1 // layout.cc -- lay out output file sections for gold
17 // Layout_task methods.
19 Layout_task::~Layout_task()
23 // This task can be run when it is unblocked.
25 Task::Is_runnable_type
26 Layout_task::is_runnable(Workqueue
*)
28 if (this->this_blocker_
->is_blocked())
33 // We don't need to hold any locks for the duration of this task. In
34 // fact this task will be the only one running.
37 Layout_task::locks(Workqueue
*)
42 // Lay out the sections. This is called after all the input objects
46 Layout_task::run(Workqueue
* workqueue
)
48 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file
* of
= new Output_file(this->options_
);
56 // Queue up the final set of tasks.
57 gold::queue_final_tasks(this->options_
, this->input_objects_
,
58 this->symtab_
, this->layout_
, workqueue
, of
);
63 Layout::Layout(const General_options
& options
)
64 : options_(options
), last_shndx_(0), namepool_(), sympool_(), signatures_(),
65 section_name_map_(), segment_list_(), section_list_(),
66 special_output_list_()
68 // Make space for more than enough segments for a typical file.
69 // This is just for efficiency--it's OK if we wind up needing more.
70 segment_list_
.reserve(12);
73 // Hash a key we use to look up an output section mapping.
76 Layout::Hash_key::operator()(const Layout::Key
& k
) const
78 return reinterpret_cast<size_t>(k
.first
) + k
.second
.first
+ k
.second
.second
;
81 // Whether to include this section in the link.
83 template<int size
, bool big_endian
>
85 Layout::include_section(Object
*, const char*,
86 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
88 // Some section types are never linked. Some are only linked when
89 // doing a relocateable link.
90 switch (shdr
.get_sh_type())
92 case elfcpp::SHT_NULL
:
93 case elfcpp::SHT_SYMTAB
:
94 case elfcpp::SHT_DYNSYM
:
95 case elfcpp::SHT_STRTAB
:
96 case elfcpp::SHT_HASH
:
97 case elfcpp::SHT_DYNAMIC
:
98 case elfcpp::SHT_SYMTAB_SHNDX
:
101 case elfcpp::SHT_RELA
:
102 case elfcpp::SHT_REL
:
103 case elfcpp::SHT_GROUP
:
104 return this->options_
.is_relocatable();
107 // FIXME: Handle stripping debug sections here.
112 // Return the output section to use for input section NAME, with
113 // header HEADER, from object OBJECT. Set *OFF to the offset of this
114 // input section without the output section.
116 template<int size
, bool big_endian
>
118 Layout::layout(Object
* object
, const char* name
,
119 const elfcpp::Shdr
<size
, big_endian
>& shdr
, off_t
* off
)
121 // We discard empty input sections.
122 if (shdr
.get_sh_size() == 0)
125 if (!this->include_section(object
, name
, shdr
))
128 // Unless we are doing a relocateable link, .gnu.linkonce sections
129 // are laid out as though they were named for the sections are
131 if (!this->options_
.is_relocatable() && Layout::is_linkonce(name
))
132 name
= Layout::linkonce_output_name(name
);
134 // FIXME: Handle SHF_OS_NONCONFORMING here.
136 // Canonicalize the section name.
137 name
= this->namepool_
.add(name
);
139 // Find the output section. The output section is selected based on
140 // the section name, type, and flags.
142 // FIXME: If we want to do relaxation, we need to modify this
143 // algorithm. We also build a list of input sections for each
144 // output section. Then we relax all the input sections. Then we
145 // walk down the list and adjust all the offsets.
147 elfcpp::Elf_Word type
= shdr
.get_sh_type();
148 elfcpp::Elf_Xword flags
= shdr
.get_sh_flags();
149 const Key
key(name
, std::make_pair(type
, flags
));
150 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
151 std::pair
<Section_name_map::iterator
, bool> ins(
152 this->section_name_map_
.insert(v
));
156 os
= ins
.first
->second
;
159 // This is the first time we've seen this name/type/flags
161 os
= this->make_output_section(name
, type
, flags
);
162 ins
.first
->second
= os
;
165 // FIXME: Handle SHF_LINK_ORDER somewhere.
167 *off
= os
->add_input_section(object
, name
, shdr
);
172 // Map section flags to segment flags.
175 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
177 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
178 if ((flags
& elfcpp::SHF_WRITE
) != 0)
180 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
185 // Make a new Output_section, and attach it to segments as
189 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
190 elfcpp::Elf_Xword flags
)
193 Output_section
* os
= new Output_section(name
, type
, flags
,
196 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
197 this->section_list_
.push_back(os
);
200 // This output section goes into a PT_LOAD segment.
202 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
204 // The only thing we really care about for PT_LOAD segments is
205 // whether or not they are writable, so that is how we search
206 // for them. People who need segments sorted on some other
207 // basis will have to wait until we implement a mechanism for
208 // them to describe the segments they want.
210 Segment_list::const_iterator p
;
211 for (p
= this->segment_list_
.begin();
212 p
!= this->segment_list_
.end();
215 if ((*p
)->type() == elfcpp::PT_LOAD
216 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
218 (*p
)->add_output_section(os
, seg_flags
);
223 if (p
== this->segment_list_
.end())
225 Output_segment
* oseg
= new Output_segment(elfcpp::PT_LOAD
,
227 this->segment_list_
.push_back(oseg
);
228 oseg
->add_output_section(os
, seg_flags
);
231 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
233 if (type
== elfcpp::SHT_NOTE
)
235 // See if we already have an equivalent PT_NOTE segment.
236 for (p
= this->segment_list_
.begin();
237 p
!= segment_list_
.end();
240 if ((*p
)->type() == elfcpp::PT_NOTE
241 && (((*p
)->flags() & elfcpp::PF_W
)
242 == (seg_flags
& elfcpp::PF_W
)))
244 (*p
)->add_output_section(os
, seg_flags
);
249 if (p
== this->segment_list_
.end())
251 Output_segment
* oseg
= new Output_segment(elfcpp::PT_NOTE
,
253 this->segment_list_
.push_back(oseg
);
254 oseg
->add_output_section(os
, seg_flags
);
258 // If we see a loadable SHF_TLS section, we create a PT_TLS
260 if ((flags
& elfcpp::SHF_TLS
) != 0)
262 // See if we already have an equivalent PT_TLS segment.
263 for (p
= this->segment_list_
.begin();
264 p
!= segment_list_
.end();
267 if ((*p
)->type() == elfcpp::PT_TLS
268 && (((*p
)->flags() & elfcpp::PF_W
)
269 == (seg_flags
& elfcpp::PF_W
)))
271 (*p
)->add_output_section(os
, seg_flags
);
276 if (p
== this->segment_list_
.end())
278 Output_segment
* oseg
= new Output_segment(elfcpp::PT_TLS
,
280 this->segment_list_
.push_back(oseg
);
281 oseg
->add_output_section(os
, seg_flags
);
289 // Find the first read-only PT_LOAD segment, creating one if
293 Layout::find_first_load_seg()
295 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
296 p
!= this->segment_list_
.end();
299 if ((*p
)->type() == elfcpp::PT_LOAD
300 && ((*p
)->flags() & elfcpp::PF_R
) != 0
301 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
305 Output_segment
* load_seg
= new Output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
);
306 this->segment_list_
.push_back(load_seg
);
310 // Finalize the layout. When this is called, we have created all the
311 // output sections and all the output segments which are based on
312 // input sections. We have several things to do, and we have to do
313 // them in the right order, so that we get the right results correctly
316 // 1) Finalize the list of output segments and create the segment
319 // 2) Finalize the dynamic symbol table and associated sections.
321 // 3) Determine the final file offset of all the output segments.
323 // 4) Determine the final file offset of all the SHF_ALLOC output
326 // 5) Create the symbol table sections and the section name table
329 // 6) Finalize the symbol table: set symbol values to their final
330 // value and make a final determination of which symbols are going
331 // into the output symbol table.
333 // 7) Create the section table header.
335 // 8) Determine the final file offset of all the output sections which
336 // are not SHF_ALLOC, including the section table header.
338 // 9) Finalize the ELF file header.
340 // This function returns the size of the output file.
343 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
)
345 if (input_objects
->any_dynamic())
347 // If there are any dynamic objects in the link, then we need
348 // some additional segments: PT_PHDRS, PT_INTERP, and
349 // PT_DYNAMIC. We also need to finalize the dynamic symbol
350 // table and create the dynamic hash table.
354 // FIXME: Handle PT_GNU_STACK.
356 Output_segment
* load_seg
= this->find_first_load_seg();
358 // Lay out the segment headers.
359 int size
= input_objects
->target()->get_size();
360 bool big_endian
= input_objects
->target()->is_big_endian();
361 Output_segment_headers
* segment_headers
;
362 segment_headers
= new Output_segment_headers(size
, big_endian
,
363 this->segment_list_
);
364 load_seg
->add_initial_output_data(segment_headers
);
365 this->special_output_list_
.push_back(segment_headers
);
366 // FIXME: Attach them to PT_PHDRS if necessary.
368 // Lay out the file header.
369 Output_file_header
* file_header
;
370 file_header
= new Output_file_header(size
,
373 input_objects
->target(),
376 load_seg
->add_initial_output_data(file_header
);
377 this->special_output_list_
.push_back(file_header
);
379 // Set the file offsets of all the segments.
380 off_t off
= this->set_segment_offsets(input_objects
->target(), load_seg
);
382 // Create the symbol table sections.
383 // FIXME: We don't need to do this if we are stripping symbols.
384 Output_section
* osymtab
;
385 Output_section
* ostrtab
;
386 this->create_symtab_sections(size
, input_objects
, symtab
, &off
,
389 // Create the .shstrtab section.
390 Output_section
* shstrtab_section
= this->create_shstrtab();
392 // Set the file offsets of all the sections not associated with
394 off
= this->set_section_offsets(off
);
396 // Create the section table header.
397 Output_section_headers
* oshdrs
= this->create_shdrs(size
, big_endian
, &off
);
399 file_header
->set_section_info(oshdrs
, shstrtab_section
);
401 // Now we know exactly where everything goes in the output file.
406 // Return whether SEG1 should be before SEG2 in the output file. This
407 // is based entirely on the segment type and flags. When this is
408 // called the segment addresses has normally not yet been set.
411 Layout::segment_precedes(const Output_segment
* seg1
,
412 const Output_segment
* seg2
)
414 elfcpp::Elf_Word type1
= seg1
->type();
415 elfcpp::Elf_Word type2
= seg2
->type();
417 // The single PT_PHDR segment is required to precede any loadable
418 // segment. We simply make it always first.
419 if (type1
== elfcpp::PT_PHDR
)
421 assert(type2
!= elfcpp::PT_PHDR
);
424 if (type2
== elfcpp::PT_PHDR
)
427 // The single PT_INTERP segment is required to precede any loadable
428 // segment. We simply make it always second.
429 if (type1
== elfcpp::PT_INTERP
)
431 assert(type2
!= elfcpp::PT_INTERP
);
434 if (type2
== elfcpp::PT_INTERP
)
437 // We then put PT_LOAD segments before any other segments.
438 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
440 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
443 const elfcpp::Elf_Word flags1
= seg1
->flags();
444 const elfcpp::Elf_Word flags2
= seg2
->flags();
446 // The order of non-PT_LOAD segments is unimportant. We simply sort
447 // by the numeric segment type and flags values. There should not
448 // be more than one segment with the same type and flags.
449 if (type1
!= elfcpp::PT_LOAD
)
452 return type1
< type2
;
453 assert(flags1
!= flags2
);
454 return flags1
< flags2
;
457 // We sort PT_LOAD segments based on the flags. Readonly segments
458 // come before writable segments. Then executable segments come
459 // before non-executable segments. Then the unlikely case of a
460 // non-readable segment comes before the normal case of a readable
461 // segment. If there are multiple segments with the same type and
462 // flags, we require that the address be set, and we sort by
463 // virtual address and then physical address.
464 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
465 return (flags1
& elfcpp::PF_W
) == 0;
466 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
467 return (flags1
& elfcpp::PF_X
) != 0;
468 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
469 return (flags1
& elfcpp::PF_R
) == 0;
471 uint64_t vaddr1
= seg1
->vaddr();
472 uint64_t vaddr2
= seg2
->vaddr();
473 if (vaddr1
!= vaddr2
)
474 return vaddr1
< vaddr2
;
476 uint64_t paddr1
= seg1
->paddr();
477 uint64_t paddr2
= seg2
->paddr();
478 assert(paddr1
!= paddr2
);
479 return paddr1
< paddr2
;
482 // Set the file offsets of all the segments. They have all been
483 // created. LOAD_SEG must be be laid out first. Return the offset of
484 // the data to follow.
487 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
)
489 // Sort them into the final order.
490 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
491 Layout::Compare_segments());
493 // Find the PT_LOAD segments, and set their addresses and offsets
494 // and their section's addresses and offsets.
495 uint64_t addr
= target
->text_segment_address();
497 bool was_readonly
= false;
498 for (Segment_list::iterator p
= this->segment_list_
.begin();
499 p
!= this->segment_list_
.end();
502 if ((*p
)->type() == elfcpp::PT_LOAD
)
504 if (load_seg
!= NULL
&& load_seg
!= *p
)
508 // If the last segment was readonly, and this one is not,
509 // then skip the address forward one page, maintaining the
510 // same position within the page. This lets us store both
511 // segments overlapping on a single page in the file, but
512 // the loader will put them on different pages in memory.
514 uint64_t orig_addr
= addr
;
515 uint64_t orig_off
= off
;
517 uint64_t aligned_addr
= addr
;
518 uint64_t abi_pagesize
= target
->abi_pagesize();
519 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
521 uint64_t align
= (*p
)->max_data_align();
523 addr
= (addr
+ align
- 1) & ~ (align
- 1);
525 if ((addr
& (abi_pagesize
- 1)) != 0)
526 addr
= addr
+ abi_pagesize
;
529 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
530 uint64_t new_addr
= (*p
)->set_section_addresses(addr
, &off
);
532 // Now that we know the size of this segment, we may be able
533 // to save a page in memory, at the cost of wasting some
534 // file space, by instead aligning to the start of a new
535 // page. Here we use the real machine page size rather than
536 // the ABI mandated page size.
538 if (aligned_addr
!= addr
)
540 uint64_t common_pagesize
= target
->common_pagesize();
541 uint64_t first_off
= (common_pagesize
543 & (common_pagesize
- 1)));
544 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
547 && ((aligned_addr
& ~ (common_pagesize
- 1))
548 != (new_addr
& ~ (common_pagesize
- 1)))
549 && first_off
+ last_off
<= common_pagesize
)
551 addr
= ((aligned_addr
+ common_pagesize
- 1)
552 & ~ (common_pagesize
- 1));
553 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
554 new_addr
= (*p
)->set_section_addresses(addr
, &off
);
560 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
565 // Handle the non-PT_LOAD segments, setting their offsets from their
566 // section's offsets.
567 for (Segment_list::iterator p
= this->segment_list_
.begin();
568 p
!= this->segment_list_
.end();
571 if ((*p
)->type() != elfcpp::PT_LOAD
)
578 // Set the file offset of all the sections not associated with a
582 Layout::set_section_offsets(off_t off
)
584 for (Layout::Section_list::iterator p
= this->section_list_
.begin();
585 p
!= this->section_list_
.end();
588 if ((*p
)->offset() != -1)
590 uint64_t addralign
= (*p
)->addralign();
592 off
= (off
+ addralign
- 1) & ~ (addralign
- 1);
593 (*p
)->set_address(0, off
);
594 off
+= (*p
)->data_size();
599 // Create the symbol table sections.
602 Layout::create_symtab_sections(int size
, const Input_objects
* input_objects
,
603 Symbol_table
* symtab
,
605 Output_section
** posymtab
,
606 Output_section
** postrtab
)
612 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
617 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
624 off
= (off
+ align
- 1) & ~ (align
- 1);
625 off_t startoff
= off
;
627 // Save space for the dummy symbol at the start of the section. We
628 // never bother to write this out--it will just be left as zero.
631 for (Input_objects::Object_list::const_iterator p
= input_objects
->begin();
632 p
!= input_objects
->end();
635 Task_lock_obj
<Object
> tlo(**p
);
636 off
= (*p
)->finalize_local_symbols(off
, &this->sympool_
);
639 unsigned int local_symcount
= (off
- startoff
) / symsize
;
640 assert(local_symcount
* symsize
== off
- startoff
);
642 off
= symtab
->finalize(off
, &this->sympool_
);
644 this->sympool_
.set_string_offsets();
647 const char* symtab_name
= this->namepool_
.add(".symtab");
648 Output_section
* osymtab
= new Output_section_symtab(symtab_name
,
651 this->section_list_
.push_back(osymtab
);
654 const char* strtab_name
= this->namepool_
.add(".strtab");
655 Output_section
*ostrtab
= new Output_section_strtab(strtab_name
,
658 this->section_list_
.push_back(ostrtab
);
659 this->special_output_list_
.push_back(ostrtab
);
661 osymtab
->set_address(0, startoff
);
662 osymtab
->set_link(ostrtab
->shndx());
663 osymtab
->set_info(local_symcount
);
664 osymtab
->set_entsize(symsize
);
665 osymtab
->set_addralign(align
);
672 // Create the .shstrtab section, which holds the names of the
673 // sections. At the time this is called, we have created all the
674 // output sections except .shstrtab itself.
677 Layout::create_shstrtab()
679 // FIXME: We don't need to create a .shstrtab section if we are
680 // stripping everything.
682 const char* name
= this->namepool_
.add(".shstrtab");
684 this->namepool_
.set_string_offsets();
687 Output_section
* os
= new Output_section_strtab(name
,
691 this->section_list_
.push_back(os
);
692 this->special_output_list_
.push_back(os
);
697 // Create the section headers. SIZE is 32 or 64. OFF is the file
700 Output_section_headers
*
701 Layout::create_shdrs(int size
, bool big_endian
, off_t
* poff
)
703 Output_section_headers
* oshdrs
;
704 oshdrs
= new Output_section_headers(size
, big_endian
, this->segment_list_
,
707 uint64_t addralign
= oshdrs
->addralign();
708 off_t off
= (*poff
+ addralign
- 1) & ~ (addralign
- 1);
709 oshdrs
->set_address(0, off
);
710 off
+= oshdrs
->data_size();
712 this->special_output_list_
.push_back(oshdrs
);
716 // The mapping of .gnu.linkonce section names to real section names.
718 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
719 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
721 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
722 MAPPING_INIT("t", ".text"),
723 MAPPING_INIT("r", ".rodata"),
724 MAPPING_INIT("d", ".data"),
725 MAPPING_INIT("b", ".bss"),
726 MAPPING_INIT("s", ".sdata"),
727 MAPPING_INIT("sb", ".sbss"),
728 MAPPING_INIT("s2", ".sdata2"),
729 MAPPING_INIT("sb2", ".sbss2"),
730 MAPPING_INIT("wi", ".debug_info"),
731 MAPPING_INIT("td", ".tdata"),
732 MAPPING_INIT("tb", ".tbss"),
733 MAPPING_INIT("lr", ".lrodata"),
734 MAPPING_INIT("l", ".ldata"),
735 MAPPING_INIT("lb", ".lbss"),
739 const int Layout::linkonce_mapping_count
=
740 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
742 // Return the name of the output section to use for a .gnu.linkonce
743 // section. This is based on the default ELF linker script of the old
744 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
748 Layout::linkonce_output_name(const char* name
)
750 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
754 const Linkonce_mapping
* plm
= linkonce_mapping
;
755 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
757 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
763 // Record the signature of a comdat section, and return whether to
764 // include it in the link. If GROUP is true, this is a regular
765 // section group. If GROUP is false, this is a group signature
766 // derived from the name of a linkonce section. We want linkonce
767 // signatures and group signatures to block each other, but we don't
768 // want a linkonce signature to block another linkonce signature.
771 Layout::add_comdat(const char* signature
, bool group
)
773 std::string
sig(signature
);
774 std::pair
<Signatures::iterator
, bool> ins(
775 this->signatures_
.insert(std::make_pair(signature
, group
)));
779 // This is the first time we've seen this signature.
783 if (ins
.first
->second
)
785 // We've already seen a real section group with this signature.
790 // This is a real section group, and we've already seen a
791 // linkonce section with tihs signature. Record that we've seen
792 // a section group, and don't include this section group.
793 ins
.first
->second
= true;
798 // We've already seen a linkonce section and this is a linkonce
799 // section. These don't block each other--this may be the same
800 // symbol name with different section types.
805 // Write out data not associated with a section or the symbol table.
808 Layout::write_data(Output_file
* of
) const
810 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
811 p
!= this->special_output_list_
.end();
816 // Write_data_task methods.
818 // We can always run this task.
820 Task::Is_runnable_type
821 Write_data_task::is_runnable(Workqueue
*)
826 // We need to unlock FINAL_BLOCKER when finished.
829 Write_data_task::locks(Workqueue
* workqueue
)
831 return new Task_locker_block(*this->final_blocker_
, workqueue
);
834 // Run the task--write out the data.
837 Write_data_task::run(Workqueue
*)
839 this->layout_
->write_data(this->of_
);
842 // Write_symbols_task methods.
844 // We can always run this task.
846 Task::Is_runnable_type
847 Write_symbols_task::is_runnable(Workqueue
*)
852 // We need to unlock FINAL_BLOCKER when finished.
855 Write_symbols_task::locks(Workqueue
* workqueue
)
857 return new Task_locker_block(*this->final_blocker_
, workqueue
);
860 // Run the task--write out the symbols.
863 Write_symbols_task::run(Workqueue
*)
865 this->symtab_
->write_globals(this->target_
, this->sympool_
, this->of_
);
868 // Close_task methods.
870 // We can't run until FINAL_BLOCKER is unblocked.
872 Task::Is_runnable_type
873 Close_task::is_runnable(Workqueue
*)
875 if (this->final_blocker_
->is_blocked())
880 // We don't lock anything.
883 Close_task::locks(Workqueue
*)
888 // Run the task--close the file.
891 Close_task::run(Workqueue
*)
896 // Instantiate the templates we need. We could use the configure
897 // script to restrict this to only the ones for implemented targets.
901 Layout::layout
<32, false>(Object
* object
, const char* name
,
902 const elfcpp::Shdr
<32, false>& shdr
, off_t
*);
906 Layout::layout
<32, true>(Object
* object
, const char* name
,
907 const elfcpp::Shdr
<32, true>& shdr
, off_t
*);
911 Layout::layout
<64, false>(Object
* object
, const char* name
,
912 const elfcpp::Shdr
<64, false>& shdr
, off_t
*);
916 Layout::layout
<64, true>(Object
* object
, const char* name
,
917 const elfcpp::Shdr
<64, true>& shdr
, off_t
*);
920 } // End namespace gold.
This page took 0.049709 seconds and 4 git commands to generate.