vdentries;
3218 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3219 &vdsize, &vdentries);
3220
3221 Output_section_data* vddata =
3222 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3223
3224 vdsec->add_output_section_data(vddata);
3225 vdsec->set_link_section(dynstr);
3226 vdsec->set_info(vdentries);
3227
3228 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3229 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3230 }
3231
3232 if (versions->any_needs())
3233 {
3234 Output_section* vnsec;
3235 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3236 elfcpp::SHT_GNU_verneed,
3237 elfcpp::SHF_ALLOC,
3238 false, false, true, false, false,
3239 false);
3240
3241 unsigned char* vnbuf;
3242 unsigned int vnsize;
3243 unsigned int vnentries;
3244 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3245 &vnbuf, &vnsize,
3246 &vnentries);
3247
3248 Output_section_data* vndata =
3249 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3250
3251 vnsec->add_output_section_data(vndata);
3252 vnsec->set_link_section(dynstr);
3253 vnsec->set_info(vnentries);
3254
3255 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3256 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3257 }
3258 }
3259
3260 // Create the .interp section and PT_INTERP segment.
3261
3262 void
3263 Layout::create_interp(const Target* target)
3264 {
3265 const char* interp = parameters->options().dynamic_linker();
3266 if (interp == NULL)
3267 {
3268 interp = target->dynamic_linker();
3269 gold_assert(interp != NULL);
3270 }
3271
3272 size_t len = strlen(interp) + 1;
3273
3274 Output_section_data* odata = new Output_data_const(interp, len, 1);
3275
3276 Output_section* osec = this->choose_output_section(NULL, ".interp",
3277 elfcpp::SHT_PROGBITS,
3278 elfcpp::SHF_ALLOC,
3279 false, true, true,
3280 false, false, false);
3281 osec->add_output_section_data(odata);
3282
3283 if (!this->script_options_->saw_phdrs_clause())
3284 {
3285 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3286 elfcpp::PF_R);
3287 oseg->add_output_section(osec, elfcpp::PF_R, false);
3288 }
3289 }
3290
3291 // Add dynamic tags for the PLT and the dynamic relocs. This is
3292 // called by the target-specific code. This does nothing if not doing
3293 // a dynamic link.
3294
3295 // USE_REL is true for REL relocs rather than RELA relocs.
3296
3297 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3298
3299 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3300 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3301 // some targets have multiple reloc sections in PLT_REL.
3302
3303 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3304 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3305
3306 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3307 // executable.
3308
3309 void
3310 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3311 const Output_data* plt_rel,
3312 const Output_data_reloc_generic* dyn_rel,
3313 bool add_debug, bool dynrel_includes_plt)
3314 {
3315 Output_data_dynamic* odyn = this->dynamic_data_;
3316 if (odyn == NULL)
3317 return;
3318
3319 if (plt_got != NULL && plt_got->output_section() != NULL)
3320 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3321
3322 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3323 {
3324 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3325 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3326 odyn->add_constant(elfcpp::DT_PLTREL,
3327 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3328 }
3329
3330 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3331 {
3332 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3333 dyn_rel);
3334 if (plt_rel != NULL && dynrel_includes_plt)
3335 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3336 dyn_rel, plt_rel);
3337 else
3338 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3339 dyn_rel);
3340 const int size = parameters->target().get_size();
3341 elfcpp::DT rel_tag;
3342 int rel_size;
3343 if (use_rel)
3344 {
3345 rel_tag = elfcpp::DT_RELENT;
3346 if (size == 32)
3347 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3348 else if (size == 64)
3349 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3350 else
3351 gold_unreachable();
3352 }
3353 else
3354 {
3355 rel_tag = elfcpp::DT_RELAENT;
3356 if (size == 32)
3357 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3358 else if (size == 64)
3359 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3360 else
3361 gold_unreachable();
3362 }
3363 odyn->add_constant(rel_tag, rel_size);
3364
3365 if (parameters->options().combreloc())
3366 {
3367 size_t c = dyn_rel->relative_reloc_count();
3368 if (c > 0)
3369 odyn->add_constant((use_rel
3370 ? elfcpp::DT_RELCOUNT
3371 : elfcpp::DT_RELACOUNT),
3372 c);
3373 }
3374 }
3375
3376 if (add_debug && !parameters->options().shared())
3377 {
3378 // The value of the DT_DEBUG tag is filled in by the dynamic
3379 // linker at run time, and used by the debugger.
3380 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3381 }
3382 }
3383
3384 // Finish the .dynamic section and PT_DYNAMIC segment.
3385
3386 void
3387 Layout::finish_dynamic_section(const Input_objects* input_objects,
3388 const Symbol_table* symtab)
3389 {
3390 if (!this->script_options_->saw_phdrs_clause())
3391 {
3392 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3393 (elfcpp::PF_R
3394 | elfcpp::PF_W));
3395 oseg->add_output_section(this->dynamic_section_,
3396 elfcpp::PF_R | elfcpp::PF_W,
3397 false);
3398 }
3399
3400 Output_data_dynamic* const odyn = this->dynamic_data_;
3401
3402 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3403 p != input_objects->dynobj_end();
3404 ++p)
3405 {
3406 if (!(*p)->is_needed()
3407 && (*p)->input_file()->options().as_needed())
3408 {
3409 // This dynamic object was linked with --as-needed, but it
3410 // is not needed.
3411 continue;
3412 }
3413
3414 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3415 }
3416
3417 if (parameters->options().shared())
3418 {
3419 const char* soname = parameters->options().soname();
3420 if (soname != NULL)
3421 odyn->add_string(elfcpp::DT_SONAME, soname);
3422 }
3423
3424 Symbol* sym = symtab->lookup(parameters->options().init());
3425 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3426 odyn->add_symbol(elfcpp::DT_INIT, sym);
3427
3428 sym = symtab->lookup(parameters->options().fini());
3429 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3430 odyn->add_symbol(elfcpp::DT_FINI, sym);
3431
3432 // Look for .init_array, .preinit_array and .fini_array by checking
3433 // section types.
3434 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3435 p != this->section_list_.end();
3436 ++p)
3437 switch((*p)->type())
3438 {
3439 case elfcpp::SHT_FINI_ARRAY:
3440 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3441 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
3442 break;
3443 case elfcpp::SHT_INIT_ARRAY:
3444 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3445 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
3446 break;
3447 case elfcpp::SHT_PREINIT_ARRAY:
3448 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3449 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
3450 break;
3451 default:
3452 break;
3453 }
3454
3455 // Add a DT_RPATH entry if needed.
3456 const General_options::Dir_list& rpath(parameters->options().rpath());
3457 if (!rpath.empty())
3458 {
3459 std::string rpath_val;
3460 for (General_options::Dir_list::const_iterator p = rpath.begin();
3461 p != rpath.end();
3462 ++p)
3463 {
3464 if (rpath_val.empty())
3465 rpath_val = p->name();
3466 else
3467 {
3468 // Eliminate duplicates.
3469 General_options::Dir_list::const_iterator q;
3470 for (q = rpath.begin(); q != p; ++q)
3471 if (q->name() == p->name())
3472 break;
3473 if (q == p)
3474 {
3475 rpath_val += ':';
3476 rpath_val += p->name();
3477 }
3478 }
3479 }
3480
3481 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3482 if (parameters->options().enable_new_dtags())
3483 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3484 }
3485
3486 // Look for text segments that have dynamic relocations.
3487 bool have_textrel = false;
3488 if (!this->script_options_->saw_sections_clause())
3489 {
3490 for (Segment_list::const_iterator p = this->segment_list_.begin();
3491 p != this->segment_list_.end();
3492 ++p)
3493 {
3494 if (((*p)->flags() & elfcpp::PF_W) == 0
3495 && (*p)->dynamic_reloc_count() > 0)
3496 {
3497 have_textrel = true;
3498 break;
3499 }
3500 }
3501 }
3502 else
3503 {
3504 // We don't know the section -> segment mapping, so we are
3505 // conservative and just look for readonly sections with
3506 // relocations. If those sections wind up in writable segments,
3507 // then we have created an unnecessary DT_TEXTREL entry.
3508 for (Section_list::const_iterator p = this->section_list_.begin();
3509 p != this->section_list_.end();
3510 ++p)
3511 {
3512 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3513 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3514 && ((*p)->dynamic_reloc_count() > 0))
3515 {
3516 have_textrel = true;
3517 break;
3518 }
3519 }
3520 }
3521
3522 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3523 // post-link tools can easily modify these flags if desired.
3524 unsigned int flags = 0;
3525 if (have_textrel)
3526 {
3527 // Add a DT_TEXTREL for compatibility with older loaders.
3528 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3529 flags |= elfcpp::DF_TEXTREL;
3530
3531 if (parameters->options().text())
3532 gold_error(_("read-only segment has dynamic relocations"));
3533 else if (parameters->options().warn_shared_textrel()
3534 && parameters->options().shared())
3535 gold_warning(_("shared library text segment is not shareable"));
3536 }
3537 if (parameters->options().shared() && this->has_static_tls())
3538 flags |= elfcpp::DF_STATIC_TLS;
3539 if (parameters->options().origin())
3540 flags |= elfcpp::DF_ORIGIN;
3541 if (parameters->options().Bsymbolic())
3542 {
3543 flags |= elfcpp::DF_SYMBOLIC;
3544 // Add DT_SYMBOLIC for compatibility with older loaders.
3545 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3546 }
3547 if (parameters->options().now())
3548 flags |= elfcpp::DF_BIND_NOW;
3549 odyn->add_constant(elfcpp::DT_FLAGS, flags);
3550
3551 flags = 0;
3552 if (parameters->options().initfirst())
3553 flags |= elfcpp::DF_1_INITFIRST;
3554 if (parameters->options().interpose())
3555 flags |= elfcpp::DF_1_INTERPOSE;
3556 if (parameters->options().loadfltr())
3557 flags |= elfcpp::DF_1_LOADFLTR;
3558 if (parameters->options().nodefaultlib())
3559 flags |= elfcpp::DF_1_NODEFLIB;
3560 if (parameters->options().nodelete())
3561 flags |= elfcpp::DF_1_NODELETE;
3562 if (parameters->options().nodlopen())
3563 flags |= elfcpp::DF_1_NOOPEN;
3564 if (parameters->options().nodump())
3565 flags |= elfcpp::DF_1_NODUMP;
3566 if (!parameters->options().shared())
3567 flags &= ~(elfcpp::DF_1_INITFIRST
3568 | elfcpp::DF_1_NODELETE
3569 | elfcpp::DF_1_NOOPEN);
3570 if (parameters->options().origin())
3571 flags |= elfcpp::DF_1_ORIGIN;
3572 if (parameters->options().now())
3573 flags |= elfcpp::DF_1_NOW;
3574 if (flags)
3575 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3576 }
3577
3578 // Set the size of the _DYNAMIC symbol table to be the size of the
3579 // dynamic data.
3580
3581 void
3582 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3583 {
3584 Output_data_dynamic* const odyn = this->dynamic_data_;
3585 odyn->finalize_data_size();
3586 off_t data_size = odyn->data_size();
3587 const int size = parameters->target().get_size();
3588 if (size == 32)
3589 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3590 else if (size == 64)
3591 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3592 else
3593 gold_unreachable();
3594 }
3595
3596 // The mapping of input section name prefixes to output section names.
3597 // In some cases one prefix is itself a prefix of another prefix; in
3598 // such a case the longer prefix must come first. These prefixes are
3599 // based on the GNU linker default ELF linker script.
3600
3601 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3602 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3603 {
3604 MAPPING_INIT(".text.", ".text"),
3605 MAPPING_INIT(".ctors.", ".ctors"),
3606 MAPPING_INIT(".dtors.", ".dtors"),
3607 MAPPING_INIT(".rodata.", ".rodata"),
3608 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3609 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3610 MAPPING_INIT(".data.", ".data"),
3611 MAPPING_INIT(".bss.", ".bss"),
3612 MAPPING_INIT(".tdata.", ".tdata"),
3613 MAPPING_INIT(".tbss.", ".tbss"),
3614 MAPPING_INIT(".init_array.", ".init_array"),
3615 MAPPING_INIT(".fini_array.", ".fini_array"),
3616 MAPPING_INIT(".sdata.", ".sdata"),
3617 MAPPING_INIT(".sbss.", ".sbss"),
3618 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3619 // differently depending on whether it is creating a shared library.
3620 MAPPING_INIT(".sdata2.", ".sdata"),
3621 MAPPING_INIT(".sbss2.", ".sbss"),
3622 MAPPING_INIT(".lrodata.", ".lrodata"),
3623 MAPPING_INIT(".ldata.", ".ldata"),
3624 MAPPING_INIT(".lbss.", ".lbss"),
3625 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3626 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3627 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3628 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3629 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3630 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3631 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3632 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3633 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3634 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3635 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3636 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3637 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3638 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3639 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3640 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3641 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3642 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3643 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3644 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3645 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3646 };
3647 #undef MAPPING_INIT
3648
3649 const int Layout::section_name_mapping_count =
3650 (sizeof(Layout::section_name_mapping)
3651 / sizeof(Layout::section_name_mapping[0]));
3652
3653 // Choose the output section name to use given an input section name.
3654 // Set *PLEN to the length of the name. *PLEN is initialized to the
3655 // length of NAME.
3656
3657 const char*
3658 Layout::output_section_name(const char* name, size_t* plen)
3659 {
3660 // gcc 4.3 generates the following sorts of section names when it
3661 // needs a section name specific to a function:
3662 // .text.FN
3663 // .rodata.FN
3664 // .sdata2.FN
3665 // .data.FN
3666 // .data.rel.FN
3667 // .data.rel.local.FN
3668 // .data.rel.ro.FN
3669 // .data.rel.ro.local.FN
3670 // .sdata.FN
3671 // .bss.FN
3672 // .sbss.FN
3673 // .tdata.FN
3674 // .tbss.FN
3675
3676 // The GNU linker maps all of those to the part before the .FN,
3677 // except that .data.rel.local.FN is mapped to .data, and
3678 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3679 // beginning with .data.rel.ro.local are grouped together.
3680
3681 // For an anonymous namespace, the string FN can contain a '.'.
3682
3683 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3684 // GNU linker maps to .rodata.
3685
3686 // The .data.rel.ro sections are used with -z relro. The sections
3687 // are recognized by name. We use the same names that the GNU
3688 // linker does for these sections.
3689
3690 // It is hard to handle this in a principled way, so we don't even
3691 // try. We use a table of mappings. If the input section name is
3692 // not found in the table, we simply use it as the output section
3693 // name.
3694
3695 const Section_name_mapping* psnm = section_name_mapping;
3696 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3697 {
3698 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3699 {
3700 *plen = psnm->tolen;
3701 return psnm->to;
3702 }
3703 }
3704
3705 return name;
3706 }
3707
3708 // Check if a comdat group or .gnu.linkonce section with the given
3709 // NAME is selected for the link. If there is already a section,
3710 // *KEPT_SECTION is set to point to the existing section and the
3711 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3712 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3713 // *KEPT_SECTION is set to the internal copy and the function returns
3714 // true.
3715
3716 bool
3717 Layout::find_or_add_kept_section(const std::string& name,
3718 Relobj* object,
3719 unsigned int shndx,
3720 bool is_comdat,
3721 bool is_group_name,
3722 Kept_section** kept_section)
3723 {
3724 // It's normal to see a couple of entries here, for the x86 thunk
3725 // sections. If we see more than a few, we're linking a C++
3726 // program, and we resize to get more space to minimize rehashing.
3727 if (this->signatures_.size() > 4
3728 && !this->resized_signatures_)
3729 {
3730 reserve_unordered_map(&this->signatures_,
3731 this->number_of_input_files_ * 64);
3732 this->resized_signatures_ = true;
3733 }
3734
3735 Kept_section candidate;
3736 std::pair<Signatures::iterator, bool> ins =
3737 this->signatures_.insert(std::make_pair(name, candidate));
3738
3739 if (kept_section != NULL)
3740 *kept_section = &ins.first->second;
3741 if (ins.second)
3742 {
3743 // This is the first time we've seen this signature.
3744 ins.first->second.set_object(object);
3745 ins.first->second.set_shndx(shndx);
3746 if (is_comdat)
3747 ins.first->second.set_is_comdat();
3748 if (is_group_name)
3749 ins.first->second.set_is_group_name();
3750 return true;
3751 }
3752
3753 // We have already seen this signature.
3754
3755 if (ins.first->second.is_group_name())
3756 {
3757 // We've already seen a real section group with this signature.
3758 // If the kept group is from a plugin object, and we're in the
3759 // replacement phase, accept the new one as a replacement.
3760 if (ins.first->second.object() == NULL
3761 && parameters->options().plugins()->in_replacement_phase())
3762 {
3763 ins.first->second.set_object(object);
3764 ins.first->second.set_shndx(shndx);
3765 return true;
3766 }
3767 return false;
3768 }
3769 else if (is_group_name)
3770 {
3771 // This is a real section group, and we've already seen a
3772 // linkonce section with this signature. Record that we've seen
3773 // a section group, and don't include this section group.
3774 ins.first->second.set_is_group_name();
3775 return false;
3776 }
3777 else
3778 {
3779 // We've already seen a linkonce section and this is a linkonce
3780 // section. These don't block each other--this may be the same
3781 // symbol name with different section types.
3782 return true;
3783 }
3784 }
3785
3786 // Store the allocated sections into the section list.
3787
3788 void
3789 Layout::get_allocated_sections(Section_list* section_list) const
3790 {
3791 for (Section_list::const_iterator p = this->section_list_.begin();
3792 p != this->section_list_.end();
3793 ++p)
3794 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3795 section_list->push_back(*p);
3796 }
3797
3798 // Create an output segment.
3799
3800 Output_segment*
3801 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3802 {
3803 gold_assert(!parameters->options().relocatable());
3804 Output_segment* oseg = new Output_segment(type, flags);
3805 this->segment_list_.push_back(oseg);
3806
3807 if (type == elfcpp::PT_TLS)
3808 this->tls_segment_ = oseg;
3809 else if (type == elfcpp::PT_GNU_RELRO)
3810 this->relro_segment_ = oseg;
3811
3812 return oseg;
3813 }
3814
3815 // Write out the Output_sections. Most won't have anything to write,
3816 // since most of the data will come from input sections which are
3817 // handled elsewhere. But some Output_sections do have Output_data.
3818
3819 void
3820 Layout::write_output_sections(Output_file* of) const
3821 {
3822 for (Section_list::const_iterator p = this->section_list_.begin();
3823 p != this->section_list_.end();
3824 ++p)
3825 {
3826 if (!(*p)->after_input_sections())
3827 (*p)->write(of);
3828 }
3829 }
3830
3831 // Write out data not associated with a section or the symbol table.
3832
3833 void
3834 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3835 {
3836 if (!parameters->options().strip_all())
3837 {
3838 const Output_section* symtab_section = this->symtab_section_;
3839 for (Section_list::const_iterator p = this->section_list_.begin();
3840 p != this->section_list_.end();
3841 ++p)
3842 {
3843 if ((*p)->needs_symtab_index())
3844 {
3845 gold_assert(symtab_section != NULL);
3846 unsigned int index = (*p)->symtab_index();
3847 gold_assert(index > 0 && index != -1U);
3848 off_t off = (symtab_section->offset()
3849 + index * symtab_section->entsize());
3850 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3851 }
3852 }
3853 }
3854
3855 const Output_section* dynsym_section = this->dynsym_section_;
3856 for (Section_list::const_iterator p = this->section_list_.begin();
3857 p != this->section_list_.end();
3858 ++p)
3859 {
3860 if ((*p)->needs_dynsym_index())
3861 {
3862 gold_assert(dynsym_section != NULL);
3863 unsigned int index = (*p)->dynsym_index();
3864 gold_assert(index > 0 && index != -1U);
3865 off_t off = (dynsym_section->offset()
3866 + index * dynsym_section->entsize());
3867 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3868 }
3869 }
3870
3871 // Write out the Output_data which are not in an Output_section.
3872 for (Data_list::const_iterator p = this->special_output_list_.begin();
3873 p != this->special_output_list_.end();
3874 ++p)
3875 (*p)->write(of);
3876 }
3877
3878 // Write out the Output_sections which can only be written after the
3879 // input sections are complete.
3880
3881 void
3882 Layout::write_sections_after_input_sections(Output_file* of)
3883 {
3884 // Determine the final section offsets, and thus the final output
3885 // file size. Note we finalize the .shstrab last, to allow the
3886 // after_input_section sections to modify their section-names before
3887 // writing.
3888 if (this->any_postprocessing_sections_)
3889 {
3890 off_t off = this->output_file_size_;
3891 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3892
3893 // Now that we've finalized the names, we can finalize the shstrab.
3894 off =
3895 this->set_section_offsets(off,
3896 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3897
3898 if (off > this->output_file_size_)
3899 {
3900 of->resize(off);
3901 this->output_file_size_ = off;
3902 }
3903 }
3904
3905 for (Section_list::const_iterator p = this->section_list_.begin();
3906 p != this->section_list_.end();
3907 ++p)
3908 {
3909 if ((*p)->after_input_sections())
3910 (*p)->write(of);
3911 }
3912
3913 this->section_headers_->write(of);
3914 }
3915
3916 // If the build ID requires computing a checksum, do so here, and
3917 // write it out. We compute a checksum over the entire file because
3918 // that is simplest.
3919
3920 void
3921 Layout::write_build_id(Output_file* of) const
3922 {
3923 if (this->build_id_note_ == NULL)
3924 return;
3925
3926 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3927
3928 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3929 this->build_id_note_->data_size());
3930
3931 const char* style = parameters->options().build_id();
3932 if (strcmp(style, "sha1") == 0)
3933 {
3934 sha1_ctx ctx;
3935 sha1_init_ctx(&ctx);
3936 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3937 sha1_finish_ctx(&ctx, ov);
3938 }
3939 else if (strcmp(style, "md5") == 0)
3940 {
3941 md5_ctx ctx;
3942 md5_init_ctx(&ctx);
3943 md5_process_bytes(iv, this->output_file_size_, &ctx);
3944 md5_finish_ctx(&ctx, ov);
3945 }
3946 else
3947 gold_unreachable();
3948
3949 of->write_output_view(this->build_id_note_->offset(),
3950 this->build_id_note_->data_size(),
3951 ov);
3952
3953 of->free_input_view(0, this->output_file_size_, iv);
3954 }
3955
3956 // Write out a binary file. This is called after the link is
3957 // complete. IN is the temporary output file we used to generate the
3958 // ELF code. We simply walk through the segments, read them from
3959 // their file offset in IN, and write them to their load address in
3960 // the output file. FIXME: with a bit more work, we could support
3961 // S-records and/or Intel hex format here.
3962
3963 void
3964 Layout::write_binary(Output_file* in) const
3965 {
3966 gold_assert(parameters->options().oformat_enum()
3967 == General_options::OBJECT_FORMAT_BINARY);
3968
3969 // Get the size of the binary file.
3970 uint64_t max_load_address = 0;
3971 for (Segment_list::const_iterator p = this->segment_list_.begin();
3972 p != this->segment_list_.end();
3973 ++p)
3974 {
3975 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3976 {
3977 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3978 if (max_paddr > max_load_address)
3979 max_load_address = max_paddr;
3980 }
3981 }
3982
3983 Output_file out(parameters->options().output_file_name());
3984 out.open(max_load_address);
3985
3986 for (Segment_list::const_iterator p = this->segment_list_.begin();
3987 p != this->segment_list_.end();
3988 ++p)
3989 {
3990 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3991 {
3992 const unsigned char* vin = in->get_input_view((*p)->offset(),
3993 (*p)->filesz());
3994 unsigned char* vout = out.get_output_view((*p)->paddr(),
3995 (*p)->filesz());
3996 memcpy(vout, vin, (*p)->filesz());
3997 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3998 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3999 }
4000 }
4001
4002 out.close();
4003 }
4004
4005 // Print the output sections to the map file.
4006
4007 void
4008 Layout::print_to_mapfile(Mapfile* mapfile) const
4009 {
4010 for (Segment_list::const_iterator p = this->segment_list_.begin();
4011 p != this->segment_list_.end();
4012 ++p)
4013 (*p)->print_sections_to_mapfile(mapfile);
4014 }
4015
4016 // Print statistical information to stderr. This is used for --stats.
4017
4018 void
4019 Layout::print_stats() const
4020 {
4021 this->namepool_.print_stats("section name pool");
4022 this->sympool_.print_stats("output symbol name pool");
4023 this->dynpool_.print_stats("dynamic name pool");
4024
4025 for (Section_list::const_iterator p = this->section_list_.begin();
4026 p != this->section_list_.end();
4027 ++p)
4028 (*p)->print_merge_stats();
4029 }
4030
4031 // Write_sections_task methods.
4032
4033 // We can always run this task.
4034
4035 Task_token*
4036 Write_sections_task::is_runnable()
4037 {
4038 return NULL;
4039 }
4040
4041 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4042 // when finished.
4043
4044 void
4045 Write_sections_task::locks(Task_locker* tl)
4046 {
4047 tl->add(this, this->output_sections_blocker_);
4048 tl->add(this, this->final_blocker_);
4049 }
4050
4051 // Run the task--write out the data.
4052
4053 void
4054 Write_sections_task::run(Workqueue*)
4055 {
4056 this->layout_->write_output_sections(this->of_);
4057 }
4058
4059 // Write_data_task methods.
4060
4061 // We can always run this task.
4062
4063 Task_token*
4064 Write_data_task::is_runnable()
4065 {
4066 return NULL;
4067 }
4068
4069 // We need to unlock FINAL_BLOCKER when finished.
4070
4071 void
4072 Write_data_task::locks(Task_locker* tl)
4073 {
4074 tl->add(this, this->final_blocker_);
4075 }
4076
4077 // Run the task--write out the data.
4078
4079 void
4080 Write_data_task::run(Workqueue*)
4081 {
4082 this->layout_->write_data(this->symtab_, this->of_);
4083 }
4084
4085 // Write_symbols_task methods.
4086
4087 // We can always run this task.
4088
4089 Task_token*
4090 Write_symbols_task::is_runnable()
4091 {
4092 return NULL;
4093 }
4094
4095 // We need to unlock FINAL_BLOCKER when finished.
4096
4097 void
4098 Write_symbols_task::locks(Task_locker* tl)
4099 {
4100 tl->add(this, this->final_blocker_);
4101 }
4102
4103 // Run the task--write out the symbols.
4104
4105 void
4106 Write_symbols_task::run(Workqueue*)
4107 {
4108 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4109 this->layout_->symtab_xindex(),
4110 this->layout_->dynsym_xindex(), this->of_);
4111 }
4112
4113 // Write_after_input_sections_task methods.
4114
4115 // We can only run this task after the input sections have completed.
4116
4117 Task_token*
4118 Write_after_input_sections_task::is_runnable()
4119 {
4120 if (this->input_sections_blocker_->is_blocked())
4121 return this->input_sections_blocker_;
4122 return NULL;
4123 }
4124
4125 // We need to unlock FINAL_BLOCKER when finished.
4126
4127 void
4128 Write_after_input_sections_task::locks(Task_locker* tl)
4129 {
4130 tl->add(this, this->final_blocker_);
4131 }
4132
4133 // Run the task.
4134
4135 void
4136 Write_after_input_sections_task::run(Workqueue*)
4137 {
4138 this->layout_->write_sections_after_input_sections(this->of_);
4139 }
4140
4141 // Close_task_runner methods.
4142
4143 // Run the task--close the file.
4144
4145 void
4146 Close_task_runner::run(Workqueue*, const Task*)
4147 {
4148 // If we need to compute a checksum for the BUILD if, we do so here.
4149 this->layout_->write_build_id(this->of_);
4150
4151 // If we've been asked to create a binary file, we do so here.
4152 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4153 this->layout_->write_binary(this->of_);
4154
4155 this->of_->close();
4156 }
4157
4158 // Instantiate the templates we need. We could use the configure
4159 // script to restrict this to only the ones for implemented targets.
4160
4161 #ifdef HAVE_TARGET_32_LITTLE
4162 template
4163 Output_section*
4164 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4165 const char* name,
4166 const elfcpp::Shdr<32, false>& shdr,
4167 unsigned int, unsigned int, off_t*);
4168 #endif
4169
4170 #ifdef HAVE_TARGET_32_BIG
4171 template
4172 Output_section*
4173 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4174 const char* name,
4175 const elfcpp::Shdr<32, true>& shdr,
4176 unsigned int, unsigned int, off_t*);
4177 #endif
4178
4179 #ifdef HAVE_TARGET_64_LITTLE
4180 template
4181 Output_section*
4182 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4183 const char* name,
4184 const elfcpp::Shdr<64, false>& shdr,
4185 unsigned int, unsigned int, off_t*);
4186 #endif
4187
4188 #ifdef HAVE_TARGET_64_BIG
4189 template
4190 Output_section*
4191 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4192 const char* name,
4193 const elfcpp::Shdr<64, true>& shdr,
4194 unsigned int, unsigned int, off_t*);
4195 #endif
4196
4197 #ifdef HAVE_TARGET_32_LITTLE
4198 template
4199 Output_section*
4200 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4201 unsigned int reloc_shndx,
4202 const elfcpp::Shdr<32, false>& shdr,
4203 Output_section* data_section,
4204 Relocatable_relocs* rr);
4205 #endif
4206
4207 #ifdef HAVE_TARGET_32_BIG
4208 template
4209 Output_section*
4210 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4211 unsigned int reloc_shndx,
4212 const elfcpp::Shdr<32, true>& shdr,
4213 Output_section* data_section,
4214 Relocatable_relocs* rr);
4215 #endif
4216
4217 #ifdef HAVE_TARGET_64_LITTLE
4218 template
4219 Output_section*
4220 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4221 unsigned int reloc_shndx,
4222 const elfcpp::Shdr<64, false>& shdr,
4223 Output_section* data_section,
4224 Relocatable_relocs* rr);
4225 #endif
4226
4227 #ifdef HAVE_TARGET_64_BIG
4228 template
4229 Output_section*
4230 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4231 unsigned int reloc_shndx,
4232 const elfcpp::Shdr<64, true>& shdr,
4233 Output_section* data_section,
4234 Relocatable_relocs* rr);
4235 #endif
4236
4237 #ifdef HAVE_TARGET_32_LITTLE
4238 template
4239 void
4240 Layout::layout_group<32, false>(Symbol_table* symtab,
4241 Sized_relobj<32, false>* object,
4242 unsigned int,
4243 const char* group_section_name,
4244 const char* signature,
4245 const elfcpp::Shdr<32, false>& shdr,
4246 elfcpp::Elf_Word flags,
4247 std::vector<unsigned int>* shndxes);
4248 #endif
4249
4250 #ifdef HAVE_TARGET_32_BIG
4251 template
4252 void
4253 Layout::layout_group<32, true>(Symbol_table* symtab,
4254 Sized_relobj<32, true>* object,
4255 unsigned int,
4256 const char* group_section_name,
4257 const char* signature,
4258 const elfcpp::Shdr<32, true>& shdr,
4259 elfcpp::Elf_Word flags,
4260 std::vector<unsigned int>* shndxes);
4261 #endif
4262
4263 #ifdef HAVE_TARGET_64_LITTLE
4264 template
4265 void
4266 Layout::layout_group<64, false>(Symbol_table* symtab,
4267 Sized_relobj<64, false>* object,
4268 unsigned int,
4269 const char* group_section_name,
4270 const char* signature,
4271 const elfcpp::Shdr<64, false>& shdr,
4272 elfcpp::Elf_Word flags,
4273 std::vector<unsigned int>* shndxes);
4274 #endif
4275
4276 #ifdef HAVE_TARGET_64_BIG
4277 template
4278 void
4279 Layout::layout_group<64, true>(Symbol_table* symtab,
4280 Sized_relobj<64, true>* object,
4281 unsigned int,
4282 const char* group_section_name,
4283 const char* signature,
4284 const elfcpp::Shdr<64, true>& shdr,
4285 elfcpp::Elf_Word flags,
4286 std::vector<unsigned int>* shndxes);
4287 #endif
4288
4289 #ifdef HAVE_TARGET_32_LITTLE
4290 template
4291 Output_section*
4292 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4293 const unsigned char* symbols,
4294 off_t symbols_size,
4295 const unsigned char* symbol_names,
4296 off_t symbol_names_size,
4297 unsigned int shndx,
4298 const elfcpp::Shdr<32, false>& shdr,
4299 unsigned int reloc_shndx,
4300 unsigned int reloc_type,
4301 off_t* off);
4302 #endif
4303
4304 #ifdef HAVE_TARGET_32_BIG
4305 template
4306 Output_section*
4307 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4308 const unsigned char* symbols,
4309 off_t symbols_size,
4310 const unsigned char* symbol_names,
4311 off_t symbol_names_size,
4312 unsigned int shndx,
4313 const elfcpp::Shdr<32, true>& shdr,
4314 unsigned int reloc_shndx,
4315 unsigned int reloc_type,
4316 off_t* off);
4317 #endif
4318
4319 #ifdef HAVE_TARGET_64_LITTLE
4320 template
4321 Output_section*
4322 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4323 const unsigned char* symbols,
4324 off_t symbols_size,
4325 const unsigned char* symbol_names,
4326 off_t symbol_names_size,
4327 unsigned int shndx,
4328 const elfcpp::Shdr<64, false>& shdr,
4329 unsigned int reloc_shndx,
4330 unsigned int reloc_type,
4331 off_t* off);
4332 #endif
4333
4334 #ifdef HAVE_TARGET_64_BIG
4335 template
4336 Output_section*
4337 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4338 const unsigned char* symbols,
4339 off_t symbols_size,
4340 const unsigned char* symbol_names,
4341 off_t symbol_names_size,
4342 unsigned int shndx,
4343 const elfcpp::Shdr<64, true>& shdr,
4344 unsigned int reloc_shndx,
4345 unsigned int reloc_type,
4346 off_t* off);
4347 #endif
4348
4349 } // End namespace gold.
This page took 0.129992 seconds and 4 git commands to generate.