* layout.cc (Layout::Layout): Initialize sections_are_attached_.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "script.h"
39 #include "script-sections.h"
40 #include "output.h"
41 #include "symtab.h"
42 #include "dynobj.h"
43 #include "ehframe.h"
44 #include "compressed_output.h"
45 #include "reloc.h"
46 #include "layout.h"
47
48 namespace gold
49 {
50
51 // Layout_task_runner methods.
52
53 // Lay out the sections. This is called after all the input objects
54 // have been read.
55
56 void
57 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
58 {
59 off_t file_size = this->layout_->finalize(this->input_objects_,
60 this->symtab_,
61 this->target_,
62 task);
63
64 // Now we know the final size of the output file and we know where
65 // each piece of information goes.
66 Output_file* of = new Output_file(parameters->options().output_file_name());
67 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
68 of->set_is_temporary();
69 of->open(file_size);
70
71 // Queue up the final set of tasks.
72 gold::queue_final_tasks(this->options_, this->input_objects_,
73 this->symtab_, this->layout_, workqueue, of);
74 }
75
76 // Layout methods.
77
78 Layout::Layout(const General_options& options, Script_options* script_options)
79 : options_(options), script_options_(script_options), namepool_(),
80 sympool_(), dynpool_(), signatures_(),
81 section_name_map_(), segment_list_(), section_list_(),
82 unattached_section_list_(), sections_are_attached_(false),
83 special_output_list_(), section_headers_(NULL), tls_segment_(NULL),
84 symtab_section_(NULL), dynsym_section_(NULL), dynamic_section_(NULL),
85 dynamic_data_(NULL), eh_frame_section_(NULL), eh_frame_data_(NULL),
86 added_eh_frame_data_(false), eh_frame_hdr_section_(NULL),
87 build_id_note_(NULL), group_signatures_(), output_file_size_(-1),
88 input_requires_executable_stack_(false),
89 input_with_gnu_stack_note_(false),
90 input_without_gnu_stack_note_(false),
91 has_static_tls_(false),
92 any_postprocessing_sections_(false)
93 {
94 // Make space for more than enough segments for a typical file.
95 // This is just for efficiency--it's OK if we wind up needing more.
96 this->segment_list_.reserve(12);
97
98 // We expect two unattached Output_data objects: the file header and
99 // the segment headers.
100 this->special_output_list_.reserve(2);
101 }
102
103 // Hash a key we use to look up an output section mapping.
104
105 size_t
106 Layout::Hash_key::operator()(const Layout::Key& k) const
107 {
108 return k.first + k.second.first + k.second.second;
109 }
110
111 // Return whether PREFIX is a prefix of STR.
112
113 static inline bool
114 is_prefix_of(const char* prefix, const char* str)
115 {
116 return strncmp(prefix, str, strlen(prefix)) == 0;
117 }
118
119 // Returns whether the given section is in the list of
120 // debug-sections-used-by-some-version-of-gdb. Currently,
121 // we've checked versions of gdb up to and including 6.7.1.
122
123 static const char* gdb_sections[] =
124 { ".debug_abbrev",
125 // ".debug_aranges", // not used by gdb as of 6.7.1
126 ".debug_frame",
127 ".debug_info",
128 ".debug_line",
129 ".debug_loc",
130 ".debug_macinfo",
131 // ".debug_pubnames", // not used by gdb as of 6.7.1
132 ".debug_ranges",
133 ".debug_str",
134 };
135
136 static inline bool
137 is_gdb_debug_section(const char* str)
138 {
139 // We can do this faster: binary search or a hashtable. But why bother?
140 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
141 if (strcmp(str, gdb_sections[i]) == 0)
142 return true;
143 return false;
144 }
145
146 // Whether to include this section in the link.
147
148 template<int size, bool big_endian>
149 bool
150 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
151 const elfcpp::Shdr<size, big_endian>& shdr)
152 {
153 switch (shdr.get_sh_type())
154 {
155 case elfcpp::SHT_NULL:
156 case elfcpp::SHT_SYMTAB:
157 case elfcpp::SHT_DYNSYM:
158 case elfcpp::SHT_STRTAB:
159 case elfcpp::SHT_HASH:
160 case elfcpp::SHT_DYNAMIC:
161 case elfcpp::SHT_SYMTAB_SHNDX:
162 return false;
163
164 case elfcpp::SHT_RELA:
165 case elfcpp::SHT_REL:
166 case elfcpp::SHT_GROUP:
167 // If we are emitting relocations these should be handled
168 // elsewhere.
169 gold_assert(!parameters->options().relocatable()
170 && !parameters->options().emit_relocs());
171 return false;
172
173 case elfcpp::SHT_PROGBITS:
174 if (parameters->options().strip_debug()
175 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
176 {
177 // Debugging sections can only be recognized by name.
178 if (is_prefix_of(".debug", name)
179 || is_prefix_of(".gnu.linkonce.wi.", name)
180 || is_prefix_of(".line", name)
181 || is_prefix_of(".stab", name))
182 return false;
183 }
184 if (parameters->options().strip_debug_gdb()
185 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
186 {
187 // Debugging sections can only be recognized by name.
188 if (is_prefix_of(".debug", name)
189 && !is_gdb_debug_section(name))
190 return false;
191 }
192 return true;
193
194 default:
195 return true;
196 }
197 }
198
199 // Return an output section named NAME, or NULL if there is none.
200
201 Output_section*
202 Layout::find_output_section(const char* name) const
203 {
204 for (Section_list::const_iterator p = this->section_list_.begin();
205 p != this->section_list_.end();
206 ++p)
207 if (strcmp((*p)->name(), name) == 0)
208 return *p;
209 return NULL;
210 }
211
212 // Return an output segment of type TYPE, with segment flags SET set
213 // and segment flags CLEAR clear. Return NULL if there is none.
214
215 Output_segment*
216 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
217 elfcpp::Elf_Word clear) const
218 {
219 for (Segment_list::const_iterator p = this->segment_list_.begin();
220 p != this->segment_list_.end();
221 ++p)
222 if (static_cast<elfcpp::PT>((*p)->type()) == type
223 && ((*p)->flags() & set) == set
224 && ((*p)->flags() & clear) == 0)
225 return *p;
226 return NULL;
227 }
228
229 // Return the output section to use for section NAME with type TYPE
230 // and section flags FLAGS. NAME must be canonicalized in the string
231 // pool, and NAME_KEY is the key.
232
233 Output_section*
234 Layout::get_output_section(const char* name, Stringpool::Key name_key,
235 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
236 {
237 elfcpp::Elf_Xword lookup_flags = flags;
238
239 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
240 // read-write with read-only sections. Some other ELF linkers do
241 // not do this. FIXME: Perhaps there should be an option
242 // controlling this.
243 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
244
245 const Key key(name_key, std::make_pair(type, lookup_flags));
246 const std::pair<Key, Output_section*> v(key, NULL);
247 std::pair<Section_name_map::iterator, bool> ins(
248 this->section_name_map_.insert(v));
249
250 if (!ins.second)
251 return ins.first->second;
252 else
253 {
254 // This is the first time we've seen this name/type/flags
255 // combination. For compatibility with the GNU linker, we
256 // combine sections with contents and zero flags with sections
257 // with non-zero flags. This is a workaround for cases where
258 // assembler code forgets to set section flags. FIXME: Perhaps
259 // there should be an option to control this.
260 Output_section* os = NULL;
261
262 if (type == elfcpp::SHT_PROGBITS)
263 {
264 if (flags == 0)
265 {
266 Output_section* same_name = this->find_output_section(name);
267 if (same_name != NULL
268 && same_name->type() == elfcpp::SHT_PROGBITS
269 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
270 os = same_name;
271 }
272 else if ((flags & elfcpp::SHF_TLS) == 0)
273 {
274 elfcpp::Elf_Xword zero_flags = 0;
275 const Key zero_key(name_key, std::make_pair(type, zero_flags));
276 Section_name_map::iterator p =
277 this->section_name_map_.find(zero_key);
278 if (p != this->section_name_map_.end())
279 os = p->second;
280 }
281 }
282
283 if (os == NULL)
284 os = this->make_output_section(name, type, flags);
285 ins.first->second = os;
286 return os;
287 }
288 }
289
290 // Pick the output section to use for section NAME, in input file
291 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
292 // linker created section. IS_INPUT_SECTION is true if we are
293 // choosing an output section for an input section found in a input
294 // file. This will return NULL if the input section should be
295 // discarded.
296
297 Output_section*
298 Layout::choose_output_section(const Relobj* relobj, const char* name,
299 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
300 bool is_input_section)
301 {
302 // We should not see any input sections after we have attached
303 // sections to segments.
304 gold_assert(!is_input_section || !this->sections_are_attached_);
305
306 // Some flags in the input section should not be automatically
307 // copied to the output section.
308 flags &= ~ (elfcpp::SHF_INFO_LINK
309 | elfcpp::SHF_LINK_ORDER
310 | elfcpp::SHF_GROUP
311 | elfcpp::SHF_MERGE
312 | elfcpp::SHF_STRINGS);
313
314 if (this->script_options_->saw_sections_clause())
315 {
316 // We are using a SECTIONS clause, so the output section is
317 // chosen based only on the name.
318
319 Script_sections* ss = this->script_options_->script_sections();
320 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
321 Output_section** output_section_slot;
322 name = ss->output_section_name(file_name, name, &output_section_slot);
323 if (name == NULL)
324 {
325 // The SECTIONS clause says to discard this input section.
326 return NULL;
327 }
328
329 // If this is an orphan section--one not mentioned in the linker
330 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
331 // default processing below.
332
333 if (output_section_slot != NULL)
334 {
335 if (*output_section_slot != NULL)
336 return *output_section_slot;
337
338 // We don't put sections found in the linker script into
339 // SECTION_NAME_MAP_. That keeps us from getting confused
340 // if an orphan section is mapped to a section with the same
341 // name as one in the linker script.
342
343 name = this->namepool_.add(name, false, NULL);
344
345 Output_section* os = this->make_output_section(name, type, flags);
346 os->set_found_in_sections_clause();
347 *output_section_slot = os;
348 return os;
349 }
350 }
351
352 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
353
354 // Turn NAME from the name of the input section into the name of the
355 // output section.
356
357 size_t len = strlen(name);
358 if (is_input_section && !parameters->options().relocatable())
359 name = Layout::output_section_name(name, &len);
360
361 Stringpool::Key name_key;
362 name = this->namepool_.add_with_length(name, len, true, &name_key);
363
364 // Find or make the output section. The output section is selected
365 // based on the section name, type, and flags.
366 return this->get_output_section(name, name_key, type, flags);
367 }
368
369 // Return the output section to use for input section SHNDX, with name
370 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
371 // index of a relocation section which applies to this section, or 0
372 // if none, or -1U if more than one. RELOC_TYPE is the type of the
373 // relocation section if there is one. Set *OFF to the offset of this
374 // input section without the output section. Return NULL if the
375 // section should be discarded. Set *OFF to -1 if the section
376 // contents should not be written directly to the output file, but
377 // will instead receive special handling.
378
379 template<int size, bool big_endian>
380 Output_section*
381 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
382 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
383 unsigned int reloc_shndx, unsigned int, off_t* off)
384 {
385 if (!this->include_section(object, name, shdr))
386 return NULL;
387
388 Output_section* os;
389
390 // In a relocatable link a grouped section must not be combined with
391 // any other sections.
392 if (parameters->options().relocatable()
393 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
394 {
395 name = this->namepool_.add(name, true, NULL);
396 os = this->make_output_section(name, shdr.get_sh_type(),
397 shdr.get_sh_flags());
398 }
399 else
400 {
401 os = this->choose_output_section(object, name, shdr.get_sh_type(),
402 shdr.get_sh_flags(), true);
403 if (os == NULL)
404 return NULL;
405 }
406
407 // By default the GNU linker sorts input sections whose names match
408 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
409 // are sorted by name. This is used to implement constructor
410 // priority ordering. We are compatible.
411 if (!this->script_options_->saw_sections_clause()
412 && (is_prefix_of(".ctors.", name)
413 || is_prefix_of(".dtors.", name)
414 || is_prefix_of(".init_array.", name)
415 || is_prefix_of(".fini_array.", name)))
416 os->set_must_sort_attached_input_sections();
417
418 // FIXME: Handle SHF_LINK_ORDER somewhere.
419
420 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
421 this->script_options_->saw_sections_clause());
422
423 return os;
424 }
425
426 // Handle a relocation section when doing a relocatable link.
427
428 template<int size, bool big_endian>
429 Output_section*
430 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
431 unsigned int,
432 const elfcpp::Shdr<size, big_endian>& shdr,
433 Output_section* data_section,
434 Relocatable_relocs* rr)
435 {
436 gold_assert(parameters->options().relocatable()
437 || parameters->options().emit_relocs());
438
439 int sh_type = shdr.get_sh_type();
440
441 std::string name;
442 if (sh_type == elfcpp::SHT_REL)
443 name = ".rel";
444 else if (sh_type == elfcpp::SHT_RELA)
445 name = ".rela";
446 else
447 gold_unreachable();
448 name += data_section->name();
449
450 Output_section* os = this->choose_output_section(object, name.c_str(),
451 sh_type,
452 shdr.get_sh_flags(),
453 false);
454
455 os->set_should_link_to_symtab();
456 os->set_info_section(data_section);
457
458 Output_section_data* posd;
459 if (sh_type == elfcpp::SHT_REL)
460 {
461 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
462 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
463 size,
464 big_endian>(rr);
465 }
466 else if (sh_type == elfcpp::SHT_RELA)
467 {
468 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
469 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
470 size,
471 big_endian>(rr);
472 }
473 else
474 gold_unreachable();
475
476 os->add_output_section_data(posd);
477 rr->set_output_data(posd);
478
479 return os;
480 }
481
482 // Handle a group section when doing a relocatable link.
483
484 template<int size, bool big_endian>
485 void
486 Layout::layout_group(Symbol_table* symtab,
487 Sized_relobj<size, big_endian>* object,
488 unsigned int,
489 const char* group_section_name,
490 const char* signature,
491 const elfcpp::Shdr<size, big_endian>& shdr,
492 const elfcpp::Elf_Word* contents)
493 {
494 gold_assert(parameters->options().relocatable());
495 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
496 group_section_name = this->namepool_.add(group_section_name, true, NULL);
497 Output_section* os = this->make_output_section(group_section_name,
498 elfcpp::SHT_GROUP,
499 shdr.get_sh_flags());
500
501 // We need to find a symbol with the signature in the symbol table.
502 // If we don't find one now, we need to look again later.
503 Symbol* sym = symtab->lookup(signature, NULL);
504 if (sym != NULL)
505 os->set_info_symndx(sym);
506 else
507 {
508 // We will wind up using a symbol whose name is the signature.
509 // So just put the signature in the symbol name pool to save it.
510 signature = symtab->canonicalize_name(signature);
511 this->group_signatures_.push_back(Group_signature(os, signature));
512 }
513
514 os->set_should_link_to_symtab();
515 os->set_entsize(4);
516
517 section_size_type entry_count =
518 convert_to_section_size_type(shdr.get_sh_size() / 4);
519 Output_section_data* posd =
520 new Output_data_group<size, big_endian>(object, entry_count, contents);
521 os->add_output_section_data(posd);
522 }
523
524 // Special GNU handling of sections name .eh_frame. They will
525 // normally hold exception frame data as defined by the C++ ABI
526 // (http://codesourcery.com/cxx-abi/).
527
528 template<int size, bool big_endian>
529 Output_section*
530 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
531 const unsigned char* symbols,
532 off_t symbols_size,
533 const unsigned char* symbol_names,
534 off_t symbol_names_size,
535 unsigned int shndx,
536 const elfcpp::Shdr<size, big_endian>& shdr,
537 unsigned int reloc_shndx, unsigned int reloc_type,
538 off_t* off)
539 {
540 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
541 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
542
543 const char* const name = ".eh_frame";
544 Output_section* os = this->choose_output_section(object,
545 name,
546 elfcpp::SHT_PROGBITS,
547 elfcpp::SHF_ALLOC,
548 false);
549 if (os == NULL)
550 return NULL;
551
552 if (this->eh_frame_section_ == NULL)
553 {
554 this->eh_frame_section_ = os;
555 this->eh_frame_data_ = new Eh_frame();
556
557 if (this->options_.eh_frame_hdr())
558 {
559 Output_section* hdr_os =
560 this->choose_output_section(NULL,
561 ".eh_frame_hdr",
562 elfcpp::SHT_PROGBITS,
563 elfcpp::SHF_ALLOC,
564 false);
565
566 if (hdr_os != NULL)
567 {
568 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
569 this->eh_frame_data_);
570 hdr_os->add_output_section_data(hdr_posd);
571
572 hdr_os->set_after_input_sections();
573
574 if (!this->script_options_->saw_phdrs_clause())
575 {
576 Output_segment* hdr_oseg;
577 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
578 elfcpp::PF_R);
579 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
580 }
581
582 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
583 }
584 }
585 }
586
587 gold_assert(this->eh_frame_section_ == os);
588
589 if (this->eh_frame_data_->add_ehframe_input_section(object,
590 symbols,
591 symbols_size,
592 symbol_names,
593 symbol_names_size,
594 shndx,
595 reloc_shndx,
596 reloc_type))
597 {
598 os->update_flags_for_input_section(shdr.get_sh_flags());
599
600 // We found a .eh_frame section we are going to optimize, so now
601 // we can add the set of optimized sections to the output
602 // section. We need to postpone adding this until we've found a
603 // section we can optimize so that the .eh_frame section in
604 // crtbegin.o winds up at the start of the output section.
605 if (!this->added_eh_frame_data_)
606 {
607 os->add_output_section_data(this->eh_frame_data_);
608 this->added_eh_frame_data_ = true;
609 }
610 *off = -1;
611 }
612 else
613 {
614 // We couldn't handle this .eh_frame section for some reason.
615 // Add it as a normal section.
616 bool saw_sections_clause = this->script_options_->saw_sections_clause();
617 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
618 saw_sections_clause);
619 }
620
621 return os;
622 }
623
624 // Add POSD to an output section using NAME, TYPE, and FLAGS.
625
626 void
627 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
628 elfcpp::Elf_Xword flags,
629 Output_section_data* posd)
630 {
631 Output_section* os = this->choose_output_section(NULL, name, type, flags,
632 false);
633 if (os != NULL)
634 os->add_output_section_data(posd);
635 }
636
637 // Map section flags to segment flags.
638
639 elfcpp::Elf_Word
640 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
641 {
642 elfcpp::Elf_Word ret = elfcpp::PF_R;
643 if ((flags & elfcpp::SHF_WRITE) != 0)
644 ret |= elfcpp::PF_W;
645 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
646 ret |= elfcpp::PF_X;
647 return ret;
648 }
649
650 // Sometimes we compress sections. This is typically done for
651 // sections that are not part of normal program execution (such as
652 // .debug_* sections), and where the readers of these sections know
653 // how to deal with compressed sections. (To make it easier for them,
654 // we will rename the ouput section in such cases from .foo to
655 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
656 // doesn't say for certain whether we'll compress -- it depends on
657 // commandline options as well -- just whether this section is a
658 // candidate for compression.
659
660 static bool
661 is_compressible_debug_section(const char* secname)
662 {
663 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
664 }
665
666 // Make a new Output_section, and attach it to segments as
667 // appropriate.
668
669 Output_section*
670 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
671 elfcpp::Elf_Xword flags)
672 {
673 Output_section* os;
674 if ((flags & elfcpp::SHF_ALLOC) == 0
675 && strcmp(this->options_.compress_debug_sections(), "none") != 0
676 && is_compressible_debug_section(name))
677 os = new Output_compressed_section(&this->options_, name, type, flags);
678 else
679 os = new Output_section(name, type, flags);
680
681 this->section_list_.push_back(os);
682
683 // The GNU linker by default sorts some sections by priority, so we
684 // do the same. We need to know that this might happen before we
685 // attach any input sections.
686 if (!this->script_options_->saw_sections_clause()
687 && (strcmp(name, ".ctors") == 0
688 || strcmp(name, ".dtors") == 0
689 || strcmp(name, ".init_array") == 0
690 || strcmp(name, ".fini_array") == 0))
691 os->set_may_sort_attached_input_sections();
692
693 // If we have already attached the sections to segments, then we
694 // need to attach this one now. This happens for sections created
695 // directly by the linker.
696 if (this->sections_are_attached_)
697 this->attach_section_to_segment(os);
698
699 return os;
700 }
701
702 // Attach output sections to segments. This is called after we have
703 // seen all the input sections.
704
705 void
706 Layout::attach_sections_to_segments()
707 {
708 for (Section_list::iterator p = this->section_list_.begin();
709 p != this->section_list_.end();
710 ++p)
711 this->attach_section_to_segment(*p);
712
713 this->sections_are_attached_ = true;
714 }
715
716 // Attach an output section to a segment.
717
718 void
719 Layout::attach_section_to_segment(Output_section* os)
720 {
721 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
722 this->unattached_section_list_.push_back(os);
723 else
724 this->attach_allocated_section_to_segment(os);
725 }
726
727 // Attach an allocated output section to a segment.
728
729 void
730 Layout::attach_allocated_section_to_segment(Output_section* os)
731 {
732 elfcpp::Elf_Xword flags = os->flags();
733 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
734
735 if (parameters->options().relocatable())
736 return;
737
738 // If we have a SECTIONS clause, we can't handle the attachment to
739 // segments until after we've seen all the sections.
740 if (this->script_options_->saw_sections_clause())
741 return;
742
743 gold_assert(!this->script_options_->saw_phdrs_clause());
744
745 // This output section goes into a PT_LOAD segment.
746
747 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
748
749 // In general the only thing we really care about for PT_LOAD
750 // segments is whether or not they are writable, so that is how we
751 // search for them. People who need segments sorted on some other
752 // basis will have to use a linker script.
753
754 Segment_list::const_iterator p;
755 for (p = this->segment_list_.begin();
756 p != this->segment_list_.end();
757 ++p)
758 {
759 if ((*p)->type() == elfcpp::PT_LOAD
760 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
761 {
762 // If -Tbss was specified, we need to separate the data
763 // and BSS segments.
764 if (this->options_.user_set_Tbss())
765 {
766 if ((os->type() == elfcpp::SHT_NOBITS)
767 == (*p)->has_any_data_sections())
768 continue;
769 }
770
771 (*p)->add_output_section(os, seg_flags);
772 break;
773 }
774 }
775
776 if (p == this->segment_list_.end())
777 {
778 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
779 seg_flags);
780 oseg->add_output_section(os, seg_flags);
781 }
782
783 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
784 // segment.
785 if (os->type() == elfcpp::SHT_NOTE)
786 {
787 // See if we already have an equivalent PT_NOTE segment.
788 for (p = this->segment_list_.begin();
789 p != segment_list_.end();
790 ++p)
791 {
792 if ((*p)->type() == elfcpp::PT_NOTE
793 && (((*p)->flags() & elfcpp::PF_W)
794 == (seg_flags & elfcpp::PF_W)))
795 {
796 (*p)->add_output_section(os, seg_flags);
797 break;
798 }
799 }
800
801 if (p == this->segment_list_.end())
802 {
803 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
804 seg_flags);
805 oseg->add_output_section(os, seg_flags);
806 }
807 }
808
809 // If we see a loadable SHF_TLS section, we create a PT_TLS
810 // segment. There can only be one such segment.
811 if ((flags & elfcpp::SHF_TLS) != 0)
812 {
813 if (this->tls_segment_ == NULL)
814 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
815 seg_flags);
816 this->tls_segment_->add_output_section(os, seg_flags);
817 }
818 }
819
820 // Make an output section for a script.
821
822 Output_section*
823 Layout::make_output_section_for_script(const char* name)
824 {
825 name = this->namepool_.add(name, false, NULL);
826 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
827 elfcpp::SHF_ALLOC);
828 os->set_found_in_sections_clause();
829 return os;
830 }
831
832 // Return the number of segments we expect to see.
833
834 size_t
835 Layout::expected_segment_count() const
836 {
837 size_t ret = this->segment_list_.size();
838
839 // If we didn't see a SECTIONS clause in a linker script, we should
840 // already have the complete list of segments. Otherwise we ask the
841 // SECTIONS clause how many segments it expects, and add in the ones
842 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
843
844 if (!this->script_options_->saw_sections_clause())
845 return ret;
846 else
847 {
848 const Script_sections* ss = this->script_options_->script_sections();
849 return ret + ss->expected_segment_count(this);
850 }
851 }
852
853 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
854 // is whether we saw a .note.GNU-stack section in the object file.
855 // GNU_STACK_FLAGS is the section flags. The flags give the
856 // protection required for stack memory. We record this in an
857 // executable as a PT_GNU_STACK segment. If an object file does not
858 // have a .note.GNU-stack segment, we must assume that it is an old
859 // object. On some targets that will force an executable stack.
860
861 void
862 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
863 {
864 if (!seen_gnu_stack)
865 this->input_without_gnu_stack_note_ = true;
866 else
867 {
868 this->input_with_gnu_stack_note_ = true;
869 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
870 this->input_requires_executable_stack_ = true;
871 }
872 }
873
874 // Create the dynamic sections which are needed before we read the
875 // relocs.
876
877 void
878 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
879 {
880 if (parameters->doing_static_link())
881 return;
882
883 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
884 elfcpp::SHT_DYNAMIC,
885 (elfcpp::SHF_ALLOC
886 | elfcpp::SHF_WRITE),
887 false);
888
889 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
890 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
891 elfcpp::STV_HIDDEN, 0, false, false);
892
893 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
894
895 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
896 }
897
898 // For each output section whose name can be represented as C symbol,
899 // define __start and __stop symbols for the section. This is a GNU
900 // extension.
901
902 void
903 Layout::define_section_symbols(Symbol_table* symtab)
904 {
905 for (Section_list::const_iterator p = this->section_list_.begin();
906 p != this->section_list_.end();
907 ++p)
908 {
909 const char* const name = (*p)->name();
910 if (name[strspn(name,
911 ("0123456789"
912 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
913 "abcdefghijklmnopqrstuvwxyz"
914 "_"))]
915 == '\0')
916 {
917 const std::string name_string(name);
918 const std::string start_name("__start_" + name_string);
919 const std::string stop_name("__stop_" + name_string);
920
921 symtab->define_in_output_data(start_name.c_str(),
922 NULL, // version
923 *p,
924 0, // value
925 0, // symsize
926 elfcpp::STT_NOTYPE,
927 elfcpp::STB_GLOBAL,
928 elfcpp::STV_DEFAULT,
929 0, // nonvis
930 false, // offset_is_from_end
931 true); // only_if_ref
932
933 symtab->define_in_output_data(stop_name.c_str(),
934 NULL, // version
935 *p,
936 0, // value
937 0, // symsize
938 elfcpp::STT_NOTYPE,
939 elfcpp::STB_GLOBAL,
940 elfcpp::STV_DEFAULT,
941 0, // nonvis
942 true, // offset_is_from_end
943 true); // only_if_ref
944 }
945 }
946 }
947
948 // Define symbols for group signatures.
949
950 void
951 Layout::define_group_signatures(Symbol_table* symtab)
952 {
953 for (Group_signatures::iterator p = this->group_signatures_.begin();
954 p != this->group_signatures_.end();
955 ++p)
956 {
957 Symbol* sym = symtab->lookup(p->signature, NULL);
958 if (sym != NULL)
959 p->section->set_info_symndx(sym);
960 else
961 {
962 // Force the name of the group section to the group
963 // signature, and use the group's section symbol as the
964 // signature symbol.
965 if (strcmp(p->section->name(), p->signature) != 0)
966 {
967 const char* name = this->namepool_.add(p->signature,
968 true, NULL);
969 p->section->set_name(name);
970 }
971 p->section->set_needs_symtab_index();
972 p->section->set_info_section_symndx(p->section);
973 }
974 }
975
976 this->group_signatures_.clear();
977 }
978
979 // Find the first read-only PT_LOAD segment, creating one if
980 // necessary.
981
982 Output_segment*
983 Layout::find_first_load_seg()
984 {
985 for (Segment_list::const_iterator p = this->segment_list_.begin();
986 p != this->segment_list_.end();
987 ++p)
988 {
989 if ((*p)->type() == elfcpp::PT_LOAD
990 && ((*p)->flags() & elfcpp::PF_R) != 0
991 && ((*p)->flags() & elfcpp::PF_W) == 0)
992 return *p;
993 }
994
995 gold_assert(!this->script_options_->saw_phdrs_clause());
996
997 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
998 elfcpp::PF_R);
999 return load_seg;
1000 }
1001
1002 // Finalize the layout. When this is called, we have created all the
1003 // output sections and all the output segments which are based on
1004 // input sections. We have several things to do, and we have to do
1005 // them in the right order, so that we get the right results correctly
1006 // and efficiently.
1007
1008 // 1) Finalize the list of output segments and create the segment
1009 // table header.
1010
1011 // 2) Finalize the dynamic symbol table and associated sections.
1012
1013 // 3) Determine the final file offset of all the output segments.
1014
1015 // 4) Determine the final file offset of all the SHF_ALLOC output
1016 // sections.
1017
1018 // 5) Create the symbol table sections and the section name table
1019 // section.
1020
1021 // 6) Finalize the symbol table: set symbol values to their final
1022 // value and make a final determination of which symbols are going
1023 // into the output symbol table.
1024
1025 // 7) Create the section table header.
1026
1027 // 8) Determine the final file offset of all the output sections which
1028 // are not SHF_ALLOC, including the section table header.
1029
1030 // 9) Finalize the ELF file header.
1031
1032 // This function returns the size of the output file.
1033
1034 off_t
1035 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1036 Target* target, const Task* task)
1037 {
1038 target->finalize_sections(this);
1039
1040 this->count_local_symbols(task, input_objects);
1041
1042 this->create_gold_note();
1043 this->create_executable_stack_info(target);
1044 this->create_build_id();
1045
1046 Output_segment* phdr_seg = NULL;
1047 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1048 {
1049 // There was a dynamic object in the link. We need to create
1050 // some information for the dynamic linker.
1051
1052 // Create the PT_PHDR segment which will hold the program
1053 // headers.
1054 if (!this->script_options_->saw_phdrs_clause())
1055 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1056
1057 // Create the dynamic symbol table, including the hash table.
1058 Output_section* dynstr;
1059 std::vector<Symbol*> dynamic_symbols;
1060 unsigned int local_dynamic_count;
1061 Versions versions(*this->script_options()->version_script_info(),
1062 &this->dynpool_);
1063 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1064 &local_dynamic_count, &dynamic_symbols,
1065 &versions);
1066
1067 // Create the .interp section to hold the name of the
1068 // interpreter, and put it in a PT_INTERP segment.
1069 if (!parameters->options().shared())
1070 this->create_interp(target);
1071
1072 // Finish the .dynamic section to hold the dynamic data, and put
1073 // it in a PT_DYNAMIC segment.
1074 this->finish_dynamic_section(input_objects, symtab);
1075
1076 // We should have added everything we need to the dynamic string
1077 // table.
1078 this->dynpool_.set_string_offsets();
1079
1080 // Create the version sections. We can't do this until the
1081 // dynamic string table is complete.
1082 this->create_version_sections(&versions, symtab, local_dynamic_count,
1083 dynamic_symbols, dynstr);
1084 }
1085
1086 // If there is a SECTIONS clause, put all the input sections into
1087 // the required order.
1088 Output_segment* load_seg;
1089 if (this->script_options_->saw_sections_clause())
1090 load_seg = this->set_section_addresses_from_script(symtab);
1091 else if (parameters->options().relocatable())
1092 load_seg = NULL;
1093 else
1094 load_seg = this->find_first_load_seg();
1095
1096 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1097 load_seg = NULL;
1098
1099 gold_assert(phdr_seg == NULL || load_seg != NULL);
1100
1101 // Lay out the segment headers.
1102 Output_segment_headers* segment_headers;
1103 if (parameters->options().relocatable())
1104 segment_headers = NULL;
1105 else
1106 {
1107 segment_headers = new Output_segment_headers(this->segment_list_);
1108 if (load_seg != NULL)
1109 load_seg->add_initial_output_data(segment_headers);
1110 if (phdr_seg != NULL)
1111 phdr_seg->add_initial_output_data(segment_headers);
1112 }
1113
1114 // Lay out the file header.
1115 Output_file_header* file_header;
1116 file_header = new Output_file_header(target, symtab, segment_headers,
1117 this->options_.entry());
1118 if (load_seg != NULL)
1119 load_seg->add_initial_output_data(file_header);
1120
1121 this->special_output_list_.push_back(file_header);
1122 if (segment_headers != NULL)
1123 this->special_output_list_.push_back(segment_headers);
1124
1125 if (this->script_options_->saw_phdrs_clause()
1126 && !parameters->options().relocatable())
1127 {
1128 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1129 // clause in a linker script.
1130 Script_sections* ss = this->script_options_->script_sections();
1131 ss->put_headers_in_phdrs(file_header, segment_headers);
1132 }
1133
1134 // We set the output section indexes in set_segment_offsets and
1135 // set_section_indexes.
1136 unsigned int shndx = 1;
1137
1138 // Set the file offsets of all the segments, and all the sections
1139 // they contain.
1140 off_t off;
1141 if (!parameters->options().relocatable())
1142 off = this->set_segment_offsets(target, load_seg, &shndx);
1143 else
1144 off = this->set_relocatable_section_offsets(file_header, &shndx);
1145
1146 // Set the file offsets of all the non-data sections we've seen so
1147 // far which don't have to wait for the input sections. We need
1148 // this in order to finalize local symbols in non-allocated
1149 // sections.
1150 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1151
1152 // Create the symbol table sections.
1153 this->create_symtab_sections(input_objects, symtab, &off);
1154 if (!parameters->doing_static_link())
1155 this->assign_local_dynsym_offsets(input_objects);
1156
1157 // Process any symbol assignments from a linker script. This must
1158 // be called after the symbol table has been finalized.
1159 this->script_options_->finalize_symbols(symtab, this);
1160
1161 // Create the .shstrtab section.
1162 Output_section* shstrtab_section = this->create_shstrtab();
1163
1164 // Set the file offsets of the rest of the non-data sections which
1165 // don't have to wait for the input sections.
1166 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1167
1168 // Now that all sections have been created, set the section indexes.
1169 shndx = this->set_section_indexes(shndx);
1170
1171 // Create the section table header.
1172 this->create_shdrs(&off);
1173
1174 // If there are no sections which require postprocessing, we can
1175 // handle the section names now, and avoid a resize later.
1176 if (!this->any_postprocessing_sections_)
1177 off = this->set_section_offsets(off,
1178 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1179
1180 file_header->set_section_info(this->section_headers_, shstrtab_section);
1181
1182 // Now we know exactly where everything goes in the output file
1183 // (except for non-allocated sections which require postprocessing).
1184 Output_data::layout_complete();
1185
1186 this->output_file_size_ = off;
1187
1188 return off;
1189 }
1190
1191 // Create a note header following the format defined in the ELF ABI.
1192 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1193 // descriptor. ALLOCATE is true if the section should be allocated in
1194 // memory. This returns the new note section. It sets
1195 // *TRAILING_PADDING to the number of trailing zero bytes required.
1196
1197 Output_section*
1198 Layout::create_note(const char* name, int note_type, size_t descsz,
1199 bool allocate, size_t* trailing_padding)
1200 {
1201 // Authorities all agree that the values in a .note field should
1202 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1203 // they differ on what the alignment is for 64-bit binaries.
1204 // The GABI says unambiguously they take 8-byte alignment:
1205 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1206 // Other documentation says alignment should always be 4 bytes:
1207 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1208 // GNU ld and GNU readelf both support the latter (at least as of
1209 // version 2.16.91), and glibc always generates the latter for
1210 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1211 // here.
1212 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1213 const int size = parameters->target().get_size();
1214 #else
1215 const int size = 32;
1216 #endif
1217
1218 // The contents of the .note section.
1219 size_t namesz = strlen(name) + 1;
1220 size_t aligned_namesz = align_address(namesz, size / 8);
1221 size_t aligned_descsz = align_address(descsz, size / 8);
1222
1223 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1224
1225 unsigned char* buffer = new unsigned char[notehdrsz];
1226 memset(buffer, 0, notehdrsz);
1227
1228 bool is_big_endian = parameters->target().is_big_endian();
1229
1230 if (size == 32)
1231 {
1232 if (!is_big_endian)
1233 {
1234 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1235 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1236 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1237 }
1238 else
1239 {
1240 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1241 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1242 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1243 }
1244 }
1245 else if (size == 64)
1246 {
1247 if (!is_big_endian)
1248 {
1249 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1250 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1251 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1252 }
1253 else
1254 {
1255 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1256 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1257 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1258 }
1259 }
1260 else
1261 gold_unreachable();
1262
1263 memcpy(buffer + 3 * (size / 8), name, namesz);
1264
1265 const char* note_name = this->namepool_.add(".note", false, NULL);
1266 elfcpp::Elf_Xword flags = 0;
1267 if (allocate)
1268 flags = elfcpp::SHF_ALLOC;
1269 Output_section* os = this->make_output_section(note_name,
1270 elfcpp::SHT_NOTE,
1271 flags);
1272 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1273 size / 8);
1274 os->add_output_section_data(posd);
1275
1276 *trailing_padding = aligned_descsz - descsz;
1277
1278 return os;
1279 }
1280
1281 // For an executable or shared library, create a note to record the
1282 // version of gold used to create the binary.
1283
1284 void
1285 Layout::create_gold_note()
1286 {
1287 if (parameters->options().relocatable())
1288 return;
1289
1290 std::string desc = std::string("gold ") + gold::get_version_string();
1291
1292 size_t trailing_padding;
1293 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1294 desc.size(), false, &trailing_padding);
1295
1296 Output_section_data* posd = new Output_data_const(desc, 4);
1297 os->add_output_section_data(posd);
1298
1299 if (trailing_padding > 0)
1300 {
1301 posd = new Output_data_fixed_space(trailing_padding, 0);
1302 os->add_output_section_data(posd);
1303 }
1304 }
1305
1306 // Record whether the stack should be executable. This can be set
1307 // from the command line using the -z execstack or -z noexecstack
1308 // options. Otherwise, if any input file has a .note.GNU-stack
1309 // section with the SHF_EXECINSTR flag set, the stack should be
1310 // executable. Otherwise, if at least one input file a
1311 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1312 // section, we use the target default for whether the stack should be
1313 // executable. Otherwise, we don't generate a stack note. When
1314 // generating a object file, we create a .note.GNU-stack section with
1315 // the appropriate marking. When generating an executable or shared
1316 // library, we create a PT_GNU_STACK segment.
1317
1318 void
1319 Layout::create_executable_stack_info(const Target* target)
1320 {
1321 bool is_stack_executable;
1322 if (this->options_.is_execstack_set())
1323 is_stack_executable = this->options_.is_stack_executable();
1324 else if (!this->input_with_gnu_stack_note_)
1325 return;
1326 else
1327 {
1328 if (this->input_requires_executable_stack_)
1329 is_stack_executable = true;
1330 else if (this->input_without_gnu_stack_note_)
1331 is_stack_executable = target->is_default_stack_executable();
1332 else
1333 is_stack_executable = false;
1334 }
1335
1336 if (parameters->options().relocatable())
1337 {
1338 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1339 elfcpp::Elf_Xword flags = 0;
1340 if (is_stack_executable)
1341 flags |= elfcpp::SHF_EXECINSTR;
1342 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1343 }
1344 else
1345 {
1346 if (this->script_options_->saw_phdrs_clause())
1347 return;
1348 int flags = elfcpp::PF_R | elfcpp::PF_W;
1349 if (is_stack_executable)
1350 flags |= elfcpp::PF_X;
1351 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1352 }
1353 }
1354
1355 // If --build-id was used, set up the build ID note.
1356
1357 void
1358 Layout::create_build_id()
1359 {
1360 if (!parameters->options().user_set_build_id())
1361 return;
1362
1363 const char* style = parameters->options().build_id();
1364 if (strcmp(style, "none") == 0)
1365 return;
1366
1367 // Set DESCSZ to the size of the note descriptor. When possible,
1368 // set DESC to the note descriptor contents.
1369 size_t descsz;
1370 std::string desc;
1371 if (strcmp(style, "md5") == 0)
1372 descsz = 128 / 8;
1373 else if (strcmp(style, "sha1") == 0)
1374 descsz = 160 / 8;
1375 else if (strcmp(style, "uuid") == 0)
1376 {
1377 const size_t uuidsz = 128 / 8;
1378
1379 char buffer[uuidsz];
1380 memset(buffer, 0, uuidsz);
1381
1382 int descriptor = ::open("/dev/urandom", O_RDONLY);
1383 if (descriptor < 0)
1384 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1385 strerror(errno));
1386 else
1387 {
1388 ssize_t got = ::read(descriptor, buffer, uuidsz);
1389 ::close(descriptor);
1390 if (got < 0)
1391 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1392 else if (static_cast<size_t>(got) != uuidsz)
1393 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1394 uuidsz, got);
1395 }
1396
1397 desc.assign(buffer, uuidsz);
1398 descsz = uuidsz;
1399 }
1400 else if (strncmp(style, "0x", 2) == 0)
1401 {
1402 hex_init();
1403 const char* p = style + 2;
1404 while (*p != '\0')
1405 {
1406 if (hex_p(p[0]) && hex_p(p[1]))
1407 {
1408 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1409 desc += c;
1410 p += 2;
1411 }
1412 else if (*p == '-' || *p == ':')
1413 ++p;
1414 else
1415 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1416 style);
1417 }
1418 descsz = desc.size();
1419 }
1420 else
1421 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1422
1423 // Create the note.
1424 size_t trailing_padding;
1425 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1426 descsz, true, &trailing_padding);
1427
1428 if (!desc.empty())
1429 {
1430 // We know the value already, so we fill it in now.
1431 gold_assert(desc.size() == descsz);
1432
1433 Output_section_data* posd = new Output_data_const(desc, 4);
1434 os->add_output_section_data(posd);
1435
1436 if (trailing_padding != 0)
1437 {
1438 posd = new Output_data_fixed_space(trailing_padding, 0);
1439 os->add_output_section_data(posd);
1440 }
1441 }
1442 else
1443 {
1444 // We need to compute a checksum after we have completed the
1445 // link.
1446 gold_assert(trailing_padding == 0);
1447 this->build_id_note_ = new Output_data_fixed_space(descsz, 4);
1448 os->add_output_section_data(this->build_id_note_);
1449 os->set_after_input_sections();
1450 }
1451 }
1452
1453 // Return whether SEG1 should be before SEG2 in the output file. This
1454 // is based entirely on the segment type and flags. When this is
1455 // called the segment addresses has normally not yet been set.
1456
1457 bool
1458 Layout::segment_precedes(const Output_segment* seg1,
1459 const Output_segment* seg2)
1460 {
1461 elfcpp::Elf_Word type1 = seg1->type();
1462 elfcpp::Elf_Word type2 = seg2->type();
1463
1464 // The single PT_PHDR segment is required to precede any loadable
1465 // segment. We simply make it always first.
1466 if (type1 == elfcpp::PT_PHDR)
1467 {
1468 gold_assert(type2 != elfcpp::PT_PHDR);
1469 return true;
1470 }
1471 if (type2 == elfcpp::PT_PHDR)
1472 return false;
1473
1474 // The single PT_INTERP segment is required to precede any loadable
1475 // segment. We simply make it always second.
1476 if (type1 == elfcpp::PT_INTERP)
1477 {
1478 gold_assert(type2 != elfcpp::PT_INTERP);
1479 return true;
1480 }
1481 if (type2 == elfcpp::PT_INTERP)
1482 return false;
1483
1484 // We then put PT_LOAD segments before any other segments.
1485 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1486 return true;
1487 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1488 return false;
1489
1490 // We put the PT_TLS segment last, because that is where the dynamic
1491 // linker expects to find it (this is just for efficiency; other
1492 // positions would also work correctly).
1493 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1494 return false;
1495 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1496 return true;
1497
1498 const elfcpp::Elf_Word flags1 = seg1->flags();
1499 const elfcpp::Elf_Word flags2 = seg2->flags();
1500
1501 // The order of non-PT_LOAD segments is unimportant. We simply sort
1502 // by the numeric segment type and flags values. There should not
1503 // be more than one segment with the same type and flags.
1504 if (type1 != elfcpp::PT_LOAD)
1505 {
1506 if (type1 != type2)
1507 return type1 < type2;
1508 gold_assert(flags1 != flags2);
1509 return flags1 < flags2;
1510 }
1511
1512 // If the addresses are set already, sort by load address.
1513 if (seg1->are_addresses_set())
1514 {
1515 if (!seg2->are_addresses_set())
1516 return true;
1517
1518 unsigned int section_count1 = seg1->output_section_count();
1519 unsigned int section_count2 = seg2->output_section_count();
1520 if (section_count1 == 0 && section_count2 > 0)
1521 return true;
1522 if (section_count1 > 0 && section_count2 == 0)
1523 return false;
1524
1525 uint64_t paddr1 = seg1->first_section_load_address();
1526 uint64_t paddr2 = seg2->first_section_load_address();
1527 if (paddr1 != paddr2)
1528 return paddr1 < paddr2;
1529 }
1530 else if (seg2->are_addresses_set())
1531 return false;
1532
1533 // We sort PT_LOAD segments based on the flags. Readonly segments
1534 // come before writable segments. Then writable segments with data
1535 // come before writable segments without data. Then executable
1536 // segments come before non-executable segments. Then the unlikely
1537 // case of a non-readable segment comes before the normal case of a
1538 // readable segment. If there are multiple segments with the same
1539 // type and flags, we require that the address be set, and we sort
1540 // by virtual address and then physical address.
1541 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1542 return (flags1 & elfcpp::PF_W) == 0;
1543 if ((flags1 & elfcpp::PF_W) != 0
1544 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1545 return seg1->has_any_data_sections();
1546 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1547 return (flags1 & elfcpp::PF_X) != 0;
1548 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1549 return (flags1 & elfcpp::PF_R) == 0;
1550
1551 // We shouldn't get here--we shouldn't create segments which we
1552 // can't distinguish.
1553 gold_unreachable();
1554 }
1555
1556 // Set the file offsets of all the segments, and all the sections they
1557 // contain. They have all been created. LOAD_SEG must be be laid out
1558 // first. Return the offset of the data to follow.
1559
1560 off_t
1561 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1562 unsigned int *pshndx)
1563 {
1564 // Sort them into the final order.
1565 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1566 Layout::Compare_segments());
1567
1568 // Find the PT_LOAD segments, and set their addresses and offsets
1569 // and their section's addresses and offsets.
1570 uint64_t addr;
1571 if (this->options_.user_set_Ttext())
1572 addr = this->options_.Ttext();
1573 else if (parameters->options().shared())
1574 addr = 0;
1575 else
1576 addr = target->default_text_segment_address();
1577 off_t off = 0;
1578
1579 // If LOAD_SEG is NULL, then the file header and segment headers
1580 // will not be loadable. But they still need to be at offset 0 in
1581 // the file. Set their offsets now.
1582 if (load_seg == NULL)
1583 {
1584 for (Data_list::iterator p = this->special_output_list_.begin();
1585 p != this->special_output_list_.end();
1586 ++p)
1587 {
1588 off = align_address(off, (*p)->addralign());
1589 (*p)->set_address_and_file_offset(0, off);
1590 off += (*p)->data_size();
1591 }
1592 }
1593
1594 bool was_readonly = false;
1595 for (Segment_list::iterator p = this->segment_list_.begin();
1596 p != this->segment_list_.end();
1597 ++p)
1598 {
1599 if ((*p)->type() == elfcpp::PT_LOAD)
1600 {
1601 if (load_seg != NULL && load_seg != *p)
1602 gold_unreachable();
1603 load_seg = NULL;
1604
1605 bool are_addresses_set = (*p)->are_addresses_set();
1606 if (are_addresses_set)
1607 {
1608 // When it comes to setting file offsets, we care about
1609 // the physical address.
1610 addr = (*p)->paddr();
1611 }
1612 else if (this->options_.user_set_Tdata()
1613 && ((*p)->flags() & elfcpp::PF_W) != 0
1614 && (!this->options_.user_set_Tbss()
1615 || (*p)->has_any_data_sections()))
1616 {
1617 addr = this->options_.Tdata();
1618 are_addresses_set = true;
1619 }
1620 else if (this->options_.user_set_Tbss()
1621 && ((*p)->flags() & elfcpp::PF_W) != 0
1622 && !(*p)->has_any_data_sections())
1623 {
1624 addr = this->options_.Tbss();
1625 are_addresses_set = true;
1626 }
1627
1628 uint64_t orig_addr = addr;
1629 uint64_t orig_off = off;
1630
1631 uint64_t aligned_addr = 0;
1632 uint64_t abi_pagesize = target->abi_pagesize();
1633
1634 // FIXME: This should depend on the -n and -N options.
1635 (*p)->set_minimum_p_align(target->common_pagesize());
1636
1637 if (are_addresses_set)
1638 {
1639 // Adjust the file offset to the same address modulo the
1640 // page size.
1641 uint64_t unsigned_off = off;
1642 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1643 | (addr & (abi_pagesize - 1)));
1644 if (aligned_off < unsigned_off)
1645 aligned_off += abi_pagesize;
1646 off = aligned_off;
1647 }
1648 else
1649 {
1650 // If the last segment was readonly, and this one is
1651 // not, then skip the address forward one page,
1652 // maintaining the same position within the page. This
1653 // lets us store both segments overlapping on a single
1654 // page in the file, but the loader will put them on
1655 // different pages in memory.
1656
1657 addr = align_address(addr, (*p)->maximum_alignment());
1658 aligned_addr = addr;
1659
1660 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1661 {
1662 if ((addr & (abi_pagesize - 1)) != 0)
1663 addr = addr + abi_pagesize;
1664 }
1665
1666 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1667 }
1668
1669 unsigned int shndx_hold = *pshndx;
1670 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1671 &off, pshndx);
1672
1673 // Now that we know the size of this segment, we may be able
1674 // to save a page in memory, at the cost of wasting some
1675 // file space, by instead aligning to the start of a new
1676 // page. Here we use the real machine page size rather than
1677 // the ABI mandated page size.
1678
1679 if (!are_addresses_set && aligned_addr != addr)
1680 {
1681 uint64_t common_pagesize = target->common_pagesize();
1682 uint64_t first_off = (common_pagesize
1683 - (aligned_addr
1684 & (common_pagesize - 1)));
1685 uint64_t last_off = new_addr & (common_pagesize - 1);
1686 if (first_off > 0
1687 && last_off > 0
1688 && ((aligned_addr & ~ (common_pagesize - 1))
1689 != (new_addr & ~ (common_pagesize - 1)))
1690 && first_off + last_off <= common_pagesize)
1691 {
1692 *pshndx = shndx_hold;
1693 addr = align_address(aligned_addr, common_pagesize);
1694 addr = align_address(addr, (*p)->maximum_alignment());
1695 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1696 new_addr = (*p)->set_section_addresses(this, true, addr,
1697 &off, pshndx);
1698 }
1699 }
1700
1701 addr = new_addr;
1702
1703 if (((*p)->flags() & elfcpp::PF_W) == 0)
1704 was_readonly = true;
1705 }
1706 }
1707
1708 // Handle the non-PT_LOAD segments, setting their offsets from their
1709 // section's offsets.
1710 for (Segment_list::iterator p = this->segment_list_.begin();
1711 p != this->segment_list_.end();
1712 ++p)
1713 {
1714 if ((*p)->type() != elfcpp::PT_LOAD)
1715 (*p)->set_offset();
1716 }
1717
1718 // Set the TLS offsets for each section in the PT_TLS segment.
1719 if (this->tls_segment_ != NULL)
1720 this->tls_segment_->set_tls_offsets();
1721
1722 return off;
1723 }
1724
1725 // Set the offsets of all the allocated sections when doing a
1726 // relocatable link. This does the same jobs as set_segment_offsets,
1727 // only for a relocatable link.
1728
1729 off_t
1730 Layout::set_relocatable_section_offsets(Output_data* file_header,
1731 unsigned int *pshndx)
1732 {
1733 off_t off = 0;
1734
1735 file_header->set_address_and_file_offset(0, 0);
1736 off += file_header->data_size();
1737
1738 for (Section_list::iterator p = this->section_list_.begin();
1739 p != this->section_list_.end();
1740 ++p)
1741 {
1742 // We skip unallocated sections here, except that group sections
1743 // have to come first.
1744 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1745 && (*p)->type() != elfcpp::SHT_GROUP)
1746 continue;
1747
1748 off = align_address(off, (*p)->addralign());
1749
1750 // The linker script might have set the address.
1751 if (!(*p)->is_address_valid())
1752 (*p)->set_address(0);
1753 (*p)->set_file_offset(off);
1754 (*p)->finalize_data_size();
1755 off += (*p)->data_size();
1756
1757 (*p)->set_out_shndx(*pshndx);
1758 ++*pshndx;
1759 }
1760
1761 return off;
1762 }
1763
1764 // Set the file offset of all the sections not associated with a
1765 // segment.
1766
1767 off_t
1768 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1769 {
1770 for (Section_list::iterator p = this->unattached_section_list_.begin();
1771 p != this->unattached_section_list_.end();
1772 ++p)
1773 {
1774 // The symtab section is handled in create_symtab_sections.
1775 if (*p == this->symtab_section_)
1776 continue;
1777
1778 // If we've already set the data size, don't set it again.
1779 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1780 continue;
1781
1782 if (pass == BEFORE_INPUT_SECTIONS_PASS
1783 && (*p)->requires_postprocessing())
1784 {
1785 (*p)->create_postprocessing_buffer();
1786 this->any_postprocessing_sections_ = true;
1787 }
1788
1789 if (pass == BEFORE_INPUT_SECTIONS_PASS
1790 && (*p)->after_input_sections())
1791 continue;
1792 else if (pass == POSTPROCESSING_SECTIONS_PASS
1793 && (!(*p)->after_input_sections()
1794 || (*p)->type() == elfcpp::SHT_STRTAB))
1795 continue;
1796 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1797 && (!(*p)->after_input_sections()
1798 || (*p)->type() != elfcpp::SHT_STRTAB))
1799 continue;
1800
1801 off = align_address(off, (*p)->addralign());
1802 (*p)->set_file_offset(off);
1803 (*p)->finalize_data_size();
1804 off += (*p)->data_size();
1805
1806 // At this point the name must be set.
1807 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1808 this->namepool_.add((*p)->name(), false, NULL);
1809 }
1810 return off;
1811 }
1812
1813 // Set the section indexes of all the sections not associated with a
1814 // segment.
1815
1816 unsigned int
1817 Layout::set_section_indexes(unsigned int shndx)
1818 {
1819 const bool output_is_object = parameters->options().relocatable();
1820 for (Section_list::iterator p = this->unattached_section_list_.begin();
1821 p != this->unattached_section_list_.end();
1822 ++p)
1823 {
1824 // In a relocatable link, we already did group sections.
1825 if (output_is_object
1826 && (*p)->type() == elfcpp::SHT_GROUP)
1827 continue;
1828
1829 (*p)->set_out_shndx(shndx);
1830 ++shndx;
1831 }
1832 return shndx;
1833 }
1834
1835 // Set the section addresses according to the linker script. This is
1836 // only called when we see a SECTIONS clause. This returns the
1837 // program segment which should hold the file header and segment
1838 // headers, if any. It will return NULL if they should not be in a
1839 // segment.
1840
1841 Output_segment*
1842 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1843 {
1844 Script_sections* ss = this->script_options_->script_sections();
1845 gold_assert(ss->saw_sections_clause());
1846
1847 // Place each orphaned output section in the script.
1848 for (Section_list::iterator p = this->section_list_.begin();
1849 p != this->section_list_.end();
1850 ++p)
1851 {
1852 if (!(*p)->found_in_sections_clause())
1853 ss->place_orphan(*p);
1854 }
1855
1856 return this->script_options_->set_section_addresses(symtab, this);
1857 }
1858
1859 // Count the local symbols in the regular symbol table and the dynamic
1860 // symbol table, and build the respective string pools.
1861
1862 void
1863 Layout::count_local_symbols(const Task* task,
1864 const Input_objects* input_objects)
1865 {
1866 // First, figure out an upper bound on the number of symbols we'll
1867 // be inserting into each pool. This helps us create the pools with
1868 // the right size, to avoid unnecessary hashtable resizing.
1869 unsigned int symbol_count = 0;
1870 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1871 p != input_objects->relobj_end();
1872 ++p)
1873 symbol_count += (*p)->local_symbol_count();
1874
1875 // Go from "upper bound" to "estimate." We overcount for two
1876 // reasons: we double-count symbols that occur in more than one
1877 // object file, and we count symbols that are dropped from the
1878 // output. Add it all together and assume we overcount by 100%.
1879 symbol_count /= 2;
1880
1881 // We assume all symbols will go into both the sympool and dynpool.
1882 this->sympool_.reserve(symbol_count);
1883 this->dynpool_.reserve(symbol_count);
1884
1885 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1886 p != input_objects->relobj_end();
1887 ++p)
1888 {
1889 Task_lock_obj<Object> tlo(task, *p);
1890 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1891 }
1892 }
1893
1894 // Create the symbol table sections. Here we also set the final
1895 // values of the symbols. At this point all the loadable sections are
1896 // fully laid out.
1897
1898 void
1899 Layout::create_symtab_sections(const Input_objects* input_objects,
1900 Symbol_table* symtab,
1901 off_t* poff)
1902 {
1903 int symsize;
1904 unsigned int align;
1905 if (parameters->target().get_size() == 32)
1906 {
1907 symsize = elfcpp::Elf_sizes<32>::sym_size;
1908 align = 4;
1909 }
1910 else if (parameters->target().get_size() == 64)
1911 {
1912 symsize = elfcpp::Elf_sizes<64>::sym_size;
1913 align = 8;
1914 }
1915 else
1916 gold_unreachable();
1917
1918 off_t off = *poff;
1919 off = align_address(off, align);
1920 off_t startoff = off;
1921
1922 // Save space for the dummy symbol at the start of the section. We
1923 // never bother to write this out--it will just be left as zero.
1924 off += symsize;
1925 unsigned int local_symbol_index = 1;
1926
1927 // Add STT_SECTION symbols for each Output section which needs one.
1928 for (Section_list::iterator p = this->section_list_.begin();
1929 p != this->section_list_.end();
1930 ++p)
1931 {
1932 if (!(*p)->needs_symtab_index())
1933 (*p)->set_symtab_index(-1U);
1934 else
1935 {
1936 (*p)->set_symtab_index(local_symbol_index);
1937 ++local_symbol_index;
1938 off += symsize;
1939 }
1940 }
1941
1942 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1943 p != input_objects->relobj_end();
1944 ++p)
1945 {
1946 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1947 off);
1948 off += (index - local_symbol_index) * symsize;
1949 local_symbol_index = index;
1950 }
1951
1952 unsigned int local_symcount = local_symbol_index;
1953 gold_assert(local_symcount * symsize == off - startoff);
1954
1955 off_t dynoff;
1956 size_t dyn_global_index;
1957 size_t dyncount;
1958 if (this->dynsym_section_ == NULL)
1959 {
1960 dynoff = 0;
1961 dyn_global_index = 0;
1962 dyncount = 0;
1963 }
1964 else
1965 {
1966 dyn_global_index = this->dynsym_section_->info();
1967 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1968 dynoff = this->dynsym_section_->offset() + locsize;
1969 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1970 gold_assert(static_cast<off_t>(dyncount * symsize)
1971 == this->dynsym_section_->data_size() - locsize);
1972 }
1973
1974 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1975 &this->sympool_, &local_symcount);
1976
1977 if (!parameters->options().strip_all())
1978 {
1979 this->sympool_.set_string_offsets();
1980
1981 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1982 Output_section* osymtab = this->make_output_section(symtab_name,
1983 elfcpp::SHT_SYMTAB,
1984 0);
1985 this->symtab_section_ = osymtab;
1986
1987 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1988 align);
1989 osymtab->add_output_section_data(pos);
1990
1991 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1992 Output_section* ostrtab = this->make_output_section(strtab_name,
1993 elfcpp::SHT_STRTAB,
1994 0);
1995
1996 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1997 ostrtab->add_output_section_data(pstr);
1998
1999 osymtab->set_file_offset(startoff);
2000 osymtab->finalize_data_size();
2001 osymtab->set_link_section(ostrtab);
2002 osymtab->set_info(local_symcount);
2003 osymtab->set_entsize(symsize);
2004
2005 *poff = off;
2006 }
2007 }
2008
2009 // Create the .shstrtab section, which holds the names of the
2010 // sections. At the time this is called, we have created all the
2011 // output sections except .shstrtab itself.
2012
2013 Output_section*
2014 Layout::create_shstrtab()
2015 {
2016 // FIXME: We don't need to create a .shstrtab section if we are
2017 // stripping everything.
2018
2019 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2020
2021 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2022
2023 // We can't write out this section until we've set all the section
2024 // names, and we don't set the names of compressed output sections
2025 // until relocations are complete.
2026 os->set_after_input_sections();
2027
2028 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2029 os->add_output_section_data(posd);
2030
2031 return os;
2032 }
2033
2034 // Create the section headers. SIZE is 32 or 64. OFF is the file
2035 // offset.
2036
2037 void
2038 Layout::create_shdrs(off_t* poff)
2039 {
2040 Output_section_headers* oshdrs;
2041 oshdrs = new Output_section_headers(this,
2042 &this->segment_list_,
2043 &this->section_list_,
2044 &this->unattached_section_list_,
2045 &this->namepool_);
2046 off_t off = align_address(*poff, oshdrs->addralign());
2047 oshdrs->set_address_and_file_offset(0, off);
2048 off += oshdrs->data_size();
2049 *poff = off;
2050 this->section_headers_ = oshdrs;
2051 }
2052
2053 // Create the dynamic symbol table.
2054
2055 void
2056 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2057 Symbol_table* symtab,
2058 Output_section **pdynstr,
2059 unsigned int* plocal_dynamic_count,
2060 std::vector<Symbol*>* pdynamic_symbols,
2061 Versions* pversions)
2062 {
2063 // Count all the symbols in the dynamic symbol table, and set the
2064 // dynamic symbol indexes.
2065
2066 // Skip symbol 0, which is always all zeroes.
2067 unsigned int index = 1;
2068
2069 // Add STT_SECTION symbols for each Output section which needs one.
2070 for (Section_list::iterator p = this->section_list_.begin();
2071 p != this->section_list_.end();
2072 ++p)
2073 {
2074 if (!(*p)->needs_dynsym_index())
2075 (*p)->set_dynsym_index(-1U);
2076 else
2077 {
2078 (*p)->set_dynsym_index(index);
2079 ++index;
2080 }
2081 }
2082
2083 // Count the local symbols that need to go in the dynamic symbol table,
2084 // and set the dynamic symbol indexes.
2085 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2086 p != input_objects->relobj_end();
2087 ++p)
2088 {
2089 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2090 index = new_index;
2091 }
2092
2093 unsigned int local_symcount = index;
2094 *plocal_dynamic_count = local_symcount;
2095
2096 // FIXME: We have to tell set_dynsym_indexes whether the
2097 // -E/--export-dynamic option was used.
2098 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2099 &this->dynpool_, pversions);
2100
2101 int symsize;
2102 unsigned int align;
2103 const int size = parameters->target().get_size();
2104 if (size == 32)
2105 {
2106 symsize = elfcpp::Elf_sizes<32>::sym_size;
2107 align = 4;
2108 }
2109 else if (size == 64)
2110 {
2111 symsize = elfcpp::Elf_sizes<64>::sym_size;
2112 align = 8;
2113 }
2114 else
2115 gold_unreachable();
2116
2117 // Create the dynamic symbol table section.
2118
2119 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2120 elfcpp::SHT_DYNSYM,
2121 elfcpp::SHF_ALLOC,
2122 false);
2123
2124 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2125 align);
2126 dynsym->add_output_section_data(odata);
2127
2128 dynsym->set_info(local_symcount);
2129 dynsym->set_entsize(symsize);
2130 dynsym->set_addralign(align);
2131
2132 this->dynsym_section_ = dynsym;
2133
2134 Output_data_dynamic* const odyn = this->dynamic_data_;
2135 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2136 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2137
2138 // Create the dynamic string table section.
2139
2140 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2141 elfcpp::SHT_STRTAB,
2142 elfcpp::SHF_ALLOC,
2143 false);
2144
2145 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2146 dynstr->add_output_section_data(strdata);
2147
2148 dynsym->set_link_section(dynstr);
2149 this->dynamic_section_->set_link_section(dynstr);
2150
2151 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2152 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2153
2154 *pdynstr = dynstr;
2155
2156 // Create the hash tables.
2157
2158 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2159 || strcmp(parameters->options().hash_style(), "both") == 0)
2160 {
2161 unsigned char* phash;
2162 unsigned int hashlen;
2163 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2164 &phash, &hashlen);
2165
2166 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2167 elfcpp::SHT_HASH,
2168 elfcpp::SHF_ALLOC,
2169 false);
2170
2171 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2172 hashlen,
2173 align);
2174 hashsec->add_output_section_data(hashdata);
2175
2176 hashsec->set_link_section(dynsym);
2177 hashsec->set_entsize(4);
2178
2179 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2180 }
2181
2182 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2183 || strcmp(parameters->options().hash_style(), "both") == 0)
2184 {
2185 unsigned char* phash;
2186 unsigned int hashlen;
2187 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2188 &phash, &hashlen);
2189
2190 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2191 elfcpp::SHT_GNU_HASH,
2192 elfcpp::SHF_ALLOC,
2193 false);
2194
2195 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2196 hashlen,
2197 align);
2198 hashsec->add_output_section_data(hashdata);
2199
2200 hashsec->set_link_section(dynsym);
2201 hashsec->set_entsize(4);
2202
2203 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2204 }
2205 }
2206
2207 // Assign offsets to each local portion of the dynamic symbol table.
2208
2209 void
2210 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2211 {
2212 Output_section* dynsym = this->dynsym_section_;
2213 gold_assert(dynsym != NULL);
2214
2215 off_t off = dynsym->offset();
2216
2217 // Skip the dummy symbol at the start of the section.
2218 off += dynsym->entsize();
2219
2220 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2221 p != input_objects->relobj_end();
2222 ++p)
2223 {
2224 unsigned int count = (*p)->set_local_dynsym_offset(off);
2225 off += count * dynsym->entsize();
2226 }
2227 }
2228
2229 // Create the version sections.
2230
2231 void
2232 Layout::create_version_sections(const Versions* versions,
2233 const Symbol_table* symtab,
2234 unsigned int local_symcount,
2235 const std::vector<Symbol*>& dynamic_symbols,
2236 const Output_section* dynstr)
2237 {
2238 if (!versions->any_defs() && !versions->any_needs())
2239 return;
2240
2241 switch (parameters->size_and_endianness())
2242 {
2243 #ifdef HAVE_TARGET_32_LITTLE
2244 case Parameters::TARGET_32_LITTLE:
2245 this->sized_create_version_sections<32, false>(versions, symtab,
2246 local_symcount,
2247 dynamic_symbols, dynstr);
2248 break;
2249 #endif
2250 #ifdef HAVE_TARGET_32_BIG
2251 case Parameters::TARGET_32_BIG:
2252 this->sized_create_version_sections<32, true>(versions, symtab,
2253 local_symcount,
2254 dynamic_symbols, dynstr);
2255 break;
2256 #endif
2257 #ifdef HAVE_TARGET_64_LITTLE
2258 case Parameters::TARGET_64_LITTLE:
2259 this->sized_create_version_sections<64, false>(versions, symtab,
2260 local_symcount,
2261 dynamic_symbols, dynstr);
2262 break;
2263 #endif
2264 #ifdef HAVE_TARGET_64_BIG
2265 case Parameters::TARGET_64_BIG:
2266 this->sized_create_version_sections<64, true>(versions, symtab,
2267 local_symcount,
2268 dynamic_symbols, dynstr);
2269 break;
2270 #endif
2271 default:
2272 gold_unreachable();
2273 }
2274 }
2275
2276 // Create the version sections, sized version.
2277
2278 template<int size, bool big_endian>
2279 void
2280 Layout::sized_create_version_sections(
2281 const Versions* versions,
2282 const Symbol_table* symtab,
2283 unsigned int local_symcount,
2284 const std::vector<Symbol*>& dynamic_symbols,
2285 const Output_section* dynstr)
2286 {
2287 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2288 elfcpp::SHT_GNU_versym,
2289 elfcpp::SHF_ALLOC,
2290 false);
2291
2292 unsigned char* vbuf;
2293 unsigned int vsize;
2294 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2295 local_symcount,
2296 dynamic_symbols,
2297 &vbuf, &vsize);
2298
2299 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2300
2301 vsec->add_output_section_data(vdata);
2302 vsec->set_entsize(2);
2303 vsec->set_link_section(this->dynsym_section_);
2304
2305 Output_data_dynamic* const odyn = this->dynamic_data_;
2306 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2307
2308 if (versions->any_defs())
2309 {
2310 Output_section* vdsec;
2311 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2312 elfcpp::SHT_GNU_verdef,
2313 elfcpp::SHF_ALLOC,
2314 false);
2315
2316 unsigned char* vdbuf;
2317 unsigned int vdsize;
2318 unsigned int vdentries;
2319 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2320 &vdsize, &vdentries);
2321
2322 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2323 vdsize,
2324 4);
2325
2326 vdsec->add_output_section_data(vddata);
2327 vdsec->set_link_section(dynstr);
2328 vdsec->set_info(vdentries);
2329
2330 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2331 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2332 }
2333
2334 if (versions->any_needs())
2335 {
2336 Output_section* vnsec;
2337 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2338 elfcpp::SHT_GNU_verneed,
2339 elfcpp::SHF_ALLOC,
2340 false);
2341
2342 unsigned char* vnbuf;
2343 unsigned int vnsize;
2344 unsigned int vnentries;
2345 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2346 &vnbuf, &vnsize,
2347 &vnentries);
2348
2349 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2350 vnsize,
2351 4);
2352
2353 vnsec->add_output_section_data(vndata);
2354 vnsec->set_link_section(dynstr);
2355 vnsec->set_info(vnentries);
2356
2357 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2358 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2359 }
2360 }
2361
2362 // Create the .interp section and PT_INTERP segment.
2363
2364 void
2365 Layout::create_interp(const Target* target)
2366 {
2367 const char* interp = this->options_.dynamic_linker();
2368 if (interp == NULL)
2369 {
2370 interp = target->dynamic_linker();
2371 gold_assert(interp != NULL);
2372 }
2373
2374 size_t len = strlen(interp) + 1;
2375
2376 Output_section_data* odata = new Output_data_const(interp, len, 1);
2377
2378 Output_section* osec = this->choose_output_section(NULL, ".interp",
2379 elfcpp::SHT_PROGBITS,
2380 elfcpp::SHF_ALLOC,
2381 false);
2382 osec->add_output_section_data(odata);
2383
2384 if (!this->script_options_->saw_phdrs_clause())
2385 {
2386 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2387 elfcpp::PF_R);
2388 oseg->add_initial_output_section(osec, elfcpp::PF_R);
2389 }
2390 }
2391
2392 // Finish the .dynamic section and PT_DYNAMIC segment.
2393
2394 void
2395 Layout::finish_dynamic_section(const Input_objects* input_objects,
2396 const Symbol_table* symtab)
2397 {
2398 if (!this->script_options_->saw_phdrs_clause())
2399 {
2400 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2401 (elfcpp::PF_R
2402 | elfcpp::PF_W));
2403 oseg->add_initial_output_section(this->dynamic_section_,
2404 elfcpp::PF_R | elfcpp::PF_W);
2405 }
2406
2407 Output_data_dynamic* const odyn = this->dynamic_data_;
2408
2409 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2410 p != input_objects->dynobj_end();
2411 ++p)
2412 {
2413 // FIXME: Handle --as-needed.
2414 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2415 }
2416
2417 if (parameters->options().shared())
2418 {
2419 const char* soname = this->options_.soname();
2420 if (soname != NULL)
2421 odyn->add_string(elfcpp::DT_SONAME, soname);
2422 }
2423
2424 // FIXME: Support --init and --fini.
2425 Symbol* sym = symtab->lookup("_init");
2426 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2427 odyn->add_symbol(elfcpp::DT_INIT, sym);
2428
2429 sym = symtab->lookup("_fini");
2430 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2431 odyn->add_symbol(elfcpp::DT_FINI, sym);
2432
2433 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2434
2435 // Add a DT_RPATH entry if needed.
2436 const General_options::Dir_list& rpath(this->options_.rpath());
2437 if (!rpath.empty())
2438 {
2439 std::string rpath_val;
2440 for (General_options::Dir_list::const_iterator p = rpath.begin();
2441 p != rpath.end();
2442 ++p)
2443 {
2444 if (rpath_val.empty())
2445 rpath_val = p->name();
2446 else
2447 {
2448 // Eliminate duplicates.
2449 General_options::Dir_list::const_iterator q;
2450 for (q = rpath.begin(); q != p; ++q)
2451 if (q->name() == p->name())
2452 break;
2453 if (q == p)
2454 {
2455 rpath_val += ':';
2456 rpath_val += p->name();
2457 }
2458 }
2459 }
2460
2461 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2462 }
2463
2464 // Look for text segments that have dynamic relocations.
2465 bool have_textrel = false;
2466 if (!this->script_options_->saw_sections_clause())
2467 {
2468 for (Segment_list::const_iterator p = this->segment_list_.begin();
2469 p != this->segment_list_.end();
2470 ++p)
2471 {
2472 if (((*p)->flags() & elfcpp::PF_W) == 0
2473 && (*p)->dynamic_reloc_count() > 0)
2474 {
2475 have_textrel = true;
2476 break;
2477 }
2478 }
2479 }
2480 else
2481 {
2482 // We don't know the section -> segment mapping, so we are
2483 // conservative and just look for readonly sections with
2484 // relocations. If those sections wind up in writable segments,
2485 // then we have created an unnecessary DT_TEXTREL entry.
2486 for (Section_list::const_iterator p = this->section_list_.begin();
2487 p != this->section_list_.end();
2488 ++p)
2489 {
2490 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2491 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2492 && ((*p)->dynamic_reloc_count() > 0))
2493 {
2494 have_textrel = true;
2495 break;
2496 }
2497 }
2498 }
2499
2500 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2501 // post-link tools can easily modify these flags if desired.
2502 unsigned int flags = 0;
2503 if (have_textrel)
2504 {
2505 // Add a DT_TEXTREL for compatibility with older loaders.
2506 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2507 flags |= elfcpp::DF_TEXTREL;
2508 }
2509 if (parameters->options().shared() && this->has_static_tls())
2510 flags |= elfcpp::DF_STATIC_TLS;
2511 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2512 }
2513
2514 // The mapping of .gnu.linkonce section names to real section names.
2515
2516 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2517 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2518 {
2519 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2520 MAPPING_INIT("t", ".text"),
2521 MAPPING_INIT("r", ".rodata"),
2522 MAPPING_INIT("d", ".data"),
2523 MAPPING_INIT("b", ".bss"),
2524 MAPPING_INIT("s", ".sdata"),
2525 MAPPING_INIT("sb", ".sbss"),
2526 MAPPING_INIT("s2", ".sdata2"),
2527 MAPPING_INIT("sb2", ".sbss2"),
2528 MAPPING_INIT("wi", ".debug_info"),
2529 MAPPING_INIT("td", ".tdata"),
2530 MAPPING_INIT("tb", ".tbss"),
2531 MAPPING_INIT("lr", ".lrodata"),
2532 MAPPING_INIT("l", ".ldata"),
2533 MAPPING_INIT("lb", ".lbss"),
2534 };
2535 #undef MAPPING_INIT
2536
2537 const int Layout::linkonce_mapping_count =
2538 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2539
2540 // Return the name of the output section to use for a .gnu.linkonce
2541 // section. This is based on the default ELF linker script of the old
2542 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2543 // to ".text". Set *PLEN to the length of the name. *PLEN is
2544 // initialized to the length of NAME.
2545
2546 const char*
2547 Layout::linkonce_output_name(const char* name, size_t *plen)
2548 {
2549 const char* s = name + sizeof(".gnu.linkonce") - 1;
2550 if (*s != '.')
2551 return name;
2552 ++s;
2553 const Linkonce_mapping* plm = linkonce_mapping;
2554 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2555 {
2556 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2557 {
2558 *plen = plm->tolen;
2559 return plm->to;
2560 }
2561 }
2562 return name;
2563 }
2564
2565 // Choose the output section name to use given an input section name.
2566 // Set *PLEN to the length of the name. *PLEN is initialized to the
2567 // length of NAME.
2568
2569 const char*
2570 Layout::output_section_name(const char* name, size_t* plen)
2571 {
2572 if (Layout::is_linkonce(name))
2573 {
2574 // .gnu.linkonce sections are laid out as though they were named
2575 // for the sections are placed into.
2576 return Layout::linkonce_output_name(name, plen);
2577 }
2578
2579 // gcc 4.3 generates the following sorts of section names when it
2580 // needs a section name specific to a function:
2581 // .text.FN
2582 // .rodata.FN
2583 // .sdata2.FN
2584 // .data.FN
2585 // .data.rel.FN
2586 // .data.rel.local.FN
2587 // .data.rel.ro.FN
2588 // .data.rel.ro.local.FN
2589 // .sdata.FN
2590 // .bss.FN
2591 // .sbss.FN
2592 // .tdata.FN
2593 // .tbss.FN
2594
2595 // The GNU linker maps all of those to the part before the .FN,
2596 // except that .data.rel.local.FN is mapped to .data, and
2597 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2598 // beginning with .data.rel.ro.local are grouped together.
2599
2600 // For an anonymous namespace, the string FN can contain a '.'.
2601
2602 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2603 // GNU linker maps to .rodata.
2604
2605 // The .data.rel.ro sections enable a security feature triggered by
2606 // the -z relro option. Section which need to be relocated at
2607 // program startup time but which may be readonly after startup are
2608 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2609 // segment. The dynamic linker will make that segment writable,
2610 // perform relocations, and then make it read-only. FIXME: We do
2611 // not yet implement this optimization.
2612
2613 // It is hard to handle this in a principled way.
2614
2615 // These are the rules we follow:
2616
2617 // If the section name has no initial '.', or no dot other than an
2618 // initial '.', we use the name unchanged (i.e., "mysection" and
2619 // ".text" are unchanged).
2620
2621 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2622
2623 // Otherwise, we drop the second '.' and everything that comes after
2624 // it (i.e., ".text.XXX" becomes ".text").
2625
2626 const char* s = name;
2627 if (*s != '.')
2628 return name;
2629 ++s;
2630 const char* sdot = strchr(s, '.');
2631 if (sdot == NULL)
2632 return name;
2633
2634 const char* const data_rel_ro = ".data.rel.ro";
2635 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2636 {
2637 *plen = strlen(data_rel_ro);
2638 return data_rel_ro;
2639 }
2640
2641 *plen = sdot - name;
2642 return name;
2643 }
2644
2645 // Record the signature of a comdat section, and return whether to
2646 // include it in the link. If GROUP is true, this is a regular
2647 // section group. If GROUP is false, this is a group signature
2648 // derived from the name of a linkonce section. We want linkonce
2649 // signatures and group signatures to block each other, but we don't
2650 // want a linkonce signature to block another linkonce signature.
2651
2652 bool
2653 Layout::add_comdat(const char* signature, bool group)
2654 {
2655 std::string sig(signature);
2656 std::pair<Signatures::iterator, bool> ins(
2657 this->signatures_.insert(std::make_pair(sig, group)));
2658
2659 if (ins.second)
2660 {
2661 // This is the first time we've seen this signature.
2662 return true;
2663 }
2664
2665 if (ins.first->second)
2666 {
2667 // We've already seen a real section group with this signature.
2668 return false;
2669 }
2670 else if (group)
2671 {
2672 // This is a real section group, and we've already seen a
2673 // linkonce section with this signature. Record that we've seen
2674 // a section group, and don't include this section group.
2675 ins.first->second = true;
2676 return false;
2677 }
2678 else
2679 {
2680 // We've already seen a linkonce section and this is a linkonce
2681 // section. These don't block each other--this may be the same
2682 // symbol name with different section types.
2683 return true;
2684 }
2685 }
2686
2687 // Store the allocated sections into the section list.
2688
2689 void
2690 Layout::get_allocated_sections(Section_list* section_list) const
2691 {
2692 for (Section_list::const_iterator p = this->section_list_.begin();
2693 p != this->section_list_.end();
2694 ++p)
2695 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2696 section_list->push_back(*p);
2697 }
2698
2699 // Create an output segment.
2700
2701 Output_segment*
2702 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2703 {
2704 gold_assert(!parameters->options().relocatable());
2705 Output_segment* oseg = new Output_segment(type, flags);
2706 this->segment_list_.push_back(oseg);
2707 return oseg;
2708 }
2709
2710 // Write out the Output_sections. Most won't have anything to write,
2711 // since most of the data will come from input sections which are
2712 // handled elsewhere. But some Output_sections do have Output_data.
2713
2714 void
2715 Layout::write_output_sections(Output_file* of) const
2716 {
2717 for (Section_list::const_iterator p = this->section_list_.begin();
2718 p != this->section_list_.end();
2719 ++p)
2720 {
2721 if (!(*p)->after_input_sections())
2722 (*p)->write(of);
2723 }
2724 }
2725
2726 // Write out data not associated with a section or the symbol table.
2727
2728 void
2729 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2730 {
2731 if (!parameters->options().strip_all())
2732 {
2733 const Output_section* symtab_section = this->symtab_section_;
2734 for (Section_list::const_iterator p = this->section_list_.begin();
2735 p != this->section_list_.end();
2736 ++p)
2737 {
2738 if ((*p)->needs_symtab_index())
2739 {
2740 gold_assert(symtab_section != NULL);
2741 unsigned int index = (*p)->symtab_index();
2742 gold_assert(index > 0 && index != -1U);
2743 off_t off = (symtab_section->offset()
2744 + index * symtab_section->entsize());
2745 symtab->write_section_symbol(*p, of, off);
2746 }
2747 }
2748 }
2749
2750 const Output_section* dynsym_section = this->dynsym_section_;
2751 for (Section_list::const_iterator p = this->section_list_.begin();
2752 p != this->section_list_.end();
2753 ++p)
2754 {
2755 if ((*p)->needs_dynsym_index())
2756 {
2757 gold_assert(dynsym_section != NULL);
2758 unsigned int index = (*p)->dynsym_index();
2759 gold_assert(index > 0 && index != -1U);
2760 off_t off = (dynsym_section->offset()
2761 + index * dynsym_section->entsize());
2762 symtab->write_section_symbol(*p, of, off);
2763 }
2764 }
2765
2766 // Write out the Output_data which are not in an Output_section.
2767 for (Data_list::const_iterator p = this->special_output_list_.begin();
2768 p != this->special_output_list_.end();
2769 ++p)
2770 (*p)->write(of);
2771 }
2772
2773 // Write out the Output_sections which can only be written after the
2774 // input sections are complete.
2775
2776 void
2777 Layout::write_sections_after_input_sections(Output_file* of)
2778 {
2779 // Determine the final section offsets, and thus the final output
2780 // file size. Note we finalize the .shstrab last, to allow the
2781 // after_input_section sections to modify their section-names before
2782 // writing.
2783 if (this->any_postprocessing_sections_)
2784 {
2785 off_t off = this->output_file_size_;
2786 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2787
2788 // Now that we've finalized the names, we can finalize the shstrab.
2789 off =
2790 this->set_section_offsets(off,
2791 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2792
2793 if (off > this->output_file_size_)
2794 {
2795 of->resize(off);
2796 this->output_file_size_ = off;
2797 }
2798 }
2799
2800 for (Section_list::const_iterator p = this->section_list_.begin();
2801 p != this->section_list_.end();
2802 ++p)
2803 {
2804 if ((*p)->after_input_sections())
2805 (*p)->write(of);
2806 }
2807
2808 this->section_headers_->write(of);
2809 }
2810
2811 // If the build ID requires computing a checksum, do so here, and
2812 // write it out. We compute a checksum over the entire file because
2813 // that is simplest.
2814
2815 void
2816 Layout::write_build_id(Output_file* of) const
2817 {
2818 if (this->build_id_note_ == NULL)
2819 return;
2820
2821 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
2822
2823 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
2824 this->build_id_note_->data_size());
2825
2826 const char* style = parameters->options().build_id();
2827 if (strcmp(style, "sha1") == 0)
2828 {
2829 sha1_ctx ctx;
2830 sha1_init_ctx(&ctx);
2831 sha1_process_bytes(iv, this->output_file_size_, &ctx);
2832 sha1_finish_ctx(&ctx, ov);
2833 }
2834 else if (strcmp(style, "md5") == 0)
2835 {
2836 md5_ctx ctx;
2837 md5_init_ctx(&ctx);
2838 md5_process_bytes(iv, this->output_file_size_, &ctx);
2839 md5_finish_ctx(&ctx, ov);
2840 }
2841 else
2842 gold_unreachable();
2843
2844 of->write_output_view(this->build_id_note_->offset(),
2845 this->build_id_note_->data_size(),
2846 ov);
2847
2848 of->free_input_view(0, this->output_file_size_, iv);
2849 }
2850
2851 // Write out a binary file. This is called after the link is
2852 // complete. IN is the temporary output file we used to generate the
2853 // ELF code. We simply walk through the segments, read them from
2854 // their file offset in IN, and write them to their load address in
2855 // the output file. FIXME: with a bit more work, we could support
2856 // S-records and/or Intel hex format here.
2857
2858 void
2859 Layout::write_binary(Output_file* in) const
2860 {
2861 gold_assert(this->options_.oformat_enum()
2862 == General_options::OBJECT_FORMAT_BINARY);
2863
2864 // Get the size of the binary file.
2865 uint64_t max_load_address = 0;
2866 for (Segment_list::const_iterator p = this->segment_list_.begin();
2867 p != this->segment_list_.end();
2868 ++p)
2869 {
2870 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2871 {
2872 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2873 if (max_paddr > max_load_address)
2874 max_load_address = max_paddr;
2875 }
2876 }
2877
2878 Output_file out(parameters->options().output_file_name());
2879 out.open(max_load_address);
2880
2881 for (Segment_list::const_iterator p = this->segment_list_.begin();
2882 p != this->segment_list_.end();
2883 ++p)
2884 {
2885 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2886 {
2887 const unsigned char* vin = in->get_input_view((*p)->offset(),
2888 (*p)->filesz());
2889 unsigned char* vout = out.get_output_view((*p)->paddr(),
2890 (*p)->filesz());
2891 memcpy(vout, vin, (*p)->filesz());
2892 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2893 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2894 }
2895 }
2896
2897 out.close();
2898 }
2899
2900 // Print statistical information to stderr. This is used for --stats.
2901
2902 void
2903 Layout::print_stats() const
2904 {
2905 this->namepool_.print_stats("section name pool");
2906 this->sympool_.print_stats("output symbol name pool");
2907 this->dynpool_.print_stats("dynamic name pool");
2908
2909 for (Section_list::const_iterator p = this->section_list_.begin();
2910 p != this->section_list_.end();
2911 ++p)
2912 (*p)->print_merge_stats();
2913 }
2914
2915 // Write_sections_task methods.
2916
2917 // We can always run this task.
2918
2919 Task_token*
2920 Write_sections_task::is_runnable()
2921 {
2922 return NULL;
2923 }
2924
2925 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2926 // when finished.
2927
2928 void
2929 Write_sections_task::locks(Task_locker* tl)
2930 {
2931 tl->add(this, this->output_sections_blocker_);
2932 tl->add(this, this->final_blocker_);
2933 }
2934
2935 // Run the task--write out the data.
2936
2937 void
2938 Write_sections_task::run(Workqueue*)
2939 {
2940 this->layout_->write_output_sections(this->of_);
2941 }
2942
2943 // Write_data_task methods.
2944
2945 // We can always run this task.
2946
2947 Task_token*
2948 Write_data_task::is_runnable()
2949 {
2950 return NULL;
2951 }
2952
2953 // We need to unlock FINAL_BLOCKER when finished.
2954
2955 void
2956 Write_data_task::locks(Task_locker* tl)
2957 {
2958 tl->add(this, this->final_blocker_);
2959 }
2960
2961 // Run the task--write out the data.
2962
2963 void
2964 Write_data_task::run(Workqueue*)
2965 {
2966 this->layout_->write_data(this->symtab_, this->of_);
2967 }
2968
2969 // Write_symbols_task methods.
2970
2971 // We can always run this task.
2972
2973 Task_token*
2974 Write_symbols_task::is_runnable()
2975 {
2976 return NULL;
2977 }
2978
2979 // We need to unlock FINAL_BLOCKER when finished.
2980
2981 void
2982 Write_symbols_task::locks(Task_locker* tl)
2983 {
2984 tl->add(this, this->final_blocker_);
2985 }
2986
2987 // Run the task--write out the symbols.
2988
2989 void
2990 Write_symbols_task::run(Workqueue*)
2991 {
2992 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2993 this->dynpool_, this->of_);
2994 }
2995
2996 // Write_after_input_sections_task methods.
2997
2998 // We can only run this task after the input sections have completed.
2999
3000 Task_token*
3001 Write_after_input_sections_task::is_runnable()
3002 {
3003 if (this->input_sections_blocker_->is_blocked())
3004 return this->input_sections_blocker_;
3005 return NULL;
3006 }
3007
3008 // We need to unlock FINAL_BLOCKER when finished.
3009
3010 void
3011 Write_after_input_sections_task::locks(Task_locker* tl)
3012 {
3013 tl->add(this, this->final_blocker_);
3014 }
3015
3016 // Run the task.
3017
3018 void
3019 Write_after_input_sections_task::run(Workqueue*)
3020 {
3021 this->layout_->write_sections_after_input_sections(this->of_);
3022 }
3023
3024 // Close_task_runner methods.
3025
3026 // Run the task--close the file.
3027
3028 void
3029 Close_task_runner::run(Workqueue*, const Task*)
3030 {
3031 // If we need to compute a checksum for the BUILD if, we do so here.
3032 this->layout_->write_build_id(this->of_);
3033
3034 // If we've been asked to create a binary file, we do so here.
3035 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3036 this->layout_->write_binary(this->of_);
3037
3038 this->of_->close();
3039 }
3040
3041 // Instantiate the templates we need. We could use the configure
3042 // script to restrict this to only the ones for implemented targets.
3043
3044 #ifdef HAVE_TARGET_32_LITTLE
3045 template
3046 Output_section*
3047 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3048 const char* name,
3049 const elfcpp::Shdr<32, false>& shdr,
3050 unsigned int, unsigned int, off_t*);
3051 #endif
3052
3053 #ifdef HAVE_TARGET_32_BIG
3054 template
3055 Output_section*
3056 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3057 const char* name,
3058 const elfcpp::Shdr<32, true>& shdr,
3059 unsigned int, unsigned int, off_t*);
3060 #endif
3061
3062 #ifdef HAVE_TARGET_64_LITTLE
3063 template
3064 Output_section*
3065 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3066 const char* name,
3067 const elfcpp::Shdr<64, false>& shdr,
3068 unsigned int, unsigned int, off_t*);
3069 #endif
3070
3071 #ifdef HAVE_TARGET_64_BIG
3072 template
3073 Output_section*
3074 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3075 const char* name,
3076 const elfcpp::Shdr<64, true>& shdr,
3077 unsigned int, unsigned int, off_t*);
3078 #endif
3079
3080 #ifdef HAVE_TARGET_32_LITTLE
3081 template
3082 Output_section*
3083 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3084 unsigned int reloc_shndx,
3085 const elfcpp::Shdr<32, false>& shdr,
3086 Output_section* data_section,
3087 Relocatable_relocs* rr);
3088 #endif
3089
3090 #ifdef HAVE_TARGET_32_BIG
3091 template
3092 Output_section*
3093 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3094 unsigned int reloc_shndx,
3095 const elfcpp::Shdr<32, true>& shdr,
3096 Output_section* data_section,
3097 Relocatable_relocs* rr);
3098 #endif
3099
3100 #ifdef HAVE_TARGET_64_LITTLE
3101 template
3102 Output_section*
3103 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3104 unsigned int reloc_shndx,
3105 const elfcpp::Shdr<64, false>& shdr,
3106 Output_section* data_section,
3107 Relocatable_relocs* rr);
3108 #endif
3109
3110 #ifdef HAVE_TARGET_64_BIG
3111 template
3112 Output_section*
3113 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3114 unsigned int reloc_shndx,
3115 const elfcpp::Shdr<64, true>& shdr,
3116 Output_section* data_section,
3117 Relocatable_relocs* rr);
3118 #endif
3119
3120 #ifdef HAVE_TARGET_32_LITTLE
3121 template
3122 void
3123 Layout::layout_group<32, false>(Symbol_table* symtab,
3124 Sized_relobj<32, false>* object,
3125 unsigned int,
3126 const char* group_section_name,
3127 const char* signature,
3128 const elfcpp::Shdr<32, false>& shdr,
3129 const elfcpp::Elf_Word* contents);
3130 #endif
3131
3132 #ifdef HAVE_TARGET_32_BIG
3133 template
3134 void
3135 Layout::layout_group<32, true>(Symbol_table* symtab,
3136 Sized_relobj<32, true>* object,
3137 unsigned int,
3138 const char* group_section_name,
3139 const char* signature,
3140 const elfcpp::Shdr<32, true>& shdr,
3141 const elfcpp::Elf_Word* contents);
3142 #endif
3143
3144 #ifdef HAVE_TARGET_64_LITTLE
3145 template
3146 void
3147 Layout::layout_group<64, false>(Symbol_table* symtab,
3148 Sized_relobj<64, false>* object,
3149 unsigned int,
3150 const char* group_section_name,
3151 const char* signature,
3152 const elfcpp::Shdr<64, false>& shdr,
3153 const elfcpp::Elf_Word* contents);
3154 #endif
3155
3156 #ifdef HAVE_TARGET_64_BIG
3157 template
3158 void
3159 Layout::layout_group<64, true>(Symbol_table* symtab,
3160 Sized_relobj<64, true>* object,
3161 unsigned int,
3162 const char* group_section_name,
3163 const char* signature,
3164 const elfcpp::Shdr<64, true>& shdr,
3165 const elfcpp::Elf_Word* contents);
3166 #endif
3167
3168 #ifdef HAVE_TARGET_32_LITTLE
3169 template
3170 Output_section*
3171 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3172 const unsigned char* symbols,
3173 off_t symbols_size,
3174 const unsigned char* symbol_names,
3175 off_t symbol_names_size,
3176 unsigned int shndx,
3177 const elfcpp::Shdr<32, false>& shdr,
3178 unsigned int reloc_shndx,
3179 unsigned int reloc_type,
3180 off_t* off);
3181 #endif
3182
3183 #ifdef HAVE_TARGET_32_BIG
3184 template
3185 Output_section*
3186 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3187 const unsigned char* symbols,
3188 off_t symbols_size,
3189 const unsigned char* symbol_names,
3190 off_t symbol_names_size,
3191 unsigned int shndx,
3192 const elfcpp::Shdr<32, true>& shdr,
3193 unsigned int reloc_shndx,
3194 unsigned int reloc_type,
3195 off_t* off);
3196 #endif
3197
3198 #ifdef HAVE_TARGET_64_LITTLE
3199 template
3200 Output_section*
3201 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3202 const unsigned char* symbols,
3203 off_t symbols_size,
3204 const unsigned char* symbol_names,
3205 off_t symbol_names_size,
3206 unsigned int shndx,
3207 const elfcpp::Shdr<64, false>& shdr,
3208 unsigned int reloc_shndx,
3209 unsigned int reloc_type,
3210 off_t* off);
3211 #endif
3212
3213 #ifdef HAVE_TARGET_64_BIG
3214 template
3215 Output_section*
3216 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3217 const unsigned char* symbols,
3218 off_t symbols_size,
3219 const unsigned char* symbol_names,
3220 off_t symbol_names_size,
3221 unsigned int shndx,
3222 const elfcpp::Shdr<64, true>& shdr,
3223 unsigned int reloc_shndx,
3224 unsigned int reloc_type,
3225 off_t* off);
3226 #endif
3227
3228 } // End namespace gold.
This page took 0.457872 seconds and 4 git commands to generate.