gold/
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245 public:
246 Hash_task(const unsigned char* src,
247 size_t size,
248 unsigned char* dst,
249 Task_token* build_id_blocker,
250 Task_token* final_blocker)
251 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252 final_blocker_(final_blocker)
253 { }
254
255 void
256 run(Workqueue*)
257 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259 Task_token*
260 is_runnable();
261
262 // Unblock FINAL_BLOCKER_ when done.
263 void
264 locks(Task_locker* tl)
265 { tl->add(this, this->final_blocker_); }
266
267 std::string
268 get_name() const
269 { return "Hash_task"; }
270
271 private:
272 const unsigned char* const src_;
273 const size_t size_;
274 unsigned char* const dst_;
275 Task_token* const build_id_blocker_;
276 Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282 if (this->build_id_blocker_->is_blocked())
283 return this->build_id_blocker_;
284 return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295 const Layout::Section_list& sections,
296 const Layout::Data_list& special_outputs,
297 const Layout::Data_list& relax_outputs)
298 {
299 for(Layout::Section_list::const_iterator p = sections.begin();
300 p != sections.end();
301 ++p)
302 gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304 for(Layout::Data_list::const_iterator p = special_outputs.begin();
305 p != special_outputs.end();
306 ++p)
307 gold_assert((*p)->address_and_file_offset_have_reset_values());
308
309 gold_assert(relax_outputs.empty());
310 }
311
312 // Save information of SECTIONS for checking later.
313
314 void
315 Layout::Relaxation_debug_check::read_sections(
316 const Layout::Section_list& sections)
317 {
318 for(Layout::Section_list::const_iterator p = sections.begin();
319 p != sections.end();
320 ++p)
321 {
322 Output_section* os = *p;
323 Section_info info;
324 info.output_section = os;
325 info.address = os->is_address_valid() ? os->address() : 0;
326 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
327 info.offset = os->is_offset_valid()? os->offset() : -1 ;
328 this->section_infos_.push_back(info);
329 }
330 }
331
332 // Verify SECTIONS using previously recorded information.
333
334 void
335 Layout::Relaxation_debug_check::verify_sections(
336 const Layout::Section_list& sections)
337 {
338 size_t i = 0;
339 for(Layout::Section_list::const_iterator p = sections.begin();
340 p != sections.end();
341 ++p, ++i)
342 {
343 Output_section* os = *p;
344 uint64_t address = os->is_address_valid() ? os->address() : 0;
345 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
346 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
347
348 if (i >= this->section_infos_.size())
349 {
350 gold_fatal("Section_info of %s missing.\n", os->name());
351 }
352 const Section_info& info = this->section_infos_[i];
353 if (os != info.output_section)
354 gold_fatal("Section order changed. Expecting %s but see %s\n",
355 info.output_section->name(), os->name());
356 if (address != info.address
357 || data_size != info.data_size
358 || offset != info.offset)
359 gold_fatal("Section %s changed.\n", os->name());
360 }
361 }
362
363 // Layout_task_runner methods.
364
365 // Lay out the sections. This is called after all the input objects
366 // have been read.
367
368 void
369 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
370 {
371 // See if any of the input definitions violate the One Definition Rule.
372 // TODO: if this is too slow, do this as a task, rather than inline.
373 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
374
375 Layout* layout = this->layout_;
376 off_t file_size = layout->finalize(this->input_objects_,
377 this->symtab_,
378 this->target_,
379 task);
380
381 // Now we know the final size of the output file and we know where
382 // each piece of information goes.
383
384 if (this->mapfile_ != NULL)
385 {
386 this->mapfile_->print_discarded_sections(this->input_objects_);
387 layout->print_to_mapfile(this->mapfile_);
388 }
389
390 Output_file* of;
391 if (layout->incremental_base() == NULL)
392 {
393 of = new Output_file(parameters->options().output_file_name());
394 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
395 of->set_is_temporary();
396 of->open(file_size);
397 }
398 else
399 {
400 of = layout->incremental_base()->output_file();
401
402 // Apply the incremental relocations for symbols whose values
403 // have changed. We do this before we resize the file and start
404 // writing anything else to it, so that we can read the old
405 // incremental information from the file before (possibly)
406 // overwriting it.
407 if (parameters->incremental_update())
408 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
409 this->layout_,
410 of);
411
412 of->resize(file_size);
413 }
414
415 // Queue up the final set of tasks.
416 gold::queue_final_tasks(this->options_, this->input_objects_,
417 this->symtab_, layout, workqueue, of);
418 }
419
420 // Layout methods.
421
422 Layout::Layout(int number_of_input_files, Script_options* script_options)
423 : number_of_input_files_(number_of_input_files),
424 script_options_(script_options),
425 namepool_(),
426 sympool_(),
427 dynpool_(),
428 signatures_(),
429 section_name_map_(),
430 segment_list_(),
431 section_list_(),
432 unattached_section_list_(),
433 special_output_list_(),
434 relax_output_list_(),
435 section_headers_(NULL),
436 tls_segment_(NULL),
437 relro_segment_(NULL),
438 interp_segment_(NULL),
439 increase_relro_(0),
440 symtab_section_(NULL),
441 symtab_xindex_(NULL),
442 dynsym_section_(NULL),
443 dynsym_xindex_(NULL),
444 dynamic_section_(NULL),
445 dynamic_symbol_(NULL),
446 dynamic_data_(NULL),
447 eh_frame_section_(NULL),
448 eh_frame_data_(NULL),
449 added_eh_frame_data_(false),
450 eh_frame_hdr_section_(NULL),
451 gdb_index_data_(NULL),
452 build_id_note_(NULL),
453 array_of_hashes_(NULL),
454 size_of_array_of_hashes_(0),
455 input_view_(NULL),
456 debug_abbrev_(NULL),
457 debug_info_(NULL),
458 group_signatures_(),
459 output_file_size_(-1),
460 have_added_input_section_(false),
461 sections_are_attached_(false),
462 input_requires_executable_stack_(false),
463 input_with_gnu_stack_note_(false),
464 input_without_gnu_stack_note_(false),
465 has_static_tls_(false),
466 any_postprocessing_sections_(false),
467 resized_signatures_(false),
468 have_stabstr_section_(false),
469 section_ordering_specified_(false),
470 unique_segment_for_sections_specified_(false),
471 incremental_inputs_(NULL),
472 record_output_section_data_from_script_(false),
473 script_output_section_data_list_(),
474 segment_states_(NULL),
475 relaxation_debug_check_(NULL),
476 section_order_map_(),
477 section_segment_map_(),
478 input_section_position_(),
479 input_section_glob_(),
480 incremental_base_(NULL),
481 free_list_()
482 {
483 // Make space for more than enough segments for a typical file.
484 // This is just for efficiency--it's OK if we wind up needing more.
485 this->segment_list_.reserve(12);
486
487 // We expect two unattached Output_data objects: the file header and
488 // the segment headers.
489 this->special_output_list_.reserve(2);
490
491 // Initialize structure needed for an incremental build.
492 if (parameters->incremental())
493 this->incremental_inputs_ = new Incremental_inputs;
494
495 // The section name pool is worth optimizing in all cases, because
496 // it is small, but there are often overlaps due to .rel sections.
497 this->namepool_.set_optimize();
498 }
499
500 // For incremental links, record the base file to be modified.
501
502 void
503 Layout::set_incremental_base(Incremental_binary* base)
504 {
505 this->incremental_base_ = base;
506 this->free_list_.init(base->output_file()->filesize(), true);
507 }
508
509 // Hash a key we use to look up an output section mapping.
510
511 size_t
512 Layout::Hash_key::operator()(const Layout::Key& k) const
513 {
514 return k.first + k.second.first + k.second.second;
515 }
516
517 // These are the debug sections that are actually used by gdb.
518 // Currently, we've checked versions of gdb up to and including 7.4.
519 // We only check the part of the name that follows ".debug_" or
520 // ".zdebug_".
521
522 static const char* gdb_sections[] =
523 {
524 "abbrev",
525 "addr", // Fission extension
526 // "aranges", // not used by gdb as of 7.4
527 "frame",
528 "info",
529 "types",
530 "line",
531 "loc",
532 "macinfo",
533 "macro",
534 // "pubnames", // not used by gdb as of 7.4
535 // "pubtypes", // not used by gdb as of 7.4
536 "ranges",
537 "str",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 "info",
549 // "types",
550 "line",
551 // "loc",
552 // "macinfo",
553 // "macro",
554 // "pubnames", // not used by gdb as of 7.4
555 // "pubtypes", // not used by gdb as of 7.4
556 // "ranges",
557 "str",
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565 "aranges",
566 "pubnames",
567 "pubtypes",
568 };
569
570 // Returns whether the given debug section is in the list of
571 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
572 // portion of the name following ".debug_" or ".zdebug_".
573
574 static inline bool
575 is_gdb_debug_section(const char* suffix)
576 {
577 // We can do this faster: binary search or a hashtable. But why bother?
578 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
579 if (strcmp(suffix, gdb_sections[i]) == 0)
580 return true;
581 return false;
582 }
583
584 // Returns whether the given section is needed for lines-only debugging.
585
586 static inline bool
587 is_lines_only_debug_section(const char* suffix)
588 {
589 // We can do this faster: binary search or a hashtable. But why bother?
590 for (size_t i = 0;
591 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
592 ++i)
593 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
594 return true;
595 return false;
596 }
597
598 // Returns whether the given section is a fast-lookup section that
599 // will not be needed when building a .gdb_index section.
600
601 static inline bool
602 is_gdb_fast_lookup_section(const char* suffix)
603 {
604 // We can do this faster: binary search or a hashtable. But why bother?
605 for (size_t i = 0;
606 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
607 ++i)
608 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
609 return true;
610 return false;
611 }
612
613 // Sometimes we compress sections. This is typically done for
614 // sections that are not part of normal program execution (such as
615 // .debug_* sections), and where the readers of these sections know
616 // how to deal with compressed sections. This routine doesn't say for
617 // certain whether we'll compress -- it depends on commandline options
618 // as well -- just whether this section is a candidate for compression.
619 // (The Output_compressed_section class decides whether to compress
620 // a given section, and picks the name of the compressed section.)
621
622 static bool
623 is_compressible_debug_section(const char* secname)
624 {
625 return (is_prefix_of(".debug", secname));
626 }
627
628 // We may see compressed debug sections in input files. Return TRUE
629 // if this is the name of a compressed debug section.
630
631 bool
632 is_compressed_debug_section(const char* secname)
633 {
634 return (is_prefix_of(".zdebug", secname));
635 }
636
637 // Whether to include this section in the link.
638
639 template<int size, bool big_endian>
640 bool
641 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
642 const elfcpp::Shdr<size, big_endian>& shdr)
643 {
644 if (!parameters->options().relocatable()
645 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
646 return false;
647
648 switch (shdr.get_sh_type())
649 {
650 case elfcpp::SHT_NULL:
651 case elfcpp::SHT_SYMTAB:
652 case elfcpp::SHT_DYNSYM:
653 case elfcpp::SHT_HASH:
654 case elfcpp::SHT_DYNAMIC:
655 case elfcpp::SHT_SYMTAB_SHNDX:
656 return false;
657
658 case elfcpp::SHT_STRTAB:
659 // Discard the sections which have special meanings in the ELF
660 // ABI. Keep others (e.g., .stabstr). We could also do this by
661 // checking the sh_link fields of the appropriate sections.
662 return (strcmp(name, ".dynstr") != 0
663 && strcmp(name, ".strtab") != 0
664 && strcmp(name, ".shstrtab") != 0);
665
666 case elfcpp::SHT_RELA:
667 case elfcpp::SHT_REL:
668 case elfcpp::SHT_GROUP:
669 // If we are emitting relocations these should be handled
670 // elsewhere.
671 gold_assert(!parameters->options().relocatable());
672 return false;
673
674 case elfcpp::SHT_PROGBITS:
675 if (parameters->options().strip_debug()
676 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
677 {
678 if (is_debug_info_section(name))
679 return false;
680 }
681 if (parameters->options().strip_debug_non_line()
682 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
683 {
684 // Debugging sections can only be recognized by name.
685 if (is_prefix_of(".debug_", name)
686 && !is_lines_only_debug_section(name + 7))
687 return false;
688 if (is_prefix_of(".zdebug_", name)
689 && !is_lines_only_debug_section(name + 8))
690 return false;
691 }
692 if (parameters->options().strip_debug_gdb()
693 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694 {
695 // Debugging sections can only be recognized by name.
696 if (is_prefix_of(".debug_", name)
697 && !is_gdb_debug_section(name + 7))
698 return false;
699 if (is_prefix_of(".zdebug_", name)
700 && !is_gdb_debug_section(name + 8))
701 return false;
702 }
703 if (parameters->options().gdb_index()
704 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
705 {
706 // When building .gdb_index, we can strip .debug_pubnames,
707 // .debug_pubtypes, and .debug_aranges sections.
708 if (is_prefix_of(".debug_", name)
709 && is_gdb_fast_lookup_section(name + 7))
710 return false;
711 if (is_prefix_of(".zdebug_", name)
712 && is_gdb_fast_lookup_section(name + 8))
713 return false;
714 }
715 if (parameters->options().strip_lto_sections()
716 && !parameters->options().relocatable()
717 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
718 {
719 // Ignore LTO sections containing intermediate code.
720 if (is_prefix_of(".gnu.lto_", name))
721 return false;
722 }
723 // The GNU linker strips .gnu_debuglink sections, so we do too.
724 // This is a feature used to keep debugging information in
725 // separate files.
726 if (strcmp(name, ".gnu_debuglink") == 0)
727 return false;
728 return true;
729
730 default:
731 return true;
732 }
733 }
734
735 // Return an output section named NAME, or NULL if there is none.
736
737 Output_section*
738 Layout::find_output_section(const char* name) const
739 {
740 for (Section_list::const_iterator p = this->section_list_.begin();
741 p != this->section_list_.end();
742 ++p)
743 if (strcmp((*p)->name(), name) == 0)
744 return *p;
745 return NULL;
746 }
747
748 // Return an output segment of type TYPE, with segment flags SET set
749 // and segment flags CLEAR clear. Return NULL if there is none.
750
751 Output_segment*
752 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
753 elfcpp::Elf_Word clear) const
754 {
755 for (Segment_list::const_iterator p = this->segment_list_.begin();
756 p != this->segment_list_.end();
757 ++p)
758 if (static_cast<elfcpp::PT>((*p)->type()) == type
759 && ((*p)->flags() & set) == set
760 && ((*p)->flags() & clear) == 0)
761 return *p;
762 return NULL;
763 }
764
765 // When we put a .ctors or .dtors section with more than one word into
766 // a .init_array or .fini_array section, we need to reverse the words
767 // in the .ctors/.dtors section. This is because .init_array executes
768 // constructors front to back, where .ctors executes them back to
769 // front, and vice-versa for .fini_array/.dtors. Although we do want
770 // to remap .ctors/.dtors into .init_array/.fini_array because it can
771 // be more efficient, we don't want to change the order in which
772 // constructors/destructors are run. This set just keeps track of
773 // these sections which need to be reversed. It is only changed by
774 // Layout::layout. It should be a private member of Layout, but that
775 // would require layout.h to #include object.h to get the definition
776 // of Section_id.
777 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
778
779 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
780 // .init_array/.fini_array section.
781
782 bool
783 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
784 {
785 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
786 != ctors_sections_in_init_array.end());
787 }
788
789 // Return the output section to use for section NAME with type TYPE
790 // and section flags FLAGS. NAME must be canonicalized in the string
791 // pool, and NAME_KEY is the key. ORDER is where this should appear
792 // in the output sections. IS_RELRO is true for a relro section.
793
794 Output_section*
795 Layout::get_output_section(const char* name, Stringpool::Key name_key,
796 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
797 Output_section_order order, bool is_relro)
798 {
799 elfcpp::Elf_Word lookup_type = type;
800
801 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
802 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
803 // .init_array, .fini_array, and .preinit_array sections by name
804 // whatever their type in the input file. We do this because the
805 // types are not always right in the input files.
806 if (lookup_type == elfcpp::SHT_INIT_ARRAY
807 || lookup_type == elfcpp::SHT_FINI_ARRAY
808 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
809 lookup_type = elfcpp::SHT_PROGBITS;
810
811 elfcpp::Elf_Xword lookup_flags = flags;
812
813 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
814 // read-write with read-only sections. Some other ELF linkers do
815 // not do this. FIXME: Perhaps there should be an option
816 // controlling this.
817 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
818
819 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
820 const std::pair<Key, Output_section*> v(key, NULL);
821 std::pair<Section_name_map::iterator, bool> ins(
822 this->section_name_map_.insert(v));
823
824 if (!ins.second)
825 return ins.first->second;
826 else
827 {
828 // This is the first time we've seen this name/type/flags
829 // combination. For compatibility with the GNU linker, we
830 // combine sections with contents and zero flags with sections
831 // with non-zero flags. This is a workaround for cases where
832 // assembler code forgets to set section flags. FIXME: Perhaps
833 // there should be an option to control this.
834 Output_section* os = NULL;
835
836 if (lookup_type == elfcpp::SHT_PROGBITS)
837 {
838 if (flags == 0)
839 {
840 Output_section* same_name = this->find_output_section(name);
841 if (same_name != NULL
842 && (same_name->type() == elfcpp::SHT_PROGBITS
843 || same_name->type() == elfcpp::SHT_INIT_ARRAY
844 || same_name->type() == elfcpp::SHT_FINI_ARRAY
845 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
846 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
847 os = same_name;
848 }
849 else if ((flags & elfcpp::SHF_TLS) == 0)
850 {
851 elfcpp::Elf_Xword zero_flags = 0;
852 const Key zero_key(name_key, std::make_pair(lookup_type,
853 zero_flags));
854 Section_name_map::iterator p =
855 this->section_name_map_.find(zero_key);
856 if (p != this->section_name_map_.end())
857 os = p->second;
858 }
859 }
860
861 if (os == NULL)
862 os = this->make_output_section(name, type, flags, order, is_relro);
863
864 ins.first->second = os;
865 return os;
866 }
867 }
868
869 // Returns TRUE iff NAME (an input section from RELOBJ) will
870 // be mapped to an output section that should be KEPT.
871
872 bool
873 Layout::keep_input_section(const Relobj* relobj, const char* name)
874 {
875 if (! this->script_options_->saw_sections_clause())
876 return false;
877
878 Script_sections* ss = this->script_options_->script_sections();
879 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
880 Output_section** output_section_slot;
881 Script_sections::Section_type script_section_type;
882 bool keep;
883
884 name = ss->output_section_name(file_name, name, &output_section_slot,
885 &script_section_type, &keep);
886 return name != NULL && keep;
887 }
888
889 // Clear the input section flags that should not be copied to the
890 // output section.
891
892 elfcpp::Elf_Xword
893 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
894 {
895 // Some flags in the input section should not be automatically
896 // copied to the output section.
897 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
898 | elfcpp::SHF_GROUP
899 | elfcpp::SHF_MERGE
900 | elfcpp::SHF_STRINGS);
901
902 // We only clear the SHF_LINK_ORDER flag in for
903 // a non-relocatable link.
904 if (!parameters->options().relocatable())
905 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
906
907 return input_section_flags;
908 }
909
910 // Pick the output section to use for section NAME, in input file
911 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
912 // linker created section. IS_INPUT_SECTION is true if we are
913 // choosing an output section for an input section found in a input
914 // file. ORDER is where this section should appear in the output
915 // sections. IS_RELRO is true for a relro section. This will return
916 // NULL if the input section should be discarded.
917
918 Output_section*
919 Layout::choose_output_section(const Relobj* relobj, const char* name,
920 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
921 bool is_input_section, Output_section_order order,
922 bool is_relro)
923 {
924 // We should not see any input sections after we have attached
925 // sections to segments.
926 gold_assert(!is_input_section || !this->sections_are_attached_);
927
928 flags = this->get_output_section_flags(flags);
929
930 if (this->script_options_->saw_sections_clause())
931 {
932 // We are using a SECTIONS clause, so the output section is
933 // chosen based only on the name.
934
935 Script_sections* ss = this->script_options_->script_sections();
936 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
937 Output_section** output_section_slot;
938 Script_sections::Section_type script_section_type;
939 const char* orig_name = name;
940 bool keep;
941 name = ss->output_section_name(file_name, name, &output_section_slot,
942 &script_section_type, &keep);
943
944 if (name == NULL)
945 {
946 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
947 "because it is not allowed by the "
948 "SECTIONS clause of the linker script"),
949 orig_name);
950 // The SECTIONS clause says to discard this input section.
951 return NULL;
952 }
953
954 // We can only handle script section types ST_NONE and ST_NOLOAD.
955 switch (script_section_type)
956 {
957 case Script_sections::ST_NONE:
958 break;
959 case Script_sections::ST_NOLOAD:
960 flags &= elfcpp::SHF_ALLOC;
961 break;
962 default:
963 gold_unreachable();
964 }
965
966 // If this is an orphan section--one not mentioned in the linker
967 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
968 // default processing below.
969
970 if (output_section_slot != NULL)
971 {
972 if (*output_section_slot != NULL)
973 {
974 (*output_section_slot)->update_flags_for_input_section(flags);
975 return *output_section_slot;
976 }
977
978 // We don't put sections found in the linker script into
979 // SECTION_NAME_MAP_. That keeps us from getting confused
980 // if an orphan section is mapped to a section with the same
981 // name as one in the linker script.
982
983 name = this->namepool_.add(name, false, NULL);
984
985 Output_section* os = this->make_output_section(name, type, flags,
986 order, is_relro);
987
988 os->set_found_in_sections_clause();
989
990 // Special handling for NOLOAD sections.
991 if (script_section_type == Script_sections::ST_NOLOAD)
992 {
993 os->set_is_noload();
994
995 // The constructor of Output_section sets addresses of non-ALLOC
996 // sections to 0 by default. We don't want that for NOLOAD
997 // sections even if they have no SHF_ALLOC flag.
998 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
999 && os->is_address_valid())
1000 {
1001 gold_assert(os->address() == 0
1002 && !os->is_offset_valid()
1003 && !os->is_data_size_valid());
1004 os->reset_address_and_file_offset();
1005 }
1006 }
1007
1008 *output_section_slot = os;
1009 return os;
1010 }
1011 }
1012
1013 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1014
1015 size_t len = strlen(name);
1016 char* uncompressed_name = NULL;
1017
1018 // Compressed debug sections should be mapped to the corresponding
1019 // uncompressed section.
1020 if (is_compressed_debug_section(name))
1021 {
1022 uncompressed_name = new char[len];
1023 uncompressed_name[0] = '.';
1024 gold_assert(name[0] == '.' && name[1] == 'z');
1025 strncpy(&uncompressed_name[1], &name[2], len - 2);
1026 uncompressed_name[len - 1] = '\0';
1027 len -= 1;
1028 name = uncompressed_name;
1029 }
1030
1031 // Turn NAME from the name of the input section into the name of the
1032 // output section.
1033 if (is_input_section
1034 && !this->script_options_->saw_sections_clause()
1035 && !parameters->options().relocatable())
1036 {
1037 const char *orig_name = name;
1038 name = parameters->target().output_section_name(relobj, name, &len);
1039 if (name == NULL)
1040 name = Layout::output_section_name(relobj, orig_name, &len);
1041 }
1042
1043 Stringpool::Key name_key;
1044 name = this->namepool_.add_with_length(name, len, true, &name_key);
1045
1046 if (uncompressed_name != NULL)
1047 delete[] uncompressed_name;
1048
1049 // Find or make the output section. The output section is selected
1050 // based on the section name, type, and flags.
1051 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1052 }
1053
1054 // For incremental links, record the initial fixed layout of a section
1055 // from the base file, and return a pointer to the Output_section.
1056
1057 template<int size, bool big_endian>
1058 Output_section*
1059 Layout::init_fixed_output_section(const char* name,
1060 elfcpp::Shdr<size, big_endian>& shdr)
1061 {
1062 unsigned int sh_type = shdr.get_sh_type();
1063
1064 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1065 // PRE_INIT_ARRAY, and NOTE sections.
1066 // All others will be created from scratch and reallocated.
1067 if (!can_incremental_update(sh_type))
1068 return NULL;
1069
1070 // If we're generating a .gdb_index section, we need to regenerate
1071 // it from scratch.
1072 if (parameters->options().gdb_index()
1073 && sh_type == elfcpp::SHT_PROGBITS
1074 && strcmp(name, ".gdb_index") == 0)
1075 return NULL;
1076
1077 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1078 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1079 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1080 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1081 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1082 shdr.get_sh_addralign();
1083
1084 // Make the output section.
1085 Stringpool::Key name_key;
1086 name = this->namepool_.add(name, true, &name_key);
1087 Output_section* os = this->get_output_section(name, name_key, sh_type,
1088 sh_flags, ORDER_INVALID, false);
1089 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1090 if (sh_type != elfcpp::SHT_NOBITS)
1091 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1092 return os;
1093 }
1094
1095 // Return the index by which an input section should be ordered. This
1096 // is used to sort some .text sections, for compatibility with GNU ld.
1097
1098 int
1099 Layout::special_ordering_of_input_section(const char* name)
1100 {
1101 // The GNU linker has some special handling for some sections that
1102 // wind up in the .text section. Sections that start with these
1103 // prefixes must appear first, and must appear in the order listed
1104 // here.
1105 static const char* const text_section_sort[] =
1106 {
1107 ".text.unlikely",
1108 ".text.exit",
1109 ".text.startup",
1110 ".text.hot"
1111 };
1112
1113 for (size_t i = 0;
1114 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1115 i++)
1116 if (is_prefix_of(text_section_sort[i], name))
1117 return i;
1118
1119 return -1;
1120 }
1121
1122 // Return the output section to use for input section SHNDX, with name
1123 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1124 // index of a relocation section which applies to this section, or 0
1125 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1126 // relocation section if there is one. Set *OFF to the offset of this
1127 // input section without the output section. Return NULL if the
1128 // section should be discarded. Set *OFF to -1 if the section
1129 // contents should not be written directly to the output file, but
1130 // will instead receive special handling.
1131
1132 template<int size, bool big_endian>
1133 Output_section*
1134 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1135 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1136 unsigned int reloc_shndx, unsigned int, off_t* off)
1137 {
1138 *off = 0;
1139
1140 if (!this->include_section(object, name, shdr))
1141 return NULL;
1142
1143 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1144
1145 // In a relocatable link a grouped section must not be combined with
1146 // any other sections.
1147 Output_section* os;
1148 if (parameters->options().relocatable()
1149 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1150 {
1151 name = this->namepool_.add(name, true, NULL);
1152 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1153 ORDER_INVALID, false);
1154 }
1155 else
1156 {
1157 // Plugins can choose to place one or more subsets of sections in
1158 // unique segments and this is done by mapping these section subsets
1159 // to unique output sections. Check if this section needs to be
1160 // remapped to a unique output section.
1161 Section_segment_map::iterator it
1162 = this->section_segment_map_.find(Const_section_id(object, shndx));
1163 if (it == this->section_segment_map_.end())
1164 {
1165 os = this->choose_output_section(object, name, sh_type,
1166 shdr.get_sh_flags(), true,
1167 ORDER_INVALID, false);
1168 }
1169 else
1170 {
1171 // We know the name of the output section, directly call
1172 // get_output_section here by-passing choose_output_section.
1173 elfcpp::Elf_Xword flags
1174 = this->get_output_section_flags(shdr.get_sh_flags());
1175
1176 const char* os_name = it->second->name;
1177 Stringpool::Key name_key;
1178 os_name = this->namepool_.add(os_name, true, &name_key);
1179 os = this->get_output_section(os_name, name_key, sh_type, flags,
1180 ORDER_INVALID, false);
1181 if (!os->is_unique_segment())
1182 {
1183 os->set_is_unique_segment();
1184 os->set_extra_segment_flags(it->second->flags);
1185 os->set_segment_alignment(it->second->align);
1186 }
1187 }
1188 if (os == NULL)
1189 return NULL;
1190 }
1191
1192 // By default the GNU linker sorts input sections whose names match
1193 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1194 // sections are sorted by name. This is used to implement
1195 // constructor priority ordering. We are compatible. When we put
1196 // .ctor sections in .init_array and .dtor sections in .fini_array,
1197 // we must also sort plain .ctor and .dtor sections.
1198 if (!this->script_options_->saw_sections_clause()
1199 && !parameters->options().relocatable()
1200 && (is_prefix_of(".ctors.", name)
1201 || is_prefix_of(".dtors.", name)
1202 || is_prefix_of(".init_array.", name)
1203 || is_prefix_of(".fini_array.", name)
1204 || (parameters->options().ctors_in_init_array()
1205 && (strcmp(name, ".ctors") == 0
1206 || strcmp(name, ".dtors") == 0))))
1207 os->set_must_sort_attached_input_sections();
1208
1209 // By default the GNU linker sorts some special text sections ahead
1210 // of others. We are compatible.
1211 if (parameters->options().text_reorder()
1212 && !this->script_options_->saw_sections_clause()
1213 && !this->is_section_ordering_specified()
1214 && !parameters->options().relocatable()
1215 && Layout::special_ordering_of_input_section(name) >= 0)
1216 os->set_must_sort_attached_input_sections();
1217
1218 // If this is a .ctors or .ctors.* section being mapped to a
1219 // .init_array section, or a .dtors or .dtors.* section being mapped
1220 // to a .fini_array section, we will need to reverse the words if
1221 // there is more than one. Record this section for later. See
1222 // ctors_sections_in_init_array above.
1223 if (!this->script_options_->saw_sections_clause()
1224 && !parameters->options().relocatable()
1225 && shdr.get_sh_size() > size / 8
1226 && (((strcmp(name, ".ctors") == 0
1227 || is_prefix_of(".ctors.", name))
1228 && strcmp(os->name(), ".init_array") == 0)
1229 || ((strcmp(name, ".dtors") == 0
1230 || is_prefix_of(".dtors.", name))
1231 && strcmp(os->name(), ".fini_array") == 0)))
1232 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1233
1234 // FIXME: Handle SHF_LINK_ORDER somewhere.
1235
1236 elfcpp::Elf_Xword orig_flags = os->flags();
1237
1238 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1239 this->script_options_->saw_sections_clause());
1240
1241 // If the flags changed, we may have to change the order.
1242 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1243 {
1244 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1245 elfcpp::Elf_Xword new_flags =
1246 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1247 if (orig_flags != new_flags)
1248 os->set_order(this->default_section_order(os, false));
1249 }
1250
1251 this->have_added_input_section_ = true;
1252
1253 return os;
1254 }
1255
1256 // Maps section SECN to SEGMENT s.
1257 void
1258 Layout::insert_section_segment_map(Const_section_id secn,
1259 Unique_segment_info *s)
1260 {
1261 gold_assert(this->unique_segment_for_sections_specified_);
1262 this->section_segment_map_[secn] = s;
1263 }
1264
1265 // Handle a relocation section when doing a relocatable link.
1266
1267 template<int size, bool big_endian>
1268 Output_section*
1269 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1270 unsigned int,
1271 const elfcpp::Shdr<size, big_endian>& shdr,
1272 Output_section* data_section,
1273 Relocatable_relocs* rr)
1274 {
1275 gold_assert(parameters->options().relocatable()
1276 || parameters->options().emit_relocs());
1277
1278 int sh_type = shdr.get_sh_type();
1279
1280 std::string name;
1281 if (sh_type == elfcpp::SHT_REL)
1282 name = ".rel";
1283 else if (sh_type == elfcpp::SHT_RELA)
1284 name = ".rela";
1285 else
1286 gold_unreachable();
1287 name += data_section->name();
1288
1289 // In a relocatable link relocs for a grouped section must not be
1290 // combined with other reloc sections.
1291 Output_section* os;
1292 if (!parameters->options().relocatable()
1293 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1294 os = this->choose_output_section(object, name.c_str(), sh_type,
1295 shdr.get_sh_flags(), false,
1296 ORDER_INVALID, false);
1297 else
1298 {
1299 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1300 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1301 ORDER_INVALID, false);
1302 }
1303
1304 os->set_should_link_to_symtab();
1305 os->set_info_section(data_section);
1306
1307 Output_section_data* posd;
1308 if (sh_type == elfcpp::SHT_REL)
1309 {
1310 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1311 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1312 size,
1313 big_endian>(rr);
1314 }
1315 else if (sh_type == elfcpp::SHT_RELA)
1316 {
1317 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1318 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1319 size,
1320 big_endian>(rr);
1321 }
1322 else
1323 gold_unreachable();
1324
1325 os->add_output_section_data(posd);
1326 rr->set_output_data(posd);
1327
1328 return os;
1329 }
1330
1331 // Handle a group section when doing a relocatable link.
1332
1333 template<int size, bool big_endian>
1334 void
1335 Layout::layout_group(Symbol_table* symtab,
1336 Sized_relobj_file<size, big_endian>* object,
1337 unsigned int,
1338 const char* group_section_name,
1339 const char* signature,
1340 const elfcpp::Shdr<size, big_endian>& shdr,
1341 elfcpp::Elf_Word flags,
1342 std::vector<unsigned int>* shndxes)
1343 {
1344 gold_assert(parameters->options().relocatable());
1345 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1346 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1347 Output_section* os = this->make_output_section(group_section_name,
1348 elfcpp::SHT_GROUP,
1349 shdr.get_sh_flags(),
1350 ORDER_INVALID, false);
1351
1352 // We need to find a symbol with the signature in the symbol table.
1353 // If we don't find one now, we need to look again later.
1354 Symbol* sym = symtab->lookup(signature, NULL);
1355 if (sym != NULL)
1356 os->set_info_symndx(sym);
1357 else
1358 {
1359 // Reserve some space to minimize reallocations.
1360 if (this->group_signatures_.empty())
1361 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1362
1363 // We will wind up using a symbol whose name is the signature.
1364 // So just put the signature in the symbol name pool to save it.
1365 signature = symtab->canonicalize_name(signature);
1366 this->group_signatures_.push_back(Group_signature(os, signature));
1367 }
1368
1369 os->set_should_link_to_symtab();
1370 os->set_entsize(4);
1371
1372 section_size_type entry_count =
1373 convert_to_section_size_type(shdr.get_sh_size() / 4);
1374 Output_section_data* posd =
1375 new Output_data_group<size, big_endian>(object, entry_count, flags,
1376 shndxes);
1377 os->add_output_section_data(posd);
1378 }
1379
1380 // Special GNU handling of sections name .eh_frame. They will
1381 // normally hold exception frame data as defined by the C++ ABI
1382 // (http://codesourcery.com/cxx-abi/).
1383
1384 template<int size, bool big_endian>
1385 Output_section*
1386 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1387 const unsigned char* symbols,
1388 off_t symbols_size,
1389 const unsigned char* symbol_names,
1390 off_t symbol_names_size,
1391 unsigned int shndx,
1392 const elfcpp::Shdr<size, big_endian>& shdr,
1393 unsigned int reloc_shndx, unsigned int reloc_type,
1394 off_t* off)
1395 {
1396 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1397 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1398 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1399
1400 Output_section* os = this->make_eh_frame_section(object);
1401 if (os == NULL)
1402 return NULL;
1403
1404 gold_assert(this->eh_frame_section_ == os);
1405
1406 elfcpp::Elf_Xword orig_flags = os->flags();
1407
1408 if (!parameters->incremental()
1409 && this->eh_frame_data_->add_ehframe_input_section(object,
1410 symbols,
1411 symbols_size,
1412 symbol_names,
1413 symbol_names_size,
1414 shndx,
1415 reloc_shndx,
1416 reloc_type))
1417 {
1418 os->update_flags_for_input_section(shdr.get_sh_flags());
1419
1420 // A writable .eh_frame section is a RELRO section.
1421 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1422 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1423 {
1424 os->set_is_relro();
1425 os->set_order(ORDER_RELRO);
1426 }
1427
1428 // We found a .eh_frame section we are going to optimize, so now
1429 // we can add the set of optimized sections to the output
1430 // section. We need to postpone adding this until we've found a
1431 // section we can optimize so that the .eh_frame section in
1432 // crtbegin.o winds up at the start of the output section.
1433 if (!this->added_eh_frame_data_)
1434 {
1435 os->add_output_section_data(this->eh_frame_data_);
1436 this->added_eh_frame_data_ = true;
1437 }
1438 *off = -1;
1439 }
1440 else
1441 {
1442 // We couldn't handle this .eh_frame section for some reason.
1443 // Add it as a normal section.
1444 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1445 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1446 reloc_shndx, saw_sections_clause);
1447 this->have_added_input_section_ = true;
1448
1449 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1450 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1451 os->set_order(this->default_section_order(os, false));
1452 }
1453
1454 return os;
1455 }
1456
1457 // Create and return the magic .eh_frame section. Create
1458 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1459 // input .eh_frame section; it may be NULL.
1460
1461 Output_section*
1462 Layout::make_eh_frame_section(const Relobj* object)
1463 {
1464 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1465 // SHT_PROGBITS.
1466 Output_section* os = this->choose_output_section(object, ".eh_frame",
1467 elfcpp::SHT_PROGBITS,
1468 elfcpp::SHF_ALLOC, false,
1469 ORDER_EHFRAME, false);
1470 if (os == NULL)
1471 return NULL;
1472
1473 if (this->eh_frame_section_ == NULL)
1474 {
1475 this->eh_frame_section_ = os;
1476 this->eh_frame_data_ = new Eh_frame();
1477
1478 // For incremental linking, we do not optimize .eh_frame sections
1479 // or create a .eh_frame_hdr section.
1480 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1481 {
1482 Output_section* hdr_os =
1483 this->choose_output_section(NULL, ".eh_frame_hdr",
1484 elfcpp::SHT_PROGBITS,
1485 elfcpp::SHF_ALLOC, false,
1486 ORDER_EHFRAME, false);
1487
1488 if (hdr_os != NULL)
1489 {
1490 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1491 this->eh_frame_data_);
1492 hdr_os->add_output_section_data(hdr_posd);
1493
1494 hdr_os->set_after_input_sections();
1495
1496 if (!this->script_options_->saw_phdrs_clause())
1497 {
1498 Output_segment* hdr_oseg;
1499 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1500 elfcpp::PF_R);
1501 hdr_oseg->add_output_section_to_nonload(hdr_os,
1502 elfcpp::PF_R);
1503 }
1504
1505 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1506 }
1507 }
1508 }
1509
1510 return os;
1511 }
1512
1513 // Add an exception frame for a PLT. This is called from target code.
1514
1515 void
1516 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1517 size_t cie_length, const unsigned char* fde_data,
1518 size_t fde_length)
1519 {
1520 if (parameters->incremental())
1521 {
1522 // FIXME: Maybe this could work some day....
1523 return;
1524 }
1525 Output_section* os = this->make_eh_frame_section(NULL);
1526 if (os == NULL)
1527 return;
1528 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1529 fde_data, fde_length);
1530 if (!this->added_eh_frame_data_)
1531 {
1532 os->add_output_section_data(this->eh_frame_data_);
1533 this->added_eh_frame_data_ = true;
1534 }
1535 }
1536
1537 // Scan a .debug_info or .debug_types section, and add summary
1538 // information to the .gdb_index section.
1539
1540 template<int size, bool big_endian>
1541 void
1542 Layout::add_to_gdb_index(bool is_type_unit,
1543 Sized_relobj<size, big_endian>* object,
1544 const unsigned char* symbols,
1545 off_t symbols_size,
1546 unsigned int shndx,
1547 unsigned int reloc_shndx,
1548 unsigned int reloc_type)
1549 {
1550 if (this->gdb_index_data_ == NULL)
1551 {
1552 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1553 elfcpp::SHT_PROGBITS, 0,
1554 false, ORDER_INVALID,
1555 false);
1556 if (os == NULL)
1557 return;
1558
1559 this->gdb_index_data_ = new Gdb_index(os);
1560 os->add_output_section_data(this->gdb_index_data_);
1561 os->set_after_input_sections();
1562 }
1563
1564 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1565 symbols_size, shndx, reloc_shndx,
1566 reloc_type);
1567 }
1568
1569 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1570 // the output section.
1571
1572 Output_section*
1573 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1574 elfcpp::Elf_Xword flags,
1575 Output_section_data* posd,
1576 Output_section_order order, bool is_relro)
1577 {
1578 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1579 false, order, is_relro);
1580 if (os != NULL)
1581 os->add_output_section_data(posd);
1582 return os;
1583 }
1584
1585 // Map section flags to segment flags.
1586
1587 elfcpp::Elf_Word
1588 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1589 {
1590 elfcpp::Elf_Word ret = elfcpp::PF_R;
1591 if ((flags & elfcpp::SHF_WRITE) != 0)
1592 ret |= elfcpp::PF_W;
1593 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1594 ret |= elfcpp::PF_X;
1595 return ret;
1596 }
1597
1598 // Make a new Output_section, and attach it to segments as
1599 // appropriate. ORDER is the order in which this section should
1600 // appear in the output segment. IS_RELRO is true if this is a relro
1601 // (read-only after relocations) section.
1602
1603 Output_section*
1604 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1605 elfcpp::Elf_Xword flags,
1606 Output_section_order order, bool is_relro)
1607 {
1608 Output_section* os;
1609 if ((flags & elfcpp::SHF_ALLOC) == 0
1610 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1611 && is_compressible_debug_section(name))
1612 os = new Output_compressed_section(&parameters->options(), name, type,
1613 flags);
1614 else if ((flags & elfcpp::SHF_ALLOC) == 0
1615 && parameters->options().strip_debug_non_line()
1616 && strcmp(".debug_abbrev", name) == 0)
1617 {
1618 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1619 name, type, flags);
1620 if (this->debug_info_)
1621 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1622 }
1623 else if ((flags & elfcpp::SHF_ALLOC) == 0
1624 && parameters->options().strip_debug_non_line()
1625 && strcmp(".debug_info", name) == 0)
1626 {
1627 os = this->debug_info_ = new Output_reduced_debug_info_section(
1628 name, type, flags);
1629 if (this->debug_abbrev_)
1630 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1631 }
1632 else
1633 {
1634 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1635 // not have correct section types. Force them here.
1636 if (type == elfcpp::SHT_PROGBITS)
1637 {
1638 if (is_prefix_of(".init_array", name))
1639 type = elfcpp::SHT_INIT_ARRAY;
1640 else if (is_prefix_of(".preinit_array", name))
1641 type = elfcpp::SHT_PREINIT_ARRAY;
1642 else if (is_prefix_of(".fini_array", name))
1643 type = elfcpp::SHT_FINI_ARRAY;
1644 }
1645
1646 // FIXME: const_cast is ugly.
1647 Target* target = const_cast<Target*>(&parameters->target());
1648 os = target->make_output_section(name, type, flags);
1649 }
1650
1651 // With -z relro, we have to recognize the special sections by name.
1652 // There is no other way.
1653 bool is_relro_local = false;
1654 if (!this->script_options_->saw_sections_clause()
1655 && parameters->options().relro()
1656 && (flags & elfcpp::SHF_ALLOC) != 0
1657 && (flags & elfcpp::SHF_WRITE) != 0)
1658 {
1659 if (type == elfcpp::SHT_PROGBITS)
1660 {
1661 if ((flags & elfcpp::SHF_TLS) != 0)
1662 is_relro = true;
1663 else if (strcmp(name, ".data.rel.ro") == 0)
1664 is_relro = true;
1665 else if (strcmp(name, ".data.rel.ro.local") == 0)
1666 {
1667 is_relro = true;
1668 is_relro_local = true;
1669 }
1670 else if (strcmp(name, ".ctors") == 0
1671 || strcmp(name, ".dtors") == 0
1672 || strcmp(name, ".jcr") == 0)
1673 is_relro = true;
1674 }
1675 else if (type == elfcpp::SHT_INIT_ARRAY
1676 || type == elfcpp::SHT_FINI_ARRAY
1677 || type == elfcpp::SHT_PREINIT_ARRAY)
1678 is_relro = true;
1679 }
1680
1681 if (is_relro)
1682 os->set_is_relro();
1683
1684 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1685 order = this->default_section_order(os, is_relro_local);
1686
1687 os->set_order(order);
1688
1689 parameters->target().new_output_section(os);
1690
1691 this->section_list_.push_back(os);
1692
1693 // The GNU linker by default sorts some sections by priority, so we
1694 // do the same. We need to know that this might happen before we
1695 // attach any input sections.
1696 if (!this->script_options_->saw_sections_clause()
1697 && !parameters->options().relocatable()
1698 && (strcmp(name, ".init_array") == 0
1699 || strcmp(name, ".fini_array") == 0
1700 || (!parameters->options().ctors_in_init_array()
1701 && (strcmp(name, ".ctors") == 0
1702 || strcmp(name, ".dtors") == 0))))
1703 os->set_may_sort_attached_input_sections();
1704
1705 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1706 // sections before other .text sections. We are compatible. We
1707 // need to know that this might happen before we attach any input
1708 // sections.
1709 if (parameters->options().text_reorder()
1710 && !this->script_options_->saw_sections_clause()
1711 && !this->is_section_ordering_specified()
1712 && !parameters->options().relocatable()
1713 && strcmp(name, ".text") == 0)
1714 os->set_may_sort_attached_input_sections();
1715
1716 // GNU linker sorts section by name with --sort-section=name.
1717 if (strcmp(parameters->options().sort_section(), "name") == 0)
1718 os->set_must_sort_attached_input_sections();
1719
1720 // Check for .stab*str sections, as .stab* sections need to link to
1721 // them.
1722 if (type == elfcpp::SHT_STRTAB
1723 && !this->have_stabstr_section_
1724 && strncmp(name, ".stab", 5) == 0
1725 && strcmp(name + strlen(name) - 3, "str") == 0)
1726 this->have_stabstr_section_ = true;
1727
1728 // During a full incremental link, we add patch space to most
1729 // PROGBITS and NOBITS sections. Flag those that may be
1730 // arbitrarily padded.
1731 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1732 && order != ORDER_INTERP
1733 && order != ORDER_INIT
1734 && order != ORDER_PLT
1735 && order != ORDER_FINI
1736 && order != ORDER_RELRO_LAST
1737 && order != ORDER_NON_RELRO_FIRST
1738 && strcmp(name, ".eh_frame") != 0
1739 && strcmp(name, ".ctors") != 0
1740 && strcmp(name, ".dtors") != 0
1741 && strcmp(name, ".jcr") != 0)
1742 {
1743 os->set_is_patch_space_allowed();
1744
1745 // Certain sections require "holes" to be filled with
1746 // specific fill patterns. These fill patterns may have
1747 // a minimum size, so we must prevent allocations from the
1748 // free list that leave a hole smaller than the minimum.
1749 if (strcmp(name, ".debug_info") == 0)
1750 os->set_free_space_fill(new Output_fill_debug_info(false));
1751 else if (strcmp(name, ".debug_types") == 0)
1752 os->set_free_space_fill(new Output_fill_debug_info(true));
1753 else if (strcmp(name, ".debug_line") == 0)
1754 os->set_free_space_fill(new Output_fill_debug_line());
1755 }
1756
1757 // If we have already attached the sections to segments, then we
1758 // need to attach this one now. This happens for sections created
1759 // directly by the linker.
1760 if (this->sections_are_attached_)
1761 this->attach_section_to_segment(&parameters->target(), os);
1762
1763 return os;
1764 }
1765
1766 // Return the default order in which a section should be placed in an
1767 // output segment. This function captures a lot of the ideas in
1768 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1769 // linker created section is normally set when the section is created;
1770 // this function is used for input sections.
1771
1772 Output_section_order
1773 Layout::default_section_order(Output_section* os, bool is_relro_local)
1774 {
1775 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1776 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1777 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1778 bool is_bss = false;
1779
1780 switch (os->type())
1781 {
1782 default:
1783 case elfcpp::SHT_PROGBITS:
1784 break;
1785 case elfcpp::SHT_NOBITS:
1786 is_bss = true;
1787 break;
1788 case elfcpp::SHT_RELA:
1789 case elfcpp::SHT_REL:
1790 if (!is_write)
1791 return ORDER_DYNAMIC_RELOCS;
1792 break;
1793 case elfcpp::SHT_HASH:
1794 case elfcpp::SHT_DYNAMIC:
1795 case elfcpp::SHT_SHLIB:
1796 case elfcpp::SHT_DYNSYM:
1797 case elfcpp::SHT_GNU_HASH:
1798 case elfcpp::SHT_GNU_verdef:
1799 case elfcpp::SHT_GNU_verneed:
1800 case elfcpp::SHT_GNU_versym:
1801 if (!is_write)
1802 return ORDER_DYNAMIC_LINKER;
1803 break;
1804 case elfcpp::SHT_NOTE:
1805 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1806 }
1807
1808 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1809 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1810
1811 if (!is_bss && !is_write)
1812 {
1813 if (is_execinstr)
1814 {
1815 if (strcmp(os->name(), ".init") == 0)
1816 return ORDER_INIT;
1817 else if (strcmp(os->name(), ".fini") == 0)
1818 return ORDER_FINI;
1819 }
1820 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1821 }
1822
1823 if (os->is_relro())
1824 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1825
1826 if (os->is_small_section())
1827 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1828 if (os->is_large_section())
1829 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1830
1831 return is_bss ? ORDER_BSS : ORDER_DATA;
1832 }
1833
1834 // Attach output sections to segments. This is called after we have
1835 // seen all the input sections.
1836
1837 void
1838 Layout::attach_sections_to_segments(const Target* target)
1839 {
1840 for (Section_list::iterator p = this->section_list_.begin();
1841 p != this->section_list_.end();
1842 ++p)
1843 this->attach_section_to_segment(target, *p);
1844
1845 this->sections_are_attached_ = true;
1846 }
1847
1848 // Attach an output section to a segment.
1849
1850 void
1851 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1852 {
1853 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1854 this->unattached_section_list_.push_back(os);
1855 else
1856 this->attach_allocated_section_to_segment(target, os);
1857 }
1858
1859 // Attach an allocated output section to a segment.
1860
1861 void
1862 Layout::attach_allocated_section_to_segment(const Target* target,
1863 Output_section* os)
1864 {
1865 elfcpp::Elf_Xword flags = os->flags();
1866 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1867
1868 if (parameters->options().relocatable())
1869 return;
1870
1871 // If we have a SECTIONS clause, we can't handle the attachment to
1872 // segments until after we've seen all the sections.
1873 if (this->script_options_->saw_sections_clause())
1874 return;
1875
1876 gold_assert(!this->script_options_->saw_phdrs_clause());
1877
1878 // This output section goes into a PT_LOAD segment.
1879
1880 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1881
1882 // If this output section's segment has extra flags that need to be set,
1883 // coming from a linker plugin, do that.
1884 seg_flags |= os->extra_segment_flags();
1885
1886 // Check for --section-start.
1887 uint64_t addr;
1888 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1889
1890 // In general the only thing we really care about for PT_LOAD
1891 // segments is whether or not they are writable or executable,
1892 // so that is how we search for them.
1893 // Large data sections also go into their own PT_LOAD segment.
1894 // People who need segments sorted on some other basis will
1895 // have to use a linker script.
1896
1897 Segment_list::const_iterator p;
1898 if (!os->is_unique_segment())
1899 {
1900 for (p = this->segment_list_.begin();
1901 p != this->segment_list_.end();
1902 ++p)
1903 {
1904 if ((*p)->type() != elfcpp::PT_LOAD)
1905 continue;
1906 if ((*p)->is_unique_segment())
1907 continue;
1908 if (!parameters->options().omagic()
1909 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1910 continue;
1911 if ((target->isolate_execinstr() || parameters->options().rosegment())
1912 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1913 continue;
1914 // If -Tbss was specified, we need to separate the data and BSS
1915 // segments.
1916 if (parameters->options().user_set_Tbss())
1917 {
1918 if ((os->type() == elfcpp::SHT_NOBITS)
1919 == (*p)->has_any_data_sections())
1920 continue;
1921 }
1922 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1923 continue;
1924
1925 if (is_address_set)
1926 {
1927 if ((*p)->are_addresses_set())
1928 continue;
1929
1930 (*p)->add_initial_output_data(os);
1931 (*p)->update_flags_for_output_section(seg_flags);
1932 (*p)->set_addresses(addr, addr);
1933 break;
1934 }
1935
1936 (*p)->add_output_section_to_load(this, os, seg_flags);
1937 break;
1938 }
1939 }
1940
1941 if (p == this->segment_list_.end()
1942 || os->is_unique_segment())
1943 {
1944 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1945 seg_flags);
1946 if (os->is_large_data_section())
1947 oseg->set_is_large_data_segment();
1948 oseg->add_output_section_to_load(this, os, seg_flags);
1949 if (is_address_set)
1950 oseg->set_addresses(addr, addr);
1951 // Check if segment should be marked unique. For segments marked
1952 // unique by linker plugins, set the new alignment if specified.
1953 if (os->is_unique_segment())
1954 {
1955 oseg->set_is_unique_segment();
1956 if (os->segment_alignment() != 0)
1957 oseg->set_minimum_p_align(os->segment_alignment());
1958 }
1959 }
1960
1961 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1962 // segment.
1963 if (os->type() == elfcpp::SHT_NOTE)
1964 {
1965 // See if we already have an equivalent PT_NOTE segment.
1966 for (p = this->segment_list_.begin();
1967 p != segment_list_.end();
1968 ++p)
1969 {
1970 if ((*p)->type() == elfcpp::PT_NOTE
1971 && (((*p)->flags() & elfcpp::PF_W)
1972 == (seg_flags & elfcpp::PF_W)))
1973 {
1974 (*p)->add_output_section_to_nonload(os, seg_flags);
1975 break;
1976 }
1977 }
1978
1979 if (p == this->segment_list_.end())
1980 {
1981 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1982 seg_flags);
1983 oseg->add_output_section_to_nonload(os, seg_flags);
1984 }
1985 }
1986
1987 // If we see a loadable SHF_TLS section, we create a PT_TLS
1988 // segment. There can only be one such segment.
1989 if ((flags & elfcpp::SHF_TLS) != 0)
1990 {
1991 if (this->tls_segment_ == NULL)
1992 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1993 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1994 }
1995
1996 // If -z relro is in effect, and we see a relro section, we create a
1997 // PT_GNU_RELRO segment. There can only be one such segment.
1998 if (os->is_relro() && parameters->options().relro())
1999 {
2000 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2001 if (this->relro_segment_ == NULL)
2002 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2003 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2004 }
2005
2006 // If we see a section named .interp, put it into a PT_INTERP
2007 // segment. This seems broken to me, but this is what GNU ld does,
2008 // and glibc expects it.
2009 if (strcmp(os->name(), ".interp") == 0
2010 && !this->script_options_->saw_phdrs_clause())
2011 {
2012 if (this->interp_segment_ == NULL)
2013 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2014 else
2015 gold_warning(_("multiple '.interp' sections in input files "
2016 "may cause confusing PT_INTERP segment"));
2017 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2018 }
2019 }
2020
2021 // Make an output section for a script.
2022
2023 Output_section*
2024 Layout::make_output_section_for_script(
2025 const char* name,
2026 Script_sections::Section_type section_type)
2027 {
2028 name = this->namepool_.add(name, false, NULL);
2029 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2030 if (section_type == Script_sections::ST_NOLOAD)
2031 sh_flags = 0;
2032 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2033 sh_flags, ORDER_INVALID,
2034 false);
2035 os->set_found_in_sections_clause();
2036 if (section_type == Script_sections::ST_NOLOAD)
2037 os->set_is_noload();
2038 return os;
2039 }
2040
2041 // Return the number of segments we expect to see.
2042
2043 size_t
2044 Layout::expected_segment_count() const
2045 {
2046 size_t ret = this->segment_list_.size();
2047
2048 // If we didn't see a SECTIONS clause in a linker script, we should
2049 // already have the complete list of segments. Otherwise we ask the
2050 // SECTIONS clause how many segments it expects, and add in the ones
2051 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2052
2053 if (!this->script_options_->saw_sections_clause())
2054 return ret;
2055 else
2056 {
2057 const Script_sections* ss = this->script_options_->script_sections();
2058 return ret + ss->expected_segment_count(this);
2059 }
2060 }
2061
2062 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2063 // is whether we saw a .note.GNU-stack section in the object file.
2064 // GNU_STACK_FLAGS is the section flags. The flags give the
2065 // protection required for stack memory. We record this in an
2066 // executable as a PT_GNU_STACK segment. If an object file does not
2067 // have a .note.GNU-stack segment, we must assume that it is an old
2068 // object. On some targets that will force an executable stack.
2069
2070 void
2071 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2072 const Object* obj)
2073 {
2074 if (!seen_gnu_stack)
2075 {
2076 this->input_without_gnu_stack_note_ = true;
2077 if (parameters->options().warn_execstack()
2078 && parameters->target().is_default_stack_executable())
2079 gold_warning(_("%s: missing .note.GNU-stack section"
2080 " implies executable stack"),
2081 obj->name().c_str());
2082 }
2083 else
2084 {
2085 this->input_with_gnu_stack_note_ = true;
2086 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2087 {
2088 this->input_requires_executable_stack_ = true;
2089 if (parameters->options().warn_execstack()
2090 || parameters->options().is_stack_executable())
2091 gold_warning(_("%s: requires executable stack"),
2092 obj->name().c_str());
2093 }
2094 }
2095 }
2096
2097 // Create automatic note sections.
2098
2099 void
2100 Layout::create_notes()
2101 {
2102 this->create_gold_note();
2103 this->create_executable_stack_info();
2104 this->create_build_id();
2105 }
2106
2107 // Create the dynamic sections which are needed before we read the
2108 // relocs.
2109
2110 void
2111 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2112 {
2113 if (parameters->doing_static_link())
2114 return;
2115
2116 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2117 elfcpp::SHT_DYNAMIC,
2118 (elfcpp::SHF_ALLOC
2119 | elfcpp::SHF_WRITE),
2120 false, ORDER_RELRO,
2121 true);
2122
2123 // A linker script may discard .dynamic, so check for NULL.
2124 if (this->dynamic_section_ != NULL)
2125 {
2126 this->dynamic_symbol_ =
2127 symtab->define_in_output_data("_DYNAMIC", NULL,
2128 Symbol_table::PREDEFINED,
2129 this->dynamic_section_, 0, 0,
2130 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2131 elfcpp::STV_HIDDEN, 0, false, false);
2132
2133 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2134
2135 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2136 }
2137 }
2138
2139 // For each output section whose name can be represented as C symbol,
2140 // define __start and __stop symbols for the section. This is a GNU
2141 // extension.
2142
2143 void
2144 Layout::define_section_symbols(Symbol_table* symtab)
2145 {
2146 for (Section_list::const_iterator p = this->section_list_.begin();
2147 p != this->section_list_.end();
2148 ++p)
2149 {
2150 const char* const name = (*p)->name();
2151 if (is_cident(name))
2152 {
2153 const std::string name_string(name);
2154 const std::string start_name(cident_section_start_prefix
2155 + name_string);
2156 const std::string stop_name(cident_section_stop_prefix
2157 + name_string);
2158
2159 symtab->define_in_output_data(start_name.c_str(),
2160 NULL, // version
2161 Symbol_table::PREDEFINED,
2162 *p,
2163 0, // value
2164 0, // symsize
2165 elfcpp::STT_NOTYPE,
2166 elfcpp::STB_GLOBAL,
2167 elfcpp::STV_DEFAULT,
2168 0, // nonvis
2169 false, // offset_is_from_end
2170 true); // only_if_ref
2171
2172 symtab->define_in_output_data(stop_name.c_str(),
2173 NULL, // version
2174 Symbol_table::PREDEFINED,
2175 *p,
2176 0, // value
2177 0, // symsize
2178 elfcpp::STT_NOTYPE,
2179 elfcpp::STB_GLOBAL,
2180 elfcpp::STV_DEFAULT,
2181 0, // nonvis
2182 true, // offset_is_from_end
2183 true); // only_if_ref
2184 }
2185 }
2186 }
2187
2188 // Define symbols for group signatures.
2189
2190 void
2191 Layout::define_group_signatures(Symbol_table* symtab)
2192 {
2193 for (Group_signatures::iterator p = this->group_signatures_.begin();
2194 p != this->group_signatures_.end();
2195 ++p)
2196 {
2197 Symbol* sym = symtab->lookup(p->signature, NULL);
2198 if (sym != NULL)
2199 p->section->set_info_symndx(sym);
2200 else
2201 {
2202 // Force the name of the group section to the group
2203 // signature, and use the group's section symbol as the
2204 // signature symbol.
2205 if (strcmp(p->section->name(), p->signature) != 0)
2206 {
2207 const char* name = this->namepool_.add(p->signature,
2208 true, NULL);
2209 p->section->set_name(name);
2210 }
2211 p->section->set_needs_symtab_index();
2212 p->section->set_info_section_symndx(p->section);
2213 }
2214 }
2215
2216 this->group_signatures_.clear();
2217 }
2218
2219 // Find the first read-only PT_LOAD segment, creating one if
2220 // necessary.
2221
2222 Output_segment*
2223 Layout::find_first_load_seg(const Target* target)
2224 {
2225 Output_segment* best = NULL;
2226 for (Segment_list::const_iterator p = this->segment_list_.begin();
2227 p != this->segment_list_.end();
2228 ++p)
2229 {
2230 if ((*p)->type() == elfcpp::PT_LOAD
2231 && ((*p)->flags() & elfcpp::PF_R) != 0
2232 && (parameters->options().omagic()
2233 || ((*p)->flags() & elfcpp::PF_W) == 0)
2234 && (!target->isolate_execinstr()
2235 || ((*p)->flags() & elfcpp::PF_X) == 0))
2236 {
2237 if (best == NULL || this->segment_precedes(*p, best))
2238 best = *p;
2239 }
2240 }
2241 if (best != NULL)
2242 return best;
2243
2244 gold_assert(!this->script_options_->saw_phdrs_clause());
2245
2246 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2247 elfcpp::PF_R);
2248 return load_seg;
2249 }
2250
2251 // Save states of all current output segments. Store saved states
2252 // in SEGMENT_STATES.
2253
2254 void
2255 Layout::save_segments(Segment_states* segment_states)
2256 {
2257 for (Segment_list::const_iterator p = this->segment_list_.begin();
2258 p != this->segment_list_.end();
2259 ++p)
2260 {
2261 Output_segment* segment = *p;
2262 // Shallow copy.
2263 Output_segment* copy = new Output_segment(*segment);
2264 (*segment_states)[segment] = copy;
2265 }
2266 }
2267
2268 // Restore states of output segments and delete any segment not found in
2269 // SEGMENT_STATES.
2270
2271 void
2272 Layout::restore_segments(const Segment_states* segment_states)
2273 {
2274 // Go through the segment list and remove any segment added in the
2275 // relaxation loop.
2276 this->tls_segment_ = NULL;
2277 this->relro_segment_ = NULL;
2278 Segment_list::iterator list_iter = this->segment_list_.begin();
2279 while (list_iter != this->segment_list_.end())
2280 {
2281 Output_segment* segment = *list_iter;
2282 Segment_states::const_iterator states_iter =
2283 segment_states->find(segment);
2284 if (states_iter != segment_states->end())
2285 {
2286 const Output_segment* copy = states_iter->second;
2287 // Shallow copy to restore states.
2288 *segment = *copy;
2289
2290 // Also fix up TLS and RELRO segment pointers as appropriate.
2291 if (segment->type() == elfcpp::PT_TLS)
2292 this->tls_segment_ = segment;
2293 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2294 this->relro_segment_ = segment;
2295
2296 ++list_iter;
2297 }
2298 else
2299 {
2300 list_iter = this->segment_list_.erase(list_iter);
2301 // This is a segment created during section layout. It should be
2302 // safe to remove it since we should have removed all pointers to it.
2303 delete segment;
2304 }
2305 }
2306 }
2307
2308 // Clean up after relaxation so that sections can be laid out again.
2309
2310 void
2311 Layout::clean_up_after_relaxation()
2312 {
2313 // Restore the segments to point state just prior to the relaxation loop.
2314 Script_sections* script_section = this->script_options_->script_sections();
2315 script_section->release_segments();
2316 this->restore_segments(this->segment_states_);
2317
2318 // Reset section addresses and file offsets
2319 for (Section_list::iterator p = this->section_list_.begin();
2320 p != this->section_list_.end();
2321 ++p)
2322 {
2323 (*p)->restore_states();
2324
2325 // If an input section changes size because of relaxation,
2326 // we need to adjust the section offsets of all input sections.
2327 // after such a section.
2328 if ((*p)->section_offsets_need_adjustment())
2329 (*p)->adjust_section_offsets();
2330
2331 (*p)->reset_address_and_file_offset();
2332 }
2333
2334 // Reset special output object address and file offsets.
2335 for (Data_list::iterator p = this->special_output_list_.begin();
2336 p != this->special_output_list_.end();
2337 ++p)
2338 (*p)->reset_address_and_file_offset();
2339
2340 // A linker script may have created some output section data objects.
2341 // They are useless now.
2342 for (Output_section_data_list::const_iterator p =
2343 this->script_output_section_data_list_.begin();
2344 p != this->script_output_section_data_list_.end();
2345 ++p)
2346 delete *p;
2347 this->script_output_section_data_list_.clear();
2348
2349 // Special-case fill output objects are recreated each time through
2350 // the relaxation loop.
2351 this->reset_relax_output();
2352 }
2353
2354 void
2355 Layout::reset_relax_output()
2356 {
2357 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2358 p != this->relax_output_list_.end();
2359 ++p)
2360 delete *p;
2361 this->relax_output_list_.clear();
2362 }
2363
2364 // Prepare for relaxation.
2365
2366 void
2367 Layout::prepare_for_relaxation()
2368 {
2369 // Create an relaxation debug check if in debugging mode.
2370 if (is_debugging_enabled(DEBUG_RELAXATION))
2371 this->relaxation_debug_check_ = new Relaxation_debug_check();
2372
2373 // Save segment states.
2374 this->segment_states_ = new Segment_states();
2375 this->save_segments(this->segment_states_);
2376
2377 for(Section_list::const_iterator p = this->section_list_.begin();
2378 p != this->section_list_.end();
2379 ++p)
2380 (*p)->save_states();
2381
2382 if (is_debugging_enabled(DEBUG_RELAXATION))
2383 this->relaxation_debug_check_->check_output_data_for_reset_values(
2384 this->section_list_, this->special_output_list_,
2385 this->relax_output_list_);
2386
2387 // Also enable recording of output section data from scripts.
2388 this->record_output_section_data_from_script_ = true;
2389 }
2390
2391 // If the user set the address of the text segment, that may not be
2392 // compatible with putting the segment headers and file headers into
2393 // that segment. For isolate_execinstr() targets, it's the rodata
2394 // segment rather than text where we might put the headers.
2395 static inline bool
2396 load_seg_unusable_for_headers(const Target* target)
2397 {
2398 const General_options& options = parameters->options();
2399 if (target->isolate_execinstr())
2400 return (options.user_set_Trodata_segment()
2401 && options.Trodata_segment() % target->abi_pagesize() != 0);
2402 else
2403 return (options.user_set_Ttext()
2404 && options.Ttext() % target->abi_pagesize() != 0);
2405 }
2406
2407 // Relaxation loop body: If target has no relaxation, this runs only once
2408 // Otherwise, the target relaxation hook is called at the end of
2409 // each iteration. If the hook returns true, it means re-layout of
2410 // section is required.
2411 //
2412 // The number of segments created by a linking script without a PHDRS
2413 // clause may be affected by section sizes and alignments. There is
2414 // a remote chance that relaxation causes different number of PT_LOAD
2415 // segments are created and sections are attached to different segments.
2416 // Therefore, we always throw away all segments created during section
2417 // layout. In order to be able to restart the section layout, we keep
2418 // a copy of the segment list right before the relaxation loop and use
2419 // that to restore the segments.
2420 //
2421 // PASS is the current relaxation pass number.
2422 // SYMTAB is a symbol table.
2423 // PLOAD_SEG is the address of a pointer for the load segment.
2424 // PHDR_SEG is a pointer to the PHDR segment.
2425 // SEGMENT_HEADERS points to the output segment header.
2426 // FILE_HEADER points to the output file header.
2427 // PSHNDX is the address to store the output section index.
2428
2429 off_t inline
2430 Layout::relaxation_loop_body(
2431 int pass,
2432 Target* target,
2433 Symbol_table* symtab,
2434 Output_segment** pload_seg,
2435 Output_segment* phdr_seg,
2436 Output_segment_headers* segment_headers,
2437 Output_file_header* file_header,
2438 unsigned int* pshndx)
2439 {
2440 // If this is not the first iteration, we need to clean up after
2441 // relaxation so that we can lay out the sections again.
2442 if (pass != 0)
2443 this->clean_up_after_relaxation();
2444
2445 // If there is a SECTIONS clause, put all the input sections into
2446 // the required order.
2447 Output_segment* load_seg;
2448 if (this->script_options_->saw_sections_clause())
2449 load_seg = this->set_section_addresses_from_script(symtab);
2450 else if (parameters->options().relocatable())
2451 load_seg = NULL;
2452 else
2453 load_seg = this->find_first_load_seg(target);
2454
2455 if (parameters->options().oformat_enum()
2456 != General_options::OBJECT_FORMAT_ELF)
2457 load_seg = NULL;
2458
2459 if (load_seg_unusable_for_headers(target))
2460 {
2461 load_seg = NULL;
2462 phdr_seg = NULL;
2463 }
2464
2465 gold_assert(phdr_seg == NULL
2466 || load_seg != NULL
2467 || this->script_options_->saw_sections_clause());
2468
2469 // If the address of the load segment we found has been set by
2470 // --section-start rather than by a script, then adjust the VMA and
2471 // LMA downward if possible to include the file and section headers.
2472 uint64_t header_gap = 0;
2473 if (load_seg != NULL
2474 && load_seg->are_addresses_set()
2475 && !this->script_options_->saw_sections_clause()
2476 && !parameters->options().relocatable())
2477 {
2478 file_header->finalize_data_size();
2479 segment_headers->finalize_data_size();
2480 size_t sizeof_headers = (file_header->data_size()
2481 + segment_headers->data_size());
2482 const uint64_t abi_pagesize = target->abi_pagesize();
2483 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2484 hdr_paddr &= ~(abi_pagesize - 1);
2485 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2486 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2487 load_seg = NULL;
2488 else
2489 {
2490 load_seg->set_addresses(load_seg->vaddr() - subtract,
2491 load_seg->paddr() - subtract);
2492 header_gap = subtract - sizeof_headers;
2493 }
2494 }
2495
2496 // Lay out the segment headers.
2497 if (!parameters->options().relocatable())
2498 {
2499 gold_assert(segment_headers != NULL);
2500 if (header_gap != 0 && load_seg != NULL)
2501 {
2502 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2503 load_seg->add_initial_output_data(z);
2504 }
2505 if (load_seg != NULL)
2506 load_seg->add_initial_output_data(segment_headers);
2507 if (phdr_seg != NULL)
2508 phdr_seg->add_initial_output_data(segment_headers);
2509 }
2510
2511 // Lay out the file header.
2512 if (load_seg != NULL)
2513 load_seg->add_initial_output_data(file_header);
2514
2515 if (this->script_options_->saw_phdrs_clause()
2516 && !parameters->options().relocatable())
2517 {
2518 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2519 // clause in a linker script.
2520 Script_sections* ss = this->script_options_->script_sections();
2521 ss->put_headers_in_phdrs(file_header, segment_headers);
2522 }
2523
2524 // We set the output section indexes in set_segment_offsets and
2525 // set_section_indexes.
2526 *pshndx = 1;
2527
2528 // Set the file offsets of all the segments, and all the sections
2529 // they contain.
2530 off_t off;
2531 if (!parameters->options().relocatable())
2532 off = this->set_segment_offsets(target, load_seg, pshndx);
2533 else
2534 off = this->set_relocatable_section_offsets(file_header, pshndx);
2535
2536 // Verify that the dummy relaxation does not change anything.
2537 if (is_debugging_enabled(DEBUG_RELAXATION))
2538 {
2539 if (pass == 0)
2540 this->relaxation_debug_check_->read_sections(this->section_list_);
2541 else
2542 this->relaxation_debug_check_->verify_sections(this->section_list_);
2543 }
2544
2545 *pload_seg = load_seg;
2546 return off;
2547 }
2548
2549 // Search the list of patterns and find the postion of the given section
2550 // name in the output section. If the section name matches a glob
2551 // pattern and a non-glob name, then the non-glob position takes
2552 // precedence. Return 0 if no match is found.
2553
2554 unsigned int
2555 Layout::find_section_order_index(const std::string& section_name)
2556 {
2557 Unordered_map<std::string, unsigned int>::iterator map_it;
2558 map_it = this->input_section_position_.find(section_name);
2559 if (map_it != this->input_section_position_.end())
2560 return map_it->second;
2561
2562 // Absolute match failed. Linear search the glob patterns.
2563 std::vector<std::string>::iterator it;
2564 for (it = this->input_section_glob_.begin();
2565 it != this->input_section_glob_.end();
2566 ++it)
2567 {
2568 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2569 {
2570 map_it = this->input_section_position_.find(*it);
2571 gold_assert(map_it != this->input_section_position_.end());
2572 return map_it->second;
2573 }
2574 }
2575 return 0;
2576 }
2577
2578 // Read the sequence of input sections from the file specified with
2579 // option --section-ordering-file.
2580
2581 void
2582 Layout::read_layout_from_file()
2583 {
2584 const char* filename = parameters->options().section_ordering_file();
2585 std::ifstream in;
2586 std::string line;
2587
2588 in.open(filename);
2589 if (!in)
2590 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2591 filename, strerror(errno));
2592
2593 std::getline(in, line); // this chops off the trailing \n, if any
2594 unsigned int position = 1;
2595 this->set_section_ordering_specified();
2596
2597 while (in)
2598 {
2599 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2600 line.resize(line.length() - 1);
2601 // Ignore comments, beginning with '#'
2602 if (line[0] == '#')
2603 {
2604 std::getline(in, line);
2605 continue;
2606 }
2607 this->input_section_position_[line] = position;
2608 // Store all glob patterns in a vector.
2609 if (is_wildcard_string(line.c_str()))
2610 this->input_section_glob_.push_back(line);
2611 position++;
2612 std::getline(in, line);
2613 }
2614 }
2615
2616 // Finalize the layout. When this is called, we have created all the
2617 // output sections and all the output segments which are based on
2618 // input sections. We have several things to do, and we have to do
2619 // them in the right order, so that we get the right results correctly
2620 // and efficiently.
2621
2622 // 1) Finalize the list of output segments and create the segment
2623 // table header.
2624
2625 // 2) Finalize the dynamic symbol table and associated sections.
2626
2627 // 3) Determine the final file offset of all the output segments.
2628
2629 // 4) Determine the final file offset of all the SHF_ALLOC output
2630 // sections.
2631
2632 // 5) Create the symbol table sections and the section name table
2633 // section.
2634
2635 // 6) Finalize the symbol table: set symbol values to their final
2636 // value and make a final determination of which symbols are going
2637 // into the output symbol table.
2638
2639 // 7) Create the section table header.
2640
2641 // 8) Determine the final file offset of all the output sections which
2642 // are not SHF_ALLOC, including the section table header.
2643
2644 // 9) Finalize the ELF file header.
2645
2646 // This function returns the size of the output file.
2647
2648 off_t
2649 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2650 Target* target, const Task* task)
2651 {
2652 target->finalize_sections(this, input_objects, symtab);
2653
2654 this->count_local_symbols(task, input_objects);
2655
2656 this->link_stabs_sections();
2657
2658 Output_segment* phdr_seg = NULL;
2659 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2660 {
2661 // There was a dynamic object in the link. We need to create
2662 // some information for the dynamic linker.
2663
2664 // Create the PT_PHDR segment which will hold the program
2665 // headers.
2666 if (!this->script_options_->saw_phdrs_clause())
2667 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2668
2669 // Create the dynamic symbol table, including the hash table.
2670 Output_section* dynstr;
2671 std::vector<Symbol*> dynamic_symbols;
2672 unsigned int local_dynamic_count;
2673 Versions versions(*this->script_options()->version_script_info(),
2674 &this->dynpool_);
2675 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2676 &local_dynamic_count, &dynamic_symbols,
2677 &versions);
2678
2679 // Create the .interp section to hold the name of the
2680 // interpreter, and put it in a PT_INTERP segment. Don't do it
2681 // if we saw a .interp section in an input file.
2682 if ((!parameters->options().shared()
2683 || parameters->options().dynamic_linker() != NULL)
2684 && this->interp_segment_ == NULL)
2685 this->create_interp(target);
2686
2687 // Finish the .dynamic section to hold the dynamic data, and put
2688 // it in a PT_DYNAMIC segment.
2689 this->finish_dynamic_section(input_objects, symtab);
2690
2691 // We should have added everything we need to the dynamic string
2692 // table.
2693 this->dynpool_.set_string_offsets();
2694
2695 // Create the version sections. We can't do this until the
2696 // dynamic string table is complete.
2697 this->create_version_sections(&versions, symtab, local_dynamic_count,
2698 dynamic_symbols, dynstr);
2699
2700 // Set the size of the _DYNAMIC symbol. We can't do this until
2701 // after we call create_version_sections.
2702 this->set_dynamic_symbol_size(symtab);
2703 }
2704
2705 // Create segment headers.
2706 Output_segment_headers* segment_headers =
2707 (parameters->options().relocatable()
2708 ? NULL
2709 : new Output_segment_headers(this->segment_list_));
2710
2711 // Lay out the file header.
2712 Output_file_header* file_header = new Output_file_header(target, symtab,
2713 segment_headers);
2714
2715 this->special_output_list_.push_back(file_header);
2716 if (segment_headers != NULL)
2717 this->special_output_list_.push_back(segment_headers);
2718
2719 // Find approriate places for orphan output sections if we are using
2720 // a linker script.
2721 if (this->script_options_->saw_sections_clause())
2722 this->place_orphan_sections_in_script();
2723
2724 Output_segment* load_seg;
2725 off_t off;
2726 unsigned int shndx;
2727 int pass = 0;
2728
2729 // Take a snapshot of the section layout as needed.
2730 if (target->may_relax())
2731 this->prepare_for_relaxation();
2732
2733 // Run the relaxation loop to lay out sections.
2734 do
2735 {
2736 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2737 phdr_seg, segment_headers, file_header,
2738 &shndx);
2739 pass++;
2740 }
2741 while (target->may_relax()
2742 && target->relax(pass, input_objects, symtab, this, task));
2743
2744 // If there is a load segment that contains the file and program headers,
2745 // provide a symbol __ehdr_start pointing there.
2746 // A program can use this to examine itself robustly.
2747 if (load_seg != NULL)
2748 symtab->define_in_output_segment("__ehdr_start", NULL,
2749 Symbol_table::PREDEFINED, load_seg, 0, 0,
2750 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2751 elfcpp::STV_HIDDEN, 0,
2752 Symbol::SEGMENT_START, true);
2753
2754 // Set the file offsets of all the non-data sections we've seen so
2755 // far which don't have to wait for the input sections. We need
2756 // this in order to finalize local symbols in non-allocated
2757 // sections.
2758 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2759
2760 // Set the section indexes of all unallocated sections seen so far,
2761 // in case any of them are somehow referenced by a symbol.
2762 shndx = this->set_section_indexes(shndx);
2763
2764 // Create the symbol table sections.
2765 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2766 if (!parameters->doing_static_link())
2767 this->assign_local_dynsym_offsets(input_objects);
2768
2769 // Process any symbol assignments from a linker script. This must
2770 // be called after the symbol table has been finalized.
2771 this->script_options_->finalize_symbols(symtab, this);
2772
2773 // Create the incremental inputs sections.
2774 if (this->incremental_inputs_)
2775 {
2776 this->incremental_inputs_->finalize();
2777 this->create_incremental_info_sections(symtab);
2778 }
2779
2780 // Create the .shstrtab section.
2781 Output_section* shstrtab_section = this->create_shstrtab();
2782
2783 // Set the file offsets of the rest of the non-data sections which
2784 // don't have to wait for the input sections.
2785 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2786
2787 // Now that all sections have been created, set the section indexes
2788 // for any sections which haven't been done yet.
2789 shndx = this->set_section_indexes(shndx);
2790
2791 // Create the section table header.
2792 this->create_shdrs(shstrtab_section, &off);
2793
2794 // If there are no sections which require postprocessing, we can
2795 // handle the section names now, and avoid a resize later.
2796 if (!this->any_postprocessing_sections_)
2797 {
2798 off = this->set_section_offsets(off,
2799 POSTPROCESSING_SECTIONS_PASS);
2800 off =
2801 this->set_section_offsets(off,
2802 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2803 }
2804
2805 file_header->set_section_info(this->section_headers_, shstrtab_section);
2806
2807 // Now we know exactly where everything goes in the output file
2808 // (except for non-allocated sections which require postprocessing).
2809 Output_data::layout_complete();
2810
2811 this->output_file_size_ = off;
2812
2813 return off;
2814 }
2815
2816 // Create a note header following the format defined in the ELF ABI.
2817 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2818 // of the section to create, DESCSZ is the size of the descriptor.
2819 // ALLOCATE is true if the section should be allocated in memory.
2820 // This returns the new note section. It sets *TRAILING_PADDING to
2821 // the number of trailing zero bytes required.
2822
2823 Output_section*
2824 Layout::create_note(const char* name, int note_type,
2825 const char* section_name, size_t descsz,
2826 bool allocate, size_t* trailing_padding)
2827 {
2828 // Authorities all agree that the values in a .note field should
2829 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2830 // they differ on what the alignment is for 64-bit binaries.
2831 // The GABI says unambiguously they take 8-byte alignment:
2832 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2833 // Other documentation says alignment should always be 4 bytes:
2834 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2835 // GNU ld and GNU readelf both support the latter (at least as of
2836 // version 2.16.91), and glibc always generates the latter for
2837 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2838 // here.
2839 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2840 const int size = parameters->target().get_size();
2841 #else
2842 const int size = 32;
2843 #endif
2844
2845 // The contents of the .note section.
2846 size_t namesz = strlen(name) + 1;
2847 size_t aligned_namesz = align_address(namesz, size / 8);
2848 size_t aligned_descsz = align_address(descsz, size / 8);
2849
2850 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2851
2852 unsigned char* buffer = new unsigned char[notehdrsz];
2853 memset(buffer, 0, notehdrsz);
2854
2855 bool is_big_endian = parameters->target().is_big_endian();
2856
2857 if (size == 32)
2858 {
2859 if (!is_big_endian)
2860 {
2861 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2862 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2863 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2864 }
2865 else
2866 {
2867 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2868 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2869 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2870 }
2871 }
2872 else if (size == 64)
2873 {
2874 if (!is_big_endian)
2875 {
2876 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2877 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2878 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2879 }
2880 else
2881 {
2882 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2883 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2884 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2885 }
2886 }
2887 else
2888 gold_unreachable();
2889
2890 memcpy(buffer + 3 * (size / 8), name, namesz);
2891
2892 elfcpp::Elf_Xword flags = 0;
2893 Output_section_order order = ORDER_INVALID;
2894 if (allocate)
2895 {
2896 flags = elfcpp::SHF_ALLOC;
2897 order = ORDER_RO_NOTE;
2898 }
2899 Output_section* os = this->choose_output_section(NULL, section_name,
2900 elfcpp::SHT_NOTE,
2901 flags, false, order, false);
2902 if (os == NULL)
2903 return NULL;
2904
2905 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2906 size / 8,
2907 "** note header");
2908 os->add_output_section_data(posd);
2909
2910 *trailing_padding = aligned_descsz - descsz;
2911
2912 return os;
2913 }
2914
2915 // For an executable or shared library, create a note to record the
2916 // version of gold used to create the binary.
2917
2918 void
2919 Layout::create_gold_note()
2920 {
2921 if (parameters->options().relocatable()
2922 || parameters->incremental_update())
2923 return;
2924
2925 std::string desc = std::string("gold ") + gold::get_version_string();
2926
2927 size_t trailing_padding;
2928 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2929 ".note.gnu.gold-version", desc.size(),
2930 false, &trailing_padding);
2931 if (os == NULL)
2932 return;
2933
2934 Output_section_data* posd = new Output_data_const(desc, 4);
2935 os->add_output_section_data(posd);
2936
2937 if (trailing_padding > 0)
2938 {
2939 posd = new Output_data_zero_fill(trailing_padding, 0);
2940 os->add_output_section_data(posd);
2941 }
2942 }
2943
2944 // Record whether the stack should be executable. This can be set
2945 // from the command line using the -z execstack or -z noexecstack
2946 // options. Otherwise, if any input file has a .note.GNU-stack
2947 // section with the SHF_EXECINSTR flag set, the stack should be
2948 // executable. Otherwise, if at least one input file a
2949 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2950 // section, we use the target default for whether the stack should be
2951 // executable. Otherwise, we don't generate a stack note. When
2952 // generating a object file, we create a .note.GNU-stack section with
2953 // the appropriate marking. When generating an executable or shared
2954 // library, we create a PT_GNU_STACK segment.
2955
2956 void
2957 Layout::create_executable_stack_info()
2958 {
2959 bool is_stack_executable;
2960 if (parameters->options().is_execstack_set())
2961 is_stack_executable = parameters->options().is_stack_executable();
2962 else if (!this->input_with_gnu_stack_note_)
2963 return;
2964 else
2965 {
2966 if (this->input_requires_executable_stack_)
2967 is_stack_executable = true;
2968 else if (this->input_without_gnu_stack_note_)
2969 is_stack_executable =
2970 parameters->target().is_default_stack_executable();
2971 else
2972 is_stack_executable = false;
2973 }
2974
2975 if (parameters->options().relocatable())
2976 {
2977 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2978 elfcpp::Elf_Xword flags = 0;
2979 if (is_stack_executable)
2980 flags |= elfcpp::SHF_EXECINSTR;
2981 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2982 ORDER_INVALID, false);
2983 }
2984 else
2985 {
2986 if (this->script_options_->saw_phdrs_clause())
2987 return;
2988 int flags = elfcpp::PF_R | elfcpp::PF_W;
2989 if (is_stack_executable)
2990 flags |= elfcpp::PF_X;
2991 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2992 }
2993 }
2994
2995 // If --build-id was used, set up the build ID note.
2996
2997 void
2998 Layout::create_build_id()
2999 {
3000 if (!parameters->options().user_set_build_id())
3001 return;
3002
3003 const char* style = parameters->options().build_id();
3004 if (strcmp(style, "none") == 0)
3005 return;
3006
3007 // Set DESCSZ to the size of the note descriptor. When possible,
3008 // set DESC to the note descriptor contents.
3009 size_t descsz;
3010 std::string desc;
3011 if (strcmp(style, "md5") == 0)
3012 descsz = 128 / 8;
3013 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3014 descsz = 160 / 8;
3015 else if (strcmp(style, "uuid") == 0)
3016 {
3017 const size_t uuidsz = 128 / 8;
3018
3019 char buffer[uuidsz];
3020 memset(buffer, 0, uuidsz);
3021
3022 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3023 if (descriptor < 0)
3024 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3025 strerror(errno));
3026 else
3027 {
3028 ssize_t got = ::read(descriptor, buffer, uuidsz);
3029 release_descriptor(descriptor, true);
3030 if (got < 0)
3031 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3032 else if (static_cast<size_t>(got) != uuidsz)
3033 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3034 uuidsz, got);
3035 }
3036
3037 desc.assign(buffer, uuidsz);
3038 descsz = uuidsz;
3039 }
3040 else if (strncmp(style, "0x", 2) == 0)
3041 {
3042 hex_init();
3043 const char* p = style + 2;
3044 while (*p != '\0')
3045 {
3046 if (hex_p(p[0]) && hex_p(p[1]))
3047 {
3048 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3049 desc += c;
3050 p += 2;
3051 }
3052 else if (*p == '-' || *p == ':')
3053 ++p;
3054 else
3055 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3056 style);
3057 }
3058 descsz = desc.size();
3059 }
3060 else
3061 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3062
3063 // Create the note.
3064 size_t trailing_padding;
3065 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3066 ".note.gnu.build-id", descsz, true,
3067 &trailing_padding);
3068 if (os == NULL)
3069 return;
3070
3071 if (!desc.empty())
3072 {
3073 // We know the value already, so we fill it in now.
3074 gold_assert(desc.size() == descsz);
3075
3076 Output_section_data* posd = new Output_data_const(desc, 4);
3077 os->add_output_section_data(posd);
3078
3079 if (trailing_padding != 0)
3080 {
3081 posd = new Output_data_zero_fill(trailing_padding, 0);
3082 os->add_output_section_data(posd);
3083 }
3084 }
3085 else
3086 {
3087 // We need to compute a checksum after we have completed the
3088 // link.
3089 gold_assert(trailing_padding == 0);
3090 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3091 os->add_output_section_data(this->build_id_note_);
3092 }
3093 }
3094
3095 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3096 // field of the former should point to the latter. I'm not sure who
3097 // started this, but the GNU linker does it, and some tools depend
3098 // upon it.
3099
3100 void
3101 Layout::link_stabs_sections()
3102 {
3103 if (!this->have_stabstr_section_)
3104 return;
3105
3106 for (Section_list::iterator p = this->section_list_.begin();
3107 p != this->section_list_.end();
3108 ++p)
3109 {
3110 if ((*p)->type() != elfcpp::SHT_STRTAB)
3111 continue;
3112
3113 const char* name = (*p)->name();
3114 if (strncmp(name, ".stab", 5) != 0)
3115 continue;
3116
3117 size_t len = strlen(name);
3118 if (strcmp(name + len - 3, "str") != 0)
3119 continue;
3120
3121 std::string stab_name(name, len - 3);
3122 Output_section* stab_sec;
3123 stab_sec = this->find_output_section(stab_name.c_str());
3124 if (stab_sec != NULL)
3125 stab_sec->set_link_section(*p);
3126 }
3127 }
3128
3129 // Create .gnu_incremental_inputs and related sections needed
3130 // for the next run of incremental linking to check what has changed.
3131
3132 void
3133 Layout::create_incremental_info_sections(Symbol_table* symtab)
3134 {
3135 Incremental_inputs* incr = this->incremental_inputs_;
3136
3137 gold_assert(incr != NULL);
3138
3139 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3140 incr->create_data_sections(symtab);
3141
3142 // Add the .gnu_incremental_inputs section.
3143 const char* incremental_inputs_name =
3144 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3145 Output_section* incremental_inputs_os =
3146 this->make_output_section(incremental_inputs_name,
3147 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3148 ORDER_INVALID, false);
3149 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3150
3151 // Add the .gnu_incremental_symtab section.
3152 const char* incremental_symtab_name =
3153 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3154 Output_section* incremental_symtab_os =
3155 this->make_output_section(incremental_symtab_name,
3156 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3157 ORDER_INVALID, false);
3158 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3159 incremental_symtab_os->set_entsize(4);
3160
3161 // Add the .gnu_incremental_relocs section.
3162 const char* incremental_relocs_name =
3163 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3164 Output_section* incremental_relocs_os =
3165 this->make_output_section(incremental_relocs_name,
3166 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3167 ORDER_INVALID, false);
3168 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3169 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3170
3171 // Add the .gnu_incremental_got_plt section.
3172 const char* incremental_got_plt_name =
3173 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3174 Output_section* incremental_got_plt_os =
3175 this->make_output_section(incremental_got_plt_name,
3176 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3177 ORDER_INVALID, false);
3178 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3179
3180 // Add the .gnu_incremental_strtab section.
3181 const char* incremental_strtab_name =
3182 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3183 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3184 elfcpp::SHT_STRTAB, 0,
3185 ORDER_INVALID, false);
3186 Output_data_strtab* strtab_data =
3187 new Output_data_strtab(incr->get_stringpool());
3188 incremental_strtab_os->add_output_section_data(strtab_data);
3189
3190 incremental_inputs_os->set_after_input_sections();
3191 incremental_symtab_os->set_after_input_sections();
3192 incremental_relocs_os->set_after_input_sections();
3193 incremental_got_plt_os->set_after_input_sections();
3194
3195 incremental_inputs_os->set_link_section(incremental_strtab_os);
3196 incremental_symtab_os->set_link_section(incremental_inputs_os);
3197 incremental_relocs_os->set_link_section(incremental_inputs_os);
3198 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3199 }
3200
3201 // Return whether SEG1 should be before SEG2 in the output file. This
3202 // is based entirely on the segment type and flags. When this is
3203 // called the segment addresses have normally not yet been set.
3204
3205 bool
3206 Layout::segment_precedes(const Output_segment* seg1,
3207 const Output_segment* seg2)
3208 {
3209 elfcpp::Elf_Word type1 = seg1->type();
3210 elfcpp::Elf_Word type2 = seg2->type();
3211
3212 // The single PT_PHDR segment is required to precede any loadable
3213 // segment. We simply make it always first.
3214 if (type1 == elfcpp::PT_PHDR)
3215 {
3216 gold_assert(type2 != elfcpp::PT_PHDR);
3217 return true;
3218 }
3219 if (type2 == elfcpp::PT_PHDR)
3220 return false;
3221
3222 // The single PT_INTERP segment is required to precede any loadable
3223 // segment. We simply make it always second.
3224 if (type1 == elfcpp::PT_INTERP)
3225 {
3226 gold_assert(type2 != elfcpp::PT_INTERP);
3227 return true;
3228 }
3229 if (type2 == elfcpp::PT_INTERP)
3230 return false;
3231
3232 // We then put PT_LOAD segments before any other segments.
3233 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3234 return true;
3235 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3236 return false;
3237
3238 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3239 // segment, because that is where the dynamic linker expects to find
3240 // it (this is just for efficiency; other positions would also work
3241 // correctly).
3242 if (type1 == elfcpp::PT_TLS
3243 && type2 != elfcpp::PT_TLS
3244 && type2 != elfcpp::PT_GNU_RELRO)
3245 return false;
3246 if (type2 == elfcpp::PT_TLS
3247 && type1 != elfcpp::PT_TLS
3248 && type1 != elfcpp::PT_GNU_RELRO)
3249 return true;
3250
3251 // We put the PT_GNU_RELRO segment last, because that is where the
3252 // dynamic linker expects to find it (as with PT_TLS, this is just
3253 // for efficiency).
3254 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3255 return false;
3256 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3257 return true;
3258
3259 const elfcpp::Elf_Word flags1 = seg1->flags();
3260 const elfcpp::Elf_Word flags2 = seg2->flags();
3261
3262 // The order of non-PT_LOAD segments is unimportant. We simply sort
3263 // by the numeric segment type and flags values. There should not
3264 // be more than one segment with the same type and flags, except
3265 // when a linker script specifies such.
3266 if (type1 != elfcpp::PT_LOAD)
3267 {
3268 if (type1 != type2)
3269 return type1 < type2;
3270 gold_assert(flags1 != flags2
3271 || this->script_options_->saw_phdrs_clause());
3272 return flags1 < flags2;
3273 }
3274
3275 // If the addresses are set already, sort by load address.
3276 if (seg1->are_addresses_set())
3277 {
3278 if (!seg2->are_addresses_set())
3279 return true;
3280
3281 unsigned int section_count1 = seg1->output_section_count();
3282 unsigned int section_count2 = seg2->output_section_count();
3283 if (section_count1 == 0 && section_count2 > 0)
3284 return true;
3285 if (section_count1 > 0 && section_count2 == 0)
3286 return false;
3287
3288 uint64_t paddr1 = (seg1->are_addresses_set()
3289 ? seg1->paddr()
3290 : seg1->first_section_load_address());
3291 uint64_t paddr2 = (seg2->are_addresses_set()
3292 ? seg2->paddr()
3293 : seg2->first_section_load_address());
3294
3295 if (paddr1 != paddr2)
3296 return paddr1 < paddr2;
3297 }
3298 else if (seg2->are_addresses_set())
3299 return false;
3300
3301 // A segment which holds large data comes after a segment which does
3302 // not hold large data.
3303 if (seg1->is_large_data_segment())
3304 {
3305 if (!seg2->is_large_data_segment())
3306 return false;
3307 }
3308 else if (seg2->is_large_data_segment())
3309 return true;
3310
3311 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3312 // segments come before writable segments. Then writable segments
3313 // with data come before writable segments without data. Then
3314 // executable segments come before non-executable segments. Then
3315 // the unlikely case of a non-readable segment comes before the
3316 // normal case of a readable segment. If there are multiple
3317 // segments with the same type and flags, we require that the
3318 // address be set, and we sort by virtual address and then physical
3319 // address.
3320 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3321 return (flags1 & elfcpp::PF_W) == 0;
3322 if ((flags1 & elfcpp::PF_W) != 0
3323 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3324 return seg1->has_any_data_sections();
3325 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3326 return (flags1 & elfcpp::PF_X) != 0;
3327 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3328 return (flags1 & elfcpp::PF_R) == 0;
3329
3330 // We shouldn't get here--we shouldn't create segments which we
3331 // can't distinguish. Unless of course we are using a weird linker
3332 // script or overlapping --section-start options. We could also get
3333 // here if plugins want unique segments for subsets of sections.
3334 gold_assert(this->script_options_->saw_phdrs_clause()
3335 || parameters->options().any_section_start()
3336 || this->is_unique_segment_for_sections_specified());
3337 return false;
3338 }
3339
3340 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3341
3342 static off_t
3343 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3344 {
3345 uint64_t unsigned_off = off;
3346 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3347 | (addr & (abi_pagesize - 1)));
3348 if (aligned_off < unsigned_off)
3349 aligned_off += abi_pagesize;
3350 return aligned_off;
3351 }
3352
3353 // On targets where the text segment contains only executable code,
3354 // a non-executable segment is never the text segment.
3355
3356 static inline bool
3357 is_text_segment(const Target* target, const Output_segment* seg)
3358 {
3359 elfcpp::Elf_Xword flags = seg->flags();
3360 if ((flags & elfcpp::PF_W) != 0)
3361 return false;
3362 if ((flags & elfcpp::PF_X) == 0)
3363 return !target->isolate_execinstr();
3364 return true;
3365 }
3366
3367 // Set the file offsets of all the segments, and all the sections they
3368 // contain. They have all been created. LOAD_SEG must be be laid out
3369 // first. Return the offset of the data to follow.
3370
3371 off_t
3372 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3373 unsigned int* pshndx)
3374 {
3375 // Sort them into the final order. We use a stable sort so that we
3376 // don't randomize the order of indistinguishable segments created
3377 // by linker scripts.
3378 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3379 Layout::Compare_segments(this));
3380
3381 // Find the PT_LOAD segments, and set their addresses and offsets
3382 // and their section's addresses and offsets.
3383 uint64_t start_addr;
3384 if (parameters->options().user_set_Ttext())
3385 start_addr = parameters->options().Ttext();
3386 else if (parameters->options().output_is_position_independent())
3387 start_addr = 0;
3388 else
3389 start_addr = target->default_text_segment_address();
3390
3391 uint64_t addr = start_addr;
3392 off_t off = 0;
3393
3394 // If LOAD_SEG is NULL, then the file header and segment headers
3395 // will not be loadable. But they still need to be at offset 0 in
3396 // the file. Set their offsets now.
3397 if (load_seg == NULL)
3398 {
3399 for (Data_list::iterator p = this->special_output_list_.begin();
3400 p != this->special_output_list_.end();
3401 ++p)
3402 {
3403 off = align_address(off, (*p)->addralign());
3404 (*p)->set_address_and_file_offset(0, off);
3405 off += (*p)->data_size();
3406 }
3407 }
3408
3409 unsigned int increase_relro = this->increase_relro_;
3410 if (this->script_options_->saw_sections_clause())
3411 increase_relro = 0;
3412
3413 const bool check_sections = parameters->options().check_sections();
3414 Output_segment* last_load_segment = NULL;
3415
3416 unsigned int shndx_begin = *pshndx;
3417 unsigned int shndx_load_seg = *pshndx;
3418
3419 for (Segment_list::iterator p = this->segment_list_.begin();
3420 p != this->segment_list_.end();
3421 ++p)
3422 {
3423 if ((*p)->type() == elfcpp::PT_LOAD)
3424 {
3425 if (target->isolate_execinstr())
3426 {
3427 // When we hit the segment that should contain the
3428 // file headers, reset the file offset so we place
3429 // it and subsequent segments appropriately.
3430 // We'll fix up the preceding segments below.
3431 if (load_seg == *p)
3432 {
3433 if (off == 0)
3434 load_seg = NULL;
3435 else
3436 {
3437 off = 0;
3438 shndx_load_seg = *pshndx;
3439 }
3440 }
3441 }
3442 else
3443 {
3444 // Verify that the file headers fall into the first segment.
3445 if (load_seg != NULL && load_seg != *p)
3446 gold_unreachable();
3447 load_seg = NULL;
3448 }
3449
3450 bool are_addresses_set = (*p)->are_addresses_set();
3451 if (are_addresses_set)
3452 {
3453 // When it comes to setting file offsets, we care about
3454 // the physical address.
3455 addr = (*p)->paddr();
3456 }
3457 else if (parameters->options().user_set_Ttext()
3458 && (parameters->options().omagic()
3459 || is_text_segment(target, *p)))
3460 {
3461 are_addresses_set = true;
3462 }
3463 else if (parameters->options().user_set_Trodata_segment()
3464 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3465 {
3466 addr = parameters->options().Trodata_segment();
3467 are_addresses_set = true;
3468 }
3469 else if (parameters->options().user_set_Tdata()
3470 && ((*p)->flags() & elfcpp::PF_W) != 0
3471 && (!parameters->options().user_set_Tbss()
3472 || (*p)->has_any_data_sections()))
3473 {
3474 addr = parameters->options().Tdata();
3475 are_addresses_set = true;
3476 }
3477 else if (parameters->options().user_set_Tbss()
3478 && ((*p)->flags() & elfcpp::PF_W) != 0
3479 && !(*p)->has_any_data_sections())
3480 {
3481 addr = parameters->options().Tbss();
3482 are_addresses_set = true;
3483 }
3484
3485 uint64_t orig_addr = addr;
3486 uint64_t orig_off = off;
3487
3488 uint64_t aligned_addr = 0;
3489 uint64_t abi_pagesize = target->abi_pagesize();
3490 uint64_t common_pagesize = target->common_pagesize();
3491
3492 if (!parameters->options().nmagic()
3493 && !parameters->options().omagic())
3494 (*p)->set_minimum_p_align(abi_pagesize);
3495
3496 if (!are_addresses_set)
3497 {
3498 // Skip the address forward one page, maintaining the same
3499 // position within the page. This lets us store both segments
3500 // overlapping on a single page in the file, but the loader will
3501 // put them on different pages in memory. We will revisit this
3502 // decision once we know the size of the segment.
3503
3504 addr = align_address(addr, (*p)->maximum_alignment());
3505 aligned_addr = addr;
3506
3507 if (load_seg == *p)
3508 {
3509 // This is the segment that will contain the file
3510 // headers, so its offset will have to be exactly zero.
3511 gold_assert(orig_off == 0);
3512
3513 // If the target wants a fixed minimum distance from the
3514 // text segment to the read-only segment, move up now.
3515 uint64_t min_addr =
3516 start_addr + (parameters->options().user_set_rosegment_gap()
3517 ? parameters->options().rosegment_gap()
3518 : target->rosegment_gap());
3519 if (addr < min_addr)
3520 addr = min_addr;
3521
3522 // But this is not the first segment! To make its
3523 // address congruent with its offset, that address better
3524 // be aligned to the ABI-mandated page size.
3525 addr = align_address(addr, abi_pagesize);
3526 aligned_addr = addr;
3527 }
3528 else
3529 {
3530 if ((addr & (abi_pagesize - 1)) != 0)
3531 addr = addr + abi_pagesize;
3532
3533 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3534 }
3535 }
3536
3537 if (!parameters->options().nmagic()
3538 && !parameters->options().omagic())
3539 {
3540 // Here we are also taking care of the case when
3541 // the maximum segment alignment is larger than the page size.
3542 off = align_file_offset(off, addr,
3543 std::max(abi_pagesize,
3544 (*p)->maximum_alignment()));
3545 }
3546 else
3547 {
3548 // This is -N or -n with a section script which prevents
3549 // us from using a load segment. We need to ensure that
3550 // the file offset is aligned to the alignment of the
3551 // segment. This is because the linker script
3552 // implicitly assumed a zero offset. If we don't align
3553 // here, then the alignment of the sections in the
3554 // linker script may not match the alignment of the
3555 // sections in the set_section_addresses call below,
3556 // causing an error about dot moving backward.
3557 off = align_address(off, (*p)->maximum_alignment());
3558 }
3559
3560 unsigned int shndx_hold = *pshndx;
3561 bool has_relro = false;
3562 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3563 false, addr,
3564 &increase_relro,
3565 &has_relro,
3566 &off, pshndx);
3567
3568 // Now that we know the size of this segment, we may be able
3569 // to save a page in memory, at the cost of wasting some
3570 // file space, by instead aligning to the start of a new
3571 // page. Here we use the real machine page size rather than
3572 // the ABI mandated page size. If the segment has been
3573 // aligned so that the relro data ends at a page boundary,
3574 // we do not try to realign it.
3575
3576 if (!are_addresses_set
3577 && !has_relro
3578 && aligned_addr != addr
3579 && !parameters->incremental())
3580 {
3581 uint64_t first_off = (common_pagesize
3582 - (aligned_addr
3583 & (common_pagesize - 1)));
3584 uint64_t last_off = new_addr & (common_pagesize - 1);
3585 if (first_off > 0
3586 && last_off > 0
3587 && ((aligned_addr & ~ (common_pagesize - 1))
3588 != (new_addr & ~ (common_pagesize - 1)))
3589 && first_off + last_off <= common_pagesize)
3590 {
3591 *pshndx = shndx_hold;
3592 addr = align_address(aligned_addr, common_pagesize);
3593 addr = align_address(addr, (*p)->maximum_alignment());
3594 if ((addr & (abi_pagesize - 1)) != 0)
3595 addr = addr + abi_pagesize;
3596 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3597 off = align_file_offset(off, addr, abi_pagesize);
3598
3599 increase_relro = this->increase_relro_;
3600 if (this->script_options_->saw_sections_clause())
3601 increase_relro = 0;
3602 has_relro = false;
3603
3604 new_addr = (*p)->set_section_addresses(target, this,
3605 true, addr,
3606 &increase_relro,
3607 &has_relro,
3608 &off, pshndx);
3609 }
3610 }
3611
3612 addr = new_addr;
3613
3614 // Implement --check-sections. We know that the segments
3615 // are sorted by LMA.
3616 if (check_sections && last_load_segment != NULL)
3617 {
3618 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3619 if (last_load_segment->paddr() + last_load_segment->memsz()
3620 > (*p)->paddr())
3621 {
3622 unsigned long long lb1 = last_load_segment->paddr();
3623 unsigned long long le1 = lb1 + last_load_segment->memsz();
3624 unsigned long long lb2 = (*p)->paddr();
3625 unsigned long long le2 = lb2 + (*p)->memsz();
3626 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3627 "[0x%llx -> 0x%llx]"),
3628 lb1, le1, lb2, le2);
3629 }
3630 }
3631 last_load_segment = *p;
3632 }
3633 }
3634
3635 if (load_seg != NULL && target->isolate_execinstr())
3636 {
3637 // Process the early segments again, setting their file offsets
3638 // so they land after the segments starting at LOAD_SEG.
3639 off = align_file_offset(off, 0, target->abi_pagesize());
3640
3641 this->reset_relax_output();
3642
3643 for (Segment_list::iterator p = this->segment_list_.begin();
3644 *p != load_seg;
3645 ++p)
3646 {
3647 if ((*p)->type() == elfcpp::PT_LOAD)
3648 {
3649 // We repeat the whole job of assigning addresses and
3650 // offsets, but we really only want to change the offsets and
3651 // must ensure that the addresses all come out the same as
3652 // they did the first time through.
3653 bool has_relro = false;
3654 const uint64_t old_addr = (*p)->vaddr();
3655 const uint64_t old_end = old_addr + (*p)->memsz();
3656 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3657 true, old_addr,
3658 &increase_relro,
3659 &has_relro,
3660 &off,
3661 &shndx_begin);
3662 gold_assert(new_addr == old_end);
3663 }
3664 }
3665
3666 gold_assert(shndx_begin == shndx_load_seg);
3667 }
3668
3669 // Handle the non-PT_LOAD segments, setting their offsets from their
3670 // section's offsets.
3671 for (Segment_list::iterator p = this->segment_list_.begin();
3672 p != this->segment_list_.end();
3673 ++p)
3674 {
3675 if ((*p)->type() != elfcpp::PT_LOAD)
3676 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3677 ? increase_relro
3678 : 0);
3679 }
3680
3681 // Set the TLS offsets for each section in the PT_TLS segment.
3682 if (this->tls_segment_ != NULL)
3683 this->tls_segment_->set_tls_offsets();
3684
3685 return off;
3686 }
3687
3688 // Set the offsets of all the allocated sections when doing a
3689 // relocatable link. This does the same jobs as set_segment_offsets,
3690 // only for a relocatable link.
3691
3692 off_t
3693 Layout::set_relocatable_section_offsets(Output_data* file_header,
3694 unsigned int* pshndx)
3695 {
3696 off_t off = 0;
3697
3698 file_header->set_address_and_file_offset(0, 0);
3699 off += file_header->data_size();
3700
3701 for (Section_list::iterator p = this->section_list_.begin();
3702 p != this->section_list_.end();
3703 ++p)
3704 {
3705 // We skip unallocated sections here, except that group sections
3706 // have to come first.
3707 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3708 && (*p)->type() != elfcpp::SHT_GROUP)
3709 continue;
3710
3711 off = align_address(off, (*p)->addralign());
3712
3713 // The linker script might have set the address.
3714 if (!(*p)->is_address_valid())
3715 (*p)->set_address(0);
3716 (*p)->set_file_offset(off);
3717 (*p)->finalize_data_size();
3718 if ((*p)->type() != elfcpp::SHT_NOBITS)
3719 off += (*p)->data_size();
3720
3721 (*p)->set_out_shndx(*pshndx);
3722 ++*pshndx;
3723 }
3724
3725 return off;
3726 }
3727
3728 // Set the file offset of all the sections not associated with a
3729 // segment.
3730
3731 off_t
3732 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3733 {
3734 off_t startoff = off;
3735 off_t maxoff = off;
3736
3737 for (Section_list::iterator p = this->unattached_section_list_.begin();
3738 p != this->unattached_section_list_.end();
3739 ++p)
3740 {
3741 // The symtab section is handled in create_symtab_sections.
3742 if (*p == this->symtab_section_)
3743 continue;
3744
3745 // If we've already set the data size, don't set it again.
3746 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3747 continue;
3748
3749 if (pass == BEFORE_INPUT_SECTIONS_PASS
3750 && (*p)->requires_postprocessing())
3751 {
3752 (*p)->create_postprocessing_buffer();
3753 this->any_postprocessing_sections_ = true;
3754 }
3755
3756 if (pass == BEFORE_INPUT_SECTIONS_PASS
3757 && (*p)->after_input_sections())
3758 continue;
3759 else if (pass == POSTPROCESSING_SECTIONS_PASS
3760 && (!(*p)->after_input_sections()
3761 || (*p)->type() == elfcpp::SHT_STRTAB))
3762 continue;
3763 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3764 && (!(*p)->after_input_sections()
3765 || (*p)->type() != elfcpp::SHT_STRTAB))
3766 continue;
3767
3768 if (!parameters->incremental_update())
3769 {
3770 off = align_address(off, (*p)->addralign());
3771 (*p)->set_file_offset(off);
3772 (*p)->finalize_data_size();
3773 }
3774 else
3775 {
3776 // Incremental update: allocate file space from free list.
3777 (*p)->pre_finalize_data_size();
3778 off_t current_size = (*p)->current_data_size();
3779 off = this->allocate(current_size, (*p)->addralign(), startoff);
3780 if (off == -1)
3781 {
3782 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3783 this->free_list_.dump();
3784 gold_assert((*p)->output_section() != NULL);
3785 gold_fallback(_("out of patch space for section %s; "
3786 "relink with --incremental-full"),
3787 (*p)->output_section()->name());
3788 }
3789 (*p)->set_file_offset(off);
3790 (*p)->finalize_data_size();
3791 if ((*p)->data_size() > current_size)
3792 {
3793 gold_assert((*p)->output_section() != NULL);
3794 gold_fallback(_("%s: section changed size; "
3795 "relink with --incremental-full"),
3796 (*p)->output_section()->name());
3797 }
3798 gold_debug(DEBUG_INCREMENTAL,
3799 "set_section_offsets: %08lx %08lx %s",
3800 static_cast<long>(off),
3801 static_cast<long>((*p)->data_size()),
3802 ((*p)->output_section() != NULL
3803 ? (*p)->output_section()->name() : "(special)"));
3804 }
3805
3806 off += (*p)->data_size();
3807 if (off > maxoff)
3808 maxoff = off;
3809
3810 // At this point the name must be set.
3811 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3812 this->namepool_.add((*p)->name(), false, NULL);
3813 }
3814 return maxoff;
3815 }
3816
3817 // Set the section indexes of all the sections not associated with a
3818 // segment.
3819
3820 unsigned int
3821 Layout::set_section_indexes(unsigned int shndx)
3822 {
3823 for (Section_list::iterator p = this->unattached_section_list_.begin();
3824 p != this->unattached_section_list_.end();
3825 ++p)
3826 {
3827 if (!(*p)->has_out_shndx())
3828 {
3829 (*p)->set_out_shndx(shndx);
3830 ++shndx;
3831 }
3832 }
3833 return shndx;
3834 }
3835
3836 // Set the section addresses according to the linker script. This is
3837 // only called when we see a SECTIONS clause. This returns the
3838 // program segment which should hold the file header and segment
3839 // headers, if any. It will return NULL if they should not be in a
3840 // segment.
3841
3842 Output_segment*
3843 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3844 {
3845 Script_sections* ss = this->script_options_->script_sections();
3846 gold_assert(ss->saw_sections_clause());
3847 return this->script_options_->set_section_addresses(symtab, this);
3848 }
3849
3850 // Place the orphan sections in the linker script.
3851
3852 void
3853 Layout::place_orphan_sections_in_script()
3854 {
3855 Script_sections* ss = this->script_options_->script_sections();
3856 gold_assert(ss->saw_sections_clause());
3857
3858 // Place each orphaned output section in the script.
3859 for (Section_list::iterator p = this->section_list_.begin();
3860 p != this->section_list_.end();
3861 ++p)
3862 {
3863 if (!(*p)->found_in_sections_clause())
3864 ss->place_orphan(*p);
3865 }
3866 }
3867
3868 // Count the local symbols in the regular symbol table and the dynamic
3869 // symbol table, and build the respective string pools.
3870
3871 void
3872 Layout::count_local_symbols(const Task* task,
3873 const Input_objects* input_objects)
3874 {
3875 // First, figure out an upper bound on the number of symbols we'll
3876 // be inserting into each pool. This helps us create the pools with
3877 // the right size, to avoid unnecessary hashtable resizing.
3878 unsigned int symbol_count = 0;
3879 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3880 p != input_objects->relobj_end();
3881 ++p)
3882 symbol_count += (*p)->local_symbol_count();
3883
3884 // Go from "upper bound" to "estimate." We overcount for two
3885 // reasons: we double-count symbols that occur in more than one
3886 // object file, and we count symbols that are dropped from the
3887 // output. Add it all together and assume we overcount by 100%.
3888 symbol_count /= 2;
3889
3890 // We assume all symbols will go into both the sympool and dynpool.
3891 this->sympool_.reserve(symbol_count);
3892 this->dynpool_.reserve(symbol_count);
3893
3894 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3895 p != input_objects->relobj_end();
3896 ++p)
3897 {
3898 Task_lock_obj<Object> tlo(task, *p);
3899 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3900 }
3901 }
3902
3903 // Create the symbol table sections. Here we also set the final
3904 // values of the symbols. At this point all the loadable sections are
3905 // fully laid out. SHNUM is the number of sections so far.
3906
3907 void
3908 Layout::create_symtab_sections(const Input_objects* input_objects,
3909 Symbol_table* symtab,
3910 unsigned int shnum,
3911 off_t* poff)
3912 {
3913 int symsize;
3914 unsigned int align;
3915 if (parameters->target().get_size() == 32)
3916 {
3917 symsize = elfcpp::Elf_sizes<32>::sym_size;
3918 align = 4;
3919 }
3920 else if (parameters->target().get_size() == 64)
3921 {
3922 symsize = elfcpp::Elf_sizes<64>::sym_size;
3923 align = 8;
3924 }
3925 else
3926 gold_unreachable();
3927
3928 // Compute file offsets relative to the start of the symtab section.
3929 off_t off = 0;
3930
3931 // Save space for the dummy symbol at the start of the section. We
3932 // never bother to write this out--it will just be left as zero.
3933 off += symsize;
3934 unsigned int local_symbol_index = 1;
3935
3936 // Add STT_SECTION symbols for each Output section which needs one.
3937 for (Section_list::iterator p = this->section_list_.begin();
3938 p != this->section_list_.end();
3939 ++p)
3940 {
3941 if (!(*p)->needs_symtab_index())
3942 (*p)->set_symtab_index(-1U);
3943 else
3944 {
3945 (*p)->set_symtab_index(local_symbol_index);
3946 ++local_symbol_index;
3947 off += symsize;
3948 }
3949 }
3950
3951 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3952 p != input_objects->relobj_end();
3953 ++p)
3954 {
3955 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3956 off, symtab);
3957 off += (index - local_symbol_index) * symsize;
3958 local_symbol_index = index;
3959 }
3960
3961 unsigned int local_symcount = local_symbol_index;
3962 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3963
3964 off_t dynoff;
3965 size_t dyn_global_index;
3966 size_t dyncount;
3967 if (this->dynsym_section_ == NULL)
3968 {
3969 dynoff = 0;
3970 dyn_global_index = 0;
3971 dyncount = 0;
3972 }
3973 else
3974 {
3975 dyn_global_index = this->dynsym_section_->info();
3976 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3977 dynoff = this->dynsym_section_->offset() + locsize;
3978 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3979 gold_assert(static_cast<off_t>(dyncount * symsize)
3980 == this->dynsym_section_->data_size() - locsize);
3981 }
3982
3983 off_t global_off = off;
3984 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3985 &this->sympool_, &local_symcount);
3986
3987 if (!parameters->options().strip_all())
3988 {
3989 this->sympool_.set_string_offsets();
3990
3991 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3992 Output_section* osymtab = this->make_output_section(symtab_name,
3993 elfcpp::SHT_SYMTAB,
3994 0, ORDER_INVALID,
3995 false);
3996 this->symtab_section_ = osymtab;
3997
3998 Output_section_data* pos = new Output_data_fixed_space(off, align,
3999 "** symtab");
4000 osymtab->add_output_section_data(pos);
4001
4002 // We generate a .symtab_shndx section if we have more than
4003 // SHN_LORESERVE sections. Technically it is possible that we
4004 // don't need one, because it is possible that there are no
4005 // symbols in any of sections with indexes larger than
4006 // SHN_LORESERVE. That is probably unusual, though, and it is
4007 // easier to always create one than to compute section indexes
4008 // twice (once here, once when writing out the symbols).
4009 if (shnum >= elfcpp::SHN_LORESERVE)
4010 {
4011 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4012 false, NULL);
4013 Output_section* osymtab_xindex =
4014 this->make_output_section(symtab_xindex_name,
4015 elfcpp::SHT_SYMTAB_SHNDX, 0,
4016 ORDER_INVALID, false);
4017
4018 size_t symcount = off / symsize;
4019 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4020
4021 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4022
4023 osymtab_xindex->set_link_section(osymtab);
4024 osymtab_xindex->set_addralign(4);
4025 osymtab_xindex->set_entsize(4);
4026
4027 osymtab_xindex->set_after_input_sections();
4028
4029 // This tells the driver code to wait until the symbol table
4030 // has written out before writing out the postprocessing
4031 // sections, including the .symtab_shndx section.
4032 this->any_postprocessing_sections_ = true;
4033 }
4034
4035 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4036 Output_section* ostrtab = this->make_output_section(strtab_name,
4037 elfcpp::SHT_STRTAB,
4038 0, ORDER_INVALID,
4039 false);
4040
4041 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4042 ostrtab->add_output_section_data(pstr);
4043
4044 off_t symtab_off;
4045 if (!parameters->incremental_update())
4046 symtab_off = align_address(*poff, align);
4047 else
4048 {
4049 symtab_off = this->allocate(off, align, *poff);
4050 if (off == -1)
4051 gold_fallback(_("out of patch space for symbol table; "
4052 "relink with --incremental-full"));
4053 gold_debug(DEBUG_INCREMENTAL,
4054 "create_symtab_sections: %08lx %08lx .symtab",
4055 static_cast<long>(symtab_off),
4056 static_cast<long>(off));
4057 }
4058
4059 symtab->set_file_offset(symtab_off + global_off);
4060 osymtab->set_file_offset(symtab_off);
4061 osymtab->finalize_data_size();
4062 osymtab->set_link_section(ostrtab);
4063 osymtab->set_info(local_symcount);
4064 osymtab->set_entsize(symsize);
4065
4066 if (symtab_off + off > *poff)
4067 *poff = symtab_off + off;
4068 }
4069 }
4070
4071 // Create the .shstrtab section, which holds the names of the
4072 // sections. At the time this is called, we have created all the
4073 // output sections except .shstrtab itself.
4074
4075 Output_section*
4076 Layout::create_shstrtab()
4077 {
4078 // FIXME: We don't need to create a .shstrtab section if we are
4079 // stripping everything.
4080
4081 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4082
4083 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4084 ORDER_INVALID, false);
4085
4086 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4087 {
4088 // We can't write out this section until we've set all the
4089 // section names, and we don't set the names of compressed
4090 // output sections until relocations are complete. FIXME: With
4091 // the current names we use, this is unnecessary.
4092 os->set_after_input_sections();
4093 }
4094
4095 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4096 os->add_output_section_data(posd);
4097
4098 return os;
4099 }
4100
4101 // Create the section headers. SIZE is 32 or 64. OFF is the file
4102 // offset.
4103
4104 void
4105 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4106 {
4107 Output_section_headers* oshdrs;
4108 oshdrs = new Output_section_headers(this,
4109 &this->segment_list_,
4110 &this->section_list_,
4111 &this->unattached_section_list_,
4112 &this->namepool_,
4113 shstrtab_section);
4114 off_t off;
4115 if (!parameters->incremental_update())
4116 off = align_address(*poff, oshdrs->addralign());
4117 else
4118 {
4119 oshdrs->pre_finalize_data_size();
4120 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4121 if (off == -1)
4122 gold_fallback(_("out of patch space for section header table; "
4123 "relink with --incremental-full"));
4124 gold_debug(DEBUG_INCREMENTAL,
4125 "create_shdrs: %08lx %08lx (section header table)",
4126 static_cast<long>(off),
4127 static_cast<long>(off + oshdrs->data_size()));
4128 }
4129 oshdrs->set_address_and_file_offset(0, off);
4130 off += oshdrs->data_size();
4131 if (off > *poff)
4132 *poff = off;
4133 this->section_headers_ = oshdrs;
4134 }
4135
4136 // Count the allocated sections.
4137
4138 size_t
4139 Layout::allocated_output_section_count() const
4140 {
4141 size_t section_count = 0;
4142 for (Segment_list::const_iterator p = this->segment_list_.begin();
4143 p != this->segment_list_.end();
4144 ++p)
4145 section_count += (*p)->output_section_count();
4146 return section_count;
4147 }
4148
4149 // Create the dynamic symbol table.
4150
4151 void
4152 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4153 Symbol_table* symtab,
4154 Output_section** pdynstr,
4155 unsigned int* plocal_dynamic_count,
4156 std::vector<Symbol*>* pdynamic_symbols,
4157 Versions* pversions)
4158 {
4159 // Count all the symbols in the dynamic symbol table, and set the
4160 // dynamic symbol indexes.
4161
4162 // Skip symbol 0, which is always all zeroes.
4163 unsigned int index = 1;
4164
4165 // Add STT_SECTION symbols for each Output section which needs one.
4166 for (Section_list::iterator p = this->section_list_.begin();
4167 p != this->section_list_.end();
4168 ++p)
4169 {
4170 if (!(*p)->needs_dynsym_index())
4171 (*p)->set_dynsym_index(-1U);
4172 else
4173 {
4174 (*p)->set_dynsym_index(index);
4175 ++index;
4176 }
4177 }
4178
4179 // Count the local symbols that need to go in the dynamic symbol table,
4180 // and set the dynamic symbol indexes.
4181 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4182 p != input_objects->relobj_end();
4183 ++p)
4184 {
4185 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4186 index = new_index;
4187 }
4188
4189 unsigned int local_symcount = index;
4190 *plocal_dynamic_count = local_symcount;
4191
4192 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4193 &this->dynpool_, pversions);
4194
4195 int symsize;
4196 unsigned int align;
4197 const int size = parameters->target().get_size();
4198 if (size == 32)
4199 {
4200 symsize = elfcpp::Elf_sizes<32>::sym_size;
4201 align = 4;
4202 }
4203 else if (size == 64)
4204 {
4205 symsize = elfcpp::Elf_sizes<64>::sym_size;
4206 align = 8;
4207 }
4208 else
4209 gold_unreachable();
4210
4211 // Create the dynamic symbol table section.
4212
4213 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4214 elfcpp::SHT_DYNSYM,
4215 elfcpp::SHF_ALLOC,
4216 false,
4217 ORDER_DYNAMIC_LINKER,
4218 false);
4219
4220 // Check for NULL as a linker script may discard .dynsym.
4221 if (dynsym != NULL)
4222 {
4223 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4224 align,
4225 "** dynsym");
4226 dynsym->add_output_section_data(odata);
4227
4228 dynsym->set_info(local_symcount);
4229 dynsym->set_entsize(symsize);
4230 dynsym->set_addralign(align);
4231
4232 this->dynsym_section_ = dynsym;
4233 }
4234
4235 Output_data_dynamic* const odyn = this->dynamic_data_;
4236 if (odyn != NULL)
4237 {
4238 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4239 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4240 }
4241
4242 // If there are more than SHN_LORESERVE allocated sections, we
4243 // create a .dynsym_shndx section. It is possible that we don't
4244 // need one, because it is possible that there are no dynamic
4245 // symbols in any of the sections with indexes larger than
4246 // SHN_LORESERVE. This is probably unusual, though, and at this
4247 // time we don't know the actual section indexes so it is
4248 // inconvenient to check.
4249 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4250 {
4251 Output_section* dynsym_xindex =
4252 this->choose_output_section(NULL, ".dynsym_shndx",
4253 elfcpp::SHT_SYMTAB_SHNDX,
4254 elfcpp::SHF_ALLOC,
4255 false, ORDER_DYNAMIC_LINKER, false);
4256
4257 if (dynsym_xindex != NULL)
4258 {
4259 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4260
4261 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4262
4263 dynsym_xindex->set_link_section(dynsym);
4264 dynsym_xindex->set_addralign(4);
4265 dynsym_xindex->set_entsize(4);
4266
4267 dynsym_xindex->set_after_input_sections();
4268
4269 // This tells the driver code to wait until the symbol table
4270 // has written out before writing out the postprocessing
4271 // sections, including the .dynsym_shndx section.
4272 this->any_postprocessing_sections_ = true;
4273 }
4274 }
4275
4276 // Create the dynamic string table section.
4277
4278 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4279 elfcpp::SHT_STRTAB,
4280 elfcpp::SHF_ALLOC,
4281 false,
4282 ORDER_DYNAMIC_LINKER,
4283 false);
4284 *pdynstr = dynstr;
4285 if (dynstr != NULL)
4286 {
4287 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4288 dynstr->add_output_section_data(strdata);
4289
4290 if (dynsym != NULL)
4291 dynsym->set_link_section(dynstr);
4292 if (this->dynamic_section_ != NULL)
4293 this->dynamic_section_->set_link_section(dynstr);
4294
4295 if (odyn != NULL)
4296 {
4297 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4298 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4299 }
4300 }
4301
4302 // Create the hash tables.
4303
4304 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4305 || strcmp(parameters->options().hash_style(), "both") == 0)
4306 {
4307 unsigned char* phash;
4308 unsigned int hashlen;
4309 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4310 &phash, &hashlen);
4311
4312 Output_section* hashsec =
4313 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4314 elfcpp::SHF_ALLOC, false,
4315 ORDER_DYNAMIC_LINKER, false);
4316
4317 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4318 hashlen,
4319 align,
4320 "** hash");
4321 if (hashsec != NULL && hashdata != NULL)
4322 hashsec->add_output_section_data(hashdata);
4323
4324 if (hashsec != NULL)
4325 {
4326 if (dynsym != NULL)
4327 hashsec->set_link_section(dynsym);
4328 hashsec->set_entsize(4);
4329 }
4330
4331 if (odyn != NULL)
4332 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4333 }
4334
4335 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4336 || strcmp(parameters->options().hash_style(), "both") == 0)
4337 {
4338 unsigned char* phash;
4339 unsigned int hashlen;
4340 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4341 &phash, &hashlen);
4342
4343 Output_section* hashsec =
4344 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4345 elfcpp::SHF_ALLOC, false,
4346 ORDER_DYNAMIC_LINKER, false);
4347
4348 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4349 hashlen,
4350 align,
4351 "** hash");
4352 if (hashsec != NULL && hashdata != NULL)
4353 hashsec->add_output_section_data(hashdata);
4354
4355 if (hashsec != NULL)
4356 {
4357 if (dynsym != NULL)
4358 hashsec->set_link_section(dynsym);
4359
4360 // For a 64-bit target, the entries in .gnu.hash do not have
4361 // a uniform size, so we only set the entry size for a
4362 // 32-bit target.
4363 if (parameters->target().get_size() == 32)
4364 hashsec->set_entsize(4);
4365
4366 if (odyn != NULL)
4367 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4368 }
4369 }
4370 }
4371
4372 // Assign offsets to each local portion of the dynamic symbol table.
4373
4374 void
4375 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4376 {
4377 Output_section* dynsym = this->dynsym_section_;
4378 if (dynsym == NULL)
4379 return;
4380
4381 off_t off = dynsym->offset();
4382
4383 // Skip the dummy symbol at the start of the section.
4384 off += dynsym->entsize();
4385
4386 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4387 p != input_objects->relobj_end();
4388 ++p)
4389 {
4390 unsigned int count = (*p)->set_local_dynsym_offset(off);
4391 off += count * dynsym->entsize();
4392 }
4393 }
4394
4395 // Create the version sections.
4396
4397 void
4398 Layout::create_version_sections(const Versions* versions,
4399 const Symbol_table* symtab,
4400 unsigned int local_symcount,
4401 const std::vector<Symbol*>& dynamic_symbols,
4402 const Output_section* dynstr)
4403 {
4404 if (!versions->any_defs() && !versions->any_needs())
4405 return;
4406
4407 switch (parameters->size_and_endianness())
4408 {
4409 #ifdef HAVE_TARGET_32_LITTLE
4410 case Parameters::TARGET_32_LITTLE:
4411 this->sized_create_version_sections<32, false>(versions, symtab,
4412 local_symcount,
4413 dynamic_symbols, dynstr);
4414 break;
4415 #endif
4416 #ifdef HAVE_TARGET_32_BIG
4417 case Parameters::TARGET_32_BIG:
4418 this->sized_create_version_sections<32, true>(versions, symtab,
4419 local_symcount,
4420 dynamic_symbols, dynstr);
4421 break;
4422 #endif
4423 #ifdef HAVE_TARGET_64_LITTLE
4424 case Parameters::TARGET_64_LITTLE:
4425 this->sized_create_version_sections<64, false>(versions, symtab,
4426 local_symcount,
4427 dynamic_symbols, dynstr);
4428 break;
4429 #endif
4430 #ifdef HAVE_TARGET_64_BIG
4431 case Parameters::TARGET_64_BIG:
4432 this->sized_create_version_sections<64, true>(versions, symtab,
4433 local_symcount,
4434 dynamic_symbols, dynstr);
4435 break;
4436 #endif
4437 default:
4438 gold_unreachable();
4439 }
4440 }
4441
4442 // Create the version sections, sized version.
4443
4444 template<int size, bool big_endian>
4445 void
4446 Layout::sized_create_version_sections(
4447 const Versions* versions,
4448 const Symbol_table* symtab,
4449 unsigned int local_symcount,
4450 const std::vector<Symbol*>& dynamic_symbols,
4451 const Output_section* dynstr)
4452 {
4453 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4454 elfcpp::SHT_GNU_versym,
4455 elfcpp::SHF_ALLOC,
4456 false,
4457 ORDER_DYNAMIC_LINKER,
4458 false);
4459
4460 // Check for NULL since a linker script may discard this section.
4461 if (vsec != NULL)
4462 {
4463 unsigned char* vbuf;
4464 unsigned int vsize;
4465 versions->symbol_section_contents<size, big_endian>(symtab,
4466 &this->dynpool_,
4467 local_symcount,
4468 dynamic_symbols,
4469 &vbuf, &vsize);
4470
4471 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4472 "** versions");
4473
4474 vsec->add_output_section_data(vdata);
4475 vsec->set_entsize(2);
4476 vsec->set_link_section(this->dynsym_section_);
4477 }
4478
4479 Output_data_dynamic* const odyn = this->dynamic_data_;
4480 if (odyn != NULL && vsec != NULL)
4481 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4482
4483 if (versions->any_defs())
4484 {
4485 Output_section* vdsec;
4486 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4487 elfcpp::SHT_GNU_verdef,
4488 elfcpp::SHF_ALLOC,
4489 false, ORDER_DYNAMIC_LINKER, false);
4490
4491 if (vdsec != NULL)
4492 {
4493 unsigned char* vdbuf;
4494 unsigned int vdsize;
4495 unsigned int vdentries;
4496 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4497 &vdbuf, &vdsize,
4498 &vdentries);
4499
4500 Output_section_data* vddata =
4501 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4502
4503 vdsec->add_output_section_data(vddata);
4504 vdsec->set_link_section(dynstr);
4505 vdsec->set_info(vdentries);
4506
4507 if (odyn != NULL)
4508 {
4509 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4510 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4511 }
4512 }
4513 }
4514
4515 if (versions->any_needs())
4516 {
4517 Output_section* vnsec;
4518 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4519 elfcpp::SHT_GNU_verneed,
4520 elfcpp::SHF_ALLOC,
4521 false, ORDER_DYNAMIC_LINKER, false);
4522
4523 if (vnsec != NULL)
4524 {
4525 unsigned char* vnbuf;
4526 unsigned int vnsize;
4527 unsigned int vnentries;
4528 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4529 &vnbuf, &vnsize,
4530 &vnentries);
4531
4532 Output_section_data* vndata =
4533 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4534
4535 vnsec->add_output_section_data(vndata);
4536 vnsec->set_link_section(dynstr);
4537 vnsec->set_info(vnentries);
4538
4539 if (odyn != NULL)
4540 {
4541 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4542 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4543 }
4544 }
4545 }
4546 }
4547
4548 // Create the .interp section and PT_INTERP segment.
4549
4550 void
4551 Layout::create_interp(const Target* target)
4552 {
4553 gold_assert(this->interp_segment_ == NULL);
4554
4555 const char* interp = parameters->options().dynamic_linker();
4556 if (interp == NULL)
4557 {
4558 interp = target->dynamic_linker();
4559 gold_assert(interp != NULL);
4560 }
4561
4562 size_t len = strlen(interp) + 1;
4563
4564 Output_section_data* odata = new Output_data_const(interp, len, 1);
4565
4566 Output_section* osec = this->choose_output_section(NULL, ".interp",
4567 elfcpp::SHT_PROGBITS,
4568 elfcpp::SHF_ALLOC,
4569 false, ORDER_INTERP,
4570 false);
4571 if (osec != NULL)
4572 osec->add_output_section_data(odata);
4573 }
4574
4575 // Add dynamic tags for the PLT and the dynamic relocs. This is
4576 // called by the target-specific code. This does nothing if not doing
4577 // a dynamic link.
4578
4579 // USE_REL is true for REL relocs rather than RELA relocs.
4580
4581 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4582
4583 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4584 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4585 // some targets have multiple reloc sections in PLT_REL.
4586
4587 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4588 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4589 // section.
4590
4591 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4592 // executable.
4593
4594 void
4595 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4596 const Output_data* plt_rel,
4597 const Output_data_reloc_generic* dyn_rel,
4598 bool add_debug, bool dynrel_includes_plt)
4599 {
4600 Output_data_dynamic* odyn = this->dynamic_data_;
4601 if (odyn == NULL)
4602 return;
4603
4604 if (plt_got != NULL && plt_got->output_section() != NULL)
4605 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4606
4607 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4608 {
4609 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4610 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4611 odyn->add_constant(elfcpp::DT_PLTREL,
4612 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4613 }
4614
4615 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4616 || (dynrel_includes_plt
4617 && plt_rel != NULL
4618 && plt_rel->output_section() != NULL))
4619 {
4620 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4621 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4622 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4623 (have_dyn_rel
4624 ? dyn_rel->output_section()
4625 : plt_rel->output_section()));
4626 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4627 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4628 odyn->add_section_size(size_tag,
4629 dyn_rel->output_section(),
4630 plt_rel->output_section());
4631 else if (have_dyn_rel)
4632 odyn->add_section_size(size_tag, dyn_rel->output_section());
4633 else
4634 odyn->add_section_size(size_tag, plt_rel->output_section());
4635 const int size = parameters->target().get_size();
4636 elfcpp::DT rel_tag;
4637 int rel_size;
4638 if (use_rel)
4639 {
4640 rel_tag = elfcpp::DT_RELENT;
4641 if (size == 32)
4642 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4643 else if (size == 64)
4644 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4645 else
4646 gold_unreachable();
4647 }
4648 else
4649 {
4650 rel_tag = elfcpp::DT_RELAENT;
4651 if (size == 32)
4652 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4653 else if (size == 64)
4654 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4655 else
4656 gold_unreachable();
4657 }
4658 odyn->add_constant(rel_tag, rel_size);
4659
4660 if (parameters->options().combreloc() && have_dyn_rel)
4661 {
4662 size_t c = dyn_rel->relative_reloc_count();
4663 if (c > 0)
4664 odyn->add_constant((use_rel
4665 ? elfcpp::DT_RELCOUNT
4666 : elfcpp::DT_RELACOUNT),
4667 c);
4668 }
4669 }
4670
4671 if (add_debug && !parameters->options().shared())
4672 {
4673 // The value of the DT_DEBUG tag is filled in by the dynamic
4674 // linker at run time, and used by the debugger.
4675 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4676 }
4677 }
4678
4679 // Finish the .dynamic section and PT_DYNAMIC segment.
4680
4681 void
4682 Layout::finish_dynamic_section(const Input_objects* input_objects,
4683 const Symbol_table* symtab)
4684 {
4685 if (!this->script_options_->saw_phdrs_clause()
4686 && this->dynamic_section_ != NULL)
4687 {
4688 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4689 (elfcpp::PF_R
4690 | elfcpp::PF_W));
4691 oseg->add_output_section_to_nonload(this->dynamic_section_,
4692 elfcpp::PF_R | elfcpp::PF_W);
4693 }
4694
4695 Output_data_dynamic* const odyn = this->dynamic_data_;
4696 if (odyn == NULL)
4697 return;
4698
4699 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4700 p != input_objects->dynobj_end();
4701 ++p)
4702 {
4703 if (!(*p)->is_needed() && (*p)->as_needed())
4704 {
4705 // This dynamic object was linked with --as-needed, but it
4706 // is not needed.
4707 continue;
4708 }
4709
4710 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4711 }
4712
4713 if (parameters->options().shared())
4714 {
4715 const char* soname = parameters->options().soname();
4716 if (soname != NULL)
4717 odyn->add_string(elfcpp::DT_SONAME, soname);
4718 }
4719
4720 Symbol* sym = symtab->lookup(parameters->options().init());
4721 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4722 odyn->add_symbol(elfcpp::DT_INIT, sym);
4723
4724 sym = symtab->lookup(parameters->options().fini());
4725 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4726 odyn->add_symbol(elfcpp::DT_FINI, sym);
4727
4728 // Look for .init_array, .preinit_array and .fini_array by checking
4729 // section types.
4730 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4731 p != this->section_list_.end();
4732 ++p)
4733 switch((*p)->type())
4734 {
4735 case elfcpp::SHT_FINI_ARRAY:
4736 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4737 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4738 break;
4739 case elfcpp::SHT_INIT_ARRAY:
4740 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4741 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4742 break;
4743 case elfcpp::SHT_PREINIT_ARRAY:
4744 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4745 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4746 break;
4747 default:
4748 break;
4749 }
4750
4751 // Add a DT_RPATH entry if needed.
4752 const General_options::Dir_list& rpath(parameters->options().rpath());
4753 if (!rpath.empty())
4754 {
4755 std::string rpath_val;
4756 for (General_options::Dir_list::const_iterator p = rpath.begin();
4757 p != rpath.end();
4758 ++p)
4759 {
4760 if (rpath_val.empty())
4761 rpath_val = p->name();
4762 else
4763 {
4764 // Eliminate duplicates.
4765 General_options::Dir_list::const_iterator q;
4766 for (q = rpath.begin(); q != p; ++q)
4767 if (q->name() == p->name())
4768 break;
4769 if (q == p)
4770 {
4771 rpath_val += ':';
4772 rpath_val += p->name();
4773 }
4774 }
4775 }
4776
4777 if (!parameters->options().enable_new_dtags())
4778 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4779 else
4780 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4781 }
4782
4783 // Look for text segments that have dynamic relocations.
4784 bool have_textrel = false;
4785 if (!this->script_options_->saw_sections_clause())
4786 {
4787 for (Segment_list::const_iterator p = this->segment_list_.begin();
4788 p != this->segment_list_.end();
4789 ++p)
4790 {
4791 if ((*p)->type() == elfcpp::PT_LOAD
4792 && ((*p)->flags() & elfcpp::PF_W) == 0
4793 && (*p)->has_dynamic_reloc())
4794 {
4795 have_textrel = true;
4796 break;
4797 }
4798 }
4799 }
4800 else
4801 {
4802 // We don't know the section -> segment mapping, so we are
4803 // conservative and just look for readonly sections with
4804 // relocations. If those sections wind up in writable segments,
4805 // then we have created an unnecessary DT_TEXTREL entry.
4806 for (Section_list::const_iterator p = this->section_list_.begin();
4807 p != this->section_list_.end();
4808 ++p)
4809 {
4810 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4811 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4812 && (*p)->has_dynamic_reloc())
4813 {
4814 have_textrel = true;
4815 break;
4816 }
4817 }
4818 }
4819
4820 if (parameters->options().filter() != NULL)
4821 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4822 if (parameters->options().any_auxiliary())
4823 {
4824 for (options::String_set::const_iterator p =
4825 parameters->options().auxiliary_begin();
4826 p != parameters->options().auxiliary_end();
4827 ++p)
4828 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4829 }
4830
4831 // Add a DT_FLAGS entry if necessary.
4832 unsigned int flags = 0;
4833 if (have_textrel)
4834 {
4835 // Add a DT_TEXTREL for compatibility with older loaders.
4836 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4837 flags |= elfcpp::DF_TEXTREL;
4838
4839 if (parameters->options().text())
4840 gold_error(_("read-only segment has dynamic relocations"));
4841 else if (parameters->options().warn_shared_textrel()
4842 && parameters->options().shared())
4843 gold_warning(_("shared library text segment is not shareable"));
4844 }
4845 if (parameters->options().shared() && this->has_static_tls())
4846 flags |= elfcpp::DF_STATIC_TLS;
4847 if (parameters->options().origin())
4848 flags |= elfcpp::DF_ORIGIN;
4849 if (parameters->options().Bsymbolic())
4850 {
4851 flags |= elfcpp::DF_SYMBOLIC;
4852 // Add DT_SYMBOLIC for compatibility with older loaders.
4853 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4854 }
4855 if (parameters->options().now())
4856 flags |= elfcpp::DF_BIND_NOW;
4857 if (flags != 0)
4858 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4859
4860 flags = 0;
4861 if (parameters->options().initfirst())
4862 flags |= elfcpp::DF_1_INITFIRST;
4863 if (parameters->options().interpose())
4864 flags |= elfcpp::DF_1_INTERPOSE;
4865 if (parameters->options().loadfltr())
4866 flags |= elfcpp::DF_1_LOADFLTR;
4867 if (parameters->options().nodefaultlib())
4868 flags |= elfcpp::DF_1_NODEFLIB;
4869 if (parameters->options().nodelete())
4870 flags |= elfcpp::DF_1_NODELETE;
4871 if (parameters->options().nodlopen())
4872 flags |= elfcpp::DF_1_NOOPEN;
4873 if (parameters->options().nodump())
4874 flags |= elfcpp::DF_1_NODUMP;
4875 if (!parameters->options().shared())
4876 flags &= ~(elfcpp::DF_1_INITFIRST
4877 | elfcpp::DF_1_NODELETE
4878 | elfcpp::DF_1_NOOPEN);
4879 if (parameters->options().origin())
4880 flags |= elfcpp::DF_1_ORIGIN;
4881 if (parameters->options().now())
4882 flags |= elfcpp::DF_1_NOW;
4883 if (parameters->options().Bgroup())
4884 flags |= elfcpp::DF_1_GROUP;
4885 if (flags != 0)
4886 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4887 }
4888
4889 // Set the size of the _DYNAMIC symbol table to be the size of the
4890 // dynamic data.
4891
4892 void
4893 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4894 {
4895 Output_data_dynamic* const odyn = this->dynamic_data_;
4896 if (odyn == NULL)
4897 return;
4898 odyn->finalize_data_size();
4899 if (this->dynamic_symbol_ == NULL)
4900 return;
4901 off_t data_size = odyn->data_size();
4902 const int size = parameters->target().get_size();
4903 if (size == 32)
4904 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4905 else if (size == 64)
4906 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4907 else
4908 gold_unreachable();
4909 }
4910
4911 // The mapping of input section name prefixes to output section names.
4912 // In some cases one prefix is itself a prefix of another prefix; in
4913 // such a case the longer prefix must come first. These prefixes are
4914 // based on the GNU linker default ELF linker script.
4915
4916 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4917 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4918 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4919 {
4920 MAPPING_INIT(".text.", ".text"),
4921 MAPPING_INIT(".rodata.", ".rodata"),
4922 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4923 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4924 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4925 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4926 MAPPING_INIT(".data.", ".data"),
4927 MAPPING_INIT(".bss.", ".bss"),
4928 MAPPING_INIT(".tdata.", ".tdata"),
4929 MAPPING_INIT(".tbss.", ".tbss"),
4930 MAPPING_INIT(".init_array.", ".init_array"),
4931 MAPPING_INIT(".fini_array.", ".fini_array"),
4932 MAPPING_INIT(".sdata.", ".sdata"),
4933 MAPPING_INIT(".sbss.", ".sbss"),
4934 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4935 // differently depending on whether it is creating a shared library.
4936 MAPPING_INIT(".sdata2.", ".sdata"),
4937 MAPPING_INIT(".sbss2.", ".sbss"),
4938 MAPPING_INIT(".lrodata.", ".lrodata"),
4939 MAPPING_INIT(".ldata.", ".ldata"),
4940 MAPPING_INIT(".lbss.", ".lbss"),
4941 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4942 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4943 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4944 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4945 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4946 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4947 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4948 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4949 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4950 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4951 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4952 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4953 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4954 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4955 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4956 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4957 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4958 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4959 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4960 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4961 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4962 };
4963 #undef MAPPING_INIT
4964 #undef MAPPING_INIT_EXACT
4965
4966 const int Layout::section_name_mapping_count =
4967 (sizeof(Layout::section_name_mapping)
4968 / sizeof(Layout::section_name_mapping[0]));
4969
4970 // Choose the output section name to use given an input section name.
4971 // Set *PLEN to the length of the name. *PLEN is initialized to the
4972 // length of NAME.
4973
4974 const char*
4975 Layout::output_section_name(const Relobj* relobj, const char* name,
4976 size_t* plen)
4977 {
4978 // gcc 4.3 generates the following sorts of section names when it
4979 // needs a section name specific to a function:
4980 // .text.FN
4981 // .rodata.FN
4982 // .sdata2.FN
4983 // .data.FN
4984 // .data.rel.FN
4985 // .data.rel.local.FN
4986 // .data.rel.ro.FN
4987 // .data.rel.ro.local.FN
4988 // .sdata.FN
4989 // .bss.FN
4990 // .sbss.FN
4991 // .tdata.FN
4992 // .tbss.FN
4993
4994 // The GNU linker maps all of those to the part before the .FN,
4995 // except that .data.rel.local.FN is mapped to .data, and
4996 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4997 // beginning with .data.rel.ro.local are grouped together.
4998
4999 // For an anonymous namespace, the string FN can contain a '.'.
5000
5001 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5002 // GNU linker maps to .rodata.
5003
5004 // The .data.rel.ro sections are used with -z relro. The sections
5005 // are recognized by name. We use the same names that the GNU
5006 // linker does for these sections.
5007
5008 // It is hard to handle this in a principled way, so we don't even
5009 // try. We use a table of mappings. If the input section name is
5010 // not found in the table, we simply use it as the output section
5011 // name.
5012
5013 const Section_name_mapping* psnm = section_name_mapping;
5014 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5015 {
5016 if (psnm->fromlen > 0)
5017 {
5018 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5019 {
5020 *plen = psnm->tolen;
5021 return psnm->to;
5022 }
5023 }
5024 else
5025 {
5026 if (strcmp(name, psnm->from) == 0)
5027 {
5028 *plen = psnm->tolen;
5029 return psnm->to;
5030 }
5031 }
5032 }
5033
5034 // As an additional complication, .ctors sections are output in
5035 // either .ctors or .init_array sections, and .dtors sections are
5036 // output in either .dtors or .fini_array sections.
5037 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5038 {
5039 if (parameters->options().ctors_in_init_array())
5040 {
5041 *plen = 11;
5042 return name[1] == 'c' ? ".init_array" : ".fini_array";
5043 }
5044 else
5045 {
5046 *plen = 6;
5047 return name[1] == 'c' ? ".ctors" : ".dtors";
5048 }
5049 }
5050 if (parameters->options().ctors_in_init_array()
5051 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5052 {
5053 // To make .init_array/.fini_array work with gcc we must exclude
5054 // .ctors and .dtors sections from the crtbegin and crtend
5055 // files.
5056 if (relobj == NULL
5057 || (!Layout::match_file_name(relobj, "crtbegin")
5058 && !Layout::match_file_name(relobj, "crtend")))
5059 {
5060 *plen = 11;
5061 return name[1] == 'c' ? ".init_array" : ".fini_array";
5062 }
5063 }
5064
5065 return name;
5066 }
5067
5068 // Return true if RELOBJ is an input file whose base name matches
5069 // FILE_NAME. The base name must have an extension of ".o", and must
5070 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5071 // to match crtbegin.o as well as crtbeginS.o without getting confused
5072 // by other possibilities. Overall matching the file name this way is
5073 // a dreadful hack, but the GNU linker does it in order to better
5074 // support gcc, and we need to be compatible.
5075
5076 bool
5077 Layout::match_file_name(const Relobj* relobj, const char* match)
5078 {
5079 const std::string& file_name(relobj->name());
5080 const char* base_name = lbasename(file_name.c_str());
5081 size_t match_len = strlen(match);
5082 if (strncmp(base_name, match, match_len) != 0)
5083 return false;
5084 size_t base_len = strlen(base_name);
5085 if (base_len != match_len + 2 && base_len != match_len + 3)
5086 return false;
5087 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5088 }
5089
5090 // Check if a comdat group or .gnu.linkonce section with the given
5091 // NAME is selected for the link. If there is already a section,
5092 // *KEPT_SECTION is set to point to the existing section and the
5093 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5094 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5095 // *KEPT_SECTION is set to the internal copy and the function returns
5096 // true.
5097
5098 bool
5099 Layout::find_or_add_kept_section(const std::string& name,
5100 Relobj* object,
5101 unsigned int shndx,
5102 bool is_comdat,
5103 bool is_group_name,
5104 Kept_section** kept_section)
5105 {
5106 // It's normal to see a couple of entries here, for the x86 thunk
5107 // sections. If we see more than a few, we're linking a C++
5108 // program, and we resize to get more space to minimize rehashing.
5109 if (this->signatures_.size() > 4
5110 && !this->resized_signatures_)
5111 {
5112 reserve_unordered_map(&this->signatures_,
5113 this->number_of_input_files_ * 64);
5114 this->resized_signatures_ = true;
5115 }
5116
5117 Kept_section candidate;
5118 std::pair<Signatures::iterator, bool> ins =
5119 this->signatures_.insert(std::make_pair(name, candidate));
5120
5121 if (kept_section != NULL)
5122 *kept_section = &ins.first->second;
5123 if (ins.second)
5124 {
5125 // This is the first time we've seen this signature.
5126 ins.first->second.set_object(object);
5127 ins.first->second.set_shndx(shndx);
5128 if (is_comdat)
5129 ins.first->second.set_is_comdat();
5130 if (is_group_name)
5131 ins.first->second.set_is_group_name();
5132 return true;
5133 }
5134
5135 // We have already seen this signature.
5136
5137 if (ins.first->second.is_group_name())
5138 {
5139 // We've already seen a real section group with this signature.
5140 // If the kept group is from a plugin object, and we're in the
5141 // replacement phase, accept the new one as a replacement.
5142 if (ins.first->second.object() == NULL
5143 && parameters->options().plugins()->in_replacement_phase())
5144 {
5145 ins.first->second.set_object(object);
5146 ins.first->second.set_shndx(shndx);
5147 return true;
5148 }
5149 return false;
5150 }
5151 else if (is_group_name)
5152 {
5153 // This is a real section group, and we've already seen a
5154 // linkonce section with this signature. Record that we've seen
5155 // a section group, and don't include this section group.
5156 ins.first->second.set_is_group_name();
5157 return false;
5158 }
5159 else
5160 {
5161 // We've already seen a linkonce section and this is a linkonce
5162 // section. These don't block each other--this may be the same
5163 // symbol name with different section types.
5164 return true;
5165 }
5166 }
5167
5168 // Store the allocated sections into the section list.
5169
5170 void
5171 Layout::get_allocated_sections(Section_list* section_list) const
5172 {
5173 for (Section_list::const_iterator p = this->section_list_.begin();
5174 p != this->section_list_.end();
5175 ++p)
5176 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5177 section_list->push_back(*p);
5178 }
5179
5180 // Store the executable sections into the section list.
5181
5182 void
5183 Layout::get_executable_sections(Section_list* section_list) const
5184 {
5185 for (Section_list::const_iterator p = this->section_list_.begin();
5186 p != this->section_list_.end();
5187 ++p)
5188 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5189 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5190 section_list->push_back(*p);
5191 }
5192
5193 // Create an output segment.
5194
5195 Output_segment*
5196 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5197 {
5198 gold_assert(!parameters->options().relocatable());
5199 Output_segment* oseg = new Output_segment(type, flags);
5200 this->segment_list_.push_back(oseg);
5201
5202 if (type == elfcpp::PT_TLS)
5203 this->tls_segment_ = oseg;
5204 else if (type == elfcpp::PT_GNU_RELRO)
5205 this->relro_segment_ = oseg;
5206 else if (type == elfcpp::PT_INTERP)
5207 this->interp_segment_ = oseg;
5208
5209 return oseg;
5210 }
5211
5212 // Return the file offset of the normal symbol table.
5213
5214 off_t
5215 Layout::symtab_section_offset() const
5216 {
5217 if (this->symtab_section_ != NULL)
5218 return this->symtab_section_->offset();
5219 return 0;
5220 }
5221
5222 // Return the section index of the normal symbol table. It may have
5223 // been stripped by the -s/--strip-all option.
5224
5225 unsigned int
5226 Layout::symtab_section_shndx() const
5227 {
5228 if (this->symtab_section_ != NULL)
5229 return this->symtab_section_->out_shndx();
5230 return 0;
5231 }
5232
5233 // Write out the Output_sections. Most won't have anything to write,
5234 // since most of the data will come from input sections which are
5235 // handled elsewhere. But some Output_sections do have Output_data.
5236
5237 void
5238 Layout::write_output_sections(Output_file* of) const
5239 {
5240 for (Section_list::const_iterator p = this->section_list_.begin();
5241 p != this->section_list_.end();
5242 ++p)
5243 {
5244 if (!(*p)->after_input_sections())
5245 (*p)->write(of);
5246 }
5247 }
5248
5249 // Write out data not associated with a section or the symbol table.
5250
5251 void
5252 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5253 {
5254 if (!parameters->options().strip_all())
5255 {
5256 const Output_section* symtab_section = this->symtab_section_;
5257 for (Section_list::const_iterator p = this->section_list_.begin();
5258 p != this->section_list_.end();
5259 ++p)
5260 {
5261 if ((*p)->needs_symtab_index())
5262 {
5263 gold_assert(symtab_section != NULL);
5264 unsigned int index = (*p)->symtab_index();
5265 gold_assert(index > 0 && index != -1U);
5266 off_t off = (symtab_section->offset()
5267 + index * symtab_section->entsize());
5268 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5269 }
5270 }
5271 }
5272
5273 const Output_section* dynsym_section = this->dynsym_section_;
5274 for (Section_list::const_iterator p = this->section_list_.begin();
5275 p != this->section_list_.end();
5276 ++p)
5277 {
5278 if ((*p)->needs_dynsym_index())
5279 {
5280 gold_assert(dynsym_section != NULL);
5281 unsigned int index = (*p)->dynsym_index();
5282 gold_assert(index > 0 && index != -1U);
5283 off_t off = (dynsym_section->offset()
5284 + index * dynsym_section->entsize());
5285 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5286 }
5287 }
5288
5289 // Write out the Output_data which are not in an Output_section.
5290 for (Data_list::const_iterator p = this->special_output_list_.begin();
5291 p != this->special_output_list_.end();
5292 ++p)
5293 (*p)->write(of);
5294
5295 // Write out the Output_data which are not in an Output_section
5296 // and are regenerated in each iteration of relaxation.
5297 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5298 p != this->relax_output_list_.end();
5299 ++p)
5300 (*p)->write(of);
5301 }
5302
5303 // Write out the Output_sections which can only be written after the
5304 // input sections are complete.
5305
5306 void
5307 Layout::write_sections_after_input_sections(Output_file* of)
5308 {
5309 // Determine the final section offsets, and thus the final output
5310 // file size. Note we finalize the .shstrab last, to allow the
5311 // after_input_section sections to modify their section-names before
5312 // writing.
5313 if (this->any_postprocessing_sections_)
5314 {
5315 off_t off = this->output_file_size_;
5316 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5317
5318 // Now that we've finalized the names, we can finalize the shstrab.
5319 off =
5320 this->set_section_offsets(off,
5321 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5322
5323 if (off > this->output_file_size_)
5324 {
5325 of->resize(off);
5326 this->output_file_size_ = off;
5327 }
5328 }
5329
5330 for (Section_list::const_iterator p = this->section_list_.begin();
5331 p != this->section_list_.end();
5332 ++p)
5333 {
5334 if ((*p)->after_input_sections())
5335 (*p)->write(of);
5336 }
5337
5338 this->section_headers_->write(of);
5339 }
5340
5341 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5342 // or as a "tree" where each chunk of the string is hashed and then those
5343 // hashes are put into a (much smaller) string which is hashed with sha1.
5344 // We compute a checksum over the entire file because that is simplest.
5345
5346 Task_token*
5347 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5348 Output_file* of)
5349 {
5350 const size_t filesize = (this->output_file_size() <= 0 ? 0
5351 : static_cast<size_t>(this->output_file_size()));
5352 if (this->build_id_note_ != NULL
5353 && strcmp(parameters->options().build_id(), "tree") == 0
5354 && parameters->options().build_id_chunk_size_for_treehash() > 0
5355 && filesize > 0
5356 && (filesize >=
5357 parameters->options().build_id_min_file_size_for_treehash()))
5358 {
5359 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5360 const size_t chunk_size =
5361 parameters->options().build_id_chunk_size_for_treehash();
5362 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5363 Task_token* post_hash_tasks_blocker = new Task_token(true);
5364 post_hash_tasks_blocker->add_blockers(num_hashes);
5365 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5366 const unsigned char* src = of->get_input_view(0, filesize);
5367 this->input_view_ = src;
5368 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5369 this->array_of_hashes_ = dst;
5370 for (size_t i = 0, src_offset = 0; i < num_hashes;
5371 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5372 {
5373 size_t size = std::min(chunk_size, filesize - src_offset);
5374 workqueue->queue(new Hash_task(src + src_offset,
5375 size,
5376 dst,
5377 build_id_blocker,
5378 post_hash_tasks_blocker));
5379 }
5380 return post_hash_tasks_blocker;
5381 }
5382 return build_id_blocker;
5383 }
5384
5385 // If a tree-style build ID was requested, the parallel part of that computation
5386 // is already done, and the final hash-of-hashes is computed here. For other
5387 // types of build IDs, all the work is done here.
5388
5389 void
5390 Layout::write_build_id(Output_file* of) const
5391 {
5392 if (this->build_id_note_ == NULL)
5393 return;
5394
5395 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5396 this->build_id_note_->data_size());
5397
5398 if (this->array_of_hashes_ == NULL)
5399 {
5400 const size_t output_file_size = this->output_file_size();
5401 const unsigned char* iv = of->get_input_view(0, output_file_size);
5402 const char* style = parameters->options().build_id();
5403
5404 // If we get here with style == "tree" then the output must be
5405 // too small for chunking, and we use SHA-1 in that case.
5406 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5407 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5408 else if (strcmp(style, "md5") == 0)
5409 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5410 else
5411 gold_unreachable();
5412
5413 of->free_input_view(0, output_file_size, iv);
5414 }
5415 else
5416 {
5417 // Non-overlapping substrings of the output file have been hashed.
5418 // Compute SHA-1 hash of the hashes.
5419 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5420 this->size_of_array_of_hashes_, ov);
5421 delete[] this->array_of_hashes_;
5422 of->free_input_view(0, this->output_file_size(), this->input_view_);
5423 }
5424
5425 of->write_output_view(this->build_id_note_->offset(),
5426 this->build_id_note_->data_size(),
5427 ov);
5428 }
5429
5430 // Write out a binary file. This is called after the link is
5431 // complete. IN is the temporary output file we used to generate the
5432 // ELF code. We simply walk through the segments, read them from
5433 // their file offset in IN, and write them to their load address in
5434 // the output file. FIXME: with a bit more work, we could support
5435 // S-records and/or Intel hex format here.
5436
5437 void
5438 Layout::write_binary(Output_file* in) const
5439 {
5440 gold_assert(parameters->options().oformat_enum()
5441 == General_options::OBJECT_FORMAT_BINARY);
5442
5443 // Get the size of the binary file.
5444 uint64_t max_load_address = 0;
5445 for (Segment_list::const_iterator p = this->segment_list_.begin();
5446 p != this->segment_list_.end();
5447 ++p)
5448 {
5449 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5450 {
5451 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5452 if (max_paddr > max_load_address)
5453 max_load_address = max_paddr;
5454 }
5455 }
5456
5457 Output_file out(parameters->options().output_file_name());
5458 out.open(max_load_address);
5459
5460 for (Segment_list::const_iterator p = this->segment_list_.begin();
5461 p != this->segment_list_.end();
5462 ++p)
5463 {
5464 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5465 {
5466 const unsigned char* vin = in->get_input_view((*p)->offset(),
5467 (*p)->filesz());
5468 unsigned char* vout = out.get_output_view((*p)->paddr(),
5469 (*p)->filesz());
5470 memcpy(vout, vin, (*p)->filesz());
5471 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5472 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5473 }
5474 }
5475
5476 out.close();
5477 }
5478
5479 // Print the output sections to the map file.
5480
5481 void
5482 Layout::print_to_mapfile(Mapfile* mapfile) const
5483 {
5484 for (Segment_list::const_iterator p = this->segment_list_.begin();
5485 p != this->segment_list_.end();
5486 ++p)
5487 (*p)->print_sections_to_mapfile(mapfile);
5488 }
5489
5490 // Print statistical information to stderr. This is used for --stats.
5491
5492 void
5493 Layout::print_stats() const
5494 {
5495 this->namepool_.print_stats("section name pool");
5496 this->sympool_.print_stats("output symbol name pool");
5497 this->dynpool_.print_stats("dynamic name pool");
5498
5499 for (Section_list::const_iterator p = this->section_list_.begin();
5500 p != this->section_list_.end();
5501 ++p)
5502 (*p)->print_merge_stats();
5503 }
5504
5505 // Write_sections_task methods.
5506
5507 // We can always run this task.
5508
5509 Task_token*
5510 Write_sections_task::is_runnable()
5511 {
5512 return NULL;
5513 }
5514
5515 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5516 // when finished.
5517
5518 void
5519 Write_sections_task::locks(Task_locker* tl)
5520 {
5521 tl->add(this, this->output_sections_blocker_);
5522 tl->add(this, this->final_blocker_);
5523 }
5524
5525 // Run the task--write out the data.
5526
5527 void
5528 Write_sections_task::run(Workqueue*)
5529 {
5530 this->layout_->write_output_sections(this->of_);
5531 }
5532
5533 // Write_data_task methods.
5534
5535 // We can always run this task.
5536
5537 Task_token*
5538 Write_data_task::is_runnable()
5539 {
5540 return NULL;
5541 }
5542
5543 // We need to unlock FINAL_BLOCKER when finished.
5544
5545 void
5546 Write_data_task::locks(Task_locker* tl)
5547 {
5548 tl->add(this, this->final_blocker_);
5549 }
5550
5551 // Run the task--write out the data.
5552
5553 void
5554 Write_data_task::run(Workqueue*)
5555 {
5556 this->layout_->write_data(this->symtab_, this->of_);
5557 }
5558
5559 // Write_symbols_task methods.
5560
5561 // We can always run this task.
5562
5563 Task_token*
5564 Write_symbols_task::is_runnable()
5565 {
5566 return NULL;
5567 }
5568
5569 // We need to unlock FINAL_BLOCKER when finished.
5570
5571 void
5572 Write_symbols_task::locks(Task_locker* tl)
5573 {
5574 tl->add(this, this->final_blocker_);
5575 }
5576
5577 // Run the task--write out the symbols.
5578
5579 void
5580 Write_symbols_task::run(Workqueue*)
5581 {
5582 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5583 this->layout_->symtab_xindex(),
5584 this->layout_->dynsym_xindex(), this->of_);
5585 }
5586
5587 // Write_after_input_sections_task methods.
5588
5589 // We can only run this task after the input sections have completed.
5590
5591 Task_token*
5592 Write_after_input_sections_task::is_runnable()
5593 {
5594 if (this->input_sections_blocker_->is_blocked())
5595 return this->input_sections_blocker_;
5596 return NULL;
5597 }
5598
5599 // We need to unlock FINAL_BLOCKER when finished.
5600
5601 void
5602 Write_after_input_sections_task::locks(Task_locker* tl)
5603 {
5604 tl->add(this, this->final_blocker_);
5605 }
5606
5607 // Run the task.
5608
5609 void
5610 Write_after_input_sections_task::run(Workqueue*)
5611 {
5612 this->layout_->write_sections_after_input_sections(this->of_);
5613 }
5614
5615 // Close_task_runner methods.
5616
5617 // Finish up the build ID computation, if necessary, and write a binary file,
5618 // if necessary. Then close the output file.
5619
5620 void
5621 Close_task_runner::run(Workqueue*, const Task*)
5622 {
5623 // At this point the multi-threaded part of the build ID computation,
5624 // if any, is done. See queue_build_id_tasks().
5625 this->layout_->write_build_id(this->of_);
5626
5627 // If we've been asked to create a binary file, we do so here.
5628 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5629 this->layout_->write_binary(this->of_);
5630
5631 this->of_->close();
5632 }
5633
5634 // Instantiate the templates we need. We could use the configure
5635 // script to restrict this to only the ones for implemented targets.
5636
5637 #ifdef HAVE_TARGET_32_LITTLE
5638 template
5639 Output_section*
5640 Layout::init_fixed_output_section<32, false>(
5641 const char* name,
5642 elfcpp::Shdr<32, false>& shdr);
5643 #endif
5644
5645 #ifdef HAVE_TARGET_32_BIG
5646 template
5647 Output_section*
5648 Layout::init_fixed_output_section<32, true>(
5649 const char* name,
5650 elfcpp::Shdr<32, true>& shdr);
5651 #endif
5652
5653 #ifdef HAVE_TARGET_64_LITTLE
5654 template
5655 Output_section*
5656 Layout::init_fixed_output_section<64, false>(
5657 const char* name,
5658 elfcpp::Shdr<64, false>& shdr);
5659 #endif
5660
5661 #ifdef HAVE_TARGET_64_BIG
5662 template
5663 Output_section*
5664 Layout::init_fixed_output_section<64, true>(
5665 const char* name,
5666 elfcpp::Shdr<64, true>& shdr);
5667 #endif
5668
5669 #ifdef HAVE_TARGET_32_LITTLE
5670 template
5671 Output_section*
5672 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5673 unsigned int shndx,
5674 const char* name,
5675 const elfcpp::Shdr<32, false>& shdr,
5676 unsigned int, unsigned int, off_t*);
5677 #endif
5678
5679 #ifdef HAVE_TARGET_32_BIG
5680 template
5681 Output_section*
5682 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5683 unsigned int shndx,
5684 const char* name,
5685 const elfcpp::Shdr<32, true>& shdr,
5686 unsigned int, unsigned int, off_t*);
5687 #endif
5688
5689 #ifdef HAVE_TARGET_64_LITTLE
5690 template
5691 Output_section*
5692 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5693 unsigned int shndx,
5694 const char* name,
5695 const elfcpp::Shdr<64, false>& shdr,
5696 unsigned int, unsigned int, off_t*);
5697 #endif
5698
5699 #ifdef HAVE_TARGET_64_BIG
5700 template
5701 Output_section*
5702 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5703 unsigned int shndx,
5704 const char* name,
5705 const elfcpp::Shdr<64, true>& shdr,
5706 unsigned int, unsigned int, off_t*);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_32_LITTLE
5710 template
5711 Output_section*
5712 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5713 unsigned int reloc_shndx,
5714 const elfcpp::Shdr<32, false>& shdr,
5715 Output_section* data_section,
5716 Relocatable_relocs* rr);
5717 #endif
5718
5719 #ifdef HAVE_TARGET_32_BIG
5720 template
5721 Output_section*
5722 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5723 unsigned int reloc_shndx,
5724 const elfcpp::Shdr<32, true>& shdr,
5725 Output_section* data_section,
5726 Relocatable_relocs* rr);
5727 #endif
5728
5729 #ifdef HAVE_TARGET_64_LITTLE
5730 template
5731 Output_section*
5732 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5733 unsigned int reloc_shndx,
5734 const elfcpp::Shdr<64, false>& shdr,
5735 Output_section* data_section,
5736 Relocatable_relocs* rr);
5737 #endif
5738
5739 #ifdef HAVE_TARGET_64_BIG
5740 template
5741 Output_section*
5742 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5743 unsigned int reloc_shndx,
5744 const elfcpp::Shdr<64, true>& shdr,
5745 Output_section* data_section,
5746 Relocatable_relocs* rr);
5747 #endif
5748
5749 #ifdef HAVE_TARGET_32_LITTLE
5750 template
5751 void
5752 Layout::layout_group<32, false>(Symbol_table* symtab,
5753 Sized_relobj_file<32, false>* object,
5754 unsigned int,
5755 const char* group_section_name,
5756 const char* signature,
5757 const elfcpp::Shdr<32, false>& shdr,
5758 elfcpp::Elf_Word flags,
5759 std::vector<unsigned int>* shndxes);
5760 #endif
5761
5762 #ifdef HAVE_TARGET_32_BIG
5763 template
5764 void
5765 Layout::layout_group<32, true>(Symbol_table* symtab,
5766 Sized_relobj_file<32, true>* object,
5767 unsigned int,
5768 const char* group_section_name,
5769 const char* signature,
5770 const elfcpp::Shdr<32, true>& shdr,
5771 elfcpp::Elf_Word flags,
5772 std::vector<unsigned int>* shndxes);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_64_LITTLE
5776 template
5777 void
5778 Layout::layout_group<64, false>(Symbol_table* symtab,
5779 Sized_relobj_file<64, false>* object,
5780 unsigned int,
5781 const char* group_section_name,
5782 const char* signature,
5783 const elfcpp::Shdr<64, false>& shdr,
5784 elfcpp::Elf_Word flags,
5785 std::vector<unsigned int>* shndxes);
5786 #endif
5787
5788 #ifdef HAVE_TARGET_64_BIG
5789 template
5790 void
5791 Layout::layout_group<64, true>(Symbol_table* symtab,
5792 Sized_relobj_file<64, true>* object,
5793 unsigned int,
5794 const char* group_section_name,
5795 const char* signature,
5796 const elfcpp::Shdr<64, true>& shdr,
5797 elfcpp::Elf_Word flags,
5798 std::vector<unsigned int>* shndxes);
5799 #endif
5800
5801 #ifdef HAVE_TARGET_32_LITTLE
5802 template
5803 Output_section*
5804 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5805 const unsigned char* symbols,
5806 off_t symbols_size,
5807 const unsigned char* symbol_names,
5808 off_t symbol_names_size,
5809 unsigned int shndx,
5810 const elfcpp::Shdr<32, false>& shdr,
5811 unsigned int reloc_shndx,
5812 unsigned int reloc_type,
5813 off_t* off);
5814 #endif
5815
5816 #ifdef HAVE_TARGET_32_BIG
5817 template
5818 Output_section*
5819 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5820 const unsigned char* symbols,
5821 off_t symbols_size,
5822 const unsigned char* symbol_names,
5823 off_t symbol_names_size,
5824 unsigned int shndx,
5825 const elfcpp::Shdr<32, true>& shdr,
5826 unsigned int reloc_shndx,
5827 unsigned int reloc_type,
5828 off_t* off);
5829 #endif
5830
5831 #ifdef HAVE_TARGET_64_LITTLE
5832 template
5833 Output_section*
5834 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5835 const unsigned char* symbols,
5836 off_t symbols_size,
5837 const unsigned char* symbol_names,
5838 off_t symbol_names_size,
5839 unsigned int shndx,
5840 const elfcpp::Shdr<64, false>& shdr,
5841 unsigned int reloc_shndx,
5842 unsigned int reloc_type,
5843 off_t* off);
5844 #endif
5845
5846 #ifdef HAVE_TARGET_64_BIG
5847 template
5848 Output_section*
5849 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5850 const unsigned char* symbols,
5851 off_t symbols_size,
5852 const unsigned char* symbol_names,
5853 off_t symbol_names_size,
5854 unsigned int shndx,
5855 const elfcpp::Shdr<64, true>& shdr,
5856 unsigned int reloc_shndx,
5857 unsigned int reloc_type,
5858 off_t* off);
5859 #endif
5860
5861 #ifdef HAVE_TARGET_32_LITTLE
5862 template
5863 void
5864 Layout::add_to_gdb_index(bool is_type_unit,
5865 Sized_relobj<32, false>* object,
5866 const unsigned char* symbols,
5867 off_t symbols_size,
5868 unsigned int shndx,
5869 unsigned int reloc_shndx,
5870 unsigned int reloc_type);
5871 #endif
5872
5873 #ifdef HAVE_TARGET_32_BIG
5874 template
5875 void
5876 Layout::add_to_gdb_index(bool is_type_unit,
5877 Sized_relobj<32, true>* object,
5878 const unsigned char* symbols,
5879 off_t symbols_size,
5880 unsigned int shndx,
5881 unsigned int reloc_shndx,
5882 unsigned int reloc_type);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_64_LITTLE
5886 template
5887 void
5888 Layout::add_to_gdb_index(bool is_type_unit,
5889 Sized_relobj<64, false>* object,
5890 const unsigned char* symbols,
5891 off_t symbols_size,
5892 unsigned int shndx,
5893 unsigned int reloc_shndx,
5894 unsigned int reloc_type);
5895 #endif
5896
5897 #ifdef HAVE_TARGET_64_BIG
5898 template
5899 void
5900 Layout::add_to_gdb_index(bool is_type_unit,
5901 Sized_relobj<64, true>* object,
5902 const unsigned char* symbols,
5903 off_t symbols_size,
5904 unsigned int shndx,
5905 unsigned int reloc_shndx,
5906 unsigned int reloc_type);
5907 #endif
5908
5909 } // End namespace gold.
This page took 0.15199 seconds and 4 git commands to generate.